NASA Astrophysics Data System (ADS)
Zheng, Y.; Bourassa, M. A.; Ali, M. M.
2017-12-01
This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.
NASA Technical Reports Server (NTRS)
Fu, Rong; Del Genio, Anthony D.; Rossow, William B.
1994-01-01
The authors analyze the influence of Sea Surface Temperature (SST) and surface wind divergence on atmospheric thermodynamic structure and the resulting effects on the occurrence of deep convection using National Meteorological Center radiosonde data and International Satellite Cloud Climatology Program data for July 1983-July 1985. The onset of deep convection requires not only the existence of positive convective available potential energy (CAPE), but also an unstable planetary boundary layer (PBL). A stable PBL is observed to suppress deep convection even when CAPE is positive. Variations of SST have a major effect on CAPE, but surface wind divergence can also affect deep convection by changing the lapse rate in the lower troposphere and humidity in the PBL. Specifically, when SST is greater than or equal to 28 C, CAPE is always positive, and surface wind divergence does not qualitatively change the buoyancy profile above the PBL. Strong surface wind divergence, however, stabilizes the PBL so as to suppress the initiation of deep convection. In warm SST regions, CAPE is greater than 0 regardless of assumptions about condensate loading, although the pseudoadiabatic limit is more consistent with the observed deep convection than the reversible moist-adiabatic limit under these circumstances. When SST is less than 27 C, CAPE is usually negative and inhibits convection, but strong surface wind convergence can destabilize the inversion layer and moisten the PBL enough to make the atmosphere neutrally stable in the mean. As a result, deep convection is generally enhanced either when SST is greater than or equal to 28 C in the absence of strong surface wind divergence or when strong surface wind convergence occurs even if SST is less than 27 C. The anomalous suppression of deep convection in the warm area of the equatorial west Pacific lying between the intertropical convergence zone (ITCZ) and south Pacific convergence zone (SPCZ) is probably caused by dryness in the PBL and an inversion in that area. The seasonal cycles of deep convection and surface wind divergence are in phase with the maximum solar radiation and lead SST for one to three months in the central Pacific. The change of PBL relative humidity plays a critical role in the changeover to convective instability in this case. The seasonal change of deep convection and associated clouds seems not to have important effects on the seasonal change of local SST in the central Pacific.
Ocean convergence and the dispersion of flotsam.
D'Asaro, Eric A; Shcherbina, Andrey Y; Klymak, Jody M; Molemaker, Jeroen; Novelli, Guillaume; Guigand, Cédric M; Haza, Angelique C; Haus, Brian K; Ryan, Edward H; Jacobs, Gregg A; Huntley, Helga S; Laxague, Nathan J M; Chen, Shuyi; Judt, Falco; McWilliams, James C; Barkan, Roy; Kirwan, A D; Poje, Andrew C; Özgökmen, Tamay M
2018-02-06
Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km 2 converged into a 60 × 60 m region within a week, a factor of more than 10 5 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s -1 and 0.01 ms -1 , respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material. Copyright © 2018 the Author(s). Published by PNAS.
Ocean convergence and the dispersion of flotsam
Shcherbina, Andrey Y.; Klymak, Jody M.; Molemaker, Jeroen; Guigand, Cédric M.; Haza, Angelique C.; Haus, Brian K.; Ryan, Edward H.; Jacobs, Gregg A.; Huntley, Helga S.; Chen, Shuyi; McWilliams, James C.; Barkan, Roy; Kirwan, A. D.; Poje, Andrew C.; Özgökmen, Tamay M.
2018-01-01
Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material. PMID:29339497
Influence of Transient Atmospheric Circulation on the Surface Heating of the Pacific Warm Pool
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Shu-Hsien; Chan, Pui-King
2003-01-01
Analyses of data on clouds, winds, and surface heat fluxes show that the transient behavior of basin-wide large-scale circulation has a significant influence on the warm pool sea surface temperature (SST). Trade winds converge to regions of the highest SST in the equatorial western Pacific. These regions have the largest cloud cover and smallest wind speed. Both surface solar heating and evaporative cooling are weak. The reduced evaporative cooling due to weakened winds exceeds the reduced solar heating due to enhanced cloudiness. The result is a maximum surface heating in the strong convective and high SST regions. Data also show that the maximum surface heating in strong convective regions is interrupted by transient atmospheric and oceanic circulation. Due to the seasonal variation of the insolation at the top of the atmosphere, trade winds and clouds also experience seasonal variations. Regions of high SST and low-level convergence follow the Sun, where the surface heating is a maximum. As the Sun moves away from a convective region, the strong trade winds set in, and the evaporative cooling enhances, resulting in a net cooling of the surface. During an El Nino, the maximum SST and convective region shifts eastward from the maritime continent to the equatorial central Pacific. Following the eastward shift of the maximum SST, the region of maximum cloudiness and surface heating also shift eastward. As the atmospheric and oceanic circulation returns to normal situations, the trade winds increase and the surface heating decreases. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds is one of the major factors that modulate the SST distribution of the Pacific warm pool.
Precipitation Efficiency in the Tropical Deep Convective Regime
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K.-M.; Lau, William K. M. (Technical Monitor)
2001-01-01
Precipitation efficiency in the tropical deep convective regime is analyzed based on a 2-D cloud resolving simulation. The cloud resolving model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. Precipitation efficiency may be defined as a ratio of surface rain rate to sum of surface evaporation and moisture convergence (LSPE) or a ratio of surface rain rate to sum of condensation and deposition rates of supersaturated vapor (CMPE). Moisture budget shows that the atmosphere is moistened (dryed) when the LSPE is less (more) than 100 %. The LSPE could be larger than 100 % for strong convection. This indicates that the drying processes should be included in cumulus parameterization to avoid moisture bias. Statistical analysis shows that the sum of the condensation and deposition rates is bout 80 % of the sum of the surface evaporation rate and moisture convergence, which ads to proportional relation between the two efficiencies when both efficiencies are less han 100 %. The CMPE increases with increasing mass-weighted mean temperature and creasing surface rain rate. This suggests that precipitation is more efficient for warm environment and strong convection. Approximate balance of rates among the condensation, deposition, rain, and the raindrop evaporation is used to derive an analytical solution of the CMPE.
NASA Astrophysics Data System (ADS)
Xu, Mimi; Xu, Haiming; Ren, Huijun
2018-02-01
The influence of Kuroshio sea surface temperature (SST) front in the East China Sea (ECS) on the temporal evolution of climatological Meiyu rainband was investigated using a suite of high-resolution satellite observations and a reanalysis dataset from 2000 to 2011. During the northward seasonal march of Meiyu rainband from the warmer flank of the SST front to the colder flank, the climatological rainband strength weakened substantially despite large-scale environment became more conducive to intensify precipitation. A sharp reduction in occurrence frequency of precipitation with relatively shallower depth and smaller intensity was responsible for the weakening of Meiyu rainband. During the northward migration of Meiyu rainband, individual precipitation events became deeper and more intensive, and the contribution of convective precipitation to the rainband was enhanced, associated with the seasonal northward extension of high convective instability region over the ECS. The characteristics of Meiyu rainband evolution were generally supported by cloud observations. When Meiyu rainband was located on the warmer flank of the SST front, local enhanced mean surface wind convergence and variance of convergence at synoptic timescale by the warm SST of the Kuroshio favored strong surface convergence that may trigger precipitation. A detailed moisture budget analysis revealed that the major part of moisture for Meiyu precipitation was supplied by low-level wind convergence, with much smaller contribution from moisture advection. The variation of climatological precipitation associated with Meiyu northward migration depended on SST modulation of both surface evaporation and low-level moisture convergence over the ECS.
Δim-lacunary statistical convergence of order α
NASA Astrophysics Data System (ADS)
Altınok, Hıfsı; Et, Mikail; Işık, Mahmut
2018-01-01
The purpose of this work is to introduce the concepts of Δim-lacunary statistical convergence of order α and lacunary strongly (Δim,p )-convergence of order α. We establish some connections between lacunary strongly (Δim,p )-convergence of order α and Δim-lacunary statistical convergence of order α. It is shown that if a sequence is lacunary strongly (Δim,p )-summable of order α then it is Δim-lacunary statistically convergent of order α.
Dimension Reduction for the Landau-de Gennes Model in Planar Nematic Thin Films
NASA Astrophysics Data System (ADS)
Golovaty, Dmitry; Montero, José Alberto; Sternberg, Peter
2015-12-01
We use the method of Γ -convergence to study the behavior of the Landau-de Gennes model for a nematic liquid crystalline film in the limit of vanishing thickness. In this asymptotic regime, surface energy plays a greater role, and we take particular care in understanding its influence on the structure of the minimizers of the derived two-dimensional energy. We assume general weak anchoring conditions on the top and the bottom surfaces of the film and the strong Dirichlet boundary conditions on the lateral boundary of the film. The constants in the weak anchoring conditions are chosen so as to enforce that a surface-energy-minimizing nematic Q-tensor has the normal to the film as one of its eigenvectors. We establish a general convergence result and then discuss the limiting problem in several parameter regimes.
NASA Astrophysics Data System (ADS)
de Foy, B.; Clappier, A.; Molina, L. T.; Molina, M. J.
2006-04-01
Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5) is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.
Project CONVERGE: Impacts of local oceanographic processes on Adélie penguin foraging ecology
NASA Astrophysics Data System (ADS)
Kohut, J. T.; Bernard, K. S.; Fraser, W.; Oliver, M. J.; Statscewich, H.; Patterson-Fraser, D.; Winsor, P.; Cimino, M. A.; Miles, T. N.
2016-02-01
During the austral summer of 2014-2015, project CONVERGE deployed a multi-platform network to sample the Adélie penguin foraging hotspot associated with Palmer Deep Canyon along the Western Antarctic Peninsula. The focus of CONVERGE was to assess the impact of prey-concentrating ocean circulation dynamics on Adélie penguin foraging behavior. Food web links between phytoplankton and zooplankton abundance and penguin behavior were examined to better understand the within-season variability in Adélie foraging ecology. Since the High Frequency Radar (HFR) network installation in November 2014, the radial component current data from each of the three sites were combined to provide a high resolution (0.5 km) surface velocity maps. These hourly maps have revealed an incredibly dynamic system with strong fronts and frequent eddies extending across the Palmer Deep foraging area. A coordinated fleet of underwater gliders were used in concert with the HFR fields to sample the hydrography and phytoplankton distributions associated with convergent and divergent features. Three gliders mapped the along and across canyon variability of the hydrography, chlorophyll fluorescence and acoustic backscatter in the context of the observed surface currents and simultaneous penguin tracks. This presentation will highlight these synchronized measures of the food web in the context of the observed HFR fronts and eddies. The location and persistence of these features coupled with ecological sampling through the food web offer an unprecedented view of the Palmer Deep ecosystem. Specific examples will highlight how the vertical structure of the water column beneath the surface features stack the primary and secondary producers relative to observed penguin foraging behavior. The coupling from the physics through the food web as observed by our multi-platform network gives strong evidence for the critical role that distribution patterns of lower trophic levels have on Adélie foraging.
Density by moduli and Wijsman lacunary statistical convergence of sequences of sets.
Bhardwaj, Vinod K; Dhawan, Shweta
2017-01-01
The main object of this paper is to introduce and study a new concept of f -Wijsman lacunary statistical convergence of sequences of sets, where f is an unbounded modulus. The definition of Wijsman lacunary strong convergence of sequences of sets is extended to a definition of Wijsman lacunary strong convergence with respect to a modulus for sequences of sets and it is shown that, under certain conditions on a modulus f , the concepts of Wijsman lacunary strong convergence with respect to a modulus f and f -Wijsman lacunary statistical convergence are equivalent on bounded sequences. We further characterize those θ for which [Formula: see text], where [Formula: see text] and [Formula: see text] denote the sets of all f -Wijsman lacunary statistically convergent sequences and f -Wijsman statistically convergent sequences, respectively.
A phylogenetic test for adaptive convergence in rock-dwelling lizards.
Revell, Liam J; Johnson, Michele A; Schulte, James A; Kolbe, Jason J; Losos, Jonathan B
2007-12-01
Phenotypic similarity of species occupying similar habitats has long been taken as strong evidence of adaptation, but this approach implicitly assumes that similarity is evolutionarily derived. However, even derived similarities may not represent convergent adaptation if the similarities did not evolve as a result of the same selection pressures; an alternative possibility is that the similar features evolved for different reasons, but subsequently allowed the species to occupy the same habitat, in which case the convergent evolution of the same feature by species occupying similar habitats would be the result of exaptation. Many lizard lineages have evolved to occupy vertical rock surfaces, a habitat that places strong functional and ecological demands on lizards. We examined four clades in which species that use vertical rock surfaces exhibit long hindlimbs and flattened bodies. Morphological change on the phylogenetic branches leading to the rock-dwelling species in the four clades differed from change on other branches of the phylogeny; evolutionary transitions to rock-dwelling generally were associated with increases in limb length and decreases in head depth. Examination of particular characters revealed several different patterns of evolutionary change. Rock-dwelling lizards exhibited similarities in head depth as a result of both adaptation and exaptation. Moreover, even though rock-dwelling species generally had longer limbs than their close relatives, clade-level differences in limb length led to an overall lack of difference between rock- and non-rock-dwelling lizards. These results indicate that evolutionary change in the same direction in independent lineages does not necessarily produce convergence, and that the existence of similar advantageous structures among species independently occupying the same environment may not indicate adaptation.
NASA Technical Reports Server (NTRS)
Weller, Robert A.
1991-01-01
From 1984 to 1986 the cooperative Frontal Air-Sea Interaction Experiment (FASINEX) was conducted in the subtropical convergence zone southwest of Bermuda. The overall objective of the experiment was to study air-sea interaction on 1- to 100-km horizontal scales in a region of the open ocean characterized by strong horizontal gradients in upper ocean and sea surface properties. Ocean fronts provided both large spatial gradients in sea surface temperature and strong jetlike flows in the upper ocean. The motivation for and detailed objectives of FASINEX are reviewed. Then the components of the field program are summarized. Finally, selected results are presented in order to provide an overview of the outcome of FASINEX.
NASA Astrophysics Data System (ADS)
Wulfmeyer, V.; Behrendt, A.; Branch, O.; Schwitalla, T.
2016-12-01
A prerequisite for significant precipitation amounts is the presence of convergence zones. These are due to land surface heterogeneity, orography as well as mesoscale and synoptic scale circulations. Only, if these convergence zones are strong enough and interact with an upper level instability, deep convection can be initiated. For the understanding of convection initiation (CI) and optimal cloud seeding deployment, it is essential that these convergence zones are detected before clouds are developing in order to preempt the decisive microphysical processes for liquid water and ice formation. In this presentation, a new project on Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL) is introduced, which is funded by the United Arab Emirates Rain Enhancement Program (UAEREP). This project has two research components. The first component focuses on an improved detection and forecasting of convergence zones and CI by a) operation of scanning Doppler lidar and cloud radar systems during two seasonal field campaigns in orographic terrain and over the desert in the UAE, and b) advanced forecasting of convergence zones and CI with the WRF-NOAHMP model system. Nowcasting to short-range forecasting of convection will be improved by the assimilation of Doppler lidar and the UAE radar network data. For the latter, we will apply a new model forward operator developed at our institute. Forecast uncertainties will be assessed by ensemble simulations driven by ECMWF boundaries. The second research component of OCAL will study whether artificial modifications of land surface heterogeneity are possible through plantations or changes of terrain, leading to an amplification of convergence zones. This is based on our pioneering work on high-resolution modeling of the impact of plantations on weather and climate in arid regions. A specific design of the shape and location of plantations can lead to the formation of convergence zones, which can strengthen convergent flows already existing in the region of interest, thus amplifying convection and precipitation. We expect that this method can be successfully applied in regions with pre-existing land-surface heterogeneity and orography such as coastal areas with land-sea breezes and the Al Hajar Mountain range.
Surface water subduction during a downwelling event in a semienclosed bay
NASA Astrophysics Data System (ADS)
Barton, E. D.; Torres, R.; Figueiras, F. G.; Gilcoto, M.; Largier, J.
2016-09-01
The Ría de Vigo is a bay strongly influenced by upwelling-downwelling cycles along the adjacent coast of NW Iberia. Moored and ship-board observations during September 2006 showed that subduction, initially associated with an estuarine circulation, strengthened when a strong downwelling circulation, resulting from northward wind over the coastal ocean, was generated in the outer Ría causing ambient waters to be advected outward in the lower layer. Incoming surface waters confined the estuarine circulation to the shallow interior and displaced isopleths downward through the water column at ˜10 m d-1. As the estuarine circulation retreated inward, strong flow convergence developed between middle and inner ria in the layer above 15 m, while divergence developed beneath. The convergence increased through the period of downwelling-favorable wind at a rate consistent with the observed isopleth displacement velocities. The coefficient of turbulent diffusion Kt, from a microstructure profiler, indicated that mixing was strong in the estuarine circulation and subsequently in the downwelling zone, where localized instabilities and temperature-salinity inversions were observed. During the downwelling, concentrations of phytoplankton, including potentially harmful species, increased, especially in the middle and inner ria, as a result of inward advection, subduction, and the ability of the dinoflagellates to maintain their position in the water column by swimming. In the course of the 5 day event, the water mass of all but the innermost Ría was flushed completely and replaced by waters originating in the coastally trapped poleward flow along the Atlantic coastline.
The role of boundary layer momentum advection in the mean location of the ITCZ
NASA Astrophysics Data System (ADS)
Dixit, Vishal; Srinivasan, J.
2017-08-01
The inter-tropical convergence zones (ITCZ) form closer to the equator during equinoxes while they form well away from the equator during the boreal summer. A simple three-way balance between the pressure gradients, Coriolis force and effective Rayleigh friction has been classically used to diagnose the location of maximum boundary layer convergence in the near equatorial ITCZ. If such a balance can capture the dynamics of off-equatorial convergence was not known. We used idealized aqua planet simulations with fixed, zonally symmetric sea surface temperature boundary conditions to simulate the near equatorial and off-equatorial ITCZ. As opposed to the convergence of inter-hemispheric flows in the near equatorial convergence, the off-equatorial convergence forms due to the deceleration of cross-equatorial meridional flow. The detailed momentum budget of the off-equatorial convergence zone reveals that the simple balance is not sufficient to capture the relevant dynamics. The deceleration of the meridional flow is strongly modulated by the inertial effects due to the meridional advection of zonal momentum in addition to the terms in the simple balance. The simple balance predicts a spurious near equatorial convergence and a consistent off-equatorial convergence of the meridional flow. The spurious convergence disappears when inertial effects are included in the balance. As cross equatorial meridional flow decelerates to form convergence, the inertial effects cancel the pressure gradient effects near the equator while they add away from the equator. The contribution to the off-equatorial convergence induced by the pressure gradients is significantly larger than the contribution due to the inertial effects and hence pressure gradients appear to be the primary factor in anchoring the strength and location of the off-equatorial convergence.
Interbasin effects of the Indian Ocean on Pacific decadal climate change
NASA Astrophysics Data System (ADS)
Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Chikamoto, Yoshimitsu; Ishii, Masayoshi
2016-07-01
We demonstrate the significant impact of the Indian Ocean on the Pacific climate on decadal timescales by comparing two sets of data assimilation experiments (pacemaker experiments) conducted over recent decades. For the Indian Ocean of an atmosphere-ocean coupled global climate model, we assimilate ocean temperature and salinity anomalies defined as deviations from climatology or as anomalies with the area-averaged changes for the Indian Ocean subtracted. When decadal sea surface temperature (SST) trends are observed to be strong over the Indian Ocean, the equatorial thermocline uniformly deepens, and the model simulates the eastward tendencies of surface wind aloft. Surface winds strongly converge around the maritime continent, and the associated strengthening of the Walker circulation suppresses an increasing trend in the equatorial Pacific SST through ocean thermocline shoaling, similar to common changes associated with seasonal Indian Ocean warming.
Dimension Reduction for the Landau-de Gennes Model on Curved Nematic Thin Films
NASA Astrophysics Data System (ADS)
Golovaty, Dmitry; Montero, José Alberto; Sternberg, Peter
2017-12-01
We use the method of Γ -convergence to study the behavior of the Landau-de Gennes model for a nematic liquid crystalline film attached to a general fixed surface in the limit of vanishing thickness. This paper generalizes the approach in Golovaty et al. (J Nonlinear Sci 25(6):1431-1451, 2015) where we considered a similar problem for a planar surface. Since the anchoring energy dominates when the thickness of the film is small, it is essential to understand its influence on the structure of the minimizers of the limiting energy. In particular, the anchoring energy dictates the class of admissible competitors and the structure of the limiting problem. We assume general weak anchoring conditions on the top and the bottom surfaces of the film and strong Dirichlet boundary conditions on the lateral boundary of the film when the surface is not closed. We establish a general convergence result to an energy defined on the surface that involves a somewhat surprising remnant of the normal component of the tensor gradient. Then we exhibit one effect of curvature through an analysis of the behavior of minimizers to the limiting problem when the substrate is a frustum.
NASA Astrophysics Data System (ADS)
Clark, Matthew; Parker, Douglas
2014-05-01
Narrow cold frontal rainbands (NCFRs) occur frequently in the UK and other parts of northwest Europe. At the surface, the passage of an NCFR is often marked by a sharp wind veer, abrupt pressure increase and a rapid temperature decrease. Tornadoes and other instances of localised wind damage sometimes occur in association with meso-gamma-scale vortices (sometimes called misocyclones) that form along the zone of abrupt horizontal wind veer (and associated vertical vorticity) at the leading edge of the NCFR. Using one-minute-resolution data from a mesoscale network of automatic weather stations, surface pressure, wind and temperature fields in the vicinity of 12 NCFRs (five of which were tornadic) have been investigated. High-resolution surface analyses were obtained by mapping temporal variations in the observed parameters to equivalent spatial variations, using a system velocity determined by analysis of the radar-observed movement of NCFR precipitation segments. Substantial differences were found in the structure of surface wind and pressure fields close to tornadic and non-tornadic NCFRs. Tornadic NCFRs exhibited a large wind veer (near 90°) and strong pre- and post-frontal winds. These attributes were associated with large vertical vorticity and horizontal convergence across the front. Tornadoes typically occurred where vertical vorticity and horizontal convergence were increasing. Here, we present surface analyses from selected cases, and draw comparisons between the tornadic and non-tornadic NCFRs. Some Doppler radar observations will be presented, illustrating the development of misocyclones along parts of the NCFR that exhibit strong, and increasing, vertical vorticity stretching. The influence of the stability of the pre-frontal air on the likelihood of tornadoes will also be discussed.
Jerjos, Michael; Hohman, Baily; Lauterbur, M. Elise; Kistler, Logan
2017-01-01
Abstract Several taxonomically distinct mammalian groups—certain microbats and cetaceans (e.g., dolphins)—share both morphological adaptations related to echolocation behavior and strong signatures of convergent evolution at the amino acid level across seven genes related to auditory processing. Aye-ayes (Daubentonia madagascariensis) are nocturnal lemurs with a specialized auditory processing system. Aye-ayes tap rapidly along the surfaces of trees, listening to reverberations to identify the mines of wood-boring insect larvae; this behavior has been hypothesized to functionally mimic echolocation. Here we investigated whether there are signals of convergence in auditory processing genes between aye-ayes and known mammalian echolocators. We developed a computational pipeline (Basic Exon Assembly Tool) that produces consensus sequences for regions of interest from shotgun genomic sequencing data for nonmodel organisms without requiring de novo genome assembly. We reconstructed complete coding region sequences for the seven convergent echolocating bat–dolphin genes for aye-ayes and another lemur. We compared sequences from these two lemurs in a phylogenetic framework with those of bat and dolphin echolocators and appropriate nonecholocating outgroups. Our analysis reaffirms the existence of amino acid convergence at these loci among echolocating bats and dolphins; some methods also detected signals of convergence between echolocating bats and both mice and elephants. However, we observed no significant signal of amino acid convergence between aye-ayes and echolocating bats and dolphins, suggesting that aye-aye tap-foraging auditory adaptations represent distinct evolutionary innovations. These results are also consistent with a developing consensus that convergent behavioral ecology does not reliably predict convergent molecular evolution. PMID:28810710
Weller, Evan; Cai, Wenju; Min, Seung-Ki; Wu, Lixin; Ashok, Karumuri; Yamagata, Toshio
2014-01-01
The Intertropical Convergence Zone (ITCZ) in the tropical eastern Indian Ocean exhibits strong interannual variability, often co-occurring with positive Indian Ocean Dipole (pIOD) events. During what we identify as an extreme ITCZ event, a drastic northward shift of atmospheric convection coincides with an anomalously strong north-minus-south sea surface temperature (SST) gradient over the eastern equatorial Indian Ocean. Such shifts lead to severe droughts over the maritime continent and surrounding islands but also devastating floods in southern parts of the Indian subcontinent. Understanding future changes of the ITCZ is therefore of major scientific and socioeconomic interest. Here we find a more-than-doubling in the frequency of extreme ITCZ events under greenhouse warming, estimated from climate models participating in the Coupled Model Intercomparison Project phase 5 that are able to simulate such events. The increase is due to a mean state change with an enhanced north-minus-south SST gradient and a weakened Walker Circulation, facilitating smaller perturbations to shift the ITCZ northwards. PMID:25124737
Air-sea interaction at the subtropical convergence south of Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouault, M.; Lutjeharms, J.R.E.; Ballegooyen, R.C. van
1994-12-31
The oceanic region south of Africa plays a key role in the control of Southern Africa weather and climate. This is particularly the case for the Subtropical Convergence region, the northern border of the Southern Ocean. An extensive research cruise to investigate this specific front was carried out during June and July 1993. A strong front, the Subtropical Convergence was identified, however its geographic disposition was complicated by the presence of an intense warm eddy detached from the Agulhas current. The warm surface water in the eddy created a strong contrast between it and the overlying atmosphere. Oceanographic measurements (XBTmore » and CTD) were jointly made with radiosonde observations and air-sea interaction measurements. The air-sea interaction measurement system included a Gill sonic anemometer, an Ophir infrared hygrometer, an Eppley pyranometer, an Eppley pyrgeometer and a Vaissala temperature and relative humidity probe. Turbulent fluxes of momentum, sensible heat and latent heat were calculated in real time using the inertial dissipation method and the bulk method. All these measurements allowed a thorough investigation of the net heat loss of the ocean, the deepening of the mixed layer during a severe storm as well as the structure of the atmospheric boundary layer and ocean-atmosphere exchanges.« less
NASA Technical Reports Server (NTRS)
Watson, Andrew I.; Holle, Ronald L.; Lopez, Raul E.; Nicholson, James R.
1991-01-01
Since 1986, USAF forecasters at NASA-Kennedy have had available a surface wind convergence technique for use during periods of convective development. In Florida during the summer, most of the thunderstorm development is forced by boundary layer processes. The basic premise is that the life cycle of convection is reflected in the surface wind field beneath these storms. Therefore the monitoring of the local surface divergence and/or convergence fields can be used to determine timing, location, longevity, and the lightning hazards which accompany these thunderstorms. This study evaluates four years of monitoring thunderstorm development using surface wind convergence, particularly the average over the area. Cloud-to-ground (CG) lightning is related in time and space with surface convergence for 346 days during the summers of 1987 through 1990 over the expanded wind network at KSC. The relationships are subdivided according to low level wind flow and midlevel moisture patterns. Results show a one in three chance of CG lightning when a convergence event is identified. However, when there is no convergence, the chance of CG lightning is negligible.
Suratwala, Tayyab; Steele, Rusty; Feit, Michael; Dylla-Spears, Rebecca; Desjardin, Richard; Mason, Dan; Wong, Lana; Geraghty, Paul; Miller, Phil; Shen, Nan
2014-01-01
Convergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration. In contrast, conventional full aperture polishing methods require multiple, often long, iterative cycles involving polishing, metrology and process changes to achieve the desired surface figure. The Convergent Polishing process is based on the concept of workpiece-lap height mismatch resulting in pressure differential that decreases with removal and results in the workpiece converging to the shape of the lap. The successful implementation of the Convergent Polishing process is a result of the combination of a number of technologies to remove all sources of non-uniform spatial material removal (except for workpiece-lap mismatch) for surface figure convergence and to reduce the number of rogue particles in the system for low scratch densities and low roughness. The Convergent Polishing process has been demonstrated for the fabrication of both flats and spheres of various shapes, sizes, and aspect ratios on various glass materials. The practical impact is that high quality optical components can be fabricated more rapidly, more repeatedly, with less metrology, and with less labor, resulting in lower unit costs. In this study, the Convergent Polishing protocol is specifically described for fabricating 26.5 cm square fused silica flats from a fine ground surface to a polished ~λ/2 surface figure after polishing 4 hr per surface on a 81 cm diameter polisher. PMID:25489745
Bankoff, Richard J; Jerjos, Michael; Hohman, Baily; Lauterbur, M Elise; Kistler, Logan; Perry, George H
2017-07-01
Several taxonomically distinct mammalian groups-certain microbats and cetaceans (e.g., dolphins)-share both morphological adaptations related to echolocation behavior and strong signatures of convergent evolution at the amino acid level across seven genes related to auditory processing. Aye-ayes (Daubentonia madagascariensis) are nocturnal lemurs with a specialized auditory processing system. Aye-ayes tap rapidly along the surfaces of trees, listening to reverberations to identify the mines of wood-boring insect larvae; this behavior has been hypothesized to functionally mimic echolocation. Here we investigated whether there are signals of convergence in auditory processing genes between aye-ayes and known mammalian echolocators. We developed a computational pipeline (Basic Exon Assembly Tool) that produces consensus sequences for regions of interest from shotgun genomic sequencing data for nonmodel organisms without requiring de novo genome assembly. We reconstructed complete coding region sequences for the seven convergent echolocating bat-dolphin genes for aye-ayes and another lemur. We compared sequences from these two lemurs in a phylogenetic framework with those of bat and dolphin echolocators and appropriate nonecholocating outgroups. Our analysis reaffirms the existence of amino acid convergence at these loci among echolocating bats and dolphins; some methods also detected signals of convergence between echolocating bats and both mice and elephants. However, we observed no significant signal of amino acid convergence between aye-ayes and echolocating bats and dolphins, suggesting that aye-aye tap-foraging auditory adaptations represent distinct evolutionary innovations. These results are also consistent with a developing consensus that convergent behavioral ecology does not reliably predict convergent molecular evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Albedo as a modulator of climate response to tropical deforestation
NASA Technical Reports Server (NTRS)
Dirmeyer, Paul A.; Shukla, J.
1994-01-01
An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years' duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.
Albedo as a modulator of climate response to tropical deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirmeyer, P.A.; Shukla, J.
1994-10-01
An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years` duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, ismore » strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.« less
Interaction of strong converging shock wave with SF6 gas bubble
NASA Astrophysics Data System (ADS)
Liang, Yu; Zhai, ZhiGang; Luo, XiSheng
2018-06-01
Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.
NASA Astrophysics Data System (ADS)
Potemkin, F. V.; Mareev, E. I.; Smetanina, E. O.
2018-03-01
We demonstrate that using spatially divergent incident femtosecond 1240-nm laser pulses in water leads to an efficient supercontinuum generation in filaments. Optimal conditions were found when the focal plane is placed 100 -400 μ m before the water surface. Under sufficiently weak focusing conditions [numerical aperture (NA )<0.2 ] and low-energy laser pulses, the supercontinuum energy generated in divergent beams is higher than the supercontinuum energy generated in convergent beams. Analysis by means of the unidirectional pulse propagation equation shows a dramatic difference between filamentation scenarios of divergent and convergent beams, that explains corresponding features of the supercontinuum generation. Under strong focusing conditions (NA ⩾0.2 ) and high-energy laser pulses, the supercontinuum generation is suppressed for convergent beams in contrast to divergent beams that nevertheless are shown experimentally to allow supercontinuum generation. The presented technique of the supercontinuum generation in divergent beams in water is highly demanded in a development of femtosecond optical parametric amplifiers.
λ (Δim) -statistical convergence of order α
NASA Astrophysics Data System (ADS)
Colak, Rifat; Et, Mikail; Altin, Yavuz
2017-09-01
In this study, using the generalized difference operator Δim and a sequence λ = (λn) which is a non-decreasing sequence of positive numbers tending to ∞ such that λn+1 ≤ λn+1, λ1 = 1, we introduce the concepts of λ (Δim) -statistical convergence of order α (α ∈ (0, 1]) and strong λ (Δim) -Cesàro summablility of order α (α > 0). We establish some connections between λ (Δim) -statistical convergence of order α and strong λ (Δim) -Cesàro summablility of order α. It is shown that if a sequence is strongly λ (Δim) -Cesàro summable of order α, then it is λ (Δim) -statistically convergent of order β in case 0 < α ≤ β ≤ 1.
ERIC Educational Resources Information Center
Goldsmith, H. H.; And Others
1991-01-01
Examined convergent and discriminant validity of eight widely used preschooler, toddler, and infant temperament questionnaires. There was surprisingly strong evidence for convergence among scales intended to measure similar concepts, with most convergent validity coefficients falling in the .50s, .60s, and .70s. (SH)
Complete convergence of randomly weighted END sequences and its application.
Li, Penghua; Li, Xiaoqin; Wu, Kehan
2017-01-01
We investigate the complete convergence of partial sums of randomly weighted extended negatively dependent (END) random variables. Some results of complete moment convergence, complete convergence and the strong law of large numbers for this dependent structure are obtained. As an application, we study the convergence of the state observers of linear-time-invariant systems. Our results extend the corresponding earlier ones.
Parallel selective pressures drive convergent diversification of phenotypes in pythons and boas.
Esquerré, Damien; Scott Keogh, J
2016-07-01
Pythons and boas are globally distributed and distantly related radiations with remarkable phenotypic and ecological diversity. We tested whether pythons, boas and their relatives have evolved convergent phenotypes when they display similar ecology. We collected geometric morphometric data on head shape for 1073 specimens representing over 80% of species. We show that these two groups display strong and widespread convergence when they occupy equivalent ecological niches and that the history of phenotypic evolution strongly matches the history of ecological diversification, suggesting that both processes are strongly coupled. These results are consistent with replicated adaptive radiation in both groups. We argue that strong selective pressures related to habitat-use have driven this convergence. Pythons and boas provide a new model system for the study of macro-evolutionary patterns of morphological and ecological evolution and they do so at a deeper level of divergence and global scale than any well-established adaptive radiation model systems. © 2016 John Wiley & Sons Ltd/CNRS.
Convergence of the strong-potential-Born approximation in Z/sub less-than//Z/sub greater-than/
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, J.H.; Sil, N.C.
1986-01-01
Convergence of the strong-potential Born (SPB) approximation as a function of the charges of the projectile and target is studied numerically. Time-reversal invariance (or detailed balance) is satisfied at sufficiently high velocities even when the charges are asymmetric. This demonstarates that the SPB approximation converges to the correct result even when the charge of the ''weak'' potential, which is kept to first order, is larger than the charge of the ''strong'' potential, which is retained to all orders. Consequently, the SPB approximation is valid for systems of arbitrary charge symmetry (including symmetric systems) at sufficiently high velocities.
Xu, Lu; Dong, Shuli; Hao, Jingcheng; Cui, Jiwei; Hoffmann, Heinz
2017-03-28
It is difficult to synthesize magnetic gold nanoparticles (AuNPs) with ultrafine sizes (<2 nm) based on a conventional method via coating AuNPs using magnetic particles, compounds, or ions. Here, magnetic cationic surfactants C 16 H 33 N + (CH 3 ) 3 [CeCl 3 Br] - (CTACe) and C 16 H 33 N + (CH 3 ) 3 [GdCl 3 Br] - (CTAGd) are prepared by a one-step coordination reaction, i.e., C 16 H 33 N + (CH 3 ) 3 Br - (CTABr) + CeCl 3 or GdCl 3 → CTACe or CTAGd. A simple strategy for fabricate ultrafine (<2 nm) magnetic gold nanoparticles (AuNPs) via surface modification with weak oxidizing paramagnetic cationic surfactants, CTACe or CTAGd, is developed. The resulting AuNPs can highly concentrate the charges of cationic surfactants on their surfaces, thereby presenting strong electrostatic interaction with negatively charged biomacromolecules, DNA, and proteins. As a consequence, they can converge DNA and proteins over 90% at a lower dosage than magnetic surfactants or existing magnetic AuNPs. The surface modification with these cationic surfactants endows AuNPs with strong magnetism, which allows them to magnetize and migrate the attached biomacromolecules with a much higher efficiency. The native conformation of DNA and proteins can be protected during the migration. Besides, the captured DNA and proteins could be released after adding sufficient inorganic salts such as at c NaBr = 50 mmol·L -1 . Our results could offer new guidance for a diverse range of systems including gene delivery, DNA transfection, and protein delivery and separation.
Predictable transcriptome evolution in the convergent and complex bioluminescent organs of squid
Pankey, M. Sabrina; Minin, Vladimir N.; Imholte, Greg C.; Suchard, Marc A.; Oakley, Todd H.
2014-01-01
Despite contingency in life’s history, the similarity of evolutionarily convergent traits may represent predictable solutions to common conditions. However, the extent to which overall gene expression levels (transcriptomes) underlying convergent traits are themselves convergent remains largely unexplored. Here, we show strong statistical support for convergent evolutionary origins and massively parallel evolution of the entire transcriptomes in symbiotic bioluminescent organs (bacterial photophores) from two divergent squid species. The gene expression similarities are so strong that regression models of one species’ photophore can predict organ identity of a distantly related photophore from gene expression levels alone. Our results point to widespread parallel changes in gene expression evolution associated with convergent origins of complex organs. Therefore, predictable solutions may drive not only the evolution of novel, complex organs but also the evolution of overall gene expression levels that underlie them. PMID:25336755
Partha, Raghavendran; Chauhan, Bharesh K; Ferreira, Zelia; Robinson, Joseph D; Lathrop, Kira; Nischal, Ken K
2017-01-01
The underground environment imposes unique demands on life that have led subterranean species to evolve specialized traits, many of which evolved convergently. We studied convergence in evolutionary rate in subterranean mammals in order to associate phenotypic evolution with specific genetic regions. We identified a strong excess of vision- and skin-related genes that changed at accelerated rates in the subterranean environment due to relaxed constraint and adaptive evolution. We also demonstrate that ocular-specific transcriptional enhancers were convergently accelerated, whereas enhancers active outside the eye were not. Furthermore, several uncharacterized genes and regulatory sequences demonstrated convergence and thus constitute novel candidate sequences for congenital ocular disorders. The strong evidence of convergence in these species indicates that evolution in this environment is recurrent and predictable and can be used to gain insights into phenotype–genotype relationships. PMID:29035697
Convergent surface water distributions in U.S. cities
M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury
2014-01-01
Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...
Characteristics of Eurasian snowmelt and its impacts on the land surface and surface climate
NASA Astrophysics Data System (ADS)
Ye, Kunhui; Lau, Ngar-Cheung
2018-03-01
The local hydrological and climatic impacts of Eurasian snowmelt are studied using advanced land surface and atmospheric data. It is found that intense melting of snow is located at mid-high latitudes in April and May. Snowmelt plays an important role in determining the seasonal cycles of surface runoff and soil moisture (SM). Specifically, melting is accompanied by sharp responses in surface runoff and surface SM while the impacts are delayed for deeper-layer of soil. This is particularly significant in the western sector of Eurasia. On interannual timescales, the responses of various surface parameters to snowmelt in the same month are rather significant. However, the persistence of surface SM anomalies is weak due to the strong soil evaporation anomalies and surplus of surface energy for evaporation. Strong impacts on the sensible heat flux, planetary boundary layer height and precipitation in the next month following the melting of snow are identified in west Russia and Siberia. Downward propagation of surface SM anomalies is observed and a positive evaporation-convection feedback is identified in west Russia. However, the subsequent impacts on the local convective precipitation in late spring-summer and its contribution to the total precipitation are seemingly weak. The atmospheric water vapor convergence has strong control over the total precipitation anomalies. Overall, snowmelt-produced SM anomalies are not found to significantly impact the late spring-summer local climate anomalies in Northern Eurasia. Therefore, the delayed remote-responses of atmospheric circulation and climate to the melting of Eurasian snow may be only possible near the melting period.
Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America
NASA Astrophysics Data System (ADS)
Münnich, M.; Neelin, J. D.
2005-11-01
In late boreal spring, especially May, a strong relationship exists in observations among precipitation anomalies over equatorial South America and the Atlantic intertropical convergence zone (ITCZ), and eastern equatorial Pacific and central equatorial Atlantic sea surface temperature anomalies (SSTA). A chain of correlations of equatorial Pacific SSTA, western equatorial Atlantic wind stress (WEA), equatorial Atlantic SSTA, sea surface height, and precipitation supports a causal chain in which El Niño/Southern Oscillation (ENSO) induces WEA stress anomalies, which in turn affect Atlantic equatorial ocean dynamics. These correlations show strong seasonality, apparently arising within the atmospheric links of the chain. This pathway and the influence of equatorial Atlantic SSTA on South American rainfall in May appear independent of that of the northern tropical Atlantic. Brazil's Nordeste is affected by the northern tropical Atlantic. The equatorial influence lies further to the north over the eastern Amazon and the Guiana Highlands.
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Johnston, Christopher O.
2011-01-01
Implementations of a model for equilibrium, steady-state ablation boundary conditions are tested for the purpose of providing strong coupling with a hypersonic flow solver. The objective is to remove correction factors or film cooling approximations that are usually applied in coupled implementations of the flow solver and the ablation response. Three test cases are considered - the IRV-2, the Galileo probe, and a notional slender, blunted cone launched at 10 km/s from the Earth's surface. A successive substitution is employed and the order of succession is varied as a function of surface temperature to obtain converged solutions. The implementation is tested on a specified trajectory for the IRV-2 to compute shape change under the approximation of steady-state ablation. Issues associated with stability of the shape change algorithm caused by explicit time step limits are also discussed.
Atmospheric scattering effects on ground-based measurements of thermospheric winds
NASA Technical Reports Server (NTRS)
Abreu, V. J.; Schmitt, G. A.; Hays, P. B.; Meriwether, J. W., Jr.; Tepley, C. A.; Cogger, L. L.
1983-01-01
Convergent or divergent thermospheric wind patterns detected by ground-based Fabry-Perot interferometric measurements of the Doppler shifts of atomic lines are demonstrated to occur in the presence of strong intensity gradients and a scattering atmosphere. Consideration is given to the color shifts observed when sighting to the north or the south, and a numerical model is developed to describe the wind patterns which produce the recorded shifts. An account is taken of the direct and scattered components of the brightness, with the atmosphere treated as a single scattering layer with a reflecting surface underneath. A scattering coefficient is calculated, together with the line shape of the wavelength shifts. The scattered light is demonstrated, both through simulations and measurements taken near Calgary, Alberta, to produce convergence or divergence of the color shifts, depending on the line-of-sight of the viewing.
NASA Astrophysics Data System (ADS)
Paul, Suvendu; Karar, Monaj; Das, Biswajit; Mallick, Arabinda; Majumdar, Tapas
2017-12-01
Fluoride ion sensing mechanism of 3,3‧-bis(indolyl)-4-chlorophenylmethane has been analyzed with density functional and time-dependent density functional theories. Extensive theoretical calculations on molecular geometry & energy, charge distribution, orbital energies & electronic distribution, minima on potential energy surface confirmed strong hydrogen bonded sensor-anion complex with incomplete proton transfer in S0. In S1, strong hydrogen bonding extended towards complete ESDPT. The distinct and single minima on the PES of the sensor-anion complex for both ground and first singlet excited states confirmed the concerted proton transfer mechanism. Present study well reproduced the experimental spectroscopic data and provided ESDPT as probable fluoride sensing mechanism.
Strong convergence of an extragradient-type algorithm for the multiple-sets split equality problem.
Zhao, Ying; Shi, Luoyi
2017-01-01
This paper introduces a new extragradient-type method to solve the multiple-sets split equality problem (MSSEP). Under some suitable conditions, the strong convergence of an algorithm can be verified in the infinite-dimensional Hilbert spaces. Moreover, several numerical results are given to show the effectiveness of our algorithm.
The environmental influence on tropical cyclone precipitation
NASA Technical Reports Server (NTRS)
Rodgers, Edward B.; Baik, Jong-Jin; Pierce, Harold F.
1994-01-01
The intensity, spatial, and temporal changes in precipitation were examined in three North Atlantic hurricanes during 1989 (Dean, Gabrielle, and Hugo) using precipitation estimates made from Special Sensor Microwave/Imager (SSM/I) measurements. In addition, analyses from a barotropic hurricane forecast model and the European Centre for Medium-Range Weather Forecast model were used to examine the relationship between the evolution of the precipitation in these tropical cyclones and external forcing. The external forcing parameters examined were (1) mean climatological sea surface temperatures, (2) vertical wind shear, (3) environmental tropospheric water vapor flux, and (4) upper-tropospheric eddy relative angular momentum flux convergence. The analyses revealed that (1) the SSM/I precipitation estimates were able to delineate and monitor convective ring cycles similar to those observed with land-based and aircraft radar and in situ measurements; (2) tropical cyclone intensification was observed to occur when these convective rings propagated into the inner core of these systems (within 111 km of the center) and when the precipitation rates increased; (3) tropical cyclone weakening was observed to occur when these inner-core convective rings dissipated; (4) the inward propagation of the outer convective rings coincided with the dissipation of the inner convective rings when they came within 55 km of each other; (5) in regions with the combined warm sea surface temperatures (above 26 C) and low vertical wind shear (less than 5 m/s), convective rings outside the region of strong lower-tropospheric inertial stability could be initiated by strong surges of tropospheric moisture, while convective rings inside the region of strong lower-tropospheric inertial stability could be enhanced by upper-tropospheric eddy relative angular momentum flux convergence.
The Environmental Influence on Tropical Cyclone Precipitation.
NASA Astrophysics Data System (ADS)
Rodgers, Edward B.; Baik, Jong-Jin; Pierce, Harold F.
1994-05-01
The intensity, spatial, and temporal changes in precipitation were examined in three North Atlantic hurricanes during 1989 (Dean, Gabrielle, and Hugo) using precipitation estimates made from Special Sensor Microwave/Imager (SSM/I) measurements. In addition, analyses from a barotropic hurricane forecast model and the European Centre for Medium-Range Weather Forecast model were used to examine the relationship between the evolution of the precipitation in these tropical cyclones and external forcing. The external forcing parameters examined were 1) mean climatological sea surface temperatures, 2) vertical wind shear, 3) environmental tropospheric water vapor flux, and 4) upper-tropospheric eddy relative angular momentum flux convergence.The analyses revealed that 1) the SSM/I precipitation estimates were able to delineate and monitor convective ring cycles similar to those observed with land-based and aircraft radar and in situ measurements; 2) tropical cyclone intensification was observed to occur when these convective rings propagated into the inner core of these systems (within 111 km of the center) and when the precipitation rates increased; 3) tropical cyclone weakening was observed to occur when these inner-core convective rings dissipated; 4) the inward propagation of the outer convective rings coincided with the dissipation of the inner convective rings when they came within 55 km of each other; 5) in regions with the combined warm sea surface temperatures (above 26°C) and low vertical wind shear (less than 5 m s1), convective rings outside the region of strong lower-tropospheric inertial stability could be initiated by strong surges of tropospheric moisture, while convective rings inside the region of strong lower-tropospheric inertial stability could be enhanced by upper-tropospheric eddy relative angular momentum flux convergence.
Strong Convergence for a Finite Family of Generalized Asymptotically Nonexpansive Mappings
NASA Astrophysics Data System (ADS)
Ma, Zhi-Hong; Chen, Ru-Dond
The purpose of this paper is to show the convergence theorems for generalized asymptotically nonexpansive mappings and asymptotically nonexpansive mappings in Banach spaces by using a new iteration which is a natural generalization of the implicit iteration. In the meantime, we give the necessary and sufficient conditions of the strong convergence to approximate a common fixed point and modify some flaw in the results of Thakur [11]. As one will see, the results presented in this paper are an extension of the corresponding results [8,11].
The dynamical control of subduction parameters on surface topography
NASA Astrophysics Data System (ADS)
Crameri, F.; Lithgow-Bertelloni, C. R.; Tackley, P. J.
2017-04-01
The long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time.
Visualizing the Topologically Induced States of Strongly Correlated Electrons in SmB6
NASA Astrophysics Data System (ADS)
Pirie, Harris; Hoffman, Jennifer E.; He, Yang; Yee, Michael M.; Soumyanarayanan, Anjan; Kim, Dae-Jeong; Fisk, Zachary; Morr, Dirk; Hamidian, Mohammad
The synergy between strong correlations and a topological invariant is predicted to generate exotic topological order, fractional quasiparticles and new platforms for quantum computation. SmB6 is a promising candidate in which interactions generate an insulating state whose gap arises from heavy fermion hybridization of low lying f-states with a Fermi sea. We used spectroscopic imaging scanning tunneling microscopy to visualize the hybridization of distinct crystal-field-split f-levels and the temperature-dependent evolution of an insulating gap spanning the chemical potential. Here, armed with a clear description of the bulk bands, we look within the insulating gap and directly image two dispersing surface states converging to a Dirac point close to the chemical potential. We show that these measurements are consistent with Dirac cones centered at the X and Γ points in the surface Brillouin zone corresponding to a strong topological invariant. The observation of topological states induced from strong correlations establishes SmB6 as an exciting playground for exotic physics. This work was supported by the Moore foundation, Canada Excellence Research Chair Program and the US National Science Foundation under the Grant DMR-1401480.
Local Helioseismology of Emerging Active Regions: A Case Study
NASA Astrophysics Data System (ADS)
Kosovichev, Alexander G.; Zhao, Junwei; Ilonidis, Stathis
2018-04-01
Local helioseismology provides a unique opportunity to investigate the subsurface structure and dynamics of active regions and their effect on the large-scale flows and global circulation of the Sun. We use measurements of plasma flows in the upper convection zone, provided by the Time-Distance Helioseismology Pipeline developed for analysis of solar oscillation data obtained by Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), to investigate the subsurface dynamics of emerging active region NOAA 11726. The active region emergence was detected in deep layers of the convection zone about 12 hours before the first bipolar magnetic structure appeared on the surface, and 2 days before the emergence of most of the magnetic flux. The speed of emergence determined by tracking the flow divergence with depth is about 1.4 km/s, very close to the emergence speed in the deep layers. As the emerging magnetic flux becomes concentrated in sunspots local converging flows are observed beneath the forming sunspots. These flows are most prominent in the depth range 1-3 Mm, and remain converging after the formation process is completed. On the larger scale converging flows around active region appear as a diversion of the zonal shearing flows towards the active region, accompanied by formation of a large-scale vortex structure. This process occurs when a substantial amount of the magnetic flux emerged on the surface, and the converging flow pattern remains stable during the following evolution of the active region. The Carrington synoptic flow maps show that the large-scale subsurface inflows are typical for active regions. In the deeper layers (10-13 Mm) the flows become diverging, and surprisingly strong beneath some active regions. In addition, the synoptic maps reveal a complex evolving pattern of large-scale flows on the scale much larger than supergranulation
Mechanisms of Robust Future Spring Drying in the Southwest U.S. in CMIP5 Models
NASA Astrophysics Data System (ADS)
Ting, M.; Seager, R.; Li, C.; Liu, H.
2017-12-01
The net surface water budget, precipitation minus evaporation (P-E), shows a clear seasonal cycle in the American Southwest with net gain of surface water (positive P-E) in the cold half of the year (October to March) and net loss of water (negative P-E) in the warmer half (April - September), with June and July being the driest time of the year. There is a significant shift of the summer drying toward earlier in the year under CO2 warming scenario, resulting in substantial spring drying (MAM) of the American Southwest, from the near-term future (2021 - 2040) to the end of the current Century with gradually increasing magnitude. While the spring drying has been identified in previous studies, its mechanism has not been fully addressed. Using moisture budget analysis, we found that the drying is mainly due to decreased mean moisture convergence, partially compensated by the increase in transient eddy moisture flux convergence. The decreased mean moisture convergence is further separated into those due to changes in circulation (dynamic changes) and changes in atmospheric moisture content (thermodynamic changes). The drying is found to be dominated by the thermodynamic driven changes in column averaged moisture convergence, due mainly to increased dry zonal advection caused by the climatological land-ocean thermal contrast, rather than by the well-known "dry gets drier" mechanism. Furthermore, the enhanced dry advection in the warming climate is dominated by the robust zonal mean atmospheric warming, thus the spring drying in Southwest US is very robust. We also discuss reasons this future drying is particularly strong in the spring as compared to the other seasons.
Geophysical constraints on geodynamic processes at convergent margins: A global perspective
NASA Astrophysics Data System (ADS)
Artemieva, Irina; Thybo, Hans; Shulgin, Alexey
2016-04-01
Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M N 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent-continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent-ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean-ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow data due to strong heterogeneity of measured values which are strongly affected by hydrothermal circulation, magmatic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels. Artemieva, I.M., Thybo, H., and Shulgin, A., 2015. Geophysical constraints on geodynamic processes at convergent margins: A global perspective. Gondwana Research, http://dx.doi.org/10.1016/j.gr.2015.06.010
Covariant path integrals on hyperbolic surfaces
NASA Astrophysics Data System (ADS)
Schaefer, Joe
1997-11-01
DeWitt's covariant formulation of path integration [B. De Witt, "Dynamical theory in curved spaces. I. A review of the classical and quantum action principles," Rev. Mod. Phys. 29, 377-397 (1957)] has two practical advantages over the traditional methods of "lattice approximations;" there is no ordering problem, and classical symmetries are manifestly preserved at the quantum level. Applying the spectral theorem for unbounded self-adjoint operators, we provide a rigorous proof of the convergence of certain path integrals on Riemann surfaces of constant curvature -1. The Pauli-DeWitt curvature correction term arises, as in DeWitt's work. Introducing a Fuchsian group Γ of the first kind, and a continuous, bounded, Γ-automorphic potential V, we obtain a Feynman-Kac formula for the automorphic Schrödinger equation on the Riemann surface ΓH. We analyze the Wick rotation and prove the strong convergence of the so-called Feynman maps [K. D. Elworthy, Path Integration on Manifolds, Mathematical Aspects of Superspace, edited by Seifert, Clarke, and Rosenblum (Reidel, Boston, 1983), pp. 47-90] on a dense set of states. Finally, we give a new proof of some results in C. Grosche and F. Steiner, "The path integral on the Poincare upper half plane and for Liouville quantum mechanics," Phys. Lett. A 123, 319-328 (1987).
The Eastern Pacific ITCZ during the Boreal Spring
NASA Technical Reports Server (NTRS)
Gu, Guojun; Adler, Robert F.; Sobel, Adam H.
2004-01-01
The 6-year (1998-2003) rainfall products from the Tropical Rainfall Measuring Mission (TRMM) are used to quantify the Intertropical Convergence Zone (ITCZ) in the eastern Pacific (defined by longitudinal averages over 90 degrees W-130 degrees W) during boreal spring (March-April). The double ITCZ phenomenon, represented by the occurrence of two maxima with respect to latitude in monthly mean rainfall, is observed in most but not all of the years studied. The relative spatial locations of maxima in sea surface temperature (SST), rainfall, and surface pressure are examined. Interannual and weekly variability are characterized in SST, rainfall, surface convergence, total column water vapor, and cloud water. There appears to be a competition for rainfall between the two hemispheres during this season. When one of the two rainfall maxima is particularly strong, the other tends to be weak, with the total rainfall integrated over the two varying less than does the difference between the rainfall integrated over each separately. There is some evidence for a similar competition between the SST maxima in the two hemispheres, but this is more ambiguous, and there is evidence that some variations in the relative strengths of the two rainfall maxima may be independent of SST. Using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP), four distinct ITCZ types during March-April are defined, based on the relative strengths of rainfall peaks north and south of, and right over the equator. Composite meridional profiles and spatial distributions of rainfall and SST are documented for each type. Consistent with previous studies, an equatorial cold tongue is essential to the existence of the double ITCZs. However, too strong a cold tongue may dampen either the southern or northern rainfall maximum, depending on the magnitude of SST north of the equator.
NASA Astrophysics Data System (ADS)
Roberts, C. D.; Palmer, M. D.; Allan, R. P.; Desbruyeres, D. G.; Hyder, P.; Liu, C.; Smith, D.
2017-01-01
We present an observation-based heat budget analysis for seasonal and interannual variations of ocean heat content (H) in the mixed layer (Hmld) and full-depth ocean (Htot). Surface heat flux and ocean heat content estimates are combined using a novel Kalman smoother-based method. Regional contributions from ocean heat transport convergences are inferred as a residual and the dominant drivers of Hmld and Htot are quantified for seasonal and interannual time scales. We find that non-Ekman ocean heat transport processes dominate Hmld variations in the equatorial oceans and regions of strong ocean currents and substantial eddy activity. In these locations, surface temperature anomalies generated by ocean dynamics result in turbulent flux anomalies that drive the overlying atmosphere. In addition, we find large regions of the Atlantic and Pacific oceans where heat transports combine with local air-sea fluxes to generate mixed layer temperature anomalies. In all locations, except regions of deep convection and water mass transformation, interannual variations in Htot are dominated by the internal rearrangement of heat by ocean dynamics rather than the loss or addition of heat at the surface. Our analysis suggests that, even in extratropical latitudes, initialization of ocean dynamical processes could be an important source of skill for interannual predictability of Hmld and Htot. Furthermore, we expect variations in Htot (and thus thermosteric sea level) to be more predictable than near surface temperature anomalies due to the increased importance of ocean heat transport processes for full-depth heat budgets.
Strong and uniform convergence in the teleportation simulation of bosonic Gaussian channels
NASA Astrophysics Data System (ADS)
Wilde, Mark M.
2018-06-01
In the literature on the continuous-variable bosonic teleportation protocol due to Braunstein and Kimble [Phys. Rev. Lett. 80, 869 (1998), 10.1103/PhysRevLett.80.869], it is often loosely stated that this protocol converges to a perfect teleportation of an input state in the limit of ideal squeezing and ideal detection, but the exact form of this convergence is typically not clarified. In this paper, I explicitly clarify that the convergence is in the strong sense, and not the uniform sense, and furthermore that the convergence occurs for any input state to the protocol, including the infinite-energy Basel states defined and discussed here. I also prove, in contrast to the above result, that the teleportation simulations of pure-loss, thermal, pure-amplifier, amplifier, and additive-noise channels converge both strongly and uniformly to the original channels, in the limit of ideal squeezing and detection for the simulations. For these channels, I give explicit uniform bounds on the accuracy of their teleportation simulations. I then extend these uniform convergence results to particular multimode bosonic Gaussian channels. These convergence statements have important implications for mathematical proofs that make use of the teleportation simulation of bosonic Gaussian channels, some of which have to do with bounding their nonasymptotic secret-key-agreement capacities. As a by-product of the discussion given here, I confirm the correctness of the proof of such bounds from my joint work with Berta and Tomamichel from [Wilde, Tomamichel, and Berta, IEEE Trans. Inf. Theory 63, 1792 (2017), 10.1109/TIT.2017.2648825]. Furthermore, I show that it is not necessary to invoke the energy-constrained diamond distance in order to confirm the correctness of this proof.
NASA Technical Reports Server (NTRS)
Ito, Kazufumi
1987-01-01
The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.
NASA Astrophysics Data System (ADS)
Norris, Joel R.; Klein, Stephen A.
2000-01-01
Composite large-scale dynamical fields contemporaneous with low cloud types observed at midlatitude Ocean Weather Station (OWS) C and eastern subtropical OWS N are used to establish representative relationships between low cloud type and the synoptic environment. The composites are constructed by averaging meteorological observations of surface wind and sea level pressure from volunteering observing ships (VOS) and analyses of sea level pressure, 1000-mb wind, and 700-mb pressure vertical velocity from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis project on those dates and times of day when a particular low cloud type was reported at the OWS.VOS and NCEP results for OWS C during summer show that bad-weather stratus occurs with strong convergence and ascent slightly ahead of a surface low center and trough. Cumulus-under-stratocumulus and moderate and large cumulus occur with divergence and subsidence in the cold sector of an extratropical cyclone. Both sky-obscuring fog and no-low-cloud typically occur with southwesterly flow from regions of warmer sea surface temperature and differ primarily according to slight surface convergence and stronger warm advection in the case of sky-obscuring fog or surface divergence and weaker warm advection in the case of no-low-cloud. Fair-weather stratus and ordinary stratocumulus are associated with a mixture of meteorological conditions, but differ with respect to vertical motion in the environment. Fair-weather stratus occurs most commonly in the presence of slight convergence and ascent, while stratocumulus often occurs in the presence of divergence and subsidence.Surface divergence and estimated subsidence at the top of the boundary layer are calculated from VOS observations. At both OWS C and OWS N during summer and winter these values are large for ordinary stratocumulus, less for cumulus-under-stratocumulus, and least (and sometimes slightly negative) for moderate and large cumulus. Subsidence interpolated from NCEP analyses to the top of the boundary layer does not exhibit such variation, but the discrepancy may be due to deficiencies in the analysis procedure or the boundary layer parameterization of the NCEP model. The VOS results suggest that decreasing divergence and subsidence in addition to increasing sea surface temperature may promote the transition from stratocumulus to trade cumulus observed over low-latitude oceans.
Waterspout, Gust Fronts and Associated Cloud Systems
NASA Technical Reports Server (NTRS)
Simpson, J.
1983-01-01
Nine waterspouts observed on five experimental days during the GATE period of observations are discussed. Primary data used are from 2 aircraft flying in different patterns, one above the other between 30 and 300 m. There is strong evidence associating whirl initiation with cumulus outflow. Computations prepared from estimates of convergence with the region suggest the possibility of vortex generation within 4 minutes. This analysis supports (1) the importance cumulus outflows may have in waterspout initiation and (2) the possibility that sea surface temperature gradients may be important in enabling waterspout development from modest size cumuli.
NASA Astrophysics Data System (ADS)
Zotov, O. D.; Zavyalov, A. D.; Guglielmi, A. V.; Lavrov, I. P.
2018-01-01
Based on the observation data for hundreds of the main shocks and thousands of aftershocks, the existence of effect of round-the-world surface seismic waves is demonstrated (let us conditionally refer to them as a round-the-world seismic echo) and the manifestations of this effect in the dynamics of the repeated shocks of strong earthquakes are analyzed. At the same time, we by no means believe this effect has been fully proven. We only present a version of our own understanding of the physical causes of the observed phenomenon and analyze the regularities in its manifestation. The effect is that the surface waves excited in the Earth by the main shock make a full revolution around the Earth and excite a strong aftershock in the epicentral zone of the main shock. In our opinion, the physical nature of this phenomenon consists in the fact that the superposition leads to a concentration of wave energy when the convergent surface waves reach the epicentral zone (cumulative effect). The effect of the first seismic echo is most manifest. Thus, the present work supports our hypothesis of the activation of rock failure under the cumulative impact of an round-the-world seismic echo on the source area which is releasing ("cooling") after the main shock. The spatial regularities in the manifestations of this effect are established, and the independence of the probability of its occurrence on the main shock magnitude is revealed. The effect of a round-the-world seismic echo can be used to improve the reliability of the forecasts of strong aftershocks in determining the scenario for the seismic process developing in the epicentral zone of a strong earthquake that has taken place.
Independent Molecular Basis of Convergent Highland Adaptation in Maize
Takuno, Shohei; Ralph, Peter; Swarts, Kelly; Elshire, Rob J.; Glaubitz, Jeffrey C.; Buckler, Edward S.; Hufford, Matthew B.; Ross-Ibarra, Jeffrey
2015-01-01
Convergent evolution is the independent evolution of similar traits in different species or lineages of the same species; this often is a result of adaptation to similar environments, a process referred to as convergent adaptation. We investigate here the molecular basis of convergent adaptation in maize to highland climates in Mesoamerica and South America, using genome-wide SNP data. Taking advantage of archaeological data on the arrival of maize to the highlands, we infer demographic models for both populations, identifying evidence of a strong bottleneck and rapid expansion in South America. We use these models to then identify loci showing an excess of differentiation as a means of identifying putative targets of natural selection and compare our results to expectations from recently developed theory on convergent adaptation. Consistent with predictions across a wide parameter space, we see limited evidence for convergent evolution at the nucleotide level in spite of strong similarities in overall phenotypes. Instead, we show that selection appears to have predominantly acted on standing genetic variation and that introgression from wild teosinte populations appears to have played a role in highland adaptation in Mexican maize. PMID:26078279
NASA Astrophysics Data System (ADS)
Maes, C.; Grima, N.; Blanke, B.; Martinez, E.; Paviet-Salomon, T.; Huck, T.
2018-02-01
We study the dispersion and convergence of marine floating material by surface currents from a model reanalysis that represents explicitly mesoscale eddy variability. Lagrangian experiments about the long-term evolution (29 years) of an initially homogeneous concentration of particles are performed at global scale with horizontal current at one fourth degree resolution and refreshed daily over the 1985-2013 period. Results not only confirm and document the five known sites of surface convergence at the scale of individual oceanic basins but also reveal a convergent pathway connecting the South Indian subtropical region with the convergence zone of the South Pacific through the Great Australian Bight, the Tasman Sea, and the southwest Pacific Ocean. This "superconvergent" pathway at the ocean surface is robust and permanent over a distance longer than 8,000 km. The current variability is crucial to sustain this pathway.
On decoupling of volatility smile and term structure in inverse option pricing
NASA Astrophysics Data System (ADS)
Egger, Herbert; Hein, Torsten; Hofmann, Bernd
2006-08-01
Correct pricing of options and other financial derivatives is of great importance to financial markets and one of the key subjects of mathematical finance. Usually, parameters specifying the underlying stochastic model are not directly observable, but have to be determined indirectly from observable quantities. The identification of local volatility surfaces from market data of European vanilla options is one very important example of this type. As with many other parameter identification problems, the reconstruction of local volatility surfaces is ill-posed, and reasonable results can only be achieved via regularization methods. Moreover, due to the sparsity of data, the local volatility is not uniquely determined, but depends strongly on the kind of regularization norm used and a good a priori guess for the parameter. By assuming a multiplicative structure for the local volatility, which is motivated by the specific data situation, the inverse problem can be decomposed into two separate sub-problems. This removes part of the non-uniqueness and allows us to establish convergence and convergence rates under weak assumptions. Additionally, a numerical solution of the two sub-problems is much cheaper than that of the overall identification problem. The theoretical results are illustrated by numerical tests.
WRF simulation of a severe hailstorm over Baramati: a study into the space-time evolution
NASA Astrophysics Data System (ADS)
Murthy, B. S.; Latha, R.; Madhuparna, H.
2018-04-01
Space-time evolution of a severe hailstorm occurred over the western India as revealed by WRF-ARW simulations are presented. We simulated a specific event centered over Baramati (18.15°N, 74.58°E, 537 m AMSL) on March 9, 2014. A physical mechanism, proposed as a conceptual model, signifies the role of multiple convective cells organizing through outflows leading to a cold frontal type flow, in the presence of a low over the northern Arabian Sea, propagates from NW to SE triggering deep convection and precipitation. A `U' shaped cold pool encircled by a converging boundary forms to the north of Baramati due to precipitation behind the moisture convergence line with strong updrafts ( 15 ms-1) leading to convective clouds extending up to 8 km in a narrow region of 30 km. The outflows from the convective clouds merge with the opposing southerly or southwesterly winds from the Arabian Sea and southerly or southeasterly winds from the Bay of Bengal resulting in moisture convergence (maximum 80 × 10-3 g kg-1 s-1). The vertical profile of the area-averaged moisture convergence over the cold pool shows strong convergence above 850 hPa and divergence near the surface indicating elevated convection. Radar reflectivity (50-60 dBZ) and vertical component of vorticity maximum ( 0.01-0.14 s-1) are observed along the convergence zone. Stratiform clouds ahead of the squall line and parallel wind flow at 850 hPa and nearly perpendicular flow at higher levels relative to squall line as evidenced by relatively low and wide-spread reflectivity suggests that organizational mode of squall line may be categorized as `Mixed Mode' type where northern part can be a parallel stratiform while the southern part resembles with a leading stratiform. Simulated rainfall (grid scale 27 km) leads the observed rainfall by 1 h while its magnitude is 2 times of the observed rainfall (grid scale 100 km) derived from Kalpana-1. Thus, this study indicates that under synoptically favorable conditions, WRF-ARW could simulate thunderstorm evolution reasonably well although there is some space-time error which might, perhaps, be the reason for lower CAPE (observed by upper air sounding) on the simulation day.
Bilingualism and Creativity: Benefits in Convergent Thinking Come with Losses in Divergent Thinking
Hommel, Bernhard; Colzato, Lorenza S.; Fischer, Rico; Christoffels, Ingrid K.
2011-01-01
Bilingualism is commonly assumed to improve creativity but the mechanisms underlying creative acts, and the way these mechanisms are affected by bilingualism, are not very well understood. We hypothesize that learning to master multiple languages drives individuals toward a relatively focused cognitive-control state that exerts strong top-down impact on information processing and creates strong local competition for selection between cognitive codes. Considering the control requirements posed by creativity tasks tapping into convergent and divergent thinking, this predicts that high-proficient bilinguals should outperform low-proficient bilinguals in convergent thinking, while low-proficient bilinguals might be better in divergent thinking. Comparing low- and high-proficient bilinguals on convergent-thinking and divergent-thinking tasks indeed showed a high-proficient bilingual advantage for convergent thinking but a low-proficient bilingual advantage for fluency in divergent thinking. These findings suggest that bilingualism should not be related to “creativity” as a unitary concept but, rather, to the specific processes and mechanisms that underlie creativity. PMID:22084634
A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Carl A., E-mail: carl.bauer@colorado.edu; Werner, Gregory R.; Cary, John R.
For embedded boundary electromagnetics using the Dey–Mittra (Dey and Mittra, 1997) [1] algorithm, a special grad–div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwell’s curl–curl matrix. Efficient curl–curl inversions are demonstrated within a shift-and-invert Krylov-subspace eigensolver (open-sourced at ([ofortt]https://github.com/bauerca/maxwell[cfortt])) on the spherical cavity and the 9-cell TESLA superconducting accelerator cavity. The accuracy of the Dey–Mittra algorithm is also examined: frequencies converge with second-order error, and surface fields are found to converge with nearly second-order error. In agreement with previous work (Nieter et al., 2009) [2], neglecting some boundary-cut cell faces (as is requiredmore » in the time domain for numerical stability) reduces frequency convergence to first-order and surface-field convergence to zeroth-order (i.e. surface fields do not converge). Additionally and importantly, neglecting faces can reduce accuracy by an order of magnitude at low resolutions.« less
NASA Astrophysics Data System (ADS)
Wang, K.; Luo, Y.; Yang, Y.
2016-12-01
We collect two months of ambient noise data recorded by 35 broadband seismic stations in a 9×11 km area near Karamay, China, and do cross-correlation of noise data between all station pairs. Array beamforming analysis of the ambient noise data shows that ambient noise sources are unevenly distributed and the most energetic ambient noise mainly comes from azimuths of 40o-70o. As a consequence of the strong directional noise sources, surface wave waveforms of the cross-correlations at 1-5 Hz show clearly azimuthal dependence, and direct dispersion measurements from cross-correlations are strongly biased by the dominant noise energy. This bias renders that the dispersion measurements from cross-correlations do not accurately reflect the interstation velocities of surface waves propagating directly from one station to the other, that is, the cross-correlation functions do not retrieve Empirical Green's Functions accurately. To correct the bias caused by unevenly distributed noise sources, we adopt an iterative inversion procedure. The iterative inversion procedure, based on plane-wave modeling, includes three steps: (1) surface wave tomography, (2) estimation of ambient noise energy and (3) phase velocities correction. First, we use synthesized data to test efficiency and stability of the iterative procedure for both homogeneous and heterogeneous media. The testing results show that: (1) the amplitudes of phase velocity bias caused by directional noise sources are significant, reaching 2% and 10% for homogeneous and heterogeneous media, respectively; (2) phase velocity bias can be corrected by the iterative inversion procedure and the convergences of inversion depend on the starting phase velocity map and the complexity of the media. By applying the iterative approach to the real data in Karamay, we further show that phase velocity maps converge after ten iterations and the phase velocity map based on corrected interstation dispersion measurements are more consistent with results from geology surveys than those based on uncorrected ones. As ambient noise in high frequency band (>1Hz) is mostly related to human activities or climate events, both of which have strong directivity, the iterative approach demonstrated here helps improve the accuracy and resolution of ANT in imaging shallow earth structures.
NASA Astrophysics Data System (ADS)
Fu, Rong; Dickinson, Robert E.; Chen, Mingxuan; Wang, Hui
2001-10-01
Although the correlation between precipitation over tropical South America and sea surface temperatures (SSTs) over the Pacific and Atlantic has been documented since the early twentieth century, the impact of each ocean on the timing and intensity of the wet season over tropical South America and the underlying mechanisms have remained unclear. Numerical experiments have been conducted using the National Center for Atmospheric Research Community Climate Model Version 3 to explore these impacts. The results suggest the following.1)Seasonality of SSTs in the tropical Pacific and Atlantic has an important influence on precipitation in the eastern Amazon during the equinox seasons. The eastern side of the Amazon is influenced both by the direct thermal circulation of the Atlantic intertropical convergence zone (ITCZ) and by Rossby waves. These processes are enhanced by the seasonal cycles of SSTs in the tropical Atlantic and Pacific. SSTs affect Amazon precipitation much less during the solstice seasons and in the western Amazon.2)The seasonality of SSTs in the Atlantic more strongly affects Amazon rainfall than does that of the Pacific. Without the former, austral spring in the eastern equatorial Amazon would be a wet season, rather than the observed dry season. As a consequence of the lag at that time of the southward seasonal migration of the Atlantic SSTs behind that of the insolation, the Atlantic ITCZ centers itself near 10°N, instead of at the equator, imposing subsidence and low-level anticyclonic flow over the eastern equatorial Amazon, thus drying the air above the planetary boundary layer and reducing the low-level moisture convergence. Consequently, convection in the eastern Amazon is suppressed despite strong surface heating.3)Seasonality of the SSTs in the tropical Pacific also tends to reduce precipitation in the eastern Amazon during both spring and fall. In spring, subsidence is enhanced not only through a zonal direct circulation, but also through Rossby waves propagating from the extratropical South Pacific to subtropical South America. This teleconnection strengthens the South Atlantic convergence zone (SACZ) and the Nordeste low, in both cases reducing precipitation in the eastern Amazon. A direct thermal response to the Pacific SSTs enhances lower-level divergence and reduces precipitation from the northern tropical Atlantic to the northeastern Amazon.
NASA Astrophysics Data System (ADS)
Castells, Victoria; Van Tassel, Paul R.
2005-02-01
Proteins often undergo changes in internal conformation upon interacting with a surface. We investigate the thermodynamics of surface induced conformational change in a lattice model protein using a multicanonical Monte Carlo method. The protein is a linear heteropolymer of 27 segments (of types A and B) confined to a cubic lattice. The segmental order and nearest neighbor contact energies are chosen to yield, in the absence of an adsorbing surface, a unique 3×3×3 folded structure. The surface is a plane of sites interacting either equally with A and B segments (equal affinity surface) or more strongly with the A segments (A affinity surface). We use a multicanonical Monte Carlo algorithm, with configuration bias and jump walking moves, featuring an iteratively updated sampling function that converges to the reciprocal of the density of states 1/Ω(E), E being the potential energy. We find inflection points in the configurational entropy, S(E)=klnΩ(E), for all but a strongly adsorbing equal affinity surface, indicating the presence of free energy barriers to transition. When protein-surface interactions are weak, the free energy profiles F(E)=E-TS(E) qualitatively resemble those of a protein in the absence of a surface: a free energy barrier separates a folded, lowest energy state from globular, higher energy states. The surface acts in this case to stabilize the globular states relative to the folded state. When the protein surface interactions are stronger, the situation differs markedly: the folded state no longer occurs at the lowest energy and free energy barriers may be absent altogether.
Sutter, John P.; Alianelli, Lucia
2017-01-01
The shapes of single lens surfaces capable of focusing divergent and collimated beams without aberration have already been calculated. However, nanofocusing compound refractive lenses (CRLs) require many consecutive lens surfaces. Here a theoretical example of an X-ray nanofocusing CRL with 48 consecutive surfaces is studied. The surfaces on the downstream end of this CRL accept X-rays that are already converging toward a focus, and refract them toward a new focal point that is closer to the surface. This case, so far missing from the literature, is treated here. The ideal surface for aberration-free focusing of a convergent incident beam is found by analytical computation and by ray tracing to be one sheet of a Cartesian oval. An ‘X-ray approximation’ of the Cartesian oval is worked out for the case of small change in index of refraction across the lens surface. The paraxial approximation of this surface is described. These results will assist the development of large-aperture CRLs for nanofocusing. PMID:29091055
NASA Astrophysics Data System (ADS)
Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Ruby; Wang, Hailong; Yang, Ben; Fan, Jiwen; Yan, Huiping; Yang, Xiu-Qun; Liu, Dongqing
2017-04-01
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr-1 in the major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Shi; Qian, Yun; Zhao, Chun
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr −1 in themore » major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.« less
Zhong, Shi; Qian, Yun; Zhao, Chun; ...
2017-04-27
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr −1 in themore » major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.« less
LQR Control of Shell Vibrations Via Piezoceramic Actuators
NASA Technical Reports Server (NTRS)
delRosario, R. C. H.; Smith, R. C.
1997-01-01
A model-based Linear Quadratic Regulator (LQR) method for controlling vibrations in cylindrical shells is presented. Surface-mounted piezo-ceramic patches are employed as actuators which leads to unbounded control input operators. Modified Donnell-Mushtari shell equations incorporating strong or Kelvin-Voigt damping are used to model the system. The model is then abstractly formulated in terms of sesquilinear forms. This provides a framework amenable for proving model well-posedness and convergence of LQR gains using analytic semigroup results combined with LQR theory for unbounded input operators. Finally, numerical examples demonstrating the effectiveness of the method are presented.
Bauer, Ulrike; Scharmann, Mathias; Skepper, Jeremy; Federle, Walter
2013-02-22
Trichomes are a common feature of plants and perform important and diverse functions. Here, we show that the inward-pointing hairs on the inner wall of insect-trapping Heliamphora nutans pitchers are highly wettable, causing water droplets to spread rapidly across the surface. Wetting strongly enhanced the slipperiness and increased the capture rate for ants from 29 to 88 per cent. Force measurements and tarsal ablation experiments revealed that wetting affected the insects' adhesive pads but not the claws, similar to the 'aquaplaning' mechanism of (unrelated) Asian Nepenthes pitcher plants. The inward-pointing trichomes provided much higher traction when insects were pulled outwards. The wetness-dependent capture mechanisms of H. nutans and Nepenthes pitchers present a striking case of functional convergence, whereas the use of wettable trichomes constitutes a previously unknown mechanism to make plant surfaces slippery.
Ilott, Andrew J; Palucha, Sebastian; Hodgkinson, Paul; Wilson, Mark R
2013-10-10
The well-tempered, smoothly converging form of the metadynamics algorithm has been implemented in classical molecular dynamics simulations and used to obtain an estimate of the free energy surface explored by the molecular rotations in the plastic crystal, octafluoronaphthalene. The biased simulations explore the full energy surface extremely efficiently, more than 4 orders of magnitude faster than unbiased molecular dynamics runs. The metadynamics collective variables used have also been expanded to include the simultaneous orientations of three neighboring octafluoronaphthalene molecules. Analysis of the resultant three-dimensional free energy surface, which is sampled to a very high degree despite its significant complexity, demonstrates that there are strong correlations between the molecular orientations. Although this correlated motion is of limited applicability in terms of exploiting dynamical motion in octafluoronaphthalene, the approach used is extremely well suited to the investigation of the function of crystalline molecular machines.
Bauer, Ulrike; Scharmann, Mathias; Skepper, Jeremy; Federle, Walter
2013-01-01
Trichomes are a common feature of plants and perform important and diverse functions. Here, we show that the inward-pointing hairs on the inner wall of insect-trapping Heliamphora nutans pitchers are highly wettable, causing water droplets to spread rapidly across the surface. Wetting strongly enhanced the slipperiness and increased the capture rate for ants from 29 to 88 per cent. Force measurements and tarsal ablation experiments revealed that wetting affected the insects' adhesive pads but not the claws, similar to the ‘aquaplaning’ mechanism of (unrelated) Asian Nepenthes pitcher plants. The inward-pointing trichomes provided much higher traction when insects were pulled outwards. The wetness-dependent capture mechanisms of H. nutans and Nepenthes pitchers present a striking case of functional convergence, whereas the use of wettable trichomes constitutes a previously unknown mechanism to make plant surfaces slippery. PMID:23256197
An observational analysis of a derecho in South China
NASA Astrophysics Data System (ADS)
Xia, Rudi; Wang, Donghai; Sun, Jianhua; Wang, Gaili; Xia, Guancong
2012-12-01
Derechos occur frequently in Europe and the United States, but reports of derechos in China are scarce. In this paper, radar, satellite, and surface observation data are used to analyze a derecho event in South China on 17 April 2011. A derecho-producing mesoscale convective system formed in an environment with medium convective available energy, strong vertical wind shear, and a dry layer in the middle troposphere, and progressed southward in tandem with a front and a surface wind convergence line. The windstorm can be divided into two stages according to differences in the characteristics of the radar echo and the causes of the gale. One stage was a supercell stage, in which the sinking rear inflow of a high-precipitation supercell with a bow-shaped radar echo induced a Fujita F0 class gale. The other stage was a non-supercell stage (the echo was sequentially kidney-shaped, foot-shaped, and an ordinary single cell), in which downbursts induced a gale in Fujita F1 class. This derecho event had many similarities with derechos observed in western countries. For example, the windstorm was perpendicular to the mean flow, the gale was located in the bulging portion of the bow echo, and the derecho moved southward along with the surface front. Some differences were observed as well. The synoptic-scale forcing was weak in the absence of an advancing high-amplitude midlevel trough and an accompanying strong surface cyclone; however, the vertical wind shear was very strong, a characteristic typical of derechos associated with strong synoptic-scale forcing. Extremely high values of convective available potential energy and downdraft convective available potential energy have previously been considered necessary to the formation of weak-forcing archetype and hybrid derechos; however, these values were much less than 2000 J during this derecho event.
NASA Astrophysics Data System (ADS)
Jiang, Mingshun; Charette, Matthew A.; Measures, Christopher I.; Zhu, Yiwu; Zhou, Meng
2013-06-01
The seasonal cycle of circulation and transport in the Antarctic Peninsula shelf region is investigated using a high-resolution (˜2 km) regional model based on the Regional Oceanic Modeling System (ROMS). The model also includes a naturally occurring tracer with a strong source over the shelf (radium isotope 228Ra, t1/2=5.8 years) to investigate the sediment Fe input and its transport. The model is spun-up for three years using climatological boundary and surface forcing and then run for the 2004-2006 period using realistic forcing. Model results suggest a persistent and coherent circulation system throughout the year consisting of several major components that converge water masses from various sources toward Elephant Island. These currents are largely in geostrophic balance, driven by surface winds, topographic steering, and large-scale forcing. Strong off-shelf transport of the Fe-rich shelf waters takes place over the northeastern shelf/slope of Elephant Island, driven by a combination of topographic steering, extension of shelf currents, and strong horizontal mixing between the ACC and shelf waters. These results are generally consistent with recent and historical observational studies. Both the shelf circulation and off-shelf transport show a significant seasonality, mainly due to the seasonal changes of surface winds and large-scale circulation. Modeled and observed distributions of 228Ra suggest that a majority of Fe-rich upper layer waters exported off-shelf around Elephant Island are carried by the shelfbreak current and the Bransfield Strait Current from the shallow sills between Gerlache Strait and Livingston Island, and northern shelf of the South Shetland Islands, where strong winter mixing supplies much of the sediment derived nutrients (including Fe) input to the surface layer.
PDEs on moving surfaces via the closest point method and a modified grid based particle method
NASA Astrophysics Data System (ADS)
Petras, A.; Ruuth, S. J.
2016-05-01
Partial differential equations (PDEs) on surfaces arise in a wide range of applications. The closest point method (Ruuth and Merriman (2008) [20]) is a recent embedding method that has been used to solve a variety of PDEs on smooth surfaces using a closest point representation of the surface and standard Cartesian grid methods in the embedding space. The original closest point method (CPM) was designed for problems posed on static surfaces, however the solution of PDEs on moving surfaces is of considerable interest as well. Here we propose solving PDEs on moving surfaces using a combination of the CPM and a modification of the grid based particle method (Leung and Zhao (2009) [12]). The grid based particle method (GBPM) represents and tracks surfaces using meshless particles and an Eulerian reference grid. Our modification of the GBPM introduces a reconstruction step into the original method to ensure that all the grid points within a computational tube surrounding the surface are active. We present a number of examples to illustrate the numerical convergence properties of our combined method. Experiments for advection-diffusion equations that are strongly coupled to the velocity of the surface are also presented.
Are there two types of pulsars?
NASA Astrophysics Data System (ADS)
Contopoulos, I.
2016-11-01
In order to investigate the importance of dissipation in the pulsar magnetosphere, we decided to combine force-free with Aristotelian electrodynamics. We obtain solutions that are ideal (non-dissipative) everywhere except in an equatorial current sheet where Poynting flux from both hemispheres converges and is dissipated into particle acceleration and radiation. We find significant dissipative losses (up to about 50 per cent of the pulsar spin-down luminosity), similar to what is found in global Particle-In-Cell simulations in which particles are provided only on the stellar surface. We conclude that there might indeed exist two types of pulsars, strongly dissipative ones with particle injection only from the stellar surface, and ideal (weakly dissipative) ones with particle injection in the outer magnetosphere and in particular at the Y-point.
Surface currents in the Canary Basin from drifter observations
NASA Astrophysics Data System (ADS)
Zhou, Meng; Paduan, Jeffrey D.; Niiler, Pearn P.
2000-09-01
Satellite-tracked drifting buoys, deployed in the Canary Basin as part of the Subduction Experiment between July 1991 and October 1993 and the French Semaphore Experiment during October 1993, were used to obtain a description of surface currents and temperature in the Canary Basin. The study focuses on surface water convergence, eddy energy production, and heat transport. The Azores Current associated with the subtropical convergence zone is clearly visible at 34°N, and bifurcates around 22°W, with the major branch of the current circling the Madeira plateau and joining the Canary Current along the continental slope. Eddy kinetic energy maxima are found along the Azores Current. The mean current revealed a region of maximum convergence north of the Azores Current around longitude 29°W occurring with a negative heating anomaly and positive work done by the Reynolds stress. The southward meridional temperature fluxes in the Ekman layer (0-50 m) between 37°W and the African and European coast are estimated between -0.076±0.022×l015 W, produced by mean southward volume transport in our study area. The residual between local surface heat fluxes and horizontal convergence of heat implies a vertical heat convergence process associated with mesoscale temperature and flow fields.
Chen, Hui; Deng, Qiang; Ng, Sock Hoon; Lee, Raphael Tze Chuen; Maurer-Stroh, Sebastian; Zhai, Weiwei
2016-12-01
Influenza viruses are often propagated in a diverse set of culturing media and additional substitutions known as passage adaptation can cause extra evolution in the target strain, leading to ineffective vaccines. Using 25,482 H3N2 HA1 sequences curated from Global Initiative on Sharing All Influenza Data and National Center for Biotechnology Information databases, we found that passage adaptation is a very dynamic process that changes over time and evolves in a seesaw like pattern. After crossing the species boundary from bird to human in 1968, the influenza H3N2 virus evolves to be better adapted to the human environment and passaging them in embryonated eggs (i.e., an avian environment) leads to increasingly stronger positive selection. On the contrary, passage adaptation to the mammalian cell lines changes from positive selection to negative selection. Using two statistical tests, we identified 19 codon positions around the receptor binding domain strongly contributing to passage adaptation in the embryonated egg. These sites show strong convergent evolution and overlap extensively with positively selected sites identified in humans, suggesting that passage adaptation can confound many of the earlier studies on influenza evolution. Interestingly, passage adaptation in recent years seems to target a few codon positions in antigenic surface epitopes, which makes it difficult to produce antigenically unaltered vaccines using embryonic eggs. Our study outlines another interesting scenario whereby both convergent and adaptive evolution are working in synchrony driving viral adaptation. Future studies from sequence analysis to vaccine production need to take careful consideration of passage adaptation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Digital terrain modelling and industrial surface metrology - Converging crafts
Pike, R.J.
2001-01-01
Quantitative characterisation of surface form, increasingly from digital 3-D height data, is cross-disciplinary and can be applied at any scale. Thus, separation of industrial-surface metrology from its Earth-science counterpart, (digital) terrain modelling, is artificial. Their growing convergence presents an opportunity to develop in surface morphometry a unified approach to surface representation. This paper introduces terrain modelling and compares it with metrology, noting their differences and similarities. Examples of potential redundancy among parameters illustrate one of the many issues common to both disciplines. ?? 2001 Elsevier Science Ltd. All rights reserved.
Li, Xia; Guo, Meifang; Su, Yongfu
2016-01-01
In this article, a new multidirectional monotone hybrid iteration algorithm for finding a solution to the split common fixed point problem is presented for two countable families of quasi-nonexpansive mappings in Banach spaces. Strong convergence theorems are proved. The application of the result is to consider the split common null point problem of maximal monotone operators in Banach spaces. Strong convergence theorems for finding a solution of the split common null point problem are derived. This iteration algorithm can accelerate the convergence speed of iterative sequence. The results of this paper improve and extend the recent results of Takahashi and Yao (Fixed Point Theory Appl 2015:87, 2015) and many others .
An efficient strongly coupled immersed boundary method for deforming bodies
NASA Astrophysics Data System (ADS)
Goza, Andres; Colonius, Tim
2016-11-01
Immersed boundary methods treat the fluid and immersed solid with separate domains. As a result, a nonlinear interface constraint must be satisfied when these methods are applied to flow-structure interaction problems. This typically results in a large nonlinear system of equations that is difficult to solve efficiently. Often, this system is solved with a block Gauss-Seidel procedure, which is easy to implement but can require many iterations to converge for small solid-to-fluid mass ratios. Alternatively, a Newton-Raphson procedure can be used to solve the nonlinear system. This typically leads to convergence in a small number of iterations for arbitrary mass ratios, but involves the use of large Jacobian matrices. We present an immersed boundary formulation that, like the Newton-Raphson approach, uses a linearization of the system to perform iterations. It therefore inherits the same favorable convergence behavior. However, we avoid large Jacobian matrices by using a block LU factorization of the linearized system. We derive our method for general deforming surfaces and perform verification on 2D test problems of flow past beams. These test problems involve large amplitude flapping and a wide range of mass ratios. This work was partially supported by the Jet Propulsion Laboratory and Air Force Office of Scientific Research.
NASA Astrophysics Data System (ADS)
Matthews, J. P.; Fox, A. D.; Prandle, D.
1993-01-01
This paper describes the first synoptic mapping of surface currents across a strong and stable tidal mixing front by HF radar. The radar deployment took place along the coast of northeast England during August and early September 1988 in parallel with extensive ship based CTD density and ADCP (Acoustic Doppler Current Profiler) measurements which provided data in the vertical plane to complement those of the HF radar. We describe two main results. Firstly, during a spring-tide period of strengthening inshore density gradients, an along-front jet with speeds of up to 14 cm s -1 was detected in the long term IIF radar residual field. The location and spatial form of this jet correspond with estimates of geostrophic currents derived from the measured density field. Secondly, a transverse "double-sided" surface flow convergence centred close to the frontal boundary and of net magnitude 4 cm s -1 accompanied the large along-front jet. Such a weaker cross-frontal component has been anticipated on theoretical grounds but never previously observed in this detailed fashion. The experiment underlines the power of a synergistic approach, based on HF remote sensing radar and ADCP, for the study of frontal circulation in coastal zones.
The East African monsoon system: Seasonal climatologies and recent variations: Chapter 10
Funk, Christopher C.; Hoell, Andrew; Shukla, Shraddhanand; Husak, Gregory J.; Michaelsen, J.
2016-01-01
This chapter briefly reviews the complex climatological cycle of the East African monsoon system, paying special attention to its connection to the larger Indo-Pacific-Asian monsoon cycle. We examine the seasonal monsoon cycle, and briefly explore recent circulation changes. The spatial footprint of our analysis corresponds with the “Greater Horn of Africa” (GHA) region, extending from Tanzania in the south to Yemen and Sudan in the north. During boreal winter, when northeast trade winds flow across the northwest Indian Ocean and the equatorial moisture transports over the Indian Ocean exhibit strong westerly mean flows over the equatorial Indian Ocean, East African precipitation is limited to a few highland areas. As the Indian monsoon circulation transitions during boreal spring, the trade winds over the northwest Indian Ocean reverse, and East African moisture convergence supports the “long” rains. In boreal summer, the southwesterly Somali Jet intensifies over eastern Africa. Subsidence forms along the westward flank of this jet, shutting down precipitation over eastern portions of East Africa. In boreal fall, the Jet subsides, but easterly moisture transports support rainfall in limited regions of the eastern Horn of Africa. We use regressions with the trend mode of global sea surface temperatures to explore potential changes in the seasonal monsoon circulations. Significant reductions in total precipitable water are indicated in Kenya, Tanzania, Rwanda, Burundi, Uganda, Ethiopia, South Sudan, Sudan, and Yemen, with moisture transports broadly responding in ways that reinforce the climatological moisture transports over the Indian Ocean. Over Kenya, southern Ethiopia and Somalia, regressions with velocity potential indicate increased convergence aloft. Near the surface, this convergence appears to manifest as a surface high pressure system that modifies moisture transports in these countries as well as Uganda, Tanzania, Rwanda, and Burundi. An analysis of rainfall changes indicates significant declines in parts of Tanzania, Rwanda, Burundi, Uganda, Kenya, Somalia, Ethiopia, and Yemen.
Convergence characteristics of nonlinear vortex-lattice methods for configuration aerodynamics
NASA Technical Reports Server (NTRS)
Seginer, A.; Rusak, Z.; Wasserstrom, E.
1983-01-01
Nonlinear panel methods have no proof for the existence and uniqueness of their solutions. The convergence characteristics of an iterative, nonlinear vortex-lattice method are, therefore, carefully investigated. The effects of several parameters, including (1) the surface-paneling method, (2) an integration method of the trajectories of the wake vortices, (3) vortex-grid refinement, and (4) the initial conditions for the first iteration on the computed aerodynamic coefficients and on the flow-field details are presented. The convergence of the iterative-solution procedure is usually rapid. The solution converges with grid refinement to a constant value, but the final value is not unique and varies with the wing surface-paneling and wake-discretization methods within some range in the vicinity of the experimental result.
A Symmetric Positive Definite Formulation for Monolithic Fluid Structure Interaction
2010-08-09
more likely to converge than simply iterating the partitioned approach to convergence in a simple Gauss - Seidel manner. Our approach allows the use of...conditions in a second step. These approaches can also be iterated within a given time step for increased stability, noting that in the limit if one... converges one obtains a monolithic (albeit expensive) approach. Other approaches construct strongly coupled systems and then solve them in one of several
NASA Astrophysics Data System (ADS)
Mildrexler, D. J.; Zhao, M.; Running, S. W.
2014-12-01
Land Surface Temperature (LST) is a good indicator of the surface energy balance because it is determined by interactions and energy fluxes between the atmosphere and the ground. The variability of land surface properties and vegetation densities across the Earth's surface changes these interactions and gives LST a unique biogeographic influence. Natural and human-induced disturbances modify the surface characteristics and alter the expression of LST. This results in a heterogeneous and dynamic thermal environment. Measurements that merge these factors into a single global metric, while maintaining the important biophysical and biogeographical factors of the land surface's thermal environment are needed to better understand integrated temperature changes in the Earth system. Using satellite-based LST we have developed a new global metric that focuses on one critical component of LST that occurs when the relationship between vegetation density and surface temperature is strongly coupled: annual maximum LST (LSTmax). A 10 year evaluation of LSTmax histograms that include every 1-km pixel across the Earth's surface reveals that this integrative measurement is strongly influenced by the biogeographic patterns of the Earth's ecosystems, providing a unique comparative view of the planet every year that can be likened to the Earth's thermal maximum fingerprint. The biogeographical component is controlled by the frequency and distribution of vegetation types across the Earth's land surface and displays a trimodal distribution. The three modes are driven by ice covered polar regions, forests, and hot desert/shrubland environments. In ice covered areas the histograms show that the heat of fusion results in a convergence of surface temperatures around the melting point. The histograms also show low interannual variability reflecting two important global land surface dynamics; 1) only a small fraction of the Earth's surface is disturbed in any given year, and 2) when considered at the global scale, the positive and negative climate forcings resulting from the aggregate effects of the loss of vegetation to disturbances and the regrowth from natural succession are roughly in balance. Changes in any component of the histogram can be tracked and would indicate a major change in the Earth system.
Convergence Results on Iteration Algorithms to Linear Systems
Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo
2014-01-01
In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640
Nangia, Shikha; Jasper, Ahren W; Miller, Thomas F; Truhlar, Donald G
2004-02-22
The most widely used algorithm for Monte Carlo sampling of electronic transitions in trajectory surface hopping (TSH) calculations is the so-called anteater algorithm, which is inefficient for sampling low-probability nonadiabatic events. We present a new sampling scheme (called the army ants algorithm) for carrying out TSH calculations that is applicable to systems with any strength of coupling. The army ants algorithm is a form of rare event sampling whose efficiency is controlled by an input parameter. By choosing a suitable value of the input parameter the army ants algorithm can be reduced to the anteater algorithm (which is efficient for strongly coupled cases), and by optimizing the parameter the army ants algorithm may be efficiently applied to systems with low-probability events. To demonstrate the efficiency of the army ants algorithm, we performed atom-diatom scattering calculations on a model system involving weakly coupled electronic states. Fully converged quantum mechanical calculations were performed, and the probabilities for nonadiabatic reaction and nonreactive deexcitation (quenching) were found to be on the order of 10(-8). For such low-probability events the anteater sampling scheme requires a large number of trajectories ( approximately 10(10)) to obtain good statistics and converged semiclassical results. In contrast by using the new army ants algorithm converged results were obtained by running 10(5) trajectories. Furthermore, the results were found to be in excellent agreement with the quantum mechanical results. Sampling errors were estimated using the bootstrap method, which is validated for use with the army ants algorithm. (c) 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Fairall, C. W.
2016-12-01
In this paper we presents results of analysis of dropsondes deployed from the NOAA G-4 aircraft during the El Nino Rapid Response field program conducted between January 21 to March 10, 2016. The aircraft was based in Honolulu, HI; 593 sondes were launched in 22 flights. The study area was due south of Hawaii principally confined to a region between 180-140 W Longitude and 2 S to 20 N Latitude. The program was focused on the deep convection that was enhanced by strong El Nino conditions. Here we will discuss atmospheric budget calculations of divergence, Q1, and Q2 from seven flights that encircled convective masses (horizontal scale on the order of 400 km). Surface precipitation and evaporation are estimated from the vertical integral. For example, on flight 1 convergence peaked at 8E-6 s^-1 at an altitude of 4 km; surface precipitation was 25 mm/d. We found that Q1 peaked at significantly higher altitude than Q2 which implies relatively weak contribution from stratiform precipitation. The convective features tended to be elongated in a zonal direction. We will also describe a mission where a closed rectangular pattern (1400 km cross axis and 600 km along axis) was flown across an atmospheric river (AR) just NE of Hawaii. In this case, the integrated water transport (IVT) along the AR flow direction intensified by about 170 kg/m/s from the southwest end (entrance) to the northeast end (exit) of the AR. Most of increase was supplied by moisture convergences; loss by precipitation was about 15% of convergence plus evaporation.
Treatment of geometric singularities in implicit solvent models
NASA Astrophysics Data System (ADS)
Yu, Sining; Geng, Weihua; Wei, G. W.
2007-06-01
Geometric singularities, such as cusps and self-intersecting surfaces, are major obstacles to the accuracy, convergence, and stability of the numerical solution of the Poisson-Boltzmann (PB) equation. In earlier work, an interface technique based PB solver was developed using the matched interface and boundary (MIB) method, which explicitly enforces the flux jump condition at the solvent-solute interfaces and leads to highly accurate biomolecular electrostatics in continuum electric environments. However, such a PB solver, denoted as MIBPB-I, cannot maintain the designed second order convergence whenever there are geometric singularities, such as cusps and self-intersecting surfaces. Moreover, the matrix of the MIBPB-I is not optimally symmetrical, resulting in the convergence difficulty. The present work presents a new interface method based PB solver, denoted as MIBPB-II, to address the aforementioned problems. The present MIBPB-II solver is systematical and robust in treating geometric singularities and delivers second order convergence for arbitrarily complex molecular surfaces of proteins. A new procedure is introduced to make the MIBPB-II matrix optimally symmetrical and diagonally dominant. The MIBPB-II solver is extensively validated by the molecular surfaces of few-atom systems and a set of 24 proteins. Converged electrostatic potentials and solvation free energies are obtained at a coarse grid spacing of 0.5Å and are considerably more accurate than those obtained by the PBEQ and the APBS at finer grid spacings.
f-lacunary statistical convergence of order (α, β)
NASA Astrophysics Data System (ADS)
Sengul, Hacer; Isik, Mahmut; Et, Mikail
2017-09-01
The main purpose of this paper is to introduce the concepts of f-lacunary statistical convergence of order (α, β) and strong f-lacunary summability of order (α, β) of sequences of real numbers for 0 <α ≤ β ≤ 1, where f is an unbounded modulus.
Ordered roughness effects on NACA 0026 airfoil
NASA Astrophysics Data System (ADS)
Harun, Z.; Abbas, A. A.; Dheyaa, R. Mohammed; Ghazali, M. I.
2016-10-01
The effects of highly-ordered rough surface - riblets, applied onto the surface of a NACA 0026 airfoil, are investigated experimentally using wind tunnel. The riblets are arranged in directionally converging - diverging pattern with dimensions of height, h = 1 mm, pitch or spacing, s = 1 mm, yaw angle α = 0o and 10o The airfoil with external geometry of 500 mm span, 600 mm chord and 156 mm thickness has been built using mostly woods and aluminium. Turbulence quantities are collected using hotwire anemometry. Hotwire measurements show that flows past converging and diverging pattern inherit similar patterns in the near-wall region for both mean velocity and turbulence intensities profiles. The mean velocity profiles in logarithmic regions for both flows past converging and diverging riblet pattern are lower than that with yaw angle α = 0o. Converging riblets cause the boundary layer to thicken and the flow with yaw angle α = 0o produces the thinnest boundary layer. Both the converging and diverging riblets cause pronounced outer peaks in the turbulence intensities profiles. Most importantly, flows past converging and diverging pattern experience 30% skin friction reductions. Higher order statistics show that riblet surfaces produce similar effects due to adverse pressure gradient. It is concluded that a small strip of different ordered roughness features applied at a leading edge of an airfoil can change the turbulence characteristics dramatically.
Sharp magnetic structures from dynamos with density stratification
NASA Astrophysics Data System (ADS)
Jabbari, Sarah; Brandenburg, Axel; Kleeorin, Nathan; Rogachevskii, Igor
2017-05-01
Recent direct numerical simulations (DNS) of large-scale turbulent dynamos in strongly stratified layers have resulted in surprisingly sharp bipolar structures at the surface. Here, we present new DNS of helically and non-helically forced turbulence with and without rotation and compare with corresponding mean-field simulations (MFS) to show that these structures are a generic outcome of a broader class of dynamos in density-stratified layers. The MFS agree qualitatively with the DNS, but the period of oscillations tends to be longer in the DNS. In both DNS and MFS, the sharp structures are produced by converging flows at the surface and might be driven in non-linear stage of evolution by the Lorentz force associated with the large-scale dynamo-driven magnetic field if the dynamo number is at least 2.5 times supercritical.
Computations of Internal and External Axisymmetric Nozzle Aerodynamics at Transonic Speeds
NASA Technical Reports Server (NTRS)
Dalbello, Teryn; Georgiadis, Nicholas; Yoder, Dennis; Keith, Theo
2003-01-01
Computational Fluid Dynamics (CFD) analyses of axisymmetric circular-arc boattail nozzles have been completed in support of NASA's Next Generation Launch Technology Program to investigate the effects of high-speed nozzle geometries on the nozzle internal flow and the surrounding boattail regions. These computations span the very difficult transonic flight regime, with shock-induced separations and strong adverse pressure gradients. External afterbody and internal nozzle pressure distributions computed with the Wind code are compared with experimental data. A range of turbulence models were examined in Wind, including an Explicit Algebraic Stress model (EASM). Computations on two nozzle geometries have been completed at freestream Mach numbers ranging from 0.6 to 0.9, driven by nozzle pressure ratios (NPR) ranging from 2.9 to 5. Results obtained on converging-only geometry indicate reasonable agreement to experimental data, with the EASM and Shear Stress Transport (SST) turbulence models providing the best agreement. Calculations completed on a converging-diverging geometry involving large-scale internal flow separation did not converge to a true steady-state solution when run with variable timestepping (steady-state). Calculations obtained using constant timestepping (time-accurate) indicate less variations in flow properties compared with steady-state solutions. This failure to converge to a steady-state solution was found to be the result of difficulties in using variable time-stepping with large-scale separations present in the flow. Nevertheless, time-averaged boattail surface pressure coefficient and internal nozzle pressures show fairly good agreement with experimental data. The SST turbulence model demonstrates the best over-all agreement with experimental data.
Modeling the resilience of Amazonian carbon pools under changing climate
NASA Astrophysics Data System (ADS)
Hajdu, L. H.; Friend, A. D.; Dolman, A. J.
2013-12-01
The rainfall in the Amazon basin is derived from a mixture of moisture convergence from the Atlantic Ocean and local recycling. Changes in the moisture convergence especially during El Nino episodes, strongly influence the interannual climate variability of the basin, potentially having a strong impact on the carbon pools in vegetation and soil, leading to a changes in the ecosystem of the Amazon basin. We used a 0-dimensional model of atmospheric convection (after D'Andrea et al. 2006) to generate realistic timeseries of temperature and precipitation by changing the moisture convergence from the Atlantic Ocean with implications for the stability of Amazonian rainfall. We chose this model because it relies on very few parameters, allowing us to perform numerous sensitivity tests in relatively short time. In this model total rainfall depends on the parameter expressing the external moisture flux and the intensity of convection. Here, two values of moisture convergence were used, one representative of a wet climate (1.4 mm day-1) and one representative of a dry climate (0.54 mm day-1). We also increased the variability of the rainfall in order to investigate its impact on the carbon pools. We used these scenarios for changing precipitation, along with SRES emission scenarios for increasing atmospheric CO2 to force the Land Surface Model Hybrid8. The effects of a changing climate on the simulated soil and vegetation carbon pools have been investigated. Preliminary results show that in our model configuration and under a wet climate, the change in seasonal variability of precipitation does not seem to have a major impact on the carbon pools, which might suggest that the Amazon rainforest is relatively resilient to changes in seasonal precipitation. However, under a dry climate it may decline into a lower carbon system. The coupling of the two models is in progress with promising results for atmosphere-vegetation feedbacks. We will report on any changes in the threshold of precipitation required to change the carbon content of the system due to changed atmospheric CO2 concentrations.
Seasonally-varying mechanical impact of the Tibetan Plateau on the South Asian Monsoon
NASA Astrophysics Data System (ADS)
Bordoni, S.; Park, H.
2011-12-01
Land-sea thermal contrast and heating of the atmosphere over the Tibetan Plateau have long been considered the main driving of the large-scale South-Asian monsoon circulation. Recent works (e.g., Bordoni and Schneider 2008, Boos and Kuang 2010) have challenged this prevailing view, by suggesting that monsoons can occur even in the absence of zonal inhomogeneities and that the Tibetan Plateau might be acting more as a mechanical obstacle to the circulation than as its main heat source. Elucidating the role of land-sea contrast and of the Tibetan Plateau on the current South Asian climate is the first step to understand how this might have evolved on geological time-scales and how it might respond to changing radiative forcing and land surface conditions in future decades. In this work, we examine the mechanical impact of the Tibetan Plateau on the South Asian monsoon in a hierarchy of atmospheric general circulations models. During the pre-monsoon season and monsoon onset (April-May-June), when westerlies over the southern Tibetan Plateau are still strong, the Tibetan Plateau triggers early monsoon rainfall downstream. The downstream moist convection is accompanied by strong monsoonal low-level winds and subsidence upstream of the Tibetan Plateau. In experiments where the Tibetan Plateau is removed, monsoon onset occurs about one month later, but the circulation becomes progressively stronger and reaches comparable strength during the mature phase. During the mature and decaying phase of the monsoon (July-August-September), when westerlies over the southern Tibetan Plateau almost disappear, the strength of the monsoon circulation is largely unaffected by the presence of the Plateau. A dry dynamical core with east-west oriented narrow mountains in the subtropics consistently simulates downstream convergence with background zonal westerlies over the mountain range. In a moist atmosphere, the mechanically-driven downstream convergence is expected to be associated with significant moisture convergence. We argue that the mechanically-driven downstream convergence in the presence of the Tibetan Plateau is responsible for the zonally asymmetric monsoon onset, particularly over the Bay of Bengal and South China.
Gerencsér, Máté; Jentzen, Arnulf; Salimova, Diyora
2017-11-01
In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14 , 1477-1500 (doi:10.4310/CMS.2016.v14.n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ∈{4,5,…}, there exist d -dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two ( d =2) and three ( d =3) space dimensions.
Optimal control of the strong-field ionization of silver clusters in helium droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truong, N. X.; Goede, S.; Przystawik, A.
Optimal control techniques combined with femtosecond laser pulse shaping are applied to steer and enhance the strong-field induced emission of highly charged atomic ions from silver clusters embedded in helium nanodroplets. With light fields shaped in amplitude and phase we observe a substantial increase of the Ag{sup q+} yield for q>10 when compared to bandwidth-limited and optimally stretched pulses. A remarkably simple double-pulse structure, containing a low-intensity prepulse and a stronger main pulse, turns out to produce the highest atomic charge states up to Ag{sup 20+}. A negative chirp during the main pulse hints at dynamic frequency locking to themore » cluster plasmon. A numerical optimal control study on pure silver clusters with a nanoplasma model converges to a similar pulse structure and corroborates that the optimal light field adapts to the resonant excitation of cluster surface plasmons for efficient ionization.« less
Mantle downwelling and crustal convergence - A model for Ishtar Terra, Venus
NASA Technical Reports Server (NTRS)
Kiefer, Walter S.; Hager, Bradford H.
1991-01-01
Models of viscous crustal flow driven by gradients in topography are presented in order to explore quantitatively the implications of the hypothesis that Ishtar is a crustal convergence zone overlying a downwelling mantle. Assuming a free-slip surface boundary condition, it is found that, if the crustal convergence hypothesis is correct, then the crustal thickness in the plains surrounding Ishtar can be no more than about 25 km thick. If the geothermal gradient is larger or the rheology is weaker, the crust must be even thinner for net crustal convergence to be possible. This upper bound is in good agreement with the several independent estimates of crustal thickness of 15-30 km in the plains of Venus based on modeling of the spacing of tectonic features and of impact crater relaxation. Although Ishtar is treated as a crustal convergence zone, this crustal flow model shows that under some circumstances, near-surface material may actually flow away from Ishtar, providing a possible explanation for the grabenlike structures in Fortuna Tessera.
On the Singular Incompressible Limit of Inviscid Compressible Fluids
NASA Astrophysics Data System (ADS)
Secchi, P.
We consider the Euler equations of barotropic inviscid compressible fluids in a bounded domain. It is well known that, as the Mach number goes to zero, the compressible flows approximate the solution of the equations of motion of inviscid, incompressible fluids. In this paper we discuss, for the boundary case, the different kinds of convergence under various assumptions on the data, in particular the weak convergence in the case of uniformly bounded initial data and the strong convergence in the norm of the data space.
Terrill, Kasia; Nesbitt, David J
2010-08-01
Ab initio anharmonic transition frequencies are calculated for strongly coupled (i) asymmetric and (ii) symmetric proton stretching modes in the X-H(+)-X linear ionic hydrogen bonded complexes for OCHCO(+) and N(2)HN(2)(+). The optimized potential surface is calculated in these two coordinates for each molecular ion at CCSD(T)/aug-cc-pVnZ (n = 2-4) levels and extrapolated to the complete-basis-set limit (CBS). Slices through both 2D surfaces reveal a relatively soft potential in the asymmetric proton stretching coordinate at near equilibrium geometries, which rapidly becomes a double minimum potential with increasing symmetric proton acceptor center of mass separation. Eigenvalues are obtained by solution of the 2D Schrödinger equation with potential/kinetic energy coupling explicity taken into account, converged in a distributed Gaussian basis set as a function of grid density. The asymmetric proton stretch fundamental frequency for N(2)HN(2)(+) is predicted at 848 cm(-1), with strong negative anharmonicity in the progression characteristic of a shallow "particle in a box" potential. The corresponding proton stretch fundamental for OCHCO(+) is anomalously low at 386 cm(-1), but with a strong alternation in the vibrational spacing due to the presence of a shallow D(infinityh) transition state barrier (Delta = 398 cm(-1)) between the two equivalent minimum geometries. Calculation of a 2D dipole moment surface and transition matrix elements reveals surprisingly strong combination and difference bands with appreciable intensity throughout the 300-1500 cm(-1) region. Corrected for zero point (DeltaZPE) and thermal vibrational excitation (DeltaE(vib)) at 300 K, the single and double dissociation energies in these complexes are in excellent agreement with thermochemical gas phase ion data.
Atmospheric structure favoring high sea surface temperatures in the western equatorial Pacific
NASA Astrophysics Data System (ADS)
Wirasatriya, Anindya; Kawamura, Hiroshi; Shimada, Teruhisa; Hosoda, Kohtaro
2016-10-01
We investigated the atmospheric processes over high sea surface temperature called Hot Event (HE) in the western equatorial Pacific from climatological analysis and a case study of the HE which began on 28 May 2003 (hereafter, HE030528). Climatological analysis shows that during the development stage of HE, solar radiation inside the HE area is higher than its climatology and wind speed is lower than the decay stage. During the decay stage, strong westerly wind often occurs inside HE area. The case study of HE030528 shows that the suppressed convection above high SST area resulted from the deep convection from the northern and southern areas outside HE. The suppressed convection created a band-shaped structure of low cloud cover along HE area increasing solar radiation during the development stage. Thus, the theory of "remote convection" was supported for the HE030528 formation mechanisms. The large sea level pressure gradient magnitude between the southern side of the terrain gap and the northern coast of the Solomon Islands, through which strong wind blew, indicated the role of land topography for the increase of wind speed during the decay of HE030528. Moreover, surface wind had an important role to influence the variability of solar radiation during the occurrence of HE030528 by controlling the water vapor supply in the upper troposphere through surface evaporation and surface convergence variation. Thus, surface wind was the key factor for HE030528 occurrence. The representativeness of HE030528 and the possible relation between HE and Madden-Julian Oscillation are also discussed.
Role of Western Hemisphere Warm Pool in Rapid Climate Changes over the Western North Pacific
NASA Astrophysics Data System (ADS)
Kug, Jong-Seong; Park, Jae-Heung; An, Soon-Il
2017-04-01
Oceanic states over the western North Pacific (WNP), which is surrounded by heavily populated countries, are closely tied to the lives of the people in East Asia in regards to both climate and socioeconomics. As global warming continues, remarkable increases in sea surface temperature (SST) and sea surface height (SSH) have been observed in the WNP in recent decades. Here, we show that the SST increase in the western hemisphere warm pool (WHWP), which is the second largest warm pool on the globe, has contributed considerably to the rapid surface warming and sea level rise in the WNP via its remote teleconnection along the Pacific Intertropical Convergence Zone (ITCZ). State-of-the-art climate models strongly support the role of the WHWP not only on interannual time sales but also in long-term climate projections. We expect that understanding the processes initiated by the WHWP-SST could permit better forecasts of western North Pacific climate and the further development of the socioeconomics of East Asia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Baoqiang; Zhao, Ming; Held, Isaac M.
The severity of the double Intertropical Convergence Zone (DI) problem in climate models can be measured by a tropical precipitation asymmetry index (PAI), indicating whether tropical precipitation favors the Northern Hemisphere or the Southern Hemisphere. Examination of 19 Coupled Model Intercomparison Project phase 5 models reveals that the PAI is tightly linked to the tropical sea surface temperature (SST) bias. As one of the factors determining the SST bias, the asymmetry of tropical net surface heat flux in Atmospheric Model Intercomparison Project (AMIP) simulations is identified as a skillful predictor of the PAI change from an AMIP to a coupledmore » simulation, with an intermodel correlation of 0.90. Using tropical top-of-atmosphere (TOA) fluxes, the correlations are lower but still strong. However, the extratropical asymmetries of surface and TOA fluxes in AMIP simulations cannot serve as useful predictors of the PAI change. Furthermore, this study suggests that the largest source of the DI bias is from the tropics and from atmospheric models.« less
NASA Astrophysics Data System (ADS)
Hsieh, S. Y.; Neubauer, F.; Willingshofer, E.; Sokoutis, D.
2014-12-01
The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.
Computational Study of Axisymmetric Off-Design Nozzle Flows
NASA Technical Reports Server (NTRS)
DalBello, Teryn; Georgiadis, Nicholas; Yoder, Dennis; Keith, Theo
2003-01-01
Computational Fluid Dynamics (CFD) analyses of axisymmetric circular-arc boattail nozzles operating off-design at transonic Mach numbers have been completed. These computations span the very difficult transonic flight regime with shock-induced separations and strong adverse pressure gradients. External afterbody and internal nozzle pressure distributions computed with the Wind code are compared with experimental data. A range of turbulence models were examined, including the Explicit Algebraic Stress model. Computations have been completed at freestream Mach numbers of 0.9 and 1.2, and nozzle pressure ratios (NPR) of 4 and 6. Calculations completed with variable time-stepping (steady-state) did not converge to a true steady-state solution. Calculations obtained using constant timestepping (timeaccurate) indicate less variations in flow properties compared with steady-state solutions. This failure to converge to a steady-state solution was the result of using variable time-stepping with large-scale separations present in the flow. Nevertheless, time-averaged boattail surface pressure coefficient and internal nozzle pressures show reasonable agreement with experimental data. The SST turbulence model demonstrates the best overall agreement with experimental data.
NASA Astrophysics Data System (ADS)
Pradas, Marc; Pumir, Alain; Huber, Greg; Wilkinson, Michael
2017-07-01
Chaos is widely understood as being a consequence of sensitive dependence upon initial conditions. This is the result of an instability in phase space, which separates trajectories exponentially. Here, we demonstrate that this criterion should be refined. Despite their overall intrinsic instability, trajectories may be very strongly convergent in phase space over extremely long periods, as revealed by our investigation of a simple chaotic system (a realistic model for small bodies in a turbulent flow). We establish that this strong convergence is a multi-facetted phenomenon, in which the clustering is intense, widespread and balanced by lacunarity of other regions. Power laws, indicative of scale-free features, characterize the distribution of particles in the system. We use large-deviation and extreme-value statistics to explain the effect. Our results show that the interpretation of the ‘butterfly effect’ needs to be carefully qualified. We argue that the combination of mixing and clustering processes makes our specific model relevant to understanding the evolution of simple organisms. Lastly, this notion of convergent chaos, which implies the existence of conditions for which uncertainties are unexpectedly small, may also be relevant to the valuation of insurance and futures contracts.
The Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun
NASA Astrophysics Data System (ADS)
Gorobets, A. Y.; Berdyugina, S. V.; Riethmüller, T. L.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.
2017-11-01
The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field’s evolution to the regular Markov process. We build a representative model of fluctuations converging to the unique stationary (equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to observations of magnetic fields of the relatively quiet areas around an active region carried out during the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite.
Rayleigh wave dispersion curve inversion by using particle swarm optimization and genetic algorithm
NASA Astrophysics Data System (ADS)
Buyuk, Ersin; Zor, Ekrem; Karaman, Abdullah
2017-04-01
Inversion of surface wave dispersion curves with its highly nonlinear nature has some difficulties using traditional linear inverse methods due to the need and strong dependence to the initial model, possibility of trapping in local minima and evaluation of partial derivatives. There are some modern global optimization methods to overcome of these difficulties in surface wave analysis such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). GA is based on biologic evolution consisting reproduction, crossover and mutation operations, while PSO algorithm developed after GA is inspired from the social behaviour of birds or fish of swarms. Utility of these methods require plausible convergence rate, acceptable relative error and optimum computation cost that are important for modelling studies. Even though PSO and GA processes are similar in appearence, the cross-over operation in GA is not used in PSO and the mutation operation is a stochastic process for changing the genes within chromosomes in GA. Unlike GA, the particles in PSO algorithm changes their position with logical velocities according to particle's own experience and swarm's experience. In this study, we applied PSO algorithm to estimate S wave velocities and thicknesses of the layered earth model by using Rayleigh wave dispersion curve and also compared these results with GA and we emphasize on the advantage of using PSO algorithm for geophysical modelling studies considering its rapid convergence, low misfit error and computation cost.
Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov Instabilities
Prime, Michael Bruce; Buttler, William Tillman; Buechler, Miles Allen; ...
2017-03-08
Recently, Richtmyer–Meshkov Instabilities (RMI) have been proposed for studying the average strength at strain rates up to at least 10 7/s. RMI experiments involve shocking a metal interface that has initial sinusoidal perturbations. The perturbations invert and grow subsequent to shock and may arrest because of strength effects. In this work we present new RMI experiments and data on a copper target that had five regions with different perturbation amplitudes on the free surface opposite the shock. We estimate the high-rate, low-pressure copper strength by comparing experimental data with Lagrangian numerical simulations. From a detailed computational study we find thatmore » mesh convergence must be carefully addressed to accurately compare with experiments, and numerical viscosity has a strong influence on convergence. We also find that modeling the as-built perturbation geometry rather than the nominal makes a significant difference. Because of the confounding effect of tensile damage on total spike growth, which has previously been used as the metric for estimating strength, we instead use a new strength metric: the peak velocity during spike growth. Furthermore, this new metric also allows us to analyze a broader set of experimental results that are sensitive to strength because some larger initial perturbations grow unstably to failure and so do not have a finite total spike growth.« less
Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov Instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prime, Michael Bruce; Buttler, William Tillman; Buechler, Miles Allen
Recently, Richtmyer–Meshkov Instabilities (RMI) have been proposed for studying the average strength at strain rates up to at least 10 7/s. RMI experiments involve shocking a metal interface that has initial sinusoidal perturbations. The perturbations invert and grow subsequent to shock and may arrest because of strength effects. In this work we present new RMI experiments and data on a copper target that had five regions with different perturbation amplitudes on the free surface opposite the shock. We estimate the high-rate, low-pressure copper strength by comparing experimental data with Lagrangian numerical simulations. From a detailed computational study we find thatmore » mesh convergence must be carefully addressed to accurately compare with experiments, and numerical viscosity has a strong influence on convergence. We also find that modeling the as-built perturbation geometry rather than the nominal makes a significant difference. Because of the confounding effect of tensile damage on total spike growth, which has previously been used as the metric for estimating strength, we instead use a new strength metric: the peak velocity during spike growth. Furthermore, this new metric also allows us to analyze a broader set of experimental results that are sensitive to strength because some larger initial perturbations grow unstably to failure and so do not have a finite total spike growth.« less
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.; Zhou, Y.; Lau, W. K.-M.
2007-01-01
Two parallel sets of 10-year long: January 1, 1982 to December 31, 1991, simulations were made with the finite volume General Circulation Model (fvGCM) in which the model integrations were forced with prescribed sea-surface temperature fields (SSTs) available as two separate SST-datasets. One dataset contained naturally varying monthly SSTs for the chosen period, and the oth& had the 12-monthly mean SSTs for the same period. Plots of evaporation, precipitation, and atmosphere-column moisture convergence, binned by l C SST intervals show that except for the tropics, the precipitation is more strongly constrained by large-scale dynamics as opposed to local SST. Binning data by SST naturally provided an ensemble average of data contributed from disparate locations with same SST; such averages could be expected to mitigate all location related influences. However, the plots revealed: i) evaporation, vertical velocity, and precipitation are very robust and remarkably similar for each of the two simulations and even for the data from 1987-ENSO-year simulation; ii) while the evaporation increased monotonically with SST up to about 27 C, the precipitation did not; iii) precipitation correlated much better with the column vertical velocity as opposed to SST suggesting that the influence of dynamical circulation including non-local SSTs is stronger than local-SSTs. The precipitation fields were doubly binned with respect to SST and boundary-layer mass and/or moisture convergence. The analysis discerned the rate of change of precipitation with local SST as a sum of partial derivative of precipitation with local SST plus partial derivative of precipitation with boundary layer moisture convergence multiplied by the rate of change of boundary-layer moisture convergence with SST (see Eqn. 3 of Section 4.5). This analysis is mathematically rigorous as well as provides a quantitative measure of the influence of local SST on the local precipitation. The results were recast to examine the dependence of local rainfall on local SSTs; it was discernible only in the tropics. Our methodology can be used for computing relationship between any forcing function and its effect(s) on a chosen field.
NASA Astrophysics Data System (ADS)
Nishii, K.; Nakamura, H.; Orsolini, Y. J.
2012-04-01
Dynamical cooling in the polar stratosphere is induced by weakening of E-P flux convergence (i.e. anomalous divergence) in the stratosphere. As the E-P flux convergence is mainly contributed to by upward planetary-wave (PW) propagation from the troposphere, the intensity of its propagation is well correlated with the E-P flux convergence and the polar stratospheric temperature. Recent studies (Orsolini et al. 2009, QJRMS; Nishii et al. 2010, GRL) pointed out that a tropospheric blocking high over the western Pacific, whose anomalous circulation is projected strongly onto the Western Pacific (WP) teleconnection pattern, tends to weaken the upward PW propagation and thus lower the polar stratospheric temperature. In this study, we present a possibility that downward PW propagation in the lowermost stratosphere can also cause the E-P flux divergence in the polar stratosphere and thereby the stratospheric cooling. On the basis of prominent downward events of the 100-hPa E-P flux averaged over the mid- to high-latitudes in the northern hemisphere, we performed a lag composite analysis for each of the terms of the transformed Eulerian mean (TEM) equation. In the composite time evolution, downward E-P flux in the lowermost stratosphere and the E-P flux divergence aloft are evident around the reference date, followed by persistent cooling of the polar stratosphere for more than two weeks. About one week before the reference date, enhanced upward E-P flux and its convergence lead to the deceleration of upper-stratospheric zonal winds and thus the weakening of their vertical shear , which may result in the formation of a turning surface for upward-propagating PWs. Our results are overall consistent with Harnik (2009, JGR), who showed that a short pulse of upward-propagating PWs forms a turning surface in the upper stratosphere, where the PWs that subsequently propagate upward can be reflected back. By taking above results into consideration, we analyzed the prolonged cold 2010-11 winter. We found that while three cooling events in December and January were accompanied by tropospheric WP pattern events, cooling in February and March was led by downward-propagating PW events.
NASA Astrophysics Data System (ADS)
Hsieh, Shang Yu; Neubauer, Franz
2015-04-01
The internal structure of major strike-slip faults is still poorly understood, particularly how to extrapolate subsurface structures by surface expressions. Series of brittle analogue experiments by Leever et al., 2011 resulted the convergence angle is the most influential factor for surface structures. Further analogue models with different ductile settings allow a better understanding in extrapolating surface structures to the subsurface geometry of strike-slip faults. Fifteen analogue experiments were constructed to represent strike-slip faults in nature in different geological settings. As key parameters investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressional system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.
The lithosphere-asthenosphere boundary beneath the South Island of New Zealand
NASA Astrophysics Data System (ADS)
Hua, Junlin; Fischer, Karen M.; Savage, Martha K.
2018-02-01
Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. Using data from onland seismometers, especially the 29 broadband stations of the New Zealand permanent seismic network (GeoNet), we obtained 24,971 individual receiver functions by extended-time multi-taper deconvolution, and mapped them to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the northwest of the Alpine fault. The deeper LAB to the northwest of the Alpine fault is consistent with models in which oceanic lithosphere attached to the Australian plate was partially subducted, or models in which the Pacific lithosphere has been underthrust northwest past the Alpine fault. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the northwest of the fault, juxtaposed against a region of anomalously weak LAB conversions to the southeast of the fault. This structure could be explained by lithospheric blocks with contrasting LAB properties that meet beneath the Alpine fault, or by the effects of Pacific plate subduction. The observed variations in LAB properties indicate strong modification of the LAB by the interplay of convergence and strike-slip deformation along and across this transpressional plate boundary.
Kubota, Masahisa; Takayama, Katsumi; Namimoto, Daisuke
2005-06-01
Research results about the movement and accumulation of floating marine debris drifting throughout the world's oceans are reviewed in this paper. A mechanism for this accumulation and movement is strongly associated with surface currents consisting of the Ekman drift and the geostrophic current, because all floating marine debris is passive to surface currents. The basic published mechanism for the North Pacific is common across the world's ocean. After marine debris accumulates in the narrow Ekman convergence zone, it is moved to the east by geostrophic currents. The most important thing is that floating marine debris concentrates in some specific regions, independent of the initial quantity of marine debris. In order to resolve this problem and to avoid an asbestos-like problem, the use of biodegradable polymers is important in our daily life.
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Smith, W. E.
1984-01-01
The influence of some modifications to the parameters of the current general circulation model (GCM) is investigated. The aim of the modifications was to eliminate strong occasional bursts of oscillations in planetary boundary layer (PBL) fluxes. Smoothly varying bulk aerodynamic friction and heat transport coefficients were found by ensemble averaging of the PBL fluxes in the current GCM. A comparison was performed of the simulations of the modified model and the unmodified model. The comparison showed that the surface fluxes and cloudiness in the modified model simulations were much more accurate. The planetary albedo in the model was also realistic. Weaknesses persisted in the models positioning of the Inter-tropical convergence zone (ICTZ) and in the temperature estimates for polar regions. A second simulation of the model following reparametrization of the cloud data showed improved results and these are described in detail.
Calculation of smooth potential energy surfaces using local electron correlation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mata, Ricardo A.; Werner, Hans-Joachim
2006-11-14
The geometry dependence of excitation domains in local correlation methods can lead to noncontinuous potential energy surfaces. We propose a simple domain merging procedure which eliminates this problem in many situations. The method is applied to heterolytic bond dissociations of ketene and propadienone, to SN2 reactions of Cl{sup -} with alkylchlorides, and in a quantum mechanical/molecular mechanical study of the chorismate mutase enzyme. It is demonstrated that smooth potentials are obtained in all cases. Furthermore, basis set superposition error effects are reduced in local calculations, and it is found that this leads to better basis set convergence when computing barriermore » heights or weak interactions. When the electronic structure strongly changes between reactants or products and the transition state, the domain merging procedure leads to a balanced description of all structures and accurate barrier heights.« less
Transport properties of C and O in UN fuels
NASA Astrophysics Data System (ADS)
Schuler, Thomas; Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär
2017-03-01
Uranium nitride fuel is considered for fast reactors (GEN-IV generation and space reactors) and for light water reactors as a high-density fuel option. Despite this large interest, there is a lack of information about its behavior for in-pile and out-of-pile conditions. From the present literature, it is known that C and O impurities have significant influence on the fuel performance. Here we perform a systematic study of these impurities in the UN matrix using electronic-structure calculations of solute-defect interactions and microscopic jump frequencies. These quantities were calculated in the DFT +U approximation combined with the occupation matrix control scheme, to avoid convergence to metastable states for the 5 f levels. The transport coefficients of the system were evaluated with the self-consistent mean-field theory. It is demonstrated that carbon and oxygen impurities have different diffusion properties in the UN matrix, with O atoms having a higher mobility, and C atoms showing a strong flux coupling anisotropy. The kinetic interplay between solutes and vacancies is expected to be the main cause for surface segregation, as incorporation energies show no strong thermodynamic segregation preference for (001) surfaces compared with the bulk.
NASA Astrophysics Data System (ADS)
Somoza, R.
1998-05-01
Recently published seafloor data around the Antarctica plate boundaries, as well as calibration of the Cenozoic Magnetic Polarity Time Scale, allow a reevaluation of the Nazca (Farallon)-South America relative convergence kinematics since late Middle Eocene time. The new reconstruction parameters confirm the basic characteristics determined in previous studies. However, two features are notable in the present data set: a strong increase in convergence rate in Late Oligocene time, and a slowdown during Late Miocene time. The former is coeval with the early development of important tectonic characteristics of the present Central Andes, such as compressional failure in wide areas of the region, and the establishment of Late Cenozoic magmatism. This supports the idea that a relationship exists between strong acceleration of convergence and mountain building in the Central Andean region.
Four-Dimensional Golden Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenimore, Edward E.
2015-02-25
The Golden search technique is a method to search a multiple-dimension space to find the minimum. It basically subdivides the possible ranges of parameters until it brackets, to within an arbitrarily small distance, the minimum. It has the advantages that (1) the function to be minimized can be non-linear, (2) it does not require derivatives of the function, (3) the convergence criterion does not depend on the magnitude of the function. Thus, if the function is a goodness of fit parameter such as chi-square, the convergence does not depend on the noise being correctly estimated or the function correctly followingmore » the chi-square statistic. And, (4) the convergence criterion does not depend on the shape of the function. Thus, long shallow surfaces can be searched without the problem of premature convergence. As with many methods, the Golden search technique can be confused by surfaces with multiple minima.« less
ERIC Educational Resources Information Center
Watson, David; O'Hara, Michael W.; Chmielewski, Michael; McDade-Montez, Elizabeth A.; Koffel, Erin; Naragon, Kristin; Stuart, Scott
2008-01-01
The authors explicated the validity of the Inventory of Depression and Anxiety Symptoms (IDAS; D. Watson et al., 2007) in 2 samples (306 college students and 605 psychiatric patients). The IDAS scales showed strong convergent validity in relation to parallel interview-based scores on the Clinician Rating version of the IDAS; the mean convergent…
ERIC Educational Resources Information Center
Sanchez, Liliana
2004-01-01
In this paper, I present an exploratory study on cross-linguistic interference among Quechua-Spanish bilingual children living in a language contact situation. The study focuses on convergence in the tense, aspectual and evidentiality systems of the two languages. While in Quechua past tense features are strongly linked to evidentiality in the…
SAR Observation and Modeling of Gap Winds in the Prince William Sound of Alaska.
Liu, Haibo; Olsson, Peter Q; Volz, Karl
2008-08-22
Alaska's Prince William Sound (PWS) is a unique locale tending to have strong gap winds, especially in the winter season. To characterize and understand these strong surface winds, which have great impacts on the local marine and aviation activities, the surface wind retrieval from the Synthetic Aperture Radar data (SAR-wind) is combined with a numerical mesoscale model. Helped with the SAR-wind observations, the mesoscale model is used to study cases of strong winds and relatively weak winds to depict the nature of these winds, including the area of extent and possible causes of the wind regimes. The gap winds from the Wells Passage and the Valdez Arm are the most dominant gap winds in PWS. Though the Valdez Arm is north-south trending and Wells Passage is east-west oriented, gap winds often develop simultaneously in these two places when a low pressure system is present in the Northern Gulf of Alaska. These two gap winds often converge at the center of PWS and extend further out of the Sound through the Hinchinbrook Entrance. The pressure gradients imposed over these areas are the main driving forces for these gap winds. Additionally, the drainage from the upper stream glaciers and the blocking effect of the banks of the Valdez Arm probably play an important role in enhancing the gap wind.
Gow, J.D.; Wilcox, J.M.
1961-12-26
A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)
NASA Astrophysics Data System (ADS)
Lenderink, Geert; Barbero, Renaud; Loriaux, Jessica; Fowler, Hayley
2017-04-01
Present-day precipitation-temperature scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the Clausius-Clapeyron (CC) relation; for The Netherlands the dependency on surface dew point temperature follows two times the CC relation corresponding to 14 % per degree. Our hypothesis - as supported by a simple physical argument presented here - is that this 2CC behaviour arises from the physics of convective clouds. So, we think that this response is due to local feedbacks related to the convective activity, while other large scale atmospheric forcing conditions remain similar except for the higher temperature (approximately uniform warming with height) and absolute humidity (corresponding to the assumption of unchanged relative humidity). To test this hypothesis, we analysed the large-scale atmospheric conditions accompanying summertime afternoon precipitation events using surface observations combined with a regional re-analysis for the data in The Netherlands. Events are precipitation measurements clustered in time and space derived from approximately 30 automatic weather stations. The hourly peak intensities of these events again reveal a 2CC scaling with the surface dew point temperature. The temperature excess of moist updrafts initialized at the surface and the maximum cloud depth are clear functions of surface dew point temperature, confirming the key role of surface humidity on convective activity. Almost no differences in relative humidity and the dry temperature lapse rate were found across the dew point temperature range, supporting our theory that 2CC scaling is mainly due to the response of convection to increases in near surface humidity, while other atmospheric conditions remain similar. Additionally, hourly precipitation extremes are on average accompanied by substantial large-scale upward motions and therefore large-scale moisture convergence, which appears to accelerate with surface dew point. This increase in large-scale moisture convergence appears to be consequence of latent heat release due to the convective activity as estimated from the quasi-geostrophic omega equation. Consequently, most hourly extremes occur in precipitation events with considerable spatial extent. Importantly, this event size appears to increase rapidly at the highest dew point temperature range, suggesting potentially strong impacts of climatic warming.
Locking, mass flux and topographic response at convergent plate boundaries - the Chilean case
NASA Astrophysics Data System (ADS)
Oncken, Onno
2016-04-01
On the long term, convergent plate boundaries have been shown to be controlled by either accretion/underplating or by subduction erosion. Vertical surface motion is coupled to convergence rate - typically with an uplift rate of the coastal area ranging from 0 to +50% of convergence rate in accretive systems, and -20 to +30% in erosive systems. Vertical kinematics, however, are not necessarily linked to horizontal strain mode, i.e. upper plate shortening or extension, in a simple way. This range of kinematic behaviors - as well as their acceleration where forearcs collide with oceanic ridges/plateau - is well expressed along the Chilean plate margin. Towards the short end of the time scale, deformation appears to exhibit a close correlation with the frictional properties and geodetic locking at the plate interface. Corroborating analogue experiments of strain accumulation during multiple earthquake cycles, forearc deformation and uplift focus above the downdip and updip end of seismic coupling and slip and are each related to a particular stage of the seismic cycle, but with opposite trends for both domains. Similarly, barriers separating locked domains along strike appear to accumulate most upper plate faulting interseismically. Hence, locking patters are reflected in topography. From the long-term memory contained in the forearc topography the relief of the Chilean forearc seems to reflect long term stability of the observed heterogeneity of locking at the plate interface. This has fundamental implications for spatial and temporal distribution of seismic hazard. Finally, the nature of locking at the plate interface controlling the above kinematic behavior appears to be strongly controlled by the degree of fluid overpressuring at the plate interface suggesting that the hydraulic system at the interface takes a key role for the forearc response.
The Evil Twin of Agenor: More Evidence for Tectonic Convergence on Europa
NASA Astrophysics Data System (ADS)
Greenberg, R.; Hurford, T.
2003-03-01
Reconstruction along a lineament similar to Agenor, but located diametrically opposite, indicates it is a convergence site, confirming hypotheses that similar features elsewhere formed that way and helping solve the surface-area budget problem.
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousculp, Christopher L.; Oro, David Michael; Margolin, Len G.
2015-08-06
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less
ERIC Educational Resources Information Center
Staggs, Gena D.; Larson, Lisa M.; Borgen, Fred H.
2007-01-01
Using meta-analysis, we revised Ackerman and Heggestad's (1997) identification of four trait complexes that propose personality and interest (P-I) linkages. Studies that had reported correlations between general and specific measures of vocational interests (Strong Interest Inventory [Strong; Hansen & Campbell, 1985; Harmon, Hansen, Borgen,…
Shiota, T; Jones, M; Teien, D E; Yamada, I; Passafini, A; Ge, S; Sahn, D J
1995-08-01
The aim of the present study was to investigate dynamic changes in the mitral regurgitant orifice using electromagnetic flow probes and flowmeters and the color Doppler flow convergence method. Methods for determining mitral regurgitant orifice areas have been described using flow convergence imaging with a hemispheric isovelocity surface assumption. However, the shape of flow convergence isovelocity surfaces depends on many factors that change during regurgitation. In seven sheep with surgically created mitral regurgitation, 18 hemodynamic states were studied. The aliasing distances of flow convergence were measured at 10 sequential points using two ranges of aliasing velocities (0.20 to 0.32 and 0.56 to 0.72 m/s), and instantaneous flow rates were calculated using the hemispheric assumption. Instantaneous regurgitant areas were determined from the regurgitant flow rates obtained from both electromagnetic flowmeters and flow convergence divided by the corresponding continuous wave velocities. The regurgitant orifice sizes obtained using the electromagnetic flow method usually increased to maximal size in early to midsystole and then decreased in late systole. Patterns of dynamic changes in orifice area obtained by flow convergence were not the same as those delineated by the electromagnetic flow method. Time-averaged regurgitant orifice areas obtained by flow convergence using lower aliasing velocities overestimated the areas obtained by the electromagnetic flow method ([mean +/- SD] 0.27 +/- 0.14 vs. 0.12 +/- 0.06 cm2, p < 0.001), whereas flow convergence, using higher aliasing velocities, estimated the reference areas more reliably (0.15 +/- 0.06 cm2). The electromagnetic flow method studies uniformly demonstrated dynamic change in mitral regurgitant orifice area and suggested limitations of the flow convergence method.
Generalized statistical convergence of order β for sequences of fuzzy numbers
NASA Astrophysics Data System (ADS)
Altınok, Hıfsı; Karakaş, Abdulkadir; Altın, Yavuz
2018-01-01
In the present paper, we introduce the concepts of Δm-statistical convergence of order β for sequences of fuzzy numbers and strongly Δm-summable of order β for sequences of fuzzy numbers by using a modulus function f and taking supremum on metric d for 0 < β ≤ 1 and give some inclusion relations between them.
Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes
NASA Technical Reports Server (NTRS)
Movriplis, Dimitri J.
1998-01-01
Unstructured multigrid techniques for relieving the stiffness associated with high-Reynolds number viscous flow simulations on extremely stretched grids are investigated. One approach consists of employing a semi-coarsening or directional-coarsening technique, based on the directions of strong coupling within the mesh, in order to construct more optimal coarse grid levels. An alternate approach is developed which employs directional implicit smoothing with regular fully coarsened multigrid levels. The directional implicit smoothing is obtained by constructing implicit lines in the unstructured mesh based on the directions of strong coupling. Both approaches yield large increases in convergence rates over the traditional explicit full-coarsening multigrid algorithm. However, maximum benefits are achieved by combining the two approaches in a coupled manner into a single algorithm. An order of magnitude increase in convergence rate over the traditional explicit full-coarsening algorithm is demonstrated, and convergence rates for high-Reynolds number viscous flows which are independent of the grid aspect ratio are obtained. Further acceleration is provided by incorporating low-Mach-number preconditioning techniques, and a Newton-GMRES strategy which employs the multigrid scheme as a preconditioner. The compounding effects of these various techniques on speed of convergence is documented through several example test cases.
Psychopathy: what apology making tells us about moral agency.
Ayob, Gloria; Thornton, Tim
2014-02-01
Psychopathy is often used to settle disputes about the nature of moral judgment. The "trolley problem" is a familiar scenario in which psychopathy is used as a test case. Where a convergence in response to the trolley problem is registered between psychopathic subjects and non-psychopathic (normal) subjects, it is assumed that this convergence indicates that the capacity for making moral judgments is unimpaired in psychopathy. This, in turn, is taken to have implications for the dispute between motivation internalists and motivation externalists, for instance. In what follows, we want to do two things: firstly, we set out to question the assumption that convergence is informative of the capacity for moral judgment in psychopathy. Next, we consider a distinct feature of psychopathy which we think provides strong grounds for holding that the capacity for moral judgment is seriously impaired in psychopathic subjects. The feature in question is the psychopathic subject's inability to make sincere apologies. Our central claim will be this: convergence in response to trolley problems does not tell us very much about the psychopathic subject's capacity to make moral judgments, but his inability to make sincere apologies does provide us with strong grounds for holding that this capacity is seriously impaired in psychopathy.
The Bi-Modal Pattern of the Summer Circulation Over South America
NASA Technical Reports Server (NTRS)
Herdies, Dirceu Luis; daSilva, Arlindo; SilvaDias, Maria A. F.; Atlas, Robert (Technical Monitor)
2001-01-01
Submonthly variations in warm-season (January-February) precipitation over South America, in special over the Amazon basin, central southwest Brazil, north Argentina, and Paraguay are shown to be strongly linked to variations in the moisture entering the continent from the Atlantic ocean. Two distinct regimes of lower tropospheric winds (westerlies and easterlies) were observed in Rondonia during the Wet Season Atmospheric Mesoscale Campaign (WETAMC) component of the Large Scale Atmosphere-Biosphere Experiment in Amazonia (LBA) and the Tropical Rainfall Measuring Mission (TRMM) field campaign. The westerly (easterly) winds were associated with the strong (weak) convective activity over the South Atlantic Convergence Zone (SACZ). The whole period of this study (January-February) was divided into SACZ and NSACZ (No SACZ) events. The vertically integrated moisture fluxes over the Amazon and Prata basin from the National Aeronautics and Space Administration/Goddard Data Assimilation Office (NASA/DAO) assimilation show that during SACZ (NSACZ) event strong (weak) convergence occurred over the Amazon basin with divergence (convergence) over the Prata basin. Submonthly variations in the SACZ also can be linked to extreme climate anomalies such as droughts or flooding conditions over the Amazon and Prata basin.
NASA Technical Reports Server (NTRS)
Liu, W. Timothy
1989-01-01
The Nimbus-7 Scanning Multichannel Microwave Radiometer (SSMR) provided simultaneous measurements of three geophysical parameters, each of which describing a certain aspect of the evolution of the 1982-1983 ENSO: the sea-surface temperature (T), precipitable water (W), and surface-wind speed (U). In this paper, values derived from the SSMR were compared with in situ measurements from ships, research buoys, and operational island stations in the tropical Pacific between January 1980 and October 1983, demonstrating the temporal and spatial coherence of the SSMR measurements. The results show that the variabilities of the surface convergence, sea surface temperature, and precipitable water are related. It was found that W anomalies were not always colocated with T anomalies, and that W anomalies were often associated with negative U anomalies, interpreted as surface convergence.
Zhang, Huisheng; Zhang, Ying; Xu, Dongpo; Liu, Xiaodong
2015-06-01
It has been shown that, by adding a chaotic sequence to the weight update during the training of neural networks, the chaos injection-based gradient method (CIBGM) is superior to the standard backpropagation algorithm. This paper presents the theoretical convergence analysis of CIBGM for training feedforward neural networks. We consider both the case of batch learning as well as the case of online learning. Under mild conditions, we prove the weak convergence, i.e., the training error tends to a constant and the gradient of the error function tends to zero. Moreover, the strong convergence of CIBGM is also obtained with the help of an extra condition. The theoretical results are substantiated by a simulation example.
NASA Astrophysics Data System (ADS)
FramiñAn, Mariana B.; Valle-Levinson, Arnoldo; Sepúlveda, HéCtor H.; Brown, Otis B.
2008-08-01
Intratidal variability of density and velocity fields is investigated at the turbidity front of the Río de la Plata Estuary, South America. Current velocity and temperature-salinity profiles collected in August 1999 along a repeated transect crossing the front are analyzed. Horizontal and vertical gradients, stability of the front, convergence zones, and transverse flow associated to the frontal boundary are described. Strong horizontal convergence of the across-front velocity and build up of along-front velocity shear were observed at the front. In the proximity of the front, enhanced transverse (or along-front) flow created jet-like structures at the surface and near the bottom flowing in opposite directions. These structures persisted throughout the tidal cycle and were advected upstream (downstream) by the flood (ebb) current through a distance of ˜10 km. During peak flood, the upper layer flow reversed from its predominant downstream direction and upstreamflow occupied the entire water column; outside the peak flood, two-layer estuarine circulation dominated. Changes in density field were observed in response to tidal straining, tidal advection, and wind-induced mixing, but stratification remained throughout the tidal cycle. This work demonstrates the large spatial variability of the velocity field at the turbidity front; it provides evidence of enhanced transverse circulation along the frontal boundary; and reveals the importance of advective and frictional intratidal processes in the dynamics of the central part of the estuary.
Mechanisms initiating deep convection over complex terrain during COPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kottmeier, C.; Kalthoff, N.; Barthlott, C.
2008-12-01
Precipitating convection in a mountain region of moderate topography is investigated, with particular emphasis on its initiation in response to boundary-layer and mid- and upper-tropospheric forcing mechanisms. The data used in the study are from COPS (Convective and Orographically-induced Precipitation Study) that took place in southwestern Germany and eastern France in the summer of 2007. It is found that the initiation of precipitating convection can be roughly classified as being due to either: (i) surface heating and low-level flow convergence; (ii) surface heating and moisture supply overcoming convective inhibition during latent and/or potential instability; or (iii) mid-tropospheric dynamical processes duemore » to mesoscale convergence lines and forced mean vertical motion. These phenomena have to be adequately represented in models in order to improve quantitative precipitation forecast. Selected COPS cases are analyzed and classified into these initiation categories. Although only a subset of COPS data (mainly radiosondes, surface weather stations, radar and satellite data) are used here, it is shown that convective systems are captured in considerable detail by sensor synergy. Convergence lines were observed by Doppler radar in the location where deep convection is triggered several hours later. The results suggest that in many situations, observations of the location and timing of convergence lines will facilitate the nowcasting of convection. Further on, forecasting of the initiation of convection is significantly complicated if advection of potentially convective air masses over changing terrain features plays a major role. The passage of a frontal structure over the Vosges - Rhine valley - Black Forest orography was accompanied by an intermediate suppression of convection over the wide Rhine valley. Further downstream, an intensification of convection was observed over the Black Forest due to differential surface heating, a convergence line, and the flow generated by a gust front.« less
Persistent Differences in Mortality Patterns across Industrialized Countries
d'Albis, Hippolyte; Esso, Loesse Jacques; Pifarré i Arolas, Héctor
2014-01-01
The epidemiological transition has provided the theoretical background for the expectation of convergence in mortality patterns. We formally test and reject the convergence hypothesis for a sample of industrialized countries in the period from 1960 to 2008. After a period of convergence in the decade of 1960 there followed a sustained process of divergence with a pronounced increase at the end of the 1980's, explained by trends within former Socialist countries (Eastern countries). While Eastern countries experienced abrupt divergence after the dissolution of the Soviet Union, differences within Western countries remained broadly constant for the whole period. Western countries transitioned from a strong correlation between life expectancy and variance in 1960 to no association between both moments in 2008 while Eastern countries experienced the opposite evolution. Taken together, our results suggest that convergence can be better understood when accounting for shared structural similarities amongst groups of countries rather than through global convergence. PMID:25181447
Generalized Bregman distances and convergence rates for non-convex regularization methods
NASA Astrophysics Data System (ADS)
Grasmair, Markus
2010-11-01
We generalize the notion of Bregman distance using concepts from abstract convexity in order to derive convergence rates for Tikhonov regularization with non-convex regularization terms. In particular, we study the non-convex regularization of linear operator equations on Hilbert spaces, showing that the conditions required for the application of the convergence rates results are strongly related to the standard range conditions from the convex case. Moreover, we consider the setting of sparse regularization, where we show that a rate of order δ1/p holds, if the regularization term has a slightly faster growth at zero than |t|p.
Gwaltney, Steven R; Rosokha, Sergiy V; Head-Gordon, Martin; Kochi, Jay K
2003-03-19
The highly disparate rates of aromatic nitrosation and nitration, despite the very similar (electrophilic) properties of the active species: NO(+) and NO(2)(+) in Chart 1, are quantitatively reconciled. First, the thorough mappings of the potential-energy surfaces by high level (ab initio) molecular-orbital methodologies involving extensive coupled-cluster CCSD(T)/6-31G optimizations establish the intervention of two reactive intermediates in nitration (Figure 8) but only one in nitrosation (Figure 7). Second, the same distinctive topologies involving double and single potential-energy minima (Figures 6 and 5) also emerge from the semiquantitative application of the Marcus-Hush theory to the transient spectral data. Such a striking convergence from quite different theoretical approaches indicates that the molecular-orbital and Marcus-Hush (potential-energy) surfaces are conceptually interchangeable. In the resultant charge-transfer mechanism, the bimolecular interactions of arene donors with both NO(+) and NO(2)(+) spontaneously lead (barrierless) to pi-complexes in which electron transfer is concurrent with complexation. Such a pi-complex in nitration is rapidly converted to the sigma-complex, whereas this Wheland adduct in nitrosation merely represents a high energy (transition-state) structure. Marcus-Hush analysis thus demonstrates how the strongly differentiated (arene) reactivities toward NO(+) and NO(2)(+) can actually be exploited in the quantitative development of a single coherent (electron-transfer) mechanism for both aromatic nitrosation and nitration.
Chen, Shaoshan; He, Deyu; Wu, Yi; Chen, Huangfei; Zhang, Zaijing; Chen, Yunlei
2016-10-01
A new non-aqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing potassium dihydrogen phosphate (KDP) crystal due to its low hardness, high brittleness, temperature sensitivity, and water solubility. This paper researches the convergence rules of the surface error of an initial single-point diamond turning (SPDT)-finished KDP crystal after MRF polishing. Currently, the SPDT process contains spiral cutting and fly cutting. The main difference of these two processes lies in the morphology of intermediate-frequency turning marks on the surface, which affects the convergence rules. The turning marks after spiral cutting are a series of concentric circles, while the turning marks after fly cutting are a series of parallel big arcs. Polishing results indicate that MRF polishing can only improve the low-frequency errors (L>10 mm) of a spiral-cutting KDP crystal. MRF polishing can improve the full-range surface errors (L>0.01 mm) of a fly-cutting KDP crystal if the polishing process is not done more than two times for single surface. We can conclude a fly-cutting KDP crystal will meet better optical performance after MRF figuring than a spiral-cutting KDP crystal with similar initial surface performance.
NASA Astrophysics Data System (ADS)
Rajesh, P. V.; Pattnaik, S.; Mohanty, U. C.; Rai, D.; Baisya, H.; Pandey, P. C.
2017-12-01
Monsoon depressions (MDs) constitute a large fraction of the total rainfall during the Indian summer monsoon season. In this study, the impact of high-resolution land state is addressed by assessing the evolution of inland moving depressions formed over the Bay of Bengal using a mesoscale modeling system. Improved land state is generated using High Resolution Land Data Assimilation System employing Noah-MP land-surface model. Verification of soil moisture using Soil Moisture and Ocean Salinity (SMOS) and soil temperature using tower observations demonstrate promising results. Incorporating high-resolution land state yielded least root mean squared errors with higher correlation coefficient in the surface and mid tropospheric parameters. Rainfall forecasts reveal that simulations are spatially and quantitatively in accordance with observations and provide better skill scores. The improved land surface characteristics have brought about the realistic evolution of surface, mid-tropospheric parameters, vorticity and moist static energy that facilitates the accurate MDs dynamics in the model. Composite moisture budget analysis reveals that the surface evaporation is negligible compared to moisture flux convergence of water vapor, which supplies moisture into the MDs over land. The temporal relationship between rainfall and moisture convergence show high correlation, suggesting a realistic representation of land state help restructure the moisture inflow into the system through rainfall-moisture convergence feedback.
Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights
NASA Astrophysics Data System (ADS)
Damelin, S. B.; Jung, H. S.
2005-01-01
For a general class of exponential weights on the line and on (-1,1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near +/-[infinity] (Freud weights), even weights of faster than smooth polynomial decay near +/-[infinity] (Erdos weights) and even weights which vanish strongly near +/-1, for example Pollaczek type weights.
Investigation of Surface Phenomena in Shocked Tin in Converging Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall
2016-03-21
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface ismore » adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.« less
Tsze, Daniel S; von Baeyer, Carl L; Pahalyants, Vartan; Dayan, Peter S
2018-06-01
The Verbal Numerical Rating Scale is the most commonly used self-report measure of pain intensity. It is unclear how the validity and reliability of the scale scores vary across children's ages. We aimed to determine the validity and reliability of the scale for children presenting to the emergency department across a comprehensive spectrum of age. This was a cross-sectional study of children aged 4 to 17 years. Children self-reported their pain intensity, using the Verbal Numerical Rating Scale and Faces Pain Scale-Revised at 2 serial assessments. We evaluated convergent validity (strong validity defined as correlation coefficient ≥0.60), agreement (difference between concurrent Verbal Numerical Rating Scale and Faces Pain Scale-Revised scores), known-groups validity (difference in score between children with painful versus nonpainful conditions), responsivity (decrease in score after analgesic administration), and reliability (test-retest at 2 serial assessments) in the total sample and subgroups based on age. We enrolled 760 children; 27 did not understand the Verbal Numerical Rating Scale and were removed. Of the remainder, Pearson correlations were strong to very strong (0.62 to 0.96) in all years of age except 4 and 5 years, and agreement was strong for children aged 8 and older. Known-groups validity and responsivity were strong in all years of age. Reliability was strong in all age subgroups, including each year of age from 4 to 7 years. Convergent validity, known-groups validity, responsivity, and reliability of the Verbal Numerical Rating Scale were strong for children aged 6 to 17 years. Convergent validity was not strong for children aged 4 and 5 years. Our findings support the use of the Verbal Numerical Rating Scale for most children aged 6 years and older, but not for those aged 4 and 5 years. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Hildebrandt, Ellen; Nirschl, Hermann; Kok, Robbert Jan; Leneweit, Gero
2018-05-16
Adsorption of phosphatidylcholines at oil/water interfaces strongly deviates from spread monolayers at air/water surfaces. Understanding its nature and consequences could vastly improve applications in medical nanoemulsions and biotechnologies. Adsorption kinetics at interfaces of water with different oil phases were measured by profile analysis tensiometry. Adsorption kinetics for 2 different phospholipids, DPPC and POPC, as well as 2 organic phases, squalene and squalane, show that formation of interfacial monolayers is initially dominated by stress-relaxation in the first minutes. Diffusion only gradually contributes to a decrease in interfacial tension at later stages of time and higher film pressures. The results can be applied for the optimization of emulsification protocols using mechanical treatments. Emulsions using phospholipids with unsaturated fatty acids are dominated much more strongly by stress-relaxation and cover interfaces very fast compared to those with saturated fatty acids. In contrast, phospholipid layers consisting of saturated fatty acids converge faster towards the equilibrium than those with unsaturated fatty acids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, O.; Efimov, S.; Gurovich, V. Tz.
The results of visible spectroscopy of the plasma formed inside a copper capillary placed at the equatorial plane of an underwater electrically exploded spherical wire array (30 mm in diameter; 40 wires, each of 100 μm in diameter) are reported. In the experiments, a pulsed power generator with current amplitude of ∼300 kA and rise time of ∼1.1 μs was used to produce wire array explosion accompanied by the formation of a converging strong shock wave. The data obtained support the assumption of uniformity of the shock wave along the main path of its convergence. The spectroscopic measurements show that this rather simple methodmore » of formation of a converging strong shock wave can be used successfully for studying the shock wave's interaction with matter and the evaporation processes of atoms from a target.« less
Zhang, Ling
2017-01-01
The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.
NASA Astrophysics Data System (ADS)
Kwon, Young-Sam; Li, Fucai
2018-03-01
In this paper we study the incompressible limit of the degenerate quantum compressible Navier-Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier-Stokes equations converge to the strong solution of the incompressible Navier-Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier-Stokes equations to the strong solution of the incompressible Navier-Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.
Xiang, Baoqiang; Zhao, Ming; Held, Isaac M.; ...
2017-02-13
The severity of the double Intertropical Convergence Zone (DI) problem in climate models can be measured by a tropical precipitation asymmetry index (PAI), indicating whether tropical precipitation favors the Northern Hemisphere or the Southern Hemisphere. Examination of 19 Coupled Model Intercomparison Project phase 5 models reveals that the PAI is tightly linked to the tropical sea surface temperature (SST) bias. As one of the factors determining the SST bias, the asymmetry of tropical net surface heat flux in Atmospheric Model Intercomparison Project (AMIP) simulations is identified as a skillful predictor of the PAI change from an AMIP to a coupledmore » simulation, with an intermodel correlation of 0.90. Using tropical top-of-atmosphere (TOA) fluxes, the correlations are lower but still strong. However, the extratropical asymmetries of surface and TOA fluxes in AMIP simulations cannot serve as useful predictors of the PAI change. Furthermore, this study suggests that the largest source of the DI bias is from the tropics and from atmospheric models.« less
Hwang, Yen-Ting; Frierson, Dargan M. W.
2013-01-01
The double-Intertropical Convergence Zone (ITCZ) problem, in which excessive precipitation is produced in the Southern Hemisphere tropics, which resembles a Southern Hemisphere counterpart to the strong Northern Hemisphere ITCZ, is perhaps the most significant and most persistent bias of global climate models. In this study, we look to the extratropics for possible causes of the double-ITCZ problem by performing a global energetic analysis with historical simulations from a suite of global climate models and comparing with satellite observations of the Earth’s energy budget. Our results show that models with more energy flux into the Southern Hemisphere atmosphere (at the top of the atmosphere and at the surface) tend to have a stronger double-ITCZ bias, consistent with recent theoretical studies that suggest that the ITCZ is drawn toward heating even outside the tropics. In particular, we find that cloud biases over the Southern Ocean explain most of the model-to-model differences in the amount of excessive precipitation in Southern Hemisphere tropics, and are suggested to be responsible for this aspect of the double-ITCZ problem in most global climate models. PMID:23493552
NASA Astrophysics Data System (ADS)
Weiss, Laurent; Tazibt, Abdel; Aillerie, Michel; Tidu, Albert
2018-01-01
The metallurgical evolution of the Ti-6Al-4V samples is analyzed after an appropriate cutting using a converging water jet/high power laser system. New surface microstructures are obtained on the cutting edge as a result of thermo-mechanical effects of such hybrid fluid-jet-laser tool on the targeted material. The laser beam allows to melt and the water-jet to cool down and to evacuate the material upstream according to a controlled cutting process. The experimental results have shown that a rutile layer can be generated on the surface near the cutting zone. The recorded metallurgical effect is attributed to the chemical reaction between water molecules and titanium, where the laser thermal energy brought onto the surface plays the role of reaction activator. The width of the oxidized zone was found proportional to the cutting speed. During the reaction, hydrogen gas H2 is formed and is absorbed by the metal. The hydrogen atoms trapped into the alloy change the metastable phase formation developing pure β circular grains as a skin at the kerf surface. This result is original so it would lead to innovative converging laser water jet process that could be used to increase the material properties especially for surface treatment, a key value of surface engineering and manufacturing chains.
Tomographic Imaging of the Suns Interior
NASA Technical Reports Server (NTRS)
Kosovichev, A. G.
1996-01-01
A new method is presented of determining the three-dimensional sound-speed structure and flow velocities in the solar convection zone by inversion of the acoustic travel-time data recently obtained by Duvall and coworkers. The initial inversion results reveal large-scale subsurface structures and flows related to the active regions, and are important for understanding the physics of solar activity and large-scale convection. The results provide evidence of a zonal structure below the surface in the low-latitude area of the magnetic activity. Strong converging downflows, up to 1.2 km/s, and a substantial excess of the sound speed are found beneath growing active regions. In a decaying active region, there is evidence for the lower than average sound speed and for upwelling of plasma.
Active out-of-sequence thrust faulting in the central Nepalese Himalaya.
Wobus, Cameron; Heimsath, Arjun; Whipple, Kelin; Hodges, Kip
2005-04-21
Recent convergence between India and Eurasia is commonly assumed to be accommodated mainly along a single fault--the Main Himalayan Thrust (MHT)--which reaches the surface in the Siwalik Hills of southern Nepal. Although this model is consistent with geodetic, geomorphic and microseismic data, an alternative model incorporating slip on more northerly surface faults has been proposed to be consistent with these data as well. Here we present in situ cosmogenic 10Be data indicating a fourfold increase in millennial timescale erosion rates occurring over a distance of less than 2 km in central Nepal, delineating for the first time an active thrust fault nearly 100 km north of the surface expression of the MHT. These data challenge the view that rock uplift gradients in central Nepal reflect only passive transport over a ramp in the MHT. Instead, when combined with previously reported 40Ar-39Ar data, our results indicate persistent exhumation above deep-seated, surface-breaking structures at the foot of the high Himalaya. These results suggest that strong dynamic interactions between climate, erosion and tectonics have maintained a locus of active deformation well to the north of the Himalayan deformation front.
Daigneault, Pierre-Marc; Jacob, Steve; Tremblay, Joël
2012-08-01
Stakeholder participation is an important trend in the field of program evaluation. Although a few measurement instruments have been proposed, they either have not been empirically validated or do not cover the full content of the concept. This study consists of a first empirical validation of a measurement instrument that fully covers the content of participation, namely the Participatory Evaluation Measurement Instrument (PEMI). It specifically examines (1) the intercoder reliability of scores derived by two research assistants on published evaluation cases; (2) the convergence between the scores of coders and those of key respondents (i.e., authors); and (3) the convergence between the authors' scores on the PEMI and the Evaluation Involvement Scale (EIS). A purposive sample of 40 cases drawn from the evaluation literature was used to assess reliability. One author per case in this sample was then invited to participate in a survey; 25 fully usable questionnaires were received. Stakeholder participation was measured on nominal and ordinal scales. Cohen's κ, the intraclass correlation coefficient, and Spearman's ρ were used to assess reliability and convergence. Reliability results ranged from fair to excellent. Convergence between coders' and authors' scores ranged from poor to good. Scores derived from the PEMI and the EIS were moderately associated. Evidence from this study is strong in the case of intercoder reliability and ranges from weak to strong in the case of convergent validation. Globally, this suggests that the PEMI can produce scores that are both reliable and valid.
Energy-beam-driven rapid fabrication system
Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.
2002-01-01
An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.
A conjugate gradient method with descent properties under strong Wolfe line search
NASA Astrophysics Data System (ADS)
Zull, N.; ‘Aini, N.; Shoid, S.; Ghani, N. H. A.; Mohamed, N. S.; Rivaie, M.; Mamat, M.
2017-09-01
The conjugate gradient (CG) method is one of the optimization methods that are often used in practical applications. The continuous and numerous studies conducted on the CG method have led to vast improvements in its convergence properties and efficiency. In this paper, a new CG method possessing the sufficient descent and global convergence properties is proposed. The efficiency of the new CG algorithm relative to the existing CG methods is evaluated by testing them all on a set of test functions using MATLAB. The tests are measured in terms of iteration numbers and CPU time under strong Wolfe line search. Overall, this new method performs efficiently and comparable to the other famous methods.
A new nonlinear conjugate gradient coefficient under strong Wolfe-Powell line search
NASA Astrophysics Data System (ADS)
Mohamed, Nur Syarafina; Mamat, Mustafa; Rivaie, Mohd
2017-08-01
A nonlinear conjugate gradient method (CG) plays an important role in solving a large-scale unconstrained optimization problem. This method is widely used due to its simplicity. The method is known to possess sufficient descend condition and global convergence properties. In this paper, a new nonlinear of CG coefficient βk is presented by employing the Strong Wolfe-Powell inexact line search. The new βk performance is tested based on number of iterations and central processing unit (CPU) time by using MATLAB software with Intel Core i7-3470 CPU processor. Numerical experimental results show that the new βk converge rapidly compared to other classical CG method.
Diagnostic budgets of analyzed and modelled tropical plumes
NASA Technical Reports Server (NTRS)
Mcguirk, James P.; Vest, Gerry W.
1993-01-01
Blackwell et al. successfully simulated tropical plumes in a global barotropic model valid at 200 mb. The plume evolved in response to strong equatorial convergence which simulated a surge in the Walker Circulation. The defining characteristics of simulated plumes are: a subtropical jet with southerlies emanating from the deep tropics; a tropical/mid-latitude trough to the west; a convergence/divergence dipole straddling the trough; and strong cross contour flow at the tropical base of the jet. Diagnostic budgets of vorticity, divergence, and kinetic energy are calculated to explain the evolution of the modelled plumes. Budgets describe the unforced (basic) state, forced plumes, forced cases with no plumes, and ECMWF analyzed plumes.
Kaeuffer, Renaud; Peichel, Catherine L.; Bolnick, Daniel I.; Hendry, Andrew P.
2015-01-01
Convergent (or parallel) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some non-convergent evolution is present. It is therefore important to explicitly quantify the convergent and non-convergent aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was convergent across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that convergent evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respect to the dichotomous habitat classifications frequently used in such studies. PMID:22276537
Effects of diabatic heating on the ageostrophic circulation of an upper tropospheric jet streak
NASA Technical Reports Server (NTRS)
Keyser, D. A.; Johnson, D. R.
1982-01-01
Interaction between the mass circulation within a mesoscale convective complex (MCC) and a direct mass circulation in the entrance region of an upper tropospheric polar jet streak was examined within the isentropic structure to investigate mechanisms responsible for linking these two scales of motion. The results establish that latent heating in the MCC modifies the direct mass circulation in the jet streak entrance region through the diabatically induced components of ageostrophic motion analyzed within isentropic coordinates. Within the strong mesoscale mass circulation of each MCC, strong horizontal mass flux convergence into the MCC at low levels is balanced by strong horizontal mass flux divergence away from the convergence at upper levels. Locations of large diabatic heating rates correspond well to the MCC position for each case; diabatic heating forces the upward vertical branch for the mesoscale mass circulation.
NASA Astrophysics Data System (ADS)
Poujol, Antoine; Ritz, Jean-François; Vernant, Philippe; Huot, Sebastien; Maate, Soufian; Tahayt, Abdelilah
2017-08-01
In this paper, we present the first estimate of the Holocene deformation along the southern front of Gibraltar arc (Morocco) and the first field constraints on the local 1755 CE Fes-Meknes surface rupturing earthquake which could be associated to the "Great Lisbon Earthquake" (M > 8.5) in November 1st, 1755. Using satellite imagery, aerial photographs and field investigations, we carried out a morphotectonic study along the 150 km-long Southern Rif Front (SRF) to identify the most recent evidences of tectonic activity. Analyzed offset alluvial deposits confirm that (i) the last 5 ka cumulative deformation leading to a slip rate of 3.5 ± 1 mm/yr for this segment of the SRF is consistent with the GPS derived horizontal shortening rate of 2-4 mm/yr and (ii) a recent major earthquake ruptured a 30 km-long segment along the SRF. Based on deposits dating and historical seismicity we propose that this seismic event occurred in 1755 as a local earthquake. Even though this 1755 local event cannot be considered as a strong aftershock of the main Lisbon seismic event (M > 8.5), their temporal closeness, their occurrence under the same convergent stress regime ( NNW-SSE-oriented compression) and the fact that Fes-Meknes area was strongly shaken during the Lisbon earthquake, raises the question of the possible triggering of the Fes earthquake. Anyway, our new results suggest that most of the Nubia-Rif belt convergence is accommodated by the SRF, making it potentially the most destructive structure of the Rif.
Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism
NASA Astrophysics Data System (ADS)
Miao, Jiapeng; Wang, Tao; Wang, Huijun; Sun, Jianqi
2018-06-01
In order to examine the response of the tropical Pacific Walker circulation (PWC) to strong tropical volcanic eruptions (SVEs), we analyzed a three-member long-term simulation performed with HadCM3, and carried out four additional CAM4 experiments. We found that the PWC shows a significant interannual weakening after SVEs. The cooling effect from SVEs is able to cool the entire tropics. However, cooling over the Maritime Continent is stronger than that over the central-eastern tropical Pacific. Thus, non-uniform zonal temperature anomalies can be seen following SVEs. As a result, the sea level pressure gradient between the tropical Pacific and the Maritime Continent is reduced, which weakens trade winds over the tropical Pacific. Therefore, the PWC is weakened during this period. At the same time, due to the cooling subtropical and midlatitude Pacific, the Intertropical Convergence Zone (ITCZ) and South Pacific convergence zone (SPCZ) are weakened and shift to the equator. These changes also contribute to the weakened PWC. Meanwhile, through the positive Bjerknes feedback, weakened trade winds cause El Niño-like SST anomalies over the tropical Pacific, which in turn further influence the PWC. Therefore, the PWC significantly weakens after SVEs. The CAM4 experiments further confirm the influences from surface cooling over the Maritime Continent and subtropical/midlatitude Pacific on the PWC. Moreover, they indicate that the stronger cooling over the Maritime Continent plays a dominant role in weakening the PWC after SVEs. In the observations, a weakened PWC and a related El Niño-like SST pattern can be found following SVEs.
Tobias, Joseph A; Seddon, Nathalie
2009-12-01
Natural selection is known to produce convergent phenotypes through mimicry or ecological adaptation. It has also been proposed that social selection--i.e., selection exerted by social competition--may drive convergent evolution in signals mediating interspecific communication, yet this idea remains controversial. Here, we use color spectrophotometry, acoustic analyses, and playback experiments to assess the hypothesis of adaptive signal convergence in two competing nonsister taxa, Hypocnemis peruviana and H. subflava (Aves: Thamnophilidae). We show that the structure of territorial songs in males overlaps in sympatry, with some evidence of convergent character displacement. Conversely, nonterritorial vocal and visual signals in males are strikingly diagnostic, in line with 6.8% divergence in mtDNA sequences. The same pattern of variation applies to females. Finally, we show that songs in both sexes elicit strong territorial responses within and between species, whereas songs of a third, allopatric and more closely related species (H. striata) are structurally divergent and elicit weaker responses. Taken together, our results provide compelling evidence that social selection can act across species boundaries to drive convergent or parallel evolution in taxa competing for space and resources.
Rainfall Morphology in Semi-Tropical Convergence Zones
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Ferrier, Brad S.; Ray, Peter S.
2000-01-01
Central Florida is the ideal test laboratory for studying convergence zone-induced convection. The region regularly experiences sea breeze fronts and rainfall-induced outflow boundaries. The focus of this study is the common yet poorly-studied convergence zone established by the interaction of the sea breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology yet these storms contribute a significant amount precipitation to the annual rainfall budget. Low-level convergence and mid-tropospheric moisture have both been shown to correlate with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and mid-tropospheric moisture in rainfall evolution are examined. The results indicate that time-averaged, vertical moisture flux (VMF) at the sea breeze front/outflow convergence zone is directly and linearly proportional to initial condensation rates. This proportionality establishes a similar relationship between VMF and initial rainfall. Vertical moisture flux, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies which linked rainfall in Florida to surface moisture convergence. The amount and distribution of mid-tropospheric moisture determines how rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850- 500 mb layer even though rainfall evolution was similar during the initial or "first-cell" period. Rainfall variability was attributed to drier mid-tropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, 850-500 mb moisture structure exhibits wider variability than lower level moisture, which is virtually always present in Florida. A likely consequence of the variability in 850-500 moisture is a stronger statistical correlation to rainfall, which observational studies have noted. The study indicates that vertical moisture flux forcing at convergence zones is critical in determining rainfall in the initial stage of development but plays a decreasing role in rainfall evolution as the system matures. The mid-tropospheric moisture (e.g. environment) plays an increasing role in rainfall evolution as the system matures. This suggests the need to improve measurements of magnitude/depth of convergence and mid-tropospheric moisture distribution. It also highlights the need for better parameterization of entrainment and vertical moisture distribution in larger-scale models.
Genome-wide signatures of convergent evolution in echolocating mammals
Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A.; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J.
2013-01-01
Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes1-3. However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures4,5. Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level6-9. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution9,10 although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised. PMID:24005325
Deterministic magnetorheological finishing of optical aspheric mirrors
NASA Astrophysics Data System (ADS)
Song, Ci; Dai, Yifan; Peng, Xiaoqiang; Li, Shengyi; Shi, Feng
2009-05-01
A new method magnetorheological finishing (MRF) used for deterministical finishing of optical aspheric mirrors is applied to overcome some disadvantages including low finishing efficiency, long iterative time and unstable convergence in the process of conventional polishing. Based on the introduction of the basic principle of MRF, the key techniques to implement deterministical MRF are also discussed. To demonstrate it, a 200 mm diameter K9 class concave asphere with a vertex radius of 640mm was figured on MRF polish tool developed by ourselves. Through one process about two hours, the surface accuracy peak-to-valley (PV) is improved from initial 0.216λ to final 0.179λ and root-mean-square (RMS) is improved from 0.027λ to 0.017λ (λ = 0.6328um ). High-precision and high-efficiency convergence of optical aspheric surface error shows that MRF is an advanced optical manufacturing method that owns high convergence ratio of surface figure, high precision of optical surfacing, stabile and controllable finishing process. Therefore, utilizing MRF to finish optical aspheric mirrors determinately is credible and stabile; its advantages can be also used for finishing optical elements on varieties of types such as plane mirrors and spherical mirrors.
Converging shocks in elastic-plastic solids.
Ortega, A López; Lombardini, M; Hill, D J
2011-11-01
We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the hydrostatic part of the energy essentially commands the strong-shock behavior, the shear modulus and yield stress modify the compression ratio and velocity of the shock far from the axis or origin. A characterization of the elastic-plastic transition in converging shocks, which involves an elastic precursor and a plastic compression region, is finally exposed.
Li, Shao-Peng; Cadotte, Marc W; Meiners, Scott J; Pu, Zhichao; Fukami, Tadashi; Jiang, Lin
2016-09-01
Whether plant communities in a given region converge towards a particular stable state during succession has long been debated, but rarely tested at a sufficiently long time scale. By analysing a 50-year continuous study of post-agricultural secondary succession in New Jersey, USA, we show that the extent of community convergence varies with the spatial scale and species abundance classes. At the larger field scale, abundance-based dissimilarities among communities decreased over time, indicating convergence of dominant species, whereas incidence-based dissimilarities showed little temporal tend, indicating no sign of convergence. In contrast, plots within each field diverged in both species composition and abundance. Abundance-based successional rates decreased over time, whereas rare species and herbaceous plants showed little change in temporal turnover rates. Initial abandonment conditions only influenced community structure early in succession. Overall, our findings provide strong evidence for scale and abundance dependence of stochastic and deterministic processes over old-field succession. © 2016 John Wiley & Sons Ltd/CNRS.
Wang, Rongpin; Wilkinson, Molly; Kane, Tara; Takahashi, Emi
2017-01-01
There has been evidence that during brain development, emerging thalamocortical (TC) and corticothalamic (CT) pathways converge in some brain regions and follow each other's trajectories to their final destinations. Corpus callosal (CC) pathways also emerge at a similar developmental stage, and are known to converge with TC pathways in specific cortical regions in mature brains. Given the functional relationships between TC and CC pathways, anatomical convergence of the two pathways are likely important for their functional integration. However, it is unknown (1) where TC and CT subcortically converge in the human brain, and (2) where TC and CC converge in the cortex of the human brain, due to the limitations of non-invasive methods. The goals of this study were to describe the spatio-temporal relationships in the development of the TC/CT and CC pathways in the human brain, using high-angular resolution diffusion MR imaging (HARDI) tractography. Emerging cortical, TC and CC pathways were identified in postmortem fetal brains ranging from 17 gestational weeks (GW) to 30 GW, as well as in vivo 34-40 GW newborns. Some pathways from the thalami were found to be converged with pathways from the cerebral cortex as early as 17 GW. Such convergence was observed mainly in anterior and middle regions of the brain until 21 GW. At 22 GW and onwards, posterior pathways from the thalami also converged with cortical pathways. Many CC pathways reached the full length up to the cortical surface as early as 17 GW, while pathways linked to thalami (not only TC axons but also including pathways linked to thalamic neuronal migration) reached the cortical surface at and after 20 GW. These results suggest that CC pathways developed earlier than the TC pathways. The two pathways were widespread at early stages, but by 40 GW they condensed and formed groups of pathways that projected to specific regions of the cortex and overlapped in some brain regions. These results suggest that HARDI tractography has the potential to identify developing TC/CT and CC pathways with the timing and location of their convergence in fetal stages persisting in postnatal development.
Wang, Rongpin; Wilkinson, Molly; Kane, Tara; Takahashi, Emi
2017-01-01
There has been evidence that during brain development, emerging thalamocortical (TC) and corticothalamic (CT) pathways converge in some brain regions and follow each other's trajectories to their final destinations. Corpus callosal (CC) pathways also emerge at a similar developmental stage, and are known to converge with TC pathways in specific cortical regions in mature brains. Given the functional relationships between TC and CC pathways, anatomical convergence of the two pathways are likely important for their functional integration. However, it is unknown (1) where TC and CT subcortically converge in the human brain, and (2) where TC and CC converge in the cortex of the human brain, due to the limitations of non-invasive methods. The goals of this study were to describe the spatio-temporal relationships in the development of the TC/CT and CC pathways in the human brain, using high-angular resolution diffusion MR imaging (HARDI) tractography. Emerging cortical, TC and CC pathways were identified in postmortem fetal brains ranging from 17 gestational weeks (GW) to 30 GW, as well as in vivo 34–40 GW newborns. Some pathways from the thalami were found to be converged with pathways from the cerebral cortex as early as 17 GW. Such convergence was observed mainly in anterior and middle regions of the brain until 21 GW. At 22 GW and onwards, posterior pathways from the thalami also converged with cortical pathways. Many CC pathways reached the full length up to the cortical surface as early as 17 GW, while pathways linked to thalami (not only TC axons but also including pathways linked to thalamic neuronal migration) reached the cortical surface at and after 20 GW. These results suggest that CC pathways developed earlier than the TC pathways. The two pathways were widespread at early stages, but by 40 GW they condensed and formed groups of pathways that projected to specific regions of the cortex and overlapped in some brain regions. These results suggest that HARDI tractography has the potential to identify developing TC/CT and CC pathways with the timing and location of their convergence in fetal stages persisting in postnatal development. PMID:29163000
On the dynamic forcing of short-term climate fluctuations by feedback mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, E.R.
1979-09-01
The energies involved in the general circulation of the atmosphere, especially the zonal available potential energy, show considerable interannual variability, suggesting the presence of various internal feedback mechanisms in the ocean-atmosphere system. Sea-surface temperature (SST) variations appear to have some effect on the hydrological cycle. The possible existence of feedback mechanisms between ocean and atmosphere seem to be evident in some of the data from the North Pacific and North Atlantic. One of these proposed mechanisms involves the variation in the convergence between the North and South Pacific trade-wind systems and is strongly reflected in rainfall variability within the drymore » region of the equatorial Pacific. Similar variations appear in low-latitude SST anomalies. The convergence between the two trade-wind systems in the Atlantic region also undergoes marked interannual variations. This quasi-biennial oscillation (QBO) in trade-wind convergence over the Atlantic appears to be tied to the global QBO of equatorial stratospheric winds and to regional rainfall regimes in the dry region of northeastern Brazil. A variability pattern of SST's with a QBO has been detected off the coast of Senegal, in the Gulf of Guinea and even in the Gulf Stream as it leaves the North American continental shelf. Possible physical connections between some of these QBO's are pointed out by a hypothetical feedback model. It is also suggested that interaction of a QBO with the annual cycle may lead to beating frequencies resembling climatic trends of a duration of several years.« less
NASA Astrophysics Data System (ADS)
Hsieh, Shang Yu; Neubauer, Franz; Cloetingh, Sierd; Willingshofer, Ernst; Sokoutis, Dimitrios
2014-05-01
The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011 and references therein). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry. References Leever, K. A., Gabrielsen, R. H., Sokoutis, D., Willingshofer, E., 2011. The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis. Tectonics, 30(2), TC2013. Molnar, P., Dayem, K.E., 2010. Major intracontinental strike-slip faults and contrasts in lithospheric strength. Geosphere, 6, 444-467.
A surface wave reflector in Southwestern Japan
NASA Astrophysics Data System (ADS)
Mak, S.; Koketsu, K.; Miyake, H.; Obara, K.; Sekine, S.
2009-12-01
Surface waves at short periods (<35s) are affected severely by heterogeneities in the crust and the uppermost mantle. When the scale of heterogeneity is sufficiently large, its effect can be studied in a deterministic way using conventional concepts of reflection and refraction. A well-known example is surface wave refraction at continental margin. We present a case study to investigate the composition of surface wave coda in a deterministic approach. A long duration of surface wave coda with a predominant period of 20s is observed during various strong earthquakes around Japan. The coda shows an unambiguous propagation direction, implying a deterministic nature. Beamforming and particle motion analysis suggest that the surface wave later arrivals could be explained by Love wave reflections by a point reflector located at offshore southeast to Kyushu. The reflection demonstrates a seemingly incidence-independent favorable azimuth in emitting strength. In additional to beamforming, we use a new regional crustal velocity model to perform a grid-search ray-tracing with the assumption of point reflector to further constrain to location of coda generation. Because strong velocity anomalies exist near the zone of interest, we decide to use a network shortest-path ray-tracing method, instead of analytical methods like shooting and bending, to avoid the problems like convergence, shadow zone, and smooth model assumption. Two geological features are found to be related to the formation of the coda. The primary one is the intersection between the Kyushu-Palau Ridge and the Nankai Trough at offshore southeast to Kyushu (hereafter referred as "KPR-NT"), which may act as a point reflector. There is a strong Love wave phase velocity anomaly at KPR-NT but not other parts of the ridge, implying that topography is irrelevant. Rayleigh wave phase velocity does not experience a strong anomaly there, which is consistent to the absence of Rayleigh wave reflections implied by the observed particle motions. The secondary one is a low phase velocity (<2km/s for T=20s) at the accretionary wedge of the Nankai Trough due to the thick sediment. Such a long and narrow low velocity zone, with its southwest tip at KPR-NT, is a potential wave-guide to channel waves towards KPR-NT. The longer duration of deterministic later arrivals than the direct arrival is partially explained by multi-pathing due to the wave-guide. The surface wave coda is observable for earthquakes whose propagation path does not include the accretionary wedge, implying that the wedge is an enhancer but not indispensable of the formation of the observed coda.
The application of contraction theory to an iterative formulation of electromagnetic scattering
NASA Technical Reports Server (NTRS)
Brand, J. C.; Kauffman, J. F.
1985-01-01
Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.
NASA Astrophysics Data System (ADS)
Adnan Abid, Mohammad; Almazroui, Mansour; Kucharski, Fred
2017-04-01
Summer seasonal rainfall falls mainly over the south and southwestern parts of the Arabian Peninsula (AP). The relationship between this mean summer seasonal rainfall pattern and El Niño Southern Oscillation (ENSO) is analyzed with the aid of a 15-member ensemble of simulations using the King Abdulaziz University (KAU) Atmospheric Global Climate Model (AGCM). Each simulation is forced with Hadley Sea Surface Temperature (SST) for the period 1980-2015. The southwestern peninsula rainfall is linked towith the SST anomalies in the central-eastern pacific region. This relation is established through an atmospheric teleconnection which shows an upper-level convergence (divergence) anomalies over the southern Arabian Peninsula compensating the central-eastern Pacific region upper-level divergence (convergence) anomalies for the warm (cold) El Niño Southern Oscillaton (ENSO) phase. The upper-level convergence (divergence) over the southern Arabian Peninsula leads to sinking (rising) motion, low-level divergence (convergence) and consequently to reduced (enhanced) rainfall. The correlation coefficient between the observed area-averged Niño3.4 index and athe South Arabian Rainfall Index (SARI) is -0.54. This indicates that AP receives less rainfall during the warm (El Niño) phase, while the opposite happens in the cold (La Niña) El Niño Southern Oscillaton (ENSO) phase. The lower tropospheric cyclonic circulation anomalies strongly modulate the ENSO-related rainfall in the region. Overall, the model shows a 43% potential predictability (PP) for the Southern Arabian Peninsula Rainfall Index (SARI). Further, the predictability during the warm ENSO (El Niño) events is higher than during cold ENSO (La Niña) events. This is not only because of a stronger signal, but also noise reduction contributes to the increase of the regional PP in El Niño compared to that of La Niña years.
Microstructural characterization, petrophysics and upscaling - from porous media to fractural media
NASA Astrophysics Data System (ADS)
Liu, J.; Liu, K.; Regenauer-Lieb, K.
2017-12-01
We present an integrated study for the characterization of complex geometry, fluid transport features and mechanical deformation at micro-scale and the upscaling of properties using microtomographic data: We show how to integrate microstructural characterization by the volume fraction, specific surface area, connectivity (percolation), shape and orientation of microstructures with identification of individual fractures from a 3D fractural network. In a first step we use stochastic analyses of microstructures to determine the geometric RVE (representative volume element) of samples. We proceed by determining the size of a thermodynamic RVE by computing upper/lower bounds of entropy production through Finite Element (FE) analyses on a series of models with increasing sizes. The minimum size for thermodynamic RVE's is identified on the basis of the convergence criteria of the FE simulations. Petrophysical properties (permeability and mechanical parameters, including plastic strength) are then computed numerically if thermodynamic convergence criteria are fulfilled. Upscaling of properties is performed by means of percolation theory. The percolation threshold is detected by using a shrinking/expanding algorithm on static micro-CT images of rocks. Parameters of the scaling laws can be extracted from quantitative analyses and/or numerical simulations on a series of models with similar structures but different porosities close to the percolation threshold. Different rock samples are analyzed. Characterizing parameters of porous/fractural rocks are obtained. Synthetic derivative models of the microstructure are used to estimate the relationships between porosity and mechanical properties. Results obtained from synthetic sandstones show that yield stress, cohesion and the angle of friction are linearly proportional to porosity. Our integrated study shows that digital rock technology can provide meaningful parameters for effective upscaling if thermodynamic volume averaging satisfies the convergence criteria. For strongly heterogeneous rocks, however, thermodynamic convergence criteria may not meet; a continuum approach cannot be justified in this case.
NASA Astrophysics Data System (ADS)
Haines, Brian M.; Yi, S. A.; Olson, R. E.; Khan, S. F.; Kyrala, G. A.; Zylstra, A. B.; Bradley, P. A.; Peterson, R. R.; Kline, J. L.; Leeper, R. J.; Shah, R. C.
2017-07-01
The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surface roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).
Seymour, K J; Williams, M A; Rich, A N
2016-05-01
Many theories of visual object perception assume the visual system initially extracts borders between objects and their background and then "fills in" color to the resulting object surfaces. We investigated the transformation of chromatic signals across the human ventral visual stream, with particular interest in distinguishing representations of object surface color from representations of chromatic signals reflecting the retinal input. We used fMRI to measure brain activity while participants viewed figure-ground stimuli that differed either in the position or in the color contrast polarity of the foreground object (the figure). Multivariate pattern analysis revealed that classifiers were able to decode information about which color was presented at a particular retinal location from early visual areas, whereas regions further along the ventral stream exhibited biases for representing color as part of an object's surface, irrespective of its position on the retina. Additional analyses showed that although activity in V2 contained strong chromatic contrast information to support the early parsing of objects within a visual scene, activity in this area also signaled information about object surface color. These findings are consistent with the view that mechanisms underlying scene segmentation and the binding of color to object surfaces converge in V2. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Effect of Cross-Correlation on Geomagnetic Forecast Accuracies
NASA Technical Reports Server (NTRS)
Kuang, Weijia; Wei, Zigang; Tangborn, Andrew
2011-01-01
Surface geomagnetic observation can determine up to degree L = 14 time-varying spherical harmonic coefficients of the poloidal magnetic field. Assimilation of these coefficients to numerical dynamo simulation could help us understand better the dynamical processes in the Earth's outer core, and to provide more accurate forecast of geomagnetic secular variations (SV). In our previous assimilation studies, only the poloidal magnetic field in the core is corrected by the observations in the analysis. Unobservable core state variables (the toroidal magnetic field and the core velocity field) are corrected via the dynamical equations of the geodynamo. Our assimilation experiments show that the assimilated core state converges near the CMB, implying that the dynamo state is strongly constrained by surface geomagnetic observations, and is pulled closer to the truth by the data. We are now carrying out an ensemble of assimilation runs with 1000 years of geomagnetic and archeo/paleo magnetic record. In these runs the cross correlation between the toroidal and the poloidal magnetic fields is incorporated into the analysis. This correlation is derived from the physical boundary conditions of the toroidal field at the core-mantle boundary (CMB). The assimilation results are then compared with those of the ensemble runs without the cross-correlation, aiming at understanding two fundamental issues: the effect of the crosscorrelation on (1) the convergence of the core state, and (2) the SV prediction accuracies. The constrained dynamo solutions will provide valuable insights on interpreting the observed SV, e.g. the near-equator magnetic flux patches, the core-mantle interactions, and possibly other geodynamic observables.
Asymmetric negotiation in structured language games
NASA Astrophysics Data System (ADS)
Yang, Han-Xin; Wang, Wen-Xu; Wang, Bing-Hong
2008-02-01
We propose an asymmetric negotiation strategy to investigate the influence of high-degree agents on the agreement dynamics in a structured language game, the naming game. We introduce a model parameter, which governs the frequency of high-degree agents acting as speakers in communication. It is found that there exists an optimal value of the parameter that induces the fastest convergence to a global consensus on naming an object for both scale-free and small-world naming games. This phenomenon indicates that, although a strong influence of high-degree agents favors consensus achievement, very strong influences inhibit the convergence process, making it even slower than in the absence of influence of high-degree agents. Investigation of the total memory used by agents implies that there is some trade-off between the convergence speed and the required total memory. Other quantities, including the evolution of the number of different names and the relationship between agents’ memories and their degrees, are also studied. The results are helpful for better understanding of the dynamics of the naming game with asymmetric negotiation strategy.
NASA Astrophysics Data System (ADS)
Ramachandran, Gurumurthy; Wolf, Susan M.; Paradise, Jordan; Kuzma, Jennifer; Hall, Ralph; Kokkoli, Efrosini; Fatehi, Leili
2011-04-01
Federal oversight of nanobiotechnology in the U.S. has been fragmented and incremental. The prevailing approach has been to use existing laws and other administrative mechanisms for oversight. However, this "stay-the-course" approach will be inadequate for such a complex and convergent technology and may indeed undermine its promise. The technology demands a new, more dynamic approach to oversight. The authors are proposing a new oversight framework with three essential features: (a) the oversight trajectory needs to be able to move dynamically between "soft" and "hard" approaches as information and nano-products evolve; (b) it needs to integrate inputs from all stakeholders, with strong public engagement in decision-making to assure adequate analysis and transparency; and (c) it should include an overarching coordinating entity to assure strong inter-agency coordination and communication that can meet the challenge posed by the convergent nature of nanobiotechnology. The proposed framework arises from a detailed case analysis of several key oversight regimes relevant to nanobiotechnology and is informed by inputs from experts in academia, industry, NGOs, and government.
NASA Astrophysics Data System (ADS)
Benschop, H. O. G.; Breugem, W.-P.
2017-08-01
A bird-feather-inspired herringbone riblet texture was investigated for turbulent drag reduction. The texture consists of blade riblets in a converging/diverging or herringbone pattern with spanwise wavelength Λf. The aim is to quantify the drag change for this texture as compared to a smooth wall and to study the underlying mechanisms. To that purpose, direct numerical simulations of turbulent flow in a channel with height Lz were performed. The Fukagata-Iwamoto-Kasagi identity for drag decomposition was extended to textured walls and was used to study the drag change mechanisms. For Λf/Lz ≳ O(10), the herringbone texture behaves similarly to a conventional parallel-riblet texture in yaw: the suppression of turbulent advective transport results in a slight drag reduction of 2%. For Λf/Lz ≲ O(1), the drag increases strongly with a maximum of 73%. This is attributed to enhanced mean and turbulent advection, which results from the strong secondary flow that forms over regions of riblet convergence/divergence. Hence, the employment of convergent/divergent riblets in the texture seems to be detrimental to turbulent drag reduction.
NASA Technical Reports Server (NTRS)
Thomas, P. G.; Gierasch, P.
1985-01-01
Large columns of dust have been discovered rising above plains on Mars. The storms are probably analogous to terrestrial dust devils, but their size indicates that they are more similar to tornadoes in intensity. They occur at locations where the soil has been strongly warmed by the Sun, and there the surface is smooth and fine grained. These are the same conditions that favor dust devils on Earth. Warm gas from the lowest atmospheric layer converges and rises in a thin column, with intense swirl developing at the edge of the column. In one area a mosaic of Viking images shows 97 vortices in a three day period. This represents a density of vortices of about one in each 900 square kilometers. Thus, these dust devils may be important in moving dust or starting over dust storms.
Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves.
Colagrossi, Andrea; Souto-Iglesias, Antonio; Antuono, Matteo; Marrone, Salvatore
2013-02-01
The smoothed-particle-hydrodynamics (SPH) method has been used to study the evolution of free-surface Newtonian viscous flows specifically focusing on dissipation mechanisms in gravity waves. The numerical results have been compared with an analytical solution of the linearized Navier-Stokes equations for Reynolds numbers in the range 50-5000. We found that a correct choice of the number of neighboring particles is of fundamental importance in order to obtain convergence towards the analytical solution. This number has to increase with higher Reynolds numbers in order to prevent the onset of spurious vorticity inside the bulk of the fluid, leading to an unphysical overdamping of the wave amplitude. This generation of spurious vorticity strongly depends on the specific kernel function used in the SPH model.
Convergence Zone over the Patagonian Shelf
NASA Technical Reports Server (NTRS)
2002-01-01
The bright waters off the east coast of Argentina mark the convergence of the Malvinas and Brazil Currents. The interaction of the two currents brings nutrients from the dark ocean depths to the sunlit surface, resulting in dense blooms of phytoplankton, especially in the spring and early summer. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) imaged the area on November 29, 2001. For more information, read Convergence Zones: Where the Action Is Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1988-01-01
An approximation and convergence theory was developed for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. The Riccati equation was treated as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. A generic approximation result was proven for quasi-autonomous nonlinear evolution system involving accretive operators which was then used to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. The application of the results was illustrated in the context of a linear quadratic optimal control problem for a one dimensional heat equation.
a Numerical Simulation of a Tornado-Scale Vortex in a Three-Dimensional Cloud Model
NASA Astrophysics Data System (ADS)
Wicker, Louis John
1990-01-01
One of the more spectacular and elusive events of nature is the tornado. Usually spawned by a highly organized, lasting, and rotating thunderstorm called a "supercell", tornadoes are one of the most destructive atmospheric phenomena. Tornadoes almost always have length and time scales smaller than the measurable scales within the observing network of surface stations, conventional radar, Doppler radar and satellites. Therefore direct observations of tornadoes and their parent features are rarely obtained. Consequently, understanding of these phenomena will generally have to come from theoretical work, laboratory experiments, and numerical simulations. In this thesis we seek to understand the process of tornadogenesis within the context of a fully three-dimensional cloud model. Very high horizontal and vertical resolution is used to capture a developing tornado-scale vortex during the simulation of a strongly rotating supercell storm simulated within the 3 April 1964 environment from Witchita Fall, Texas. To better represent the influence of surface friction on the vortex flow, a simple surface layer parametrization of the vertical fluxes of horizontal momentum is added to the model. Results from the simulation show that a tornado -scale vortex forms along the western edge of the mesocyclone, intensifies and rotates cyclonically around the center of the mesocyclone over a several minute period. The inclusion of the surface layer parameterization increases the low -level velocity convergence. Surface vertical vorticity is greater than 0.43 s^{-1} for thirty seconds and greater than 0.3 s^ {-1} for several minutes. During tornadogenesis, pressures at the surface fall 3-4 mb in thirty seconds and a pressure gradient develops of over 7 mb from the outer edge of the tornado to the center. A vortex tube extends from the surface to over 2.5 km aloft and tilts to the northwest. Analyses show that tornadogenesis occurs when the vertical velocity gradients along the western side of the mesocyclone increase and that the principle mechanism for intensifying the vertical vorticity is convergence. Analyses also show that the development of the occlusion updraft along the western edge of the mesocyclone is related to advection of warm air southwestward over the gust front and the lowering of pressure aloft within the mesocyclone core.
Gravitational convergence, shear deformation and rotation of magnetic forcelines
NASA Astrophysics Data System (ADS)
Giantsos, Vangelis; Tsagas, Christos G.
2017-11-01
We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.
Edwards, Shelley; Vanhooydonck, Bieke; Herrel, Anthony; Measey, G. John; Tolley, Krystal A.
2012-01-01
Convergent evolution can explain similarity in morphology between species, due to selection on a fitness-enhancing phenotype in response to local environmental conditions. As selective pressures on body morphology may be strong, these have confounded our understanding of the evolutionary relationships between species. Within the speciose African radiation of lacertid lizards (Eremiadini), some species occupy a narrow habitat range (e.g. open habitat, cluttered habitat, strictly rupicolous, or strictly psammophilic), which may exert strong selective pressures on lizard body morphology. Here we show that the overall body plan is unrelated to shared ancestry in the African radiation of Eremiadini, but is instead coupled to habitat use. Comprehensive Bayesian and likelihood phylogenies using multiple representatives from all genera (2 nuclear, 2 mitochondrial markers) show that morphologically convergent species thought to represent sister taxa within the same genus are distantly related evolutionary lineages (Ichnotropis squamulosa and Ichnotropis spp.; Australolacerta rupicola and A. australis). Hierarchical clustering and multivariate analysis of morphological characters suggest that body, and head, width and height (stockiness), all of which are ecologically relevant with respect to movement through habitat, are similar between the genetically distant species. Our data show that convergence in morphology, due to adaptation to similar environments, has confounded the assignment of species leading to misidentification of the taxonomic position of I. squamulosa and the Australolacerta species. PMID:23251601
Converging Oceaniac Internal Waves, Somalia, Africa
1988-10-03
The arculate fronts of these apparently converging internal waves off the northeast coast of Somalia (11.5N, 51.5E) probably were produced by interaction with two parallel submarine canyons off the Horn of Africa. Internal waves are packets of tidally generated waves traveling within the ocean at varying depths and are not detectable by any surface disturbance.
Paleomagnetic Constraints on the Forearc Deformation History of the Costa Rican Convergent Margin
NASA Astrophysics Data System (ADS)
Li, Y. X.; Zhao, X.; Xie, S.; Jovane, L.; Petronotis, K. E.
2017-12-01
We conducted a detailed paleomagnetic investigation of IODP Site U1380 located on the middle slope of the forearc wedge in order to examine the deformation history of the Costa Rican erosive convergent margin. Hole U1380C recovered a sedimentary section from 440 to 800 meters below seafloor (mbsf) consisting of, from bottom to top, silty claystone, clayey siltstone and sandstone, and silty clay. Anisotropy of magnetic susceptibility (AMS) data show predominantly oblate fabrics with the Kmin axes tilted off the vertical. Also, the degree of the Kmin tilt appears to generally track changes in bedding dip that was measured shipboard and thus can be used as a steepness proxy of tilted strata. An interval of strong deformation from 490 to 550 mbsf is indicated by the occurrence of abundant foliations that are shallower than the bedding. The interval of strong deformation is constrained from 1.95 to 1.83 Ma based on the detailed paleomagnetic investigation, together with biostratigraphic constraints. A comparative analysis of the deformation history from proximal middle slope Site U1378, frontal prism Site U1412, and upper slope Site U1379 reveals that a strongly deformed, wedge-shaped veneer of sediments formed between 2.0 and 1.9 Ma on the forearc. The short-lived, widespread, and strong forearc deformation in the Costa Rican margin is interpreted as the result of the abrupt onset of Cocos Ridge subduction. The results of this study provide supportive evidence for the "depositionary forearc" model for an erosive convergent margin.
Spiral bacterial foraging optimization method: Algorithm, evaluation and convergence analysis
NASA Astrophysics Data System (ADS)
Kasaiezadeh, Alireza; Khajepour, Amir; Waslander, Steven L.
2014-04-01
A biologically-inspired algorithm called Spiral Bacterial Foraging Optimization (SBFO) is investigated in this article. SBFO, previously proposed by the same authors, is a multi-agent, gradient-based algorithm that minimizes both the main objective function (local cost) and the distance between each agent and a temporary central point (global cost). A random jump is included normal to the connecting line of each agent to the central point, which produces a vortex around the temporary central point. This random jump is also suitable to cope with premature convergence, which is a feature of swarm-based optimization methods. The most important advantages of this algorithm are as follows: First, this algorithm involves a stochastic type of search with a deterministic convergence. Second, as gradient-based methods are employed, faster convergence is demonstrated over GA, DE, BFO, etc. Third, the algorithm can be implemented in a parallel fashion in order to decentralize large-scale computation. Fourth, the algorithm has a limited number of tunable parameters, and finally SBFO has a strong certainty of convergence which is rare in existing global optimization algorithms. A detailed convergence analysis of SBFO for continuously differentiable objective functions has also been investigated in this article.
Reply to "Comment on `Route from discreteness to the continuum for the Tsallis q -entropy' "
NASA Astrophysics Data System (ADS)
Oikonomou, Thomas; Bagci, G. Baris
2018-06-01
It has been known for some time that the usual q -entropy Sq(n ) cannot be shown to converge to the continuous case. In Phys. Rev. E 97, 012104 (2018), 10.1103/PhysRevE.97.012104, we have shown that the discrete q -entropy S˜q(n ) converges to the continuous case when the total number of states are properly taken into account in terms of a convergence factor. Ou and Abe [previous Comment, Phys. Rev. E 97, 066101 (2018), 10.1103/PhysRevE.97.066101] noted that this form of the discrete q -entropy does not conform to the Shannon-Khinchin expandability axiom. As a reply, we note that the fulfillment or not of the expandability property by the discrete q -entropy strongly depends on the origin of the convergence factor, presenting an example in which S˜q(n ) is expandable.
Multiple convergent supergene evolution events in mating-type chromosomes.
Branco, Sara; Carpentier, Fantin; Rodríguez de la Vega, Ricardo C; Badouin, Hélène; Snirc, Alodie; Le Prieur, Stéphanie; Coelho, Marco A; de Vienne, Damien M; Hartmann, Fanny E; Begerow, Dominik; Hood, Michael E; Giraud, Tatiana
2018-05-21
Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes.
Agreement dynamics on interaction networks with diverse topologies
NASA Astrophysics Data System (ADS)
Barrat, Alain; Baronchelli, Andrea; Dall'Asta, Luca; Loreto, Vittorio
2007-06-01
We review the behavior of a recently introduced model of agreement dynamics, called the "Naming Game." This model describes the self-organized emergence of linguistic conventions and the establishment of simple communication systems in a population of agents with pairwise local interactions. The mechanisms of convergence towards agreement strongly depend on the network of possible interactions between the agents. In particular, the mean-field case in which all agents communicate with all the others is not efficient, since a large temporary memory is requested for the agents. On the other hand, regular lattice topologies lead to a fast local convergence but to a slow global dynamics similar to coarsening phenomena. The embedding of the agents in a small-world network represents an interesting tradeoff: a local consensus is easily reached, while the long-range links allow to bypass coarsening-like convergence. We also consider alternative adaptive strategies which can lead to faster global convergence.
Iterative discrete ordinates solution of the equation for surface-reflected radiance
NASA Astrophysics Data System (ADS)
Radkevich, Alexander
2017-11-01
This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles.
NASA Astrophysics Data System (ADS)
Böll, Anna; Gaye, Birgit; Lückge, Andreas
2014-05-01
Variability in the oceanic environment of the Arabian Sea region is strongly influenced by the seasonal monsoon cycle of alternating wind directions. Strong south-westerly winds during the summer monsoon induce upwelling of nutrient rich waters along the coast off Somalia, Oman and southwest India, which result in high rates of primary production. In the northeastern Arabian Sea off Pakistan on the other hand, primary production and sea surface temperatures are linked to northeast monsoonal winds that cool the sea surface and drive convective mixing and high surface ocean productivity during the winter season. In this study, we analyzed alkenone-derived sea surface temperature (SST) variations and proxies of primary productivity (organic carbon and δ15N) in a well-laminated sediment core from the Pakistan continental margin to establish the first high-resolution record of winter monsoon variability for the late Holocene. Over the last 2400 years reconstructed SST in the northeastern Arabian Sea decreased whereas productivity increased, imaging a long-term trend of northeast monsoon strengthening in response to insolation-induced southward migration of the Intertropical Convergence Zone. The comparison of our winter monsoon record with records of summer monsoon intensity suggests that summer and winter monsoon strength was essentially anti-correlated over the late Holocene throughout the Asian monsoon system. In addition, SST variations recorded off Pakistan match very well with Northern Hemisphere temperature records supporting the growing body of evidence that Asian climate is linked to Northern Hemisphere climate change. It reveals a consistent pattern of increased summer monsoon activity in the northeastern Arabian Sea during northern hemispheric warm periods (Medieval Warm Period, Roman Warm Period) and strengthened winter monsoon activity during hemispheric colder periods (Little Ice Age).
A convergent series expansion for hyperbolic systems of conservation laws
NASA Technical Reports Server (NTRS)
Harabetian, E.
1985-01-01
The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.
Martinez, Elodie; Maamaatuaiahutapu, Keitapu; Taillandier, Vincent
2009-09-01
Whatever its origin is, a floating particle at the sea surface is advected by ocean currents. Surface currents could be derived from in situ observations or combined with satellite data. For a better resolution in time and space, we use satellite-derived sea-surface height and wind stress fields with a 1/3 degrees grid from 1993 to 2001 to determine the surface circulation of the South Pacific Ocean. Surface currents are then used to compute the Lagrangian trajectories of floating debris. Results show an accumulation of the debris in the eastern-centre region of the South Pacific subtropical gyre ([120 degrees W; 80 degrees W]-[20 degrees S; 40 degrees S]), resulting from a three-step process: in the first two years, mostly forced by Ekman drift, the debris drift towards the tropical convergence zone ( approximately 30 degrees S). Then they are advected eastward mostly forced by geostrophic currents. They finally reach the eastern-centre region of the South Pacific subtropical gyre from where they could not escape.
Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon
2014-01-01
Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.
The effects of cloud radiative forcing on an ocean-covered planet
NASA Technical Reports Server (NTRS)
Randall, David A.
1990-01-01
Cumulus anvil clouds, whose importance has been emphasized by observationalists in recent years, exert a very powerful influence on deep tropical convection by tending to radiatively destabilize the troposphere. In addition, they radiatively warm the column in which they reside. Their strong influence on the simulated climate argues for a much more refined parameterization in the General Circulation Model (GCM). For Seaworld, the atmospheric cloud radiative forcing (ACRF) has a powerful influence on such basic climate parameters as the strength of the Hadley circulation, the existence of a single narrow InterTropical Convergence Zone (ITCZ), and the precipitable water content of the atmosphere. It seems likely, however, that in the real world the surface CRF feeds back negatively to suppress moist convection and the associated cloudiness, and so tends to counteract the effects of the ACRF. Many current climate models have fixed sea surface temperatures but variable land-surface temperatures. The tropical circulations of such models may experience a position feedback due to ACRF over the oceans, and a negative or weak feedback due to surface CRF over the land. The overall effects of the CRF on the climate system can only be firmly established through much further analysis, which can benefit greatly from the use of a coupled ocean-atmospheric model.
NASA Technical Reports Server (NTRS)
Brand, J. C.
1985-01-01
Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. The mathematical background for formulating an iterative equation is covered using straightforward single variable examples including an extension to vector spaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.
NASA Astrophysics Data System (ADS)
Storti, Mario A.; Nigro, Norberto M.; Paz, Rodrigo R.; Dalcín, Lisandro D.
2009-03-01
In this paper some results on the convergence of the Gauss-Seidel iteration when solving fluid/structure interaction problems with strong coupling via fixed point iteration are presented. The flow-induced vibration of a flat plate aligned with the flow direction at supersonic Mach number is studied. The precision of different predictor schemes and the influence of the partitioned strong coupling on stability is discussed.
Müller, Johannes; Hipsley, Christy A; Maisano, Jessica A
2016-11-01
The fossorial amphisbaenians, or worm lizards, are characterized by a suite of specialized characters in the skull and postcranium, however fossil evidence suggests that at least some of these shared derived traits evolved convergently. Unfortunately the lack of detailed knowledge of many fossil taxa has rendered a more precise interpretation difficult. Here we describe the cranial anatomy of the oldest-known well-preserved amphisbaenian, Spathorhynchus fossorium, from the Eocene Green River Formation, Wyoming, USA, using high-resolution X-ray computed tomography (HRXCT). This taxon possesses one of the most strongly reinforced crania known among amphisbaenians, with many dermal bones overlapping each other internally. In contrast to modern taxa, S. fossorium has a paired orbitosphenoid, lacks a true compound bone in the mandible, and possesses a fully enclosed orbital rim. The last feature represents a highly derived structure in that the jugal establishes contact with the frontal internally, reinforcing the posterior orbital margin. S. fossorium also possesses a strongly modified Vidian canal with a previously unknown connection to the ventral surface of the parabasisphenoid. Comparison with the closely related fossil taxon Dyticonastis rensbergeri reveals that these derived traits are also shared by the latter species and potentially represent synapopmorphies of an extinct Paleogene clade of amphisbaenians. The presence of a reinforced orbital rim suggests selection against the loss of a functional eye and indicates an ecology potentially different from modern taxa. Given the currently accepted phylogenetic position of Spathorhynchus and Dyticonastis, we predict that supposedly 'unique' cranial traits traditionally linked to fossoriality such as a fused orbitosphenoid and the reduction of the eye show a more complex character history than previously assumed, including both parallel evolution and reversals to superficially primitive conditions. © 2016 Anatomical Society.
REPRESENTATIONS OF WEAK AND STRONG INTEGRALS IN BANACH SPACES
Brooks, James K.
1969-01-01
We establish a representation of the Gelfand-Pettis (weak) integral in terms of unconditionally convergent series. Moreover, absolute convergence of the series is a necessary and sufficient condition in order that the weak integral coincide with the Bochner integral. Two applications of the representation are given. The first is a simplified proof of the countable additivity and absolute continuity of the indefinite weak integral. The second application is to probability theory; we characterize the conditional expectation of a weakly integrable function. PMID:16591755
Hörmann, Nicolas G; Groß, Axel
2014-07-21
The ionic compounds that are used as electrode materials in Li-based rechargeable batteries can exhibit polar surfaces that in general have high surface energies. We derive an analytical estimate for the surface energy of such polar surfaces assuming charge redistribution as a polarity compensating mechanism. The polar contribution to the converged surface energy is found to be proportional to the bandgap multiplied by the surface charge necessary to compensate for the depolarization field, and some higher order correction terms that depend on the specific surface. Other features, such as convergence behavior, coincide with published results. General conclusions are drawn on how to perform polar surface energy calculations in a slab configuration and upper boundaries of "purely" polar surface energies are estimated. Furthermore, we compare these findings with results obtained in a density functional theory study of Li(2)FeSiO(4) surfaces. We show that typical polar features are observed and provide a decomposition of surface energies into polar and local bond-cutting contributions for 29 different surfaces. We show that the model is able to explain subtle differences of GGA and GGA+U surface energy calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulations of Converging Shock Collisions for Shock Ignition
NASA Astrophysics Data System (ADS)
Sauppe, Joshua; Dodd, Evan; Loomis, Eric
2016-10-01
Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.
Richard V. Pouyat; Ian D. Yesilonis; Miklos Dombos; Katalin Szlavecz; Heikki Setala; Sarel Cilliers; Erzsebet Hornung; D. Johan Kotze; Stephanie Yarwood
2015-01-01
As part of the Global Urban Soil Ecology and Education Network and to test the urban ecosystem convergence hypothesis, we report on soil pH, organic carbon (OC), total nitrogen (TN), phosphorus (P), and potassium (K) measured in four soil habitat types (turfgrass, ruderal, remnant, and reference) in five metropolitan areas (Baltimore, Budapest,...
Sensitivity of Coupled Tropical Pacific Model Biases to Convective Parameterization in CESM1
NASA Astrophysics Data System (ADS)
Woelfle, M. D.; Yu, S.; Bretherton, C. S.; Pritchard, M. S.
2018-01-01
Six month coupled hindcasts show the central equatorial Pacific cold tongue bias development in a GCM to be sensitive to the atmospheric convective parameterization employed. Simulations using the standard configuration of the Community Earth System Model version 1 (CESM1) develop a cold bias in equatorial Pacific sea surface temperatures (SSTs) within the first two months of integration due to anomalous ocean advection driven by overly strong easterly surface wind stress along the equator. Disabling the deep convection parameterization enhances the zonal pressure gradient leading to stronger zonal wind stress and a stronger equatorial SST bias, highlighting the role of pressure gradients in determining the strength of the cold bias. Superparameterized hindcasts show reduced SST bias in the cold tongue region due to a reduction in surface easterlies despite simulating an excessively strong low-level jet at 1-1.5 km elevation. This reflects inadequate vertical mixing of zonal momentum from the absence of convective momentum transport in the superparameterized model. Standard CESM1simulations modified to omit shallow convective momentum transport reproduce the superparameterized low-level wind bias and associated equatorial SST pattern. Further superparameterized simulations using a three-dimensional cloud resolving model capable of producing realistic momentum transport simulate a cold tongue similar to the default CESM1. These findings imply convective momentum fluxes may be an underappreciated mechanism for controlling the strength of the equatorial cold tongue. Despite the sensitivity of equatorial SST to these changes in convective parameterization, the east Pacific double-Intertropical Convergence Zone rainfall bias persists in all simulations presented in this study.
Evaluation of Bogus Vortex Techniques with Four-Dimensional Variational Data Assimilation
NASA Technical Reports Server (NTRS)
Pu, Zhao-Xia; Braun, Scott A.
2000-01-01
The effectiveness of techniques for creating "bogus" vortices in numerical simulations of hurricanes is examined by using the Penn State/NCAR nonhydrostatic mesoscale model (MM5) and its adjoint system. A series of four-dimensional variational data assimilation (4-D VAR) experiments is conducted to generate an initial vortex for Hurricane Georges (1998) in the Atlantic Ocean by assimilating bogus sea-level pressure and surface wind information into the mesoscale numerical model. Several different strategies are tested for improving the vortex representation. The initial vortices produced by the 4-D VAR technique are able to reproduce many of the structural features of mature hurricanes. The vortices also result in significant improvements to the hurricane forecasts in terms of both intensity and track. In particular, with assimilation of only bogus sea-level pressure information, the response in the wind field is contained largely within the divergent component, with strong convergence leading to strong upward motion near the center. Although the intensity of the initial vortex seems to be well represented, a dramatic spin down of the storm occurs within the first 6 h of the forecast. With assimilation of bogus surface wind data only, an expected dominance of the rotational component of the wind field is generated, but the minimum pressure is adjusted inadequately compared to the actual hurricane minimum pressure. Only when both the bogus surface pressure and wind information are assimilated together does the model produce a vortex that represents the actual intensity of the hurricane and results in significant improvements to forecasts of both hurricane intensity and track.
First-principle modelling of forsterite surface properties: Accuracy of methods and basis sets.
Demichelis, Raffaella; Bruno, Marco; Massaro, Francesco R; Prencipe, Mauro; De La Pierre, Marco; Nestola, Fabrizio
2015-07-15
The seven main crystal surfaces of forsterite (Mg2 SiO4 ) were modeled using various Gaussian-type basis sets, and several formulations for the exchange-correlation functional within the density functional theory (DFT). The recently developed pob-TZVP basis set provides the best results for all properties that are strongly dependent on the accuracy of the wavefunction. Convergence on the structure and on the basis set superposition error-corrected surface energy can be reached also with poorer basis sets. The effect of adopting different DFT functionals was assessed. All functionals give the same stability order for the various surfaces. Surfaces do not exhibit any major structural differences when optimized with different functionals, except for higher energy orientations where major rearrangements occur around the Mg sites at the surface or subsurface. When dispersions are not accounted for, all functionals provide similar surface energies. The inclusion of empirical dispersions raises the energy of all surfaces by a nearly systematic value proportional to the scaling factor s of the dispersion formulation. An estimation for the surface energy is provided through adopting C6 coefficients that are more suitable than the standard ones to describe O-O interactions in minerals. A 2 × 2 supercell of the most stable surface (010) was optimized. No surface reconstruction was observed. The resulting structure and surface energy show no difference with respect to those obtained when using the primitive cell. This result validates the (010) surface model here adopted, that will serve as a reference for future studies on adsorption and reactivity of water and carbon dioxide at this interface. © 2015 Wiley Periodicals, Inc.
Focusing of active particles in a converging flow
Potomkin, Mykhailo; Kaiser, Andreas; Berlyand, Leonid; ...
2017-10-20
We consider active particles swimming in a convergent fluid flow in a trapezoid nozzle with no-slip walls. We use mathematical modeling to analyze trajectories of these particles inside the nozzle. By extensive Monte Carlo simulations, we show that trajectories are strongly affected by the background fluid flow and geometry of the nozzle leading to wall accumulation and upstream motion (rheotaxis). In particular, we describe the non-trivial focusing of active rods depending on physical and geometrical parameters. It is also established that the convergent component of the background flow leads to stability of both downstream and upstream swimming at the centerline.more » The stability of downstream swimming enhances focusing, and the stability of upstream swimming enables rheotaxis in the bulk.« less
Weak Gravitational Lensing of Finite Beams.
Fleury, Pierre; Larena, Julien; Uzan, Jean-Philippe
2017-11-10
The standard theory of weak gravitational lensing relies on the infinitesimal light beam approximation. In this context, images are distorted by convergence and shear, the respective sources of which unphysically depend on the resolution of the distribution of matter-the so-called Ricci-Weyl problem. In this Letter, we propose a strong-lensing-inspired formalism to describe the lensing of finite beams. We address the Ricci-Weyl problem by showing explicitly that convergence is caused by the matter enclosed by the beam, regardless of its distribution. Furthermore, shear turns out to be systematically enhanced by the finiteness of the beam. This implies, in particular, that the Kaiser-Squires relation between shear and convergence is violated, which could have profound consequences on the interpretation of weak-lensing surveys.
Grossmann, G; Giesler, M; Stein, M; Kochs, M; Höher, M; Hombach, V
1998-10-30
In patients with mitral (n=77: organic=49, functional=28) and tricuspid regurgitation (n=55: functional=54) quantified by angiography, the temporal variation of the proximal flow convergence region throughout systole was assessed by colour Doppler M-Mode, and peak and mean radius of the proximal isovelocity surface area for 28 cm/s blood flow velocity were measured. Additionally, the peak radius derived from two-dimensional colour Doppler was obtained. About 50% of the patients with mitral and tricuspid regurgitation showed a typical temporal variation of the flow convergence region related to the mechanism of regurgitation. The different proximal isovelocity surface area radii were similarly correlated to the angiographic grade in mitral and tricuspid regurgitation (rank correlation coefficients 0.55-0.89) and they differentiated mild to moderate (grade < or =II) from severe (grade > or =III) mitral and tricuspid regurgitation with comparable accuracy (82-96%). However, moderate mitral regurgitation due to leaflet prolapse in two patients was correctly classified by the mean M-mode radius and overestimated by both peak radii. Only half of the patients showed a typical variation of the flow convergence region related to the mechanism of regurgitation. The different proximal isovelocity surface area radii were suitable to quantify mitral and tricuspid regurgitation in most patients. However, in mitral regurgitation due to leaflet prolapse the use of the mean M-mode radius may avoid overestimation.
A robust, finite element model for hydrostatic surface water flows
Walters, R.A.; Casulli, V.
1998-01-01
A finite element scheme is introduced for the 2-dimensional shallow water equations using semi-implicit methods in time. A semi-Lagrangian method is used to approximate the effects of advection. A wave equation is formed at the discrete level such that the equations decouple into an equation for surface elevation and a momentum equation for the horizontal velocity. The convergence rates and relative computational efficiency are examined with the use of three test cases representing various degrees of difficulty. A test with a polar-quadrant grid investigates the response to local grid-scale forcing and the presence of spurious modes, a channel test case establishes convergence rates, and a field-scale test case examines problems with highly irregular grids.A finite element scheme is introduced for the 2-dimensional shallow water equations using semi-implicit methods in time. A semi-Lagrangian method is used to approximate the effects of advection. A wave equation is formed at the discrete level such that the equations decouple into an equation for surface elevation and a momentum equation for the horizontal velocity. The convergence rates and relative computational efficiency are examined with the use of three test cases representing various degrees of difficulty. A test with a polar-quadrant grid investigates the response to local grid-scale forcing and the presence of spurious modes, a channel test case establishes convergence rates, and a field-scale test case examines problems with highly irregular grids.
Case study: A severe hailstorm and strong downbursts over northeastern Slovenia on June 16th 2009
NASA Astrophysics Data System (ADS)
Korosec, M.
2009-09-01
Introduction A strong isolated storm complex with bow echo feature crossed northeastern Slovenia in the late afternoon hours and caused extensive damage due to severe wind gusts near 30m/s, excessive rainfalls and large hail. Synoptic situation On June 16th 2009, an upper-level ridge persists over southern Europe while a positively tilted short-wave trough, connected to a complex deep trough over northern Europe, crosses central Europe. Accompanied by this trough, a cold front is extending southwestwards towards the Alps. A relatively strong jet steak wraps around the trough axis and creates strong shear environment which overlaps with a narrow band of unstable airmass present ahead of the coming frontal boundary. Behind this trough/front over central Europe, a high pressure area is developing with stable conditions. Over Slovenia, strong surface heating was on going through the day but lack of near-surface convergence zones, limited moisture and strong capping inversion surpressed any storm initiation in the afternoon. Presentation of research This case study will go through a research of damaging bow echo which caused extensive damage due to severe winds, excessive rainfalls and large hail over much of northeastern Slovenia. Numerous trees were down or uprooted and numerous roofs were blown off or were seriously damaged due to severe wind gusts near or exceeding 30m/s. At first stages, when an isolated severe storm entered Slovenia, it had classic high precipitation supercell features while it transformed into a powerful bow echo later on. Very large hail up to 6cm in diameter was first observed in southeast Austria and near the border with Slovenia, while later on the main threat was very strong wind gusts and intense rainfalls. This research paper will show a detailed analysis of the synoptic situation including analysis of satellite, radar and surface observations. Radar imagery clearly showed isolated storm trailing along the near-surface frontal boundary as a bow echo and also satellite imagery showed signs of extremely severe storm as overshooting tops, "cold ring" and "U-shape" features were observed. References - Skywarn Austria forum: (http://www.skywarn.at/forum/) - EARS radar and SFC observations archive (http://www.arso.gov.si) - EARS article: Porocilo o neurjih 16. junija 2009 - OSMER FVG (http://www.meteo.fvg.it) - ESSL/ESWD database (www.essl.org) - ESTOFEX convective maps (www.estofex.org) - EUMETSAT satellite imagery (www.eumetsat.int) - 24ur.com/RTVSLO web portal (www.24ur.com, www.rtvslo.si) - Sobota Info web portal (www.sobotainfo.com) - Pomurje web portal (www.pomurje.si) - Administration of the Republic of Slovenia for Civil Protection and Disaster Relief, www.sos112.si - Worldwide Skew-t diagrams (http://weather.uwyo.edu/upperair/europe.html)
A Case Study of Mesoscale Cyclonic Vortices Associated with the South Atlantic Convergence Zone
NASA Astrophysics Data System (ADS)
Leal de Quadro, M. F.; Faus da Silva Dias, M. A.; Herdies, D. L.; Goncalves, L.
2014-12-01
The objective of this work is to study the behavior of mesoscale cyclonic vortices (MCVs) over South America, principally those that form in association with the South Atlantic Convergence Zone (SACZ), with a view toward identifying the basic characteristics of the formation of these MCVs. Two case studies were conducted over the Continental Amazonia Zone, simulated using the BRAMS model, showing the relationship between the mesovortices formation and the convective activity near its formation region. A thermodynamic analysis of two selected MCVs, embedded in the SACZ, highlights some salient features of these intense MCVs. Both systems are associated with strong upward vertical motion throughout practically the whole troposphere, before and during formation. This motion creates a transport of moisture into the upper troposphere and the surface fluxes of sensible and latent heat are reduced when the MCVs are operating. These systems that form in more than one level in the troposphere are more intense and are associated with greater precipitation rates (over 150 mm). Another striking feature is that these systems dissipate quickly. With respect to the horizontal wind, there is no similarity in pattern between the two cases. The first case, where the base of the vortex formed at 925 hPa and extended to 875 hPa, was characterized by convergence of winds from the south - west of the vortex - with winds from the north - east of the vortex. In the second case, which extended from 800 hPa to 775 hPa, we can clearly see the motion, originating in central Brazil, transporting moisture toward the vortex and certainly serving as a local factor contributing significantly to the moisture balance in the region.
Hobbhahn, Nina; Johnson, Steven D; Bytebier, Benny; Yeung, Edward C; Harder, Lawrence D
2013-11-01
The Orchidaceae have a history of recurring convergent evolution in floral function as nectar production has evolved repeatedly from an ancestral nectarless state. However, orchids exhibit considerable diversity in nectary type, position and morphology, indicating that this convergence arose from alternative adaptive solutions. Using the genus Disa, this study asks whether repeated evolution of floral nectaries involved recapitulation of the same nectary type or diversifying innovation. Epidermis morphology of closely related nectar-producing and nectarless species is also compared in order to identify histological changes that accompanied the gain or loss of nectar production. The micromorphology of nectaries and positionally equivalent tissues in nectarless species was examined with light and scanning electron microscopy. This information was subjected to phylogenetic analyses to reconstruct nectary evolution and compare characteristics of nectar-producing and nectarless species. Two nectary types evolved in Disa. Nectar exudation by modified stomata in floral spurs evolved twice, whereas exudation by a secretory epidermis evolved six times in different perianth segments. The spur epidermis of nectarless species exhibited considerable micromorphological variation, including strongly textured surfaces and non-secreting stomata in some species. Epidermis morphology of nectar-producing species did not differ consistently from that of rewardless species at the magnifications used in this study, suggesting that transitions from rewardlessness to nectar production are not necessarily accompanied by visible morphological changes but only require sub-cellular modification. Independent nectary evolution in Disa involved both repeated recapitulation of secretory epidermis, which is present in the sister genus Brownleea, and innovation of stomatal nectaries. These contrasting nectary types and positional diversity within types imply weak genetic, developmental or physiological constraints in ancestral, nectarless Disa. Such functional convergence generated by morphologically diverse solutions probably also underlies the extensive diversity of nectary types and positions in the Orchidaceae.
Complex symmetric matrices with strongly stable iterates
NASA Technical Reports Server (NTRS)
Tadmor, E.
1985-01-01
Complex-valued symmetric matrices are studied. A simple expression for the spectral norm of such matrices is obtained, by utilizing a unitarily congruent invariant form. A sharp criterion is provided for identifying those symmetric matrices whose spectral norm is not exceeding one: such strongly stable matrices are usually sought in connection with convergent difference approximations to partial differential equations. As an example, the derived criterion is applied to conclude the strong stability of a Lax-Wendroff scheme.
Carpenter, Donald A.
1995-01-01
A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data.
Carpenter, D.A.
1995-05-23
A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data. 7 Figs.
From Atomistic Model to the Peierls-Nabarro Model with {γ} -surface for Dislocations
NASA Astrophysics Data System (ADS)
Luo, Tao; Ming, Pingbing; Xiang, Yang
2018-05-01
The Peierls-Nabarro (PN) model for dislocations is a hybrid model that incorporates the atomistic information of the dislocation core structure into the continuum theory. In this paper, we study the convergence from a full atomistic model to the PN model with {γ} -surface for the dislocation in a bilayer system. We prove that the displacement field and the total energy of the dislocation solution of the PN model are asymptotically close to those of the full atomistic model. Our work can be considered as a generalization of the analysis of the convergence from atomistic model to Cauchy-Born rule for crystals without defects.
Plant cell surface receptor-mediated signaling - a common theme amid diversity.
He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong
2018-01-29
Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.
Theory of Advanced Magnetic Divertors
NASA Astrophysics Data System (ADS)
Kotschenreuther, Michael; Valanju, Prashant; Mahajan, Swadesh; Covele, Brent
2013-10-01
The magnetic field structure in the SOL is the most important determinant of divertor physics. A comprehensive analytical and numerical methodology is developed to investigate SOL magnetic fields in the backdrop of two advanced divertor geometries- the X-divertor (XD) proposed and discussed in 2004, and the snowflake divertor (SFD) of 2007-2010. The analysis shows that XD and SFD represent very distinct and readily distinguishable magnetic geometries, epitomized through a differentiating metric, the Divertor Index (DI). In terms of this simple metric, the XD (DI > 1) and the SFD (DI < 1) fall on opposite sides of the standard divertor SD (DI = 1). Amongst other things, DI signifies the rate of convergence (divergence) of the flux surfaces near the divertor plate; the flux surfaces of SFD are more convergent contracting) than the SD while the XD flux surfaces are less convergent, in fact, divergent (flaring). These different SOL magnetics imply different physics, particularly with respect to detachment dynamics. It is also shown that some experiments on NSTX and DIII-D match both the prescription and the predictions of the 2004 XD paper. Work supported under US-DOE projects DE-FG02-04ER54742 and DE-FG02-04ER54754.
Global convergence in the temperature sensitivity of respiration at ecosystem level.
Mahecha, Miguel D; Reichstein, Markus; Carvalhais, Nuno; Lasslop, Gitta; Lange, Holger; Seneviratne, Sonia I; Vargas, Rodrigo; Ammann, Christof; Arain, M Altaf; Cescatti, Alessandro; Janssens, Ivan A; Migliavacca, Mirco; Montagnani, Leonardo; Richardson, Andrew D
2010-08-13
The respiratory release of carbon dioxide (CO(2)) from the land surface is a major flux in the global carbon cycle, antipodal to photosynthetic CO(2) uptake. Understanding the sensitivity of respiratory processes to temperature is central for quantifying the climate-carbon cycle feedback. We approximated the sensitivity of terrestrial ecosystem respiration to air temperature (Q(10)) across 60 FLUXNET sites with the use of a methodology that circumvents confounding effects. Contrary to previous findings, our results suggest that Q(10) is independent of mean annual temperature, does not differ among biomes, and is confined to values around 1.4 +/- 0.1. The strong relation between photosynthesis and respiration, by contrast, is highly variable among sites. The results may partly explain a less pronounced climate-carbon cycle feedback than suggested by current carbon cycle climate models.
Vincent, J P; Oster, G F; Gerhart, J C
1986-02-01
Specification of the amphibian dorso-ventral axis takes place in the period between fertilization and first cleavage when the gray crescent forms. In the course of gray crescent formation, the egg reorganizes its periphery by a movement for which two descriptions have been given. According to the "rotation hypothesis," which was originated and supported for Rana eggs, the entire egg cortex rotates by an arc of 30 degrees relative to the stationary subcortical cytoplasm, leaving the crescent as a zone of altered coloration. The "contraction hypothesis" on the other hand, which was proposed for Xenopus and Rana eggs, asserts that there is a cortical contraction focused at the sperm entry point that leads to stretching of the opposite equatorial zone at which the crescent appears. We have reinvestigated the case of Xenopus eggs by imprinting one kind of fluorescent dye pattern (Nile blue) onto the subcortical cytoplasm and another kind (fluorescein-lectin) onto the egg surface. When the egg surface is held fixed by embedding the egg in gelatin, two major movements of the subcortical cytoplasm are observable. First, starting at time 0.3 (30% of the time between fertilization and first cleavage), the animal hemisphere subcortical cytoplasm converges toward a point, while the vegetal hemisphere is quiescent. This convergence continues with decreasing strength until approximately 0.8 of the first cell cycle. Second, at 0.45, an overall rotation of the animal and vegetal subcortical cytoplasm commences, superimposed on the animal hemisphere convergence. By 0.8-0.9 the rotation is complete, having accomplished a 30 degrees displacement of the subcortical cytoplasm relative to the surface. This rotation reliably locates the future dorsal midline of the embryo at the meridian on which the displacement of the subcortical cytoplasm is greatest in a vegetal direction. In normal unembedded eggs, when the egg surface is free to move, it rotates 30 degrees relative to the subcortical cytoplasm, which remains stationary in a position of gravitational equilibrium. Although both a convergence and rotation occur in the Xenopus egg, we give evidence that the rotation, not the convergence (perhaps equated with contraction), specifies the embryo's prospective axis. Even though the Xenopus egg does not form a classical gray crescent, due to its particular pigment distribution, the reorganization process which specifies the future embryonic axis resembles that of the Rana egg.
Appraisal of jump distributions in ensemble-based sampling algorithms
NASA Astrophysics Data System (ADS)
Dejanic, Sanda; Scheidegger, Andreas; Rieckermann, Jörg; Albert, Carlo
2017-04-01
Sampling Bayesian posteriors of model parameters is often required for making model-based probabilistic predictions. For complex environmental models, standard Monte Carlo Markov Chain (MCMC) methods are often infeasible because they require too many sequential model runs. Therefore, we focused on ensemble methods that use many Markov chains in parallel, since they can be run on modern cluster architectures. Little is known about how to choose the best performing sampler, for a given application. A poor choice can lead to an inappropriate representation of posterior knowledge. We assessed two different jump moves, the stretch and the differential evolution move, underlying, respectively, the software packages EMCEE and DREAM, which are popular in different scientific communities. For the assessment, we used analytical posteriors with features as they often occur in real posteriors, namely high dimensionality, strong non-linear correlations or multimodality. For posteriors with non-linear features, standard convergence diagnostics based on sample means can be insufficient. Therefore, we resorted to an entropy-based convergence measure. We assessed the samplers by means of their convergence speed, robustness and effective sample sizes. For posteriors with strongly non-linear features, we found that the stretch move outperforms the differential evolution move, w.r.t. all three aspects.
Iterative blip-summed path integral for quantum dynamics in strongly dissipative environments
NASA Astrophysics Data System (ADS)
Makri, Nancy
2017-04-01
The iterative decomposition of the blip-summed path integral [N. Makri, J. Chem. Phys. 141, 134117 (2014)] is described. The starting point is the expression of the reduced density matrix for a quantum system interacting with a harmonic dissipative bath in the form of a forward-backward path sum, where the effects of the bath enter through the Feynman-Vernon influence functional. The path sum is evaluated iteratively in time by propagating an array that stores blip configurations within the memory interval. Convergence with respect to the number of blips and the memory length yields numerically exact results which are free of statistical error. In situations of strongly dissipative, sluggish baths, the algorithm leads to a dramatic reduction of computational effort in comparison with iterative path integral methods that do not implement the blip decomposition. This gain in efficiency arises from (i) the rapid convergence of the blip series and (ii) circumventing the explicit enumeration of between-blip path segments, whose number grows exponentially with the memory length. Application to an asymmetric dissipative two-level system illustrates the rapid convergence of the algorithm even when the bath memory is extremely long.
Iteration of ultrasound aberration correction methods
NASA Astrophysics Data System (ADS)
Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond
2004-05-01
Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.
On Some Parabolic Type Problems from Thin Film Theory and Chemical Reaction-Diffusion Networks
NASA Astrophysics Data System (ADS)
Mohamed, Fatma Naser Ali
This dissertation considers some parabolic type problems from thin film theory and chemical reaction-diffusion networks. The dissertation consists of two parts: In the first part, we study the evolution of a thin film of fluid modeled by the lubrication approximation for thin viscous films. We prove an existence of (dissipative) strong solutions for the Cauchy problem when the sub-diffusive exponent ranges between 3/8 and 2; then we show that these solutions tend to zero at rates matching the decay of the source-type self-similar solutions with zero contact angle. We introduce the weaker concept of dissipative mild solutions and we show that, in this case, the surface-tension energy dissipation is the mechanism responsible for the H1-norm decay to zero of the thickness of the film at an explicit rate. Relaxed problems, with second-order nonlinear terms of porous media type, are also successfully treated by the same means. [special characters omitted]. In the second part, we are concerned with the convergence of a certain space-discretization scheme -the so-called method of lines- for mass-action reaction-diffusion systems. First, we start with a toy model, namely. [special characters omitted]. and prove convergence of method of lines for this linear case. Here weak convergence in L2(0,1) is enough to prove convergence of the method of lines. Then we adopt the framework for convergence analysis introduced in [23] and concentrate on the proof-of-concept reaction. within 1D space, while at the same time noting that our techniques are readily generalizable to other reaction-diffusion networks and to more than one space dimension. Indeed, it will be obvious how to extend our proofs to the multi-dimensional case; we only note that the proof of the comparison principle (the continuous and the discrete versions; see chapter 6) imposes a limitation on the spatial dimension (should be at most five; see [24] for details). The Method of Lines (MOL) is not a mainstream numerical tool and the specialized literature is rather scarce. The method amounts to discretizing evolutionary PDE's in space only, so it produces a semi-discrete numerical scheme which consists of a system of ODE's (in the time variable). To prove convergence of the semi-discrete MOL scheme to the original PDE one needs to perform some more or less traditional analysis: it is necessary to show that the scheme is consistent with the continuous problem and that the discretized version of the spatial differential operator retains sufficient dissipative properties in order to allow an application of Gronwall's Lemma to the error term. As shown in [23], a uniform (in time) consistency estimate is sufficient to obtain convergence; however, the consistency estimate we proved is not uniform for a small time, so we cannot directly employ the results in [23] to prove convergence in our case. Instead, we prove all the required estimates "from the scratch", then we use their exact quantitative form in order to conclude convergence.
Response of the surface tropical Atlantic Ocean to wind forcing
NASA Astrophysics Data System (ADS)
Castellanos, Paola; Pelegrí, Josep L.; Campos, Edmo J. D.; Rosell-Fieschi, Miquel; Gasser, Marc
2015-05-01
We use 10 years of satellite data (sea level pressure, surface winds and absolute dynamic topography [ADT]) together with Argo-inferred monthly-mean values of near-surface velocity and water transport, to examine how the tropical system of near-surface zonal currents responds to wind forcing. The data is analyzed using complex Hilbert empirical orthogonal functions, confirming that most of the variance has annual periodicity, with maximum amplitudes in the region spanned by the seasonal displacement of the Inter-Tropical Convergence Zone (ITCZ). The ADT mirrors the shape of the upper isopycnals, hence becoming a good indicator of the amount of water stored in the upper ocean. Within about 3° from the Equator, where the Coriolis force is small, there is year-long meridional Ekman-transport divergence that would lead to the eastward transport of the Equatorial Undercurrent and its northern and southern branches. Beyond 3° of latitude, and at least as far as 20°, the convergence of the Ekman transport generally causes a poleward positive ADT gradient, which sustains the westward South Equatorial Current (SEC). The sole exception occurs in summer, between 8°N and 12°N, when an Ekman-transport divergence develops and depletes de amount of surface water, resulting in an ADT ridge-valley system which reverses the ADT gradient and drives the eastward North Equatorial Countercurrent (NECC) at latitudes 4-9°N; in late fall, divergence ceases and the NECC drains the ADT ridge, so the ADT gradient again becomes positive and the SEC reappears. The seasonal evolution of a tilted ITCZ controls the surface water fluxes: the wind-induced transports set the surface divergence-convergence, which then drive the ADT and, through the ADT gradients, create the geostrophic jets that close the water balance.
Numerical evaluation of gas core length in free surface vortices
NASA Astrophysics Data System (ADS)
Cristofano, L.; Nobili, M.; Caruso, G.
2014-11-01
The formation and evolution of free surface vortices represent an important topic in many hydraulic intakes, since strong whirlpools introduce swirl flow at the intake, and could cause entrainment of floating matters and gas. In particular, gas entrainment phenomena are an important safety issue for Sodium cooled Fast Reactors, because the introduction of gas bubbles within the core causes dangerous reactivity fluctuation. In this paper, a numerical evaluation of the gas core length in free surface vortices is presented, according to two different approaches. In the first one, a prediction method, developed by the Japanese researcher Sakai and his team, has been applied. This method is based on the Burgers vortex model, and it is able to estimate the gas core length of a free surface vortex starting from two parameters calculated with single-phase CFD simulations. The two parameters are the circulation and the downward velocity gradient. The other approach consists in performing a two-phase CFD simulation of a free surface vortex, in order to numerically reproduce the gas- liquid interface deformation. Mapped convergent mesh is used to reduce numerical error and a VOF (Volume Of Fluid) method was selected to track the gas-liquid interface. Two different turbulence models have been tested and analyzed. Experimental measurements of free surface vortices gas core length have been executed, using optical methods, and numerical results have been compared with experimental measurements. The computational domain and the boundary conditions of the CFD simulations were set consistently with the experimental test conditions.
Second order Method for Solving 3D Elasticity Equations with Complex Interfaces
Wang, Bao; Xia, Kelin; Wei, Guo-Wei
2015-01-01
Elastic materials are ubiquitous in nature and indispensable components in man-made devices and equipments. When a device or equipment involves composite or multiple elastic materials, elasticity interface problems come into play. The solution of three dimensional (3D) elasticity interface problems is significantly more difficult than that of elliptic counterparts due to the coupled vector components and cross derivatives in the governing elasticity equation. This work introduces the matched interface and boundary (MIB) method for solving 3D elasticity interface problems. The proposed MIB elasticity interface scheme utilizes fictitious values on irregular grid points near the material interface to replace function values in the discretization so that the elasticity equation can be discretized using the standard finite difference schemes as if there were no material interface. The interface jump conditions are rigorously enforced on the intersecting points between the interface and the mesh lines. Such an enforcement determines the fictitious values. A number of new techniques has been developed to construct efficient MIB elasticity interface schemes for dealing with cross derivative in coupled governing equations. The proposed method is extensively validated over both weak and strong discontinuity of the solution, both piecewise constant and position-dependent material parameters, both smooth and nonsmooth interface geometries, and both small and large contrasts in the Poisson’s ratio and shear modulus across the interface. Numerical experiments indicate that the present MIB method is of second order convergence in both L∞ and L2 error norms for handling arbitrarily complex interfaces, including biomolecular surfaces. To our best knowledge, this is the first elasticity interface method that is able to deliver the second convergence for the molecular surfaces of proteins.. PMID:25914422
Interactions between cumulus convection and its environment as revealed by the MC3E sounding array
Xie, Shaocheng; Zhang, Yunyan; Giangrande, Scott E.; ...
2014-10-27
This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during themore » morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. As a result, sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.« less
Regional simulation of interannual variability over South America
NASA Astrophysics Data System (ADS)
Misra, V.; Dirmeyer, P. A.; Kirtman, B. P.; Juang, H.-M. Henry; Kanamitsu, M.
2002-08-01
Three regional climate simulations covering the austral summer season during three contrasting phases of the El Niño-Southern Oscillation cycle were conducted with the Regional Spectral Model (RSM) developed at the National Centers for Environmental Prediction (NCEP). The simulated interannual variability of precipitation over the Amazon River Basin, the Intertropical Convergence Zone, the Pacific and Atlantic Ocean basins, and extratropical South America compare reasonably well with observations. The RSM optimally filters the peturbations about a time-varying base field, thereby enhancing the information content of the global NCEP reanalysis. The model is better than the reanalysis in reproducing the observed interannual variability of outgoing longwave radiation at both high frequencies (3-30 days) and intraseasonal (30-60 days) scales. The low-level jet shows a peak in its speed in 1998 and a minimum in the 1999 simulations. The lag correlation of the jet index with convection over various areas in continental South America indicates that the jet induces precipitation over the Pampas region downstream. A detailed moisture budget was conducted over various subregions. This budget reveals that moisture flux convergence determines most of the interannual variability of precipitation over the Amazon Basin, the Atlantic Intertropical Convergence Zone, and the Nordeste region of Brazil. However, both surface evaporation and surface moisture flux convergence were found to be critical in determining the interannual variability of precipitation over the southern Pampas, Gran Chaco area, and the South Atlantic Convergence Zone.
Liao, Chenyi; Zhou, Jian
2014-06-05
The adsorption of basic fibroblast growth factor (bFGF) on the hydroxyapatite (001) surface was investigated by a combination of replica-exchange molecular dynamics (REMD) and conventional molecular dynamics (CMD) methods. In CMD, the protein cannot readily cross the surface water layer, whereas in REMD, the protein can cross the adsorption barrier from the surface water layer and go through weak, medium, then strong adsorption states with three energetically preferred configurations: heparin-binding-up (HP-up), heparin-binding-middle (HP-middle), and heparin-binding-down (HP-down). The HP-middle orientation, with the strongest adsorption energy (-1149 ± 40 kJ·mol(-1)), has the largest adsorption population (52.1-52.6%) and exhibits the largest conformational charge (RMSD of 0.26 ± 0.01 nm) among the three orientations. The HP-down and HP-up orientations, with smaller adsorption energies of -1022 ± 55 and -894 ± 70 kJ·mol(-1), respectively, have smaller adsorption populations of 27.4-27.7% and 19.7-20.5% and present smaller RMSD values of 0.21 ± 0.01 and 0.19 ± 0.01 nm, respectively. The convergent distribution indicates that nearly half of the population (in the HP-middle orientation) will support both FGF/FGFR and DGR-integrin signaling and another half (in the HP-up and HP-down orientations) will support DGR-integrin signaling. The major population (~80%) has the protein dipole directed outward. In the strong adsorption state, there are usually 2 to 3 basic residues that form the anchoring interactions of 210-332 kJ·mol(-1) per residue or that are accompanied by an acidic residue with an adsorption energy of ~207 kJ·mol(-1). Together, the major bound residues form a triangle or a quadrilateral on the surface and stabilize the adsorption geometrically, which indicates topologic matching between the protein and HAP surfaces.
Present-day uplift of the western Alps.
Nocquet, J-M; Sue, C; Walpersdorf, A; Tran, T; Lenôtre, N; Vernant, P; Cushing, M; Jouanne, F; Masson, F; Baize, S; Chéry, J; van der Beek, P A
2016-06-27
Collisional mountain belts grow as a consequence of continental plate convergence and eventually disappear under the combined effects of gravitational collapse and erosion. Using a decade of GPS data, we show that the western Alps are currently characterized by zero horizontal velocity boundary conditions, offering the opportunity to investigate orogen evolution at the time of cessation of plate convergence. We find no significant horizontal motion within the belt, but GPS and levelling measurements independently show a regional pattern of uplift reaching ~2.5 mm/yr in the northwestern Alps. Unless a low viscosity crustal root under the northwestern Alps locally enhances the vertical response to surface unloading, the summed effects of isostatic responses to erosion and glaciation explain at most 60% of the observed uplift rates. Rock-uplift rates corrected from transient glacial isostatic adjustment contributions likely exceed erosion rates in the northwestern Alps. In the absence of active convergence, the observed surface uplift must result from deep-seated processes.
NASA Astrophysics Data System (ADS)
Di Pietro, Daniele A.; Marche, Fabien
2018-02-01
In this paper, we further investigate the use of a fully discontinuous Finite Element discrete formulation for the study of shallow water free surface flows in the fully nonlinear and weakly dispersive flow regime. We consider a decoupling strategy in which we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects. This source term can be computed through the resolution of elliptic second-order linear sub-problems, which only involve second order partial derivatives in space. We then introduce an associated Symmetric Weighted Internal Penalty discrete bilinear form, allowing to deal with the discontinuous nature of the elliptic problem's coefficients in a stable and consistent way. Similar discrete formulations are also introduced for several recent optimized fully nonlinear and weakly dispersive models. These formulations are validated again several benchmarks involving h-convergence, p-convergence and comparisons with experimental data, showing optimal convergence properties.
Analysis of Online Composite Mirror Descent Algorithm.
Lei, Yunwen; Zhou, Ding-Xuan
2017-03-01
We study the convergence of the online composite mirror descent algorithm, which involves a mirror map to reflect the geometry of the data and a convex objective function consisting of a loss and a regularizer possibly inducing sparsity. Our error analysis provides convergence rates in terms of properties of the strongly convex differentiable mirror map and the objective function. For a class of objective functions with Hölder continuous gradients, the convergence rates of the excess (regularized) risk under polynomially decaying step sizes have the order [Formula: see text] after [Formula: see text] iterates. Our results improve the existing error analysis for the online composite mirror descent algorithm by avoiding averaging and removing boundedness assumptions, and they sharpen the existing convergence rates of the last iterate for online gradient descent without any boundedness assumptions. Our methodology mainly depends on a novel error decomposition in terms of an excess Bregman distance, refined analysis of self-bounding properties of the objective function, and the resulting one-step progress bounds.
Methods for converging correlation energies within the dielectric matrix formalism
NASA Astrophysics Data System (ADS)
Dixit, Anant; Claudot, Julien; Gould, Tim; Lebègue, Sébastien; Rocca, Dario
2018-03-01
Within the dielectric matrix formalism, the random-phase approximation (RPA) and analogous methods that include exchange effects are promising approaches to overcome some of the limitations of traditional density functional theory approximations. The RPA-type methods however have a significantly higher computational cost, and, similarly to correlated quantum-chemical methods, are characterized by a slow basis set convergence. In this work we analyzed two different schemes to converge the correlation energy, one based on a more traditional complete basis set extrapolation and one that converges energy differences by accounting for the size-consistency property. These two approaches have been systematically tested on the A24 test set, for six points on the potential-energy surface of the methane-formaldehyde complex, and for reaction energies involving the breaking and formation of covalent bonds. While both methods converge to similar results at similar rates, the computation of size-consistent energy differences has the advantage of not relying on the choice of a specific extrapolation model.
Moisture convergence using satellite-derived wind fields - A severe local storm case study
NASA Technical Reports Server (NTRS)
Negri, A. J.; Vonder Haar, T. H.
1980-01-01
Five-minute interval 1-km resolution SMS visible channel data were used to derive low-level wind fields by tracking small cumulus clouds on NASA's Atmospheric and Oceanographic Information Processing System. The satellite-derived wind fields were combined with surface mixing ratios to derive horizontal moisture convergence in the prestorm environment of April 24, 1975. Storms began developing in an area extending from southwest Oklahoma to eastern Tennessee 2 h subsequent to the time of the derived fields. The maximum moisture convergence was computed to be 0.0022 g/kg per sec and areas of low-level convergence of moisture were in general indicative of regions of severe storm genesis. The resultant moisture convergence fields derived from two wind sets 20 min apart were spatially consistent and reflected the mesoscale forcing of ensuing storm development. Results are discussed with regard to possible limitations in quantifying the relationship between low-level flow and between low-level flow and satellite-derived cumulus motion in an antecedent storm environment.
An analytical approach to gravitational lensing by an ensemble of axisymmetric lenses
NASA Technical Reports Server (NTRS)
Lee, Man Hoi; Spergel, David N.
1990-01-01
The problem of gravitational lensing by an ensemble of identical axisymmetric lenses randomly distributed on a single lens plane is considered and a formal expression is derived for the joint probability density of finding shear and convergence at a random point on the plane. The amplification probability for a source can be accurately estimated from the distribution in shear and convergence. This method is applied to two cases: lensing by an ensemble of point masses and by an ensemble of objects with Gaussian surface mass density. There is no convergence for point masses whereas shear is negligible for wide Gaussian lenses.
Ice crystal number concentration measured at mountain-top research stations - What do we measure?
NASA Astrophysics Data System (ADS)
Beck, A.; Henneberger, J.; Fugal, J. P.; David, R.; Larcher, L.; Lohmann, U.
2017-12-01
To assess the impact of surface processes (e.g. blowing snow and hoar frost) on the ice crystal number concentrations (ICNCs) measured at mountain-top research stations, vertical profiles of ICNCs were observed up to a height of 10 m at the Sonnblick Observatory (SBO) in the Hohen Tauern Region, Austria. Independent of the presence of a cloud, the observed ICNCs decrease with height. This suggests a strong impact of surface processes on ICNCs measured at mountain-top research stations. Consequently, the measured ICNCs are not representative of the cloud, which limits the relevance of ground-based measurements for atmospheric studies. When the SBO was cloud free, the observed ICNCs reached several hundreds per liter near the surface and gradually decreased by more than two orders of magnitudes within the observed height interval of 10 m. The observed ice crystals had predominantly irregular habits, which is expected from surface processes. During in-cloud conditions, the ICNCs decreased between a factor of five and ten, if the ICNC at the surface was larger than 100 l-1. For one case study, the ICNC for regular and irregular ice crystals showed a similar relative decrease with height, which is not expected from surface processes. Therefore, we propose two near-surface processes that potentially enrich ICNCs near the surface and explain these findings: Either sedimenting ice crystals are captured in a turbulent layer above the surface or the ICNC is enhanced in a convergence zone, as the cloud is forced over a mountain. These two processes would also have an impact on ICNCs measured at mountain-top stations if the surrounding surface is not snow covered. Thus, ground-based measured ICNCs are uncharacteristic of the cloud properties aloft.
Preszler, Jonathan; Burns, G. Leonard; Litson, Kaylee; Geiser, Christian; Servera, Mateu
2016-01-01
The objective was to determine and compare the trait and state components of oppositional defiant disorder (ODD) symptom reports across multiple informants. Mothers, fathers, primary teachers, and secondary teachers rated the occurrence of the ODD symptoms in 810 Spanish children (55% boys) on two occasions (end first and second grades). Single source latent state-trait (LST) analyses revealed that ODD symptom ratings from all four sources showed more trait (M = 63%) than state residual (M = 37%) variance. A multiple source LST analysis revealed substantial convergent validity of mothers’ and fathers’ trait variance components (M = 68%) and modest convergent validity of state residual variance components (M = 35%). In contrast, primary and secondary teachers showed low convergent validity relative to mothers for trait variance (Ms = 31%, 32%, respectively) and essentially zero convergent validity relative to mothers for state residual variance (Ms = 1%, 3%, respectively). Although ODD symptom ratings reflected slightly more trait- than state-like constructs within each of the four sources separately across occasions, strong convergent validity for the trait variance only occurred within settings (i.e., mothers with fathers; primary with secondary teachers) with the convergent validity of the trait and state residual variance components being low to non-existent across settings. These results suggest that ODD symptom reports are trait-like across time for individual sources with this trait variance, however, only having convergent validity within settings. Implications for assessment of ODD are discussed. PMID:27148784
Čechal, Jan; Kley, Christopher S; Kumagai, Takashi; Schramm, Frank; Ruben, Mario; Stepanow, Sebastian; Kern, Klaus
2014-09-07
Metal coordination assemblies of the symmetric bi-functional 4,4'-di-(1,4-buta-1,3-diynyl)-benzoic acid are investigated by scanning tunnelling microscopy on metal surfaces. The formation of long-range ordered, short-range disordered and random phases depends on the competition between the convergent and divergent coordination motifs of the individual functional groups and is crucially influenced by the substrate.
NASA Astrophysics Data System (ADS)
Ballester, Joan; Bordoni, Simona; Petrova, Desislava; Rodó, Xavier
2015-04-01
Despite steady progress in the understanding of El Niño-Southern Oscillation (ENSO) in the past decades, questions remain on the exact mechanisms leading to the onset of El Niño (EN) events. Several authors have highlighted how the subsurface heat buildup in the western tropical Pacific and the recharged phase in equatorial heat content are intrinsic elements of ENSO variability, leading to those changes in zonal wind stress, sea surface temperature and thermocline tilt that characterize the growing and mature phases of EN. Here we use an ensemble of ocean and atmosphere assimilation products to identify the mechanisms contributing to the heat buildup that precedes EN events by about 18-24 months on average. Anomalous equatorward subsurface mass convergence due to meridional Sverdrup transport is found to be an important mechanism of thermocline deepening near and to the east of the dateline. In the warm pool, instead, surface horizontal convergence and downwelling motion have a leading role in subsurface warming, since equatorward mass convergence is weaker and counterbalanced by subsurface zonal divergence. The picture emerging from our results highlights the complexity of the three dimensional dynamic and thermodynamic structure of the tropical Pacific during the heat buildup leading to EN events.
Dwell time method based on Richardson-Lucy algorithm
NASA Astrophysics Data System (ADS)
Jiang, Bo; Ma, Zhen
2017-10-01
When the noise in the surface error data given by the interferometer has no effect on the iterative convergence of the RL algorithm, the RL algorithm for deconvolution in image restoration can be applied to the CCOS model to solve the dwell time. By extending the initial error function on the edge and denoising the noise in the surface error data given by the interferometer , it makes the result more available . The simulation results show the final residual error 10.7912nm nm in PV and 0.4305 nm in RMS, when the initial surface error is 107.2414 nm in PV and 15.1331 nm in RMS. The convergence rates of the PV and RMS values can reach up to 89.9% and 96.0%, respectively . The algorithms can satisfy the requirement of fabrication very well.
NASA Astrophysics Data System (ADS)
Cooper, Christopher D.; Barba, Lorena A.
2016-05-01
Interactions between surfaces and proteins occur in many vital processes and are crucial in biotechnology: the ability to control specific interactions is essential in fields like biomaterials, biomedical implants and biosensors. In the latter case, biosensor sensitivity hinges on ligand proteins adsorbing on bioactive surfaces with a favorable orientation, exposing reaction sites to target molecules. Protein adsorption, being a free-energy-driven process, is difficult to study experimentally. This paper develops and evaluates a computational model to study electrostatic interactions of proteins and charged nanosurfaces, via the Poisson-Boltzmann equation. We extended the implicit-solvent model used in the open-source code PyGBe to include surfaces of imposed charge or potential. This code solves the boundary integral formulation of the Poisson-Boltzmann equation, discretized with surface elements. PyGBe has at its core a treecode-accelerated Krylov iterative solver, resulting in O(N log N) scaling, with further acceleration on hardware via multi-threaded execution on GPUs. It computes solvation and surface free energies, providing a framework for studying the effect of electrostatics on adsorption. We derived an analytical solution for a spherical charged surface interacting with a spherical dielectric cavity, and used it in a grid-convergence study to build evidence on the correctness of our approach. The study showed the error decaying with the average area of the boundary elements, i.e., the method is O(1 / N) , which is consistent with our previous verification studies using PyGBe. We also studied grid-convergence using a real molecular geometry (protein G B1 D4‧), in this case using Richardson extrapolation (in the absence of an analytical solution) and confirmed the O(1 / N) scaling. With this work, we can now access a completely new family of problems, which no other major bioelectrostatics solver, e.g. APBS, is capable of dealing with. PyGBe is open-source under an MIT license and is hosted under version control at https://github.com/barbagroup/pygbe. To supplement this paper, we prepared ;reproducibility packages; consisting of running and post-processing scripts in Python for replicating the grid-convergence studies, all the way to generating the final plots, with a single command.
Atmospheric signature of the Agulhas current
NASA Astrophysics Data System (ADS)
Stela Nkwinkwa Njouodo, Arielle; Koseki, Shunya; Rouault, Mathieu; Keenlyside, Noel
2017-04-01
Satellite observation and Climate Forecast System Reanalysis (CFSR) are used to map the influence of the Agulhas current on local annual precipitation in Southern Africa. The pressure adjustment mechanism is applied over the Agulhas current region. Results unfold that the narrow band of precipitation above the Agulhas Current is collocated with surface wind convergence, sea surface temperature (SST) Laplacian and sea level pressure (SLP) Laplacian. Relationship between SLP Laplacian and wind convergence is found, with 0.54 correlation coefficient statistically significant. In the free troposphere, the band of precipitation above the Agulhas current is collocated with the wind divergence and the upward motion of wind velocity. The warm waters from the Agulhas current can influence local precipitation.
Shape analysis of cylindrical micromirrors for angular focusing
NASA Astrophysics Data System (ADS)
Hou, Max Ti-Kuang; Hong, Pei-Yuan; Chen, Rongshun
2001-11-01
In this paper, we analyze the shape of the cylindrical micromirror, which directly defines the profile of the reflecting surface, and is very important for the function on focusing. A cylindrical micromirror can converge incident rays to a real focal line after reflection, namely angular focusing. Therefore, under specific design two cylindrical micromirrors, the primary and secondary, can converge incident rays into a real focal point after twice reflection. The curved shape of micromirror, formed due to the stress-induced bending of the bilayer microstructure upon release, has been theoretically analyzed and numerically simulated. The results show that the reflecting surface, especially at boundaries, is not perfectly cylindrical, while adding longitudinal frames can make some improvement.
NASA Astrophysics Data System (ADS)
Nie, Xuqing; Li, Shengyi; Song, Ci; Hu, Hao
2014-08-01
Due to the different curvature everywhere, the aspheric surface is hard to achieve high-precision accuracy by the traditional polishing process. Controlling of the mid-spatial frequency errors (MSFR), in particular, is almost unapproachable. In this paper, the combined fabrication process based on the smoothing polishing (SP) and magnetorheological finishing (MRF) is proposed. The pressure distribution of the rigid polishing lap and semi-flexible polishing lap is calculated. The shape preserving capacity and smoothing effect are compared. The feasibility of smoothing aspheric surface with the semi-flexible polishing lap is verified, and the key technologies in the SP process are discussed. Then, A K4 parabolic surface with the diameter of 500mm is fabricated based on the combined fabrication process. A Φ150 mm semi-flexible lap is used in the SP process to control the MSFR, and the deterministic MRF process is applied to figure the surface error. The root mean square (RMS) error of the aspheric surface converges from 0.083λ (λ=632.8 nm) to 0.008λ. The power spectral density (PSD) result shows that the MSFR are well restrained while the surface error has a great convergence.
Destruction of Invariant Surfaces and Magnetic Coordinates for Perturbed Magnetic Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.R. Hudson
2003-11-20
Straight-field-line coordinates are constructed for nearly integrable magnetic fields. The coordinates are based on the robust, noble-irrational rotational-transform surfaces, whose existence is determined by an application of Greene's residue criterion. A simple method to locate these surfaces is described. Sequences of surfaces with rotational-transform converging to low order rationals maximize the region of straight-field-line coordinates.
Exhaustively sampling peptide adsorption with metadynamics.
Deighan, Michael; Pfaendtner, Jim
2013-06-25
Simulating the adsorption of a peptide or protein and obtaining quantitative estimates of thermodynamic observables remains challenging for many reasons. One reason is the dearth of molecular scale experimental data available for validating such computational models. We also lack simulation methodologies that effectively address the dual challenges of simulating protein adsorption: overcoming strong surface binding and sampling conformational changes. Unbiased classical simulations do not address either of these challenges. Previous attempts that apply enhanced sampling generally focus on only one of the two issues, leaving the other to chance or brute force computing. To improve our ability to accurately resolve adsorbed protein orientation and conformational states, we have applied the Parallel Tempering Metadynamics in the Well-Tempered Ensemble (PTMetaD-WTE) method to several explicitly solvated protein/surface systems. We simulated the adsorption behavior of two peptides, LKα14 and LKβ15, onto two self-assembled monolayer (SAM) surfaces with carboxyl and methyl terminal functionalities. PTMetaD-WTE proved effective at achieving rapid convergence of the simulations, whose results elucidated different aspects of peptide adsorption including: binding free energies, side chain orientations, and preferred conformations. We investigated how specific molecular features of the surface/protein interface change the shape of the multidimensional peptide binding free energy landscape. Additionally, we compared our enhanced sampling technique with umbrella sampling and also evaluated three commonly used molecular dynamics force fields.
NASA Technical Reports Server (NTRS)
Minott, P. O.
1983-01-01
Beam splitter with curved entrance and exit surfaces introduces less chromatic aberration and Seidel aberrations in some optical systems than traditional plate or block beam splitters. Spherical-surface beam splitter is used in Schmidt-type mirror objective to split converging image-forming beam so two images are formed. Small aberrations introduced are corrected by compensator plate located at or near aperture stop.
NASA Astrophysics Data System (ADS)
Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui
2016-07-01
In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.
Effect of surface morphology on friction of graphene on various substrates
NASA Astrophysics Data System (ADS)
Cho, Dae-Hyun; Wang, Lei; Kim, Jin-Seon; Lee, Gwan-Hyoung; Kim, Eok Su; Lee, Sunhee; Lee, Sang Yoon; Hone, James; Lee, Changgu
2013-03-01
The friction of graphene on various substrates, such as SiO2, h-BN, bulk-like graphene, and mica, was investigated to characterize the adhesion level between graphene and the underlying surface. The friction of graphene on SiO2 decreased with increasing thickness and converged around the penta-layers due to incomplete contact between the two surfaces. However, the friction of graphene on an atomically flat substrate, such as h-BN or bulk-like graphene, was low and comparable to that of bulk-like graphene. In contrast, the friction of graphene folded onto bulk-like graphene was indistinguishable from that of mono-layer graphene on SiO2 despite the ultra-smoothness of bulk-like graphene. The characterization of the graphene's roughness before and after folding showed that the corrugation of graphene induced by SiO2 morphology was preserved even after it was folded onto an atomically flat substrate. In addition, graphene deposited on mica, when folded, preserved the same corrugation level as before the folding event. Our friction measurements revealed that graphene, once exfoliated from the bulk crystal, tends to maintain its corrugation level even after it is folded onto an atomically flat substrate and that ultra-flatness in both graphene and the substrate is required to achieve the intimate contact necessary for strong adhesion.The friction of graphene on various substrates, such as SiO2, h-BN, bulk-like graphene, and mica, was investigated to characterize the adhesion level between graphene and the underlying surface. The friction of graphene on SiO2 decreased with increasing thickness and converged around the penta-layers due to incomplete contact between the two surfaces. However, the friction of graphene on an atomically flat substrate, such as h-BN or bulk-like graphene, was low and comparable to that of bulk-like graphene. In contrast, the friction of graphene folded onto bulk-like graphene was indistinguishable from that of mono-layer graphene on SiO2 despite the ultra-smoothness of bulk-like graphene. The characterization of the graphene's roughness before and after folding showed that the corrugation of graphene induced by SiO2 morphology was preserved even after it was folded onto an atomically flat substrate. In addition, graphene deposited on mica, when folded, preserved the same corrugation level as before the folding event. Our friction measurements revealed that graphene, once exfoliated from the bulk crystal, tends to maintain its corrugation level even after it is folded onto an atomically flat substrate and that ultra-flatness in both graphene and the substrate is required to achieve the intimate contact necessary for strong adhesion. Electronic supplementary information (ESI) available: Sample preparation method, identification of graphene thickness, AFM and FFM measurements. See DOI: 10.1039/c3nr34181j
Zelditch, Miriam Leah; Ye, Ji; Mitchell, Jonathan S; Swiderski, Donald L
2017-03-01
Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging. We examine the roles of size and diet as determinants of jaw shape in Sciuridae. As expected, size and diet have significant interdependent effects on jaw shape and ecomorphological convergence is rare, typically involving demanding diets and limiting sizes. More surprising is morphological without ecological convergence, which is equally common between and within dietary classes. Those cases, like rare ecomorphological convergence, may be consequences of evolving on an adaptive landscape shaped by many-to-many relationships between ecology and function, many-to-one relationships between form and performance, and one-to-many relationships between functionally versatile morphologies and ecology. On complex adaptive landscapes, ecological selection can yield different outcomes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Larter, Maximilian; Dunbar-Wallis, Amy; Berardi, Andrea E; Smith, Stacey D
2018-06-07
The predictability of evolution, or whether lineages repeatedly follow the same evolutionary trajectories during phenotypic convergence remains an open question of evolutionary biology. In this study, we investigate evolutionary convergence at the biochemical pathway level and test the predictability of evolution using floral anthocyanin pigmentation, a trait with a well-understood genetic and regulatory basis. We reconstructed the evolution of floral anthocyanin content across 28 species of the Andean clade Iochrominae (Solanaceae) and investigated how shifts in pigmentation are related to changes in expression of 7 key anthocyanin pathway genes. We used phylogenetic multivariate analysis of gene expression to test for phenotypic and developmental convergence at a macroevolutionary scale. Our results show that the four independent losses of the ancestral pigment delphinidin involved convergent losses of expression of the three late pathway genes (F3'5'h, Dfr and Ans). Transitions between pigment types affecting floral hue (e.g. blue to red) involve changes to the expression of branching genes F3'h and F3'5'h, while the expression levels of early steps of the pathway are strongly conserved in all species. These patterns support the idea that the macroevolution of floral pigmentation follows predictable evolutionary trajectories to reach convergent phenotype space, repeatedly involving regulatory changes. This is likely driven by constraints at the pathway level, such as pleiotropy and regulatory structure.
Jauk, Emanuel; Benedek, Mathias; Neubauer, Aljoscha C.
2012-01-01
The distinction between convergent and divergent cognitive processes given by Guilford (1956) had a strong influence on the empirical research on creative thinking. Neuroscientific studies typically find higher event-related synchronization in the EEG alpha rhythm for individuals engaged in creative ideation tasks compared to intelligence-related tasks. This study examined, whether these neurophysiological effects can also be found when both cognitive processing modes (convergent vs. divergent) are assessed by means of the same task employing a simple variation of instruction. A sample of 55 participants performed the alternate uses task as well as a more basic word association task while EEG was recorded. On a trial-by-trial basis, participants were either instructed to find a most common solution (convergent condition) or a most uncommon solution (divergent condition). The answers given in the divergent condition were in both tasks significantly more original than those in the convergent condition. Moreover, divergent processing was found to involve higher task-related EEG alpha power than convergent processing in both the alternate uses task and the word association task. EEG alpha synchronization can hence explicitly be associated with divergent cognitive processing rather than with general task characteristics of creative ideation tasks. Further results point to a differential involvement of frontal and parietal cortical areas by individuals of lower versus higher trait creativity. PMID:22390860
McCaffrey, Stacey A; Black, Ryan A; Butler, Stephen F
2018-03-01
The PainCAS is a web-based clinical tool for assessing and tracking pain and opioid risk in chronic pain patients. Despite evidence for its utility within the clinical setting, the PainCAS scales have never been subject to psychometric evaluation. The current study is the first to evaluate the psychometric properties of the PainCAS Interference with Daily Activities, Psychological/Emotional Distress, and Pain scales. Patients (N = 4797) from treatment centers and hospitals in 16 different states completed the PainCAS as part of routine clinical assessment. A subsample (n = 73) from two hospital-based treatment centers also completed comparator measures. Rasch Rating Scale Models were employed to evaluate the Interference with Daily Activities and Psychological/Emotional Distress scales, and empirical evaluation included assessment of dimensionality, discrimination, item fit, reliability, information, and person-to-item targeting. Additionally, convergent and discriminant validity were evaluated through classical test theory approaches. Convergent validity of the Pain scales was evaluated through correlations with corresponding comparator items. One Interference with Daily Activities item was removed due to poor functioning and discrimination. The retained items from the Interference with Daily Activities and Psychological/Emotional Distress scales conformed to unidimensional Rasch measurement models, yielding satisfactory item fit, reliability, precision, and coverage. Further, results provided support for the convergent and discriminant validity of these two scales. Convergent validity between the PainCAS Pain and BPI Pain items was also strong. Taken together, results provide strong psychometric support for these PainCAS Pain scales. Strengths and limitations of the current study are discussed.
On the convergence of the coupled-wave approach for lamellar diffraction gratings
NASA Technical Reports Server (NTRS)
Li, Lifeng; Haggans, Charles W.
1992-01-01
Among the many existing rigorous methods for analyzing diffraction of electromagnetic waves by diffraction gratings, the coupled-wave approach stands out because of its versatility and simplicity. It can be applied to volume gratings and surface relief gratings, and its numerical implementation is much simpler than others. In addition, its predictions were experimentally validated in several cases. These facts explain the popularity of the coupled-wave approach among many optical engineers in the field of diffractive optics. However, a comprehensive analysis of the convergence of the model predictions has never been presented, although several authors have recently reported convergence difficulties with the model when it is used for metallic gratings in TM polarization. Herein, three points are made: (1) in the TM case, the coupled-wave approach converges much slower than the modal approach of Botten et al; (2) the slow convergence is caused by the use of Fourier expansions for the permittivity and the fields in the grating region; and (3) is manifested by the slow convergence of the eigenvalues and the associated modal fields. The reader is assumed to be familiar with the mathematical formulations of the coupled-wave approach and the modal approach.
A further assessment of vegetation feedback on decadal Sahel rainfall variability
NASA Astrophysics Data System (ADS)
Kucharski, Fred; Zeng, Ning; Kalnay, Eugenia
2013-03-01
The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM ("SPEEDY") is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.
NASA Astrophysics Data System (ADS)
Zhou, Wenyu; Xie, Shang-Ping
2017-08-01
Global climate models (GCMs) have long suffered from biases of excessive tropical precipitation in the Southern Hemisphere (SH). The severity of the double-Intertropical Convergence Zone (ITCZ) bias, defined here as the interhemispheric difference in zonal mean tropical precipitation, varies strongly among models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble. Models with a more severe double-ITCZ bias feature warmer tropical sea surface temperature (SST) in the SH, coupled with weaker southeast trades. While previous studies focus on coupled ocean-atmosphere interactions, here we show that the intermodel spread in the severity of the double-ITCZ bias is closely related to land surface temperature biases, which can be further traced back to those in the Atmosphere Model Intercomparison Project (AMIP) simulations. By perturbing land temperature in models, we demonstrate that cooler land can indeed lead to a more severe double-ITCZ bias by inducing the above coupled SST-trade wind pattern in the tropics. The response to land temperature can be consistently explained from both the dynamic and energetic perspectives. Although this intermodel spread from the land temperature variation does not account for the ensemble model mean double-ITCZ bias, identifying the land temperature effect provides insights into simulating a realistic ITCZ for the right reasons.
Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water
Athawale, Manoj V.; Goel, Gaurav; Ghosh, Tuhin; Truskett, Thomas M.; Garde, Shekhar
2007-01-01
We present results from extensive molecular dynamics simulations of collapse transitions of hydrophobic polymers in explicit water focused on understanding effects of lengthscale of the hydrophobic surface and of attractive interactions on folding. Hydrophobic polymers display parabolic, protein-like, temperature-dependent free energy of unfolding. Folded states of small attractive polymers are marginally stable at 300 K and can be unfolded by heating or cooling. Increasing the lengthscale or decreasing the polymer–water attractions stabilizes folded states significantly, the former dominated by the hydration contribution. That hydration contribution can be described by the surface tension model, ΔG = γ(T)ΔA, where the surface tension, γ, is lengthscale-dependent and decreases monotonically with temperature. The resulting variation of the hydration entropy with polymer lengthscale is consistent with theoretical predictions of Huang and Chandler [Huang DM, Chandler D (2000) Proc Natl Acad Sci USA 97:8324–8327] that explain the blurring of entropy convergence observed in protein folding thermodynamics. Analysis of water structure shows that the polymer–water hydrophobic interface is soft and weakly dewetted, and is characterized by enhanced interfacial density fluctuations. Formation of this interface, which induces polymer folding, is strongly opposed by enthalpy and favored by entropy, similar to the vapor–liquid interface. PMID:17215352
Improvement of the AeroClipper system for cyclones monitoring
NASA Astrophysics Data System (ADS)
Vargas, André; Philippe, Duvel Jean
2016-07-01
The AeroClipper developed by the French space agency (Centre National d'Études Spatiales, CNES) is a quasi-lagrangian device drifting with surface wind at about 20-30m above the ocean surface. It is a new and original device for real-time and continuous observation of air-sea surface parameters in open ocean remote regions. This device enables the sampling of the variability of surface parameters in particular under convective systems toward which it is attracted. The AeroClipper is therefore an ideal instrument to monitor Tropical Cyclones (TCs) in which they are likely to converge and provide original observations to evaluate and improve our current understanding and diagnostics of TCs as well as their representation in numerical models. In 2008, the AeroClipper demonstrates its capability to be captured by an Ocean Indian cyclone, as two models have converged, without damages, in the eye of Dora cyclone during the 2008 VASCO campaign. This paper will present the improvements of this balloon system for the international project 'the Year of Maritime Continent'.
Fitting a Point Cloud to a 3d Polyhedral Surface
NASA Astrophysics Data System (ADS)
Popov, E. V.; Rotkov, S. I.
2017-05-01
The ability to measure parameters of large-scale objects in a contactless fashion has a tremendous potential in a number of industrial applications. However, this problem is usually associated with an ambiguous task to compare two data sets specified in two different co-ordinate systems. This paper deals with the study of fitting a set of unorganized points to a polyhedral surface. The developed approach uses Principal Component Analysis (PCA) and Stretched grid method (SGM) to substitute a non-linear problem solution with several linear steps. The squared distance (SD) is a general criterion to control the process of convergence of a set of points to a target surface. The described numerical experiment concerns the remote measurement of a large-scale aerial in the form of a frame with a parabolic shape. The experiment shows that the fitting process of a point cloud to a target surface converges in several linear steps. The method is applicable to the geometry remote measurement of large-scale objects in a contactless fashion.
The Lithosphere-asthenosphere Boundary beneath the South Island of New Zealand
NASA Astrophysics Data System (ADS)
Hua, J.; Fischer, K. M.; Savage, M. K.
2017-12-01
Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. This study takes advantage of the long-duration and high-density seismometer networks deployed on or near the South Island, especially 29 broadband stations of the New Zealand permanent seismic network (GeoNet). We obtained 24,980 individual receiver functions by extended-time multi-taper deconvolution, mapping to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography (Ball et al., 2015) and geochemical studies. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the west of the Alpine fault. The deeper LAB to the west of the Alpine fault is consistent with oceanic lithosphere attached to the Australian plate that was partially subducted while also translating parallel to the Alpine fault (e.g. Sutherland, 2000). However, models in which the Pacific lithosphere has been underthrust to the west past the Alpine fault cannot be ruled out. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the west of the fault, juxtaposed against a region of anomalously weak LAB conversions to the east of the fault. This structure, similar to results of Sp imaging beneath the central segment of the San Andreas fault (Ford et al., 2014), also suggests that lithospheric blocks with contrasting LAB properties meet beneath the Alpine fault. The observed variations in LAB properties indicate strong modification of the LAB by the interplay of convergence and strike-slip deformation along and across this transpressional plate boundary.
NASA Technical Reports Server (NTRS)
Bromwich, David H.; Chen, Qui-Shi
2005-01-01
Atmospheric numerical simulation and dynamic retrieval method with atmospheric numerical analyses are used to assess the spatial and temporal variability of Antarctic precipitation for the last two decades. First, the Polar MM5 has been run over Antarctica to study the Antarctic precipitation. With a horizontal resolution of 60km, the Polar MM5 has been run for the period of July 1996 through June 1999 in a series of short-term forecasts from initial and boundary conditions provided by the ECMWF operational analyses. In comparison with climatological maps, the major features of the spatial distribution of Antarctic precipitation are well captured by the Polar MM5. Drift snow effects on redistribution of surface accumulation over Antarctica are also assessed with surface wind fields from Polar MM5 in this study. There are complex divergence and convergence patterns of drift snow transport over Antarctica, especially along the coast. It is found that areas with large drift snow transport convergence and divergence are located around escarpment areas where there is large katabatic wind acceleration. In addition, areas with large snow transport divergence are generally accompanied by areas with large snow transport convergence nearby, indicating that drift snow transport is of local importance for the redistribution of the snowfall
Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export
NASA Technical Reports Server (NTRS)
Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.;
2014-01-01
Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.
NASA Astrophysics Data System (ADS)
Singh, David J.; Pickett, Warren E.
1992-12-01
A number of properties identifiable from the electronic bands and one-electron wavefunctions have been obtained from a well converged self-consistent calculation of the electronic structure of Tl 2Ba 2CuO 6. The Fermi surface is found to consist of two sheets: a two-dimensional barrel surface arising from the CuO 2 layer, and a three-dimensional spheroid arising from states with strong TlO character but actually extending throughout all layers of the structure. This feature has important implications for the transport properties, and especially for the degree of anisotropy. We compare with transport data on single crystals of Tl 2Ba 2CuO 6. The calculated Fermi surface of the spheroid is found to be in substantial agreement with the measured period of magnetization oscillations in the de Haas-van Alphen effect by Kido et al. The positron wavefunction engulfs the CuO 2 layers, making this material a promising case for mapping out with positron 2D-ACAR the layer-derived Fermi surface that is believed to be central to high-temperature superconductivity. The electric field gradients are predicted and compared with calculations for other cuprates. The Hall coefficient RHxyz (carrier motion on the a-b plane) is found to be positive and within a factor of 1.5 of that measured on ceramic samples, while the other non-vanishing component of the Hall tensor is predicted to be negative.
NASA Astrophysics Data System (ADS)
Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.
2018-05-01
This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.
Oniz, Yesim; Kayacan, Erdal; Kaynak, Okyay
2009-04-01
The control of an antilock braking system (ABS) is a difficult problem due to its strongly nonlinear and uncertain characteristics. To overcome this difficulty, the integration of gray-system theory and sliding-mode control is proposed in this paper. This way, the prediction capabilities of the former and the robustness of the latter are combined to regulate optimal wheel slip depending on the vehicle forward velocity. The design approach described is novel, considering that a point, rather than a line, is used as the sliding control surface. The control algorithm is derived and subsequently tested on a quarter vehicle model. Encouraged by the simulation results indicating the ability to overcome the stated difficulties with fast convergence, experimental results are carried out on a laboratory setup. The results presented indicate the potential of the approach in handling difficult real-time control problems.
A Record-High Ocean Bottom Pressure in the South Pacific Observed by GRACE
NASA Technical Reports Server (NTRS)
Boening, Carmen; Lee, Tong; Zlotnicki, Victor
2011-01-01
In late 2009 to early 2010, the Gravity Recovery and Climate Experiment (GRACE) satellite pair observed a record increase in ocean bottom pressure (OBP) over a large mid-latitude region of the South East Pacific. Its magnitude is substantially larger than other oceanic events in the Southern Hemisphere found in the entire GRACE data records (2003-2010) on multi-month time scales. The OBP data help to understand the nature of a similar signal in sea surface height (SSH) anomaly observed by altimetry: the SSH increase is mainly due to mass convergence. Analysis of the barotropic vorticity equation using scatterometer data, atmospheric reanalysis product, and GRACE and altimeter an atmospheric reanalysis product observations suggests that the observed OBP/SSH signal was primarily caused by wind stress curl associated with a strong and persistent anticyclone in late 2009 in combination with effects of planetary vorticity gradient, bottom topography, and friction
Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling.
Rustic, Gerald T; Koutavas, Athanasios; Marchitto, Thomas M; Linsley, Braddock K
2015-12-18
Tropical Pacific Ocean dynamics during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) are poorly characterized due to a lack of evidence from the eastern equatorial Pacific. We reconstructed sea surface temperature, El Niño-Southern Oscillation (ENSO) activity, and the tropical Pacific zonal gradient for the past millennium from Galápagos ocean sediments. We document a mid-millennium shift (MMS) in ocean-atmosphere circulation around 1500-1650 CE, from a state with dampened ENSO and strong zonal gradient to one with amplified ENSO and weak gradient. The MMS coincided with the deepest LIA cooling and was probably caused by a southward shift of the intertropical convergence zone. The peak of the MCA (900-1150 CE) was a warm period in the eastern Pacific, contradicting the paradigm of a persistent La Niña pattern. Copyright © 2015, American Association for the Advancement of Science.
Surface matching for correlation of virtual models: Theory and application
NASA Technical Reports Server (NTRS)
Caracciolo, Roberto; Fanton, Francesco; Gasparetto, Alessandro
1994-01-01
Virtual reality can enable a robot user to off line generate and test in a virtual environment a sequence of operations to be executed by the robot in an assembly cell. Virtual models of objects are to be correlated to the real entities they represent by means of a suitable transformation. A solution to the correlation problem, which is basically a problem of 3-dimensional adjusting, has been found exploiting the surface matching theory. An iterative algorithm has been developed, which matches the geometric surface representing the shape of the virtual model of an object, with a set of points measured on the surface in the real world. A peculiar feature of the algorithm is to work also if there is no one-to-one correspondence between the measured points and those representing the surface model. Furthermore the problem of avoiding convergence to local minima is solved, by defining a starting point of states ensuring convergence to the global minimum. The developed algorithm has been tested by simulation. Finally, this paper proposes a specific application, i.e., correlating a robot cell, equipped for biomedical use with its virtual representation.
Convergent evolution and divergent selection: lizards at the White Sands ecotone.
Rosenblum, Erica Bree
2006-01-01
Ecological transition zones, where organismal phenotypes result from a delicate balance between selection and migration, highlight the interplay of local adaptation and gene flow. Here, I study the response of an entire species assemblage to natural selection across a common ecotone. Three lizard species, distributed along a dramatic environmental gradient in substrate color, display convergent adaptation of blanched coloration on the gypsum dunes of White Sands National Monument. I investigate the role of gene flow in modulating phenotypic response to selection by quantifying color variation and genetic variation across the ecotone. I find species differences in degree of background matching and in genetic connectivity of populations across the ecotone. Differences among species in phenotypic response to selection scale precisely to levels of genetic isolation. Species with higher levels of gene flow across the ecotone exhibit less dramatic responses to selection. Results also reveal a strong signal of ecologically mediated divergence for White Sands lizards. For all species, phenotypic variation is better explained by habitat similarity than genetic similarity. Convergent evolution of blanched coloration at White Sands clearly reflects the action of strong divergent selection; however, adaptive response appears to be modulated by gene flow and demographic history and can be predicted by divergence-with-gene-flow models.
Plath, Martin; Pfenninger, Markus; Lerp, Hannes; Riesch, Rüdiger; Eschenbrenner, Christoph; Slattery, Patrick A; Bierbach, David; Herrmann, Nina; Schulte, Matthias; Arias-Rodriguez, Lenin; Rimber Indy, Jeane; Passow, Courtney; Tobler, Michael
2013-09-01
We investigated mechanisms of reproductive isolation in livebearing fishes (genus Poecilia) inhabiting sulfidic and nonsulfidic habitats in three replicate river drainages. Although sulfide spring fish convergently evolved divergent phenotypes, it was unclear if mechanisms of reproductive isolation also evolved convergently. Using microsatellites, we found strongly reduced gene flow between adjacent populations from different habitat types, suggesting that local adaptation to sulfidic habitats repeatedly caused the emergence of reproductive isolation. Reciprocal translocation experiments indicate strong selection against immigrants into sulfidic waters, but also variation among drainages in the strength of selection against immigrants into nonsulfidic waters. Mate choice experiments revealed the evolution of assortative mating preferences in females from nonsulfidic but not from sulfidic habitats. The inferred strength of sexual selection against immigrants (RI(s)) was negatively correlated with the strength of natural selection (RI(m)), a pattern that could be attributed to reinforcement, whereby natural selection strengthens behavioral isolation due to reduced hybrid fitness. Overall, reproductive isolation and genetic differentiation appear to be replicated and direct consequences of local adaptation to sulfide spring environments, but the relative contributions of different mechanisms of reproductive isolation vary across these evolutionarily independent replicates, highlighting both convergent and nonconvergent evolutionary trajectories of populations in each drainage. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Subduction Orogeny and the Late Cenozoic Evolution of the Mediterranean Arcs
NASA Astrophysics Data System (ADS)
Royden, Leigh; Faccenna, Claudio
2018-05-01
The Late Cenozoic tectonic evolution of the Mediterranean region, which is sandwiched between the converging African and European continents, is dominated by the process of subduction orogeny. Subduction orogeny occurs where localized subduction, driven by negative slab buoyancy, is more rapid than the convergence rate of the bounding plates; it is commonly developed in zones of early or incomplete continental collision. Subduction orogens can be distinguished from collisional orogens on the basis of driving mechanism, tectonic setting, and geologic expression. Three distinct Late Cenozoic subduction orogens can be identified in the Mediterranean region, making up the Western Mediterranean (Apennine, external Betic, Maghebride, Rif), Central Mediterranean (Carpathian), and Eastern Mediterranean (southern Dinaride, external Hellenide, external Tauride) Arcs. The Late Cenozoic evolution of these orogens, described in this article, is best understood in light of the processes that govern subduction orogeny and depends strongly on the buoyancy of the locally subducting lithosphere; it is thus strongly related to paleogeography. Because the slow (4–10 mm/yr) convergence rate between Africa and Eurasia has preserved the early collisional environment, and associated tectonism, for tens of millions of years, the Mediterranean region provides an excellent opportunity to elucidate the dynamic and kinematic processes of subduction orogeny and to better understand how these processes operate in other orogenic systems.
Online Pairwise Learning Algorithms.
Ying, Yiming; Zhou, Ding-Xuan
2016-04-01
Pairwise learning usually refers to a learning task that involves a loss function depending on pairs of examples, among which the most notable ones are bipartite ranking, metric learning, and AUC maximization. In this letter we study an online algorithm for pairwise learning with a least-square loss function in an unconstrained setting of a reproducing kernel Hilbert space (RKHS) that we refer to as the Online Pairwise lEaRning Algorithm (OPERA). In contrast to existing works (Kar, Sriperumbudur, Jain, & Karnick, 2013 ; Wang, Khardon, Pechyony, & Jones, 2012 ), which require that the iterates are restricted to a bounded domain or the loss function is strongly convex, OPERA is associated with a non-strongly convex objective function and learns the target function in an unconstrained RKHS. Specifically, we establish a general theorem that guarantees the almost sure convergence for the last iterate of OPERA without any assumptions on the underlying distribution. Explicit convergence rates are derived under the condition of polynomially decaying step sizes. We also establish an interesting property for a family of widely used kernels in the setting of pairwise learning and illustrate the convergence results using such kernels. Our methodology mainly depends on the characterization of RKHSs using its associated integral operators and probability inequalities for random variables with values in a Hilbert space.
Dollet, Benjamin; Jones, Siân A; Méheust, Yves; Cantat, Isabelle
2014-08-01
We study foam flow in an elementary model porous medium consisting of a convergent and a divergent channel positioned side by side and possessing a fixed joint porosity. Configurations of converging or diverging channels are ubiquitous at the pore scale in porous media, as all channels linking pores possess a converging and diverging part. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels, which modulate foam-wall friction and strongly impact the flux distribution. We measure, as well as quantitatively predict, the ratio of the fluxes in the two channels as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam, resulting in particular in flow irreversibility.
NASA Astrophysics Data System (ADS)
Motomura, T.; Tabaru, T.
2018-06-01
A high-density convergent plasma sputtering device has been developed for a liquid metal target, using an unheated glass plate. The convergent magnetic field lines, which are produced by an external solenoid coil and a permanent magnet positioned behind the liquid metal target, effectively transport high-density plasmas near the target. In this study, a liquid gallium target was sputtered with nitrogen plasmas, without additive gas required for depositing gallium nitride films on the unheated substrates. The deposition rate of the GaN film was estimated at ˜13 nm/min at a gas pressure of 0.2 Pa. A strong diffraction peak was observed along the GaN (002) axis, with the use of an unheated glass plate and a target-substrate distance of ˜45 mm.
Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels
NASA Astrophysics Data System (ADS)
Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.
2018-05-01
Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.
Measured particulate behavior in a subscale solid propellant rocket motor
NASA Astrophysics Data System (ADS)
Brennan, W. D.; Hovland, D. L.; Netzer, D. W.
1992-10-01
Particulate matter are sized in the exhaust nozzle and plume of small rocket motors of varying geometry to assess the effects of the expansion process on particle size. Both converging and converging-diverging nozzles are considered, and particle sizing is accomplished at pressures of up to 4.36 MPa with aluminum loadings of 2.0 and 4.7 percent. An instrument based on Fraunhofer diffraction is used to measure the particle-size distributions showing that: (1) high burning rates reduce particle agglomeration and increase C* efficiency; (2) high pressures lead to small and monomodal D32 entering the nozzle; and (3) D32 sizes increase appreciably at the tailoff. Some variations in plume signature are theorized to be caused by the tailoff phenomenon, and particle collisions and/or surface effects in the nozzle convergence are suggested by the reduced number of larger particles at the nozzle convergence.
Sliding mode control method having terminal convergence in finite time
NASA Technical Reports Server (NTRS)
Venkataraman, Subramanian T. (Inventor); Gulati, Sandeep (Inventor)
1994-01-01
An object of this invention is to provide robust nonlinear controllers for robotic operations in unstructured environments based upon a new class of closed loop sliding control methods, sometimes denoted terminal sliders, where the new class will enforce closed-loop control convergence to equilibrium in finite time. Improved performance results from the elimination of high frequency control switching previously employed for robustness to parametric uncertainties. Improved performance also results from the dependence of terminal slider stability upon the rate of change of uncertainties over the sliding surface rather than the magnitude of the uncertainty itself for robust control. Terminal sliding mode control also yields improved convergence where convergence time is finite and is to be controlled. A further object is to apply terminal sliders to robot manipulator control and benchmark performance with the traditional computed torque control method and provide for design of control parameters.
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave
Dyachenko, Sergey A.; A. Silantyev, Denis
2017-01-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced. PMID:28690418
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave.
Lushnikov, Pavel M; Dyachenko, Sergey A; A Silantyev, Denis
2017-06-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced.
NASA Astrophysics Data System (ADS)
Giannini, Alessandra; Lyon, Bradfield; Seager, Richard; Vigaud, Nicolas
2018-01-01
We propose a dynamical interpretation of model projections for an end-of-century wetting in equatorial East Africa. In the current generation of global climate models, increased atmospheric moisture content associated with warming is not the dominant process explaining the increase in rainfall, as the regional circulation is only weakly convergent even during the rainy seasons. Instead, projected wetter future conditions are generally consistent with the El Niño-like trend in tropical Pacific sea surface temperatures in climate models. In addition, a weakening in moisture convergence over the adjacent Congo Basin and Maritime Continent cores of convection results in the weakening of near-surface winds, which increases moisture advection from the Congo Basin core toward the East African margin. Overall confidence in the projections is limited by the significant biases in simulation of the regional climatology and disagreement between observed and modeled tropical Pacific sea surface temperature trends to date.
An Epoxyisoprostane is a Major Regulator of Endothelial Cell Function
Zhong, Wei; Springstead, James R.; Al-Mubarak, Ramea; Lee, Sangderk; Li, Rongsong; Emert, Benjamin; Berliner, Judith A.; Jung, Michael E.
2014-01-01
The goal of these studies was to determine the effect of 5,6-epoxyisoprostane, EI, on human aortic endothelial cells (HAEC). EI can form as a phospholipase product of 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine, PEIPC, a pro-inflammatory molecule that accumulates in sites of inflammation where phospholipases are also increased. To determine the effect of EI on HAEC, we synthesized several stereoisomers of EI using a convergent approach from the individual optically pure building blocks, the epoxyaldehydes 5 and 6 and the bromoenones 14 and 16. The desired stereoisomer of EI can be prepared from these materials in only six operations and thus large amounts of the product can be obtained. The trans/trans isomers had the most potent activity, suggesting specificity in the interaction of EI with the cell surface. EI has potent anti-inflammatory effects in HAEC. EI strongly inhibits the production of MCP-1, a major monocyte chemotactic factor, and either decreases or minimally increases the levels of ten pro-inflammatory molecules increased by PEIPC. EI also strongly downregulates the inflammatory effects of IL-1β, a major inflammatory cytokine. Thus EI, a hydrolytic product of PEIPC, has potent anti-inflammatory function. PMID:24117045
Seismic waveform inversion best practices: regional, global and exploration test cases
NASA Astrophysics Data System (ADS)
Modrak, Ryan; Tromp, Jeroen
2016-09-01
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.
Comparison of Turbulence Models for Nozzle-Afterbody Flows with Propulsive Jets
NASA Technical Reports Server (NTRS)
Compton, William B., III
1996-01-01
A numerical investigation was conducted to assess the accuracy of two turbulence models when computing non-axisymmetric nozzle-afterbody flows with propulsive jets. Navier-Stokes solutions were obtained for a Convergent-divergent non-axisymmetric nozzle-afterbody and its associated jet exhaust plume at free-stream Mach numbers of 0.600 and 0.938 at an angle of attack of 0 deg. The Reynolds number based on model length was approximately 20 x 10(exp 6). Turbulent dissipation was modeled by the algebraic Baldwin-Lomax turbulence model with the Degani-Schiff modification and by the standard Jones-Launder kappa-epsilon turbulence model. At flow conditions without strong shocks and with little or no separation, both turbulence models predicted the pressures on the surfaces of the nozzle very well. When strong shocks and massive separation existed, both turbulence models were unable to predict the flow accurately. Mixing of the jet exhaust plume and the external flow was underpredicted. The differences in drag coefficients for the two turbulence models illustrate that substantial development is still required for computing very complex flows before nozzle performance can be predicted accurately for all external flow conditions.
Aquatic adaptations in the nose of carnivorans: evidence from the turbinates
Van Valkenburgh, Blaire; Curtis, Abigail; Samuels, Joshua X; Bird, Deborah; Fulkerson, Brian; Meachen-Samuels, Julie; Slater, Graham J
2011-01-01
Inside the mammalian nose lies a labyrinth of bony plates covered in epithelium collectively known as turbinates. Respiratory turbinates lie anteriorly and aid in heat and water conservation, while more posterior olfactory turbinates function in olfaction. Previous observations on a few carnivorans revealed that aquatic species have relatively large, complex respiratory turbinates and greatly reduced olfactory turbinates compared with terrestrial species. Body heat is lost more quickly in water than air and increased respiratory surface area likely evolved to minimize heat loss. At the same time, olfactory surface area probably diminished due to a decreased reliance on olfaction when foraging under water. To explore how widespread these adaptations are, we documented scaling of respiratory and olfactory turbinate surface area with body size in a variety of terrestrial, freshwater, and marine carnivorans, including pinnipeds, mustelids, ursids, and procyonids. Surface areas were estimated from high-resolution CT scans of dry skulls, a novel approach that enabled a greater sampling of taxa than is practical with fresh heads. Total turbinate, respiratory, and olfactory surface areas correlate well with body size (r2 ≥ 0.7), and are relatively smaller in larger species. Relative to body mass or skull length, aquatic species have significantly less olfactory surface area than terrestrial species. Furthermore, the ratio of olfactory to respiratory surface area is associated with habitat. Using phylogenetic comparative methods, we found strong support for convergence on 1 : 3 proportions in aquatic taxa and near the inverse in terrestrial taxa, indicating that aquatic mustelids and pinnipeds independently acquired similar proportions of olfactory to respiratory turbinates. Constraints on turbinate surface area in the nasal chamber may result in a trade-off between respiratory and olfactory function in aquatic mammals. PMID:21198587
Intermittent surface water connectivity: Fill and spill vs. fill and merge dynamics
Leibowitz, Scott G.; Mushet, David M.; Newton, Wesley E.
2016-01-01
Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining differences in response was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes.
Study on the shock interference in a wedged convergent-divergent channel
NASA Astrophysics Data System (ADS)
Yu, F. M.; Wang, C. Z.
The investigation of shock reflection-to-diffraction phenomena upon a wedged convergent-divergent channel produced by a planar incident shock wave have been done in the shock tube facility of Institute of Aeronautics and Astronautics, National Cheng-Kung University. The experiment proceeds upon seven wedged convergent-divergent channels with the forward and rear wedge angles arrangement of them are (50°, 50°), (35°, 35°), (50°, 35°), (35°, 50°), (50°, 0°), (35°, 0°), and (90°, 0°), respectively. They were tested at Mach numbers of 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6, respectively. On the first wedged channel, following the regular reflection on a 50°- wedged surface by the incident shock wave, shock diffraction with Mach stem has been observed as it moves to the downstream wedge surface. On the apex of the wedge, the secondary reflected shock behaviors as a sector of the blast shock moving toward the centerline of the channel. From the color schlieren pictures it has been observed that there exists a pattern of blast-wave-type high gas density gradient region near the wedge apex. Following the Mach reflection from the 35° -wedged surface on which only the Mach stem diffracted across the apex and following with a small region of disturbed acoustic wave front. The shock interference, which proceeds by the Mach reflection-to-diffraction generates a very complicate vortical flow structure. The measurement of the peak pressure along centerline of the channel downstream of the wedge apex indicates that it is larger near the apex and it decreases downstream. It is larger for larger convergent wedge angle and It is smaller for larger divergent wedge angle.
Tabletop Tectonics: Diverse Mountain Ranges Using Flour and Graphite
NASA Astrophysics Data System (ADS)
Davis, D. M.
2006-12-01
It has been recognized for some time that the frontal deformation zones where plates converge (foreland fold- and-thrust belts on continents and accretionary wedges at subduction zones) involve shortening over a decoupling layer, or decollement. A simple but successful way of explaining many aspects of their behavior is called the critical Coulomb wedge model, which regards these contractional wedges as analogous to the wedge-shaped mass of soil accreted in front of a bulldozer, or the wedge of snow that piles up in front of a snow plow. The shape and deformation history of the accreted wedge of soil or snow will depend upon the frictional strength of the material being plowed up and the surface over which it is being plowed. The same is true of `bulldozer' wedges consisting of many km thick piles of sediment at convergent plate margins. Using flour (or powdered milk), sandpaper, graphite, transparency sheets, and athletic field marker chalk, manipulated with sieves, brushes, pastry bags and blocks and sheets of wood, it is possible to demonstrate a wide variety of processes and tectonic styles observed at convergent plate boundaries. Model fold-and-thrust belts that behave like natural examples with a decollement that is strong (e.g., in rock without high pore fluid pressure) or weak (e.g., in a salt horizon or with elevated pore fluid pressure) can be generated simply by placing wither sandpaper or graphite beneath the flour that is pushed across the tabletop using a block of wood (the strong basement and hiterland rocks behind the fold-thrust belt). Depending upon the strength of the decollement, the cross-sectional taper of the deforming wedge will be thin or broad, the internal deformation mild or intense, and the structures either close to symmetric or strongly forward-vergent, just as at the analogous natural fold-thrust belts. Including a horizontal sheet of wood or Plexiglas in front of the pushing block allows generation of an accretionary wedge, outer-are high, and forearc basin, just as over a subduction zone. Any dark material emplaced (a pastry bag works well) atop the experiment before deformation in the form of football-field `hash marks' every 10 cm allows for easy calculation of strain distribution at any time during or after the experiment. Finally, the entire orogen can be excavated using a plastic photocopier transparency sheet. If the original set-up included occasional thin layers of red and blue field marker chalk within sedimentary column (the rest of which consists of white flour or powdered milk), excavation reveals (quite colorfully) many internal details of the fold-thrust belts that have been generated.
Studies toward brevisulcenal F via convergent strategies for marine ladder polyether synthesis.
Katcher, Matthew; Jamison, Timothy F
2018-03-15
Shortly after the initial isolation of marine ladder polyether natural products, biomimetic epoxide-opening cascade reactions were proposed as an efficient strategy for the synthesis of these compounds. However, difficulties in assembling the cascade precursors have limited the realization of these cascades. In this report, we describe strategies that provide convergent access to cascade precursors via regioselective allylation and efficient fragment coupling. We then investigate epoxide-opening cascades promoted by strong bases for the formation of fused tetrahydropyrans. These strategies are evaluated in the context of the synthesis of rings CDEFG of brevisulcenal F.
Convergence Science in a Nano World
Cady, Nathaniel
2013-01-01
Convergence is a new paradigm that brings together critical advances in the life sciences, physical sciences and engineering. Going beyond traditional “interdisciplinary” studies, “convergence” describes the culmination of truly integrated research and development, yielding revolutionary advances in both scientific research and new technologies. At its core, nanotechnology embodies these elements of convergence science by bringing together multiple disciplines with the goal of creating innovative and groundbreaking technologies. In the biological and biomedical sciences, nanotechnology research has resulted in dramatic improvements in sensors, diagnostics, imaging, and even therapeutics. In particular, there is a current push to examine the interface between the biological world and micro/nano-scale systems. For example, my laboratory is developing novel strategies for spatial patterning of biomolecules, electrical and optical biosensing, nanomaterial delivery systems, cellular patterning techniques, and the study of cellular interactions with nano-structured surfaces. In this seminar, I will give examples of how convergent research is being applied to three major areas of biological research &endash; cancer diagnostics, microbiology, and DNA-based biosensing. These topics will be presented as case studies, showing the benefits (and challenges) of multi-disciplinary, convergent research and development.
NASA Technical Reports Server (NTRS)
Wilcox, Eric M.; Lau, K. M.; Kim, Kyu-Myong
2010-01-01
The influence on the summertime North Atlantic Ocean inter-tropical convergence zone (ITCZ) of Saharan dust outbreaks is explored using nine years of continuous satellite observations and atmospheric reanalysis products. During dust outbreak events rainfall along the ITCZ shifts northward by 1 to 4 degrees latitude. Dust outbreaks coincide with warmer lower-tropospheric temperatures compared to low dust conditions, which is attributable to advection of the warm Saharan Air Layer, enhanced subtropical subsidence, and radiative heating of dust. The enhanced positive meridional temperature gradient coincident with dust outbreaks is accompanied by an acceleration of the easterly winds on the n011h side of the African Easterly Jet (AEJ). The center of the positive vorticity region south of the AEJ moves north drawing the center of low-level convergence and ITCZ rainfall northward with it. The enhanced precipitation on the north side of the ITCZ occurs in spite of widespread sea surface temperature cooling north of the ITCZ owing to reduced surface solar insolation by dust scattering.
Depressurization and two-phase flow of water containing high levels of dissolved nitrogen gas
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1981-01-01
Depressurization of water containing various concentrations of dissolved nitrogen gas was studied. In a nonflow depressurization experiment, water with very high nitrogen content was depressurized at rates from 0.09 to 0.50 MPa per second and a metastable behavior which was a strong function of the depressurization rate was observed. Flow experiments were performed in an axisymmetric, converging diverging nozzle, a two dimensional, converging nozzle with glass sidewalls, and a sharp edge orifice. The converging diverging nozzle exhibited choked flow behavior even at nitrogen concentration levels as low as 4 percent of the saturation level. The flow rates were independent of concentration level. Flow in the two dimensional, converging, visual nozzle appeared to have a sufficient pressure drop at the throat to cause nitrogen to come out of solution, but choking occurred further downstream. The orifice flow motion pictures showed considerable oscillation downstream of the orifice and parallel to the flow. Nitrogen bubbles appeared in the flow at back pressures as high as 3.28 MPa, and the level at which bubbles were no longer visible was a function of nitrogen concentration.
Evans, Kory M; Waltz, Brandon; Tagliacollo, Victor; Chakrabarty, Prosanta; Albert, James S
2017-03-01
Convergent evolution is widely viewed as strong evidence for the influence of natural selection on the origin of phenotypic design. However, the emerging evo-devo synthesis has highlighted other processes that may bias and direct phenotypic evolution in the presence of environmental and genetic variation. Developmental biases on the production of phenotypic variation may channel the evolution of convergent forms by limiting the range of phenotypes produced during ontogeny. Here, we study the evolution and convergence of brachycephalic and dolichocephalic skull shapes among 133 species of Neotropical electric fishes (Gymnotiformes: Teleostei) and identify potential developmental biases on phenotypic evolution. We plot the ontogenetic trajectories of neurocranial phenotypes in 17 species and document developmental modularity between the face and braincase regions of the skull. We recover a significant relationship between developmental covariation and relative skull length and a significant relationship between developmental covariation and ontogenetic disparity. We demonstrate that modularity and integration bias the production of phenotypes along the brachycephalic and dolichocephalic skull axis and contribute to multiple, independent evolutionary transformations to highly brachycephalic and dolichocephalic skull morphologies.
NASA Technical Reports Server (NTRS)
Mapes, Brian; Houze, Robert A., Jr.
1993-01-01
The vertical structure of monsoon thermal forcing by precipitating convection is diagnosed in terms of horizontal divergence. Airborne Doppler-radar divergence profiles from nine diverse mesoscale convective systems (MCSs) are presented. The MCSs consisted of multicellular convective elements which in time gave rise to areas of stratiform precipitation. Each of the three basic building blocks of the MCSs - convective, intermediary, and stratiform precipitation areas - has a consistent, characteristic divergence profile. Convective areas have low-level convergence, with its peak at 2-4 km altitude, and divergence above 6 km. Intermediary areas have convergence aloft, peaked near 10 km, feeding into mean ascent high in the upper troposphere. Stratiform areas have mid-level convergence, indicating a mesoscale downdraught below the melting level, and a mesoscale updraught aloft. Rawinsonde composite divergence profiles agree with the Doppler data in at least one important respect: the lower-tropospheric convergence into the MCSs peaks 2-4-km above the surface. Rawinsonde vorticity profiles show that monsoonal tropical cyclones spin-up at these elevated levels first, then later descend to the surface. Rawinsonde observations on a larger, continental scale demonstrate that at large horizontal scales only the 'gravest vertical mode' of MCS heating is felt, while the effects of shallower components of the heating (or divergence) profiles are trapped near the heating, as predicted by geostrophic adjustment theory.
The Convergence of Environmental Disruption
ERIC Educational Resources Information Center
Goldman, Marshall I.
1970-01-01
Considers reasons for water, air, and land pollution in the Soviet Union, incentives to pollute under socialism and the advantages socialism has for environmental management. Concludes that industrialization, not private enterprise, causes environmental disruption, and that strongly centralized planned economics do not necessarily avoid…
USDA-ARS?s Scientific Manuscript database
Sensible heat flux measurements are used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. Surface renewal is a relatively inexpensive technique for sensible heat flux estimation because it requires only a fast-resp...
Chambless, Dianne L; Sharpless, Brian A; Rodriguez, Dianeth; McCarthy, Kevin S; Milrod, Barbara L; Khalsa, Shabad-Ratan; Barber, Jacques P
2011-12-01
Aims of this study were (a) to summarize the psychometric literature on the Mobility Inventory for Agoraphobia (MIA), (b) to examine the convergent and discriminant validity of the MIA's Avoidance Alone and Avoidance Accompanied rating scales relative to clinical severity ratings of anxiety disorders from the Anxiety Disorders Interview Schedule (ADIS), and (c) to establish a cutoff score indicative of interviewers' diagnosis of agoraphobia for the Avoidance Alone scale. A meta-analytic synthesis of 10 published studies yielded positive evidence for internal consistency and convergent and discriminant validity of the scales. Participants in the present study were 129 people with a diagnosis of panic disorder. Internal consistency was excellent for this sample, α=.95 for AAC and .96 for AAL. When the MIA scales were correlated with interviewer ratings, evidence for convergent and discriminant validity for AAL was strong (convergent r with agoraphobia severity ratings=.63 vs. discriminant rs of .10-.29 for other anxiety disorders) and more modest but still positive for AAC (.54 vs. .01-.37). Receiver operating curve analysis indicated that the optimal operating point for AAL as an indicator of ADIS agoraphobia diagnosis was 1.61, which yielded sensitivity of .87 and specificity of .73. Copyright © 2011. Published by Elsevier Ltd.
Chambless, Dianne L.; Sharpless, Brian A.; Rodriguez, Dianeth; McCarthy, Kevin S.; Milrod, Barbara L.; Khalsa, Shabad-Ratan; Barber, Jacques P.
2012-01-01
Aims of this study were (a) to summarize the psychometric literature on the Mobility Inventory for Agoraphobia (MIA), (b) to examine the convergent and discriminant validity of the MIA’s Avoidance Alone and Avoidance Accompanied rating scales relative to clinical severity ratings of anxiety disorders from the Anxiety Disorders Interview Schedule (ADIS), and (c) to establish a cutoff score indicative of interviewers’ diagnosis of agoraphobia for the Avoidance Alone scale. A meta-analytic synthesis of 10 published studies yielded positive evidence for internal consistency and convergent and discriminant validity of the scales. Participants in the present study were 129 people with a diagnosis of panic disorder. Internal consistency was excellent for this sample, α = .95 for AAC and .96 for AAL. When the MIA scales were correlated with interviewer ratings, evidence for convergent and discriminant validity for AAL was strong (convergent r with agoraphobia severity ratings = .63 vs. discriminant rs of .10-.29 for other anxiety disorders) and more modest but still positive for AAC (.54 vs. .01-.37). Receiver operating curve analysis indicated that the optimal operating point for AAL as an indicator of ADIS agoraphobia diagnosis was 1.61, which yielded sensitivity of .87 and specificity of .73. PMID:22035997
Convergence of the Quasi-static Antenna Design Algorithm
2013-04-01
was the first antenna design with quasi-static methods. In electrostatics, a perfect conductor is the same as an equipotential surface . A line of...which can cause the equipotential surface to terminate on the disk or feed wire. This requires an additional step in the solution process; the... equipotential surface is sampled to verify that the charge is enclosed by the equipotential surface . The final solution must be verified with a detailed
Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.
Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin
2017-09-19
In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.
Active surface model improvement by energy function optimization for 3D segmentation.
Azimifar, Zohreh; Mohaddesi, Mahsa
2015-04-01
This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models. Copyright © 2015 Elsevier Ltd. All rights reserved.
Noise can speed convergence in Markov chains.
Franzke, Brandon; Kosko, Bart
2011-10-01
A new theorem shows that noise can speed convergence to equilibrium in discrete finite-state Markov chains. The noise applies to the state density and helps the Markov chain explore improbable regions of the state space. The theorem ensures that a stochastic-resonance noise benefit exists for states that obey a vector-norm inequality. Such noise leads to faster convergence because the noise reduces the norm components. A corollary shows that a noise benefit still occurs if the system states obey an alternate norm inequality. This leads to a noise-benefit algorithm that requires knowledge of the steady state. An alternative blind algorithm uses only past state information to achieve a weaker noise benefit. Simulations illustrate the predicted noise benefits in three well-known Markov models. The first model is a two-parameter Ehrenfest diffusion model that shows how noise benefits can occur in the class of birth-death processes. The second model is a Wright-Fisher model of genotype drift in population genetics. The third model is a chemical reaction network of zeolite crystallization. A fourth simulation shows a convergence rate increase of 64% for states that satisfy the theorem and an increase of 53% for states that satisfy the corollary. A final simulation shows that even suboptimal noise can speed convergence if the noise applies over successive time cycles. Noise benefits tend to be sharpest in Markov models that do not converge quickly and that do not have strong absorbing states.
Convergence at the faces of development workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisenko, A.A.
1977-07-01
Since 1963 we have been carrying out investigations in pits of the Pechora coalfield to establish the general laws of roof-floor convergence in the face areas of development workings and their role in gas bursts. We also considered how various methods of working on the seam influence the amount of type of convergence. The observations were made in 20 workings in five pits of Vorkutaugol Group, cut by cutter-loaders and by drilling and blasting at depths between 350 and 600 m; the cross-sectional areas of the workings ranged frm 3.7 to 12.0 m/sup 2/. The aggregated data on daily convergencemore » values was analyzed by the multiple correlation method with the aid of a computer. The aim of the analysis was to elucidate the influence of six factors on the daily convergence values: the depth below the surface, the corrected seam strength, the cross-sectional area of the working, the initial distance from the face to the measurement prop, the daily advance, and the thickness of the seam. The combined correlation coefficient was rather low - 0.49 with a reliability of 9.13. The greatest influence on the convergence values is exerted by the cross-sectional area and by the distance from the face (the partial correlation coefficients being 0.281 and 0.310, respectively), and lesser influences are exerted by the depth below the surface and by the corrected strength of the seam (partial correlationcoefficients 0.164 and 0.178); the influences of seam thickness and daily face advance are very slight. The multiple correlation results indicate that a very great influence is exerted by disregarded factors, among which the most important are undoubtedly the properties of the surrounding rocks.« less
Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube
NASA Astrophysics Data System (ADS)
Zhou, Guangzhao; Xu, Kun; Liu, Feng
2018-01-01
The flow in a shock tube is extremely complex with dynamic multi-scale structures of sharp fronts, flow separation, and vortices due to the interaction of the shock wave, the contact surface, and the boundary layer over the side wall of the tube. Prediction and understanding of the complex fluid dynamics are of theoretical and practical importance. It is also an extremely challenging problem for numerical simulation, especially at relatively high Reynolds numbers. Daru and Tenaud ["Evaluation of TVD high resolution schemes for unsteady viscous shocked flows," Comput. Fluids 30, 89-113 (2001)] proposed a two-dimensional model problem as a numerical test case for high-resolution schemes to simulate the flow field in a square closed shock tube. Though many researchers attempted this problem using a variety of computational methods, there is not yet an agreed-upon grid-converged solution of the problem at the Reynolds number of 1000. This paper presents a rigorous grid-convergence study and the resulting grid-converged solutions for this problem by using a newly developed, efficient, and high-order gas-kinetic scheme. Critical data extracted from the converged solutions are documented as benchmark data. The complex fluid dynamics of the flow at Re = 1000 are discussed and analyzed in detail. Major phenomena revealed by the numerical computations include the downward concentration of the fluid through the curved shock, the formation of the vortices, the mechanism of the shock wave bifurcation, the structure of the jet along the bottom wall, and the Kelvin-Helmholtz instability near the contact surface. Presentation and analysis of those flow processes provide important physical insight into the complex flow physics occurring in a shock tube.
How to reach linguistic consensus: a proof of convergence for the naming game.
De Vylder, Bart; Tuyls, Karl
2006-10-21
In this paper we introduce a mathematical model of naming games. Naming games have been widely used within research on the origins and evolution of language. Despite the many interesting empirical results these studies have produced, most of this research lacks a formal elucidating theory. In this paper we show how a population of agents can reach linguistic consensus, i.e. learn to use one common language to communicate with one another. Our approach differs from existing formal work in two important ways: one, we relax the too strong assumption that an agent samples infinitely often during each time interval. This assumption is usually made to guarantee convergence of an empirical learning process to a deterministic dynamical system. Two, we provide a proof that under these new realistic conditions, our model converges to a common language for the entire population of agents. Finally the model is experimentally validated.
Convergent and diagnostic validity of STAVUX, a word and pseudoword spelling test for adults.
Östberg, Per; Backlund, Charlotte; Lindström, Emma
2016-10-01
Few comprehensive spelling tests are available in Swedish, and none have been validated in adults with reading and writing disorders. The recently developed STAVUX test includes word and pseudoword spelling subtests with high internal consistency and adult norms stratified by education. This study evaluated the convergent and diagnostic validity of STAVUX in adults with dyslexia. Forty-six adults, 23 with dyslexia and 23 controls, took STAVUX together with a standard word-decoding test and a self-rated measure of spelling skills. STAVUX subtest scores showed moderate to strong correlations with word-decoding scores and predicted self-rated spelling skills. Word and pseudoword subtest scores both predicted dyslexia status. Receiver-operating characteristic (ROC) analysis showed excellent diagnostic discriminability. Sensitivity was 91% and specificity 96%. In conclusion, the results of this study support the convergent and diagnostic validity of STAVUX.
Koopmans, Ruud; Michalowski, Ines; Waibel, Stine
2012-01-01
Immigrant citizenship rights in the nation-state reference both theories of cross-national convergence and the resilience of national political processes. This article investigates European countries' attribution of rights to immigrants: Have these rights become more inclusive and more similar across countries? Are they affected by EU membership, the role of the judiciary, the party in power, the size of the immigrant electorate, or pressure exerted by anti-immigrant parties? Original data on 10 European countries, 1980-2008, reveal no evidence for cross-national convergence. Rights tended to become more inclusive until 2002, but stagnated afterward. Electoral changes drive these trends: growth of the immigrant electorate led to expansion, but countermobilization by right-wing parties slowed or reversed liberalizations. These electoral mechanisms are in turn shaped by long-standing policy traditions, leading to strong path dependence and the reproduction of preexisting cross-national differences.
Simulating Roll Clouds associated with Low-Level Convergence.
NASA Astrophysics Data System (ADS)
Prasad, A. A.; Sherwood, S. C.
2015-12-01
Convective initiation often takes place when features such as fronts and/or rolls collide, merge or otherwise meet. Rolls indicate boundary layer convergence and may initiate thunderstorms. These are often seen in satellite and radar imagery prior to the onset of deep convection. However, links between convergence driven rolls and convection are poor in global models. The poor representation of convection is the source of many model biases, especially over the Maritime Continent in the Tropics. We simulate low-level convergence lines over north-eastern Australia using the Weather Research and Forecasting (WRF) Model (version 3.7). The simulations are events from September-October 2002 driven by sea breeze circulations. Cloud lines associated with bore-waves that form along the low-level convergence lines are thoroughly investigated in this study with comparisons from satellite and surface observations. Initial simulations for a series of cloud lines observed on 4th October, 2002 over the Gulf of Carpentaria showed greater agreement in the timing and propagation of the disturbance and the low-level convergence, however the cloud lines or streets of roll clouds were not properly captured by the model. Results from a number of WRF simulations with different microphysics, cumulus and planetary boundary layer schemes, resolution and boundary conditions will also be discussed.
Subduction obliquity as a prime indicator for geotherm in subduction zone
NASA Astrophysics Data System (ADS)
Plunder, Alexis; Thieulot, Cédric; van Hinsbergen, Douwe
2016-04-01
The geotherm of a subduction zone is thought to vary as a function of subduction rate and the age of the subducting lithosphere. Along a single subduction zone the rate of subduction can strongly vary due to changes in the angle between the trench and the plate convergence vector, namely the subduction obliquity. This phenomenon is observed all around the Pacific (i.e., Marianna, South America, Aleutian…). However due to observed differences in subducting lithosphere age or lateral convergence rate in nature, the quantification of temperature variation due to obliquity is not obvious. In order to investigate this effect, 3D generic numerical models were carried out using the finite element code ELEFANT. We designed a simplified setup to avoid interaction with other parameters. An ocean/ocean subduction setting was chosen and the domain is represented by a 800 × 300 × 200 km Cartesian box. The trench geometry is prescribed by means of a simple arc-tangent function. Velocity of the subducting lithosphere is prescribed using the analytical solution for corner flow and only the energy conservation equation is solved in the domain. Results are analysed after steady state is reached. First results show that the effect of the trench curvature on the geotherm with respect to the convergence direction is not negligible. A small obliquity yields isotherms which are very slightly deflected upwards where the obliquity is maximum. With an angle of ˜30°, the isotherms are deflected upwards of about 10 kilometres. Strong obliquity (i.e., angles from 60° to almost 90°) reveal extreme effects of the position of the isotherms. Further model will include other parameter as the dip of the slab and convergence rate to highlight their relative influence on the geotherm of subduction zone.
Higher-order time integration of Coulomb collisions in a plasma using Langevin equations
Dimits, A. M.; Cohen, B. I.; Caflisch, R. E.; ...
2013-02-08
The extension of Langevin-equation Monte-Carlo algorithms for Coulomb collisions from the conventional Euler-Maruyama time integration to the next higher order of accuracy, the Milstein scheme, has been developed, implemented, and tested. This extension proceeds via a formulation of the angular scattering directly as stochastic differential equations in the two fixed-frame spherical-coordinate velocity variables. Results from the numerical implementation show the expected improvement [O(Δt) vs. O(Δt 1/2)] in the strong convergence rate both for the speed |v| and angular components of the scattering. An important result is that this improved convergence is achieved for the angular component of the scattering ifmore » and only if the “area-integral” terms in the Milstein scheme are included. The resulting Milstein scheme is of value as a step towards algorithms with both improved accuracy and efficiency. These include both algorithms with improved convergence in the averages (weak convergence) and multi-time-level schemes. The latter have been shown to give a greatly reduced cost for a given overall error level when compared with conventional Monte-Carlo schemes, and their performance is improved considerably when the Milstein algorithm is used for the underlying time advance versus the Euler-Maruyama algorithm. A new method for sampling the area integrals is given which is a simplification of an earlier direct method and which retains high accuracy. Lastly, this method, while being useful in its own right because of its relative simplicity, is also expected to considerably reduce the computational requirements for the direct conditional sampling of the area integrals that is needed for adaptive strong integration.« less
Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics
NASA Astrophysics Data System (ADS)
Altaner, Bernhard
2017-11-01
Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.
Agency and Achievement: Self-management and Self-regard.
ERIC Educational Resources Information Center
Thomas, John W.
1980-01-01
Studies in self-management, attribution, and achievement motivation challenge the view that basic skills instruction requires strong teacher control, structure, convergence on learning activities, less pupil freedom, and less experimental teaching activities. Student-managed instruction yielded the greatest achievement gains and heightened…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, M.A.; Seliger, H.H.
1978-03-01
An annual, long range, subsurface transport of Prorocentrum mariae-lebouriae, from the mouth of the Chesapeake Bay to its bloom area in the upper bay, a distance of 240 km, is described and completely documented. Prorocentrum in surface outflowing waters at the mouth of the bay is recruited in late winter into more dense inflowing coastal waters. Strong stratification produced by late winter--early spring surface runoff results in the development of a stable pycnocline. Prorocentrum, now in northward-flowing bottom waters, is retained in these bottom waters. It accumulates in a subsurface concentration maximum below the pycnocline and is transported northward tomore » reach its bloom area in the Patapsco River and north of the Bay Bridge by late spring. The rapidly decreasing depth of the upper bay causes the pycnocline to rise, mixing the previously light-limited Prorocentrum and its nutrient-rich bottom waters to the surface, where rapid growth ensues. Once the dinoflagellate is in surface waters, positive phototaxis, combined with both wind- and tide-driven surface convergences, produce dense surface patches or red tides. Prorocentrum is effectively retained in the bay until late winter by sequential inoculation into the tributary estuaries on the western shore, which exchange relatively slowly with bay waters. By late winter the annual cycle is complete. Prorocentrum is again in surface waters at the mouth of the bay where it is reintroduced into northward-flowing bottom waters. The mechanisms described provide a key to understanding the origins of subsurface chlorophyll maxima and the delivery of toxic dinoflagellates to coastal bloom areas.« less
Who’s on top? SST proxy comparison from the Peru Margin Upwelling System
NASA Astrophysics Data System (ADS)
Chazen, C.; Herbert, T.; Altabet, M. A.
2009-12-01
The Peru Margin upwelling region is situated at the interface between the poleward Peru Undercurrent and the equatorward Peru Coastal current. Strong coastal winds force cold, nutrient-rich thermocline waters to the surface. Sea surface temperatures in this region fluctuate sub-annually with changes in the position of the Intertropical convergence zone (ITCZ) and sub-decadally with modifications in the strength of Walker Circulation. In contrast, the temperature of the Peru Margin thermocline is stable, isolated from surface winds and slow to respond to major perturbations in surface temperature. Using high resolution sampling (6-7 year) across an annually laminated sediment core from the heart of the Peru Margin upwelling system (15°S) we explore how Uk’37 temperatures compare with TEX86 temperatures across a 200-year interval in the Mid-late Holocene. Mean late Holocene Uk’37 temperatures, extracted from a high sedimentation rate core from the Peru Margin are similar to modern mean annual sea surface temperatures at 15°S. Multi-decadal-scale (50-100 year) Uk’37 temperature fluctuations oscillate about the mean by 1.5°C. These rapid temperature changes are coherent with fluctuations in surface productivity (C37total and Biogenic Silica) in addition to sub-surface denitrification (δ15N). In contrast, TEX86 temperatures derived from identical samples exhibit colder temperatures than modern mean annual conditions and virtually no temperature fluctuation. We posit that TEX86 values are recording temperatures below the photic zone near the mix-layer-thermocline boundary and may, on longer timescales provide invaluable information about thermocline temperature. With this interpretation in mind, we present a TEX86-based long-term thermocline reconstruction over the Holocene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troxel, M. A.; Ishak, Mustapha; Peel, Austin, E-mail: troxel@utdallas.edu, E-mail: mishak@utdallas.edu, E-mail: austin.peel@utdallas.edu
2014-03-01
The study of relativistic, higher order, and nonlinear effects has become necessary in recent years in the pursuit of precision cosmology. We develop and apply here a framework to study gravitational lensing in exact models in general relativity that are not restricted to homogeneity and isotropy, and where full nonlinearity and relativistic effects are thus naturally included. We apply the framework to a specific, anisotropic galaxy cluster model which is based on a modified NFW halo density profile and described by the Szekeres metric. We examine the effects of increasing levels of anisotropy in the galaxy cluster on lensing observablesmore » like the convergence and shear for various lensing geometries, finding a strong nonlinear response in both the convergence and shear for rays passing through anisotropic regions of the cluster. Deviation from the expected values in a spherically symmetric structure are asymmetric with respect to path direction and thus will persist as a statistical effect when averaged over some ensemble of such clusters. The resulting relative difference in various geometries can be as large as approximately 2%, 8%, and 24% in the measure of convergence (1−κ) for levels of anisotropy of 5%, 10%, and 15%, respectively, as a fraction of total cluster mass. For the total magnitude of shear, the relative difference can grow near the center of the structure to be as large as 15%, 32%, and 44% for the same levels of anisotropy, averaged over the two extreme geometries. The convergence is impacted most strongly for rays which pass in directions along the axis of maximum dipole anisotropy in the structure, while the shear is most strongly impacted for rays which pass in directions orthogonal to this axis, as expected. The rich features found in the lensing signal due to anisotropic substructure are nearly entirely lost when one treats the cluster in the traditional FLRW lensing framework. These effects due to anisotropic structures are thus likely to impact lensing measurements and must be fully examined in an era of precision cosmology.« less
Driving forces: Slab subduction and mantle convection
NASA Technical Reports Server (NTRS)
Hager, Bradford H.
1988-01-01
Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.
The dynamics behind Titan's methane clouds.
Mitchell, Jonathan L; Pierrehumbert, Raymond T; Frierson, Dargan M W; Caballero, Rodrigo
2006-12-05
We present results of an axisymmetric global circulation model of Titan with a simplified suite of atmospheric physics forced by seasonally varying insolation. The recent discovery of midlatitude tropospheric clouds on Titan has caused much excitement about the roles of surface sources of methane and the global circulation in forming clouds. Although localized surface sources, such as methane geysers or "cryovolcanoes," have been invoked to explain these clouds, we find in this work that clouds appear in regions of convergence by the mean meridional circulation and over the poles during solstices, where the solar forcing reaches its seasonal maximum. Other regions are inhibited from forming clouds because of dynamical transports of methane and strong subsidence. We find that for a variety of moist regimes, i.e., with the effect of methane thermodynamics included, the observed cloud features can be explained by the large-scale dynamics of the atmosphere. Clouds at the solsticial pole are found to be a robust feature of Titan's dynamics, whereas isolated midlatitude clouds are present exclusively in a variety of moist dynamical regimes. In all cases, even without including methane thermodynamics, our model ceases to produce polar clouds approximately 4-6 terrestrial years after solstices.
Slab Penetration vs. Slab Stagnation: Mantle Reflectors as an Indicator
NASA Astrophysics Data System (ADS)
Okeler, A.; Gu, Y. J.; Schultz, R.; Contenti, S. M.
2011-12-01
Subducting oceanic lithosphere along convergent margins may stagnate near the base of the upper mantle or penetrate into the lower mantle. These dynamic processes cause extensive thermal and compositional variations, which can be observed in terms of impedance contrast (reflectivity) and topography of mantle transition zone (MTZ) discontinuities, i.e., 410- and 660-km discontinuities. In this study, we utilize ~ 15000 surface-reflected shear waves (SS) and their precursory arrivals (S410S and S660S) to analyze subduction related deformations on mantle reflectivity structure. We apply pre-stack, time-to-depth migration technique to SS precursors, and move weak underside reflections using PREM-predicted travel-time curves. Common Mid-point gathers are formed to investigate structure under the western Pacific, south America, and Mediterranean convergent boundaries. In general, mantle reflectivity structures are consistent with previous seismic tomography models. In regions of slab penetration (e.g., southern Kurile arc, Aegean Sea), our results show 1) a substantial decrease in S660S amplitude, and 2) strong lower mantle reflector(s) at ~ 900 km depth. These reflective structures are supported by zones of high P and S velocities extending into the lower mantle. Our 1-D synthetic simulations suggest that the decreasing S660S amplitudes are, at least partially, associated with shear wave defocusing due to changes in reflector depth (by ±20 km) within averaging bin. Assuming a ~500 km wide averaging area, a dipping reflector with 6-8 % slope can reduce the amplitude of a SS precursor by ~50%. On the other hand, broad depressions with strong impedance contrast at the base of the MTZ characterize the regions of slab stagnation, such as beneath the Tyrrhenian Sea and northeastern China. For the latter region, substantial topography on the 660-km discontinuity west of the Wadati-Benioff zone suggests that the stagnant part of the Pacific plate across Honshu arc is not nearly as flat as previously suggested.
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.
2009-01-01
Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and approximately mapped least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Results from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The second class of tests are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes are less accurate, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to the complexity of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping of the surface anisotropy or modifying the scheme stencil to reflect the direction of strong coupling.
Modelling larval transport in a axial convergence front
NASA Astrophysics Data System (ADS)
Robins, P.
2010-12-01
Marine larvae exhibit different vertical swimming behaviours, synchronised by factors such as tidal currents and daylight, in order to aid retention near the parent populations and hence promote production, avoid predation, or to stimulate digestion. This paper explores two types of larval migration in an estuarine axial convergent front which is an important circulatory mechanism in many coastal regions where larvae are concentrated. A parallelised, three-dimensional, ocean model was applied to an idealised estuarine channel which was parameterised from observations of an axial convergent front which occurs in the Conwy Estuary, U.K. (Nunes and Simpson, 1985). The model successfully simulates the bilateral cross-sectional recirculation of an axial convergent front, which has been attributed to lateral density gradients established by the interaction of the lateral shear of the longitudinal currents with the axial salinity gradients. On the flood tide, there is surface axial convergence whereas on the ebb tide, there is (weaker) surface divergence. Further simulations with increased/decreased tidal velocities and with stronger/weaker axial salinity gradients are planned so that the effects of a changing climate on the secondary flow can be understood. Three-dimensional Lagrangian Particle Tracking Models (PTMs) have been developed which use the simulated velocity fields to track larvae in the estuarine channel. The PTMs take into account the vertical migrations of two shellfish species that are commonly found in the Conwy Estuary: (i) tidal migration of the common shore crab (Carcinus maenas) and (ii), diel (daily) migration of the Great scallop (Pecten maximus). These migration behaviours are perhaps the most widespread amongst shellfish larvae and have been compared with passive (drifting) particles in order to assess their relative importance in terms of larval transport. Preliminary results suggest that the net along-estuary dispersal over a typical larval period of 28 days of both passive and daily synchronised larvae will follow the asymmetry of the tide (i.e. for a symmetrical tide, the net dispersal is likely to be zero). For tidally synchronised larvae, there is an up-estuary migration as the larvae swim upwards to the stronger surface currents during the flood tide.
Multisystem altruistic metadynamics—Well-tempered variant
NASA Astrophysics Data System (ADS)
Hošek, Petr; Kříž, Pavel; Toulcová, Daniela; Spiwok, Vojtěch
2017-03-01
Metadynamics method has been widely used to enhance sampling in molecular simulations. Its original form suffers two major drawbacks, poor convergence in complex (especially biomolecular) systems and its serial nature. The first drawback has been addressed by introduction of a convergent variant known as well-tempered metadynamics. The second was addressed by introduction of a parallel multisystem metadynamics referred to as altruistic metadynamics. Here, we combine both approaches into well-tempered altruistic metadynamics. We provide mathematical arguments and trial simulations to show that it accurately predicts free energy surfaces.
Multisystem altruistic metadynamics-Well-tempered variant.
Hošek, Petr; Kříž, Pavel; Toulcová, Daniela; Spiwok, Vojtěch
2017-03-28
Metadynamics method has been widely used to enhance sampling in molecular simulations. Its original form suffers two major drawbacks, poor convergence in complex (especially biomolecular) systems and its serial nature. The first drawback has been addressed by introduction of a convergent variant known as well-tempered metadynamics. The second was addressed by introduction of a parallel multisystem metadynamics referred to as altruistic metadynamics. Here, we combine both approaches into well-tempered altruistic metadynamics. We provide mathematical arguments and trial simulations to show that it accurately predicts free energy surfaces.
Physical condition for elimination of ambiguity in conditionally convergent lattice sums
NASA Astrophysics Data System (ADS)
Young, K.
1987-02-01
The conditional convergence of the lattice sum defining the Madelung constant gives rise to an ambiguity in its value. It is shown that this ambiguity is related, through a simple and universal integral, to the average charge density on the crystal surface. The physically correct value is obtained by setting the charge density to zero. A simple and universally applicable formula for the Madelung constant is derived as a consequence. It consists of adding up dipole-dipole energies together with a nontrivial correction term.
NASA Astrophysics Data System (ADS)
Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.
2012-12-01
We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and dies out northward where we propose that its slip transfers to active structures in the Piedras Blancas fold belt. Given the continuity of the Hosgri Fault Zone through our study area, earthquake hazard assessments should incorporate a minimum rupture length of 110 km. Our data do not constrain lateral slip rates on the Hosgri, which probably vary along the fault (both to the north and south) as different structures converge and diverge but are likely in the geodetically estimated range of 2 to 4 mm/yr. More focused mapping of lowstand geomorphic features (e.g., channels, paleoshorelines) has the potential to provide better constraints. The post-Last-Glacial Maximum unconformity is an important surface for constraining vertical deformation, yielding local fault offset rates that may be as high as 1.4 mm/yr and off-fault deformation rates as high as 0.5 mm/yr. These vertical rates are short-term and not sustainable over longer geologic time, emphasizing the complex evolution and dynamics of strike-slip zones.
NASA Astrophysics Data System (ADS)
Nijholt, Nicolai; Govers, Rob; Wortel, Rinus
2018-04-01
The geodynamics of the Mediterranean comprises a transitional setting in which slab rollback and plate convergence compete to shape the region. In the central Mediterranean, where the balance of driving and resisting forces changes continuously and rapidly since the Miocene, both kinematic and seismo-tectonic observations display a strong variation in deformation style and, therefore possibly, lithospheric forces. We aim to understand the current kinematics in southern Italy and Sicily in terms of lithospheric forces that cause them. The strong regional variation of geodetic velocities appears to prohibit such simple explanation. We use mechanical models to quantify the deformation resulting from large-scale Africa-Eurasia convergence, ESE retreat of the Calabrian subduction zone, pull by the Aegean slab, and regional variations in gravitational potential energy (topography). A key model element is the resistance to slip on major regional fault zones. We show that geodetic velocities, seismicity and sense of slip on regional faults can be understood to result from lithospheric forces. Our most important new finding is that regional variations in resistive tractions are required to fit the observations, with notably very low tractions on the Calabrian subduction contact, and a buildup towards a significant earthquake in the Calabrian fore-arc. We also find that the Calabrian net slab pull force is strongly reduced (compared to the value possible in view of the slab's dimensions) and that trench suction tractions are negligible. Such very small contributions to the present-day force balance in the south-central Mediterranean suggest that the Calabrian arc is now further transitioning towards a setting dominated by Africa-Eurasia plate convergence, whereas during the past 30 Myrs slab retreat continually was the dominant factor.
Adigun, Abayomi A.; Seidler, Frederic J.; Slotkin, Theodore A.
2009-01-01
Cell-signaling cascades are convergent targets for developmental neurotoxicity of otherwise unrelated agents. We compared organophosphates (chlorpyrifos, diazinon), an organochlorine (dieldrin) and a metal (Ni2+) for their effects on neuronotypic PC12 cells, assessing gene transcription involved in the cyclic AMP pathway. Each agent was introduced during neurodifferentiation at a concentration of 30 μM for 24 or 72 hr and we assessed 69 genes encoding adenylyl cyclase isoforms and regulators, G-protein α- and β,γ-subunits, protein kinase A subtypes and the phosphodiesterase family. We found strong concordance among the four agents across all the gene families, with the strongest relationships for the G-proteins, followed by adenylyl cyclase, and lesser concordance for protein kinase A and phosphodiesterase. Superimposed on this pattern, chlorpyrifos and diazinon were surprisingly the least alike, whereas there was strong concordance of dieldrin and Ni2+ with each other and with each individual organophosphate. Further, the effects of chlorpyrifos differed substantially depending on whether cells were undifferentiated or differentiating. To resolve the disparities between chlorpyrifos and diazinon, we performed analyses in rat brain regions after in vivo neonatal exposures; unlike the in vitro results, there was strong concordance. Our results show that unrelated developmental neurotoxicants can nevertheless produce similar outcomes by targeting cell signaling pathways involved in neurodifferentiation during a critical developmental period of vulnerability. Nevertheless, a full evaluation of concordance between different toxicants requires evaluations of in vitro systems that detect direct effects, as well as in vivo systems that allow for more complex interactions that converge on the same pathway. PMID:20026089
NASA Astrophysics Data System (ADS)
Costantino, Lorenzo; Heinrich, Philippe
2013-04-01
In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, which proposes to design a new infrastructure to integrate different atmospheric observation networks, we analyse moist deep convective processes responsible of intensive rainstorms in the tropics (making use of the Weather Research and Forecasting, WRF, numerical model) and compare the results with ground measurements of the CTBTO (Comprehensive nuclear-Test-Ban Treaty Organization) infra-sound stations in Ivory Coast. In this work, we investigate the life cycle of singlecell deep convective cloud trough a bi-dimensional, non-hydrostatic, limited-area simulation in simplified model configuration ("idealized case"), at high spatial and temporal resolution. In this way, we expect to resolve explicitly the convective cloud dynamics, avoiding the use of sometimes questionable parametrization (e.g. PBL and convective cumulus) schemes. We also perform a three-dimensional numerical experiment at coarser resolution, guided by real meteorological data of the tropical Ivory Coast region, to compare "real case" results with the infra-sounder measurements for the same area. Previous studies have shown that rain evaporation during intense precipitating events may cool the atmosphere and produce negative buoyancy that, together with falling rain, may give rise to particularly strong down-drafts (Betts, 1976, Tompkins, 2000). As the descending air column impacts the ground, it spreads out and creates a horizontal surface outflow (generally called "density current" or "cold pool") colder and denser than surrounding air. Results from the 2D idealized case show that temporal and horizontal resolution of 2 seconds and 250 meters is fine enough to produce a density current, that moves outward up to several kilometers from storm center. The increase in surface density (up to 2% higher than the base state) is followed by a sudden variation of surface temperature and an increase in horizontal wind speed (between 10 and 20 m/s), somewhat proportional to the density change. We note that if the surface density variation is strong and rapid enough, the surface pressure filed results strongly affected as well. We observe a surface pressure peak (with maximum amplitude of about ±40 Pa), that moves together with the density current leading edge. At cold pool boundaries, the outflow converges with warmer and moister surface inflow and create a curl. As a consequence, warmer air is lifted up and transported above the denser layer where it may trigger new convection and provide the vapor supply to new cloud formation. Results from the 3D real data case (that uses a horizontal resolution of 2 km and a convective cumulus parametrization scheme) show a very good agreement with ground measurements of pressure, wind speed and wind direction and confirm that this model configuration reliably reproduces the dynamical and thermodynamical evolution of a tropical deep convective storm. The simulated pressure peak (due to a strong density current that originates from a huge precipitating squall line) is very similar to that measured by the infra-sounders (with maximum amplitude of about ±50 Pa) and coherent with the idealized case. As in the 2D experiment, the development of tropical heavy rain events associated with strong density currents leads to a sub cloud layer which is not only denser and colder (as a consequence of rain evaporation, that works as a heat sink) but also sensibly dryer in correspondence of the gust front, sing that saturation mixing ration of subsiding air is lower than that of the boundary layer.
On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator
NASA Astrophysics Data System (ADS)
Korda, Milan; Mezić, Igor
2018-04-01
Extended dynamic mode decomposition (EDMD) (Williams et al. in J Nonlinear Sci 25(6):1307-1346, 2015) is an algorithm that approximates the action of the Koopman operator on an N-dimensional subspace of the space of observables by sampling at M points in the state space. Assuming that the samples are drawn either independently or ergodically from some measure μ , it was shown in Klus et al. (J Comput Dyn 3(1):51-79, 2016) that, in the limit as M→ ∞, the EDMD operator K_{N,M} converges to K_N, where K_N is the L_2(μ )-orthogonal projection of the action of the Koopman operator on the finite-dimensional subspace of observables. We show that, as N → ∞, the operator K_N converges in the strong operator topology to the Koopman operator. This in particular implies convergence of the predictions of future values of a given observable over any finite time horizon, a fact important for practical applications such as forecasting, estimation and control. In addition, we show that accumulation points of the spectra of K_N correspond to the eigenvalues of the Koopman operator with the associated eigenfunctions converging weakly to an eigenfunction of the Koopman operator, provided that the weak limit of the eigenfunctions is nonzero. As a by-product, we propose an analytic version of the EDMD algorithm which, under some assumptions, allows one to construct K_N directly, without the use of sampling. Finally, under additional assumptions, we analyze convergence of K_{N,N} (i.e., M=N), proving convergence, along a subsequence, to weak eigenfunctions (or eigendistributions) related to the eigenmeasures of the Perron-Frobenius operator. No assumptions on the observables belonging to a finite-dimensional invariant subspace of the Koopman operator are required throughout.
Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir
2018-04-10
We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .
Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco; ...
2018-03-15
Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco
Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less
Cren(ulation)-1,2 Preshot Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall
2015-12-21
There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the RichtmyerMeshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less
Measuring Work Functioning: Validity of a Weighted Composite Work Functioning Approach.
Boezeman, Edwin J; Sluiter, Judith K; Nieuwenhuijsen, Karen
2015-09-01
To examine the construct validity of a weighted composite work functioning measurement approach. Workers (health-impaired/healthy) (n = 117) completed a composite measure survey that recorded four central work functioning aspects with existing scales: capacity to work, quality of work performance, quantity of work, and recovery from work. Previous derived weights reflecting the relative importance of these aspects of work functioning were used to calculate the composite weighted work functioning score of the workers. Work role functioning, productivity, and quality of life were used for validation. Correlations were calculated and norms applied to examine convergent and divergent construct validity. A t test was conducted and a norm applied to examine discriminative construct validity. Overall the weighted composite work functioning measure demonstrated construct validity. As predicted, the weighted composite score correlated (p < .001) strongly (r > .60) with work role functioning and productivity (convergent construct validity), and moderately (.30 < r < .60) with physical quality of life and less strongly than work role functioning and productivity with mental quality of life (divergent validity). Further, the weighted composite measure detected that health-impaired workers show with a large effect size (Cohen's d > .80) significantly worse work functioning than healthy workers (discriminative validity). The weighted composite work functioning measurement approach takes into account the relative importance of the different work functioning aspects and demonstrated good convergent, fair divergent, and good discriminative construct validity.
Duda, Piotr; Jaworski, Maciej; Rutkowski, Leszek
2018-03-01
One of the greatest challenges in data mining is related to processing and analysis of massive data streams. Contrary to traditional static data mining problems, data streams require that each element is processed only once, the amount of allocated memory is constant and the models incorporate changes of investigated streams. A vast majority of available methods have been developed for data stream classification and only a few of them attempted to solve regression problems, using various heuristic approaches. In this paper, we develop mathematically justified regression models working in a time-varying environment. More specifically, we study incremental versions of generalized regression neural networks, called IGRNNs, and we prove their tracking properties - weak (in probability) and strong (with probability one) convergence assuming various concept drift scenarios. First, we present the IGRNNs, based on the Parzen kernels, for modeling stationary systems under nonstationary noise. Next, we extend our approach to modeling time-varying systems under nonstationary noise. We present several types of concept drifts to be handled by our approach in such a way that weak and strong convergence holds under certain conditions. Finally, in the series of simulations, we compare our method with commonly used heuristic approaches, based on forgetting mechanism or sliding windows, to deal with concept drift. Finally, we apply our concept in a real life scenario solving the problem of currency exchange rates prediction.
A three-term conjugate gradient method under the strong-Wolfe line search
NASA Astrophysics Data System (ADS)
Khadijah, Wan; Rivaie, Mohd; Mamat, Mustafa
2017-08-01
Recently, numerous studies have been concerned in conjugate gradient methods for solving large-scale unconstrained optimization method. In this paper, a three-term conjugate gradient method is proposed for unconstrained optimization which always satisfies sufficient descent direction and namely as Three-Term Rivaie-Mustafa-Ismail-Leong (TTRMIL). Under standard conditions, TTRMIL method is proved to be globally convergent under strong-Wolfe line search. Finally, numerical results are provided for the purpose of comparison.
On a theory of the evolution of surface cold fronts
NASA Technical Reports Server (NTRS)
Levy, Gad; Bretherton, Christopher S.
1987-01-01
The governing vorticity and divergence equations in the surface layer are derived and the roles of the different terms and feedback mechanisms are investigated in semigeostrophic and nongeostrophic cold-frontal systems. A planetary boundary layer model is used to perform sensitivity tests to determine that in a cold front the ageostrophic feedback mechanism as defined by Orlanski and Ross tends to act as a positive feedback mechanism, enhancing vorticity and convergence growth. Therefore, it cannot explain the phase shift between convergence and vorticity as simulated by Orlanski and Ross. An alternative plausible, though tentative, explanation in terms of a gravity wave is offered. It is shown that when the geostrophic deformation increases, nonlinear terms in the divergence equation may become important and further destabilize the system.
Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction
NASA Astrophysics Data System (ADS)
Hayat, T.; Ullah, Ikram; Ahmad, B.; Alsaedi, A.
Objective of this article is to investigate the magnetohydrodynamic (MHD) boundary layer stretched flow of Carreau fluid in the presence of Newtonian heating. Sheet is presumed permeable. Analysis is studied in the presence of chemical reaction and thermal radiation. Mathematical formulation is established by using the boundary layer approximations. The resultant nonlinear flow analysis is computed for the convergent solutions. Interval of convergence via numerical data and plots are obtained and verified. Impact of numerous pertinent variables on the velocity, temperature and concentration is outlined. Numerical data for surface drag coefficient, surface heat transfer (local Nusselt number) and mass transfer (local Sherwood number) is executed and inspected. Comparison of skin friction coefficient in limiting case is made for the verification of current derived solutions.
Equilibria Configurations for Epitaxial Crystal Growth with Adatoms
NASA Astrophysics Data System (ADS)
Caroccia, Marco; Cristoferi, Riccardo; Dietrich, Laurent
2018-05-01
The behavior of a surface energy F}(E,u)} , where E is a set of finite perimeter and u\\in L^1(partial^{*} E, R_+) , is studied. These energies have been recently considered in the context of materials science to derive a new model in crystal growth that takes into account the effect of atoms, the freely diffusing on the surface (called adatoms), which are responsible for morphological evolution through an attachment and detachment process. Regular critical points, the existence and uniqueness of minimizers are discussed and the relaxation of F in a general setting under the L 1 convergence of sets and the vague convergence of measures is characterized. This is part of an ongoing project aimed at an analytical study of diffuse interface approximations of the associated evolution equations.
Mesoscale Features and Cloud Organization on 10-12 December 1978 over the South China Sea.
NASA Astrophysics Data System (ADS)
Warner, Charles
1982-07-01
Aircraft data from Winter MONEX have been combined with other data to study mesoscale features, and organization of cumulus clouds, on 10-12 December 1978. A moderate cold surge in the northeasterly monsoon flow, toward cloudiness in an equatorial trough off Borneo, peaked on 11 December.Clouds in the northeasterly monsoon flow were similar to those in the trades, with variations in convective regime on length scales on the order of 100 km. Marked mid-tropospheric subsidence was accompanied by low-level divergence near 20°N. During 10 December, anvil clouds near Borneo expanded; cumulus congestus and cumulonimbus formed on the periphery of this area. The approach of the low-level northeasterlies to the area of anvils was marked by a diminution of subsidence, conditional instability, and a weak field of low-level convergence, with randomly organized cumulus of increasing height. A low-level easterly jet was found in this transition zone, downstream from cloudiness over the Philippines. South of Vietnam, a clear area was associated with low air temperatures, and not subsidence. Congestus and cumulonimbus clouds formed near the eastern coast of the Malay Peninsula.Cloud streets were seen from latitude 19°N to the Malaysian coast (with a break south of Vietnam). These clouds were confined below the level of an inflection point in the profile of winds normal to the street direction. Greatest spacings of streets occurred with greatest vertical shears of the cross-winds. Cloud number densities were more closely related to the instability of the vertical stratification than to any other parameter.Cross-wind organization of clouds occurred in circumstances of unstable, stratification and apparently of net ascent. Alignment of clouds was at an angle to the directions of both winds and vertical wind shears. It is inferred that when convergence was strong, deep clouds occurred along lines of convergence in the surface streamlines.
Ngeve, Magdalene N; Van der Stocken, Tom; Menemenlis, Dimitris; Koedam, Nico; Triest, Ludwig
2016-01-01
Mangroves are seafaring taxa through their hydrochorous propagules that have the potential to disperse over long distances. Therefore, investigating their patterns of gene flow provides insights on the processes involved in the spatial genetic structuring of populations. The coastline of Cameroon has a particular geomorphological history and coastal hydrology with complex contemporary patterns of ocean currents, which we hypothesize to have effects on the spatial configuration and composition of present-day mangroves within its spans. A total of 982 trees were sampled from 33 transects (11 sites) in 4 estuaries. Using 11 polymorphic SSR markers, we investigated genetic diversity and structure of Rhizophora racemosa, a widespread species in the region. Genetic diversity was low to moderate and genetic differentiation between nearly all population pairs was significant. Bayesian clustering analysis, PCoA, estimates of contemporary migration rates and identification of barriers to gene flow were used and complemented with estimated dispersal trajectories of hourly released virtual propagules, using high-resolution surface current from a mesoscale and tide-resolving ocean simulation. These indicate that the Cameroon Volcanic Line (CVL) is not a present-day barrier to gene flow. Rather, the Inter-Bioko-Cameroon (IBC) corridor, formed due to sea level rise, allows for connectivity between two mangrove areas that were isolated during glacial times by the CVL. Genetic data and numerical ocean simulations indicated that an oceanic convergence zone near the Cameroon Estuary complex (CEC) presents a strong barrier to gene flow, resulting in genetic discontinuities between the mangrove areas on either side. This convergence did not result in higher genetic diversity at the CEC as we had hypothesized. In conclusion, the genetic structure of Rhizophora racemosa is maintained by the contrasting effects of the contemporary oceanic convergence and historical climate change-induced sea level rise.
Ngeve, Magdalene N.; Van der Stocken, Tom; Menemenlis, Dimitris; Koedam, Nico; Triest, Ludwig
2016-01-01
Mangroves are seafaring taxa through their hydrochorous propagules that have the potential to disperse over long distances. Therefore, investigating their patterns of gene flow provides insights on the processes involved in the spatial genetic structuring of populations. The coastline of Cameroon has a particular geomorphological history and coastal hydrology with complex contemporary patterns of ocean currents, which we hypothesize to have effects on the spatial configuration and composition of present-day mangroves within its spans. A total of 982 trees were sampled from 33 transects (11 sites) in 4 estuaries. Using 11 polymorphic SSR markers, we investigated genetic diversity and structure of Rhizophora racemosa, a widespread species in the region. Genetic diversity was low to moderate and genetic differentiation between nearly all population pairs was significant. Bayesian clustering analysis, PCoA, estimates of contemporary migration rates and identification of barriers to gene flow were used and complemented with estimated dispersal trajectories of hourly released virtual propagules, using high-resolution surface current from a mesoscale and tide-resolving ocean simulation. These indicate that the Cameroon Volcanic Line (CVL) is not a present-day barrier to gene flow. Rather, the Inter-Bioko-Cameroon (IBC) corridor, formed due to sea level rise, allows for connectivity between two mangrove areas that were isolated during glacial times by the CVL. Genetic data and numerical ocean simulations indicated that an oceanic convergence zone near the Cameroon Estuary complex (CEC) presents a strong barrier to gene flow, resulting in genetic discontinuities between the mangrove areas on either side. This convergence did not result in higher genetic diversity at the CEC as we had hypothesized. In conclusion, the genetic structure of Rhizophora racemosa is maintained by the contrasting effects of the contemporary oceanic convergence and historical climate change-induced sea level rise. PMID:26964094
NASA Astrophysics Data System (ADS)
Chang, Zhe; Li, Ming-Hua; Lin, Hai-Nan; Li, Xin
2012-12-01
The data of the Bullet Cluster 1E0657-558 released on November 15, 2006 reveal that the strong and weak gravitational lensing convergence κ-map has an 8σ offset from the Σ-map. The observed Σ-map is a direct measurement of the surface mass density of the Intracluster medium (ICM) gas. It accounts for 83% of the averaged mass-fraction of the system. This suggests a modified gravity theory at large distances different from Newton's inverse-square gravitational law. In this paper, as a cluster scale generalization of Grumiller's modified gravity model (Phys. Rev. Lett.105 (2010) 211303), we present a gravity model with a generalized linear Rindler potential in Randers-Finslerian spacetime without invoking any dark matter. The galactic limit of the model is qualitatively consistent with the MOND and Grumiller's. It yields approximately the flatness of the rotational velocity profile at the radial distance of several kpcs and gives the velocity scales for spiral galaxies at which the curves become flattened. Plots of convergence κ for a galaxy cluster show that the peak of the gravitational potential has chances to lie on the outskirts of the baryonic mass center. Assuming an isotropic and isothermal ICM gas profile with temperature T = 14.8 keV (which is the center value given by observations), we obtain a good match between the dynamical mass MT of the main cluster given by collisionless Boltzmann equation and that given by the King β-model. We also consider a Randers+dark matter scenario and a Λ-CDM model with the NFW dark matter distribution profile. We find that a mass ratio η between dark matter and baryonic matter about 6 fails to reproduce the observed convergence κ-map for the isothermal temperature T taking the observational center value.
Dearing, James W; Maibach, Edward W; Buller, David B
2006-10-01
Approaches from diffusion of innovations and social marketing are used here to propose efficient means to promote and enhance the dissemination of evidence-based physical activity programs. While both approaches have traditionally been conceptualized as top-down, center-to-periphery, centralized efforts at social change, their operational methods have usually differed. The operational methods of diffusion theory have a strong relational emphasis, while the operational methods of social marketing have a strong transactional emphasis. Here, we argue for a convergence of diffusion of innovation and social marketing principles to stimulate the efficient dissemination of proven-effective programs. In general terms, we are encouraging a focus on societal sectors as a logical and efficient means for enhancing the impact of dissemination efforts. This requires an understanding of complex organizations and the functional roles played by different individuals in such organizations. In specific terms, ten principles are provided for working effectively within societal sectors and enhancing user involvement in the processes of adoption and implementation.
Quantized Average Consensus on Gossip Digraphs with Reduced Computation
NASA Astrophysics Data System (ADS)
Cai, Kai; Ishii, Hideaki
The authors have recently proposed a class of randomized gossip algorithms which solve the distributed averaging problem on directed graphs, with the constraint that each node has an integer-valued state. The essence of this algorithm is to maintain local records, called “surplus”, of individual state updates, thereby achieving quantized average consensus even though the state sum of all nodes is not preserved. In this paper we study a modified version of this algorithm, whose feature is primarily in reducing both computation and communication effort. Concretely, each node needs to update fewer local variables, and can transmit surplus by requiring only one bit. Under this modified algorithm we prove that reaching the average is ensured for arbitrary strongly connected graphs. The condition of arbitrary strong connection is less restrictive than those known in the literature for either real-valued or quantized states; in particular, it does not require the special structure on the network called balanced. Finally, we provide numerical examples to illustrate the convergence result, with emphasis on convergence time analysis.
Truss beam having convex-curved rods, shear web panels, and self-aligning adapters
NASA Technical Reports Server (NTRS)
Fernandez, Ian M. (Inventor)
2013-01-01
A truss beam comprised of a plurality of joined convex-curved rods with self-aligning adapters (SAA) adhesively attached at each end of the truss beam is disclosed. Shear web panels are attached to adjacent pairs of rods, providing buckling resistance for the truss beam. The rods are disposed adjacent to each other, centered around a common longitudinal axis, and oriented so that adjacent rod ends converge to at least one virtual convergence point on the common longitudinal axis, with the rods' curvature designed to increase prevent buckling for the truss beam. Each SAA has longitudinal bores that provide self-aligning of the rods in the SAA, the self-aligning feature enabling creation of strong adhesive bonds between each SAA and the rods. In certain embodiments of the present invention, pultruded unidirectional carbon fiber rods are coupled with carbon fiber shear web panels and metal SAA(s), resulting in a lightweight, low-cost but strong truss beam that is highly resistant to buckling.
3D Parallel Multigrid Methods for Real-Time Fluid Simulation
NASA Astrophysics Data System (ADS)
Wan, Feifei; Yin, Yong; Zhang, Suiyu
2018-03-01
The multigrid method is widely used in fluid simulation because of its strong convergence. In addition to operating accuracy, operational efficiency is also an important factor to consider in order to enable real-time fluid simulation in computer graphics. For this problem, we compared the performance of the Algebraic Multigrid and the Geometric Multigrid in the V-Cycle and Full-Cycle schemes respectively, and analyze the convergence and speed of different methods. All the calculations are done on the parallel computing of GPU in this paper. Finally, we experiment with the 3D-grid for each scale, and give the exact experimental results.
The siren song of vocal fundamental frequency for romantic relationships.
Weusthoff, Sarah; Baucom, Brian R; Hahlweg, Kurt
2013-01-01
A multitude of factors contribute to why and how romantic relationships are formed as well as whether they ultimately succeed or fail. Drawing on evolutionary models of attraction and speech production as well as integrative models of relationship functioning, this review argues that paralinguistic cues (more specifically the fundamental frequency of the voice) that are initially a strong source of attraction also increase couples' risk for relationship failure. Conceptual similarities and differences between the multiple operationalizations and interpretations of vocal fundamental frequency are discussed and guidelines are presented for understanding both convergent and non-convergent findings. Implications for clinical practice and future research are discussed.
A state-level analysis of life expectancy in Mexico (1990-2006).
Peláez, Oscar; Guijarro, Marta; Arias, Mercedes
2010-11-01
Using a methodology similar to that proposed by Barro & Sala-i-Martin (1995), it is found that, in the period 1990-2006, there was strong convergence among state-level life expectancy series, but a distancing in life expectancy in the Mexican Republic compared with more developed countries, especially during the new millennium. The interior convergence had taken place at the expense of the exterior; that is, not so much as a result of an improvement in living conditions in the poorer states, but more due to the low performance of the richer states. The causes of this situation are explained using the concept of 'epidemiological transition'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenzer, Siegfried
We have developed an experimental platform for the National Ignition Facility (NIF) that uses spherically converging shock waves for absolute equation of state (EOS) measurements along the principal Hugoniot. In this Letter we present radiographic compression measurements for polystyrene that were taken at shock pressures reaching 60 Mbar (6 TPa). This significantly exceeds previously published results obtained on the Nova laser [Cauble et al., Phys. Rev. Lett. 80, 1248 (1998)] at strongly improved precision, allowing to discriminate between different EOS models. We find excellent agreement with Kohn-Sham Density Functional Theory based molecular dynamics simulations.
A new look at sunspot formation using theory and observations
NASA Astrophysics Data System (ADS)
Losada, I. R.; Warnecke, J.; Glogowski, K.; Roth, M.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.
2017-10-01
Sunspots are of basic interest in the study of the Sun. Their relevance ranges from them being an activity indicator of magnetic fields to being the place where coronal mass ejections and flares erupt. They are therefore also an important ingredient of space weather. Their formation, however, is still an unresolved problem in solar physics. Observations utilize just 2D surface information near the spot, but it is debatable how to infer deep structures and properties from local helioseismology. For a long time, it was believed that flux tubes rising from the bottom of the convection zone are the origin of the bipolar sunspot structure seen on the solar surface. However, this theory has been challenged, in particular recently by new surface observation, helioseismic inversions, and numerical models of convective dynamos. In this article we discuss another theoretical approach to the formation of sunspots: the negative effective magnetic pressure instability. This is a large-scale instability, in which the total (kinetic plus magnetic) turbulent pressure can be suppressed in the presence of a weak large-scale magnetic field, leading to a converging downflow, which eventually concentrates the magnetic field within it. Numerical simulations of forced stratified turbulence have been able to produce strong super-equipartition flux concentrations, similar to sunspots at the solar surface. In this framework, sunspots would only form close to the surface due to the instability constraints on stratification and rotation. Additionally, we present some ideas from local helioseismology, where we plan to use the Hankel analysis to study the pre-emergence phase of a sunspot and to constrain its deep structure and formation mechanism.
Shared and Unique Patterns of Embryo Development in Extremophile Poeciliids
Riesch, Rüdiger; Schlupp, Ingo; Langerhans, R. Brian; Plath, Martin
2011-01-01
Background Closely related lineages of livebearing fishes have independently adapted to two extreme environmental factors: toxic hydrogen sulphide (H2S) and perpetual darkness. Previous work has demonstrated in adult specimens that fish from these extreme habitats convergently evolved drastically increased head and offspring size, while cave fish are further characterized by reduced pigmentation and eye size. Here, we traced the development of these (and other) divergent traits in embryos of Poecilia mexicana from benign surface habitats (“surface mollies”) and a sulphidic cave (“cave mollies”), as well as in embryos of the sister taxon, Poecilia sulphuraria from a sulphidic surface spring (“sulphur mollies”). We asked at which points during development changes in the timing of the involved processes (i.e., heterochrony) would be detectible. Methods and Results Data were extracted from digital photographs taken of representative embryos for each stage of development and each type of molly. Embryo mass decreased in convergent fashion, but we found patterns of embryonic fat content and ovum/embryo diameter to be divergent among all three types of mollies. The intensity of yellow colouration of the yolk (a proxy for carotenoid content) was significantly lower in cave mollies throughout development. Moreover, while relative head size decreased through development in surface mollies, it increased in both types of extremophile mollies, and eye growth was arrested in mid-stage embryos of cave mollies but not in surface or sulphur mollies. Conclusion Our results clearly demonstrate that even among sister taxa convergence in phenotypic traits is not always achieved by the same processes during embryo development. Furthermore, teleost development is crucially dependent on sufficient carotenoid stores in the yolk, and so we discuss how the apparent ability of cave mollies to overcome this carotenoid-dependency may represent another potential mechanism explaining the lack of gene flow between surface and cave mollies. PMID:22087302
NASA Technical Reports Server (NTRS)
Mendoza, John Cadiz
1995-01-01
The computational fluid dynamics code, PARC3D, is tested to see if its use of non-physical artificial dissipation affects the accuracy of its results. This is accomplished by simulating a shock-laminar boundary layer interaction and several hypersonic flight conditions of the Pegasus(TM) launch vehicle using full artificial dissipation, low artificial dissipation, and the Engquist filter. Before the filter is applied to the PARC3D code, it is validated in one-dimensional and two-dimensional form in a MacCormack scheme against the Riemann and convergent duct problem. For this explicit scheme, the filter shows great improvements in accuracy and computational time as opposed to the nonfiltered solutions. However, for the implicit PARC3D code it is found that the best estimate of the Pegasus experimental heat fluxes and surface pressures is the simulation utilizing low artificial dissipation and no filter. The filter does improve accuracy over the artificially dissipative case but at a computational expense greater than that achieved by the low artificial dissipation case which has no computational time penalty and shows better results. For the shock-boundary layer simulation, the filter does well in terms of accuracy for a strong impingement shock but not as well for weaker shock strengths. Furthermore, for the latter problem the filter reduces the required computational time to convergence by 18.7 percent.
NASA Astrophysics Data System (ADS)
Carlo Espinoza, Jhan; Ronchail, Josyane; Loup Guyot, Jean; Junquas, Clementine; Drapeau, Guillaume; Martinez, Jean Michel; Santini, William; Vauchel, Philippe; Lavado, Waldo; Ordoñez, Julio; Espinoza, Raúl
2012-06-01
In this work we document and analyze the hydrological annual cycles characterized by a rapid transition between low and high flows in the Amazonas River (Peruvian Amazon) and we show how these events, which may impact vulnerable riverside residents, are related to regional climate variability. Our analysis is based on comprehensive discharge, rainfall and average suspended sediment data sets. Particular attention is paid to the 2010-11 hydrological year, when an unprecedented abrupt transition from the extreme September 2010 drought (8300 m3 s-1) to one of the four highest discharges in April 2011 (49 500 m3 s-1) was recorded at Tamshiyacu (Amazonas River). This unusual transition is also observed in average suspended sediments. Years with a rapid increase in discharge are characterized by negative sea surface temperature anomalies in the central equatorial Pacific during austral summer, corresponding to a La Niña-like mode. It originates a geopotential height wave train over the subtropical South Pacific and southeastern South America, with a negative anomaly along the southern Amazon and the southeastern South Atlantic convergence zone region. As a consequence, the monsoon flux is retained over the Amazon and a strong convergence of humidity occurs in the Peruvian Amazon basin, favoring high rainfall and discharge. These features are also reported during the 2010-11 austral summer, when an intense La Niña event characterized the equatorial Pacific.
Persistent magnetic vortex flow at a supergranular vertex
NASA Astrophysics Data System (ADS)
Requerey, Iker S.; Cobo, Basilio Ruiz; Gošić, Milan; Bellot Rubio, Luis R.
2018-03-01
Context. Photospheric vortex flows are thought to play a key role in the evolution of magnetic fields. Recent studies show that these swirling motions are ubiquitous in the solar surface convection and occur in a wide range of temporal and spatial scales. Their interplay with magnetic fields is poorly characterized, however. Aims: We study the relation between a persistent photospheric vortex flow and the evolution of a network magnetic element at a supergranular vertex. Methods: We used long-duration sequences of continuum intensity images acquired with Hinode and the local correlation-tracking method to derive the horizontal photospheric flows. Supergranular cells are detected as large-scale divergence structures in the flow maps. At their vertices, and cospatial with network magnetic elements, the velocity flows converge on a central point. Results: One of these converging flows is observed as a vortex during the whole 24 h time series. It consists of three consecutive vortices that appear nearly at the same location. At their core, a network magnetic element is also detected. Its evolution is strongly correlated to that of the vortices. The magnetic feature is concentrated and evacuated when it is caught by the vortices and is weakened and fragmented after the whirls disappear. Conclusions: This evolutionary behavior supports the picture presented previously, where a small flux tube becomes stable when it is surrounded by a vortex flow. A movie attached to Fig. 2 is available at http://https://www.aanda.org
Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations.
Godschalk, Frithjof; Genheden, Samuel; Söderhjelm, Pär; Ryde, Ulf
2013-05-28
Molecular mechanics with generalised Born and surface area solvation (MM/GBSA) is a popular method to calculate the free energy of the binding of ligands to proteins. It involves molecular dynamics (MD) simulations with an explicit solvent of the protein-ligand complex to give a set of snapshots for which energies are calculated with an implicit solvent. This change in the solvation method (explicit → implicit) would strictly require that the energies are reweighted with the implicit-solvent energies, which is normally not done. In this paper we calculate MM/GBSA energies with two generalised Born models for snapshots generated by the same methods or by explicit-solvent simulations for five synthetic N-acetyllactosamine derivatives binding to galectin-3. We show that the resulting energies are very different both in absolute and relative terms, showing that the change in the solvent model is far from innocent and that standard MM/GBSA is not a consistent method. The ensembles generated with the various solvent models are quite different with root-mean-square deviations of 1.2-1.4 Å. The ensembles can be converted to each other by performing short MD simulations with the new method, but the convergence is slow, showing mean absolute differences in the calculated energies of 6-7 kJ mol(-1) after 2 ps simulations. Minimisations show even slower convergence and there are strong indications that the energies obtained from minimised structures are different from those obtained by MD.
Indonesian Throughflow variability over the last glacial cycle (Invited)
NASA Astrophysics Data System (ADS)
Holbourn, A. E.; Kuhnt, W.; Regenberg, M.; Xu, J.; Hendrizan, M.; Schröder, J.
2013-12-01
The transfer of surface and intermediate waters from the Pacific Ocean to the Indian Ocean through the Indonesian archipelago (Indonesian Throughflow: ITF) strongly influences the heat and freshwater budgets of tropical water masses, in turn affecting global climate. Key areas for monitoring past ITF variations through this critical gateway are the narrow passages through the Makassar Strait and Flores Sea and the main outflow area within the Timor Sea. Here, we integrate high-resolution sea surface temperature and salinity reconstructions (based on paired planktic foraminiferal Mg/Ca and δ18O) with X-ray fluorescence runoff data and benthic isotopes from marine sediment cores retrieved in these regions during several cruises with RV'Sonne' and RV'Marion Dufresne'. Our results show that high latitude climate variability strongly influenced ITF intensity on millennial to centennial timescales as well as on longer glacial-interglacial timescales. Marked declines in ITF strength occurred during Heinrich events and the Younger Dryas, most likely related to slowdown of the global thermohaline circulation during colder northern hemisphere climate spells, when deep water production decreased and the deep ocean became more stratified. Additionally, the surface component of the ITF strongly reflects regional windstress and rainfall patterns, and thus the spatial extent and intensity of the tropical convection over the Indonesian archipelago. Our runoff and salinity estimates reveal that the development of the tropical convection was intricately linked to the latitudinal migration of the Inter Tropical Convergence Zone (ITCZ). In particular, our data show that the Australian monsoon intensified during the major deglacial atmospheric CO2 rise through the Younger Dryas and earliest Holocene (12.9-10 ka). This massive intensification of the Australian monsoon coincided with a southward shift of the ITCZ, linked to southern hemisphere warming and enhanced greenhouse forcing over the Australian continent. However, the development of the monsoon was asynchronous over the region, which we relate to changes in landmass exposure during deglacial sea-level rise. Thus, we find that sea-level exerted a major control on ITF properties through the last glacial termination by altering gateway configuration and precipitation-evaporation budgets over the Indonesian archipelago.
Lagrangian particle method for compressible fluid dynamics
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang
2018-06-01
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.
Intermittent Surface Water Connectivity: Fill and Spill vs. Fill ...
Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining difference in responses was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes. Under the Safe and Sustainable Water Resources National Program, work is being done to qu
Intermittent Surface Water Connectivity: Fill and Spill Vs. Fill ...
Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining difference in responses was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes. Under the Safe and Sustainable Water Resources National Program, work is being done to qu
2004-08-30
Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004, as seen by the Atmospheric Infrared Sounding System AIRS on NASA Aqua. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning. This frame from a movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms. The movie (see PIA00433) shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic. http://photojournal.jpl.nasa.gov/catalog/PIA00433
“Wave - Particle Duality” and Soil Liquefaction in Geotechnical Engineering
NASA Astrophysics Data System (ADS)
Wang, Demin
2017-10-01
In the disaster situation of multi-earthquake, with the phenomenon of vibrating phenomenon and the occurrence of cracks in the surface soil, the collapse of the buildings on the ground are caused. The author tries to explain the phenomenon of earthquake disaster in this geotechnical engineering by using the wave-particle duality theory of sunlight. And proposed the sun in the physics of the already high frequency of the weak light superimposed into the low frequency of the low light wave volatility, once again superimposed, superimposed as a lower frequency of linear light, the energy from low to high. Sunlight from weak light into a strong sunlight, that is, the sun near the observation may be weak light or black sunspots is composed of black holes. By long distance, the convergence of light becomes into a dazzling luminous body. Light from the numerous light quantum and an energy line form a half-space infinite volatility curve, and the role of light plays under the linear form of particles. When the night is manifested of l black approaching unconnected light quantum. The author plays the earth as the sun, compared to the deep pressure of low-viscosity clay soil pore, water performance is complex. Similar to the surface of the sun’s spectrum, saturated silty sand is showed volatility, Ground surface high-energy clay showed particle properties. Particle performance is shear strength.
Strange kinetics of bulk-mediated diffusion on lipid bilayers
Campagnola, Grace; Nepal, Kanti; Peersen, Olve B.
2016-01-01
Diffusion at solid-liquid interfaces is crucial in many technological and biophysical processes. Although its behavior seems deceivingly simple, recent studies showing passive superdiffusive transport suggest diffusion on surfaces may hide rich complexities. In particular, bulk-mediated diffusion occurs when molecules are transiently released from the surface to perform three-dimensional excursions into the liquid bulk. This phenomenon bears the dichotomy where a molecule always return to the surface but the mean jump length is infinite. Such behavior is associated with a breakdown of the central limit theorem and weak ergodicity breaking. Here, we use single-particle tracking to study the statistics of bulk-mediated diffusion on a supported lipid bilayer. We find that the time-averaged mean square displacement (MSD) of individual trajectories, the archetypal measure in diffusion processes, does not converge to the ensemble MSD but it remains a random variable, even in the long observation-time limit. The distribution of time averages is shown to agree with a Lévy flight model. Our results also unravel intriguing anomalies in the statistics of displacements. The time averaged MSD is shown to depend on experimental time and investigations of fractional moments show a scaling 〈|r(t)|q〉 ∼ tqv(q) with non-linear exponents, i.e. v(q) ≠ const. This type of behavior is termed strong anomalous diffusion and is rare among experimental observations. PMID:27095275
Rahul, P; Prasanna, K; Ghosh, Prosenjit; Anilkumar, N; Yoshimura, Kei
2018-05-15
Stable Hydrogen and Oxygen isotopic composition of water vapor, rainwater and surface seawater show a distinct trend across the latitude over the Southern Indian Ocean. Our observations on isotopic composition of surface seawater, water vapor and rainwater across a transect covering the tropical Indian Ocean to the regions of the Southern Ocean showed a strong latitudinal dependency; characterized by the zonal process of evaporation and precipitation. The sampling points were spread across diverse zones of SST, wind speed and rainfall regimes. The observed physical parameters such as sea surface temperature, wind speed and relative humidity over the oceanic regions were used in a box model calculation across the latitudes to predict the isotopic composition of water vapor under equilibrium and kinetic conditions, and compared with results from isotope enabled global spectral model. Further, we obtained the average fraction of recycled moisture across the oceanic transect latitudes as 13.4 ± 7.7%. The values of recycled fraction were maximum at the vicinity of the Inter Tropical Convergence Zone (ITCZ), while the minimum values were recorded over the region of subsidence and evaporation, at the Northern and Southern latitudes of the ITCZ. These estimates are consistent with the earlier reported recyling values.
Rectification of the Diurnal Cycle and the Impact of Islands on the Tropical Climate
NASA Astrophysics Data System (ADS)
Cronin, T. W.; Emanuel, K.
2012-12-01
Tropical islands are observed to be rainier than nearby ocean areas, and rainfall over the islands of the Maritime Continent plays an important role in the atmospheric general circulation. Convective heating over tropical islands is also strongly modulated by the diurnal cycle of solar insolation and surface enthalpy fluxes, and convective parameterizations in general circulation models are known to reproduce the phase and amplitude of the observed diurnal cycle of convection rather poorly. Connecting these ideas suggests that poor representation of the diurnal cycle of convection and precipitation over tropical islands in climate models may be a significant source of model biases. Here, we explore how a highly idealized island, which differs only in heat capacity from the surrounding ocean, could rectify the diurnal cycle and impact the tropical climate, especially the spatial distribution of rainfall. We perform simulations of radiative-convective equilibrium with the System for Atmospheric Modeling cloud-system-resolving model, with interactive surface temperature and a varied surface heat capacity. For the case of relatively small-scale simulations, where a shallow (~5 cm) slab-ocean "swamp island" surface is embedded in a deeper (~1 m) slab-ocean domain, the precipitation rate over the island is more than double the domain average value, with island rainfall occurring primarily in a strong regular convective event each afternoon. In addition to this island precipitation enhancement, the upper troposphere also warms with the inclusion of a low- heat capacity island. We discuss two radiative mechanisms that contribute to both island precipitation enhancement and free tropospheric warming, by producing a top-of-atmosphere radiative surplus over the island. The first radiative mechanism is a clear-sky effect, related to nonlinearities in the surface energy budget, and differences in how surface energy balance is achieved over surfaces of different heat capacities. The second radiative mechanism is a cloudy-sky effect, related to the timing of clouds with respect to solar forcing, as well as to the mean cloud fraction and height. We also discuss an advective mechanism for island precipitation enhancement, related to both the moist static energy convergence by the diurnally-reversing land/sea breeze, and the enhanced variability of moist static energy in the island subcloud layer. Preliminary results from larger-domain equatorial beta-channel simulations are also discussed, with potentially greater applicability to the impacts of islands on the large-scale tropical circulation.
Fukami, Tadashi; Nakajima, Mifuyu; Fortunel, Claire; Fine, Paul V A; Baraloto, Christopher; Russo, Sabrina E; Peay, Kabir G
2017-08-01
Convergence occurs in both species traits and community structure, but how convergence at the two scales influences each other remains unclear. To address this question, we focus on tropical forest monodominance, in which a single, often ectomycorrhizal (EM) tree species occasionally dominates forest stands within a landscape otherwise characterized by diverse communities of arbuscular mycorrhizal (AM) trees. Such monodominance is a striking potential example of community divergence resulting in alternative stable states. However, it is observed only in some tropical regions. A diverse suite of AM and EM trees locally codominate forest stands elsewhere. We develop a hypothesis to explain this geographical difference using a simulation model of plant community assembly. Simulation results suggest that in a region with a few EM species (e.g., South America), EM trees experience strong selection for convergent traits that match the abiotic conditions of the environment. Consequently, EM species successfully compete against other species to form monodominant stands via positive plant-soil feedbacks. By contrast, in a region with many EM species (e.g., Southeast Asia), species maintain divergent traits because of complex plant-soil feedbacks, with no species having traits that enable monodominance. An analysis of plant trait data from Borneo and Peruvian Amazon was inconclusive. Overall, this work highlights the utility of geographical comparison in understanding the relationship between trait convergence and community convergence.
Distinguishing Between Convergent Evolution and Violation of the Molecular Clock for Three Taxa.
Mitchell, Jonathan D; Sumner, Jeremy G; Holland, Barbara R
2018-05-18
We give a non-technical introduction to convergence-divergence models, a new modeling approach for phylogenetic data that allows for the usual divergence of lineages after lineage-splitting but also allows for taxa to converge, i.e. become more similar over time. By examining the 3-taxon case in some detail we illustrate that phylogeneticists have been "spoiled" in the sense of not having to think about the structural parameters in their models by virtue of the strong assumption that evolution is tree-like. We show that there are not always good statistical reasons to prefer the usual class of tree-like models over more general convergence-divergence models. Specifically we show many 3-taxon data sets can be equally well explained by supposing violation of the molecular clock due to change in the rate of evolution along different edges, or by keeping the assumption of a constant rate of evolution but instead assuming that evolution is not a purely divergent process. Given the abundance of evidence that evolution is not strictly tree-like, our discussion is an illustration that as phylogeneticists we need to think clearly about the structural form of the models we use. For cases with four taxa we show that there will be far greater ability to distinguish models with convergence from non-clock-like tree models.
European Academic Labor Markets in Transition
ERIC Educational Resources Information Center
Musselin, Christine
2005-01-01
Even if convergences are to be observed among the orientations adopted by higher education policies in European countries, they still are characterized by strong national features. One of the most striking national patterns of each system is its academic labor market, salaries, status, recruitment procedures, workloads, career patterns, promotion…
Simulations of 2-shock Convergence Scan Shots
NASA Astrophysics Data System (ADS)
Bradley, Paul; Olson, R. E.; Kline, J. L.; MacLaren, S. A.; Ma, T.; Salmonson, J. D.; Kyrala, G. A.; Pino, J.; Dewald, E.; Khan, S.; Sayre, D.; Ralph, J.; Turnbull, D.
2016-10-01
The 2-shock campaign is a joint Los Alamos/Livermore project to investigate the role of shock timing, asymmetry, and shock convergence on the performance of ignition relevant capsules. This campaign uses a simple two step pulse that makes it easier to correlate the effect of changing the laser pulse on the performance of the capsule. The 680 micron outer radius capsule has a CH +1 at% Si ablator approximately 175 microns thick surrounding a DD or HT gas region with fill densities between 0.0085 and 0.00094 g/cc. The capsules are indirectly driven inside a gold hohlraum that is 9.2 mm long by 5.75 mm in diameter. Some capsules had about 3 microns of CD on the inner surface. The CD inner surface capsules utilized HT fuel so that the DT yield arises from mixing of CD shell material into the tritium of the gas region. Our simulated results compare well to the experimental yield, ion temperature, burn width, x-ray size, convergence ratio, and radius versus time data. Work performed by Los Alamos National Laboratory under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy.
Convergent strand array liquid pumping system
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr. (Inventor)
1989-01-01
A surface-tension liquid pumping system is provided by one or more arrays of converging solid monofilament fibers or metal wires (strands) spaced apart at an input end to gather liquid, and gathered close together at the opposite end where menisci forms between wetted strands to force liquid in the direction of convergence of the strands. The liquid pumping system is independent of gravity. It is illustrated as being used in a heat pump having a heating box to vaporize the liquid and a condensing chamber. Condensed liquid is returned by the pumping system to the heating box where it is again vaporized. A vapor tube carries the vapor to the condensing chamber. In that way, a closed system pumps heat from the heating box to the evaporating chamber and from there radiated to the atmosphere.
The ignition of carbon detonations via converging shock waves in white dwarfs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Ken J.; Bildsten, Lars, E-mail: kenshen@astro.berkeley.edu, E-mail: bildsten@kitp.ucsb.edu
2014-04-10
The progenitor channel responsible for the majority of Type Ia supernovae is still uncertain. One emergent scenario involves the detonation of a He-rich layer surrounding a C/O white dwarf, which sends a shock wave into the core. The quasi-spherical shock wave converges and strengthens at an off-center location, forming a second, C-burning, detonation that disrupts the whole star. In this paper, we examine this second detonation of the double detonation scenario using a combination of analytic and numeric techniques. We perform a spatially resolved study of the imploding shock wave and outgoing detonation and calculate the critical imploding shock strengthsmore » needed to achieve a core C detonation. We find that He detonations in recent two-dimensional simulations yield converging shock waves that are strong enough to ignite C detonations in high-mass C/O cores, with the caveat that a truly robust answer requires multi-dimensional detonation initiation calculations. We also find that convergence-driven detonations in low-mass C/O cores and in O/Ne cores are harder to achieve and are perhaps unrealized in standard binary evolution.« less
Controls on continental strain partitioning above an oblique subduction zone, Northern Andes
NASA Astrophysics Data System (ADS)
Schütt, Jorina M.; Whipp, David M., Jr.
2016-04-01
Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a simplified, generic subduction zone similar to the northern Andes. The upper surface is initially defined to resemble the Andes, but is free to deform during the experiments. We consider two main model designs, one with and one without a volcanic arc (weak continental zone). A relatively high angle of convergence obliquity is predicted to favor strain partitioning, but preliminary model results show no strain partitioning for a uniform continental crustal strength with a friction angle of Φ = 15° . However, strain partitioning does occur when including a weak zone in the continental crust resulting from arc volcanic activity with Φ = 5° . This results in margin-parallel northeastward translation of a continental sliver at 3.2 cm/year. The presence of the sliver agrees well with observations of a continental sliver identified by GPS measurements in the Northern Volcanic Zone with a translation velocity of about 1 cm/year, though the GPS-derived velocity may not be representative of the long-term rate of translation depending on whether the observation period includes one or more seismic cycles. Regardless, the observed behavior is consistent with the observed earthquake focal mechanisms and GPS measurements, suggesting significant northeastward transport of Andean crust along the margin of the northern Andes.
Kang, Jung-Hoon; Kim, Woong-Seo; Chang, Kyung-Il
2008-04-01
Factors affecting mesozooplankton distributions in the northeastern tropical Pacific Ocean were investigated using data obtained along a meridian line (5 degrees -12 degrees N, 131.5 degrees W) in the summers of 1998, 1999, and 2003. The survey periods corresponded to a sharp transition between the 1997-1998 El Niño and 1998-1999 La Niña events, the 1999 La Niña event, and near-normal conditions after the moderate 2002-2003 El Niño in the equatorial Pacific. A strong upwelling in the divergence zone from 10.5 degrees to 11 degrees N caused a shoaling of the thermocline depth (approximately 30 m), resulting in increases in nitrate and phytoplankton chlorophyll a (chl-a) concentrations, and, in turn, mesozooplankton abundance during the La Niña in 1999. In contrast, in 1998, remnants of El Niño characteristics, deeper thermocline depth (60-150 m) and warm surface water (>28 degrees C), led to low concentrations of nitrate, chl-a and low mesozooplankton abundance, except in the convergence zone around 7 degrees N. The thermocline depth and nitrate concentration obtained during the near-normal period in 2003 corresponded to intermediate values as compared to those obtained during El Niño and La Niña conditions. Interannual changes in the position and strength of ecotones, such as divergence and convergence zones, affected mesozooplankton community structure and cyclopoid-to-calanoid ratios along the 131.5 degrees W meridian line. The clustering pattern of the mesozooplankton community was mostly characterized by calanoid (mainly Clausocalanus sp.) and cyclopoid (mainly Oncaea sp.) copepods, accounting for most of the observed differences among groups during the study period. Cyclopoids and calanoids were more abundant in 1999 than in 1998 or 2003, with a sharp increase to the north, while they were less abundant to the north in 1998 and 2003. The cyclopoid-to-calanoid ratio peaked in the convergence zone in 1998 and the divergence zones in 1999 and 2003, apparently due to the strength and location of the ecotones. Principal component analysis (PCA) with environmental factors and dominant mesozooplankton groups showed that dominant groups were affected by nitrate and chl-a concentrations in 1998, by sigma-t (water density), nitrate and chl-a concentrations in 1999, and by sigma-t, salinity and chl-a concentration (except siphonophores) in 2003. Latitudinal distribution of thermocline depth before and after the 1998/99 La Niña event showed a distinct interannual difference. The abundance of mesozooplankton in the divergence zone in 1999 was distinctively higher than abundances found in the convergence and divergence zones in 1998 and 2003, which resulted from the shallow thermocline depth due to an intensified upwelling during the strong 1998-1999 La Niña event.
NASA Astrophysics Data System (ADS)
Kawase, H.; Sasaki, H.; Murata, A.; Nosaka, M.; Ito, R.; Dairaku, K.; Sasai, T.; Yamazaki, T.; Sugimoto, S.; Watanabe, S.; Fujita, M.; Kawazoe, S.; Okada, Y.; Ishii, M.; Mizuta, R.; Takayabu, I.
2017-12-01
We performed large ensemble climate experiments to investigate future changes in extreme weather events using Meteorological Research Institute-Atmospheric General Circulation Model (MRI-AGCM) with about 60 km grid spacing and Non-Hydrostatic Regional Climate Model with 20 km grid spacing (NHRCM20). The global climate simulations are prescribed by the past and future sea surface temperature (SST). Two future climate simulations are conducted so that the global-mean surface air temperature rise 2 K and 4 K from the pre-industrial period. The non-warming simulations are also conducted by MRI-AGCM and NHRCM20. We focus on the future changes in snowfall in Japan. In winter, the Sea of Japan coast experiences heavy snowfall due to East Asian winter monsoon. The cold and dry air from the continent obtains abundant moisture from the warm Sea of Japan, causing enormous amount of snowfall especially in the mountainous area. The NHRCM20 showed winter total snowfall decreases in the most parts of Japan. In contrast, extremely heavy daily snowfall could increase at mountainous areas in the Central Japan and Northern parts of Japan when strong cold air outbreak occurs and the convergence zone appears over the Sea of Japan. The warmer Sea of Japan in the future climate could supply more moisture than that in the present climate, indicating that the cumulus convections could be enhanced around the convergence zone in the Sea of Japan. However, the horizontal resolution of 20 km is not enough to resolve Japan`s complex topography. Therefore, dynamical downscaling with 5 km grid spacing (NHRCM05) is also conducted using NHRCM20. The NHRCM05 does a better job simulating the regional boundary of snowfall and shows more detailed changes in future snowfall characteristics. The future changes in total and extremely heavy snowfall depend on the regions, elevations, and synoptic conditions around Japan.
Convergence of the Quasi-static Antenna Design Algorithm
2013-04-01
conductor is the same as an equipotential surface . A line of constant charge on the z-axis, with an image, will generate the ACD antenna design...satisfies this boundary condition. The multipole moments have negative potentials, which can cause the equipotential surface to terminate on the disk or...feed wire. This requires an addition step in the solution process; the equipotential surface is sampled to verify that the charge is enclosed by the
NASA Astrophysics Data System (ADS)
Sanders, A. F. J.; de Haan, J. F.; Sneep, M.; Apituley, A.; Stammes, P.; Vieitez, M. O.; Tilstra, L. G.; Tuinder, O. N. E.; Koning, C. E.; Veefkind, J. P.
2015-06-01
An algorithm setup for the operational Aerosol Layer Height product for TROPOMI on the Sentinel-5 Precursor mission is described and discussed, applied to GOME-2A data, and evaluated with lidar measurements. The algorithm makes a spectral fit of reflectance at the O2 A band in the near-infrared and the fit window runs from 758 to 770 nm. The aerosol profile is parameterized by a scattering layer with constant aerosol volume extinction coefficient and aerosol single scattering albedo and with a fixed pressure thickness. The algorithm's target parameter is the height of this layer. In this paper, we apply the algorithm to observations from GOME-2A in a number of systematic and extensive case studies and we compare retrieved aerosol layer heights with lidar measurements. Aerosol scenes cover various aerosol types, both elevated and boundary layer aerosols, and land and sea surfaces. The aerosol optical thicknesses for these scenes are relatively moderate. Retrieval experiments with GOME-2A spectra are used to investigate various sensitivities, in which particular attention is given to the role of the surface albedo. From retrieval simulations with the single-layer model, we learn that the surface albedo should be a fit parameter when retrieving aerosol layer height from the O2 A band. Current uncertainties in surface albedo climatologies cause biases and non-convergences when the surface albedo is fixed in the retrieval. Biases disappear and convergence improves when the surface albedo is fitted, while precision of retrieved aerosol layer pressure is still largely within requirement levels. Moreover, we show that fitting the surface albedo helps to ameliorate biases in retrieved aerosol layer height when the assumed aerosol model is inaccurate. Subsequent retrievals with GOME-2A spectra confirm that convergence is better when the surface albedo is retrieved simultaneously with aerosol parameters. However, retrieved aerosol layer pressures are systematically low (i.e., layer high in the atmosphere) to the extent that retrieved values are not realistically representing actual extinction profiles anymore. When the surface albedo is fixed in retrievals with GOME-2A spectra, convergence deteriorates as expected, but retrieved aerosol layer pressures become much higher (i.e., layer lower in atmosphere). The comparison with lidar measurements indicates that retrieved aerosol layer heights are indeed representative of the underlying profile in that case. Finally, subsequent retrieval simulations with two-layer aerosol profiles show that a model error in the assumed profile (two layers in the simulation but only one in the retrieval) is partly absorbed by the surface albedo when this parameter is fitted. This is expected in view of the correlations between errors in fit parameters and the effect is relatively small for elevated layers (less than 100 hPa). In case one of the scattering layers is near the surface (boundary layer aerosols), the effect becomes surprisingly large such that the retrieved height of the single layer is above the two-layer profile. Furthermore, we find that the retrieval solution, once retrieval converges, hardly depends on the starting values for the fit. Sensitivity experiments with GOME-2A spectra also show that aerosol layer height is indeed relatively robust against inaccuracies in the assumed aerosol model, even when the surface albedo is not fitted. We show spectral fit residuals, which can be used for further investigations. Fit residuals may be partly explained by spectroscopic uncertainties, which is suggested by an experiment showing the improvement of convergence when the absorption cross section is scaled in agreement with Butz et al. (2012) and Crisp et al. (2012) and a temperature offset to the a priori ECMWF temperature profile is fitted. Retrieved temperature offsets are always negative and quite large (ranging between -4 and -8 K), which is not expected if temperature offsets absorb remaining inaccuracies in meteorological data. Other sensitivity experiments investigate fitting of stray light and fluorescence emissions. We find negative radiance offsets and negative fluorescence emissions, also for non-vegetated areas, but from the results it is not clear whether fitting these parameters improves the retrieval. Based on the present results, the operational baseline for the Aerosol Layer Height product currently will not fit the surface albedo. The product will be particularly suited for elevated, optically thick aerosol layers. In addition to its scientific value in climate research, anticipated applications of the product for TROPOMI are providing aerosol height information for aviation safety and improving interpretation of the Absorbing Aerosol Index.
NASA Astrophysics Data System (ADS)
Sanders, A. F. J.; de Haan, J. F.; Sneep, M.; Apituley, A.; Stammes, P.; Vieitez, M. O.; Tilstra, L. G.; Tuinder, O. N. E.; Koning, C. E.; Veefkind, J. P.
2015-11-01
An algorithm setup for the operational Aerosol Layer Height product for TROPOMI on the Sentinel-5 Precursor mission is described and discussed, applied to GOME-2A data, and evaluated with lidar measurements. The algorithm makes a spectral fit of reflectance at the O2 A band in the near-infrared and the fit window runs from 758 to 770 nm. The aerosol profile is parameterised by a scattering layer with constant aerosol volume extinction coefficient and aerosol single scattering albedo and with a fixed pressure thickness. The algorithm's target parameter is the height of this layer. In this paper, we apply the algorithm to observations from GOME-2A in a number of systematic and extensive case studies, and we compare retrieved aerosol layer heights with lidar measurements. Aerosol scenes cover various aerosol types, both elevated and boundary layer aerosols, and land and sea surfaces. The aerosol optical thicknesses for these scenes are relatively moderate. Retrieval experiments with GOME-2A spectra are used to investigate various sensitivities, in which particular attention is given to the role of the surface albedo. From retrieval simulations with the single-layer model, we learn that the surface albedo should be a fit parameter when retrieving aerosol layer height from the O2 A band. Current uncertainties in surface albedo climatologies cause biases and non-convergences when the surface albedo is fixed in the retrieval. Biases disappear and convergence improves when the surface albedo is fitted, while precision of retrieved aerosol layer pressure is still largely within requirement levels. Moreover, we show that fitting the surface albedo helps to ameliorate biases in retrieved aerosol layer height when the assumed aerosol model is inaccurate. Subsequent retrievals with GOME-2A spectra confirm that convergence is better when the surface albedo is retrieved simultaneously with aerosol parameters. However, retrieved aerosol layer pressures are systematically low (i.e., layer high in the atmosphere) to the extent that retrieved values no longer realistically represent actual extinction profiles. When the surface albedo is fixed in retrievals with GOME-2A spectra, convergence deteriorates as expected, but retrieved aerosol layer pressures become much higher (i.e., layer lower in atmosphere). The comparison with lidar measurements indicates that retrieved aerosol layer heights are indeed representative of the underlying profile in that case. Finally, subsequent retrieval simulations with two-layer aerosol profiles show that a model error in the assumed profile (two layers in the simulation but only one in the retrieval) is partly absorbed by the surface albedo when this parameter is fitted. This is expected in view of the correlations between errors in fit parameters and the effect is relatively small for elevated layers (less than 100 hPa). If one of the scattering layers is near the surface (boundary layer aerosols), the effect becomes surprisingly large, in such a way that the retrieved height of the single layer is above the two-layer profile. Furthermore, we find that the retrieval solution, once retrieval converges, hardly depends on the starting values for the fit. Sensitivity experiments with GOME-2A spectra also show that aerosol layer height is indeed relatively robust against inaccuracies in the assumed aerosol model, even when the surface albedo is not fitted. We show spectral fit residuals, which can be used for further investigations. Fit residuals may be partly explained by spectroscopic uncertainties, which is suggested by an experiment showing the improvement of convergence when the absorption cross section is scaled in agreement with Butz et al. (2013) and Crisp et al. (2012), and a temperature offset to the a priori ECMWF temperature profile is fitted. Retrieved temperature offsets are always negative and quite large (ranging between -4 and -8 K), which is not expected if temperature offsets absorb remaining inaccuracies in meteorological data. Other sensitivity experiments investigate fitting of stray light and fluorescence emissions. We find negative radiance offsets and negative fluorescence emissions, also for non-vegetated areas, but from the results it is not clear whether fitting these parameters improves the retrieval. Based on the present results, the operational baseline for the Aerosol Layer Height product currently will not fit the surface albedo. The product will be particularly suited for elevated, optically thick aerosol layers. In addition to its scientific value in climate research, anticipated applications of the product for TROPOMI are providing aerosol height information for aviation safety and improving interpretation of the Absorbing Aerosol Index.
1983-12-01
applies not his reason, but his memory....No human investigation can call Itself true science, unless it comes through mathematical demonstration...between laser beam lines and mirror lines • • 18 3.2 Relationship between virtual image and object image for reflection at a plane surface...Results show that for equal indices of refraction inside and out- side the tunnel, the laser beams of a converging pair do not totally converge with its
Onset and Evolution of Southern Annular Mode-Like Changes at Centennial Timescale.
Moreno, P I; Vilanova, I; Villa-Martínez, R; Dunbar, R B; Mucciarone, D A; Kaplan, M R; Garreaud, R D; Rojas, M; Moy, C M; De Pol-Holz, R; Lambert, F
2018-02-22
The Southern Westerly Winds (SWW) are the surface expression of geostrophic winds that encircle the southern mid-latitudes. In conjunction with the Southern Ocean, they establish a coupled system that not only controls climate in the southern third of the world, but is also closely connected to the position of the Intertropical Convergence Zone and CO 2 degassing from the deep ocean. Paradoxically, little is known about their behavior since the last ice age and relationships with mid-latitude glacier history and tropical climate variability. Here we present a lake sediment record from Chilean Patagonia (51°S) that reveals fluctuations of the low-level SWW at mid-latitudes, including strong westerlies during the Antarctic Cold Reversal, anomalously low intensity during the early Holocene, which was unfavorable for glacier growth, and strong SWW since ~7.5 ka. We detect nine positive Southern Annular Mode-like events at centennial timescale since ~5.8 ka that alternate with cold/wet intervals favorable for glacier expansions (Neoglaciations) in southern Patagonia. The correspondence of key features of mid-latitude atmospheric circulation with shifts in tropical climate since ~10 ka suggests that coherent climatic shifts in these regions have driven climate change in vast sectors of the Southern Hemisphere at centennial and millennial timescales.
Collaborative Learning: Theoretical Foundations and Applicable Strategies to University
ERIC Educational Resources Information Center
Roselli, Nestor D.
2016-01-01
Collaborative learning is a construct that identifies a current strong field, both in face-to-face and virtual education. Firstly, three converging theoretical sources are analyzed: socio-cognitive conflict theory, intersubjectivity theory and distributed cognition theory. Secondly, a model of strategies that can be implemented by teachers to…
Community Psychology in Australia and Aotearoa/New Zealand
ERIC Educational Resources Information Center
Fisher, Adrian T.; Gridley, Heather; Thomas, David R.; Bishop, Brian
2008-01-01
Community psychology in Australia and Aotearoa/New Zealand reflect interesting parallels and convergences. While both have a strong educational basis influenced by North American publications, they have developed foci and forms of practice reflecting the cultural, political, and historic underpinnings of these two countries. In New Zealand,…
IS 2010 and ABET Accreditation: An Analysis of ABET-Accredited Information Systems Programs
ERIC Educational Resources Information Center
Saulnier, Bruce; White, Bruce
2011-01-01
Many strong forces are converging on information systems academic departments. Among these forces are quality considerations, accreditation, curriculum models, declining/steady student enrollments, and keeping current with respect to emerging technologies and trends. ABET, formerly the Accrediting Board for Engineering and Technology, is at…
How Can Schools Boost Students' Self-Regulation?
ERIC Educational Resources Information Center
Le, Cecilia; Wolfe, Rebecca E.
2013-01-01
A striking convergence of research, documentation, commentary, and policy in the past five years strongly suggests that an almost exclusive focus on academic knowledge and skills is an incomplete solution. Additional behaviors, skills, and mindsets--sometimes called metacognitive skills or 21st-century skills--are just as necessary for academic…
Psychosocial Functioning in the Context of Diagnosis: Assessment and Theoretical Issues
ERIC Educational Resources Information Center
Ro, Eunyoe; Clark, Lee Anna
2009-01-01
Psychosocial functioning is an important focus of attention in the revision of the "Diagnostic and Statistical Manual of Mental Disorders". Researchers and clinicians are converging upon the opinion that psychometrically strong, comprehensive assessment of individuals' functioning is needed to characterize disorder fully. Also shared is the…
Second order upwind Lagrangian particle method for Euler equations
Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin
2016-06-01
A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less
Satellite Sea-surface Salinity Retrieval Dependencies
NASA Astrophysics Data System (ADS)
Bayler, E. J.; Ren, L.
2016-02-01
Comparing satellite sea-surface salinity (SSS) measurements and in situ observations reveals large-scale differences. What causes these differences? In this study, five boxes, sampling various oceanic regimes of the global ocean, provide insights on the relative performance of satellite SSS retrievals with respect to the influences of SST, precipitation and wind speed. The regions sampled are: the Inter-tropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), NASA's Salinity Processes of the Upper-ocean Regional Study (SPURS) area, the North Pacific subarctic region, and the southern Indian Ocean. This study examines satellite SSS data from NASA's Aquarius Mission and ESA's Soil Moisture - Ocean Salinity (SMOS) mission, specifically: Aquarius official Aquarius Data Processing System (ADPS) Level-2 data, experimental Aquarius Combined Active-Passive (CAP) Level-2 SSS data developed by NASA's Jet Propulsion Laboratory (JPL), and SMOS Level-2 data.
Second order upwind Lagrangian particle method for Euler equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin
A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less
NASA Technical Reports Server (NTRS)
Cotton, W. R.; George, R. L.; Knupp, K. R.
1982-01-01
The evolution of mesoscale systems that eventually lead to the formation of large quasi-steady storm systems is investigated. The morphological and turbulent structure of the quasi-steady storm is described. Data obtained during the South Park Area Cumulus Experiment from surface meteorological stations, rawinsondes and tethered balloons, conventional and Doppler radars, powered aircraft, and satellites, indicate that on July 19, 1977, a north-south oriented line of intense convective cells formed and remained within South Park. Elevated surface heating created a region of low-level convergence, importing Pacific moisture from west of the Rockies. The mesoscale thunderstorm line formed over this convergence zone, and a single large convective cell was observed to grow on the southern end of the mesoscale line, exhibiting supercell characteristics and substantial modifications of the environmental flow.
Characterizing the Responses of Land Surface Phenology to the Rainy Season in the Congo Basin
NASA Astrophysics Data System (ADS)
Yan, D.; Zhang, X.; Yu, Y.; Guo, W.
2016-12-01
The most pronounced climate changes across the Congo Basin are predicted to be the changes in the timing and amount of rainfall in the coming decades. It is expected to alter a significant shift in land surface phenology (LSP), so that an understanding of its responses to the rainy season can benefit the predictions of changes in the Congolese ecosystem under future climate change scenarios. However, quantitative analyses has not been performed to investigate the relationship between LSP and the rainy season in the Congo Basin. Based on 30-minute observations acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the METEOSAT Second Generation series of geostationary satellites, we generated a time series of three-day angularly corrected Two-band Enhanced Vegetation Index (EVI2) between 2006 and 2013. We then reconstructed EVI2 temporal trajectories and retrieved the timings and magnitudes of LSP using the hybrid piecewise logistic model. We further associated the phenological timings and magnitudes with those of the rainy seasons derived from the three-hourly rainfall rate measurements provided by the Tropical Rainfall Measurement Mission Product 3B42. Finally, we investigated the impacts of tree cover on the timing discrepancy between LSP and the rainy season. Results show that LSP was strongly associated with the rainy season. Specifically, the SEVIRI EVI2 time series reveals that two annual canopy greenness cycles (CGC) occur in the Congolese rainforests whereas a single annual CGC with strong seasonal amplitude was identified for other land cover types. The spatial shifts in CGC timings closely follow those of the rainy season controlled by the seasonal migration of the Intertropical Convergence Zone. However, the tree cover controls the timing discrepancy between LSP and the rainy season. The accumulated vegetation greenness during a CGC shows a strong dependence on the total rainfall received.
Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces
NASA Astrophysics Data System (ADS)
Rinker, Jennifer M.
2016-09-01
This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity.
On the dominant intra-seasonal modes over the East Asia-western North Pacific summer monsoon region
NASA Astrophysics Data System (ADS)
Ha, Kyung-Ja; Oh, Hyoeun
2017-04-01
Intra-seasonal monsoon prediction is the most imperative task due to high impact on 2/3 of world populations' daily life, but there remains an enduring challenge in climate science. The present study aims to provide a physical understanding of the sources for prediction of dominant intra-seasonal modes in the East Asian-western North Pacific summer monsoon (EA-WNPSM): preMeiyu&Baiu, Changma&Meiyu, WNPSM, and monsoon gyre modes classified by the self-organizing map analysis. The major modes tend to be dominated by the moisture convergence of the moisture budget equation along the rain-band. The preMeiyu-Baiu mode is strongly linked to both the anomalous low-level convergence and vertical wind shear through baroclinic instability, and the Changma&Meiyu mode has a strengthened tropic-subtropics connection along the western north Pacific subtropical high, which induces vertical destabilization and strong convective instability. The WNPSM and monsoon gyre modes are characterized by anomalous southeasterly flow of warm and moist air from western north Pacific monsoon, and low-level easterly flow, respectively. Prominent difference in response to the ENSO leads to different effects of the Indian Ocean and western Pacific thermal state, and consequently, the distinct moisture supply and instability variations for the EASM intra-seasonal modes. We discuss the major driving forces of sub-seasonal variability over EA-WNPSM regions. Lastly we attempted to determine the predictability sources for the four modes in the EA-WNPSM. The selected predictors are based on the persistent and tendency signals of the SST/2m air temperature and sea level pressure fields, which reflect the asymmetric response to the ENSO and the ocean and land surface anomalous conditions. For the preMeiyu&Baiu mode, the SST cooling tendency over the WNP, which persists into summer, is the distinguishing contributor that results in strong baroclinic instability. A major precursor for the Changma&Meiyu mode is related to the WNP subtropical high, induced by the persistent SST difference between the Indian Ocean and the western Pacific. The WNPSM mode is mostly affected by the Pacific-Japan pattern, and monsoon gyre mode is primarily associated with a persistent SST cooling over the tropical Indian Ocean by the preceding ENSO signal. This study carries important implications for prediction by establishing valuable precursors of the four modes including nonlinear characteristics.
The influence of Seychelles Dome on the large scale Tropical Variability
NASA Astrophysics Data System (ADS)
Manola, Iris; Selten, Frank; Hazeleger, Wilco
2013-04-01
The Seychelles Dome (SD) is the thermocline ridge just South of the equator in the Western Indian Ocean basin. It is characterized by strong atmospheric convection and a shallow thermocline and is associated with large intraseasonal convection and SST variability (Harrison and Vecchi 2001). The SD is influenced by surface and subsurface processes, such as air-sea fluxes, Ekman upwelling from wind stress curl, ocean dynamics (vertical mixing) and oceanic Rossby waves from southeastern Indian Ocean. The favoring season for a strong SD is the boreal winter, where the thermocline is most shallow. Then the southeasterly trade winds converge with the northwesterly monsoonal winds over the intertropical convergence zone and cause cyclonic wind stress curl that drives Ekman divergence and a ridging of the thermocline. It is found that the subseasonal and interranual variability of the SD is influenced by large scale events, such as the Indian Ocean Dipole (IOD), the ENSO and the Madden-Julian Oscillation (MJO) (Tozuka et al., 2010, Lloyd and Vecchi, 2010). The SD is enhanced by cooling events in the Western Indian Ocean and easterly winds that raise the thermocline and increase the upwelling. This can be associated with a strong Walker circulation, like negative IOD conditions or La Nina-like conditions. So far the studies focus on the origins of the SD variability, but the influence of the SD itself on regional or large scale climate is largely unknown. In this study we focus on the influence of the SD variations on the large scale tropical circulation. We analyze the covariance of the SD variations and the tropical circulation in a 200 year control imulation of the climate model EC-EARTH and perform idealized SST forced simulations to study the character of the atmospheric response and its relation to ENSO, IOD and MJO. References -Harrison, D. E. and G. A. Vecchi, 2001: January 1999 Indian Ocean cooling event. Geophys. Res. Lett., 28, 3717-3720. -Lloyd, I. D., and G. A. Vecchi, 2010: Submonthly Indian Ocean cooling events and their interaction with large-scale conditions. J. Climate, 23, 700-716. -Tozuka, T., T. Yokoi, and T. Yamagata, 2010: A modeling study of interannual variations of the Seychelles Dome. J. Geophys. Res., 115, C04005, doi:10.1029/2009JC005547.
NASA Astrophysics Data System (ADS)
Robertson, Alastair; Kinnaird, Tim; McCay, Gillian; Palamakumbura, Romesh; Chen, Guohui
2016-04-01
Active margin processes including subduction, accretion, arc magmatism and back-arc extension play a key role in the diachronous, and still incomplete closure of the S Neotethys. The S Neotethys rifted along the present-day Africa-Eurasia continental margin during the Late Triassic and, after sea-floor spreading, began to close related to northward subduction during the Late Cretaceous. The northern, active continental margin of the S Neotethys was bordered by several of the originally rifted continental fragments (e.g. Taurides). The present-day convergent lineament ranges from subaqueous (e.g. Mediterranean Ridge), to subaerial (e.g. SE Turkey). The active margin development is partially obscured by microcontinent-continent collision and post-collisional strike-slip deformation (e.g. Tauride-Arabian suture). However, the Kyrenia Range, N Cyprus provides an outstanding record of convergent margin to early stage collisional processes. It owes its existence to strong localised uplift during the Pleistocene, which probably resulted from the collision of a continental promontory of N Africa (Eratosthenes Seamount) with the long-lived S Neotethyan active margin to the north. A multi-stage convergence history is revealed, mainly from a combination of field structural, sedimentological and igneous geochemical studies. Initial Late Cretaceous convergence resulted in greenschist facies burial metamorphism that is likely to have been related to the collision, then rapid exhumation, of a continental fragment (stage 1). During the latest Cretaceous-Palaeogene, the Kyrenia lineament was characterised by subduction-influenced magmatism and syn-tectonic sediment deposition. Early to Mid-Eocene, S-directed thrusting and folding (stage 2) is likely to have been influenced by the suturing of the Izmir-Ankara-Erzincan ocean to the north ('N Neotethys'). Convergence continued during the Neogene, dominated by deep-water terrigenous gravity-flow accumulation in a foredeep setting. Further S-directed compression took place during Late Miocene-earliest Pliocene (stage 3) in an oblique left-lateral stress regime, probably influenced by the collision of the Tauride and Arabian continents to the east. Strong uplift of the active margin lineament then took place during the Pleistocene, related to incipient continental collision (stage 4). The uplift is documented by a downward-younging flight of marine and continental terrace deposits on both flanks of the Kyrenia Range. The geological record of the S Neotethyan active continental margin, based on regional to global plate kinematic reconstructions, appears to have been dominated by on-going convergence (with possible temporal changes), punctuated by the effects of relatively local to regional-scale collisional events. Similar processes are likely to have affected other S Neotethyan segments and other convergent margins.
NASA Astrophysics Data System (ADS)
Zhu, Jianlei; Liao, Hong; Li, Jianping
2012-05-01
China has been experiencing increased concentrations of aerosols, commonly attributed to the large increases in emissions associated with the rapid economic development. We show by using a chemical transport model driven by the assimilated meteorological fields that the observed decadal-scale weakening of the East Asian summer monsoon also contributed to the increases in aerosols in China. We find that the simulated aerosol concentrations have strong negative correlations with the strength of the East Asian Summer monsoon. Accounting for sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols, the summer surface-layer PM2.5 concentration averaged over eastern China (110°-125°E, 20°-45°N) can be 17.7% higher in the weakest monsoon years than in the strongest monsoon years. The weakening of the East Asian Summer monsoon increases aerosol concentrations mainly by the changes in atmospheric circulation (the convergence of air pollutants) in eastern China.
Synoptic scale wind field properties from the SEASAT SASS
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.; Sylvester, W. B.; Salfi, R. E.
1984-01-01
Dealiased SEASAT SEASAT A Scatterometer System SASS vector winds obtained during the Gulf Of Alaska SEASAT Experiment GOASEX program are processed to obtain superobservations centered on a one degree by one degree grid. The grid. The results provide values for the combined effects of mesoscale variability and communication noise on the individual SASS winds. These superobservations winds are then processed further to obtain estimates of synoptic scale vector winds stress fields, the horizontal divergence of the wind, the curl of the wind stress and the vertical velocity at 200 m above the sea surface, each with appropriate standard deviations of the estimates for each grid point value. They also explain the concentration of water vapor, liquid water and precipitation found by means of the SMMR Scanning Multichannel Microwave Radiometer at fronts and occlusions in terms of strong warm, moist air advection in the warm air sector accompanied by convergence in the friction layer. Their quality is far superior to that of analyses based on conventional data, which are shown to yield many inconsistencies.
Pellegrini, Adam F A; Anderegg, William R L; Paine, C E Timothy; Hoffmann, William A; Kartzinel, Tyler; Rabin, Sam S; Sheil, Douglas; Franco, Augusto C; Pacala, Stephen W
2017-03-01
Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire-tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models. © 2017 John Wiley & Sons Ltd/CNRS.
Precipitation Characteristics in West and East Africa from Satellite and in Situ Observations
NASA Technical Reports Server (NTRS)
Dezfuli, Amin K.; Ichoku, Charles M.; Mohr, Karen I.; Huffman, George J.
2017-01-01
Using in situ data, three precipitation classes are identified for rainy seasons of West and East Africa: weak convective rainfall (WCR), strong convective rainfall (SCR), and mesoscale convective systems (MCSs).Nearly 75% of the total seasonal precipitation is produced by the SCR and MCSs, even though they represent only 8% of the rain events. Rain events in East Africa tend to have a longer duration and lower intensity than in West Africa, reflecting different characteristics of the SCR and MCS events in these two regions. Surface heating seems to be the primary convection trigger for the SCR, particularly in East Africa, whereas the WCR requires a dynamical trigger such as low-level convergence. The data are used to evaluate the performance of the recently launched Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG)project. The IMERG-based precipitation shows significant improvement over its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), particularly in capturing the MCSs, due to its improved temporal resolution.
NASA Astrophysics Data System (ADS)
Quy Muoi, Pham; Nho Hào, Dinh; Sahoo, Sujit Kumar; Tang, Dongliang; Cong, Nguyen Huu; Dang, Cuong
2018-05-01
In this paper, we study a gradient-type method and a semismooth Newton method for minimization problems in regularizing inverse problems with nonnegative and sparse solutions. We propose a special penalty functional forcing the minimizers of regularized minimization problems to be nonnegative and sparse, and then we apply the proposed algorithms in a practical the problem. The strong convergence of the gradient-type method and the local superlinear convergence of the semismooth Newton method are proven. Then, we use these algorithms for the phase retrieval problem and illustrate their efficiency in numerical examples, particularly in the practical problem of optical imaging through scattering media where all the noises from experiment are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potomkin, Mykhailo; Kaiser, Andreas; Berlyand, Leonid
We consider active particles swimming in a convergent fluid flow in a trapezoid nozzle with no-slip walls. We use mathematical modeling to analyze trajectories of these particles inside the nozzle. By extensive Monte Carlo simulations, we show that trajectories are strongly affected by the background fluid flow and geometry of the nozzle leading to wall accumulation and upstream motion (rheotaxis). In particular, we describe the non-trivial focusing of active rods depending on physical and geometrical parameters. It is also established that the convergent component of the background flow leads to stability of both downstream and upstream swimming at the centerline.more » The stability of downstream swimming enhances focusing, and the stability of upstream swimming enables rheotaxis in the bulk.« less
Transverse vibrations of non-uniform beams. [combined finite element and Rayleigh-Ritz methods
NASA Technical Reports Server (NTRS)
Klein, L.
1974-01-01
The free vibrations of elastic beams with nonuniform characteristics are investigated theoretically by a new method. The new method is seen to combine the advantages of a finite element approach and of a Rayleigh-Ritz analysis. Comparison with the known analytical results for uniform beams shows good convergence of the method for natural frequencies and modes. For internal shear forces and bending moments, the rate of convergence is less rapid. Results from experiments conducted with a cantilevered helicopter blade with strong nonuniformities and also from alternative theoretical methods, indicate that the theory adequately predicts natural frequencies and mode shapes. General guidelines for efficient use of the method are presented.
Editing wild points in isolation - Fast agreement for reliable systems (Preliminary version)
NASA Technical Reports Server (NTRS)
Kearns, Phil; Evans, Carol
1989-01-01
Consideration is given to the intuitively appealing notion of discarding sensor values which are strongly suspected of being erroneous in a modified approximate agreement protocol. Approximate agreement with editing imposes a time bound upon the convergence of the protocol - no such bound was possible for the original approximate agreement protocol. This new approach is potentially useful in the construction of asynchronous fault tolerant systems. The main result is that a wild-point replacement technique called t-worst editing can be shown to guarantee convergence of the approximate agreement protocol to a valid agreement value. Results are presented for a four-processor synchronous system in which a single processor may be faulty.
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.
2018-06-01
The circular Sitnikov problem, where the two primary bodies are prolate or oblate spheroids, is numerically investigated. In particular, the basins of convergence on the complex plane are revealed by using a large collection of numerical methods of several order. We consider four cases, regarding the value of the oblateness coefficient which determines the nature of the roots (attractors) of the system. For all cases we use the iterative schemes for performing a thorough and systematic classification of the nodes on the complex plane. The distribution of the iterations as well as the probability and their correlations with the corresponding basins of convergence are also discussed. Our numerical computations indicate that most of the iterative schemes provide relatively similar convergence structures on the complex plane. However, there are some numerical methods for which the corresponding basins of attraction are extremely complicated with highly fractal basin boundaries. Moreover, it is proved that the efficiency strongly varies between the numerical methods.
Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Jian-Guo; Lu, Jianfeng
2017-10-01
We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.
Synchronization from Second Order Network Connectivity Statistics
Zhao, Liqiong; Beverlin, Bryce; Netoff, Theoden; Nykamp, Duane Q.
2011-01-01
We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections, and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by their increasing the effective coupling strength. The decrease of synchrony with convergent connections is primarily due to the resulting heterogeneity in firing rates. PMID:21779239
SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala
ERIC Educational Resources Information Center
Sinai, Laleh; Duffy, Steven; Roder, John C.
2010-01-01
The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…
Starns, Jeffrey J.; Pazzaglia, Angela M.; Rotello, Caren M.; Hautus, Michael J.; Macmillan, Neil A.
2014-01-01
Source memory zROC slopes change from below 1 to above 1 depending on which source gets the strongest learning. This effect has been attributed to memory processes, either in terms of a threshold source recollection process or changes in the variability of continuous source evidence. We propose two decision mechanisms that can produce the slope effect, and we test them in three experiments. The evidence mixing account assumes that people change how they weight item versus source evidence based on which source is stronger, and the converging criteria account assumes that participants become more willing to make high confidence source responses for test probes that have higher item strength. Results failed to support the evidence mixing account, in that the slope effect emerged even when item evidence was not informative for the source judgment (that is, in tests that included strong and weak items from both sources). In contrast, results showed strong support for the converging criteria account. This account not only accommodated the unequal-strength slope effect, but also made a prediction for unstudied (new) items that was empirically confirmed: participants made more high confidence source responses for new items when they were more confident that the item was studied. The converging criteria account has an advantage over accounts based on source recollection or evidence variability, as the latter accounts do not predict the relationship between recognition and source confidence for new items. PMID:23565789
Measurement of the curvature of a surface using parallel light beams
Chason, Eric H.; Floro, Jerrold A.; Seager, Carleton H.; Sinclair, Michael B.
1999-01-01
Apparatus for measuring curvature of a surface wherein a beam of collimated light is passed through means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90.degree. about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90.degree. relative to the line onto which the single set of parallel beams from the first etalon would have fallen.
Measurement of the curvature of a surface using parallel light beams
Chason, E.H.; Floro, J.A.; Seager, C.H.; Sinclair, M.B.
1999-06-15
Apparatus is disclosed for measuring curvature of a surface wherein a beam of collimated light is passed through a means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90[degree] about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90[degree] relative to the line onto which the single set of parallel beams from the first etalon would have fallen. 5 figs.
The Finite-Surface Method for incompressible flow: a step beyond staggered grid
NASA Astrophysics Data System (ADS)
Hokpunna, Arpiruk; Misaka, Takashi; Obayashi, Shigeru
2017-11-01
We present a newly developed higher-order finite surface method for the incompressible Navier-Stokes equations (NSE). This method defines the velocities as a surface-averaged value on the surfaces of the pressure cells. Consequently, the mass conservation on the pressure cells becomes an exact equation. The only things left to approximate is the momentum equation and the pressure at the new time step. At certain conditions, the exact mass conservation enables the explicit n-th order accurate NSE solver to be used with the pressure treatment that is two or four order less accurate without loosing the apparent convergence rate. This feature was not possible with finite volume of finite difference methods. We use Fourier analysis with a model spectrum to determine the condition and found that the range covers standard boundary layer flows. The formal convergence and the performance of the proposed scheme is compared with a sixth-order finite volume method. Finally, the accuracy and performance of the method is evaluated in turbulent channel flows. This work is partially funded by a research colloaboration from IFS, Tohoku university and ASEAN+3 funding scheme from CMUIC, Chiang Mai University.
An efficient solution to the decoherence enhanced trivial crossing problem in surface hopping
NASA Astrophysics Data System (ADS)
Bai, Xin; Qiu, Jing; Wang, Linjun
2018-03-01
We provide an in-depth investigation of the time interval convergence when both trivial crossing and decoherence corrections are applied to Tully's fewest switches surface hopping (FSSH) algorithm. Using one force-based and one energy-based decoherence strategies as examples, we show decoherence corrections intrinsically enhance the trivial crossing problem. We propose a restricted decoherence (RD) strategy and incorporate it into the self-consistent (SC) fewest switches surface hopping algorithm [L. Wang and O. V. Prezhdo, J. Phys. Chem. Lett. 5, 713 (2014)]. The resulting SC-FSSH-RD approach is applied to general Hamiltonians with different electronic couplings and electron-phonon couplings to mimic charge transport in tens to hundreds of molecules. In all cases, SC-FSSH-RD allows us to use a large time interval of 0.1 fs for convergence and the simulation time is reduced by over one order of magnitude. Both the band and hopping mechanisms of charge transport have been captured perfectly. SC-FSSH-RD makes surface hops in the adiabatic representation and can be implemented in both diabatic and locally diabatic representations for wave function propagation. SC-FSSH-RD can potentially describe general nonadiabatic dynamics of electrons and excitons in organics and other materials.
Spatial and temporal connections in groundwater contribution to evaporation
NASA Astrophysics Data System (ADS)
Lam, A.; Karssenberg, D.; van den Hurk, B. J. J. M.; Bierkens, M. F. P.
2011-08-01
In climate models, lateral terrestrial water fluxes are usually neglected. We estimated the contribution of vertical and lateral groundwater fluxes to the land surface water budget at a subcontinental scale, by modeling convergence of groundwater and surfacewater fluxes. We present a hydrological model of the entire Danube Basin at 5 km resolution, and use it to show the importance of groundwater for the surface climate. Results show that the contribution of groundwater to evaporation is significant, and can locally be higher than 30 % in summer. We demonstrate through the same model that this contribution also has important temporal characteristics. A wet episode can influence groundwater contribution to summer evaporation for several years afterwards. This indicates that modeling groundwater flow has the potential to augment the multi-year memory of climate models. We also show that the groundwater contribution to evaporation is local by presenting the groundwater travel times and the magnitude of groundwater convergence. Throughout the Danube Basin the lateral fluxes of groundwater are negligible when modeling at this scale and resolution. This suggests that groundwater can be adequately added in land surface models by including a lower closed groundwater reservoir of sufficient size with two-way interaction with surface water and the overlying soil layers.
NASA Technical Reports Server (NTRS)
Smith, Andrew M.; Davis, Robert Ben; LaVerde, Bruce T.; Jones, Douglas C.; Band, Jonathon L.
2012-01-01
Using the patch method to represent the continuous spatial correlation function of a phased pressure field over a structural surface is an approximation. The approximation approaches the continuous function as patches become smaller. Plotting comparisons of the approximation vs the continuous function may provide insight revealing: (1) For what patch size/density should the approximation be very good? (2) What the approximation looks like when it begins to break down? (3) What the approximation looks like when the patch size is grossly too large. Following these observations with a convergence study using one FEM may allow us to see the importance of patch density. We may develop insights that help us to predict sufficient patch density to provide adequate convergence for the intended purpose frequency range of interest
78 FR 13395 - Meeting: RTCA Special Committee 223, Airport Surface Wireless Communications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-27
... Review: Convergence Sub-layer. Security. MAC Layer. Physical Layer. PICS. CRSL. Review/Approval of MOPS... Washington, DC, on February 21, 2013. Paige Williams, Management Analyst, NextGen, Business Operations Group...
Chen, Zhe; Song, John; Chu, Wei; Soons, Johannes A; Zhao, Xuezeng
2017-11-01
The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for accurate firearm evidence identification and error rate estimation. The CMC method is based on the principle of discretization. The toolmark image of the reference sample is divided into correlation cells. Each cell is registered to the cell-sized area of the compared image that has maximum surface topography similarity. For each resulting cell pair, one parameter quantifies the similarity of the cell surface topography and three parameters quantify the pattern congruency of the registration position and orientation. An identification (declared match) requires a significant number of CMCs, that is, cell pairs that meet both similarity and pattern congruency requirements. The use of cell correlations reduces the effects of "invalid regions" in the compared image pairs and increases the correlation accuracy. The identification accuracy of the CMC method can be further improved by considering a feature named "convergence," that is, the tendency of the x-y registration positions of the correlated cell pairs to converge at the correct registration angle when comparing same-source samples at different relative orientations. In this paper, the difference of the convergence feature between known matching (KM) and known non-matching (KNM) image pairs is characterized, based on which an improved algorithm is developed for breech face image correlations using the CMC method. Its advantage is demonstrated by comparison with three existing CMC algorithms using four datasets. The datasets address three different brands of consecutively manufactured pistol slides, with significant differences in the distribution overlap of cell pair topography similarity for KM and KNM image pairs. For the same CMC threshold values, the convergence algorithm demonstrates noticeably improved results by reducing the number of false-positive or false-negative CMCs in a comparison. Published by Elsevier B.V.
Extension and gold mineralisation in the hanging walls of active convergent continental shear zones
NASA Astrophysics Data System (ADS)
Upton, Phaedra; Craw, Dave
2014-07-01
Orogenic gold-bearing quartz veins form in mountain belts adjacent to convergent tectonic boundaries. The vein systems, hosted in extensional structures within compressively deformed rocks, are a widespread feature of these orogens. In many cases the extensional structures that host gold-bearing veins have been superimposed on, and locally controlled by, compressional structures formed within the convergent orogen. Exploring these observations within the context of a three-dimensional mechanical model allows prediction of mechanisms and locations of extensional zones within convergent orogens. Our models explore the effect of convergence angle and mid-crustal strength on stress states and compare them to the Southern Alps and Taiwan. The dilatation zones coincide with the highest mountains, in the hanging walls of major plate boundary faults, and can extend as deep as the brittle-ductile transition. Extensional deformation is favoured in the topographic divide region of oblique orogens with mid-lower crustal rheology that promotes localisation rather than diffuse deformation. In the near surface, topography influences the stress state to a depth approximately equal to the topographic relief, bringing the rock closer to failure and rotating σ1 to near vertical. The distribution of gold-bearing extensional veins may indicate the general position of the topographic divide within exhumed ancient orogens.
Effects of tidal current phase at the junction of two straits
Warner, J.; Schoellhamer, D.; Burau, J.; Schladow, G.
2002-01-01
Estuaries typically have a monotonic increase in salinity from freshwater at the head of the estuary to ocean water at the mouth, creating a consistent direction for the longitudinal baroclinic pressure gradient. However, Mare Island Strait in San Francisco Bay has a local salinity minimum created by the phasing of the currents at the junction of Mare Island and Carquinez Straits. The salinity minimum creates converging baroclinic pressure gradients in Mare Island Strait. Equipment was deployed at four stations in the straits for 6 months from September 1997 to March 1998 to measure tidal variability of velocity, conductivity, temperature, depth, and suspended sediment concentration. Analysis of the measured time series shows that on a tidal time scale in Mare Island Strait, the landward and seaward baroclinic pressure gradients in the local salinity minimum interact with the barotropic gradient, creating regions of enhanced shear in the water column during the flood and reduced shear during the ebb. On a tidally averaged time scale, baroclinic pressure gradients converge on the tidally averaged salinity minimum and drive a converging near-bed and diverging surface current circulation pattern, forming a "baroclinic convergence zone" in Mare Island Strait. Historically large sedimentation rates in this area are attributed to the convergence zone.
Convergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association
2016-01-01
Potential of mean force (PMF) calculations are used to characterize the free energy landscape of protein–lipid and protein–protein association within membranes. Coarse-grained simulations allow binding free energies to be determined with reasonable statistical error. This accuracy relies on defining a good collective variable to describe the binding and unbinding transitions, and upon criteria for assessing the convergence of the simulation toward representative equilibrium sampling. As examples, we calculate protein–lipid binding PMFs for ANT/cardiolipin and Kir2.2/PIP2, using umbrella sampling on a distance coordinate. These highlight the importance of replica exchange between windows for convergence. The use of two independent sets of simulations, initiated from bound and unbound states, provide strong evidence for simulation convergence. For a model protein–protein interaction within a membrane, center-of-mass distance is shown to be a poor collective variable for describing transmembrane helix–helix dimerization. Instead, we employ an alternative intermolecular distance matrix RMS (DRMS) coordinate to obtain converged PMFs for the association of the glycophorin transmembrane domain. While the coarse-grained force field gives a reasonable Kd for dimerization, the majority of the bound population is revealed to be in a near-native conformation. Thus, the combination of a refined reaction coordinate with improved sampling reveals previously unnoticed complexities of the dimerization free energy landscape. We propose the use of replica-exchange umbrella sampling starting from different initial conditions as a robust approach for calculation of the binding energies in membrane simulations. PMID:27807980
Convergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association.
Domański, Jan; Hedger, George; Best, Robert B; Stansfeld, Phillip J; Sansom, Mark S P
2017-04-20
Potential of mean force (PMF) calculations are used to characterize the free energy landscape of protein-lipid and protein-protein association within membranes. Coarse-grained simulations allow binding free energies to be determined with reasonable statistical error. This accuracy relies on defining a good collective variable to describe the binding and unbinding transitions, and upon criteria for assessing the convergence of the simulation toward representative equilibrium sampling. As examples, we calculate protein-lipid binding PMFs for ANT/cardiolipin and Kir2.2/PIP 2 , using umbrella sampling on a distance coordinate. These highlight the importance of replica exchange between windows for convergence. The use of two independent sets of simulations, initiated from bound and unbound states, provide strong evidence for simulation convergence. For a model protein-protein interaction within a membrane, center-of-mass distance is shown to be a poor collective variable for describing transmembrane helix-helix dimerization. Instead, we employ an alternative intermolecular distance matrix RMS (D RMS ) coordinate to obtain converged PMFs for the association of the glycophorin transmembrane domain. While the coarse-grained force field gives a reasonable K d for dimerization, the majority of the bound population is revealed to be in a near-native conformation. Thus, the combination of a refined reaction coordinate with improved sampling reveals previously unnoticed complexities of the dimerization free energy landscape. We propose the use of replica-exchange umbrella sampling starting from different initial conditions as a robust approach for calculation of the binding energies in membrane simulations.
Lagrangian particle method for compressible fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less
Lagrangian particle method for compressible fluid dynamics
Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang
2018-02-09
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less
NASA Astrophysics Data System (ADS)
Sapucci, L. F.; Monico, J. G.; Machado, L. T.
2007-05-01
In 2010 a new navigation and administration system of the air traffic, denominated CNS-ATM (Communication Navigation Surveillance - Air Traffic Management) should be running operationally in South America. This new system will basically employ the positioning techniques by satellites to the management and air traffic control. However, the efficiency of this new system demands the knowledge of the behavior of the atmosphere, consequently, an appropriated Zenithal Tropospheric Delay (ZTD) modeling in a regional scale. The predictions of ZTD values from Numeric Weather Prediction (NWP), denominated here dynamic modeling, is an alternative to model the atmospheric gases effects in the radio-frequency signals in real time. Brazilian Center for Weather Forecasting and Climate Studies (CPTEC) of the National Institute for Space Research (INPE), jointly with researchers from UNESP (Sao Paulo State University), has generated operationally prediction of ZTD values to South America Continent (available in the electronic address http:satelite.cptec.inpe.br/htmldocs/ztd/zenithal.htm). The available regional version is obtained using ETA model (NWP model with horizontal resolution of 20 km and 42 levels in the vertical). The application of NWP permit assess the temporal and spatial variation of ZTD values, which is an important characteristic of this techniques. The aim of the present paper is to investigate the ZTD seasonal variability over South America continent. A variability analysis of the ZTD components [hydrostatic(ZHD) and wet(ZWD)] is also presented, as such as discussion of main factors that influence this variation in this region. The hydrostatic component variation is related with atmospheric pressure oscillation, which is influenced by relief and high pressure centers that prevail over different region of the South America continent. The wet component oscillation is due to the temperature and humidity variability, which is also influenced by relief and by synoptic events like: the penetration the cold front from Antarctic pole into the continent and occurrence of humidity convergence zones. In South America there are two main convergence zones that has strong influence in the troposphere variability, the ITCZ (Inter Tropical Convergence Zone) and the SACZ (South Atlantic Convergence Zone) zones. These convergence zones are characterized by an extensive precipitation band and high nebulosity almost stationary. The physical processes associated with these convergence zones present strong impacts in the variability of ZWD values. This work aims to contribute with ZTD modeling over South America continent using NWP to identify where and when the ZTD values present lower predictability in this region, and consequently, minimizing the error in the GNSS positioning that apply this technique.
Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens
NASA Astrophysics Data System (ADS)
Upton, Phaedra; Craw, Dave
2016-12-01
Varying amounts of gold mineralisation is occurring in all young and active collisional mountain belts. Concurrently, these syn-orogenic hydrothermal deposits are being eroded and transported to form placer deposits. Local extension occurs in convergent orogens, especially oblique orogens, and facilitates emplacement of syn-orogenic gold-bearing deposits with or without associated magmatism. Numerical modelling has shown that extension results from directional variations in movement rates along the rock transport trajectory during convergence, and is most pronounced for highly oblique convergence with strong crustal rheology. On-going uplift during orogenesis exposes gold deposits to erosion, transport, and localised placer concentration. Drainage patterns in variably oblique convergent orogenic belts typically have an orogen-parallel or sub-parallel component; the details of which varies with convergence obliquity and the vagaries of underlying geological controls. This leads to lateral transport of eroded syn-orogenic gold on a range of scales, up to > 100 km. The presence of inherited crustal blocks with contrasting rheology in oblique orogenic collision zones can cause perturbations in drainage patterns, but numerical modelling suggests that orogen-parallel drainage is still a persistent and robust feature. The presence of an inherited block of weak crust enhances the orogen-parallel drainage by imposition of localised subsidence zones elongated along a plate boundary. Evolution and reorientation of orogen-parallel drainage can sever links between gold placer deposits and their syn-orogenic sources. Many of these modelled features of syn-orogenic gold emplacement and varying amounts of orogen-parallel detrital gold transport can be recognised in the Miocene to Recent New Zealand oblique convergent orogen. These processes contribute little gold to major placer goldfields, which require more long-term recycling and placer gold concentration. Most eroded syn-orogenic gold becomes diluted by abundant lithic debris in rivers and sedimentary basins except where localised concentration occurs, especially on beaches.
Surface damage characterization of FBK devices for High Luminosity LHC (HL-LHC) operations
NASA Astrophysics Data System (ADS)
Moscatelli, F.; Passeri, D.; Morozzi, A.; Dalla Betta, G.-F.; Mattiazzo, S.; Bomben, M.; Bilei, G. M.
2017-12-01
The very high fluences (e.g. up to 2×1016 1 MeV neq/cm2) and total ionising doses (TID) of the order of 1 Grad, expected at the High Luminosity LHC (HL-LHC), impose new challenges for the design of effective, radiation resistant detectors. Ionising energy loss is the dominant effect for what concerns SiO2 and SiO2/Si interface radiation damage. In particular, surface damage can create a positive charge layer near the SiO2/Si interface and interface traps along the SiO2/Si interface, which strongly influence the breakdown voltage, the inter-electrode isolation and capacitance, and might also impact the charge collection properties of silicon sensors. To better understand in a comprehensive framework the complex and articulated phenomena related to surface damage at these very high doses, measurements on test structures have been carried out in this work (e.g. C-V and I-V). In particular, we have studied the properties of the SiO2 layer and of the SiO2/Si interface, using MOS capacitors, gated diodes (GD) and MOSFETs manufactured by FBK on high-resistivity n-type and p-type silicon, before and after irradiation with X-rays in the range from 50 krad(SiO2) to 20 Mrad(SiO2). Relevant parameters have been determined for all the tested devices, converging in the oxide charge density NOX, the surface generation velocity s0 and the integrated interface-trap density NIT dose-dependent values. These parameters have been extracted to both characterize the technology as a function of the dose and to be used in TCAD simulations for the surface damage effect modeling and the analysis and optimization of different classes of detectors for the next HEP experiments.
Is Cognitive Ability a Liability? A Critique and Future Research Agenda on Skilled Performance
ERIC Educational Resources Information Center
Beier, Margaret E.; Oswald, Frederick L.
2012-01-01
Over a century of psychological research provides strong and consistent support for the idea that cognitive ability correlates positively with success in tasks that people face in employment, education, and everyday life. Recent experimental research, however, has converged on a different and provocative conclusion, namely that lower-ability…
Development and Validation of a Unidimensional Maltreatment Scale in the Add Health Data Set
ERIC Educational Resources Information Center
Marszalek, Jacob M.; Hamilton, Jessica L.
2012-01-01
Four maltreatment items were examined from Wave III (N = 13,516) of the National Longitudinal Study of Adolescent Health. Item analysis, confirmatory factor analysis, cross-validation, reliability estimates, and convergent validity coefficients strongly supported the validity of using the four items as a unidimensional composite. Implications for…
Large-scale forest composition influences northern goshawk nesting in Wisconsin
Deahn M. Donner; Dean Anderson; Daniel Eklund; Matthew St.Pierre
2013-01-01
The northern goshawk (Accipiter gentilis atricapillus) is a woodland raptor that uses a variety of forest types for nesting across its breeding range, but strongly depends on older forests with large trees and open understories. Goshawks may select nesting locations by maximizing the convergence of nesting and foraging habitats. Insights into goshawk...
Strong Convergence of Iteration Processes for Infinite Family of General Extended Mappings
NASA Astrophysics Data System (ADS)
Hussein Maibed, Zena
2018-05-01
The aim of this paper, we introduce a concept of general extended mapping which is independent of nonexpansive mapping and give an iteration process of families of quasi nonexpansive and of general extended mappings. Also, the existence of common fixed point are studied for these process in the Hilbert spaces.
Development and Initial Validation of the Counseling Center Assessment of Psychological Symptoms-34
ERIC Educational Resources Information Center
Locke, Benjamin D.; McAleavey, Andrew A.; Zhao, Yu; Lei, Pui-Wa; Hayes, Jeffrey A.; Castonguay, Louis G.; Li, Hongli; Tate, Robin; Lin, Yu-Chu
2012-01-01
A short version of the Counseling Center Assessment of Psychological Symptoms-62 (CCAPS-62) was created via three studies. The final short version (CCAPS-34), which contains 34 items and 7 subscales, demonstrated good discrimination power, support for the proposed factor structure, strong initial convergent validity, and adequate test-retest…
Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity
NASA Astrophysics Data System (ADS)
Hamon, F. P.; Mallison, B.; Tchelepi, H.
2016-12-01
In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem to compute the numerical flux. Heterogeneous numerical tests demonstrate that this extended IHU scheme is non-oscillatory and convergent upon refinement. They also illustrate the superior accuracy and nonlinear convergence rate of the IHU scheme compared with the standard phase-based upstream weighting approach.
NASA Technical Reports Server (NTRS)
Garrett, L. B.; Smith, G. L.; Perkins, J. N.
1972-01-01
An implicit finite-difference scheme is developed for the fully coupled solution of the viscous, radiating stagnation-streamline equations, including strong blowing. Solutions are presented for both air injection and injection of carbon-phenolic ablation products into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative-transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized in the study. With minimum number of assumptions for the initially unknown parameters and profile distributions, convergent solutions to the full stagnation-line equations are rapidly obtained by a method of successive approximations. Damping of selected profiles is required to aid convergence of the solutions for massive blowing. It is shown that certain finite-difference approximations to the governing differential equations stabilize and improve the solutions. Detailed comparisons are made with the numerical results of previous investigations. Results of the present study indicate lower radiative heat fluxes at the wall for carbonphenolic ablation than previously predicted.
A Mediterranean derecho: Catalonia (Spain), 17th August 2003
NASA Astrophysics Data System (ADS)
López, J. Manuel
2007-02-01
At approximately 6:10 UTC in the morning of 17th August 2003, a squall line developed over south Catalonia (the northeast region of Spain). During the next 9 h, the squall moved rapidly northeast and crossed Catalonia and the French regions of Languedoc-Roussillon and Province, damaging and uprooting hundreds of trees and blocking trains in the region. Wind gusts reached were recoded up to 52 m/s with evidence of F2 intensity damage. This case study shows the characteristics of a derecho (widespread convectively induced windstorm). Radar observations of the evolving squall line show signatures often correlated with damaging surface winds, including: Bow echoes, Rear inflow notches, Rear inflow jets, Medium altitude radial convergence, Narrow gradient of very marked reflectivity, Development of isolated cells ahead of the convective line, A band of convection off the northern end of the line known as a "warm advection wing". When examining the different surface observations, satellite, radar imagery and cloud-to-ground lightning data, this case shows many similarities to those investigated in the United States. The derecho is a hybrid case, but has many characteristics of warm season derechoes. This emanates from a mesoscale convective complex (MCC) moving along a quasi-stationary, low-level thermal boundary in an environment characterized by high potential instability and relatively strong mid-tropospheric winds.
Direct numerical simulation of particulate flows with an overset grid method
NASA Astrophysics Data System (ADS)
Koblitz, A. R.; Lovett, S.; Nikiforakis, N.; Henshaw, W. D.
2017-08-01
We evaluate an efficient overset grid method for two-dimensional and three-dimensional particulate flows for small numbers of particles at finite Reynolds number. The rigid particles are discretised using moving overset grids overlaid on a Cartesian background grid. This allows for strongly-enforced boundary conditions and local grid refinement at particle surfaces, thereby accurately capturing the viscous boundary layer at modest computational cost. The incompressible Navier-Stokes equations are solved with a fractional-step scheme which is second-order-accurate in space and time, while the fluid-solid coupling is achieved with a partitioned approach including multiple sub-iterations to increase stability for light, rigid bodies. Through a series of benchmark studies we demonstrate the accuracy and efficiency of this approach compared to other boundary conformal and static grid methods in the literature. In particular, we find that fully resolving boundary layers at particle surfaces is crucial to obtain accurate solutions to many common test cases. With our approach we are able to compute accurate solutions using as little as one third the number of grid points as uniform grid computations in the literature. A detailed convergence study shows a 13-fold decrease in CPU time over a uniform grid test case whilst maintaining comparable solution accuracy.
Geomorphic control of landscape carbon accumulation
Rosenbloom, N.A.; Harden, J.W.; Neff, J.C.; Schimel, D.S.
2006-01-01
We use the CREEP process-response model to simulate soil organic carbon accumulation in an undisturbed prairie site in Iowa. Our primary objectives are to identify spatial patterns of carbon accumulation, and explore the effect of erosion on basin-scale C accumulation. Our results point to two general findings. First, redistribution of soil carbon by erosion results in a net increase in basin-wide carbon storage relative to a noneroding environment. Landscape-average mean residence times are increased in an eroding landscape owing to the burial/preservation of otherwise labile C. Second, field observations taken along a slope transect may overlook significant intraslope variations in carbon accumulation. Spatial patterns of modeled deep C accumulation are complex. While surface carbon with its relatively short equilibration time is predictable from surface properties, deep carbon is strongly influenced by the landscape's geomorphic and climatic history, resulting in wide spatial variability. Convergence and divergence associated with upland swales and interfluves result in bimodal carbon distributions in upper and mid slopes; variability in carbon storage within modeled mid slopes was as high as simulated differences between erosional shoulders and depositional valley bottoms. The bimodality of mid-slope C variability in the model suggests that a three-dimensional sampling strategy is preferable over the traditional two-dimensional analog or "catena" approach. Copyright 2006 by the American Geophysical Union.
Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow
NASA Astrophysics Data System (ADS)
Kincaid, C.; Druken, K. A.; Griffiths, R. W.; Stegman, D. R.
2013-05-01
The causes of volcanism in the northwestern United States over the past 20 million years are strongly contested. Three drivers have been proposed: melting associated with plate subduction; tectonic extension and magmatism resulting from rollback of a subducting slab; or the Yellowstone mantle plume. Observations of the opposing age progression of two neighbouring volcanic chains--the Snake River Plain and High Lava Plains--are often used to argue against a plume origin for the volcanism. Plumes are likely to occur near subduction zones, yet the influence of subduction on the surface expression of mantle plumes is poorly understood. Here we use experiments with a laboratory model to show that the patterns of volcanism in the northwestern United States can be explained by a plume upwelling through mantle that circulates in the wedge beneath a subduction zone. We find that the buoyant plume may be stalled, deformed and partially torn apart by mantle flow induced by the subducting plate. Using plausible model parameters, bifurcation of the plume can reproduce the primary volcanic features observed in the northwestern United States, in particular the opposite progression of two volcanic chains. Our results support the presence of the Yellowstone plume in the northwestern United States, and also highlight the power of plume-subduction interactions to modify surface geology at convergent plate margins.
Numerical Boundary Condition Procedures
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.
Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique.
Song, Zhankui; Li, Hongxing; Sun, Kaibiao
2014-01-01
In this paper, a fast terminal sliding mode control (FTSMC) scheme with double closed loops is proposed for the spacecraft attitude control. The FTSMC laws are included both in an inner control loop and an outer control loop. Firstly, a fast terminal sliding surface (FTSS) is constructed, which can drive the inner loop tracking-error and the outer loop tracking-error on the FTSS to converge to zero in finite time. Secondly, FTSMC strategy is designed by using Lyaponov's method for ensuring the occurrence of the sliding motion in finite time, which can hold the character of fast transient response and improve the tracking accuracy. It is proved that FTSMC can guarantee the convergence of tracking-error in both approaching and sliding mode surface. Finally, simulation results demonstrate the effectiveness of the proposed control scheme. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Atmospheric Signature of the Agulhas Current
NASA Astrophysics Data System (ADS)
Nkwinkwa Njouodo, Arielle Stela; Koseki, Shunya; Keenlyside, Noel; Rouault, Mathieu
2018-05-01
Western boundary currents play an important role in the climate system by transporting heat poleward and releasing it to the atmosphere. While their influence on extratropical storms and oceanic rainfall is becoming appreciated, their coastal influence is less known. Using satellite and climate reanalysis data sets and a regional atmospheric model, we show that the Agulhas Current is a driver of the observed band of rainfall along the southeastern African coast and above the Agulhas Current. The Agulhas current's warm core is associated with sharp gradients in sea surface temperature and sea level pressure, a convergence of low-level winds, and a co-located band of precipitation. Correlations among wind convergence, sea level pressure, and sea surface temperature indicate that these features show high degree of similarity to those in the Gulf Stream region. Model experiments further indicate that the Agulhas Current mostly impacts convective rainfall.
Computer simulations of phase field drops on super-hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Fedeli, Livio
2017-09-01
We present a novel quasi-Newton continuation procedure that efficiently solves the system of nonlinear equations arising from the discretization of a phase field model for wetting phenomena. We perform a comparative numerical analysis that shows the improved speed of convergence gained with respect to other numerical schemes. Moreover, we discuss the conditions that, on a theoretical level, guarantee the convergence of this method. At each iterative step, a suitable continuation procedure develops and passes to the nonlinear solver an accurate initial guess. Discretization performs through cell-centered finite differences. The resulting system of equations is solved on a composite grid that uses dynamic mesh refinement and multi-grid techniques. The final code achieves three-dimensional, realistic computer experiments comparable to those produced in laboratory settings. This code offers not only new insights into the phenomenology of super-hydrophobicity, but also serves as a reliable predictive tool for the study of hydrophobic surfaces.
Agustin, Alyssa E; Merrifield, Mark A; Potemra, James T; Morishige, Carey
2015-12-15
A twenty-two year record of marine debris collected on Tern Island is used to characterize the temporal variability of debris deposition at a coral atoll in the Northwestern Hawaiian Islands. Debris deposition tends to be episodic, without a significant relationship to local forcing processes associated with winds, sea level, waves, and proximity to the Subtropical Convergence Zone. The General NOAA Operational Modeling Environment is used to estimate likely debris pathways for Tern Island. The majority of modeled arrivals come from the northeast following prevailing trade winds and surface currents, with trajectories indicating the importance of the convergence zone, or garbage patch, in the North Pacific High region. Although debris deposition does not generally exhibit a significant seasonal cycle, some debris types contain considerable 3 cycle/yr variability that is coherent with wind and surface pressure over a broad region north of Tern. Copyright © 2015 Elsevier Ltd. All rights reserved.
A result about scale transformation families in approximation
NASA Astrophysics Data System (ADS)
Apprato, Dominique; Gout, Christian
2000-06-01
Scale transformations are common in approximation. In surface approximation from rapidly varying data, one wants to suppress, or at least dampen the oscillations of the approximation near steep gradients implied by the data. In that case, scale transformations can be used to give some control over overshoot when the surface has large variations of its gradient. Conversely, in image analysis, scale transformations are used in preprocessing to enhance some features present on the image or to increase jumps of grey levels before segmentation of the image. In this paper, we establish the convergence of an approximation method which allows some control over the behavior of the approximation. More precisely, we study the convergence of an approximation from a data set of , while using scale transformations on the values before and after classical approximation. In addition, the construction of scale transformations is also given. The algorithm is presented with some numerical examples.
Bulut, Niyazi; Kłos, Jacek; Alexander, Millard H
2012-03-14
We present converged exact quantum wave packet calculations of reaction probabilities, integral cross sections, and thermal rate coefficients for the title reaction. Calculations have been carried out on the ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged wave packet reaction probabilities at selected values of the total angular momentum up to a partial wave of J = 140 with the HCl reagent initially selected in the v = 0, j = 0-16 rovibrational states have been obtained for the collision energy range from threshold up to 0.8 eV. The present calculations confirm an important enhancement of reactivity with rotational excitation of the HCl molecule. First, accurate integral cross sections and rate constants have been calculated and compared with the available experimental data.
Ciezarek, Adam G; Dunning, Luke T; Jones, Catherine S; Noble, Leslie R; Humble, Emily; Stefanni, Sergio S; Savolainen, Vincent
2016-10-05
Despite 400-450 million years of independent evolution, a strong phenotypic convergence has occurred between two groups of fish: tunas and lamnid sharks. This convergence is characterized by centralization of red muscle, a distinctive swimming style (stiffened body powered through tail movements) and elevated body temperature (endothermy). Furthermore, both groups demonstrate elevated white muscle metabolic capacities. All these traits are unusual in fish and more likely evolved to support their fast-swimming, pelagic, predatory behavior. Here, we tested the hypothesis that their convergent evolution was driven by selection on a set of metabolic genes. We sequenced white muscle transcriptomes of six tuna, one mackerel, and three shark species, and supplemented this data set with previously published RNA-seq data. Using 26 species in total (including 7,032 tuna genes plus 1,719 shark genes), we constructed phylogenetic trees and carried out maximum-likelihood analyses of gene selection. We inferred several genes relating to metabolism to be under selection. We also found that the same one gene, glycogenin-1, evolved under positive selection independently in tunas and lamnid sharks, providing evidence of convergent selective pressures at gene level possibly underlying shared physiology. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Haines, Brian M.; Yi, S. A.; Olson, R. E.; ...
2017-07-10
The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. In this paper, we present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surfacemore » roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Finally and nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).« less
Polarimetric passive remote sensing of periodic surfaces
NASA Technical Reports Server (NTRS)
Veysoglu, Murat E.; Yueh, H. A.; Shin, R. T.; Kong, J. A.
1991-01-01
The concept of polarimetry in active remote sensing is extended to passive remote sensing. The potential use of the third and fourth Stokes parameters U and V, which play an important role in polarimetric active remote sensing, is demonstrated for passive remote sensing. It is shown that, by the use of the reciprocity principle, the polarimetric parameters of passive remote sensing can be obtained through the solution of the associated direct scattering problem. These ideas are applied to study polarimetric passive remote sensing of periodic surfaces. The solution of the direct scattering problem is obtained by an integral equation formulation which involves evaluation of periodic Green's functions and normal derivative of those on the surface. Rapid evaluation of the slowly convergent series associated with these functions is observed to be critical for the feasibility of the method. New formulas, which are rapidly convergent, are derived for the calculation of these series. The study has shown that the brightness temperature of the Stokes parameter U can be significant in passive remote sensing. Values as high as 50 K are observed for certain configurations.
Regime-Dependent Differences in Surface Freshwater Exchange Estimates Over the Ocean
NASA Astrophysics Data System (ADS)
Wong, Sun; Behrangi, Ali
2018-01-01
Differences in gridded precipitation (
Shared versus distributed memory multiprocessors
NASA Technical Reports Server (NTRS)
Jordan, Harry F.
1991-01-01
The question of whether multiprocessors should have shared or distributed memory has attracted a great deal of attention. Some researchers argue strongly for building distributed memory machines, while others argue just as strongly for programming shared memory multiprocessors. A great deal of research is underway on both types of parallel systems. Special emphasis is placed on systems with a very large number of processors for computation intensive tasks and considers research and implementation trends. It appears that the two types of systems will likely converge to a common form for large scale multiprocessors.
2D Inviscid and Viscous Inverse Design Using Continuous Adjoint and Lax-Wendroff Formulation
NASA Astrophysics Data System (ADS)
Proctor, Camron Lisle
The continuous adjoint (CA) technique for optimization and/or inverse-design of aerodynamic components has seen nearly 30 years of documented success in academia. The benefits of using CA versus a direct sensitivity analysis are shown repeatedly in the literature. However, the use of CA in industry is relatively unheard-of. The sparseness of industry contributions to the field may be attributed to the tediousness of the derivation and/or to the difficulties in implementation due to the lack of well-documented adjoint numerical methods. The focus of this work has been to thoroughly document the techniques required to build a two-dimensional CA inverse-design tool. To this end, this work begins with a short background on computational fluid dynamics (CFD) and the use of optimization tools in conjunction with CFD tools to solve aerodynamic optimization problems. A thorough derivation of the continuous adjoint equations and the accompanying gradient calculations for inviscid and viscous constraining equations follows the introduction. Next, the numerical techniques used for solving the partial differential equations (PDEs) governing the flow equations and the adjoint equations are described. Numerical techniques for the supplementary equations are discussed briefly. Subsequently, a verification of the efficacy of the inverse design tool, for the inviscid adjoint equations as well as possible numerical implementation pitfalls are discussed. The NACA0012 airfoil is used as an initial airfoil and surface pressure distribution and the NACA16009 is used as the desired pressure and vice versa. Using a Savitsky-Golay gradient filter, convergence (defined as a cost function<1E-5) is reached in approximately 220 design iteration using 121 design variables. The inverse-design using inviscid adjoint equations results are followed by the discussion of the viscous inverse design results and techniques used to further the convergence of the optimizer. The relationship between limiting step-size and convergence in a line-search optimization is shown to slightly decrease the final cost function at significant computational cost. A gradient damping technique is presented and shown to increase the convergence rate for the optimization in viscous problems, at a negligible increase in computational cost, but is insufficient to converge the solution. Systematically including adjacent surface vertices in the perturbation of a design variable, also a surface vertex, is shown to affect the convergence capability of the viscous optimizer. Finally, a comparison of using inviscid adjoint equations, as opposed to viscous adjoint equations, on viscous flow is presented, and the inviscid adjoint paired with viscous flow is found to reduce the cost function further than the viscous adjoint for the presented problem.
NASA Technical Reports Server (NTRS)
Surinov, Y. A.; Fedyanin, V. E.
1975-01-01
The generalized zonal method is used to calculate the distribution of the temperature factor on the lateral surface of a conical cavity of complex configuration (a Laval nozzle) containing an absorptive medium. The highest values of the radiation density occur on the converging part of the lateral surface of the complex conical cavity (Laval nozzle).
1986-03-01
only accurate to 10 percent when it began to diverge . This illustrates one of the caveats for using the BMI technique : convergence is not guaranteed...for a surface equates the divergence of surface current density at a point to the time rate of reduction of surface charge density. If a large scale...field at the point of reflection resolved into the components which permit the use of the reflection dyad, R. A(s) is the divergence coefficient which
Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate.
Boulet, Marylène; Charpentier, Marie J E; Drea, Christine M
2009-12-03
Like other vertebrates, primates recognize their relatives, primarily to minimize inbreeding, but also to facilitate nepotism. Although associative, social learning is typically credited for discrimination of familiar kin, discrimination of unfamiliar kin remains unexplained. As sex-biased dispersal in long-lived species cannot consistently prevent encounters between unfamiliar kin, inbreeding remains a threat and mechanisms to avoid it beg explanation. Using a molecular approach that combined analyses of biochemical and microsatellite markers in 17 female and 19 male ring-tailed lemurs (Lemur catta), we describe odor-gene covariance to establish the feasibility of olfactory-mediated kin recognition. Despite derivation from different genital glands, labial and scrotal secretions shared about 170 of their respective 338 and 203 semiochemicals. In addition, these semiochemicals encoded information about genetic relatedness within and between the sexes. Although the sexes showed opposite seasonal patterns in signal complexity, the odor profiles of related individuals (whether same-sex or mixed-sex dyads) converged most strongly in the competitive breeding season. Thus, a strong, mutual olfactory signal of genetic relatedness appeared specifically when such information would be crucial for preventing inbreeding. That weaker signals of genetic relatedness might exist year round could provide a mechanism to explain nepotism between unfamiliar kin. We suggest that signal convergence between the sexes may reflect strong selective pressures on kin recognition, whereas signal convergence within the sexes may arise as its by-product or function independently to prevent competition between unfamiliar relatives. The link between an individual's genome and its olfactory signals could be mediated by biosynthetic pathways producing polymorphic semiochemicals or by carrier proteins modifying the individual bouquet of olfactory cues. In conclusion, we unveil a possible olfactory mechanism of kin recognition that has specific relevance to understanding inbreeding avoidance and nepotistic behavior observed in free-ranging primates, and broader relevance to understanding the mechanisms of vertebrate olfactory communication.
Convective instability within the Tibetan Lithospheric Mantle (Invited)
NASA Astrophysics Data System (ADS)
Houseman, G. A.; Molnar, P. H.; Evans, L.; England, P. C.
2013-12-01
Studies of seismic surface waves in Asia show that shear-wave speeds at depths of ~120-250km beneath the Tibetan Plateau are higher than is generally observed for continents, other than beneath Archaean cratons. The high-speed layer has been interpreted as continental lithosphere that was thickened during the convergence between India and Asia. This interpretation contradicts conceptual models in which gravitational instabilities remove a significant fraction of the mantle lithosphere beneath Tibet during that convergence. In contrast, the suggestion of relatively recent (post-early-Miocene) surface uplift of the Plateau, inferred from the onset of normal faulting across the plateau, synchronous increased rates of compressional deformation in the surroundings of the the plateau, and widespread volcanism in the northern part of the plateau, implies action of a mechanism that increased the gravitational potential energy of, and temperatures within, the Tibetan lithosphere in a way that would not occur if the mantle lithosphere had simply thickened continually throughout the India-Asia convergence. A resolution to this paradox is suggested by the observation that, while shear-wave speeds are indeed high at depths of 120-250 km beneath the Tibetan plateau, they are anomalously low at shallower depths, implying a temperature inversion that is hard to reconcile with uninterrupted lithospheric thickening. We suggest that the ensemble of observations may be explained by the convective overturn of a lithospheric root that is depleted in iron such that it remains buoyant with respect to normal upper mantle. The increased rate of strain within the Tibetan lithosphere once convergence began reduced its effective viscosity, and continuing convergence thickened the lithospheric root. These conditions led to convective overturn, similar to the original conceptual models, with the difference that the overturn was confined within the root, which remains buoyant with respect to the deeper upper mantle. The intrinsic density difference between the root and underlying asthenosphere need only be as large as the density difference due to ~600 K temperature contrast (i.e., ~ 60 kg/m^3) in order that the lithospheric layer remains in place during convective overturn. Such an overturn can occur on a short geological time scale (~ 10 Myr), with the wavelength of the convective flow field likely to be a small multiple of the ~130 km thickness of the depleted lithospheric layer. The horizontal variations of density and temperature implied by this process would not be detectable using typical surface wave analyses, which lack the necessary horizontal resolution at such depths, but may be detectable using body wave tomography given a sufficiently dense ray coverage from a large aperture surface array. Internal convective overturn is a process that can explain the horizontally averaged depth variation of velocity and an abrupt but delayed heating event at the base of the crust.
Self-adaptive predictor-corrector algorithm for static nonlinear structural analysis
NASA Technical Reports Server (NTRS)
Padovan, J.
1981-01-01
A multiphase selfadaptive predictor corrector type algorithm was developed. This algorithm enables the solution of highly nonlinear structural responses including kinematic, kinetic and material effects as well as pro/post buckling behavior. The strategy involves three main phases: (1) the use of a warpable hyperelliptic constraint surface which serves to upperbound dependent iterate excursions during successive incremental Newton Ramphson (INR) type iterations; (20 uses an energy constraint to scale the generation of successive iterates so as to maintain the appropriate form of local convergence behavior; (3) the use of quality of convergence checks which enable various self adaptive modifications of the algorithmic structure when necessary. The restructuring is achieved by tightening various conditioning parameters as well as switch to different algorithmic levels to improve the convergence process. The capabilities of the procedure to handle various types of static nonlinear structural behavior are illustrated.
Convergence acceleration of computer methods for grounding analysis in stratified soils
NASA Astrophysics Data System (ADS)
Colominas, I.; París, J.; Navarrina, F.; Casteleiro, M.
2010-06-01
The design of safe grounding systems in electrical installations is essential to assure the protection of the equipment, the power supply continuity and the security of the persons. In order to achieve these goals, it is necessary to compute the equivalent electrical resistance of the system and the potential distribution on the earth surface when a fault condition occurs. In the last years the authors have developed a numerical formulation based on the BEM for the analysis of grounding systems embedded in uniform and layered soils. As it is known, in practical cases the underlying series have a poor rate of convergence and the use of multilayer soils requires an out of range computational cost. In this paper we present an efficient technique based on the Aitken δ2-process in order to improve the rate of convergence of the involved series expansions.
Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2015-01-01
An eddy-current-minimizing flow plug has an outer radial wall with open flow channels formed between the plug's inlet and outlet. The plug has a central region coupled to the inner surface of the outer radial wall. Each open flow channel includes (i) a first portion originating at the inlet and converging to a location in the plug where convergence is contributed to by changes in thickness of the outer radial wall and divergence of the central region, and (ii) a second portion originating in the plug and diverging to the outlet where divergence is contributed to by changes in thickness of the outer radial wall and convergence of the central region. For at least a portion of the open flow channels, a central axis passing through the first and second portions is non-parallel with respect to the given direction of the flow.
Overturned Alboran slab beneath westernmost Mediterranean
NASA Astrophysics Data System (ADS)
Sun, D.; Miller, M. S.
2017-12-01
The geological evolution of the westernmost Mediterranean holds an important piece of the puzzle of how whole western Mediterranean evolved due to the convergence of Africa with Eurasia. The idea of continuous slab roll back acting a prominent force in this region is strongly supported by tomographic images with near vertical high velocity structure connecting the surface beneath the Alboran domain [Spakman and Wortel, 2004; Bezada et al., 2013]. However, the slab shape, width, and sharpness of its edges are not well resolved. Here, we use the waveforms recorded from the PICASSO (XB) array and IberArray (IA) for the deep 2010 earthquake beneath Granada to study the detailed Alboran slab structure. We found: (1) A low velocity structure (7 km thickness, δVs = -20%) surrounding the earthquake to explain the second arrivals observed in many stations at Spain. (2) A thin low velocity layer sits on the bottom of the high velocity slab-like structure to explain the high frequency second arrivals and long coda after the P and S arrivals on stations in the Rif Mountains of Morocco. The most feasible explanation of the low velocity structure is the dehydrated surface of the slab lithosphere extending from the 600 km to the shallow mantle. However, such geometry is contradictory with our observation, which the low velocity layer is at the bottom of the slab. We proposed that the Albora slab had undergone significant "roll-over" movement, which overturned the slab surface.
de la Torre, Laura; Nieto, Raquel; Noguerol, Marta; Añel, Juan Antonio; Gimeno, Luis
2008-12-01
Regions of the occurrence of different phenomena related to the development of baroclinic disturbances are reviewed for the Northern Hemisphere extratropics, using National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. The occurrence of height lows appears to be related to the orography near the earth's surface and with surface- and upper-air cyclogenesis in the upper troposphere. Over the cyclone tracks, the surface maxima appear to be trapped by land masses, whereas over the Mediterranean Sea they are located on the lee side of mountain ranges. The forcing terms of the geopotential tendency and omega equations mark the genesis (and, by the vorticity advection terms, the path) of the extratropical cyclones on the storm track. They occur mostly over the western coast of the oceans, beginning and having maxima on the lee side of the Rocky Mountains and the Tibetan Plateau. Their associated fronts form from the cold air coming from the continents and converging with the warm air over the Gulf and Kuroshio currents. Evident trends are found only for the Atlantic cyclone track (positive) and the Pacific cyclone track (negative) until the last decade when the tendency reverses. Over the southern Pacific, the number of fronts is lower during 1978-1997, coinciding with a period of strong El Niño Southern Oscillation episodes. This information is important for validating numerical models in order to predict changes associated with climate change and to study the behavior of extratropical cyclones and fronts.
Radiative effects of black carbon aerosols on Indian monsoon: a study using WRF-Chem model
NASA Astrophysics Data System (ADS)
Soni, Pramod; Tripathi, Sachchida Nand; Srivastava, Rajesh
2018-04-01
The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.
NASA Astrophysics Data System (ADS)
Lauriano, Giancarlo; Pierantonio, Nino; Kell, Laurence; Cañadas, Ana; Donovan, Gregory; Panigada, Simone
2017-07-01
Fishery-independent surface density and abundance estimates for the swordfish were obtained through aerial surveys carried out over a large portion of the Central Mediterranean, implementing distance sampling methodologies. Both design- and model-based abundance and density showed an uneven occurrence of the species throughout the study area, with clusters of higher density occurring near converging fronts, strong thermoclines and/or underwater features. The surface abundance was estimated for the Pelagos Sanctuary for Mediterranean Marine Mammals in the summer of 2009 (n=1152; 95%CI=669.0-1981.0; %CV=27.64), the Sea of Sardinia, the Pelagos Sanctuary and the Central Tyrrhenian Sea for the summer of 2010 (n=3401; 95%CI=2067.0-5596.0; %CV=25.51), and for the Southern Tyrrhenian Sea during the winter months of 2010-2011 (n=1228; 95%CI=578-2605; %CV=38.59). The Mediterranean swordfish stock deserves special attention in light of the heavy fishing pressures. Furthermore, the unreliability of fishery-related data has, to date, hampered our ability to effectively inform long-term conservation in the Mediterranean Region. Considering that the European countries have committed to protect the resources and all the marine-related economic and social dynamics upon which they depend, the information presented here constitute useful data towards the international legal requirements under the Marine Strategy Framework Directory, the Common Fisheries Policy, the Habitats and Species Directive and the Directive on Maritime Spatial Planning, among the others.
Effects of horizontal grid resolution on evapotranspiration partitioning using TerrSysMP
NASA Astrophysics Data System (ADS)
Shrestha, P.; Sulis, M.; Simmer, C.; Kollet, S.
2018-02-01
Biotic leaf transpiration (T) and abiotic evaporation (E) are the two major pathways by which water is transferred from land surfaces to the atmosphere. Earth system models simulating the terrestrial water, carbon and energy cycle are required to reliably embed the role of soil and vegetation processes in order to realistically reproduce both fluxes including their relative contributions to total evapotranspiration (ET). Earth system models are also being used with increasing spatial resolutions to better simulate the effects of surface heterogeneity on the regional water and energy cycle and to realistically include effects of subsurface lateral flow paths, which are expected to feed back on the exchange fluxes and their partitioning in the model. Using the hydrological component of the Terrestrial Systems Modeling Platform (TerrSysMP), we examine the uncertainty in the estimates of T/ET ratio due to horizontal model grid resolution for a dry and wet year in the Inde catchment (western Germany). The aggregation of topography results in smoothing of slope magnitudes and the filtering of small-scale convergence and divergence zones, which directly impacts the surface-subsurface flow. Coarsening of the grid resolution from 120 m to 960 m increased the available soil moisture for ground evaporation, and decreased T/ET ratio by about 5% and 8% for dry and wet year respectively. The change in T/ET ratio was more pronounced for agricultural crops compared to forested areas, indicating a strong local control of vegetation on the ground evaporation, affecting the domain average statistics.
Flow deflection over a foredune
NASA Astrophysics Data System (ADS)
Hesp, Patrick A.; Smyth, Thomas A. G.; Nielsen, Peter; Walker, Ian J.; Bauer, Bernard O.; Davidson-Arnott, Robin
2015-02-01
Flow deflection of surface winds is common across coastal foredunes and blowouts. Incident winds approaching obliquely to the dune toe and crestline tend to be deflected towards a more crest-normal orientation across the stoss slope of the foredune. This paper examines field measurements for obliquely incident winds, and compares them to computational fluid dynamics (CFD) modelling of flow deflection in 10° increments from onshore (0°) to alongshore (90°) wind approach angles. The mechanics of flow deflection are discussed, followed by a comparative analysis of measured and modelled flow deflection data that shows strong agreement. CFD modelling of the full range of onshore to alongshore incident winds reveals that deflection of the incident wind flow is minimal at 0° and gradually increases as the incident wind turns towards 30° to the dune crest. The greatest deflection occurs between 30° and 70° incident to the dune crest. The degree of flow deflection depends secondarily on height above the dune surface, with the greatest effect near the surface and toward the dune crest. Topographically forced flow acceleration ("speed-up") across the stoss slope of the foredune is greatest for winds less than 30° (i.e., roughly perpendicular) and declines significantly for winds with more oblique approach angles. There is less lateral uniformity in the wind field when the incident wind approaches from > 60° because the effect of aspect ratio on topographic forcing and streamline convergence is less pronounced.
Temporal Surface Reconstruction
1991-05-03
and the convergence cannot be guaranteed. Maybank [68] investigated alternative incremental schemes for the estimation of feature locations from a...depth from image sequences. International Journal of Computer Vision, 3, 1989. [68] S. J. Maybank . Filter based estimates of depth. In Proceedings of the
Cognitive Styles and Virtual Environments.
ERIC Educational Resources Information Center
Ford, Nigel
2000-01-01
Discussion of navigation through virtual information environments focuses on the need for robust user models that take into account individual differences. Considers Pask's information processing styles and strategies; deep (transformational) and surface (reproductive) learning; field dependence/independence; divergent/convergent thinking;…
Distinguishing time-delayed causal interactions using convergent cross mapping
Ye, Hao; Deyle, Ethan R.; Gilarranz, Luis J.; Sugihara, George
2015-01-01
An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended method to representative examples (model simulations, a laboratory predator-prey experiment, temperature and greenhouse gas reconstructions from the Vostok ice core, and long-term ecological time series collected in the Southern California Bight), we demonstrate the ability to identify different time-delayed interactions, distinguish between synchrony induced by strong unidirectional-forcing and true bidirectional causality, and resolve transitive causal chains. PMID:26435402
Roberts, M A; Milich, R; Loney, J; Caputo, J
1981-09-01
The convergent and discriminant validities of three teacher rating scale measures of the traits of hyperactivity, aggression, and inattention were explored, using the multitrait-multimethod matrix approach of Campbell and Fiske (1959), as well as an analysis of variance procedure (Stanley, 1961). In the present study teachers rated children from their elementary school classrooms on the above traits. The results provided strong evidence for convergent validity. Data also indicated that these traits can be reliable differentiated by teachers, suggesting that research aimed at better understanding the unique contributions of hyperactivity, aggression, and inattention is warranted. The respective benefits of analyzing multitrait-multimethod matrices by employing the ANOVA procedure or by using the Campbell and Fiske (1959) criteria were discussed.
NASA Astrophysics Data System (ADS)
Fan, Jishan; Li, Fucai; Nakamura, Gen
2018-06-01
In this paper we continue our study on the establishment of uniform estimates of strong solutions with respect to the Mach number and the dielectric constant to the full compressible Navier-Stokes-Maxwell system in a bounded domain Ω \\subset R^3. In Fan et al. (Kinet Relat Models 9:443-453, 2016), the uniform estimates have been obtained for large initial data in a short time interval. Here we shall show that the uniform estimates exist globally if the initial data are small. Based on these uniform estimates, we obtain the convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations for well-prepared initial data.
Monte-Carlo simulation of a stochastic differential equation
NASA Astrophysics Data System (ADS)
Arif, ULLAH; Majid, KHAN; M, KAMRAN; R, KHAN; Zhengmao, SHENG
2017-12-01
For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient, Monte Carlo (MC) techniques are considered to be more effective than other algorithms, such as finite element method or finite difference method. The inhomogeneity of diffusion coefficient strongly limits the use of different numerical techniques. For better convergence, methods with higher orders have been kept forward to allow MC codes with large step size. The main focus of this work is to look for operators that can produce converging results for large step sizes. As a first step, our comparative analysis has been applied to a general stochastic problem. Subsequently, our formulization is applied to the problem of pitch angle scattering resulting from Coulomb collisions of charge particles in the toroidal devices.
Reformulation of Possio's kernel with application to unsteady wind tunnel interference
NASA Technical Reports Server (NTRS)
Fromme, J. A.; Golberg, M. A.
1980-01-01
An efficient method for computing the Possio kernel has remained elusive up to the present time. In this paper the Possio is reformulated so that it can be computed accurately using existing high precision numerical quadrature techniques. Convergence to the correct values is demonstrated and optimization of the integration procedures is discussed. Since more general kernels such as those associated with unsteady flows in ventilated wind tunnels are analytic perturbations of the Possio free air kernel, a more accurate evaluation of their collocation matrices results with an exponential improvement in convergence. An application to predicting frequency response of an airfoil-trailing edge control system in a wind tunnel compared with that in free air is given showing strong interference effects.
Secondary traumatic stress and vicarious trauma: a validational study.
Jenkins, Sharon Rae; Baird, Stephanie
2002-10-01
Vicarious trauma (VT) and secondary traumatic stress (STS) or compassion fatigue both describe effects of working with traumatized persons on therapists. Despite conceptual similarities, their emphases differ: cognitive schemas vs. posttraumatic symptoms and burnout, respectively. The TSI Belief Scale (TSI-BSL) measures VT; the Compassion Fatigue Self-Test (CFST) for Psychotherapists measures STS. Neither has substantial psychometric evidence yet, nor has their association been studied. Results for 99 sexual assault and domestic violence counselors show concurrent validity between TSI-BSL and CFST, moderate convergence with burnout but useful discrimination, and strong convergence with general distress, but adequate independent shared variance. Counselors with interpersonal trauma histories scored higher on CFST, but not TSI-BSL or burnout, consistent with the CFST's emphasis on trauma symptomatology.
NASA Astrophysics Data System (ADS)
Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.
2018-01-01
Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The treatment of the internal angular momentum transport has a strong impact on the evolutionary tracks in the Hertzsprung-Russell Diagram as well as on the changes of the surface abundances resulting from rotational mixing. Our modelling suggests that the presence of an undetected close companion might explain rapidly rotating stars with strong surface magnetic fields, having ages well above the magnetic braking timescale. Our models predict that the rotation of most stars of this type increases as a function of time, except for a first initial phase in spin-down systems. The measure of their surface abundances, together, when possible, with their mass-luminosity ratio, provide interesting constraints on the transport efficiencies of angular momentum and chemical species. Conclusions: Close binaries, when studied at phases predating any mass transfer, are key objects to probe the physics of rotation and magnetic fields in stars.
3-D kinematics analysis of surface ruptures on an active creeping fault at Chihshang, Eastern Taiwan
NASA Astrophysics Data System (ADS)
Lee, J.; Angelier, J.; Chen, H.; Chu, H.; Hu, J.
2003-12-01
The Chihshang fault is one of the most active segments of the Longitudinal Valley Fault, the plate suture between the converging Philippine and Eurasian plates. A destructive earthquake of M 7.1 with substantial surface scarps resulted from rupturing of the Chihshang fault in 1951. From that on, no big earthquake greater than M 5.5 occurred in this area. Instead, the Chihshang fault reveals a creeping behavior at a rapid rate of about 20 mm/yr at least during the past 20 years. The surface breaks of the creeping Chihshang fault can be observed at the several places. A typical feature is reverse-fault-like fractures on the retaining wall. We deployed small geodetic networks across the fault zone at five sites. Each network comprises of 5 to 15 benchmarks. Trilateration measurements including angles and distances as well as leveling among the benchmarks have been carried out on an annual basis or twice a year since 1998. Compared to previous other measurements which have shown the first order creep rate for the entire fault zone, the present geodetic data provides the detailed information of the surface movements across the fault zone which usually composed of more than one fault strands and folds structures. According to our data from the local geodetic networks, we are able to reconstruct the 3-D kinematics of surface deformation across the Chihshang fault zone. Multiple fault strands are common along the Chihshang fault. Oblique shortening occurred at all sites and was characterized by a combination of thrusts, backthrust and surface warps. Strike-slip motion can also be distinguished on some fault strands. It is worth to note that the cultural feature, such as concrete basement of strong resistance, sometimes acted as deflection of surface ruptures. It should be taken into consideration for mitigation against seismic hazards.
The Environmental Reward Observation Scale (EROS): development, validity, and reliability.
Armento, Maria E A; Hopko, Derek R
2007-06-01
Researchers acknowledge a strong association between the frequency and duration of environmental reward and affective mood states, particularly in relation to the etiology, assessment, and treatment of depression. Given behavioral theories that outline environmental reward as a strong mediator of affect and the unavailability of an efficient, reliable, and valid self-report measure of environmental reward, we developed the Environmental Reward Observation Scale (EROS) and examined its psychometric properties. In Experiment 1, exploratory factor analysis supported a unidimensional 10-item measure with strong internal consistency and test-retest reliability. When administered to a replication sample, confirmatory factor analysis suggested an excellent fit to the 1-factor model and convergent/discriminant validity data supported the construct validity of the EROS. In Experiment 2, further support for the convergent validity of the EROS was obtained via moderate correlations with the Pleasant Events Schedule (PES; MacPhillamy & Lewinsohn, 1976). In Experiment 3, hierarchical regression supported the ecological validity of the EROS toward predicting daily diary reports of time spent in highly rewarding behaviors and activities. Above and beyond variance accounted for by depressive symptoms (BDI), the EROS was associated with significant incremental variance in accounting for time spent in both low and high reward behaviors. The EROS may represent a brief, reliable and valid measure of environmental reward that may improve the psychological assessment of negative mood states such as clinical depression.
Social Entrepreneurship: The "New Kid" on the University Block
ERIC Educational Resources Information Center
Jones, Angela Lewellyn; Warner, Beth; Kiser, Pamela M.
2010-01-01
With the convergence of an ailing economy, a new generation of political leaders, and a strong public sentiment that change is needed on many fronts within the society and across the world, the phenomenon of social entrepreneurship has found new life and is flourishing within society as a whole and within higher education in particular. Yet, there…
From "Ibharu" to "Amajoin": Translocation and Language in a New South African Township
ERIC Educational Resources Information Center
Dyers, Charlyn
2009-01-01
The ongoing migration from the rural areas of South Africa to its cities is exerting strong influences on the language practices of the young, as they learn to cope with new living spaces where languages and cultures converge. Drawing on the theories of transcultural and transidiomatic practices (Jacquemet, 2005; Pennycook, 2007), this article…
ERIC Educational Resources Information Center
Valdois, Sylviane; Bosse, Marie-Line; Tainturier, Marie-Josephe
2004-01-01
There is strong converging evidence suggesting that developmental dyslexia stems from a phonological processing deficit. However, this hypothesis has been challenged by the widely admitted heterogeneity of the dyslexic population, and by several reports of dyslexic individuals with no apparent phonological deficit. In this paper, we discuss the…
NASA Astrophysics Data System (ADS)
Sinclair, D.; Sherrell, R. M.; Tremaine, D. M.; Sweeney, J. R.; Rowe, H.; Wright, J. D.; Mortlock, R. A.; Hellstrom, J. C.; Cheng, H.; Min, A.; Edwards, R. L.
2017-12-01
Here we present a high-resolution glacial paleorainfall record from the heart of the South Pacific Convergence Zone (SPCZ) extracted from a stalagmite from the remote island of Niue (19°03'S 169°52'W). The record spans much of MIS3 (25-45 ka) and captures rapid rainfall changes associated with shifts in the SPCZ. It is clear that rapid climate shifts in the Northern Hemisphere have a strong influence on the SPCZ. All of the warm Dansgaard-Oeschger (`D-O') interstadials across this period are represented by rainfall increases, with D-O Events 9-11 particularly strongly represented. Since Niue lies south of the core of the SPCZ, this implies that rather than shifting northwards (as the ITCZ does), the SPCZ instead rotates clockwise in response to northern Hemisphere warming (analogous to a shift between modern El Nino and La Nina states). We propose that changes to surface ocean temperature gradients in the Eastern Pacific modulate the strength of the Wind Evaporation SST feedback, changing the size and westward penetration of the eastern Pacific dry zone, resulting in changes to the diagonality of the SPCZ. Our record also captures a response to strong northern Hemisphere cooling. The 25-45 ka record is bounded by large hiatuses (inferred dry conditions) coincident with cold Heinrich Stadials (HS) 2 and 5, while HS3 and HS4 are captured as distinct reductions in speleothem growth rate and proxy evidence for declining rainfall. This is consistent with a counter-clockwise rotation of the SPCZ during Northern cooling, supporting our proposed mechanism. Interestingly, our record also captures several other (non-Heinrich) cooling events, including a strong 500-year dry interval at 26ka that is seen in Chinese and Brazilian speleothems and coincides with a strong cooling over Asia (inferred from Greenland dust records). We note the (possibly coincidental) timing between this event and the Oruanui super-eruption at 25.6 ka.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Larry K.; Riihimaki, Laura D.; Qian, Yun
This study utilizes five commonly used reanalysis products, including the NCEP-DOE Reanalysis 2 (NCEP2), ECMWF Re-Analysis (ERA)-Interim, Japanese 25-year Reanalysis (JRA-25), Modern-Era Retrospective Analysis for Research and Applications (MERRA), and North American Regional Reanalysis (NARR) to evaluate features of the Southern Great Plains Low Level Jet (LLJ) above the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains site. Two sets of radiosonde data are utilized: the six-week Midlatitude Continental Convective Clouds Experiment (MC3E), and a ten-year period spanning 2001-2010. All five reanalysis are compared to MC3E data, while only the NARR and MERRA are compared to themore » ten-year data. Each reanalysis is able to represent most aspects of the composite LLJ profile, although there is a tendency for each reanalysis to overestimate the wind speed between the nose of the LLJ and 700 mb. There are large discrepancies in the number of LLJ observed and derived from the reanalysis, particularly for strong LLJs that leads to an underestimate of the water vapor transport associated with LLJs. When the ten-year period is considered, the NARR overestimates and MERRA underestimates the total moisture transport, but both underestimate the transport associated with strong LLJs by factors of 2.0 and 2.7 for the NARR and MERR, respectively. During MC3E there were differences in the patterns of moisture convergence and divergence, with the MERRA having an area of moisture divergence over Oklahoma, while the NARR has moisture convergence. The patterns of moisture convergence and divergence are more consistent during the ten-year period.« less
NASA Technical Reports Server (NTRS)
Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.
2013-01-01
A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.
Docherty, Paul D; Schranz, Christoph; Chase, J Geoffrey; Chiew, Yeong Shiong; Möller, Knut
2014-05-01
Accurate model parameter identification relies on accurate forward model simulations to guide convergence. However, some forward simulation methodologies lack the precision required to properly define the local objective surface and can cause failed parameter identification. The role of objective surface smoothness in identification of a pulmonary mechanics model was assessed using forward simulation from a novel error-stepping method and a proprietary Runge-Kutta method. The objective surfaces were compared via the identified parameter discrepancy generated in a Monte Carlo simulation and the local smoothness of the objective surfaces they generate. The error-stepping method generated significantly smoother error surfaces in each of the cases tested (p<0.0001) and more accurate model parameter estimates than the Runge-Kutta method in three of the four cases tested (p<0.0001) despite a 75% reduction in computational cost. Of note, parameter discrepancy in most cases was limited to a particular oblique plane, indicating a non-intuitive multi-parameter trade-off was occurring. The error-stepping method consistently improved or equalled the outcomes of the Runge-Kutta time-integration method for forward simulations of the pulmonary mechanics model. This study indicates that accurate parameter identification relies on accurate definition of the local objective function, and that parameter trade-off can occur on oblique planes resulting prematurely halted parameter convergence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Dama, James F; Rotskoff, Grant; Parrinello, Michele; Voth, Gregory A
2014-09-09
Well-tempered metadynamics has proven to be a practical and efficient adaptive enhanced sampling method for the computational study of biomolecular and materials systems. However, choosing its tunable parameter can be challenging and requires balancing a trade-off between fast escape from local metastable states and fast convergence of an overall free energy estimate. In this article, we present a new smoothly convergent variant of metadynamics, transition-tempered metadynamics, that removes that trade-off and is more robust to changes in its own single tunable parameter, resulting in substantial speed and accuracy improvements. The new method is specifically designed to study state-to-state transitions in which the states of greatest interest are known ahead of time, but transition mechanisms are not. The design is guided by a picture of adaptive enhanced sampling as a means to increase dynamical connectivity of a model's state space until percolation between all points of interest is reached, and it uses the degree of dynamical percolation to automatically tune the convergence rate. We apply the new method to Brownian dynamics on 48 random 1D surfaces, blocked alanine dipeptide in vacuo, and aqueous myoglobin, finding that transition-tempered metadynamics substantially and reproducibly improves upon well-tempered metadynamics in terms of first barrier crossing rate, convergence rate, and robustness to the choice of tuning parameter. Moreover, the trade-off between first barrier crossing rate and convergence rate is eliminated: the new method drives escape from an initial metastable state as fast as metadynamics without tempering, regardless of tuning.
Nano-metrology and terrain modelling - convergent practice in surface characterisation
Pike, R.J.
2000-01-01
The quantification of magnetic-tape and disk topography has a macro-scale counterpart in the Earth sciences - terrain modelling, the numerical representation of relief and pattern of the ground surface. The two practices arose independently and continue to function separately. This methodological paper introduces terrain modelling, discusses its similarities to and differences from industrial surface metrology, and raises the possibility of a unified discipline of quantitative surface characterisation. A brief discussion of an Earth-science problem, subdividing a heterogeneous terrain surface from a set of sample measurements, exemplifies a multivariate statistical procedure that may transfer to tribological applications of 3-D metrological height data.
Convolutional Dictionary Learning: Acceleration and Convergence
NASA Astrophysics Data System (ADS)
Chun, Il Yong; Fessler, Jeffrey A.
2018-04-01
Convolutional dictionary learning (CDL or sparsifying CDL) has many applications in image processing and computer vision. There has been growing interest in developing efficient algorithms for CDL, mostly relying on the augmented Lagrangian (AL) method or the variant alternating direction method of multipliers (ADMM). When their parameters are properly tuned, AL methods have shown fast convergence in CDL. However, the parameter tuning process is not trivial due to its data dependence and, in practice, the convergence of AL methods depends on the AL parameters for nonconvex CDL problems. To moderate these problems, this paper proposes a new practically feasible and convergent Block Proximal Gradient method using a Majorizer (BPG-M) for CDL. The BPG-M-based CDL is investigated with different block updating schemes and majorization matrix designs, and further accelerated by incorporating some momentum coefficient formulas and restarting techniques. All of the methods investigated incorporate a boundary artifacts removal (or, more generally, sampling) operator in the learning model. Numerical experiments show that, without needing any parameter tuning process, the proposed BPG-M approach converges more stably to desirable solutions of lower objective values than the existing state-of-the-art ADMM algorithm and its memory-efficient variant do. Compared to the ADMM approaches, the BPG-M method using a multi-block updating scheme is particularly useful in single-threaded CDL algorithm handling large datasets, due to its lower memory requirement and no polynomial computational complexity. Image denoising experiments show that, for relatively strong additive white Gaussian noise, the filters learned by BPG-M-based CDL outperform those trained by the ADMM approach.
NASA Astrophysics Data System (ADS)
Szafarczyk, Anna; Gawałkiewicz, Rafał
2018-03-01
There are many ways of the geometry measurement of slim objects, with the application of geodetic and photogrammetric methods. A modern solution in the diagnostics of slim objects is the application of laser scanning, with the use of a scanner of a scanning total station. The point cloud, obtained from the surface of the scanned object gives the possibility of generating not only information on structural surface deformations, but also facilitates obtaining the data on the geometry of the axis of the building, as a basic indicator of the characteristics of its deformation. The cause of the change in the geometry of slim objects is the impact of many external and internal factors. These objects are located in the areas of working or closed underground mines. They can be impacted by the ground and they can face the results of the convergence of cavities. A specific structure of the salt rock mass causes subsequent convergence of the post-exploitation cavities, which has the influence on the behaviour of the terrain surface and the related objects. The authors analysed the impact of the changes in the rock mass and the surface on the changes of the industrial chimney in the Bochnia Salt Mine.
NASA Technical Reports Server (NTRS)
Carlson, J. R.; Pendergraft, O. C., Jr.; Burley, J. R., II
1986-01-01
A three-dimensional subsonic aerodynamic panel code (VSAERO) was used to predict the effects of upper and lower external nozzle flap geometry on the external afterbody/nozzle pressure coefficient distributions and external nozzle drag of nonaxisymmetric convergent-divergent exhaust nozzles having parallel external sidewalls installed on a generic twin-engine high performance aircraft model. Nozzle static pressure coefficient distributions along the upper and lower surfaces near the model centerline and near the outer edges (corner) of the two surfaces were calculated, and nozzle drag was predicted using these surface pressure distributions. A comparison between the theoretical predictions and experimental wind tunnel data is made to evaluate the utility of the code in calculating the flow about these types of non-axisymmetric afterbody configurations. For free-stream Mach numbers of 0.60 and 0.90, the conditions where the flows were attached on the boattails yielded the best comparison between the theoretical predictions and the experimental data. For the Boattail terminal angles of greater than 15 deg., the experimental data for M = 0.60 and 0.90 indicated areas of separated flow, so the theoretical predictions failed to match the experimental data. Even though calculations of regions of separated flows are within the capabilities of the theoretical method, acceptable solutions were not obtained.
NASA Astrophysics Data System (ADS)
Montgomery, M. T.
2009-04-01
In recent research my collaborators and I have hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from the cyclonic Kelvin Cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis that typifies the trade wind belt. The genesis sequence is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "Marsupial Paradigm". In this talk I will summarize our previous observational findings using the ERA-40, TRMM and best-track data sets and then report on our first multi-scale numerical test of the Marsupial Paradigm that revisits the enigmatic problem of the transformation of an idealized African easterly wave-like disturbance into a tropical storm vortex. The results are found to support key elements of the Marsupial Paradigm by demonstrating the existence of a vorticity dominant region with minimal strain within the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave and pouch move together. As part of the research, I will also report on our findings concerning the evolution of stratiform vs. convective precipitation within the Cat's eye. It is shown that moist deep convection is sustained near the center of the Cat's eye. The convergence profile within the Cat's eye is found to become dominantly convective with persistent convection. Low-level convergence plays a key role in establishing and intensifying the near-surface circulation, while the non-advective vorticity flux and the mid-level convergence associated with stratiform precipitation help to increase the mid-level circulation and build a tropospheric-deep vortex. Implications of these findings are discussed in relation to a newly proposed field experiment for the most active period of the Atlantic hurricane season in 2010/2011 that is to be conducted collaboratively between the NOAA and the NSF.
Convergence analysis of directed signed networks via an M-matrix approach
NASA Astrophysics Data System (ADS)
Meng, Deyuan
2018-04-01
This paper aims at solving convergence problems on directed signed networks with multiple nodes, where interactions among nodes are described by signed digraphs. The convergence analysis is achieved by matrix-theoretic and graph-theoretic tools, in which M-matrices play a central role. The fundamental digon sign-symmetry assumption upon signed digraphs can be removed with the proposed analysis approach. Furthermore, necessary and sufficient conditions are established for semi-positive and positive stabilities of Laplacian matrices of signed digraphs, respectively. A benefit of this result is that given strong connectivity, a directed signed network can achieve bipartite consensus (or state stability) if and only if the signed digraph associated with it is structurally balanced (or unbalanced). If the interactions between nodes are described by a signed digraph only with spanning trees, a directed signed network can achieve interval bipartite consensus (or state stability) if and only if the signed digraph contains a structurally balanced (or unbalanced) rooted subgraph. Simulations are given to illustrate the developed results by considering signed networks associated with digon sign-unsymmetric signed digraphs.
Finite-time containment control of perturbed multi-agent systems based on sliding-mode control
NASA Astrophysics Data System (ADS)
Yu, Di; Ji, Xiang Yang
2018-01-01
Aimed at faster convergence rate, this paper investigates finite-time containment control problem for second-order multi-agent systems with norm-bounded non-linear perturbation. When topology between the followers are strongly connected, the nonsingular fast terminal sliding-mode error is defined, corresponding discontinuous control protocol is designed and the appropriate value range of control parameter is obtained by applying finite-time stability analysis, so that the followers converge to and move along the desired trajectories within the convex hull formed by the leaders in finite time. Furthermore, on the basis of the sliding-mode error defined, the corresponding distributed continuous control protocols are investigated with fast exponential reaching law and double exponential reaching law, so as to make the followers move to the small neighbourhoods of their desired locations and keep within the dynamic convex hull formed by the leaders in finite time to achieve practical finite-time containment control. Meanwhile, we develop the faster control scheme according to comparison of the convergence rate of these two different reaching laws. Simulation examples are given to verify the correctness of theoretical results.