A Room Temperature Low-Threshold Ultraviolet Plasmonic Nanolaser
2014-09-23
Here we demonstrate the first strong room temperature ultraviolet (B370 nm) SP polariton laser with an extremely low threshold (B3.5MWcm 2). We find...localized surface plasmon and propagating surface plasmon polariton (SPP), has been demonstrated in metal nanosphere cavities6, metal-cladding...Quantum plasmonics. Nat. Phys. 9, 329–340 (2013). 4. Berini, P. & De Leon, I. Surface plasmon- polariton amplifiers and lasers. Nat. Photon. 6, 16–24 (2012
Plasphonics: local hybridization of plasmons and phonons.
Marty, Renaud; Mlayah, Adnen; Arbouet, Arnaud; Girard, Christian; Tripathy, Sudhiranjan
2013-02-25
We show that the interaction between localized surface plasmons sustained by a metallic nano-antenna and delocalized phonons lying at the surface of an heteropolar semiconductor can generate a new class of hybrid electromagnetic modes. These plasphonic modes are investigated using an analytical model completed by accurate Green dyadic numerical simulations. When surface plasmon and surface phonon frequencies match, the optical resonances exhibit a large Rabi splitting typical of strongly interacting two-level systems. Based on numerical simulations of the electric near-field maps, we investigate the nature of the plaphonic excitations. In particular, we point out a strong local field enhancement boosted by the phononic surface. This effect is interpreted in terms of light harvesting by the plasmonic antenna from the phononic surface. We thus introduce the concept of active phononic surfaces that may be exploited for far-infared optoelectronic devices and sensors.
Plasmon enhanced terahertz emission from single layer graphene.
Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M
2014-09-23
We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.
Plasmonics of magnetic and topological graphene-based nanostructures
NASA Astrophysics Data System (ADS)
Kuzmin, Dmitry A.; Bychkov, Igor V.; Shavrov, Vladimir G.; Temnov, Vasily V.
2018-02-01
Graphene is a unique material in the study of the fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner, the electrodynamic properties of graphene can be varied from highly conductive to dielectric. Graphene supports strongly confined, propagating surface plasmon polaritons (SPPs) in a broad spectral range from terahertz to mid-infrared frequencies. It also possesses a strong magneto-optical response and thus provides complimentary architectures to conventional magneto-plasmonics based on magneto-optically active metals or dielectrics. Despite a large number of review articles devoted to plasmonic properties and applications of graphene, little is known about graphene magneto-plasmonics and topological effects in graphene-based nanostructures, which represent the main subject of this review. We discuss several strategies to enhance plasmonic effects in topologically distinct closed surface landscapes, i.e. graphene nanotubes, cylindrical nanocavities and toroidal nanostructures. A novel phenomenon of the strongly asymmetric SPP propagation on chiral meta-structures and the fundamental relations between structural and plasmonic topological indices are reviewed.
Imaging nanowire plasmon modes with two-photon polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruber, Christian; Trügler, Andreas; Hohenester, Ulrich
2015-02-23
Metal nanowires sustain propagating surface plasmons that are strongly confined to the wire surface. Plasmon reflection at the wire end faces and interference lead to standing plasmon modes. We demonstrate that these modes can be imaged via two-photon (plasmon) polymerization of a thin film resist covering the wires and subsequent electron microscopy. Thereby, the plasmon wavelength and the phase shift of the nanowire mode picked up upon reflection can be directly retrieved. In general terms, polymerization imaging is a promising tool for the imaging of propagating plasmon modes from the nano- to micro-scale.
Screening effect on the polaron by surface plasmons
NASA Astrophysics Data System (ADS)
Xu, Xiaoying; Xu, Xiaoshan; Seal, Katyayani; Guo, Hangwen; Shen, Jian; Low Dimensional Materials Physics, Oak Ridge National Lab Team; University of Tennessee Team; Physics Department, Fudan University Team
2011-03-01
Surface plasmons occur when the conduction electrons at a metal/dielectric interface resonantly interact with external electromagnetic fields. While surface plasmons in vicinity of a polaron in the dielectric material, a strong screening effect on polaron characteristics is introduced. In this work, we observed the reduction of polarons in multiferroic LuFe2O4, which is mainly contributed by surface plasmons. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.
Strong coupling between surface plasmon polariton and laser dye rhodamine 800
NASA Astrophysics Data System (ADS)
Valmorra, Federico; Bröll, Markus; Schwaiger, Stephan; Welzel, Nadine; Heitmann, Detlef; Mendach, Stefan
2011-08-01
We report on strong coupling between surface plasmon polaritons on a thin silver film and laser dye Rhodamine 800. Attenuated total reflection measurements reveal that the pure surface plasmon polaritons interact with the Rhodamine 800 absorption lines exhibiting pronounced anticrossings in the dispersion relation. We show that the corresponding energy gap can be tailored by the concentration of dye molecules in the dielectric matrix between 50 meV and 70 meV. We can well model our data by a classical transfer matrix approach as well as by a quantum mechanical coupled oscillator ansatz.
Dastmalchi, Babak; Tassin, Philippe; Koschny, Thomas; ...
2015-09-21
Surface-plasmon polaritons are electromagnetic waves propagating on the surface of a metal. Thanks to subwavelength confinement, they can concentrate optical energy on the micrometer or even nanometer scale, enabling new applications in bio-sensing, optical interconnects, and nonlinear optics, where small footprint and strong field concentration are essential. The major obstacle in developing plasmonic applications is dissipative loss, which limits the propagation length of surface plasmons and broadens the bandwidth of surface-plasmon resonances. Here, a new analysis of plasmonic materials and geometries is presented which fully considers the tradeoff between propagation length and degree of confinement. It is based on amore » two-dimensional analysis of two independent figures of merit and the analysis is applied to relevant plasmonic materials, e.g., noble metals, aluminum, silicon carbide, doped semiconductors, graphene, etc. Furthermore, the analysis provides guidance on how to improve the performance of any particular plasmonic application and substantially eases the selection of the plasmonic material.« less
Highly confined surface plasmon polaritons in the ultraviolet region
NASA Astrophysics Data System (ADS)
Chubchev, E. D.; Nechepurenko, I. A.; Dorofeenko, A. V.; Vinogradov, A. P.; Lisyansky, A. A.
2018-04-01
We study a surface plasmon polariton mode that is strongly confined in the transverse direction and propagates along a periodically nanostructured metal-dielectric interface. We show that the wavelength of this mode is determined by the period of the structure, and may therefore, be orders of magnitude smaller than the wavelength of a plasmon-polariton propagating along a flat surface. This plasmon polariton exists in the frequency region in which the sum of the real parts of the permittivities of the metal and dielectric is positive, a frequency region in which surface plasmon polaritons do not exist on a flat surface. The propagation length of the new mode can reach a several dozen wavelengths. This mode can be observed in materials that are uncommon in plasmonics, such as aluminum or sodium.
Ultrafine and Smooth Full Metal Nanostructures for Plasmonics
NASA Astrophysics Data System (ADS)
Zhu, Xinli; Zhang, Jaseng; Xu, Jun; Liao, Zhimin; Wu, Xiaosong; Yu, Dapeng
2013-03-01
Surface plasmon polaritons (SPPs), which are coupled excitations of electrons bound to a metal-dielectric interface, show great potential for application in future nanoscale photonic systems due to the strong field confinement at the nanoscale, intensive local field enhancement, and interplay between strongly localized and propagating SPPs. The fabrication of sufficiently smooth metal surface with nanoscale feature size is crucial for SPPs to have practical applications. A template stripping (ST) method combined with PMMA as a template was successfully developed to create extraordinarily smooth metal nanostructures with a desirable feature size and morphology for plasmonics and metamaterials. The advantages of this method, including the high resolution, precipitous top-to bottom profile with a high aspect ratio, and three-dimensional characteristics, make it very suitable for the fabrication of plasmonic structures. By using this ST method, boxing ring-shaped nanocavities have been fabricated and the confined modes of surface plasmon polaritons in these nanocavities have been investigated and imaged by using cathodoluminescence spectroscopy. The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons, and quality factors can be directly acquired. Numerous applications, such as plasmonic filter, nanolaser, and efficient light-emitting devices, can be expected to arise from these developments.
Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin
Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less
Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes
Tsargorodska, Anna; Cartron, Michaël L.; Vasilev, Cvetelin; ...
2016-09-30
Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon–exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed formore » self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon–exciton coupling is sensitive to the specific presentation of the pigment molecules.« less
Transparent Conducting Oxides for Infrared Plasmonic Waveguides: ZnO (Preprint)
2014-01-15
dependence of mobility (µ) on thickness (d). 15. SUBJECT TERMS microcavity; polariton ; strong coupling; ZnO 16. SECURITY CLASSIFICATION OF: 17...dimensions below the diffraction limit. Keywords: microcavity; polariton ; strong coupling; ZnO INTRODUCTION The field of plasmonics has received...optical computing and chips, enhanced signal detectors, etc3. Surface plasmon polaritons (SPPs) are quasi-particles or excitations that result from
Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates
Zengin, Gülis; Johansson, Göran; Johansson, Peter; Antosiewicz, Tomasz J.; Käll, Mikael; Shegai, Timur
2013-01-01
We studied scattering and extinction of individual silver nanorods coupled to the J-aggregate form of the cyanine dye TDBC as a function of plasmon – exciton detuning. The measured single particle spectra exhibited a strongly suppressed scattering and extinction rate at wavelengths corresponding to the J-aggregate absorption band, signaling strong interaction between the localized surface plasmon of the metal core and the exciton of the surrounding molecular shell. In the context of strong coupling theory, the observed “transparency dips” correspond to an average vacuum Rabi splitting of the order of 100 meV, which approaches the plasmon dephasing rate and, thereby, the strong coupling limit for the smallest investigated particles. These findings could pave the way towards ultra-strong light-matter interaction on the nanoscale and active plasmonic devices operating at room temperature. PMID:24166360
Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.
Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R
2015-08-12
Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.
Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.
Chou, Yu-Hsun; Hong, Kuo-Bin; Chang, Chun-Tse; Chang, Tsu-Chi; Huang, Zhen-Ting; Cheng, Pi-Ju; Yang, Jhen-Hong; Lin, Meng-Hsien; Lin, Tzy-Rong; Chen, Kuo-Ping; Gwo, Shangjr; Lu, Tien-Chang
2018-02-14
Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.
Resonant Scattering of Surface Plasmon Polaritons by Dressed Quantum Dots
2014-06-23
Resonant scattering of surface plasmon polaritons by dressed quantum dots Danhong Huang,1 Michelle Easter,2 Godfrey Gumbs,3 A. A. Maradudin,4 Shawn... polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In con- trast to...induced polarization field, treated as a source term9 arising from photo-excited electrons, allows for a resonant scattering of surface plasmon- polariton
Levitation and propulsion of a Mie-resonance particle by a surface plasmon.
Maslov, A V
2017-09-01
It is predicted that the optical force induced by a surface plasmon can form a stable equilibrium position for a resonant particle at a finite distance from the surface. The levitated particle can be efficiently propelled along the surface without touching it. The levitation originates from the strong interaction of the particle with the surface.
Kim, Taehyo; Kang, Saewon; Heo, Jungwoo; Cho, Seungse; Kim, Jae Won; Choe, Ayoung; Walker, Bright; Shanker, Ravi; Ko, Hyunhyub; Kim, Jin Young
2018-05-21
Improved performance in plasmonic organic solar cells (OSCs) and organic light-emitting diodes (OLEDs) via strong plasmon-coupling effects generated by aligned silver nanowire (AgNW) transparent electrodes decorated with core-shell silver-silica nanoparticles (Ag@SiO 2 NPs) is demonstrated. NP-enhanced plasmonic AgNW (Ag@SiO 2 NP-AgNW) electrodes enable substantially enhanced radiative emission and light absorption efficiency due to strong hybridized plasmon coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) modes, which leads to improved device performance in organic optoelectronic devices (OODs). The discrete dipole approximation (DDA) calculation of the electric field verifies a strongly enhanced plasmon-coupling effect caused by decorating core-shell Ag@SiO 2 NPs onto the AgNWs. Notably, an electroluminescence efficiency of 25.33 cd A -1 (at 3.2 V) and a power efficiency of 25.14 lm W -1 (3.0 V) in OLEDs, as well as a power conversion efficiency (PCE) value of 9.19% in OSCs are achieved using hybrid Ag@SiO 2 NP-AgNW films. These are the highest values reported to date for optoelectronic devices based on AgNW electrodes. This work provides a new design platform to fabricate high-performance OODs, which can be further explored in various plasmonic and optoelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface-plasmon-assisted electron pair formation in strong electromagnetic field
NASA Astrophysics Data System (ADS)
Kroó, N.; Rácz, P.; Varró, S.
2014-03-01
In this work the strong electromagnetic field of femtosecond Ti:Sa lasers was used to excite surface plasmon oscillations (SPOs) in gold films at room temperature in the Kretschmann geometry. Experimental investigations were carried out using a surface plasmon near field scanning tunneling microscope, measuring its response to excitation at SPO hot spots on the gold surface. Furthermore, the spectra of photoelectrons, liberated by multiplasmon absorption, have also been measured by a time-of-flight spectrometer. In both cases new type of anomalies in both the STM and electron TOF signals have been measured in the same laser intensity range. The existence of these anomalies may be qualitatively understood, by using the intensity-dependent expression for the effective electron-electron scattering potential, derived earlier in a different context. In this theoretical work an effective attraction potential has been predicted in the presence of strong inhomogeneous radiation fields.
Localized surface plasmons in vibrating graphene nanodisks
NASA Astrophysics Data System (ADS)
Wang, Weihua; Li, Bo-Hong; Stassen, Erik; Mortensen, N. Asger; Christensen, Johan
2016-02-01
Localized surface plasmons are confined collective oscillations of electrons in metallic nanoparticles. When driven by light, the optical response is dictated by geometrical parameters and the dielectric environment and plasmons are therefore extremely important for sensing applications. Plasmons in graphene disks have the additional benefit of being highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters, such as molecules, for future nanophotonic devices.
Fan, J R; Wu, W G; Chen, Z J; Zhu, J; Li, J
2017-03-09
As plasmonic antennas for surface-plasmon-assisted control of optical fields at specific frequencies, metallic nanostructures have recently emerged as crucial optical components for fascinating plasmonic color engineering. Particularly, plasmonic resonant nanocavities can concentrate lightwave energy to strongly enhance light-matter interactions, making them ideal candidates as optical elements for fine-tuning color displays. Inspired by the color mixing effect found on butterfly wings, a new type of plasmonic, multiresonant, narrow-band (the minimum is about 45 nm), high-reflectance (the maximum is about 95%), and dynamic color-tuning reflector is developed. This is achieved from periodic patterns of plasmonic resonant nanocavities in free-standing capped-pillar nanostructure arrays. Such cavity-coupling structures exhibit multiple narrow-band selective and continuously tunable reflections via plasmon standing-wave resonances. Consequently, they can produce a variety of dark-field vibrant reflective colors with good quality, strong color signal and fine tonal variation at the optical diffraction limit. This proposed multicolor scheme provides an elegant strategy for realizing personalized and customized applications in ultracompact photonic data storage and steganography, colorimetric sensing, 3D holograms and other plasmon-assisted photonic devices.
NASA Astrophysics Data System (ADS)
Kang, Byungjun; Imakita, Kenji; Fujii, Minoru; Hayashi, Shinji
2018-03-01
The enhancement of second-harmonic generation from a dielectric layer embedded in a metal-dielectric-metal structure upon excitation of surface plasmon polaritons is demonstrated experimentally. The metal-dielectric-metal structure consisting of a Gex(SiO2)1-x layer sandwiched by two Ag layers was prepared, and the surface plasmon polaritons were excited in an attenuated total reflection geometry. The measured attenuated total reflection spectra exhibited two reflection dips corresponding to the excitation of two different surface plasmon polariton modes. Strong second-harmonic signals were observed under the excitation of these surface plasmon polariton modes. The results demonstrate that the second-harmonic intensity of the Gex(SiO2)1-x layer is highly enhanced relative to that of the single layer deposited on a substrate. Under the excitation of one of the two surface plasmon polariton modes, the estimated enhancement factor falls in a range between 39.9 and 171, while under the excitation of the other surface plasmon polariton mode, it falls in a range between 3.96 and 84.6.
Microfluidic transmission surface plasmon resonance enhancement for biosensor applications
NASA Astrophysics Data System (ADS)
Lertvachirapaiboon, Chutiparn; Baba, Akira; Ekgasit, Sanong; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao
2017-01-01
The microfluidic transmission surface plasmon resonance (MTSPR) constructed by assembling a gold-coated grating substrate with a microchannel was employed for biosensor application. The transmission surface plasmon resonance spectrum obtained from the MTSPR sensor chip showed a strong and narrow surface plasmon resonance (SPR) peak located between 650 and 800 nm. The maximum SPR excitation was observed at an incident angle of 35°. The MTSPR sensor chip was employed for glucose sensor application. Gold-coated grating substrates were functionalized using 3-mercapto-1-propanesulfonic acid sodium salt and subsequently functionalized using a five-bilayer poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) to facilitate the coupling/decoupling of the surface plasmon and to prepare a uniform surface for sensing. The detection limit of our developed system for glucose was 2.31 mM. This practical platform represents a high possibility of further developing several biomolecules, multiplex systems, and a point-of-care assay for practical biosensor applications.
NASA Astrophysics Data System (ADS)
Sukharev, Maxim; Pachter, Ruth
2018-03-01
We study theoretically the optical response of a WS2 monolayer located near periodic metal nanostructured arrays in two and three dimensions. The emphasis of the simulations is on the strong coupling between excitons supported by WS2 and surface plasmon-polaritons supported by various periodic plasmonic interfaces. It is demonstrated that a monolayer of WS2 placed in close proximity of periodic arrays of either slits or holes results in a Rabi splitting of the corresponding surface plasmon-polariton resonance as revealed in calculated transmission and reflection spectra. The nonlinear regime, at which the few-layer WS2 exhibits experimentally third harmonic generation (THG), is studied in detail. Monolayer transition metal dichalcogenides (TMDs) do not exhibit THG because they are non-centrosymmetric, but here we use the monolayer as an approximation to a thin TMD nanostructure. We show that in the strong coupling regime the third harmonic signal is significantly affected by plasmon-polaritons and the symmetry of hybrid exciton-plasmon modes. It is also shown that the local electromagnetic field induced by plasmons is the major contributor to the enhancement of the third harmonic signal in three dimensions. The local electromagnetic fields resulting from the third harmonic generation are greatly localized and highly sensitive to the environment, thus making it a great tool for nano-probes.
Control of Plasmon Dynamics in Coupled Plasmonic Hybrid Mode Microcavities
2012-07-10
the electromagnetic resonances , the development of plasmonic metamaterials with negative index of refraction opened a new perspective towards achieving...signals in a deep-subwavelength regime, spatially localized surface plasmons show strong electronic resonances that allow their use for the design of...ring resonators ,21 and metallic photonic crystals .22,23 In this paper we focus our attention on a silicon-based plasmonic pulsar; essentially, we address
Applications of Graphene to Photonics
2014-07-01
to plasmonic properties that stem from its two-dimensional electron gas (2DEG) and strong surface plasmon polariton (SPP) coupling in the visible and...have been created by coupling to surface plasmon polaritons (SPP) in the graphene. In one case, an attenuated total reflectance geometry was considered... polariton mode in graphene, then a SPP is excited in graphene and the reflectivity of the EM wave is reduced. The coupling of both TE and TM
Ultrafast Imaging of Chiral Surface Plasmon by Photoemission Electron Microscopy
NASA Astrophysics Data System (ADS)
Dai, Yanan; Dabrowski, Maciej; Petek, Hrvoje
We employ Time-Resolved Photoemission Electron Microscopy (TR-PEEM) to study surface plasmon polariton (SPP) wave packet dynamics launched by tunable (VIS-UV) femtosecond pulses of various linear and circular polarizations. The plasmonic structures are micron size single-crystalline Ag islands grown in situ on Si surfaces and characterized by Low Energy Electron Microscopy (LEEM). The local fields of plasmonic modes enhance two and three photon photoemission (2PP and 3PP) at the regions of strong field enhancement. Imaging of the photoemission signal with PEEM electron optics thus images the plasmonic fields excited in the samples. The observed PEEM images with left and right circularly polarized light show chiral images, which is a consequence of the transverse spin momentum of surface plasmon. By changing incident light polarization, the plasmon interference pattern shifts with light ellipticity indicating a polarization dependent excitation phase of SPP. In addition, interferometric-time resolved measurements record the asymmetric SPP wave packet motion in order to characterize the dynamical properties of chiral SPP wave packets.
NASA Astrophysics Data System (ADS)
Diyanah Samsuri, Nurul; Maisarah Mukhtar, Wan; Rashid, Affa Rozana Abdul; Dasuki, Karsono Ahmad; Awangku Yussuf, Awangku Abdul Rahman Hj.
2017-11-01
Gold nanoparticles (GNPs) have been known as an excellent characteristic for Local Surface Plasmon Resonance (LSPR) sensors due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. Prior the technologies, GNPs based LSPR has been commercialized and have become a central tool for characterizing and quantifying in various field. In this review, we presented a brief introduction on the history of surface plasmon, the theory behind the surface plasmon resonance (SPR) and the principles of LSPR. We also reported on the synthetization as well of the properties of the GNPs and the applications in current LSPR sensors.
Effect of Intermolecular Distance on Surface-Plasmon-Assisted Catalysis.
Wu, Shiwei; Liu, Yu; Ma, Caiqing; Wang, Jing; Zhang, Yao; Song, Peng; Xia, Lixin
2018-06-26
4-Aminothiophenol (PATP) and 4-aminophenyl disulfide (APDS) in contact with silver will form H 2 N-C 6 H 4 -S-Ag (PATP-Ag), and under the conditions of surface-enhanced Raman spectroscopy (SERS), a coupling reaction will generate 4,4-dimercaptoazobenzene (DMAB). DMAB is strongly Raman-active, showing strong peaks at ν ≈ 1140, 1390, and 1432 cm -1 , and is widely used in surface-plasmon-assisted catalysis. Using APDS, PATP, p-nitrothiophenol (PNTP), and p-nitrodiphenyl disulfide (NPDS) as probe molecules, Raman spectroscopy and imaging techniques have been used to study the effect of intermolecular distance on surface-plasmon-assisted catalysis. Theoretically, PATP-Ag formed from APDS will be bound at proximal Ag atoms on the Ag surface due to S-S bond cleavage. The results show that APDS is more prone to surface-plasmon-assisted catalytic coupling due to the smaller distance between surface PATP-Ag moieties than those derived from PATP. Therefore, APDS has a higher reaction efficiency, better Raman activity, and better Raman imaging than does PATP. Analogous experiments with PNTP and NPDS gave similar results. Thus, this technique has great application prospects in the fields of surface chemistry and materials chemistry.
NASA Astrophysics Data System (ADS)
Zhang, Li; Zhou, Jun; Zhang, Haopeng; Jiang, Tao; Lou, Cibo
2015-03-01
We proposed an efficient spaser based on gold-silver core-shell nanorods (NRs) encapsulated by an outer silica shell doped with a gain medium. The optical characteristics of the spaser were numerically simulated based on the finite element method (FEM). The results showed that the localized surface plasmon resonance (LSPR) amplification characteristics of the spaser strongly depend on the thickness of silver shell, the aspect ratio of the inner gold NRs, and the polarization direction of the incident light. And, the maximum absolute value of optical cross-section of the spaser can reach 21,824 μm2, which is about 1115, 523, and 18 times higher than that of spasers based on the gold NRs, the silver NRs, and the silver-gold core-shell NRs, respectively. The ultra-strong surface plasmon amplification characteristics of the spaser have potential applications in optical information storage, high sensitivity biochemical sensing, and medical engineering.
Shang, Qiuyu; Zhang, Shuai; Liu, Zhen; Chen, Jie; Yang, Pengfei; Li, Chun; Li, Wei; Zhang, Yanfeng; Xiong, Qihua; Liu, Xinfeng; Zhang, Qing
2018-06-13
Manipulating strong light-matter interaction in semiconductor microcavities is crucial for developing high-performance exciton polariton devices with great potential in next-generation all-solid state quantum technologies. In this work, we report surface plasmon enhanced strong exciton-photon interaction in CH 3 NH 3 PbBr 3 perovskite nanowires. Characteristic anticrossing behaviors, indicating a Rabi splitting energy up to ∼564 meV, are observed near exciton resonance in hybrid perovskite nanowire/SiO 2 /Ag cavity at room temperature. The exciton-photon coupling strength is enhanced by ∼35% on average, which is mainly attributed to surface plasmon induced localized excitation field redistribution. Further, systematic studies on SiO 2 thickness and nanowire dimension dependence of exciton-photon interaction are presented. These results provide new avenues to achieve extremely high coupling strengths and push forward the development of electrically pumped and ultralow threshold small lasers.
Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial
NASA Astrophysics Data System (ADS)
Xu, Hui; Li, Hongjian; He, Zhihui; Chen, Zhiquan; Zheng, Mingfei; Zhao, Mingzhuo
2018-01-01
Surface plasmon polaritons (SPPs) have undisputed advantages like strong enhancement of the local electric field and much better adaptability to nano architectures. Here, we propose a three-dimensional plasmonic metamaterial consist of two nanorod layers, where this system comprises two silver bars stacked above another two symmetric silver bars. We use a theoretical model, which well explains the generation of plasmon induced transparency (PIT) phenomena. The highest reflection and absorption can reach about ninety percent and forty percent by tuning the asymmetry, respectively. As one of the applications, plasmonic sensors rely either on surface plasmon polaritons or on localized surface plasmons on continuous or nanostructured noble-metal surfaces to detect many events. In the sensing devices, an important comparative parameter of sensing devices is the figure of merit (FOM), and we also demonstrate the FOM via changing the refractive index of environmental dielectric. By adjusting the parameters, we can realize a high FOM, and an interesting double-peak sensing is also obtained in this plasmonic metamaterial sensor. The proposed model and findings may provide guidance for fundamental research of the integrated plasmonic nanosensor applications.
Yao, Wenjie; Sun, Chengwei; Gong, Qihuang; Chen, Jianjun
2016-09-23
Plasmonic nanostructures, which are used to generate surface plasmon polaritons (SPPs), always involve sharp corners where the charges can accumulate. This can result in strong localized electromagnetic fields at the metallic corners, forming the hot spots. The influence of the hot spots on the propagating SPPs are investigated theoretically and experimentally in a metallic slit structure. It is found that the electromagnetic fields radiated from the hot spots, termed as the hot spot cylindrical wave (HSCW), can greatly manipulate the SPP launching in the slit structure. The physical mechanism behind the manipulation of the SPP launching with the HSCW is explicated by a semi-analytic model. By using the HSCW, unidirectional SPP launching is experimentally realized in an ultra-small metallic step-slit structure. The HSCW bridges the localized surface plasmons and the propagating surface plasmons in an integrated platform and thus may pave a new route to the design of plasmonic devices and circuits.
Exciton-plasmon coupling interactions: from principle to applications
NASA Astrophysics Data System (ADS)
Cao, En; Lin, Weihua; Sun, Mengtao; Liang, Wenjie; Song, Yuzhi
2018-01-01
The interaction of exciton-plasmon coupling and the conversion of exciton-plasmon-photon have been widely investigated experimentally and theoretically. In this review, we introduce the exciton-plasmon interaction from basic principle to applications. There are two kinds of exciton-plasmon coupling, which demonstrate different optical properties. The strong exciton-plasmon coupling results in two new mixed states of light and matter separated energetically by a Rabi splitting that exhibits a characteristic anticrossing behavior of the exciton-LSP energy tuning. Compared to strong coupling, such as surface-enhanced Raman scattering, surface plasmon (SP)-enhanced absorption, enhanced fluorescence, or fluorescence quenching, there is no perturbation between wave functions; the interaction here is called the weak coupling. SP resonance (SPR) arises from the collective oscillation induced by the electromagnetic field of light and can be used for investigating the interaction between light and matter beyond the diffraction limit. The study on the interaction between SPR and exaction has drawn wide attention since its discovery not only due to its contribution in deepening and broadening the understanding of SPR but also its contribution to its application in light-emitting diodes, solar cells, low threshold laser, biomedical detection, quantum information processing, and so on.
Optical Relaxation Time Enhancement in Graphene-Passivated Metal Films
NASA Astrophysics Data System (ADS)
Chugh, Sunny; Mehta, Ruchit; Man, Mengren; Chen, Zhihong
2016-07-01
Due to the small skin depth in metals at optical frequencies, their plasmonic response is strongly dictated by their surface properties. Copper (Cu) is one of the standard materials of choice for plasmonic applications, because of its high conductivity and CMOS compatibility. However, being a chemically active material, it gets easily oxidized when left in ambient environment, causing an inevitable degradation in its plasmonic resonance. Here, for the first time, we report a strong enhancement in the optical relaxation time in Cu by direct growth of few-layer graphene that is shown to act as an excellent passivation layer protecting Cu surface from any deterioration. Spectroscopic ellipsometry measurements reveal a 40-50% reduction in the total scattering rate in Cu itself, which is attributed to an improvement in its surface properties. We also study the impact of graphene quality and show that high quality graphene leads to an even larger improvement in electron scattering rate. These findings are expected to provide a big push towards graphene-protected Cu plasmonics.
NASA Astrophysics Data System (ADS)
Shesterikov, A. V.; Gubin, M. Yu.; Karpov, S. N.; Prokhorov, A. V.
2018-04-01
The problem of controlling the quantum dynamics of localized plasmons has been considered in the model of a four-particle spaser composed of metallic nanoparticles and semiconductor quantum dots. Conditions for the observation of stable steady-state regimes of the formation of surface plasmons in this model have been determined in the mean-field approximation. It has been shown that the presence of strong dipole-dipole interactions between metallic nanoparticles of the spaser system leads to a considerable change in the quantum statistics of plasmons generated on the nanoparticles.
Plasmonic superfocusing on metallic tips for near-field optical imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Neacsu, Catalin C.; Olmon, Rob; Berweger, Samuel; Kappus, Alexandria; Kirchner, Friedrich; Ropers, Claus; Saraf, Lax; Raschke, Markus B.
2008-03-01
Realization of localized light sources through nonlocal excitation is important in the context of plasmon photonics, molecular sensing, and in particular near-field optical techniques. Here, the efficient conversion of propagating surface plasmons, launched on the shaft of a scanning probe tip, into localized plasmon at the apex provides a true nanoconfined light source. Focused ion beam milling is used to generate periodic surface nanostructures on the tip shaft that allow for tailoring the plasmon excitation. Using ultrashort visible and mid-IR transients the dynamics of the propagation and subsequent scattered emission is characterized. The strong field enhancement and spatial field confinement at the apex is demonstrated studying the coupling of the tip in near-field interaction with a flat sample surface. It is used in scattering near-field spectroscopic imaging (s-SNOM) to probe surface nanostructures with spatial resolution down to 10 nm.
Golmakaniyoon, Sepideh; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan; Sun, Xiao Wei
2016-01-01
Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures. PMID:27698422
Conformal surface plasmons propagating on ultrathin and flexible films
Shen, Xiaopeng; Cui, Tie Jun; Martin-Cano, Diego; Garcia-Vidal, Francisco J.
2013-01-01
Surface plasmon polaritons (SPPs) are localized surface electromagnetic waves that propagate along the interface between a metal and a dielectric. Owing to their inherent subwavelength confinement, SPPs have a strong potential to become building blocks of a type of photonic circuitry built up on 2D metal surfaces; however, SPPs are difficult to control on curved surfaces conformably and flexibly to produce advanced functional devices. Here we propose the concept of conformal surface plasmons (CSPs), surface plasmon waves that can propagate on ultrathin and flexible films to long distances in a wide broadband range from microwave to mid-infrared frequencies. We present the experimental realization of these CSPs in the microwave regime on paper-like dielectric films with a thickness 600-fold smaller than the operating wavelength. The flexible paper-like films can be bent, folded, and even twisted to mold the flow of CSPs. PMID:23248311
Gan, C H; Nash, G R
2013-11-01
Broadband and tunable control of surface plasmon polaritons in the near-infrared and visible spectrum is demonstrated theoretically and numerically with a pair of phased nanoslits. We establish, with simulations supported by a coupled wave model, that by dividing the incident power equally between two input channels, the maximum plasmon intensity deliverable to either side of the nanoslit pair is twice that for an isolated slit. For a broadband source, a compact device with nanoslit separation of the order of a tenth of the wavelength is shown to steer nearly all the generated plasmons to one side for the same phase delay, thereby achieving a broadband unidirectional plasmon launcher. The reported effect can be applied to the design of ultra-broadband and efficient tunable plasmonic devices.
Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin
2015-06-12
Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.
High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures
Hobbs, Richard G.; Manfrinato, Vitor R.; Yang, Yujia; ...
2016-06-13
In this paper, we use electron energy-loss spectroscopy to map the complete plasmonic spectrum of aluminum nanodisks with diameters ranging from 3 to 120 nm fabricated by high-resolution electron-beam lithography. Our nanopatterning approach allows us to produce localized surface plasmon resonances across a wide spectral range spanning 2–8 eV. Electromagnetic simulations using the finite element method support the existence of dipolar, quadrupolar, and hexapolar surface plasmon modes as well as centrosymmetric breathing modes depending on the location of the electron-beam excitation. In addition, we have developed an approach using nanolithography that is capable of meV control over the energy andmore » attosecond control over the lifetime of volume plasmons in these nanodisks. The precise measurement of volume plasmon lifetime may also provide an opportunity to probe and control the DC electrical conductivity of highly confined metallic nanostructures. Lastly, we show the strong influence of the nanodisk boundary in determining both the energy and lifetime of surface plasmons and volume plasmons locally across individual aluminum nanodisks, and we have compared these observations to similar effects produced by scaling the nanodisk diameter.« less
Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures.
Brar, Victor W; Jang, Min Seok; Sherrott, Michelle; Kim, Seyoon; Lopez, Josue J; Kim, Laura B; Choi, Mansoo; Atwater, Harry
2014-07-09
Infrared transmission measurements reveal the hybridization of graphene plasmons and the phonons in a monolayer hexagonal boron nitride (h-BN) sheet. Frequency-wavevector dispersion relations of the electromagnetically coupled graphene plasmon/h-BN phonon modes are derived from measurement of nanoresonators with widths varying from 30 to 300 nm. It is shown that the graphene plasmon mode is split into two distinct optical modes that display an anticrossing behavior near the energy of the h-BN optical phonon at 1370 cm(-1). We explain this behavior as a classical electromagnetic strong-coupling with the highly confined near fields of the graphene plasmons allowing for hybridization with the phonons of the atomically thin h-BN layer to create two clearly separated new surface-phonon-plasmon-polariton (SPPP) modes.
Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.
Long, Ran; Li, Yu; Song, Li; Xiong, Yujie
2015-08-26
Enabled by surface plasmons, noble metal nanostructures can interact with and harvest incident light. As such, they may serve as unique media to generate heat, supply energetic electrons, and provide strong local electromagnetic fields for chemical reactions through different mechanisms. This solar-to-chemical pathway provides a new approach to solar energy utilization, alternative to conventional semiconductor-based photocatalysis. To provide readers with a clear picture of this newly recognized process, this review presents coupling solar energy into chemical reactions through plasmonic nanostructures. It starts with a brief introduction of surface plasmons in metallic nanostructures, followed by a demonstration of tuning plasmonic features by tailoring their physical parameters. Owing to their tunable plasmonic properties, metallic materials offer a platform to trigger and drive chemical reactions at the nanoscale, as systematically overviewed in this article. The design rules for plasmonic materials for catalytic applications are further outlined based on existing examples. At the end of this article, the challenges and opportunities for further development of plasmonic-mediated catalysis toward energy and environmental applications are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prymaczek, A; Cwierzona, M; Grzelak, J; Kowalska, D; Nyk, M; Mackowski, S; Piatkowski, D
2018-06-27
In this paper, we demonstrate remote activation and detection of the 2-photon up-conversion luminescence via surface plasmon polaritons propagating in a long silver nanowire. The hybrid nanostructure was assembled by locally depositing a submicron droplet of nanocrystal-containing colloidal solution on one of the ends of the metallic nanowire. When - using a classic confocal microscope - the second end of the nanowire, without the nanocrystals, is illuminated with infrared laser light, we observe strong emission from the same end. Therefore, it indicates that surface plasmon polaritons activated with infrared light at the second end of the nanowire propagate along it and can excite nanocrystals in the droplet at the opposite end. Subsequently, the excited nanocrystals up-convert the energy and by launching surface plasmon polaritons can guide the up-converted luminescence back to the starting point. The emergence of this effect is much more pronounced for a laser polarized along the nanowire. The spectral and temporal character of this emission reveals strong interactions between surface plasmon polaritons and electronic states of the nanocrystals. The details of local and non-local aspects of the effects of remote excitation and guiding of energy in a silver nanowire are elucidated using a unique experimental setup, based on two microscope objectives for spatial separation and control of both excitation and emission beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Suresh C.; Malik, Pratibha
2015-04-15
The excitation of terahertz (THz) plasmons by a pre-bunched relativistic electron beam propagating in a parallel plane semiconducting guiding system is studied. It is found that the n-InSb semiconductor strongly supports the confined surface plasmons in the terahertz frequency range. The growth rate and efficiency of the THz surface plasmons increase linearly with modulation index and show the largest value as modulation index approaches unity. Moreover, the growth rate of the instability scales as one-third power of the beam density and inverse one-third power of the THz radiation frequency.
NASA Astrophysics Data System (ADS)
Ivanova, A. K.; Ionin, A. A.; Khmelnitskii, R. A.; Kudryashov, S. I.; Levchenko, A. O.; Mel'nik, N. N.; Rudenko, A. A.; Saraeva, I. N.; Umanskaya, S. P.; Zayarny, D. A.; Nguyen, L. V.; Nguyen, T. T. H.; Pham, M. H.; Pham, D. V.; Do, T. H.
2017-06-01
Hybrid plasmonic-dielectric antennae are fabricated by laser ablation of gold in water sols of micro-diamonds. Electron microscopy and energy-dispersive x-ray spectroscopy of their deposits on a silicon wafer surface indicate close proximity of gold nanoparticles and micro-diamonds, which is supported by photoluminescence studies demonstrating strong (eight-fold) damping of micro-diamond luminescence owing to the attachment of the gold nanoparticles. UV-near-IR spectroscopy of their sols reveals a considerable plasmonic effect, related to red spectral shifts of surface plasmon resonance for the gold nanoparticles in the laser-ablation-fabricated antennae.
2014-08-26
Indium, Rhodium, Ruthenium, Tungsten, Titanium, Chromium, Palladium, Copper, Platinum and Magnesium . These have been chosen because all of them...performance. vii. Considering that the observed behaviors occur precisely where UV surface-enhanced Raman spectra indicated strong local field...research objective was centered on the UV plasmonic properties of Rh NPs by means of surface-enhanced Raman spectroscopy, surface-enhanced
Hybrid photonic-plasmonic crystal nanocavity sensors
NASA Astrophysics Data System (ADS)
Cheng, Pi-Ju; Chiang, Chih-Kai; Chou, Bo-Tsun; Huang, Zhen-Ting; Ku, Yun-Cheng; Kuo, Mao-Kuen; Hsu, Jin-Chen; Lin, Tzy-Rong
2018-02-01
We have investigated a hybrid photonic-plasmonic crystal nanocavity consisting of a silicon grating nanowire adjacent to a metal surface with a gain gap between them. The hybrid plasmonic cavity modes are highly confined in the gap due to the strong coupling of the photonic crystal cavity modes and the surface plasmonic gap modes. Using finite-element method (FEM), guided modes of the hybrid plasmonic waveguide (WG) were numerically determined at a wavelength of 1550 nm. The modal characteristics such as WG confinement factors and modal losses of the fundamental hybrid plasmonic modes were obtained as a function of groove depth at various gap heights. Furthermore, the band structure of the hybrid crystal modes corresponding to a wide band gap of 17.8 THz is revealed. To enclose the optical energy effectively, a single defect was introduced into the hybrid crystal. At a deep subwavelength defect length as small as 270 nm, the resonant mode exhibits a high quality factor of 567 and an ultrasmall mode volume of 1.9 × 10- 3 ( λ/ n eff)3 at the resonance wavelength of 1550 nm. Compared to conventional photonic crystal nanowire cavities in the absence of a metal surface, the factor Q/ V m is significantly enhanced by about 15 times. The designed hybrid photonic-plasmonic cavity sensors exhibit distinguished characteristics such as sensitivity of 443 nm/RIU and figure of merit of 129. The proposed nanocavities open new possibilities for various applications with strong light-matter interaction, such as biosensors and nanolasers.
NASA Astrophysics Data System (ADS)
Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo
2016-12-01
We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW’s propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.
Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo
2016-12-05
We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW's propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.
Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions.
de Ceglia, Domenico; Vincenti, Maria Antonietta; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael
2017-02-20
Plasmonic resonators can provide large local electric fields when the gap between metal components is filled with an ordinary dielectric. We consider a new concept consisting of a hybrid nanoantenna obtained by introducing a resonant, plasmonic nanoparticle strategically placed inside the gap of an aptly sized metallic antenna. The system exhibits two nested, nearly overlapping plasmonic resonances whose signature is a large field enhancement at the surface and within the bulk of the plasmonic nanoparticle that leads to unusually strong, linear and nonlinear light-matter coupling.
Energy density and energy flow of surface waves in a strongly magnetized graphene
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2018-01-01
General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.
Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing
NASA Astrophysics Data System (ADS)
Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi
2018-03-01
Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.
NASA Astrophysics Data System (ADS)
Fandan, R.; Pedrós, J.; Schiefele, J.; Boscá, A.; Martínez, J.; Calle, F.
2018-05-01
Surface plasmon polaritons in graphene couple strongly to surface phonons in polar substrates leading to hybridized surface plasmon-phonon polaritons (SPPPs). We demonstrate that a surface acoustic wave (SAW) can be used to launch propagating SPPPs in graphene/h-BN heterostructures on a piezoelectric substrate like AlN, where the SAW-induced surface modulation acts as a dynamic diffraction grating. The efficiency of the light coupling is greatly enhanced by the introduction of the h-BN film as compared to the bare graphene/AlN system. The h-BN interlayer not only significantly changes the dispersion of the SPPPs but also enhances their lifetime. The strengthening of the SPPPs is shown to be related to both the higher carrier mobility induced in graphene and the coupling with h-BN and AlN surface phonons. In addition to surface phonons, hyperbolic phonons polaritons (HPPs) appear in the case of multilayer h-BN films leading to hybridized hyperbolic plasmon-phonon polaritons (HPPPs) that are also mediated by the SAW. These results pave the way for engineering SAW-based graphene/h-BN plasmonic devices and metamaterials covering the mid-IR to THz range.
Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun
2016-01-01
We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle’s geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band. PMID:27277417
Plasmonic lattice solitons in metallic nanowire materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swami, O. P., E-mail: omg1789@gmail.com; Kumar, Vijendra, E-mail: vsmedphysics@gmail.com; Nagar, A. K., E-mail: ajaya.nagar@gmail.com
2016-05-06
In this paper, we demonstrate theoretically that the plasmonic lattice solitons (PLSs) are formed in array of metallic nanowires embedded in Kerr-type material. The strong nonlinearity at metal surface, combined with the tight confinement of the guiding modes of the metallic nanowires, provide the main physical mechanism for balancing the creation of plasmonic lattice solitons and wave diffraction. We show that the PLSs are satisfied in a verity of plasmonic systems, which have important applications in nanophotonics and subwavelength optics.
Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule.
Kazuma, Emiko; Jung, Jaehoon; Ueba, Hiromu; Trenary, Michael; Kim, Yousoo
2018-05-04
Plasmon-induced chemical reactions of molecules adsorbed on metal nanostructures are attracting increased attention for photocatalytic reactions. However, the mechanism remains controversial because of the difficulty of direct observation of the chemical reactions in the plasmonic field, which is strongly localized near the metal surface. We used a scanning tunneling microscope (STM) to achieve real-space and real-time observation of a plasmon-induced chemical reaction at the single-molecule level. A single dimethyl disulfide molecule on silver and copper surfaces was dissociated by the optically excited plasmon at the STM junction. The STM study combined with theoretical calculations shows that this plasmon-induced chemical reaction occurred by a direct intramolecular excitation mechanism. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Vertical plasmonic nanowires for 3D nanoparticle trapping
NASA Astrophysics Data System (ADS)
Wu, Jingzhi; Gan, Xiaosong
2011-12-01
Nanoparticle trapping is considered to be more challenging than trapping micron-sized objects because of the diffraction limit of light and the severe Brownian motion of the nanoparticles. We introduce a nanoparticle trapping approach based on plasmonic nanostructures, which consist of nanopillars with high aspect ratio. The plasmonic nanopillars behave as plasmonic resonators that rely on paired nano-pillars supporting gap plasmon modes. The localized surface plasmon resonance effect provides strong electromagnetic field enhancement and enables confinement of nanoparticles in three dimensional space. Numerical simulations indicate that the plasmonic structure provides stronger optical forces for trapping nanoparticles. The study of thermal effect of the plasmonic structure shows that the impact of the thermal force is significant, which may determine the outcome of the nanoparticle trapping.
Advanced Space-Based Detectors
2014-07-17
to surface-plasmon- polariton interactions on nanopatterned metal surfaces. A plasmon is the quasiparticle resulting from the quantization of plasma...excited by an optical field, a polariton is the result. Polaritons are quasiparticles resulting from a strong coupling of EM waves with an electric...dipole-carrying excitation. Thus, a polariton is the result of the mixing of a photon with an excitation of a material. Phonon- polaritons result from
Surface-plasmon enhanced photodetection at communication band based on hot electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kai; Zhan, Yaohui, E-mail: yhzhan@suda.edu.cn, E-mail: xfli@suda.edu.cn; Wu, Shaolong
2015-08-14
Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-stepmore » electrical simulation, the optimized device exhibits an unbiased responsivity of ∼0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.« less
Warrier, Anita R; Gandhimathi, R
2018-04-27
In this article, we report on enhancement in photoluminescence and Raman line intensity of SnS quantum dots embedded in a mesh of Sn nanostructures. SnS nanoparticles synthesized by homogenous precipitation method show strong quantum confinement with a band gap of ∼2.7 eV (blue shift of ∼1 eV compared to bulk SnS particles). The optical band gap of SnS quantum dots is controlled by varying the pH (∼0 to 2.25), ageing time (24 to 144 h) and molarity (0 to 2 M) of the precursors. These SnS nanoparticles are embedded in a mesh of Sn nanostructures which are synthesized from tin chloride by using sodium borohydride as reducing agent. The Sn nanostructures have a morphology dependent, tunable surface plasmon resonance (SPR), ranging from UV (∼295 nm) to visible region (∼400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (∼400 meV). The pure SnS quantum dots have a very weak photoluminescence peak at ∼560 nm and Raman shift of low intensity at 853.08 cm -1 , 1078.17 cm -1 , 1255.60 cm -1 , 1466.91 cm -1 . The coupling of SnS nanoparticles with Sn nanoparticles results in strong exciton-plasmon interactions leading to enhanced photoluminescence and Raman line intensity. The nanohybrids formed using Sn nanosheets whose SPR matches with absorption onset of the SnS nanoparticles shows an enhancement of ∼10 4 times higher than pure SnS nanoparticles. Thus, Sn nanosheet with surface plasmon resonance in visible region (400 nm) like Au and Ag is a promising material for surface enhanced Raman spectroscopy, plasmon assisted fluorescence imaging and for enhancing the emission intensity of semiconductors with weak emission intensity.
NASA Astrophysics Data System (ADS)
Warrier, Anita R.; Gandhimathi, R.
2018-07-01
In this article, we report on enhancement in photoluminescence and Raman line intensity of SnS quantum dots embedded in a mesh of Sn nanostructures. SnS nanoparticles synthesized by homogenous precipitation method show strong quantum confinement with a band gap of ∼2.7 eV (blue shift of ∼1 eV compared to bulk SnS particles). The optical band gap of SnS quantum dots is controlled by varying the pH (∼0 to 2.25), ageing time (24 to 144 h) and molarity (0 to 2 M) of the precursors. These SnS nanoparticles are embedded in a mesh of Sn nanostructures which are synthesized from tin chloride by using sodium borohydride as reducing agent. The Sn nanostructures have a morphology dependent, tunable surface plasmon resonance (SPR), ranging from UV (∼295 nm) to visible region (∼400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (∼400 meV). The pure SnS quantum dots have a very weak photoluminescence peak at ∼560 nm and Raman shift of low intensity at 853.08 cm‑1, 1078.17 cm‑1, 1255.60 cm‑1, 1466.91 cm‑1. The coupling of SnS nanoparticles with Sn nanoparticles results in strong exciton-plasmon interactions leading to enhanced photoluminescence and Raman line intensity. The nanohybrids formed using Sn nanosheets whose SPR matches with absorption onset of the SnS nanoparticles shows an enhancement of ∼104 times higher than pure SnS nanoparticles. Thus, Sn nanosheet with surface plasmon resonance in visible region (400 nm) like Au and Ag is a promising material for surface enhanced Raman spectroscopy, plasmon assisted fluorescence imaging and for enhancing the emission intensity of semiconductors with weak emission intensity.
Ding, Qianqian; Shi, Ying; Chen, Maodu; Li, Hui; Yang, Xianzhong; Qu, Yingqi; Liang, Wenjie; Sun, Mengtao
2016-01-01
Using the ultrafast pump-probe transient absorption spectroscopy, the femtosecond-resolved plasmon-exciton interaction of graphene-Ag nanowire hybrids is experimentally investigated, in the VIS-NIR region. The plasmonic lifetime of Ag nanowire is about 150 ± 7 femtosecond (fs). For a single layer of graphene, the fast dynamic process at 275 ± 77 fs is due to the excitation of graphene excitons, and the slow process at 1.4 ± 0.3 picosecond (ps) is due to the plasmonic hot electron interaction with phonons of graphene. For the graphene-Ag nanowire hybrids, the time scale of the plasmon-induced hot electron transferring to graphene is 534 ± 108 fs, and the metal plasmon enhanced graphene plasmon is about 3.2 ± 0.8 ps in the VIS region. The graphene-Ag nanowire hybrids can be used for plasmon-driven chemical reactions. This graphene-mediated surface-enhanced Raman scattering substrate significantly increases the probability and efficiency of surface catalytic reactions co-driven by graphene-Ag nanowire hybridization, in comparison with reactions individually driven by monolayer graphene or single Ag nanowire. This implies that the graphene-Ag nanowire hybrids can not only lead to a significant accumulation of high-density hot electrons, but also significantly increase the plasmon-to-electron conversion efficiency, due to strong plasmon-exciton coupling. PMID:27601199
STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers
NASA Astrophysics Data System (ADS)
Schubert, Ina; Sigle, Wilfried; van Aken, Peter A.; Trautmann, Christina; Toimil-Molares, Maria Eugenia
2015-03-01
Surface plasmon coupling in nanowires separated by small gaps generates high field enhancements at the position of the gap and is thus of great interest for sensing applications. It is known that the nanowire dimensions and in particular the symmetry of the structures has strong influence on the plasmonic properties of the dimer structure. Here, we report on multipole surface plasmon coupling in symmetry-broken AuAg nanowire dimers. Our dimers, consisting of two nanowires with different lengths and separated by gaps of only 10 to 30 nm, were synthesized by pulsed electrochemical deposition in ion track-etched polymer templates. Electron energy-loss spectroscopy in scanning transmission electron microscopy allows us to resolve up to nine multipole order surface plasmon modes of these dimers spectrally separated from each other. The spectra evidence plasmon coupling between resonances of different multipole order, resulting in the generation of additional plasmonic modes. Since such complex structures require elaborated synthesis techniques, dimer structures with complex composition, morphology and shape are created. We demonstrate that finite element simulations on pure Au dimers can predict the generated resonances in the fabricated structures. The excellent agreement of our experiment on AuAg dimers with finite integration simulations using CST microwave studio manifests great potential to design complex structures for sensing applications.
Chekhov, Alexander L; Stognij, Alexander I; Satoh, Takuya; Murzina, Tatiana V; Razdolski, Ilya; Stupakiewicz, Andrzej
2018-05-09
We report spatial localization of the effective magnetic field generated via the inverse Faraday effect employing surface plasmon polaritons (SPPs) at Au/garnet interface. Analyzing both numerically and analytically the electric field of the SPPs at this interface, we corroborate our study with a proof-of-concept experiment showing efficient SPP-driven excitation of coherent spin precession with 0.41 THz frequency. We argue that the subdiffractional confinement of the SPP electric field enables strong spatial localization of the SPP-mediated excitation of spin dynamics. We demonstrate two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within a 100 nm layer of a dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways toward nonthermal opto-magnetic recording on the nanoscale.
Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.
Hung, Yun-Ting; Huang, Chen-Bin; Huang, Jer-Shing
2012-08-27
To enable multiple functions of plasmonic nanocircuits, it is of key importance to control the propagation properties and the modal distribution of the guided optical modes such that their impedance matches to that of nearby quantum systems and desired light-matter interaction can be achieved. Here, we present efficient mode converters for manipulating guided modes on a plasmonic two-wire transmission line. The mode conversion is achieved through varying the path length, wire cross section and the surrounding index of refraction. Instead of pure optical interference, strong near-field coupling of surface plasmons results in great momentum splitting and modal profile variation. We theoretically demonstrate control over nanoantenna radiation and discuss the possibility to enhance nanoscale light-matter interaction. The proposed converter may find applications in surface plasmon amplification, index sensing and enhanced nanoscale spectroscopy.
NASA Astrophysics Data System (ADS)
He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong
2015-12-01
We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs.
Plasmon Mapping in Au@Ag Nanocube Assemblies
2014-01-01
Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag core–shell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles. PMID:25067991
Radiation Channels Close to a Plasmonic Nanowire Visualized by Back Focal Plane Imaging
Hartmann, Nicolai; Piatkowski, Dawid; Ciesielski, Richard; Mackowski, Sebastian; Hartschuh, Achim
2014-01-01
We investigated the angular radiation patterns, a key characteristic of an emitting system, from individual silver nanowires decorated with rare earth ion-doped nanocrystals. Back focal plane radiation patterns of the nanocrystal photoluminescence after local two-photon excitation can be described by two emission channels: Excitation of propagating surface plasmons in the nanowire followed by leakage radiation and direct dipolar emission observed also in the absence of the nanowire. Theoretical modeling reproduces the observed radiation patterns which strongly depend on the position of excitation along the nanowire. Our analysis allows to estimate the branching ratio into both emission channels and to determine the diameter dependent surface plasmon quasi-momentum, important parameters of emitter-plasmon structures. PMID:24131299
Plasmonic plano-semi-cylindrical nanocavities with high-efficiency local-field confinement
Liu, Feifei; Zhang, Xinping; Fang, Xiaohui
2017-01-01
Plasmonic nanocavity arrays were achieved by producing isolated silver semi-cylindrical nanoshells periodically on a continuous planar gold film. Hybridization between localized surface plasmon resonance (LSPR) in the Ag semi-cylindrical nanoshells (SCNS) and surface plasmon polaritons (SPP) in the gold film was observed as split bonding and anti-bonding resonance modes located at different spectral positions. This led to strong local field enhancement and confinement in the plano-concave nanocavites. Narrow-band optical extinction with an amplitude as high as 1.5 OD, corresponding to 97% reduction in the transmission, was achieved in the visible spectrum. The resonance spectra of this hybrid device can be extended from the visible to the near infrared by adjusting the structural parameters. PMID:28074853
NASA Astrophysics Data System (ADS)
Wainstein, D. L.; Vakhrushev, V. O.; Kovalev, A. I.
2017-05-01
The multilayer Ag/(Ti34Al66)N metal-insulator-metal (MIM) heterostructures with different thicknesses of individual layers varied from several to several hundred nanometers were fabricated by DC-magnetron sputtering on the surfaces of Si single crystal wafers. The coatings structure was determined by STEM. The phase composition and crystallography of individual layers were studied by X-ray diffraction. The reflection indexes were measured in the photons energies range from 1 to 5 eV, or from 1240 to 248 nm. The spectroscopy of plasmon losses and plasmon microscopy allowed us to measure the plasmons losses characteristic energies and their surface distribution. The energies of plasmons peaks and their locations are strongly depending on Ag layers thickness in the MIM nanocomposite. The surface plasmon with energy about 4 eV was observed in the middle of 20 nm Ag layer. The plasmons were localized at the metal/dielectric interface for Ag layers 5 nm and less. The reflectance spectral profiles edges positions at long and short waves are correlated with plasmons energies and features of their spatial distribution. The MIMs based on the TiAlN/Ag can find applications as optical filters, photovoltaic energy conversion devices, etc.
Dark plasmonic breathing modes in silver nanodisks.
Schmidt, Franz-Philipp; Ditlbacher, Harald; Hohenester, Ulrich; Hohenau, Andreas; Hofer, Ferdinand; Krenn, Joachim R
2012-11-14
We map the complete plasmonic spectrum of silver nanodisks by electron energy loss spectroscopy and show that the mode which couples strongest to the electron beam has radial symmetry with no net dipole moment. Therefore, this mode does not couple to light and has escaped from observation in optical experiments. This radial breathing mode has the character of an extended two-dimensional surface plasmon with a wavenumber determined by the circular disk confinement. Its strong near fields can impact the hybridization in coupled plasmonic nanoparticles as well as couplings with nearby quantum emitters.
Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations.
Wang, Hancong
2018-06-25
Localized surface plasmon resonance based on coupled metallic nanoparticles has been extensively studied in the refractive index sensing and the detection of molecules. The amount of resonance peak-shift depends on the refractive index of surrounding medium and the geometry/symmetry of plasmonic oligomers. It has recently been found that as the feature size or the gap distance of plasmonic nanostructures approaches several nanometers, quantum effects can change the plasmon coupling in nanoparticles. However, most of the research on plasmonic sensing has been done based on classical local calculations even for the interparticle gap below ~3 nm, in which the nonlocal screening plays an important role. Here, we theoretically investigate the nonlocal effect on the evolution of various plasmon resonance modes in strongly coupled nanoparticle dimer and trimer antennas with the gap down to 1 nm. Then, the refractive index sensing in these nonlocal systems is evaluated and compared with the results in classical calculations. We find that in the nonlocal regime, both refractive index sensibility factor and figure of merit are actually smaller than their classical counterparts mainly due to the saturation of plasmon shifts. These results would be beneficial for the understanding of interaction between light and nonlocal plasmonic nanostructures and the development of plasmonic devices such as nanosensors and nanoantennas.
Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung
2016-05-17
We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling.
Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung
2016-01-01
We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling. PMID:27184469
Plasmons in graphene nanoribbons
Karimi, F.; Knezevic, I.
2017-09-12
We calculate the dielectric function and plasmonic response of armchair (aGNRs) and zigzag (zGNRs) graphene nanoribbons using the self-consistent-field approach within the Markovian master equation formalism (SCF-MMEF). We accurately account for electron scattering with phonons, ionized impurities, and line-edge roughness and show that electron scattering with surface optical phonons is much more prominent in GNRs than in graphene. We calculate the loss function, plasmon dispersion, and the plasmon propagation length in supported GNRs. Midinfrared plasmons in supported (3N+2)-aGNRs can propagate as far as several microns at room temperature, with 4–5-nm-wide ribbons having the longest propagation length. In other types ofmore » aGNRs and in zGNRs, the plasmon propagation length seldom exceeds 100 nm. Plasmon propagation lengths are much longer on nonpolar (e.g., diamondlike carbon) than on polar substrates (e.g., SiO 2 or hBN), where electrons scatter strongly with surface optical phonons. In conclusion, we also show that the aGNR plasmon density is nearly uniform across the ribbon, while in zGNRs, because of the highly localized edge states, plasmons of different spin polarization are accumulated near the opposite edges.« less
Using resistive readout to probe ultrafast dynamics of a plasmonic sensor
NASA Astrophysics Data System (ADS)
Cheney, Alec; Chen, Borui; Cartwright, Alexander; Thomay, Tim
2018-02-01
Surface plasmons in a DC current lead to an increase in scattering processes, resulting in a measurable increase in electrical resistance of a plasmonic nano-grating. This enables a purely electronic readout of plasmonically mediated optical absorption. We show that there is a time-dependence in these resistance changes on the order of 100ps that we attribute to electron-phonon and phonon-phonon scattering processes in the metal of the nano-gratings. Since plasmonic responses are strongly structurally dependent, an appropriately designed plasmoelectronic detector could potentially offer an extremely fast response at communication wavelengths in a fully CMOS compatible system.
Adiabatic description of superfocusing of femtosecond plasmon polaritons
NASA Astrophysics Data System (ADS)
Golovinski, P. A.; Manuylovich, E. S.; Astapenko, V. A.
2018-05-01
A surface plasmon polariton is a collective oscillation of free electrons at a metal-dielectric interface. As wave phenomena, surface plasmon polaritons can be focused with the use of an appropriate excitation geometry of metal structures. In the adiabatic approximation, we demonstrate a possibility to control nanoscale short pulse superfocusing based on generation of a radially polarized surface plasmon polariton mode of a conical metal needle in view of wave reflection. The results of numerical simulations of femtosecond pulse propagation along a nanoneedle are discussed. The space-time evolution of a pulse for the near field strongly depends on a linear chirp of an initial laser pulse, which can partially compensate wave dispersion. The field distribution is calculated for different metals, chirp parameters, cone opening angles and propagation distances. The electric field near a sharp tip is described as a field of a fictitious time-dependent electric dipole located at the tip apex.
NASA Astrophysics Data System (ADS)
Kim, Shin Ae; Byun, Kyung Min; Kim, Kyujung; Jang, Sung Min; Ma, Kyungjae; Oh, Youngjin; Kim, Donghyun; Kim, Sung Guk; Shuler, Michael L.; Kim, Sung June
2010-09-01
We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that both nanoarrays provided significant sensitivity improvement and, especially, 1D nanogratings exhibited higher SPR signal amplification compared with 2D nanohole arrays. The sensitivity enhancement is associated with changes in surface-limited reaction area and strong interactions between bound molecules and localized plasmon fields. Our approach is expected to improve both the sensitivity and sensing resolution and can be applicable to label-free detection of DNA without amplification by polymerase chain reaction.
Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.
Pennanen, Antti M; Toppari, J Jussi
2013-01-14
Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).
Resonances of nanoparticles with poor plasmonic metal tips
NASA Astrophysics Data System (ADS)
Ringe, Emilie; Desantis, Christopher J.; Collins, Sean M.; Duchamp, Martial; Dunin-Borkowski, Rafal E.; Skrabalak, Sara E.; Midgley, Paul A.
2015-11-01
The catalytic and optical properties of metal nanoparticles can be combined to create platforms for light-driven chemical energy storage and enhanced in-situ reaction monitoring. However, the heavily damped plasmon resonances of many catalytically active metals (e.g. Pt, Pd) prevent this dual functionality in pure nanostructures. The addition of catalytic metals at the surface of efficient plasmonic particles thus presents a unique opportunity if the resonances can be conserved after coating. Here, nanometer resolution electron-based techniques (electron energy loss, cathodoluminescence, and energy dispersive X-ray spectroscopy) are used to show that Au particles incorporating a catalytically active but heavily damped metal, Pd, sustain multiple size-dependent localized surface plasmon resonances (LSPRs) that are narrow and strongly localized at the Pd-rich tips. The resonances also couple with a dielectric substrate and other nanoparticles, establishing that the full range of plasmonic behavior is observed in these multifunctional nanostructures despite the presence of Pd.
Zhu, Chuanhui; Xu, Qun; Ji, Liang; Ren, Yumei; Fang, Mingming
2017-12-05
Two-dimensional (2D) semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals. However, tuning of their plasmonic resonances towards different wavelengths in the visible-light region with physical or chemical methods still remains challenging. In this work, we design a simple room-temperature chemical reaction route to synthesize amorphous molybdenum oxide (MoO 3-x ) nanodots that exhibit strong localized surface plasmon resonances (LSPR) in the visible and near-infrared region. Moreover, tunable plasmon resonances can be achieved in a wide range with the changing surrounding solvent, and accordingly the photoelectrocatalytic activity can be optimized with the varying LSPR peaks. This work boosts the light-matter interaction at the nanoscale and could enable photodetectors, sensors, and photovoltaic devices in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yang, Yang; Li, Jiafang; Li, Zhi-Yuan; Chen, Yue-Gang
2015-07-01
In this paper, through a vector-spherical harmonics approach, we investigate the optical spectra of plasmonic Au nanoparticles excited by two special accelerating beams: a non-paraxial Airy beam and a Bessel beam. We systematically analyze the impacts of the beam profile, phase, and helical wave front of the electromagnetic fields on the optical spectrum and the excitation of the surface plasmon resonance (SPR). We find that the high-order phase in the Airy beam would result in strong plasmonic oscillations in the optical spectra, while the cone angle and orbital angular momentum carried by the Bessel beam could be employed to engineer the plasmon modes excited in Au nanoparticles. Furthermore, the optical spectrum excited by a combined Airy-Bessel-Gauss beam is discussed. The study could help to deeply explore new ways to manipulate SPR in metal nanoparticles via the wave front engineering of optical beams for enhancing light-matter interaction and optical sensing performance.
A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect
NASA Astrophysics Data System (ADS)
Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai
2016-06-01
In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.
NASA Astrophysics Data System (ADS)
Warrier, Anita R.; Gandhimathi, R.
2018-04-01
We report on enhancement of photoluminescence of SnS quantum dots by embedding them in a mesh of Sn nanostructures. SnS quantum dots with band gap ˜2.7 eV are embedded in a mesh of Sn nanostructures, that are synthesized from tin chloride solution using sodium borohydride as reducing agent. The synthesized Sn nanostructures have a morphology dependent, tunable surface plasmon resonance ranging from UV region (295 nm) to visible region (400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (˜ 400 meV). Due to the influence of Sn nanoparticles on the SnS quantum dots, the photoluminescence and Raman line intensity is enhanced by an order of ˜103 The enhancement is more pronounced for Sn nanosheets due to the large surface area and visible light surface plasmon resonance.
Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.
Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter
2015-05-21
Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.
Aslan, Kadir; Leonenko, Zoya; Lakowicz, Joseph R; Geddes, Chris D
2005-09-01
The effects of thermally annealed silver island films have been studied with regard to their potential applicability in applications of metal-enhanced fluorescence, an emerging tool in nano-biotechnology. Silver island films were thermally annealed between 75 and 250 degrees C for several hours. As a function of both time and annealing temperature, the surface plasmon band at approximately 420 nm both diminished and was blue shifted. These changes in plasmon resonance have been characterized using both absorption measurements, as well as topographically using Atomic Force Microscopy. Subsequently, the net changes in plasmon absorption are interpreted as the silver island films becoming spherical and growing in height, as well as an increased spacing between the particles. Interestingly, when the annealed surfaces are coated with a fluorescein-labeled protein, significant enhancements in fluorescence are observed, scaling with annealing temperature and time. These observations strongly support our recent hypothesis that the extent of metal-enhanced fluorescence is due to the ability of surface plasmons to radiate coupled fluorophore fluorescence. Given that the extinction spectrum of the silvered films is comprised of both an absorption and scattering component, and that these components are proportional to the diameter cubed and to the sixth power, respectively, then larger structures are expected to have a greater scattering contribution to their extinction spectrum and, therefore, more efficiently radiate coupled fluorophore emission. Subsequently, we have been able to correlate our increases in fluorescence emission with an increased particle size, providing strong experiment evidence for our recently reported metal-enhanced fluorescence, facilitated by radiating plasmons hypothesis.
Theoretical study on surface plasmon properties of gold nanostars
NASA Astrophysics Data System (ADS)
Shan, Feng; Zhang, Tong
2018-03-01
With the rapid development of nanotechnology, the surface plasmon properties of metal nanostructures have become the focus of research. In this paper, a multi-tip gold nanostars (GNSs) structure is designed theoretically, and its surface plasmon properties are simulated by using the finite element method (FEM), which is practical and versatile. Compared with the traditional spherical and triangular plate particles, the results show that the tip structure of the GNSs has a stronger hot spots effect, resulting in greater local field enhancement properties. The relationship between the structure parameters of GNSs and their resonance peaks was also studied. The results indicate that the resonance peaks of GNSs depend strongly on the size, spacing between two GNSs, quantity and refractive index of the GNSs.
Ultrafast strong broadband light source generated in nanoscale plasmonic Au-AAO-Al structures
NASA Astrophysics Data System (ADS)
Han, Junbo; Yao, Linhua; Ma, Zongwei
we demonstrate an ultrafast strong broadband photoluminescence (PL) from Au-AAO-Al composite under low excitation power intensity of 3.8 34.5 GW /cm2. The emission wavelength is in the range of 450-1050 nm and the lifetime is under sub-nanosecond. Comparative studies of PL in Au-AAO-Al with different Au rod length and Au-AAO without Al coupling layer, together with the finite difference time domain (FDTD) calculations, present that the fast PL originates from the surface plasmon enhanced supercontinuum generation (SCG) in AAO membrane. The observations indicate that strong SCG could be realized in nanoscale plasmonic structures, which have promise applications in the minimization and integration of ultrafast lighting sources in photonic devices. National Natural Scientific Foundation of China (11404124).
NASA Astrophysics Data System (ADS)
Sukharev, Maxim; Charron, Eric
2017-03-01
We extend the model of exciton-plasmon materials to include a rovibrational structure of molecules using wave-packet propagations on electronic potential energy surfaces. Our model replaces conventional two-level emitters with more complex molecules, allowing us to examine the influence of alignment and vibrational dynamics on strong coupling with surface plasmon-polaritons. We apply the model to a hybrid system comprising a thin layer of molecules placed on top of a periodic array of slits. Rigorous simulations are performed for two types of molecular systems described by vibrational bound-bound and bound-continuum electronic transitions. Calculations reveal new features in transmission, reflection, and absorption spectra, including the observation of significantly higher values of the Rabi splitting and vibrational patterns clearly seen in the corresponding spectra. We also examine the influence of anisotropic initial conditions on optical properties of hybrid materials, demonstrating that the optical response of the system is significantly affected by an initial prealignment of the molecules. Our work demonstrates that prealigned molecules could serve as an efficient probe for the subdiffraction characterization of the near-field near metal interfaces.
Chubinidze, Ketevan; Partsvania, Besarion; Sulaberidze, Tamaz; Khuskivadze, Aleksandre; Davitashvili, Elene; Koshoridze, Nana
2014-11-01
We have experimentally demonstrated that the emission of visible light from the polymer matrix doped with luminescent dye and gold nanoparticles (GNPs) can be enhanced with the use of surface plasmon coupling. GNPs can enhance the luminescence intensity of nearby luminescent dye because of the interactions between the dipole moments of the dye and the surface plasmon field of the GNPs. The electric charge on the GNPs and the distance between GNPs and luminescent dye molecules have a significant effect on the luminescence intensity, and this enhancement depends strongly upon the excitation wavelength of the pumping laser source. In particular, by matching the plasmon frequency of GNPs to the frequency of the laser light source we have observed a strong luminescence enhancement of the nanocomposite consisting of GNPs coupled with luminescent dye Nile blue 690 perchlorate. This ability of controlling luminescence can be beneficially used in developing contrast agents for highly sensitive and specific optical sensing and imaging. This opens new possibilities for plasmonic applications in the solar energy field.
Agarwal, Daksh; Aspetti, Carlos O; Cargnello, Matteo; Ren, MingLiang; Yoo, Jinkyoung; Murray, Christopher B; Agarwal, Ritesh
2017-03-08
The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ∼40% compared to similar Au-TiO 2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.
Shaping plasmon beams via the controlled illumination of finite-size plasmonic crystals
Bouillard, J.-S.; Segovia, P.; Dickson, W.; Wurtz, G. A.; Zayats, A. V.
2014-01-01
Plasmonic crystals provide many passive and active optical functionalities, including enhanced sensing, optical nonlinearities, light extraction from LEDs and coupling to and from subwavelength waveguides. Here we study, both experimentally and numerically, the coherent control of SPP beam excitation in finite size plasmonic crystals under focussed illumination. The correct combination of the illuminating spot size, its position relative to the plasmonic crystal, wavelength and polarisation enables the efficient shaping and directionality of SPP beam launching. We show that under strongly focussed illumination, the illuminated part of the crystal acts as an antenna, launching surface plasmon waves which are subsequently filtered by the surrounding periodic lattice. Changing the illumination conditions provides rich opportunities to engineer the SPP emission pattern. This offers an alternative technique to actively modulate and control plasmonic signals, either via micro- and nano-electromechanical switches or with electro- and all-optical beam steering which have direct implications for the development of new integrated nanophotonic devices, such as plasmonic couplers and switches and on-chip signal demultiplexing. This approach can be generalised to all kinds of surface waves, either for the coupling and discrimination of light in planar dielectric waveguides or the generation and control of non-diffractive SPP beams. PMID:25429786
Ma, Y G; Lan, L; Zhong, S M; Ong, C K
2011-10-24
In optical frequency, surface plasmons of metal provide us a prominent way to build compact photonic devices or circuits with non-diffraction limit. It is attributed by their extraordinary electromagnetic confining effect. But in the counterpart of lower frequencies, plasmonics behavior of metal is screened by eddy current induced in a certain skin depth. To amend this, spoof plasmons engineered by artificial structures have been introduced to mimic surface plasmons in these frequencies. But it is less useful for practical application due to their weak field confinement as manifested by large field decaying length in the upper dielectric space. Recently, a new type of engineered plasmons, domino plasmon was theoretically proposed to produce unusual field confinement and waveguiding capabilities that make them very attractive for ultra-compact device applications [Opt. Exp. 18, 754-764 (2010)]. In this work, we implemented these ideas and built three waveguiding devices based on domino plasmons. Their strong capabilities to produce versatile and ultra-compact devices with multiple electromagnetic functions have been experimentally verified in microwaves. And that can be extended to THz regime to pave the way for a new class of integrated wave circuits. © 2011 Optical Society of America
Pixel-level plasmonic microcavity infrared photodetector
Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei
2016-01-01
Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111
Guozhi, Jia; Peng, Wang; Yanbang, Zhang; Kai, Chang
2016-01-01
Localized surface plasmons (LSP), the confined collective excitations of electrons in noble metal and doped semiconductor nanostructures, enhance greatly local electric field near the surface of the nanostructures and result in strong optical response. LSPs of ordinary massive electrons have been investigated for a long time and were used as basic ingredient of plasmonics and metamaterials. LSPs of massless Dirac electrons, which could result in novel tunable plasmonic metamaterials in the terahertz and infrared frequency regime, are relatively unexplored. Here we report for first time the observation of LSPs in Bi2Se3 topological insulator hierarchical nanoflowers, which are consisted of a large number of Bi2Se3 nanocrystals. The existence of LSPs can be demonstrated by surface enhanced Raman scattering and absorbance spectra ranging from ultraviolet to near-infrared. LSPs produce an enhanced photothermal effect stimulated by near-infrared laser. The excellent photothermal conversion effect can be ascribed to the existence of topological surface states, and provides us a new way for practical application of topological insulators in nanoscale heat source and cancer therapy. PMID:27172827
Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator
Zhu, Wenqi; Xu, Ting; Wang, Haozhu; Zhang, Cheng; Deotare, Parag B.; Agrawal, Amit; Lezec, Henri J.
2017-01-01
Recent years have witnessed a growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface plasmons—electromagnetic modes evanescently confined to metal-dielectric interfaces—offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain medium. We achieve narrow-linewidth visible-frequency lasing at room temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. We show how the lasing threshold and linewidth can be lowered by incorporating a low-profile tapered grating on the cavity floor to couple the excitation beam into a pump surface plasmon polariton providing a strong modal overlap with the gain medium. Low-perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high–figure of merit refractive index sensing of analytes interacting with the open metallic trench. PMID:28989962
Guozhi, Jia; Peng, Wang; Yanbang, Zhang; Kai, Chang
2016-05-12
Localized surface plasmons (LSP), the confined collective excitations of electrons in noble metal and doped semiconductor nanostructures, enhance greatly local electric field near the surface of the nanostructures and result in strong optical response. LSPs of ordinary massive electrons have been investigated for a long time and were used as basic ingredient of plasmonics and metamaterials. LSPs of massless Dirac electrons, which could result in novel tunable plasmonic metamaterials in the terahertz and infrared frequency regime, are relatively unexplored. Here we report for first time the observation of LSPs in Bi2Se3 topological insulator hierarchical nanoflowers, which are consisted of a large number of Bi2Se3 nanocrystals. The existence of LSPs can be demonstrated by surface enhanced Raman scattering and absorbance spectra ranging from ultraviolet to near-infrared. LSPs produce an enhanced photothermal effect stimulated by near-infrared laser. The excellent photothermal conversion effect can be ascribed to the existence of topological surface states, and provides us a new way for practical application of topological insulators in nanoscale heat source and cancer therapy.
Surface plasmon resonance-enabled antibacterial digital versatile discs
NASA Astrophysics Data System (ADS)
Dou, Xuan; Chung, Pei-Yu; Jiang, Peng; Dai, Jianli
2012-02-01
We report the achievement of effective sterilization of exemplary bacteria including Escherichia coli and Geobacillus stearothermophilus spores on a digital versatile disc (DVD). The spiral arrangement of aluminum-covered pits generates strong surface plasmon resonance (SPR) absorption of near-infrared light, leading to high surface temperature that could even damage the DVD plastics. Localized protein denaturation and high sterilization efficiency have been demonstrated by using a fluorescence microscope and cell cultures. Numerical simulations have also been conducted to model the SPR properties and the surface temperature distribution of DVDs under laser illumination. The theoretical predictions agree reasonably well with the experimental results.
Electron beam imaging and spectroscopy of plasmonic nanoantenna resonances
NASA Astrophysics Data System (ADS)
Vesseur, E. J. R.
2011-07-01
Nanoantennas are metal structures that provide strong optical coupling between a nanoscale volume and the far field. This coupling is mediated by surface plasmons, oscillations of the free electrons in the metal. Increasing the control over the resonant plasmonic field distribution opens up a wide range of applications of nanoantennas operating both in receiving and transmitting mode. This thesis presents how the dispersion and confinement of surface plasmons in nanoantennas are resolved and further engineered. Fabrication of nanostructures is done using focused ion beam milling (FIB) in metallic surfaces. We demonstrate that patterning in single-crystal substrates allows us to precisely control the geometry in which plasmons are confined. The nanoscale properties of the resonant plasmonic fields are resolved using a new technique developed in this thesis: angle- and polarization controlled cathodoluminescence (CL) imaging spectroscopy. The use of a tightly focused electron beam allows us to probe the optical antenna properties with deep subwavelength resolution. We show using this technique that nanoantennas consisting of 500-1200 nm long polycrystalline Au nanowires support standing plasmon waves. We directly observe the plasmon wavelengths which we use to derive the dispersion relation of guided nanowire plasmons. A 590-nm-long ridge-shaped nanoantenna was fabricated using FIB milling on a single-crystal Au substrate, demonstrating a level of control over the fabrication impossible with polycrystalline metals. CL experiments show that the ridge supports multiple-order resonances. The confinement of surface plasmons to the ridge is confirmed by boundary-element-method (BEM) calculations. The resonant modes in plasmonic whispering gallery cavities consisting of a FIB-fabricated circular groove are resolved. We find an excellent agreement between boundary element method calculations and the measured CL emission from the ring-shaped cavities. The calculations show that the ring supports resonances with increasing azimuthal or radial order. The smallest cavity fits only one wavelength in its circumference. We theoretically show that in these cavities, spontaneous emission can be enhanced over a broad spectral band due to the small modal volume of the plasmon resonances. A Purcell factor >2000 was found. We further study the mode symmetries and coupling of the ring resonances using far-field excitation, fluorescence, angle-resolved cathodoluminescence and photoelectron emission microscopy. We demonstrate spectral reshaping of emitters, mode-specific angular emission patterns, and a mode-selective excitation by incoming light, and we directly resolve the modal fields at high resolution. In the next chapter, we present metal-insulator-metal plasmon waveguides in which we engineer the dispersion to reach a refractive index of zero. Using spatially- and angle-resolved CL we directly observe the spatial mode profiles and determine the dispersion relation of plasmon modes. At the cutoff frequency, the emission pattern corresponds to that of a line dipole antenna demonstrating the entire waveguide is in phase (n=0). A strongly enhanced density of optical states is directly observed at cutoff from the enhanced CL intensity. Finally, we present 5 possible applications: a localized surface plasmon sensor, a plasmon ring laser, template stripping technique, an in-situ monitor of ionoluminescence and cathodoluminescence in a FIB system and a single-photon source.
Giant plasmonic energy and momentum transfer on the nanoscale
NASA Astrophysics Data System (ADS)
Durach, Maxim
We have developed a general theory of the plasmonic enhancement of many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. It is shown that this interaction has a resonant nature. We have also demonstrated that renormalized interaction is a long-ranged interaction whose intensity is considerably increased compared to bare Coulomb interaction over the entire region near the plasmonic nanostructure. We illustrate this theory by re-deriving the mirror charge potential near a metal sphere as well as the quasistatic potential behind the so-called perfect lens at the surface plasmon (SP) frequency. The dressed interaction for an important example of a metal--dielectric nanoshell is also explicitly calculated and analyzed. The renormalization and plasmonic enhancement of the Coulomb interaction is a universal effect, which affects a wide range of many-body phenomena in the vicinity of metal nanostructures: chemical reactions, scattering between charge carriers, exciton formation, Auger recombination, carrier multiplication, etc. We have described the nanoplasmonic-enhanced Forster resonant energy transfer (FRET) between quantum dots near a metal nanoshell. It is shown that this process is very efficient near high-aspect-ratio nanoshells. We have also obtained a general expression for the force exerted by an electromagnetic field on an extended polarizable object. This expression is applicable to a wide range of situations important for nanotechnology. Most importantly, this result is of fundamental importance for processes involving interaction of nanoplasmonic fields with metal electrons. Using the obtained expression for the force, we have described a giant surface-plasmon-induced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. Under realistic conditions in nanowires, this giant SPIDER generates rectified THz potential differences up to 10V and extremely strong electric fields up to 105--10 6 V/cm. It can serve as a powerful nanoscale source of THz radiation. The giant SPIDER opens up a new field of ultraintense THz nanooptics with wide potential applications in nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine. Additionally, the SPIDER is an ultrafast effect whose bandwidth for nanometric wires is 20 THz, which allows for detection of femtosecond pulses on the nanoscale. INDEX WORDS: Nanoplasmonics, Nanoplasmonic renormalization of Coulomb interaction, Surface-plasmon enhanced Forster energy transfer (FRET), Surface-plasmon-induced drag-effect rectification (SPIDER), Nanotechnology, Plasmonics on the nanoscale, Localized surface plasmons (LSPs), Surface plasmon polaritons (SPPs)
Arora, Pankaj; Talker, Eliran; Mazurski, Noa; Levy, Uriel
2018-06-13
We demonstrate numerically and experimentally the enhancement of Surface Plasmon Resonance (SPR) sensing via dispersion engineering of the plasmonic response using plasmonic nanograting. Following their design and optimization, the plasmonic nanograting structures are fabricated using e-beam lithography and lift-off process and integrated into conventional prism based Kretschmann configuration. The presence of absorptive nanograting near the metal film, provides strong field enhancement with localization and allows to control the dispersion relation which was originally dictated by a conventional SPR structure. This contributes to the enhancement in Q factor which is found to be 3-4 times higher as compared to the conventional Kretschmann configuration. The influence of the incident angle on resonance wavelength is also demonstrated both numerically and experimentally, where, only a negligible wavelength shift is observed with increasing the incident angles for plasmonic nanograting configuration. This surprising feature may be helpful for studying and utilizing light-matter interaction between plasmons and narrow linewidth media (e.g. Rb atom or molecule) having nonlocalities in their susceptibility-momentum relation. Finally, we analyze the role of plasmonic nanograting in enhancing the performance of an SPR sensor. Our results indicate that the integrated SPR-nanograting device shows a great promise as a sensor for various types of analytes.
3D morphology of Au and Au@Ag nanobipyramids
NASA Astrophysics Data System (ADS)
Burgin, Julien; Florea, Ileana; Majimel, Jérôme; Dobri, Adam; Ersen, Ovidiu; Tréguer-Delapierre, Mona
2012-02-01
The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance.The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11454b
Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting
2017-11-07
Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.
NASA Astrophysics Data System (ADS)
Du, Zhidong; Chen, Chen; Pan, Liang
2017-04-01
Maskless lithography using parallel electron beamlets is a promising solution for next generation scalable maskless nanolithography. Researchers have focused on this goal but have been unable to find a robust technology to generate and control high-quality electron beamlets with satisfactory brightness and uniformity. In this work, we will aim to address this challenge by developing a revolutionary surface-plasmon-enhanced-photoemission (SPEP) technology to generate massively-parallel electron beamlets for maskless nanolithography. The new technology is built upon our recent breakthroughs in plasmonic lenses, which will be used to excite and focus surface plasmons to generate massively-parallel electron beamlets through photoemission. Specifically, the proposed SPEP device consists of an array of plasmonic lens and electrostatic micro-lens pairs, each pair independently producing an electron beamlet. During lithography, a spatial optical modulator will dynamically project light onto individual plasmonic lenses to control the switching and brightness of electron beamlets. The photons incident onto each plasmonic lens are concentrated into a diffraction-unlimited spot as localized surface plasmons to excite the local electrons to near their vacuum levels. Meanwhile, the electrostatic micro-lens extracts the excited electrons to form a focused beamlet, which can be rastered across a wafer to perform lithography. Studies showed that surface plasmons can enhance the photoemission by orders of magnitudes. This SPEP technology can scale up the maskless lithography process to write at wafers per hour. In this talk, we will report the mechanism of the strong electron-photon couplings and the locally enhanced photoexcitation, design of a SPEP device, overview of our proof-of-concept study, and demonstrated parallel lithography of 20-50 nm features.
NASA Astrophysics Data System (ADS)
Itoh, Tamitake; Yamamoto, Yuko S.; Tamaru, Hiroharu; Biju, Vasudevanpillai; Murase, Norio; Ozaki, Yukihiro
2013-06-01
We find unique properties accompanying surface-enhanced fluorescence (SEF) from dye molecules adsorbed on Ag nanoparticle aggregates, which generate surface-enhanced Raman scattering. The properties are observed in excitation laser energy dependence of SEF after excluding plasmonic spectral modulation in SEF. The unique properties are large blue shifts of fluorescence spectra, deviation of ratios between anti-Stokes SEF intensity and Stokes from those of normal fluorescence, super-broadening of Stokes spectra, and returning to original fluorescence by lower energy excitation. We elucidate that these properties are induced by electromagnetic enhancement of radiative decay rates exceeding the vibrational relaxation rates within an electronic excited state, which suggests that molecular electronic dynamics in strong plasmonic fields can be largely deviated from that in free space.
Plasmonic structure: fiber grating formed by gold nanorods on a tapered fiber.
Trevisanutto, J O; Linhananta, A; Das, G
2016-12-15
The authors demonstrated the fabrication of a fiber Bragg grating-like plasmonic nanostructure on the surface of a tapered optical fiber using gold nanorods (GNRs). A multimode optical fiber with core and cladding diameters of 105 and 125 μm, respectively, was used to make a tapered fiber using a dynamic etching process. The tip diameter was ∼100 nm. Light from a laser was coupled to the untapered end of the fiber, which produced a strong evanescent field around the tapered section of the fiber. The gradient force due to the evanescent field trapped the GNRs on the surface of the tapered fiber. The authors explored possible causes of the GNR distribution. The plasmonic structure will be a good candidate for sensing based on surface enhanced Raman scattering.
Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber
Jen, Yi-Jun; Huang, Yu-Jie; Liu, Wei-Chih; Lin, Yueh Weng
2017-01-01
Metals have been formed into nanostructures to absorb light with high efficiency through surface plasmon resonances. An ultra-thin plasmonic structure that exhibits strong absorption over wide ranges of wavelengths and angles of incidence is sought. In this work, a nearly perfect plasmonic nanostructure is fabricated using glancing angle deposition. The difference between the morphologies of obliquely deposited aluminum and silver nanohelices is exploited to form a novel three-dimensional structure, which is an aluminum-silver nanohelix array on a pattern-free substrate. With a thickness of only 470 nm, densely distributed nanohelices support rod-to-rod localized surface plasmons for broadband and polarization-independent light extinction. The extinctance remains high over wavelengths from 400 nm to 2000 nm and angles of incidence from 0° to 70°. PMID:28045135
Plasmonics analysis of nanostructures for bioapplications
NASA Astrophysics Data System (ADS)
Xie, Qian
Plasmonics, the science and technology of the plasmons, is a rapidly growing field with substantial broader impact in numerous different fields, especially for bio-applications such as bio-sensing, bio-photonics and photothermal therapy. Resonance effects associated with plasmatic behavior i.e. surface Plasmon resonance (SPR) and localize surface Plasmon resonance (LSPR), are of particular interest because of their strong sensitivity to the local environment. In this thesis, plasmonic resonance effects are discussed from the basic theory to applications, especially the application in photothermal therapy, and grating bio-sensing. This thesis focuses on modeling different metallic nanostructures, i.e. nanospheres, nanorods, core-shell nanoparticles, nanotori and hexagonal closed packed nanosphere structures, to determine their LSPR wavelengths for use in various applications. Experiments regarding photothermal therapy using gold nanorods are described and a comparison is presented with results obtained from simulations. Lastly, experiments of grating-based plasmon-enhanced bio-sensing are also discussed. In chapter one, the physics of plasmonics is reviewed, including surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR). In the section on surface plasmon resonance, the physics behind the phenomenon is discussed, and also, the detection methods and applications in bio-sensing are described. In the section on localized surface plasmon resonance (LSPR), the phenomenon is described with respect to sub wavelength metallic nanoparticles. In chapter two, specific plasmonic-based bio-applications are discussed including plasmonic and magneto-plasmonic enhanced photothermal therapy and grating-based SPR bio-sening. In chapter three, which is the most important part in the thesis, optical modeling of different gold nanostructures is presented. The modeling tools used in this thesis are Comsol and custom developed Matlab programs. In Comsol, the geometries of different metallic nanostructures are drawn and simulated using finite element-based computational electromagnetics. The power absorption of the nanostructures is plotted as a function of wavelength to identify the LSPR wavelength, i.e. the wavelength of peak absorption. In Matlab, Mie scattering theory is programmed in terms of semi-analytical mathematical equations, which predict the power absorption for specific plasmonic geometries, i.e. nanospheres, nanorods and core-shell particles. These predictions, which are much faster than the Comsol analysis, are validated using corresponding numerical simulations. In chapter four, experiments involving novel magneto-plasmonic Nano platforms are described, and experimental data is presented to illustrate the use of the modeling in analyzing these particles. Simulations are performed to determine the influence on the laser absorption of magnetic nanospheres in proximity to metallic nanorods. These results are compared with experimental data. In the last chapter, experiments using a grating-based SPR sensor are described, and modeling results are also presented. In summary, this thesis discusses the physics of plasmonics, electromagnetic analysis for predicting the absorption spectra of metallic nanoparticles and bio-applications that utilize these effects.
NASA Astrophysics Data System (ADS)
Heilman, Alexander Lee
Optical microscopy and spectroscopy are invaluable tools for the physical and chemical characterization of materials and surfaces in a wide range of scientific disciplines. However, the application of conventional optical methods in the study of nanomaterials is inherently limited by diffraction. Tip-enhanced near-field optical microscopy (TENOM) is a hybrid technique that marries optical spectroscopy with scanning probe microscopy to overcome the spatial resolution limit imposed by diffraction. By coupling optical energy into the plasmonic modes of a sharp metal probe tip, a strong, localized optical field is generated near the tip's apex and is used to enhance spectroscopic emissions within a sub-diffraction-limited volume. In this thesis, we describe the design, construction, validation, and application of a custom TENOM instrument with a unique attenuated total reflectance (ATR)-geometry excitation/detection system. The specific goals of this work were: (i) to develop a versatile TENOM instrument capable of investigating a variety of optical phenomena at the nanoscale, (ii) to use the instrument to demonstrate chemical interrogation of surfaces with sub-diffraction-limited spatial resolution (i.e., at super resolution), (iii) to apply the instrument to study plasmonic phenomena that influence spectroscopic enhancement in TENOM measurements, and (iv) to leverage resulting insights to develop systematic improvements that expand the ultimate capabilities of near-field optical interrogation techniques. The TENOM instrument described herein is comprised of three main components: an atomic force microscope (AFM), a side-on confocal Raman microscope, and a novel ATR excitation/detection system. The design of each component is discussed along with the results of relevant validation experiments, which were performed to rigorously assess each component's performance. Finite-difference time-domain (FDTD) optical simulations were also developed and used extensively to evaluate the results of validation studies and to optimize experimental design and instrument performance. By combining and synchronizing the operation of the instrument's three components, we perform a variety of near-field optical experiments that demonstrate the instrument's functionality and versatility. ATR illumination is combined with a plasmonic AFM tip to show that: (i) the tip can quantitatively transduce the optical near-field (evanescent waves) above the surface by scattering photons into the far-field, (ii) the ATR geometry enables excitation and characterization of surface plasmon polaritons (SPPs), whose associated optical fields are shown to enhance Raman scattering from a thin layer of copper phthalocyanine (CuPc), and (iii) SPPs can be used to plasmonically excite the tip for super-resolution chemical imaging of patterned CuPc via tip-enhanced Raman spectroscopy (TERS). ATR-illumination TERS is quantitatively compared with side-on illumination. In both cases, spatial resolution was better than 40 nm and tip-on/tip-off Raman enhancement factors were >6500. Furthermore, ATR illumination was shown to provide similar Raman signal levels at lower "effective'' pump powers due to additional optical energy delivered by SPPs to the active region in the tip-surface gap. We also investigate the sensitivity of the TENOM instrument to changes in the plasmonic properties of the tip-surface system in the strongly-coupled regime at small tip-surface separations. Specifically, we demonstrate detection of a resonant plasmonic tip-surface mode (a gap plasmon) that dramatically influences the optical response of the system, and we use experimental results and FDTD simulations to support a hypothesized mechanism. Moreover, we confirm that the gap plasmon resonance has a strong effect on the enhancement of both fluorescence and Raman scattering, and we propose that this phenomenon could ultimately be exploited to improve sensitivity in super-resolution chemical imaging measurements. Finally, we recommend a straightforward modification to the TENOM instrument that could enable future application of these gap-mode plasmon resonances to increase spectroscopic enhancements by an order of magnitude.
Investigation on surface-plasmon-enhanced light emission of InGaN/GaN multiple quantum wells
NASA Astrophysics Data System (ADS)
Yu, Zhenzhong; Li, Qiang; Fan, Qigao; Zhu, Yixin
2018-05-01
We demonstrate surface-plasmon (SP) enhanced light emission from InGaN/GaN near ultraviolet (NUV) multiple quantum wells (MQWs) using Ag thin films and nano-particles (NPs). Two types of Ag NP arrays are fabricated on the NUV-MQWs, one is fabricated on p-GaN layer with three different sizes of about 120, 160 and 240 nm formed by self-assembled process, while the other is embedded close to the MQWs. In addition, the influence of the surface plasmon polariton (SPP) and localized surface plasmon (LSP) in NUV-MQWs has been investigated by photoluminescence (PL) measurement. Both PL measurements and theoretical simulation results show that the NUV light would be extracted more effectively under LSP mode than that of SPP mode. The highest enhancement of PL intensity is increased by 324% for the sample with NPs embedded in etched p-GaN near the MQWs as compared with the bare MQWs, also is about 1.24 times higher than the MQW sample covered with Ag NPs on the surface, indicating strong surface scattering and SP coupling between Ag NPs and NUV-MQWs.
Low threshold optical bistability in one-dimensional gratings based on graphene plasmonics.
Guo, Jun; Jiang, Leyong; Jia, Yue; Dai, Xiaoyu; Xiang, Yuanjiang; Fan, Dianyuan
2017-03-20
Optical bistability of graphene surface plasmon is investigated numerically, using grating coupling method at normal light incidence. The linear surface plasmon resonance is strongly dependent on Femi-level of graphene, hence it can be tuned in a large wavelength range. Due to the field enhancement of graphene surface plasmon resonance and large third-order nonlinear response of graphene, a low-threshold optical hysteresis has been observed. The threshold value with 20MW/cm2 and response time with 1.7ps have been verified. Especially, it is found that this optical bistability phenomenon is angular insensitivity for near 15° incident angle. The threshold of optical bistability can be further lowered to 0.5MW/cm2 by using graphene nanoribbons, and the response time is also shorten to 800fs. We believe that our results will find potential applications in bistable devices and all-optical switching from mid-IR to THz range.
Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang
2013-01-01
Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943
Agarwal, Daksh; Aspetti, Carlos O.; Cargnello, Matteo; ...
2017-02-06
The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. In this paper, we report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confinemore » light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si–Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ~40% compared to similar Au–TiO 2 system without Si core, in ethanol photoreforming reactions. Finally, these highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Daksh; Aspetti, Carlos O.; Cargnello, Matteo
The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. In this paper, we report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confinemore » light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si–Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ~40% compared to similar Au–TiO 2 system without Si core, in ethanol photoreforming reactions. Finally, these highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.« less
Dasary, Samuel S.R.; Zones, Yolanda K.; Barnes, Sandra L.; Ray, P. C.; Singh, Anant K.
2015-01-01
Alizarin functionalized on plasmonic gold nanoparticle displays strong surface enhanced Raman scattering from the various Raman modes of Alizarin, which can be exploited in multiple ways for heavy metal sensing purposes. The present article reports a surface enhanced Raman spectroscopy (SERS) probe for trace level Cadmium in water samples. Alizarin, a highly Raman active dye was functionalized on plasmonic gold surface as a Raman reporter, and then 3-mercaptopropionic acid, 2,6-Pyridinedicarboxylic acid at pH 8.5 was immobilized on the surface of the nanoparticle for the selective coordination of the Cd (II). Upon addition of Cadmium, gold nanoparticle provide an excellent hotspot for Alizarin dye and Raman signal enhancement. This plasmonic SERS assay provided an excellent sensitivity for Cadmium detection from the drinking water samples. We achieved as low as 10 ppt sensitivity from various drinking water sources against other Alkali and heavy metal ions. The developed SERS probe is quite simple and rapid with excellent repeatability and has great potential for prototype scale up for field application. PMID:26770012
Ultrafast plasmon-enhanced hot electron process in model heterojunctions: Ag/TiO2 and Ag/graphite
NASA Astrophysics Data System (ADS)
Petek, Hrvoje
We study the plasmonically enhanced nonlinear photoemission from Ag nanocluster-decorated graphite and TiO2(110) surfaces by time-resolved two-photon photoemission spectroscopy (TR-2PP). Evaporating Ag atoms on graphite and TiO2 surfaces forms pancake-like Ag clusters with 5 nm diameter and 1-1.5 nm height through self-limiting growth mode. The Ag nanoparticles enhance the two-photon photoemission (2PP) signal by approximately two-orders of magnitude as compared with the bare surfaces for p-polarized excitation. In the case of s-polarization there is essentially no enhancement for graphite, and only about an order-of-magnitude enhancement for TiO2. Wavelength dependent measurements of the enhancement reveal that for Ag/graphite there is a single plasmonic resonance due to the ⊥-plasmon mode at 3.6 eV. By contrast, for Ag/TiO2 there are ⊥ and ||-plasmon modes with resonant energies of 3.8 and 3.1 eV, respectively. Apparently the dielectric properties of the substrate have strong influence on the type and frequency of Ag plasmonic modes that can exist on the surfaces. 2PP spectra of the Ag/graphite and Ag/TiO2 surfaces reveal two distinct components that are common to both. The high energy component consists of a coherent 2PP process from an occupied interface state, which only exists in the presence of Ag. We identify this state, as an interface state formed by charge donation from the Ag-5s band to the unoccupied states of the substrates. The low energy component consists of a hot electron signal that is created by plasmon dephasing. TR-2PP measurements are performed on the plasmon-induced electron dynamics to assess their relevance for plasmonically enhanced femtochemistry. This research was supported by NSF Grant CHE-1414466.
Fluorescence Enhancement on Large Area Self-Assembled Plasmonic-3D Photonic Crystals.
Chen, Guojian; Wang, Dongzhu; Hong, Wei; Sun, Lu; Zhu, Yongxiang; Chen, Xudong
2017-03-01
Discontinuous plasmonic-3D photonic crystal hybrid structures are fabricated in order to evaluate the coupling effect of surface plasmon resonance and the photonic stop band. The nanostructures are prepared by silver sputtering deposition on top of hydrophobic 3D photonic crystals. The localized surface plasmon resonance of the nanostructure has a symbiotic relationship with the 3D photonic stop band, leading to highly tunable characteristics. Fluorescence enhancements of conjugated polymer and quantum dot based on these hybrid structures are studied. The maximum fluorescence enhancement for the conjugated polymer of poly(5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene) potassium salt by a factor of 87 is achieved as compared with that on a glass substrate due to the enhanced near-field from the discontinuous plasmonic structures, strong scattering effects from rough metal surface with photonic stop band, and accelerated decay rates from metal-coupled excited state of the fluorophore. It is demonstrated that the enhancement induced by the hybrid structures has a larger effective distance (optimum thickness ≈130 nm) than conventional plasmonic systems. It is expected that this approach has tremendous potential in the field of sensors, fluorescence-imaging, and optoelectronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sykes, Matthew E; Stewart, Jon W; Akselrod, Gleb M; Kong, Xiang-Tian; Wang, Zhiming; Gosztola, David J; Martinson, Alex B F; Rosenmann, Daniel; Mikkelsen, Maiken H; Govorov, Alexander O; Wiederrecht, Gary P
2017-10-17
The creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy. We find evidence for three subpopulations of nonthermal carriers, which we propose arise from anisotropic electron-electron scattering within sp-bands near the Fermi surface. The bimetallic character of the metasurface strongly impacts the physics, with dissipation occurring primarily in the gold, whereas the quantum process of hot electron generation takes place in both components. Our calculations show that the choice of geometry and materials is crucial for producing strong ultrafast nonthermal electron components.The creation of energetic electrons through plasmon excitation has implications in optical energy conversion and ultrafast nanophotonics. Here, the authors find evidence for three subpopulations of nonthermal carriers which arise from anisotropic electron-electron scattering near the Fermi surface.
Single-electron induced surface plasmons on a topological nanoparticle
Siroki, G.; Lee, D.K.K.; Haynes, P. D.; Giannini, V.
2016-01-01
It is rarely the case that a single electron affects the behaviour of several hundred thousands of atoms. Here we demonstrate a phenomenon where this happens. The key role is played by topological insulators—materials that have surface states protected by time-reversal symmetry. Such states are delocalized over the surface and are immune to its imperfections in contrast to ordinary insulators. For topological insulators, the effects of these surface states will be more strongly pronounced in the case of nanoparticles. Here we show that under the influence of light a single electron in a topologically protected surface state creates a surface charge density similar to a plasmon in a metallic nanoparticle. Such an electron can act as a screening layer, which suppresses absorption inside the particle. In addition, it can couple phonons and light, giving rise to a previously unreported topological particle polariton mode. These effects may be useful in the areas of plasmonics, cavity electrodynamics and quantum information. PMID:27491515
Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy.
Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing
2018-05-04
Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm 2 V -1 s -1 . This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.
Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering.
Chen, Ji; Li, Tao; Wang, Shuming; Zhu, Shining
2017-08-09
Thanks to the superiority in controlling the optical wave fronts, plasmonic nanostructures have led to various striking applications, among which metasurface holograms have been well developed and endowed with strong multiplexing capability. Here, we report a new design of multiplexed plasmonic hologram, which allows for reconstruction of multiple holographic images in free space by scatterings of surface plasmon polariton (SPP) waves in different propagation directions. Besides, the scattered polarization states can be further modulated by arranging the orientations of nanoscatterers. By incorporation of the SPP propagation and polarized scattering, a 4-fold hologram with low crosstalk is successfully demonstrated, which breaks the limitation of only two orthogonal states in conventional polarization multiplexers. Moreover, our design using the near-field SPP as reference wave holds the advantage for compact integration. This holographic approach is expected to inspire new photonic designs with enhanced information capacity and integratability.
Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy
NASA Astrophysics Data System (ADS)
Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing
2018-05-01
Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm2 V-1 s-1. This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.
Kühler, Paul; Weber, Max; Lohmüller, Theobald
2014-06-25
We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.
Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms.
Nelayah, J; Kociak, M; Stéphan, O; Geuquet, N; Henrard, L; García de Abajo, F J; Pastoriza-Santos, I; Liz-Marzán, L M; Colliex, C
2010-03-10
We report on the nanometer scale spectral imaging of surface plasmons within individual silver triangular nanoprisms by electron energy loss spectroscopy and on related discrete dipole approximation simulations. A dependence of the energy and intensity of the three detected modes as function of the edge length is clearly identified both experimentally and with simulations. We show that for experimentally available prisms (edge lengths ca. 70 to 300 nm) the energies and intensities of the different modes show a monotonic dependence as function of the aspect ratio of the prisms. For shorter or longer prisms, deviations to this behavior are identified thanks to simulations. These modes have symmetric charge distribution and result from the strong coupling of the upper and lower triangular surfaces. They also form a standing wave in the in-plane direction and are identified as quasistatic short range surface plasmons of different orders as emphasized within a continuum dielectric model. This model explains in simple terms the measured and simulated energy and intensity changes as function of geometric parameters. By providing a unified vision of surface plasmons in platelets, such a model should be useful for engineering of the optical properties of metallic nanoplatelets.
Sun, Jin; Li, Guang; Liang, WanZhen
2015-07-14
A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.
Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.
Das, Ritwick; Srivastava, Triranjita; Jha, Rajan
2014-02-15
The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900 nm/RIU with high detection accuracy (≥30 μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.
Physical chemistry of Nanogap-Enhanced Raman Scattering (NERS)
NASA Astrophysics Data System (ADS)
Suh, Yung Doug; Kim, Hyun Woo
2017-08-01
Plasmonically coupled electromagnetic field localization has generated a variety of new concepts and applications, and this has been one of the hottest topics in nanoscience, materials science, chemistry, physics and engineering and increasingly more important over the last decade. In particular, plasmonically coupled nanostructures with ultra-small gap ( 1-nm or smaller) gap have been of special interest due to their ultra-strong optical properties that can be useful for a variety of signal enhancements such surface-enhanced Raman scattering (SERS) and nanoantenna. These promising nanostructures with extraordinarily strong optical signal, however, have rendered a limited success in widespread use and commercialization largely due to the lack of designing principles, high-yield synthetic strategies with nm-level structural controllability and reproducibility and lack of systematic single-molecule and single-particle level studies. All these are extremely important challenges because even small changes ( 1 nm) of the coupled nanogap structures can significant affect plasmon mode and signal intensity and therefore structural and signal reproducibility and controllability can be in question. The plasmonic nanogap-enhanced Raman scattering (NERS) is defined as the plasmonic nanogap-based Raman signal enhancement within plasmonic nanogap particles with 1 nm gap and a Raman dye positioned inside the gap.
Theory of energy and power flow of plasmonic waves on single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2017-10-01
The energy theorem of electrodynamics is extended so as to apply to the plasmonic waves on single-walled carbon nanotubes which propagate parallel to the axial direction of the system and are periodic waves in the azimuthal direction. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of free-electron gas which is described by means of the linearized hydrodynamic theory. General expressions of energy and power flow associated with surface waves are obtained by solving Maxwell and hydrodynamic equations with appropriate boundary conditions. Numerical results for the transverse magnetic mode show that energy, power flow, and energy transport velocity of the plasmonic waves strongly depend on the nanotube radius in the long-wavelength region.
Exciton-Plasmon hybrids for surface catalysis detected by SERS.
Cao, En; Sun, Mengtao; Song, Yu-Zhi; Liang, Wenjie
2018-06-25
Surface plasmons (SPs), the free electrons are collectively excited on the metal surface, which have been successfully used in the analysis chemical and signal detection. Generally, SPs possess two types of decay channels. One of that is radiation decay by reemitting photons. The other way is producing hot electrons with high kinetic energy that named non-radiation, which can be applied in surface catalysis. When the excitation light with special wavelength is irradiated on the surface of pasmonic nanostructure, the strong coupling interaction between electrons and light will occur on that, followed by a series of unique properties. More than a decade, two-dimensional (2D) materials have become a hot topic of research, since the graphene was found in 2004. Recently, the combination of graphene with metal NPs has been shown lots of supernormal advantages in that, such as high stability and catalytic activity, which also has been successfully applied in plasmon-exciton co-driven chemical reactions. © 2018 IOP Publishing Ltd.
Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials
NASA Astrophysics Data System (ADS)
Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun
2016-06-01
Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.
Nanoplasmonic lenses for bacteria sorting (Presentation Recording)
NASA Astrophysics Data System (ADS)
Zhu, Xiangchao; Yanik, Ahmet A.
2015-08-01
We demonstrate that patches of two dimensional arrays of circular plasmonic nanoholes patterned on gold-titanium thin film enables subwavelength focusing of visible light in far field region. Efficient coupling of the light with the excited surface plasmon at metal dielectric interface results in strong light transmission. As a result, surface plasmon plays an important role in the far field focusing behavior of the nanohole-aperture patches device. Furthermore, the focal length of the focused beam was found to be predominantly dependent on the overall size of the patch, which is in good agreement with that calculated by Rayleigh-Sommerfield integral formula. The focused light beam can be utilized to separate bio-particles in the dynamic range from 0.1 μm to 1 μm through mainly overcoming the drag force induced by fluid flow. In our proposed model, focused light generated by our plasmonic lenses will push the larger bio-particles in size back to the source of fluid flow and allow the smaller particles to move towards the central aperture of the patch. Such a new kind of plasmonic lenses open up possibility of sorting bacterium-like particles with plasmonic nanolenses, and also represent a promising tool in the field of virology.
NASA Astrophysics Data System (ADS)
Ren, Guanghui; Yudistira, Didit; Nguyen, Thach G.; Khodasevych, Iryna; Schoenhardt, Steffen; Berean, Kyle J.; Hamm, Joachim M.; Hess, Ortwin; Mitchell, Arnan
2017-07-01
Nanoscale plasmonic structures can offer unique functionality due to extreme sub-wavelength optical confinement, but the realization of complex plasmonic circuits is hampered by high propagation losses. Hybrid approaches can potentially overcome this limitation, but only few practical approaches based on either single or few element arrays of nanoantennas on dielectric nanowire have been experimentally demonstrated. In this paper, we demonstrate a two dimensional hybrid photonic plasmonic crystal interfaced with a standard silicon photonic platform. Off resonance, we observe low loss propagation through our structure, while on resonance we observe strong propagation suppression and intense concentration of light into a dense lattice of nanoscale hot-spots on the surface providing clear evidence of a hybrid photonic plasmonic crystal bandgap. This fully integrated approach is compatible with established silicon-on-insulator (SOI) fabrication techniques and constitutes a significant step toward harnessing plasmonic functionality within SOI photonic circuits.
Control of the plasmonic near-field in metallic nanohelices.
Caridad, José M; Winters, Sinéad; McCloskey, David; Duesberg, Georg S; Donegan, John F; Krstić, Vojislav
2018-08-10
The optical response of metallic nanohelices is mainly governed by a longitudinal localised surface plasmon resonance (LSPR) which arises due to the helical anisotropy of the system. Up to now, experimental studies have predominantly addressed the far-field response, despite the fact that the LSPR being of broad interest for converting incoming light into strongly enhanced (chiral) optical near-fields. Here, we demonstrate the control and spatial reproducibility of the plasmon-induced electromagnetic near-field around metallic nanohelices via surface-enhanced Raman scattering. We discuss how the near-field intensity of these nanostructures can be custom-tailored through both the nanoscaled helical structure and the electronic properties of the constituting metals. Our experiments, which employ graphene as an accurate probing material, are in quantitative agreement with corresponding numerical simulations. The findings demonstrate metallic nanohelices as reference nanostructured surfaces able to provide and fine-tune optical fields for fundamental studies as well as sensing or (chiro-optical) imaging applications.
Controlling energy flow in multimetallic nanostructures for plasmonic catalysis
NASA Astrophysics Data System (ADS)
Aslam, Umar; Chavez, Steven; Linic, Suljo
2017-10-01
It has been shown that photoexcitation of plasmonic metal nanoparticles (Ag, Au and Cu) can induce direct photochemical reactions. However, the widespread application of this technology in catalysis has been limited by the relatively poor chemical reactivity of noble metal surfaces. Despite efforts to combine plasmonic and catalytic metals, the physical mechanisms that govern energy transfer from plasmonic metals to catalytic metals remain unclear. Here we show that hybrid core-shell nanostructures in which a core plasmonic metal harvests visible-light photons can selectively channel that energy into catalytically active centres on the nanostructure shell. To accomplish this, we developed a synthetic protocol to deposit a few monolayers of Pt onto Ag nanocubes. This model system allows us to conclusively separate the optical and catalytic functions of the hybrid nanomaterial and determine that the flow of energy is strongly biased towards the excitation of energetic charge carriers in the Pt shell. We demonstrate the utility of these nanostructures for photocatalytic chemical reactions in the preferential oxidation of CO in excess H2. Our data demonstrate that the reaction occurs exclusively on the Pt surface.
Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.
Li, Qiang; Wei, Hong; Xu, Hongxing
2015-12-09
The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications.
NASA Astrophysics Data System (ADS)
Bedogni, Elena; Kaneko, Satoshi; Fujii, Shintaro; Kiguchi, Manabu
2017-03-01
We have fabricated Au nanoparticle arrays on the flexible poly(dimethylsiloxane) (PDMS) film. The nanoparticles were bound to the film via a covalent bond by a ligand exchange reaction. Thanks to the strong chemical bonding, highly stable and uniformly dispersed Au nanoparticle arrays were fixed on the PDMS film. The Au nanoparticle arrays were characterized by the UV-vis, scanning electron microscope (SEM) and surface enhanced Raman scattering (SERS). The UV-vis and SEM measurements showed the uniformity of the surface-dispersed Au nanoparticles, and SERS measurement confirmed the chemistry of the PDMS film. Reflecting the high stability and the uniformity of the Au nanoparticle arrays, the plasmon wavelength of the Au nanoparticles reversely changed with modulation of the interparticle distance, which was induced by the stretching of the PDMS film. The plasmon wavelength linearly decreased from 664 to 591 nm by stretching of 60%. The plasmon wavelength shift can be explained by the change in the strength of the plasmon coupling which is mechanically controlled by the mechanical strain.
Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals
Johns, Robert W.; Bechtel, Hans A.; Runnerstrom, Evan L.; ...
2016-05-13
Infrared-responsive doped metal oxide nanocrystals are an emerging class of plasmonic materials whose localized surface plasmon resonances (LSPR) can be resonant with molecular vibrations. This presents a distinctive opportunity to manipulate light-matter interactions to redirect chemical or spectroscopic outcomes through the strong local electric fields they generate. Here we report a technique for measuring single nanocrystal absorption spectra of doped metal oxide nanocrystals, revealing significant spectral inhomogeneity in their mid-infrared LSPRs. Our analysis suggests dopant incorporation is heterogeneous beyond expectation based on a statistical distribution of dopants. The broad ensemble linewidths typically observed in these materials result primarily from sammore » ple heterogeneity and not from strong electronic damping associated with lossy plasmonic materials. In fact, single nanocrystal spectra reveal linewidths as narrow as 600 cm -1 in aluminium-doped zinc oxide, a value less than half the ensemble linewidth and markedly less than homogeneous linewidths of gold nanospheres.« less
Copper sulfide nanodisk as photoacoustic contrast agent for ovarian tumor detection
NASA Astrophysics Data System (ADS)
Wang, Junxin; Hsu, Su-Wen; Tao, Andrea R.; Jokerst, Jesse V.
2017-03-01
Ultrasound is broadly used in the clinics yet is limited in early cancer detection because of its poor contrast between healthy and diseased tissues. Photoacoustic imaging can improve this limitation and has been extensively studied in pre-clinical models. Contrast agents can help improve the accuracy of diagnosis. We recently reported a novel copper sulfide (CuS) nanodisk with strong directionally-localized surface plasmon resonance in the near infrared region. This plasmonic resonance of nanodisks is tunable by changing the size and aspect ratio of CuS nanodisk. Here, we demonstrate this CuS nanodisk is a strong photoacoustic contrast agent. We prepared CuS nanodisks via a solvent-based synthesis followed by surface modification of poly(ethylene glycol) methyl ether thiol for in vivo applications. These CuS nanodisks can be detected at a concentration as low as 26 pM at 920 nm. Their nanosize and strong photoacoustic response make this novel CuS nanodisk a strong candidate for photoacoustic cancer imaging.
Wang, Mingsong; Krasnok, Alex; Zhang, Tianyi; Scarabelli, Leonardo; Liu, He; Wu, Zilong; Liz-Marzán, Luis M; Terrones, Mauricio; Alù, Andrea; Zheng, Yuebing
2018-05-01
Tunable Fano resonances and plasmon-exciton coupling are demonstrated at room temperature in hybrid systems consisting of single plasmonic nanoparticles deposited on top of the transition metal dichalcogenide monolayers. By using single Au nanotriangles (AuNTs) on monolayer WS 2 as model systems, Fano resonances are observed from the interference between a discrete exciton band of monolayer WS 2 and a broadband plasmonic mode of single AuNTs. The Fano lineshape depends on the exciton binding energy and the localized surface plasmon resonance strength, which can be tuned by the dielectric constant of surrounding solvents and AuNT size, respectively. Moreover, a transition from weak to strong plasmon-exciton coupling with Rabi splitting energies of 100-340 meV is observed by rationally changing the surrounding solvents. With their tunable plasmon-exciton interactions, the proposed WS 2 -AuNT hybrids can open new pathways to develop active nanophotonic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Noise reduction in plasmonic amplifiers
NASA Astrophysics Data System (ADS)
Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.
2018-06-01
Surface plasmon polaritons amplification give the possibility to overcome strong absorption in metals and design truly nanoscale devices for on-chip photonic circuits. However, the process of stimulated emission in the gain medium is inevitably accompanied by spontaneous emission, which greatly increases the noise power. Herein we present an efficient strategy for noise reduction in plasmonic amplifiers,which is based on gain redistribution along the amplifier. We show that even a very small gain redistribution (∼3%) makes it possible to increase the signal-to-noise ratio by ∼100% and improve the bit error ratio by orders of magnitude.
Coupling of individual quantum emitters to channel plasmons.
Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain
2015-08-07
Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn
2014-09-15
We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less
Martirez, John Mark P; Carter, Emily A
2016-02-23
The Haber-Bosch process for NH3 synthesis is arguably one of the greatest inventions of the 20th century, with a massive footprint in agriculture and, historically, warfare. Current catalysts for this reaction use Fe for N2 activation, conducted at high temperatures and pressures to improve conversion rate and efficiency. A recent finding shows that plasmonic metal nanoparticles can either generate highly reactive electrons and holes or induce resonant surface excitations through plasmonic decay, which catalyze dissociation and redox reactions under mild conditions. It is therefore appealing to consider AuM (M = Fe, Co, Ni, and Mo) alloys to combine the strongly plasmonic nature of Au and the catalytic nature of M metals toward N2 dissociation, which together might facilitate ammonia production. To this end, through density functional theory, we (i) explore the feasibility of forming these surface alloys, (ii) find a pathway that may stabilize/deactivate surface M substituents during fabrication, and (iii) define a complementary route to reactivate them under operational conditions. Finally, we evaluate their reactivity toward N2, as well as their ability to support a pathway for N2 dissociation with a low thermodynamic barrier. We find that AuFe possesses similar appealing qualities, including relative stability with respect to phase separation, reversibility of Fe oxidation and reduction, and reactivity toward N2. While AuMo achieves the best affinity toward N2, its strong propensity toward oxidation could greatly limit its use.
An autonomous photosynthetic device in which all charge carriers derive from surface plasmons.
Mubeen, Syed; Lee, Joun; Singh, Nirala; Krämer, Stephan; Stucky, Galen D; Moskovits, Martin
2013-04-01
Solar conversion to electricity or to fuels based on electron-hole pair production in semiconductors is a highly evolved scientific and commercial enterprise. Recently, it has been posited that charge carriers either directly transferred from the plasmonic structure to a neighbouring semiconductor (such as TiO₂) or to a photocatalyst, or induced by energy transfer in a neighbouring medium, could augment photoconversion processes, potentially leading to an entire new paradigm in harvesting photons for practical use. The strong dependence of the wavelength at which the local surface plasmon can be excited on the nanostructure makes it possible, in principle, to design plasmonic devices that can harvest photons over the entire solar spectrum and beyond. So far, however, most such systems show rather small photocatalytic activity in the visible as compared with the ultraviolet. Here, we report an efficient, autonomous solar water-splitting device based on a gold nanorod array in which essentially all charge carriers involved in the oxidation and reduction steps arise from the hot electrons resulting from the excitation of surface plasmons in the nanostructured gold. Each nanorod functions without external wiring, producing 5 × 10(13) H₂ molecules per cm(2) per s under 1 sun illumination (AM 1.5 and 100 mW cm(-2)), with unprecedented long-term operational stability.
Design of a colorimetric sensing platform using reflection mode plasmonic colour filters
NASA Astrophysics Data System (ADS)
Mudachathi, Renilkumar; Tanaka, Takuo
2017-08-01
Plasmonic nano structures fabricated using inexpensive and abundant aluminum metal shows intense narrow reflection peaks with strong response to the external stimuli, provides a simple yet powerful detection mechanism that is well suited for the development of low cost and low power sensors, such as colorimetric sensors, which transduces external stimuli or environmental changes in to visible colour changes. Such low cost and disposable sensors have huge demands in the point-of-care and home health care diagnostic applications. We present the design of a colorimetric sensing platform based on reflection mode plasmonic colour filters on both silicon and glass substrate, which demonstrate a sharp colour change for varying ambient refractive index. The sensor is essentially a plasmonic metamaterial in which the aluminum square plate hovering on a PMMA nano pillar in the background of a perforated aluminum reflector forms the unit cell which is arranged periodically in a 2D square lattice. The meta-surface has two distinct absorption peaks in the visible region leaving a strong reflection band, which strongly responds to the ambient refractive index change, provides a means for the realization of low cost colorimetric sensing platform.
Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells.
Lee, Sangjun; In, Sungjun; Mason, Daniel R; Park, Namkyoo
2013-02-25
We present investigation and optimization of a newly proposed plasmonic organic solar cell geometry based on the incorporation of nanovoids into conventional rectangular backplane gratings. Hybridization of strongly localized plasmonic modes of the nanovoids with Fabry-Perot cavity modes originating from surface plasmon reflection at the grating elements is shown to significantly boost performance in the long wavelength regime. This constitutes improved broadband operation while maintaining absorption enhancements at short wavelengths derived from conventional rectangular grating. Our calculations predict a figure of merit enhancement of up to 41% compared to when the nanovoid indented grating is absent. This is a significant improvement over the previously considered rectangular grating structures, which is further shown to be maintained over the entire angular range.
Hybrid optical materials of plasmon-coupled CdSe/ZnS coreshells for photonic applications
Seo, Jaetae; Fudala, Rafal; Kim, Wan-Joong; Rich, Ryan; Tabibi, Bagher; Cho, Hyoyeong; Gryczynski, Zygmunt; Gryczynski, Ignacy; Yu, William
2013-01-01
A hybrid optical nanostructure of plasmon-coupled SQDs was developed for photonic applications. The coupling distances between the mono-layers of Au nanoparticles with a surface concentration of ~9.18 × 10−4 nm−2 and CdSe/ZnS SQDs with that of ~3.7 × 10−3 nm−2 were controlled by PMMA plasma etching. Time-resolved spectroscopy of plasmon-coupled SQDs revealed a strong shortening of the longest lifetime and ~9-fold PL enhancement. Polarization-resolved PL spectroscopy displayed linear polarization and depolarization at near- and far-field plasmon-coupling, respectively. The physical origin of PL enhancement could be attributable to both the large local field enhancement and the fast resonant energy transfer. PMID:23457661
Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang
2015-05-08
One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal-dielectric-metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm(-1) is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry.
Probing nonlocal effects in metals with graphene plasmons
NASA Astrophysics Data System (ADS)
Dias, Eduardo J. C.; Iranzo, David Alcaraz; Gonçalves, P. A. D.; Hajati, Yaser; Bludov, Yuliy V.; Jauho, Antti-Pekka; Mortensen, N. Asger; Koppens, Frank H. L.; Peres, N. M. R.
2018-06-01
In this paper, we analyze the effects of nonlocality on the optical properties of a system consisting of a thin metallic film separated from a graphene sheet by a hexagonal boron nitride (hBN) layer. We show that nonlocal effects in the metal have a strong impact on the spectrum of the surface plasmon-polaritons on graphene. If the graphene sheet is nanostructured into a periodic grating, we show that the resulting extinction curves can be used to shed light on the importance of nonlocal effects in metals. Therefore graphene surface plasmons emerge as a tool for probing nonlocal effects in metallic nanostructures, including thin metallic films. As a byproduct of our study, we show that nonlocal effects may lead to smaller losses for the graphene plasmons than what is predicted by a local calculation. Finally, we demonstrate that such nonlocal effects can be very well mimicked using a local theory with an effective spacer thickness larger than its actual value.
Hybrid plasmonic nanodevices: Switching mechanism for the nonlinear emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragas, Andrea V.; Singh, Mahi R.
2014-03-31
Control of the light emission at the nanoscale is of central interest in nanophotonics due to the many applications in very different fields, ranging from quantum information to biophysics. Resonant excitation of surface plasmon polaritons in metal nanoparticles create nanostructured and enhanced light fields around those structures, which produce their strong interaction in a hybrid nanodevice with other plasmonic or non-plasmonic objects. This interaction may in turn also modulate the far field with important consequences in the applications. We show in this paper that the nonlinear emission from semiconductor quantum dots is strongly affected by the close presence of metalmore » nanoparticles, which are resonantly excited. Using a pulsed laser, optical second harmonic is generated in the quantum dot, and it is highly enhanced when the laser is tuned around the nanoparticle plasmon resonance. Even more interesting is the demonstration of a switching mechanism, controlled by an external continuous-wave field, which can enhance or extinguish the SH signal, even when the pulsed laser is always on. Experimental observations are in excellent agreement with the theoretical calculations, based on the dipole-dipole near-field coupling of the objects forming the hybrid system.« less
NASA Astrophysics Data System (ADS)
Degl'Innocenti, R.; Zanotto, S.; Tredicucci, A.; Biasiol, G.; Sorba, L.
2011-12-01
We present the observation of the strong light-matter coupling regime between intersubband transitions of semiconductor quantum wells and the plasmonic-like resonances of a one dimensional metallic grating. Polariton spectra have been recorded in transmission employing a suspended membrane sample and are consistent with theoretical calculations. This arrangement, avoiding the complexity of dispersive substrate, is particularly attractive for the development of time-resolved pump-probe experiments.
Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer
NASA Astrophysics Data System (ADS)
Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis
2015-12-01
Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04942c
Synthesis, characterization and properties of L-arginine-passivated silver nanocolloids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunatkari, A. L., E-mail: ashok.sunatkari@rediffmail.com; Talwatkar, S. S.; Tamgadge, Y. S.
2016-05-06
We investigate the effect of L-arginine-surface passivation on localised surface plasmon resonance (LSPR), size and stability of colloidal Silver Nanoparticles (AgNPs) synthesized by chemical reduction method. The surface Plasmon resonance absorption peak of AgNPs shows blue shift with the increase in L-arginine concentration. Transmission electron microscopy (TEM) analysis confirmed that the average size of AgNPs reduces from 10 nm to 6 nm as the concentration of L-Arginine increased from 1 to 5 mM. The X-ray diffraction study (XRD) confirmed the formation face-centred cubic (fcc) structured AgNPs. FT-IR studies revealed strong bonding between L-arginine functional groups and AgNPs.
Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots
Harutyunyan, Hayk; Martinson, Alex B. F.; Rosenmann, Daniel; ...
2015-08-03
The interaction of light and matter in metallic nanosystems is mediated by the collective oscillation of surface electrons, called plasmons. After excitation, plasmons are absorbed by the metal electrons through inter- and intraband transitions, creating a highly non-thermal distribution of electrons. The electron population then decays through electron-electron interactions, creating a hot electron distribution within a few hundred femtoseconds, followed by a further relaxation via electron-phonon scattering on the timescale of a few pico-seconds. In the spectral domain, hot plasmonic electrons induce changes to the plasmonic resonance of the nanostructure by modifying the dielectric constant of the metal. Here, wemore » report on the observation of anomalously strong changes to the ultrafast temporal and spectral responses of these excited hot plasmonic electrons in hybrid metal/oxide nanostructures as a result of varying the geometry and composition of the nanostructure and the excitation wavelength. In particular, we show a large ultrafast, pulsewidth-limited contribution to the excited electron decay signal in hybrid nanostructures containing hot spots. The intensity of this contribution correlates with the efficiency of the generation of highly excited surface electrons. Using theoretical models, we attribute this effect to the generation of hot plasmonic electrons from hot spots. Finally, we then develop general principles to enhance the generation of energetic electrons through specifically designed plasmonic nanostructures that could be used in applications where hot electron generation is beneficial, such as in solar photocatalysis, photodetectors and nonlinear devices.« less
Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.
Harutyunyan, Hayk; Martinson, Alex B F; Rosenmann, Daniel; Khorashad, Larousse Khosravi; Besteiro, Lucas V; Govorov, Alexander O; Wiederrecht, Gary P
2015-09-01
The interaction of light and matter in metallic nanosystems is mediated by the collective oscillation of surface electrons, called plasmons. After excitation, plasmons are absorbed by the metal electrons through inter- and intraband transitions, creating a highly non-thermal distribution of electrons. The electron population then decays through electron-electron interactions, creating a hot electron distribution within a few hundred femtoseconds, followed by a further relaxation via electron-phonon scattering on the timescale of a few picoseconds. In the spectral domain, hot plasmonic electrons induce changes to the plasmonic resonance of the nanostructure by modifying the dielectric constant of the metal. Here, we report on the observation of anomalously strong changes to the ultrafast temporal and spectral responses of these excited hot plasmonic electrons in hybrid metal/oxide nanostructures as a result of varying the geometry and composition of the nanostructure and the excitation wavelength. In particular, we show a large ultrafast, pulsewidth-limited contribution to the excited electron decay signal in hybrid nanostructures containing hot spots. The intensity of this contribution correlates with the efficiency of the generation of highly excited surface electrons. Using theoretical models, we attribute this effect to the generation of hot plasmonic electrons from hot spots. We then develop general principles to enhance the generation of energetic electrons through specifically designed plasmonic nanostructures that could be used in applications where hot electron generation is beneficial, such as in solar photocatalysis, photodetectors and nonlinear devices.
Tunable plasmon-enhanced broadband light harvesting for perovskite solar cells
NASA Astrophysics Data System (ADS)
Que, Meidan; Zhu, Liangliang; Yang, Yawei; Liu, Jie; Chen, Peng; Chen, Wei; Yin, Xingtian; Que, Wenxiu
2018-04-01
In this work, we report a reliable method for synthesizing (Au, Au/Ag core)/(TiO2 shell) nanostructures with their plasmonic wavelengths covering the visible light region for perovskite solar cells. The mono- and bi-metallic core-shell nanoparticles exhibit tunable localized surface plasmon resonance wavelength and function as "light tentacle" to improve the photo-electricity conversion efficiency. Plasmonic nanoparticles with different sizes and shapes, different thicknesses of TiO2 shell and Ag interlayer are found to have a strong influence on the localized surface plasmon resonance enhancement effect. The experimental photovoltaic performance of perovskite solar cells is significantly enhanced when the plasmonic nanoparticles are embedded inmesoporous TiO2 scaffolds. A champion photo-electricity conversion efficiency of 17.85% is achieved with nanoparticles (Au/Ag, λLSPR = 650 nm), giving a 18.7% enhancement over that of the pristine device (15.04%). Finite-difference time-domain simulations show that nanorod Au in mesoporus TiO2 scaffold induces the most intense electromagnetic coupling, and provides a novel emitter for photon flux in mesoporous perovskite solar cells. These theoretical results are consistent with the corresponding experimental those. Thus, enhancing the incident light intensities around 650 nm will be most favorable to the improvement of the photo-electricity conversion efficiency of perovskite solar cells.
Directional emission from dye-functionalized plasmonic DNA superlattice microcavities
Park, Daniel J.; Ku, Jessie C.; Sun, Lin; Lethiec, Clotilde M.; Stern, Nathaniel P.; Schatz, George C.; Mirkin, Chad A.
2017-01-01
Three-dimensional plasmonic superlattice microcavities, made from programmable atom equivalents comprising gold nanoparticles functionalized with DNA, are used as a testbed to study directional light emission. DNA-guided nanoparticle colloidal crystallization allows for the formation of micrometer-scale single-crystal body-centered cubic gold nanoparticle superlattices, with dye molecules coupled to the DNA strands that link the particles together, in the form of a rhombic dodecahedron. Encapsulation in silica allows one to create robust architectures with the plasmonically active particles and dye molecules fixed in space. At the micrometer scale, the anisotropic rhombic dodecahedron crystal habit couples with photonic modes to give directional light emission. At the nanoscale, the interaction between the dye dipoles and surface plasmons can be finely tuned by coupling the dye molecules to specific sites of the DNA particle-linker strands, thereby modulating dye–nanoparticle distance (three different positions are studied). The ability to control dye position with subnanometer precision allows one to systematically tune plasmon–excition interaction strength and decay lifetime, the results of which have been supported by electrodynamics calculations that span length scales from nanometers to micrometers. The unique ability to control surface plasmon/exciton interactions within such superlattice microcavities will catalyze studies involving quantum optics, plasmon laser physics, strong coupling, and nonlinear phenomena. PMID:28053232
An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method
NASA Astrophysics Data System (ADS)
Ding, Kun; Chan, C. T.
2018-02-01
Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.
Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.
Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao
2015-01-14
Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.
Graphene as a local probe to investigate near-field properties of plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Wasserroth, Sören; Bisswanger, Timo; Mueller, Niclas S.; Kusch, Patryk; Heeg, Sebastian; Clark, Nick; Schedin, Fredrik; Gorbachev, Roman; Reich, Stephanie
2018-04-01
Light interacting with metallic nanoparticles creates a strongly localized near-field around the particle that enhances inelastic light scattering by several orders of magnitude. Surface-enhanced Raman scattering describes the enhancement of the Raman intensity by plasmonic nanoparticles. We present an extensive Raman characterization of a plasmonic gold nanodimer covered with graphene. Its two-dimensional nature and energy-independent optical properties make graphene an excellent material for investigating local electromagnetic near-fields. We show the localization of the near-field of the plasmonic dimer by spatial Raman measurements. Energy- and polarization-dependent measurements reveal the local near-field resonance of the plasmonic system. To investigate the far-field resonance we perform dark-field spectroscopy and find that near-field and far-field resonance energies differ by 170 meV, much more than expected from the model of a damped oscillator (40 meV).
Transition-Metal Decorated Aluminum Nanocrystals.
Swearer, Dayne F; Leary, Rowan K; Newell, Ryan; Yazdi, Sadegh; Robatjazi, Hossein; Zhang, Yue; Renard, David; Nordlander, Peter; Midgley, Paul A; Halas, Naomi J; Ringe, Emilie
2017-10-24
Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.
Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer
Cheng, Fei; Yang, Xiaodong; Rosenmann, Daniel; ...
2015-09-18
A high-resolution and angle-insensitive structural color generation platform is demonstrated based on triple-layer aluminum-silica-aluminum metamaterials supporting surface plasmon resonances tunable across the entire visible spectrum. The color performances of the fabricated aluminum metamaterials can be strongly enhanced by coating a thin transparent polymer layer on top. The results show that the presence of the polymer layer induces a better impedance matching for the plasmonic resonances to the free space so that strong light absorption can be obtained, leading to the generation of pure colors in cyan, magenta, yellow and black (CMYK) with high color saturation.
Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.
2015-01-01
The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175
Shi, Li; Zhou, Wei; Li, Zhao; Koul, Supriya; Kushima, Akihiro; Yang, Yang
2018-06-18
Nonmetallic materials with localized surface plasmon resonance (LSPR) have a great potential for solar energy harvesting applications. Exploring nonmetallic plasmonic materials is desirable yet challenging. Herein, an efficient nonmetallic plasmonic perovskite photoelectrode, namely, SrTiO 3 , with a periodically ordered nanoporous structure showing an intense LSPR in the visible light region is reported. The crystalline-core@amorphous-shell structure of the SrTiO 3 photoelectrode enables a strong LSPR due to the high charge carrier density induced by oxygen vacancies in the amorphous shell. The reversible tunability in LSPR of the SrTiO 3 photoelectrode was observed by oxidation/reduction treatment and incident angle adjusting. Such a nonmetallic plasmonic SrTiO 3 photoelectrode displays a dramatic plasmon-enhanced photoelectrochemical water splitting performance with a photocurrent density of 170.0 μA cm -2 under visible light illumination and a maximum incident photon-to-current-conversion efficiency of 4.0% in the visible light region, which are comparable to the state-of-the-art plasmonic noble metal sensitized photoelectrodes.
NASA Astrophysics Data System (ADS)
Luthra, Antriksh
With the advances in plasmonics, new fields have evolved involving the mixing of light with various states like Surface Plasmons (SPs), Surface Phonons (SPh), molecular emitters or resonators, and wavelength scale cavities. This work concentrates on the interaction of infrared (IR) light with SPs, cavity modes, and molecular vibrations. In the first chapter, the field of Plasmonics is introduced from a classical and a quantum mechanical perspective and a comparison of both is presented. In Chapter 2, the interaction of cavity modes with vibrations is discussed. Briefly, when IR light is illuminated upon an etalon, its fringes disperse as function of angle. If there is a dielectric in a cavity having a vibrational transition in the fringe region, it leads to a strong interaction that gives rise to a Rabi splitting. Data was obtained from collaborators at the U.S. Naval Research Laboratory (NRL) and a derivation for the dispersion of etalon cavity modes was carried out to model the peak positions of the fringes. In Chapter 3, the excitation of Surface Plasmons Polaritons (SPPs) on metal bi-gratings is discussed. The resonance condition occurs when the momentum of the IR light parallel to the surface plus the grating vector match the momentum of the SPP. Experiments were performed in the GammaX space (ky=0) and the resonance peak positions were modeled with SPP momentum matching equations. In Chapter 4, the application of plasmonics in the mid-IR frequency range that overlaps with the frequencies of molecular vibrations is explored. The plasmonic mesh has interesting optical properties, it focuses more light in the holes and that leads to an enhancement of the IR spectra of a particle trapped in the mesh hole. In this work, plasmonic mesh is used to study airborne particles that are usually difficult to study using FTIR spectroscopy due to strong Mie scattering effect. Respiring dust particles of 4 microns size has significant negative health consequences. Different environments pose different health hazards. Chemical insights of such dust collected from four very different environments: lab air, home air filter, the 11 September 2001 WTC event and the International Space Station is reported. These particles were collected by pumping air through plasmonic metal films with a 12.6 mum square lattice of 5 mum square holes, enabling us to record "scatter-free" IR absorption spectra of individual particles whose peaks reveal their IR active components. In Chapter 5, statistical methods such as single value decomposition (SVD) and support vector machine (SVM) informed with a Mie-Bruggeman model is presented, analyzing the spectral data from different dust environments.
Ding, Lijun; Gao, Yan; Di, Junwei
2016-09-15
Gold nanoparticles (Au NPs) based plasmonic probe was developed for sensitive and selective detection of Cu(2+) ion. The Au NPs were self-assembled on transparent indium tin oxide (ITO) film coated glass substrate using poly dimethyl diallyl ammonium chloride (PDDA) as a linker and then calcined at 400°C to obtain pure Au NPs on ITO surface (ITO/Au NPs). The probe was fabricated by functionalizing l-cysteine (Cys) on to gold surface (ITO/Au NPs/Cys). The strong chelation of Cu(2+) with Cys formed a stable Cys-Cu complex, and resulted in the red-shift of localized surface plasmon resonance (LSPR) peak of the Au NPs. The introduction of bovine serum albumin (BSA) as the second complexant could form complex of Cys-Cu-BAS and further markedly enhanced the red-shift of the LSPR peak. This plasmonic probe provided a highly sensitive and selective detection towards Cu(2+) ions, with a wide linear detection range (10(-11)-10(-5)M) over 6 orders of magnitude. The simple and cost-effective probe was successfully applied to the determination of Cu(2+) in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei
2016-01-01
Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2–3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm−2 and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs. PMID:27125309
Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei
2016-04-29
Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2-3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm(-2) and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs.
Morphology dependent near-field response in atomistic plasmonic nanocavities.
Chen, Xing; Jensen, Lasse
2018-06-21
In this work we examine how the atomistic morphologies of plasmonic dimers control the near-field response by using an atomistic electrodynamics model. At large separations, the field enhancement in the junction follows a simple inverse power law as a function of the gap separation, which agrees with classical antenna theory. However, when the separations are smaller than 0.8 nm, the so-called quantum size regime, the field enhancement is screened and thus deviates from the simple power law. Our results show that the threshold distance for the deviation depends on the specific morphology of the junction. The near field in the junction can be localized to an area of less than 1 nm2 in the presence of an atomically sharp tip, but the separation distances leading to a large confinement of near field depend strongly on the specific atomistic configuration. More importantly, the highly confined fields lead to large field gradients particularly in a tip-to-surface junction, which indicates that such a plasmonic structure favors observing strong field gradient effects in near-field spectroscopy. We find that for atomically sharp tips the field gradient becomes significant and depends strongly on the local morphology of a tip. We expect our findings to be crucial for understanding the origin of high-resolution near-field spectroscopy and for manipulating optical cavities through atomic structures in the strongly coupled plasmonic systems.
Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.
Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang
2016-03-09
The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.
Observation and Manipulation of Visible Edge Plasmons in Bi2Te3 Nanoplates.
Lu, Xiaowei; Hao, Qunqing; Cen, Mengjia; Zhang, Guanhua; Sun, Julong; Mao, Libang; Cao, Tun; Zhou, Chuanyao; Jiang, Peng; Yang, Xueming; Bao, Xinhe
2018-05-09
Noble metals, like Ag and Au, are the most intensively studied plasmonic materials in the visible range. Plasmons in semiconductors, however, are usually believed to be in the infrared wavelength region due to the intrinsic low carrier concentrations. Herein, we observe the edge plasmon modes of Bi 2 Te 3 , a narrow-band gap semiconductor, in the visible spectral range using photoemission electron microscopy (PEEM). The Bi 2 Te 3 nanoplates excited by 400 nm femtosecond laser pulses exhibit strong photoemission intensities along the edges, which follow a cos 4 dependence on the polarization state of incident beam. Because of the phase retardation effect, plasmonic response along different edges can be selectively exited. The thickness-dependent photoemission intensities exclude the spin-orbit induced surface states as the origin of these plasmonic modes. Instead, we propose that the interband transition-induced nonequilibrium carriers might play a key role. Our results not only experimentally demonstrate the possibility of visible plasmons in semiconducting materials but also open up a new avenue for exploring the optical properties of topological insulator materials using PEEM.
NASA Astrophysics Data System (ADS)
Hamanaka, Yasushi; Yamada, Kaoru; Hirose, Tatsunori; Kuzuya, Toshihiro
2018-05-01
CuS nanoplates were synthesized by a colloidal method and separated into four fractions of nanoplates with different aspect ratios by a size-selective precipitation. In addition to a strong near infrared absorption band ascribed to the in-plane mode of the localized surface plasmon resonance (LSPR), we found a weak absorption band on the high frequency tail of the in-plane LSPR band. The frequency of the weak absorption band was almost constant and independent of the aspect ratio, while the in-plane LSPR band exhibited a strong aspect ratio dependence. These characteristics suggested that the weak absorption band is ascribed to the out-of-plane LSPR. Although the out-of-plane LSPR was expected to be difficult to observe for CuS nanoplates due to its low intensity and overlap with the strong in-plane resonance, we could successfully identify the out-of-plane mode by reducing the width of the size distribution and spectral broadening caused thereby.
Liu, Qingkun; Tang, Jianwei; Zhang, Yuan; Martinez, Angel; Wang, Shaowei; He, Sailing; White, Timothy J; Smalyukh, Ivan I
2014-05-01
We use both lyotropic liquid crystals composed of prolate micelles and thermotropic liquid crystals made of rod-like molecules to uniformly disperse and unidirectionally align relatively large gold nanorods and other complex-shaped nanoparticles at high concentrations. We show that some of these ensuing self-assembled orientationally ordered soft matter systems exhibit polarization-dependent plasmonic properties with strongly pronounced molar extinction exceeding that previously achieved in self-assembled composites. The long-range unidirectional alignment of gold nanorods is mediated mainly by anisotropic surface anchoring interactions at the surfaces of gold nanoparticles. Polarization-sensitive absorption, scattering, and extinction are used to characterize orientations of nanorods and other nanoparticles. The experimentally measured unique optical properties of these composites, which stem from the collective plasmonic effect of the gold nanorods with long-range order in a liquid crystal matrix, are reproduced in computer simulations. A simple phenomenological model based on anisotropic surface interaction explains the alignment of gold nanorods dispersed in liquid crystals and the physical underpinnings behind our observations.
Cennamo, Nunzio; D'Agostino, Girolamo; Donà, Alice; Dacarro, Giacomo; Pallavicini, Piersandro; Pesavento, Maria; Zeni, Luigi
2013-01-01
In this paper a refractive index sensor based on localized surface plasmon resonance (LSPR) in a Plastic Optical Fiber (POF), is presented and experimentally tested. LSPR is achieved exploiting five-branched gold nanostars (GNS) obtained using Triton X-100 in a seed-growth synthesis. They have the uncommon feature of three localized surface plasmon resonances. The strongest LSPRs fall in two ranges, one in the 600–900 nm range (LSPR 2) and the other one in the 1,100–1,600 nm range (LSPR 3), both sensible to refractive index changes. Anyway, due to the extremely strong attenuation (>102 dB/m) of the employed POF in the 1,100–1,600 nm range, only LSPR 2 will be exploited for refractive index change measurements, useful for bio-chemical sensing applications, as a proof of principle of the possibility of realizing a compact, low cost and easy-to-use GNS based device. PMID:24172284
Tong, Ling; Wei, Qingshan; Wei, Alexander; Cheng, Ji-Xin
2009-01-01
Gold nanorods (NRs) have plasmon-resonant absorption and scattering in the near-infrared (NIR) region, making them attractive probes for in vitro and in vivo imaging. In the cellular environment, NRs can provide scattering contrast for darkfield microscopy, or emit a strong two-photon luminescence (TPL) due to plasmon-enhanced two-photon absorption. NRs have also been employed in biomedical imaging modalities such as optical coherence tomography (OCT) or photoacoustic tomography (PAT). Careful control over surface chemistry enhances the capacity of NRs as biological imaging agents by enabling cell-specific targeting, and by increasing their dispersion stability and circulation lifetimes. NRs can also efficiently convert optical energy into heat, and inflict localized damage to tumor cells. Laser-induced heating of NRs can disrupt cell membrane integrity and homeostasis, resulting in Ca2+ influx and the depolymerization of the intracellular actin network. The combination of plasmon-resonant optical properties, intense local photothermal effects, and robust surface chemistry render gold NRs as promising theragnostic agents. PMID:19161395
Cennamo, Nunzio; D'Agostino, Girolamo; Donà, Alice; Dacarro, Giacomo; Pallavicini, Piersandro; Pesavento, Maria; Zeni, Luigi
2013-10-29
In this paper a refractive index sensor based on localized surface plasmon resonance (LSPR) in a Plastic Optical Fiber (POF), is presented and experimentally tested. LSPR is achieved exploiting five-branched gold nanostars (GNS) obtained using Triton X-100 in a seed-growth synthesis. They have the uncommon feature of three localized surface plasmon resonances. The strongest LSPRs fall in two ranges, one in the 600-900 nm range (LSPR 2) and the other one in the 1,100-1,600 nm range (LSPR 3), both sensible to refractive index changes. Anyway, due to the extremely strong attenuation (>10(2) dB/m) of the employed POF in the 1,100-1,600 nm range, only LSPR 2 will be exploited for refractive index change measurements, useful for bio-chemical sensing applications, as a proof of principle of the possibility of realizing a compact, low cost and easy-to-use GNS based device.
NASA Astrophysics Data System (ADS)
Yanagawa, Hiroto; Inoue, Asuka; Sugimoto, Hiroshi; Shioi, Masahiko; Fujii, Minoru
2017-12-01
Near-field coupling between a silicon quantum dot (Si-QD) monolayer and a plasmonic substrate fabricated by nano-imprint lithography and having broad multiple resonances in the near-infrared (NIR) window of biological substances was studied by precisely controlling the QDs-substrate distance. A strong enhancement of the NIR photoluminescence (PL) of Si-QDs was observed. Detailed analyses of the PL and PL excitation spectra, the PL decay dynamics, and the reflectance spectra revealed that both the excitation cross-sections and the emission rates are enhanced by the surface plasmon resonances, thanks to the broad multiple resonances of the plasmonic substrate, and that the relative contribution of the two enhancement processes depends strongly on the excitation wavelength. Under excitation by short wavelength photons (405 nm), where enhancement of the excitation cross-section is not expected, the maximum enhancement was obtained when the QDs-substrate distance was around 30 nm. On the other hand, under long wavelength excitation (641 nm), where strong excitation cross-section enhancement is expected, the largest enhancement was obtained when the distance was minimum (around 1 nm). The achievement of efficient excitation of NIR luminescence of Si-QDs by long wavelength photons paves the way for the development of Si-QD-based fluorescence bio-sensing devices with a high bound-to-free ratio.
Field enhancement in plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Piltan, Shiva; Sievenpiper, Dan
2018-05-01
Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of {{W}} {{{c}}{{m}}}-2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.
Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp.
Bouillard, J-S; Vilain, S; Dickson, W; Wurtz, G A; Zayats, A V
2012-01-01
Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses.
Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp
Bouillard, J.-S; Vilain, S.; Dickson, W.; Wurtz, G. A.; Zayats, A. V.
2012-01-01
Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses. PMID:23170197
Plasmonic fiber-optic vector magnetometer
NASA Astrophysics Data System (ADS)
Zhang, Zhaochuan; Guo, Tuan; Zhang, Xuejun; Xu, Jian; Xie, Wenping; Nie, Ming; Wu, Qiang; Guan, Bai-Ou; Albert, Jacques
2016-03-01
A compact fiber-optic vector magnetometer based on directional scattering between polarized plasmon waves and ferro-magnetic nanoparticles is demonstrated. The sensor configuration reported in this work uses a short section of tilted fiber Bragg grating (TFBG) coated with a nanometer scale gold film and packaged with a magnetic fluid (Fe3O4) inside a capillary. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with a broader absorption of the surface plasmon resonance (SPR). The wavelength of the SPR attenuation in transmission shows high sensitivity to slight perturbations by magnetic fields, due to the strong directional scattering between the SPR attenuated cladding modes and the magnetic fluid near the fiber surface. Both the orientation (2 nm/deg) and the intensity (1.8 nm/mT) of magnetic fields can be determined unambiguously from the TFBG spectrum. Temperature cross sensitivity can be referenced out by monitoring the wavelength of the core mode resonance simultaneously.
NASA Astrophysics Data System (ADS)
Chu, Dung Tien; Sai, Doanh Cong; Luu, Quynh Manh; Tran, Hong Thi; Quach, Truong Duy; Kim, Dong Hyun; Nguyen, Nam Hoang
2017-06-01
Bifunctional magnetic-plasmonic nanoparticles (NPs)—Fe3O4@SiO2-Ag were successfully synthesized by an ultrasound assisted chemical method. Silver ions were absorbed and then reduced by sodium borohydride on the surface of 3-aminopropyltriethoxysilane (APTES) functionalized silica-coated magnetic NPs, then they were reduced under the influence of a 200 W ultrasonic wave for 60 min. When the amount of precursor silver ions increased, the relative intensity of diffraction peaks of silver crystals in all samples increased with the atomic ratio of silver/iron increasing from 0.208 to 0.455 and saturation magnetization ( M s) decreasing from 44.68 emu/g to 34.74 emu/g. The NPs have superparamagnetic properties and strong surface plasmon absorption at 420 nm, which make these particles promising for biomedical applications.
NASA Astrophysics Data System (ADS)
Danilov, Artem; Tselikov, Gleb; Wu, Fan; Kravets, Vasyl G.; Ozerov, Igor; Bedu, Frederic; Grigorenko, Alexander N.; Kabashin, Andrei V.
2018-02-01
We investigate conditions of excitation and properties of Plasmonic Surface Lattice Resonances (PSLR) over glass substrate-supported Au nanoparticle dimers ( 100-200 nm) arranged in a periodic metamaterial lattice, in Attenuated Total Reflection (ATR) optical excitation geometry, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. We show that spectral sensitivity of PSLR to RI variations is determined by the lattice periodicity ( 320 nm per RIU change in our case), while ultranarrow resonance lineshapes (down to a few nm full-widthat-half-maximum) provide very high figure-of-merit values evidencing the possibility of ultrasensitive biosensing measurements. Combining advantages of nanoscale architectures, including a strong concentration of electric field, the possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise a drastic advancement of current state-of-the-art plasmonic biosensing technology.
Focusing short-wavelength surface plasmons by a plasmonic mirror.
Ogut, Erdem; Yanik, Cenk; Kaya, Ismet Inonu; Ow-Yang, Cleva; Sendur, Kursat
2018-05-01
Emerging applications in nanotechnology, such as superresolution imaging, ultra-sensitive biomedical detection, and heat-assisted magnetic recording, require plasmonic devices that can generate intense optical spots beyond the diffraction limit. One of the important drawbacks of surface plasmon focusing structures is their complex design, which is significant for ease of integration with other nanostructures and fabrication at low cost. In this study, a planar plasmonic mirror without any nanoscale features is investigated that can focus surface plasmons to produce intense optical spots having lateral and vertical dimensions of λ/9.7 and λ/80, respectively. Intense optical spots beyond the diffraction limit were produced from the plasmonic parabolic mirror by exciting short-wavelength surface plasmons. The refractive index and numerical aperture of the plasmonic parabolic mirror were varied to excite short-wavelength surface plasmons. Finite-element method simulations of the plasmonic mirror and scanning near-field optical microscopy experiments have shown very good agreement.
Nonlinear plasmonic imaging techniques and their biological applications
NASA Astrophysics Data System (ADS)
Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei
2017-01-01
Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.
Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube
Bondarev, I. V.
2015-01-01
Quantum electrodynamics theory of the resonance Raman scattering is developed for an atom in a close proximity to a carbon nanotube. The theory predicts a dramatic enhancement of the Raman intensity in the strong atomic coupling regime to nanotube plasmon near-fields. This resonance scattering is a manifestation of the general electromagnetic surface enhanced Raman scattering effect, and can be used in designing efficient nanotube based optical sensing substrates for single atom detection, precision spontaneous emission control, and manipulation.
Nanopillar Optical Antenna Avalanche Detectors
2014-08-30
tuning and hybridization of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs...of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs) will be discussed...Surface Plasmon Polariton Bloch wave (SPP-BW) 36, 40. Also, resonant-field enhancement occurs in bounded metallic/dielectric structures that support
Plasmon-enhanced Raman detection of body-fluid components
NASA Astrophysics Data System (ADS)
Matteini, Paolo; Banchelli, Martina; De Angelis, Marella; D'Andrea, Cristiano; Pini, Roberto
2018-02-01
Plasmon-enhanced spectroscopies such as surface-enhanced Raman spectroscopy (SERS) concern the detection of enhanced optical responses of molecules in close proximity to plasmonic structures, which results in a strong increase in sensitivity. Recent advancements in nanofabrication methods have paved the way for a controlled design of tailor-made nanostructures with fine-tuning of their optical and surface properties. Among these, silver nanocubes (AgNCs) represent a convenient choice in SERS owing to intense electromagnetic fields localized at their extremities, which are further intensified in the gap regions between closely spaced nanoparticles. The integration of AgNCs assemblies within an optofluidic platform may confer potential for superior optical investigation due to a molecular enrichment on the plasmonic structures to collect an enhanced photonic response. We developed a novel sensing platform based on an optofluidic system involving assembled silver nanocubes of 50 nm in size for ultrasensitive SERS detection of biomolecules in wet conditions. The proposed system offers the perspective of advanced biochemical and biological characterizations of molecules as well as of effective detection of body fluid components and other molecules of biomedical interest in their own environment.
Synthesis, characterization and multifunctional properties of plasmonic Ag-TiO2 nanocomposites
NASA Astrophysics Data System (ADS)
Prakash, Jai; Kumar, Promod; Harris, R. A.; Swart, Chantel; Neethling, J. H.; Janse van Vuuren, A.; Swart, H. C.
2016-09-01
We report on the synthesis of multifunctional Ag-TiO2 nanocomposites and their optical, physio-chemical, surface enhanced Raman scattering (SERS) and antibacterial properties. A series of Ag-TiO2 nanocomposites were synthesized by sol-gel technique and characterized by x-ray diffraction, scanning and transmission electron microscopy, energy-dispersed x-ray analysis, photoluminescence, UV-vis, x-ray photoelectron and Raman spectroscopy and Brunauer-Emmett-Teller method. The Ag nanoparticles (NPs) (7-20 nm) were found to be uniformly distributed around and strongly attached to TiO2 NPs. The novel optical responses of the nanocomposites are due to the strong electric field from the localized surface plasmon (LSP) excitation of the Ag NPs and decreased recombination of photo-induced electrons and holes at Ag-TiO2 interface providing potential materials for photocatalysis. The nanocomposites show enhancement in the SERS signals of methyl orange (MO) molecules with increasing Ag content attributed to the long-range electromagnetic enhancement from the excited LSP of the Ag NPs. To further understand the SERS activity, molecular mechanics and molecular dynamics simulations were used to study the geometries and SERS enhancement of MO adsorbed onto Ag-TiO2 respectively. Simulation results indicate that number of ligands (MO) that adsorb onto the Ag NPs as well as binding energy per ligand increases with increasing NP density and molecule-to-surface orientation is mainly flat resulting in strong bond strength between MO and Ag NP surface and enhanced SERS signals. The antimicrobial activity of the Ag-TiO2 nanocomposites was tested against the bacterium Staphylococcus aureus and enhanced antibacterial effect was observed with increasing Ag content explained by contact killing action mechanism. These results foresee promising applications of the plasmonic metal-semiconductor based nano-biocomposites for both chemical and biological samples.
Rivera, V A G; Ledemi, Yannick; Pereira-da-Silva, Marcelo A; Messaddeq, Younes; Marega, Euclydes
2016-01-04
This manuscript reports on the interaction between (2)F5/2→(2)F7/2 radiative transition from Yb(3+) ions and localized surface plasmon resonance (from gold/silver nanoparticles) in a tungsten-tellurite glass. Such an interaction, similar to the down-conversion process, results in the Yb(3+) emission in the near-infrared region via resonant and non-resonant energy transfers. We associated such effects with the dynamic coupling described by the variations generated by the Hamiltonian HDC in either the oscillator strength, or the local crystal field, i.e. the line shape changes in the emission band. Here, the Yb(3+) ions emission is achieved through plasmon-photon coupling, observable as an enhancement or quenching in the luminescence spectra. Metallic nanoparticles have light-collecting capability in the visible spectrum and can accumulate almost all the photon energy on a nanoscale, which enable the excitation and emission of the Yb(3+) ions in the near-infrared region. This plasmon-photon conversion was evaluated from the cavity's quality factor (Q) and the coupling (g) between the nanoparticles and the Yb(3+) ions. We have found samples of low-quality cavities and strong coupling between the nanoparticles and the Yb(3+) ions. Our research can be extended towards the understanding of new plasmon-photon converters obtained from interactions between rare-earth ions and localized surface plasmon resonance.
Rivera, V. A. G.; Ledemi, Yannick; Pereira-da-Silva, Marcelo A.; Messaddeq, Younes; Marega Jr, Euclydes
2016-01-01
This manuscript reports on the interaction between 2F5/2→2F7/2 radiative transition from Yb3+ ions and localized surface plasmon resonance (from gold/silver nanoparticles) in a tungsten-tellurite glass. Such an interaction, similar to the down-conversion process, results in the Yb3+ emission in the near-infrared region via resonant and non-resonant energy transfers. We associated such effects with the dynamic coupling described by the variations generated by the Hamiltonian HDC in either the oscillator strength, or the local crystal field, i.e. the line shape changes in the emission band. Here, the Yb3+ ions emission is achieved through plasmon-photon coupling, observable as an enhancement or quenching in the luminescence spectra. Metallic nanoparticles have light-collecting capability in the visible spectrum and can accumulate almost all the photon energy on a nanoscale, which enable the excitation and emission of the Yb3+ ions in the near-infrared region. This plasmon-photon conversion was evaluated from the cavity’s quality factor (Q) and the coupling (g) between the nanoparticles and the Yb3+ ions. We have found samples of low-quality cavities and strong coupling between the nanoparticles and the Yb3+ ions. Our research can be extended towards the understanding of new plasmon-photon converters obtained from interactions between rare-earth ions and localized surface plasmon resonance. PMID:26725938
Plasmonic Roche lobe in metal-dielectric-metal structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiu, Ruei-Cheng; Lan, Yung-Chiang
2013-07-15
This study investigates a plasmonic Roche lobe that is based on a metal-dielectric-metal (MDM) structure using finite-difference time-domain simulations and theoretical analyses. The effective refractive index of the MDM structure has two centers and is inversely proportional to the distance from the position of interest to the centers, in a manner that is analogous to the gravitational potential in a two-star system. The motion of surface plasmons (SPs) strongly depends on the ratio of permittivities at the two centers. The Lagrange point is an unstable equilibrium point for SPs that propagate in the system. After the SPs have passed throughmore » the Lagrange point, their spread drastically increases.« less
Synthesis of generalized surface plasmon beams
NASA Astrophysics Data System (ADS)
Martinez-Niconoff, G.; Munoz-Lopez, J.; Martinez-Vara, P.
2009-08-01
Surface plasmon modes can be considered as the analogous to plane waves for homogeneous media. The extension to partially coherent surface plasmon beams is obtained by means of the incoherent superposition of the interference between surface plasmon modes whose profile is controlled associating a probability density function to the structural parameters implicit in their representation. We show computational simulations for cosine, Bessel, gaussian and dark hollow surface plasmon beams.
NASA Astrophysics Data System (ADS)
Narushima, Kazuki; Ashizawa, Yoshito; Brachwitz, Kerstin; Hochmuth, Holger; Lorenz, Michael; Grundmann, Marius; Nakagawa, Katsuji
2016-07-01
The magnetic activity of surface plasmons in Au/MFe2O4 (M = Ni, Co, and Zn) polycrystalline bilayer films fabricated on a quartz glass substrate was studied for future magnetic sensor applications using surface plasmon resonance. The excitation of surface plasmons and their magnetic activity were observed in all investigated Au/MFe2O4 films. The magnetic activity of surface plasmons of the polycrystalline Au/NiFe2O4 film was larger than those of the other polycrystalline Au/MFe2O4 films, the epitaxial NiFe2O4 film, and metallic films. The large magnetic activity of surface plasmons of the polycrystalline film is controlled by manipulating surface plasmon excitation conditions and magnetic properties.
Ferrick, Adam; Wang, Mei; Woehl, Taylor J
2018-05-29
Electric field-directed assembly of colloidal nanoparticles (NPs) has been widely adopted for fabricating functional thin films and nanostructured surfaces. While first-order electrokinetic effects on NPs are well-understood in terms of classical models, effects of second-order electrokinetics that involve induced surface charge are still poorly understood. Induced charge electroosmotic phenomena, such as electrohydrodynamic (EHD) flow, have long been implicated in electric field-directed NP assembly with little experimental basis. Here, we use in situ dark-field optical microscopy and plasmonic NPs to directly observe the dynamics of planar assembly of colloidal NPs adjacent to a planar electrode in low-frequency (<1 kHz) oscillatory electric fields. We exploit the change in plasmonic NP color resulting from interparticle plasmonic coupling to visualize the assembly dynamics and assembly structure of silver NPs. Planar assembly of NPs is unexpected because of strong electrostatic repulsion between NPs and indicates that there are strong attractive interparticle forces oriented perpendicular to the electric field direction. A parametric investigation of the voltage- and frequency-dependent phase behavior reveals that planar NP assembly occurs over a narrow frequency range below which irreversible ballistic deposition occurs. Two key experimental observations are consistent with EHD flow-induced NP assembly: (1) NPs remain mobile during assembly and (2) electron microscopy observations reveal randomly close-packed planar assemblies, consistent with strong interparticle attraction. We interpret planar assembly in terms of EHD fluid flow and develop a scaling model that qualitatively agrees with the measured phase regions. Our results are the first direct in situ observations of EHD flow-induced NP assembly and shed light on long-standing unresolved questions concerning the formation of NP superlattices during electric field-induced NP deposition.
A phased antenna array for surface plasmons
Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.
2016-01-01
Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099
Polarization-Directed Surface Plasmon Polariton Launching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.
The relative intensities of propagating surface plasmons (PSPs) simultaneously launched from opposing edges of a symmetric trench structure etched into a silver thin film may be controllably varied by tuning the linear polarization of the driving field. This is demonstrated through transient multiphoton photoemission electron microscopy measurements performed using a pair of spatially separated phase-locked femtosecond pulses. Our measurements are rationalized using finite-difference time domain simulations, which reveal that the coupling efficiency into the PSP modes is inversely proportional to the magnitude of the localized surface plasmon fields excited at the trench edges. Additional experiments on single step edges alsomore » show asymmetric PSP launching with respect to polarization, analogous to the trench results. Our combined experimental and computational results allude to the interplay between localized and propagating surface plasmon modes in the trench; strong coupling to the localized modes at the edges correlates to weak coupling to the PSP modes. Simultaneous excitation of the electric fields localized at both edges of the trench results in complex interactions between the right- and left-side PSP modes with Fabry-Perot and cylindrical modes. This results in a trench width-dependent PSP intensity ratio using otherwise identical driving fields. A systematic exploration of polarization directed PSP launching from a series of trench structures reveals an optimal PSP contrast ratio of 4.2 using a 500 nm-wide trench.« less
Plasmonic core-satellite assemblies with high stability and yield (Conference Presentation)
NASA Astrophysics Data System (ADS)
Huang, Li-Ching; Lin, Tien-Hsin; Liu, Zhi-Yan; Chen, Jyun-Hao; Wang, Yi-Chen; Chen, Shiuan-Yeh
2016-09-01
Plasmonic structures are attractive due to their optical properties in the near-field and far-field. In the near-field, the enhanced field they generated strongly interacts with materials in proximity to the surface and even produces the quantum hybrid states in the strong coupling regime. In the far-field, the larger scattering cross section of plasmonic particles provides better contrast for tissue imaging. In addition, the strong absorption can generate substantial amount of heat for cancer cell elimination. These optical properties are usually engineered through tuning the size and morphology of individual nanoparticles by various chemical synthesis methods. The alternative way is to use coupled structure based on existing particles. The molecule-linked structure is a common way for 3D plasmonic materials. However, to produce a stable coupled structure in the solution phase is challenging. The formation of linkage between linker molecules is usually time-consuming and at low efficiency. Increasing the concentration of linker molecules may raise the reaction speed but also result in the random aggregation of particles. In this work, a polyelectrolyte coating is used to connect spherical nanoparticles of different sizes to form core-satellite assemblies (CSA). The coupled core-satellite structure is formed almost immediately after the solutions of two particles are mixed. The output efficiency is nearly 100%. The CSA is robust under the additional silica shell coating and strong laser illumination. The stability of this CSA is confirmed by the Raman spectra and this assembly can potentially be used as Raman tags.
Partially coherent surface plasmon modes
NASA Astrophysics Data System (ADS)
Niconoff, G. M.; Vara, P. M.; Munoz-Lopez, J.; Juárez-Morales, J. C.; Carbajal-Dominguez, A.
2011-04-01
Elementary long-range plasmon modes are described assuming an exponential dependence of the refractive index in the neighbourhood of the interface dielectric-metal thin film. The study is performed using coupling mode theory. The interference between two long-range plasmon modes generated that way allows the synthesis of surface sinusoidal plasmon modes, which can be considered as completely coherent generalized plasmon modes. These sinusoidal plasmon modes are used for the synthesis of new partially coherent surface plasmon modes, which are obtained by means of an incoherent superposition of sinusoidal plasmon modes where the period of each one is considered as a random variable. The kinds of surface modes generated have an easily tuneable profile controlled by means of the probability density function associated to the period. We show that partially coherent plasmon modes have the remarkable property to control the length of propagation which is a notable feature respect to the completely coherent surface plasmon mode. The numerical simulation for sinusoidal, Bessel, Gaussian and Dark Hollow plasmon modes are presented.
NASA Astrophysics Data System (ADS)
Bossard-Giannesini, Léo; Cruguel, Hervé; Lacaze, Emmanuelle; Pluchery, Olivier
2016-09-01
Gold nanoparticles (AuNPs) are known for their localized surface plasmon resonance (LSPR) that can be measured with UV-visible spectroscopy. AuNPs are often deposited on silicon substrates for various applications, and the LSPR is measured in reflection. In this case, optical spectra are measured by surface differential reflectance spectroscopy (SDRS) and the absorbance exhibits a negative peak. This article studies both experimentally and theoretically on the single layers of 16 nm diameter spherical gold nanoparticles (AuNPs) grafted on silicon. The morphology and surface density of AuNPs were investigated by atomic force microscopy (AFM). The plasmon response in transmission on the glass substrate and in reflection on the silicon substrate is described by an analytical model based on the Fresnel equations and the Maxwell-Garnett effective medium theory (FMG). The FMG model shows a strong dependence to the incidence angle of the light. At low incident angles, the peak appears negatively with a shallow intensity, and at angles above 30°, the usual positive shape of the plasmon is retrieved. The relevance of the FMG model is compared to the Mie theory within the dipolar approximation. We conclude that no Fano effect is responsible for this derivative shape. An easy-to-use formula is derived that agrees with our experimental data.
Cuadra, Jorge; Baranov, Denis G; Wersäll, Martin; Verre, Ruggero; Antosiewicz, Tomasz J; Shegai, Timur
2018-03-14
Formation of dressed light-matter states in optical structures, manifested as Rabi splitting of the eigen energies of a coupled system, is one of the key effects in quantum optics. In pursuing this regime with semiconductors, light is usually made to interact with excitons, electrically neutral quasiparticles of semiconductors; meanwhile interactions with charged three-particle states, trions, have received little attention. Here, we report on strong interaction between localized surface plasmons in silver nanoprisms and excitons and trions in monolayer tungsten disulfide (WS 2 ). We show that the plasmon-exciton interactions in this system can be efficiently tuned by controlling the charged versus neutral exciton contribution to the coupling process. In particular, we show that a stable trion state emerges and couples efficiently to the plasmon resonance at low temperature by forming three bright intermixed plasmon-exciton-trion polariton states. Our findings open up a possibility to exploit electrically charged polaritons at the single nanoparticle level.
Huang, Peng; Lin, Jing; Li, Wanwan; Rong, Pengfei; Wang, Zhe; Wang, Shouju; Wang, Xiaoping; Sun, Xiaolian; Aronova, Maria; Niu, Gang; Leapman, Richard D; Nie, Zhihong; Chen, Xiaoyuan
2013-12-23
The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near-infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG-b-PCL block-copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37%) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea
2017-02-01
Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator (MTR), combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.
NASA Astrophysics Data System (ADS)
Shokri-Kojori, Hossein; Ji, Yiwen; Han, Xu; Paik, Younghun; Braunschweig, Adam; Kim, Sung Jin
2016-03-01
Localized surface Plasmon Resonance (LSPR) is a nanoscale phenomenon which presents strong resonance associated with noble metal nanostructures. This plasmon resonance based technology enables highly sensitive detection for chemical and biological applications. Recently, we have developed a plasmon field effect transistor (FET) that enables direct plasmonic-to-electric signal conversion with signal amplification. The plasmon FET consists of back-gated field effect transistor incorporated with gold nanoparticles on top of the FET channel. The gold nanostructures are physically separated from transistor electrodes and can be functionalized for a specific biological application. In this presentation, we report a successful demonstration of a model system to detect Con A proteins using Carbohydrate linkers as a capture molecule. The plasmon FET detected a very low concentration of Con A (0.006 mg/L) while it offers a wide dynamic range of 0.006-50 mg/L. In this demonstration, we used two-color light sources instead of a bulky spectrometer to achieve high sensitivity and wide dynamic range. The details of two-color based differential measurement method will be discussed. This novel protein-based sensor has several advantages such as extremely small size for point-of-care system, multiplexing capability, no need of complex optical geometry.
NASA Astrophysics Data System (ADS)
Zhang, Zu-Yin; Wang, Li-Na; Hu, Hai-Feng; Li, Kang-Wen; Ma, Xun-Peng; Song, Guo-Feng
2013-10-01
We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.
Plasmonic nanostructures for bioanalytical applications of SERS
NASA Astrophysics Data System (ADS)
Kahraman, Mehmet; Wachsmann-Hogiu, Sebastian
2016-03-01
Surface-enhanced Raman scattering (SERS) is a potential analytical technique for the detection and identification of chemicals and biological molecules and structures in the close vicinity of metallic nanostructures. We present a novel method to fabricate tunable plasmonic nanostructures and perform a comprehensive structural and optical characterization of the structures. Spherical latex particles are uniformly deposited on glass slides and used as templates to obtain nanovoid structures on polydimethylsiloxane surfaces. The diameter and depth of the nanovoids are controlled by the size of the latex particles. The nanovoids are coated with a thin Ag layer for fabrication of uniform plasmonic nanostructures. Structural characterization of the surfaces is performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Optical properties of these plasmonic nanostructures are evaluated via UV/Vis spectroscopy, and SERS. The sample preparation step is the key point to obtain strong and reproducible SERS spectra from the biological structures. When the colloidal suspension is used as a SERS substrate for the protein detection, the electrostatic interaction of the proteins with the nanoparticles is described by the nature of their charge status, which influences the aggregation properties such as the size and shape of the aggregates, which is critical for the SERS experiment. However, when the solid SERS substrates are fabricated, SERS signal of the proteins that are background free and independent of the protein charge. Pros and cons of using plasmonic nano colloids and nanostructures as SERS substrate will be discussed for label-free detection of proteins using SERS.
Photoinduced currents in metal-barrier-metal junctions
NASA Technical Reports Server (NTRS)
Guedes, M. P.; Gustafson, T. K.; Heiblum, M.; Siu, D. P.; Slayman, C. W.; Whinnery, J. R.; Yasuoka, Y.
1978-01-01
The fabrication and application of metal-barrier-metal tunneling junctions for radiative interactions are discussed. Particular attention is given to the photolithographic fabrication of small area devices and the coupling to such devices via surface plasmon waves which play an important role at infrared and optical frequencies. It has been shown that the junction electron tunneling currents can be strongly coupled to surface plasmon junction modes, and spontaneous and stimulated emission of the latter are possible as well as nonlinear interactions. Finally, results demonstrating the photo-excitation of electrons with subsequent tunneling induced by ultraviolet radiation are presented. It is estimated that quantum efficiencies of the order of 5% and higher are possible in the ultraviolet region.
NASA Astrophysics Data System (ADS)
Sato, Yuichi; Naya, Shin-ichi; Tada, Hiroaki
2015-10-01
Ultrathin Cu layers (˜2 atomic layers) have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO2 (Au@Cu/TiO2) by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO2 for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm). Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO2.
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhao, Hua; Xu, Chao; Li, Liang; Hu, Guangwei; Zhang, Jingwen
2014-10-01
Photorefractive (PR) phase gratings were used in coupling energy between visible light and surface plasmon polaritons in indium-tin oxide (ITO)-coated iron-doped lithium niobate (Fe:LN) crystal slabs via electrostatic modification at the ITO/LN interface based on a strong photovoltaic effect. The energy coupling is considered to be responsible for several interesting observations: (1) dynamic reflectivity change from 3.25 to 37.0% of the very first reflection at the entrance slab interface, (2) total light reflectivity as high as 89%, and (3) two-dimensional diffraction patterns without external feedback needed.
Huang, Wenyu; Qian, Wei; El-Sayed, Mostafa A
2006-10-18
Femtosecond laser irradiation of assembled nanoprisms on a quartz substrate at their strong absorbing surface plasmon resonance frequency causes their propulsion from the substrate. SEM and AFM show that the particles fly while keeping their prismatic shape, but they decrease in size by an amount that can be calculated assuming atomic sublimation. Several mechanisms are mentioned, but the sublimation mechanism, which rapidly builds up pressure under the particle and propels it away from substrate, is discussed in detail. From the kinetic energy given to the flying nanoparticle, an initial velocity of approximately 160 m/s ( approximately 360 miles/h) is calculated. The dependence of the observed flying mechanism on the rate of energy deposition (i.e., with nanosecond vs femtosecond laser pulses) is discussed.
NASA Astrophysics Data System (ADS)
Fang, Jing; Song, Guofen; Liu, Qinglei; Zhang, Wang; Gu, Jiajun; Su, Yishi; Su, Huilan; Guo, Cuiping; Zhang, Di
2018-01-01
Photocatalytic water splitting via utilizing various semiconductors is recognized as a promising way for hydrogen production. Plasmonic metals with sub-micrometer textures can improve the photocatalytic performance of semiconductors via a localized surface plasmon resonance (LSPR) process. Moreover, arrays of multilayer metallic structures can help generate strong LSPR. However, artificial synthesis has difficulties in constructing novel multilayer metallic arrays down to nanoscales. Here, we use three dimensional (3D) scales from Morpho didius forewings (M) to prepare 3D Au-wings with intact hierarchical bio-structures. For comparison, we use Troides helena forewings (T) which are known for their antireflection quasi-honeycomb structures resulting in strong light absorbing ability. Results show that multilayer rib structures of Au-M can significantly amplify the LSPR of 3D Au and thus can efficiently help the photocatalytic process (9-fold increase). This amplification effect is obviously more superior to the straightforward enhancement of the absorption of incident light (Au-T, 5-fold increase). Thus, our study provides the possibility to prepare highly efficient plasmonic photocatalysts (possessing 3D multilayer rib structures) via an easy method. This work will also be revealing for plasmonic applications in other fields.
Polarization-resolved optical response of plasmonic particle-on-film nanocavities
NASA Astrophysics Data System (ADS)
Zhang, Q.; Li, G.-C.; Lo, T. W.; Lei, D. Y.
2018-02-01
Placing a metal nanoparticle atop a metal film forms a plasmonic particle-on-film nanocavity. Such a nanocavity supports strong plasmonic coupling that results in rich hybridized plasmon modes, rendering the cavity a versatile platform for exploiting a wide range of plasmon-enhanced spectroscopy applications. In this paper, we fully address the polarization-resolved, orientation-dependent far-field optical responses of plasmonic monomer- and dimer-on-film nanocavities by numerical simulations and experiments. With polarization-resolved dark-field spectroscopy, the distinct plasmon resonances of these nanocavities are clearly determined from their scattering spectra. Moreover, the radiation patterns of respective plasmon modes, which are often mixed together in common dark-field imaging, can be unambiguously resolved with our proposed quasi-multispectral imaging method. Explicitly, the radiation pattern of the monomer-on-film nanocavity gradually transitions from a solid spot in the green imaging channel to a doughnut ring in the red channel when tuning the excitation polarization from parallel to perpendicular to the sample surface. This observation holds true for the plasmonic dimer-on-film nanocavity with the dimer axis aligned in the incidence plane; when the dimer axis is normal to the incidence plane, the pattern transitions from a solid spot to a doughnut ring both in the red channel. These studies not only demonstrate a flexible polarization control over the optical responses of plasmonic particle-on-film nanostructures but also enrich the optical tool kit for far-field imaging and spectroscopy characterization of various plasmonic nanostructures.
Generation of spin currents by surface plasmon resonance
Uchida, K.; Adachi, H.; Kikuchi, D.; Ito, S.; Qiu, Z.; Maekawa, S.; Saitoh, E.
2015-01-01
Surface plasmons, free-electron collective oscillations in metallic nanostructures, provide abundant routes to manipulate light–electron interactions that can localize light energy and alter electromagnetic field distributions at subwavelength scales. The research field of plasmonics thus integrates nano-photonics with electronics. In contrast, electronics is also entering a new era of spintronics, where spin currents play a central role in driving devices. However, plasmonics and spin-current physics have so far been developed independently. Here we report the generation of spin currents by surface plasmon resonance. Using Au nanoparticles embedded in Pt/BiY2Fe5O12 bilayer films, we show that, when the Au nanoparticles fulfill the surface-plasmon-resonance conditions, spin currents are generated across the Pt/BiY2Fe5O12 interface. This spin-current generation cannot be explained by conventional heating effects, requiring us to introduce nonequilibrium magnons excited by surface-plasmon-induced evanescent electromagnetic fields in BiY2Fe5O12. This plasmonic spin pumping integrates surface plasmons with spin-current physics, opening the door to plasmonic spintronics. PMID:25569821
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sykes, Matthew E.; Stewart, Jon W.; Akselrod, Gleb M.
The creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy. We find evidence for three subpopulations of nonthermal carriers which we propose arise from anisotropic electron-electron scatteringmore » within sp-bands near the Fermi surface. The bimetallic character of the metasurface strongly impacts the physics, with dissipation occurring primarily in the gold whereas the quantum process of hot electron generation takes place in both components. As a result, our calculations show that the choice of geometry and materials is crucial for producing strong ultrafast nonthermal electron components.« less
Sykes, Matthew E.; Stewart, Jon W.; Akselrod, Gleb M.; ...
2017-10-17
The creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy. We find evidence for three subpopulations of nonthermal carriers which we propose arise from anisotropic electron-electron scatteringmore » within sp-bands near the Fermi surface. The bimetallic character of the metasurface strongly impacts the physics, with dissipation occurring primarily in the gold whereas the quantum process of hot electron generation takes place in both components. As a result, our calculations show that the choice of geometry and materials is crucial for producing strong ultrafast nonthermal electron components.« less
Terahertz plasmon and surface-plasmon modes in hollow nanospheres
2012-01-01
We present a theoretical study of the electronic subband structure and collective electronic excitation associated with plasmon and surface plasmon modes in metal-based hollow nanosphere. The dependence of the electronic subband energy on the sample parameters of the hollow nanosphere is examined. We find that the subband states with different quantum numbers l degenerate roughly when the outer radius of the sphere is r2 ≥ 100 nm. In this case, the energy spectrum of a sphere is mainly determined by quantum number n. Moreover, the plasmon and surface plasmon excitations can be achieved mainly via inter-subband transitions from occupied subbands to unoccupied subbands. We examine the dependence of the plasmon and surface-plasmon frequencies on the shell thickness d and the outer radius r2 of the sphere using the standard random-phase approximation. We find that when a four-state model is employed for calculations, four branches of the plasmon and surface plasmon oscillations with terahertz frequencies can be observed, respectively. PMID:23092121
Radiation characteristics of Leaky Surface Plasmon polaritons of graphene
NASA Astrophysics Data System (ADS)
Mohadesi, V.; Asgari, A.; Siahpoush, V.
2018-07-01
High efficient coupling of graphene surface plasmons to far field radiation is possible by some techniques and can be used in the radiating applications. Besides of the coupling efficiency, the angular distribution of the radiated power is an important parameter in the radiating devices performance. In this paper we investigate the gain of the far field radiation related to the coupling of graphene surface plasmons via a high permittivity medium located close to the graphene. Our results show that high directive radiation and high coupling efficiency can be obtained by this technique and gain and directivity of radiation can be modified by graphene characteristics such as chemical potential and also quality of the graphene. Raising the chemical potential of graphene leads to increase the gain of the radiation as the result of amplifying the directivity of the radiation. Furthermore, high values of relaxation time lead to high directive and strong coupling which raises the maximum value of gain in efficient coupling angle. Tunable characteristics of gain and directivity in this structure can be important designing reconfigurable THz radiating devices.
Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater
Zhang, Zhijian; Kusimo, Abisola; Yu, Miao
2014-01-01
We present an optofluidic microvalve utilizing an embedded, surface plasmon-enhanced fiber optic microheater. The fiber optic microheater is formed by depositing a titanium thin film on the roughened end-face of a silica optical fiber that serves as a waveguide to deliver laser light to the titanium film. The nanoscale roughness at the titanium-silica interface enables strong light absorption enhancement in the titanium film through excitation of localized surface plasmons as well as facilitates bubble nucleation. Our experimental results show that due to the unique design of the fiber optic heater, the threshold laser power required to generate a bubble is greatly reduced and the bubble growth rate is significantly increased. By using the microvalve, stable vapor bubble generation in the microchannel is demonstrated, which does not require complex optical focusing and alignment. The generated vapor bubble is shown to successfully block a liquid flow channel with a size of 125 μm × 125 μm and a flow rate of ∼10 μl/min at ∼120 mW laser power. PMID:25538813
Immobilization of human papillomavirus DNA probe for surface plasmon resonance imaging
NASA Astrophysics Data System (ADS)
Chong, Xinyuan; Ji, Yanhong; Ma, Suihua; Liu, Le; Liu, Zhiyi; Li, Yao; He, Yonghong; Guo, Jihua
2009-08-01
Human papillomavirus (HPV) is a kind of double-stranded DNA virus whose subspecies have diversity. Near 40 kinds of subspecies can invade reproductive organ and cause some high risk disease, such as cervical carcinoma. In order to detect the type of the subspecies of the HPV DNA, we used the parallel scan spectral surface plasmon resonance (SPR) imaging technique, which is a novel type of two- dimensional bio-sensing method based on surface plasmon resonance and is proposed in our previous work, to study the immobilization of the HPV DNA probes on the gold film. In the experiment, four kinds of the subspecies of the HPV DNA (HPV16, HPV18, HPV31, HPV58) probes are fixed on one gold film, and incubate in the constant temperature condition to get a HPV DNA probe microarray. We use the parallel scan spectral SPR imaging system to detect the reflective indices of the HPV DNA subspecies probes. The benefits of this new approach are high sensitive, label-free, strong specificity and high through-put.
Surface Plasmon-Assisted Solar Energy Conversion.
Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun
2016-01-01
The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.
NASA Astrophysics Data System (ADS)
Du, Zhiyuan; Hu, Bin; Cyril, Planchon; Liu, Juan; Wang, Yongtian
2017-10-01
Local surface plasmonic resonance (LSPR) produced by metallic nano-structures is often sensitive to the refractive index of the surrounding media and can be applied for sensing. However, it often suffers from large line width caused by large plasmonic radiative damping, especially in the infrared (IR) frequencies, which reduces the sensitivity. Here we propose a hybrid structure consists of a graphene stripe and a gold gap-ring at short-IR frequencies (1-3 µm). Due to the low loss and high plasmonic confinement of graphene, LSPR line width of 6 nm is obtained. In addition, due to the strong coupling of the gold gap-ring with graphene stripe, the intensity of graphene LSPR is enhanced by 100 times. Simulation results show that the sensitivity of the sensor is ~1000 nm/RIU (refractive index unit) and the figure of merit (FoM) can reach up to 383.
Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials
NASA Astrophysics Data System (ADS)
Wang, Pan; Krasavin, Alexey V.; Nasir, Mazhar E.; Dickson, Wayne; Zayats, Anatoly V.
2018-02-01
Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.
Active Plasmonics: Principles, Structures, and Applications.
Jiang, Nina; Zhuo, Xiaolu; Wang, Jianfang
2018-03-28
Active plasmonics is a burgeoning and challenging subfield of plasmonics. It exploits the active control of surface plasmon resonance. In this review, a first-ever in-depth description of the theoretical relationship between surface plasmon resonance and its affecting factors, which forms the basis for active plasmon control, will be presented. Three categories of active plasmonic structures, consisting of plasmonic structures in tunable dielectric surroundings, plasmonic structures with tunable gap distances, and self-tunable plasmonic structures, will be proposed in terms of the modulation mechanism. The recent advances and current challenges for these three categories of active plasmonic structures will be discussed in detail. The flourishing development of active plasmonic structures opens access to new application fields. A significant part of this review will be devoted to the applications of active plasmonic structures in plasmonic sensing, tunable surface-enhanced Raman scattering, active plasmonic components, and electrochromic smart windows. This review will be concluded with a section on the future challenges and prospects for active plasmonics.
Polarization Enhanced Charge Transfer: Dual-Band GaN-Based Plasmonic Photodetector.
Jia, Ran; Zhao, Dongfang; Gao, Naikun; Liu, Duo
2017-01-13
Here, we report a dual-band plasmonic photodetector based on Ga-polar gallium nitride (GaN) for highly sensitive detection of UV and green light. We discover that decoration of Au nanoparticles (NPs) drastically increases the photoelectric responsivities by more than 50 times in comparition to the blank GaN photodetector. The observed behaviors are attributed to polarization enhanced charge transfer of optically excited hot electrons from Au NPs to GaN driven by the strong spontaneous polarization field of Ga-polar GaN. Moreover, defect ionization promoted by localized surface plasmon resonances (LSPRs) is also discussed. This novel type of photodetector may shed light on the design and fabrication of photoelectric devices based on polar semiconductors and microstructural defects.
Optimally designed gold nanorattles with strong built-in hotspots and weak polarization dependence
NASA Astrophysics Data System (ADS)
Zhang, Xuemin; Wang, Tieqiang; Li, Yunong; Fu, Yu; Guo, Lei
2017-12-01
Localized electromagnetic fields generated by interparticle plasmon coupling suffer greatly from nonreproducibility because they are extremely sensitive to the nanoparticle aggregation status and the incident polarization. Here, we synthesize gold nanorattles that exhibit inherent aggregation-insensitive hotspots due to the intraparticle core-shell plasmon coupling, and investigate the structural effect on the intraparticle coupling strength and its polarization dependence. Through optimizing the structural parameters, we successfully synthesize gold nanorattles with strong built-in hotspots and weak polarization dependence. These aggregation-insensitive and weakly polarization-dependent hotspots make the Raman enhancement from nanorattle aggregates show an unusual weak dependence on the particle aggregation status, which therefore affords the opportunity to fabricate uniform and reproducible surface enhanced Raman scattering substrates.
Sub-diffraction Imaging via Surface Plasmon Decompression
2014-06-08
of the local wavelength of a surface plasmon polariton supported by two adjoining curved metal surfaces. The views, opinions and/or findings...adiabatic decompression of the local wavelength of a surface plasmon polariton supported by two adjoining curved metal surfaces. Conference Name...diffraction imaging based on a process of adiabatic decompression of the local wavelength of a surface plasmon polariton supported by two adjoining curved
NASA Astrophysics Data System (ADS)
Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant
2014-10-01
Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04719b
Compact discs as versatile cost-effective substrates for releasable nanopatterned aluminium films
NASA Astrophysics Data System (ADS)
Barrios, Carlos Angulo; Canalejas-Tejero, Víctor
2015-02-01
We demonstrate that standard polycarbonate compact disk surfaces can provide unique adhesion to Al films that is both strong enough to permit Al film nanopatterning and weak enough to allow easy nanopatterned Al film detachment using Scotch tape. Transferred Al nanohole arrays on Scotch tape exhibit excellent optical and plasmonic performance.We demonstrate that standard polycarbonate compact disk surfaces can provide unique adhesion to Al films that is both strong enough to permit Al film nanopatterning and weak enough to allow easy nanopatterned Al film detachment using Scotch tape. Transferred Al nanohole arrays on Scotch tape exhibit excellent optical and plasmonic performance. Electronic supplementary information (ESI) available: 1. Optical simulations (Fig. SI.1); 2. Optical coupling via an Al NHA on the Scotch tape (Fig. SI.2); 3. Electrostatics-based opto-mechanical cantilever (Fig. SI.3). Video 1. Transfer of the Al film nanostructured with a nanohole array from a polycarbonate CD surface onto a Scotch tape; Video 2. Opto-mechanical electrostatics-based sensor: electrical attraction. Video 3. Opto-mechanical electrostatics-based sensor: electrical repulsion. See DOI: 10.1039/c4nr06271j
Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo
2016-01-01
The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics. PMID:27872494
Strong damping of the localized surface plasmon resonance of Ag nanoparticles by Ag2O.
Wu, Qingmen; Si, Mengting; Zhang, Bing; Zhang, Kang; Li, Huanhuan; Mi, Longfei; Jiang, Yang; Rong, Yan; Chen, Junling; Fang, Yingcui
2018-07-20
By studying oxidation of AgNPs (Ag nanoparticles) and decomposition of the produced silver oxide, we demonstrate that the localized surface plasmon resonance (LSPR) of AgNPs was damped by Ag 2 O produced during oxygen plasma irradiation (OPI). The AgNPs were fabricated by evaporation of high pure silver under high vacuum. The oxidation was conducted in oxygen plasma generated by radio frequency glow discharging in vacuum, and the decomposition was performed by annealing the silver oxide in nitrogen ambient at temperatures ranging from room temperature to 450 °C. Samples were characterized by color, absorption spectra, surface enhanced Raman scattering, x-ray photoelectron spectroscopy, and field emission scanning electron microscopy. The bandgap of the silver oxide was calculated. We propose that AgNPs are only partially oxidized into silver oxide during OPI, and the LSPR of the AgNPs left without being oxidation is strongly damped by the produced silver oxide. This LSPR damping is responsible for the transparency of the sample after OPI for 2 s.
Strong damping of the localized surface plasmon resonance of Ag nanoparticles by Ag2O
NASA Astrophysics Data System (ADS)
Wu, Qingmen; Si, Mengting; Zhang, Bing; Zhang, Kang; Li, Huanhuan; Mi, Longfei; Jiang, Yang; Rong, Yan; Chen, Junling; Fang, Yingcui
2018-07-01
By studying oxidation of AgNPs (Ag nanoparticles) and decomposition of the produced silver oxide, we demonstrate that the localized surface plasmon resonance (LSPR) of AgNPs was damped by Ag2O produced during oxygen plasma irradiation (OPI). The AgNPs were fabricated by evaporation of high pure silver under high vacuum. The oxidation was conducted in oxygen plasma generated by radio frequency glow discharging in vacuum, and the decomposition was performed by annealing the silver oxide in nitrogen ambient at temperatures ranging from room temperature to 450 °C. Samples were characterized by color, absorption spectra, surface enhanced Raman scattering, x-ray photoelectron spectroscopy, and field emission scanning electron microscopy. The bandgap of the silver oxide was calculated. We propose that AgNPs are only partially oxidized into silver oxide during OPI, and the LSPR of the AgNPs left without being oxidation is strongly damped by the produced silver oxide. This LSPR damping is responsible for the transparency of the sample after OPI for 2 s.
Generation of ultra-wideband achromatic Airy plasmons on a graphene surface.
Guan, Chunying; Yuan, Tingting; Chu, Rang; Shen, Yize; Zhu, Zheng; Shi, Jinhui; Li, Ping; Yuan, Libo; Brambilla, Gilberto
2017-02-01
Tunable ultra-wideband achromatic plasmonic Airy beams are demonstrated on graphene surfaces. Surface plasmonic polaritons are excited using diffractive gratings. The phase and amplitude of plasmonic waves on the graphene surface are determined by the relative position between the grating arrays and the duty ratio of the grating unit cell, respectively. The transverse acceleration and nondiffraction properties of plasmonic waves are observed. The achromatic Airy plasmons with identical acceleration trajectory at different excited frequencies can be achieved by tuning dynamically the Fermi energy of graphene without reoptimizing the grating structures. The proposed devices may find applications in photonics integrations and surface optical manipulation.
Polarization independent asymmetric light absorption in plasmonic nanostructure
NASA Astrophysics Data System (ADS)
Franco Rêgo, Davi; Rodriguez-Esquerre, Vitaly Felix
2017-08-01
The directional dependency of the optical coefficients, such as absorbance and reflectance, of a periodic hole plasmonic structure is numerically simulated and investigated. The tridimensional structure, which is composed of a metallic thin layer on a semiconductor matrix, is polarization independent and exhibits wide angle tolerance. It is found that the optical coefficients of the simulated structure have strong dependency to the radii of the holes due to cavity modes resonance and surface plasmon resonance. Simulations were carried out using gold and silver, varying the holes radii ranging from 40 to 70nm, as well as its depth, from 30 to 60nm of the metallic thin layer and from 100 to 200nm of the semiconductor matrix. A maximum contrast ratio of a unit was obtained. The resonant modes excited in the structure and excitation of surface plasmon polaritons in the metallic side illumination favors absorption, which explains the asymmetric behavior. We also investigate the structure's fabrication sensitivity by randomizing the generation of center of the holes in a supercell. These findings are significant for a diverse range of applications, ranging from optical integrated circuits to solar and thermovoltaics energy harvesting.
Graphene-based active slow surface plasmon polaritons
Lu, Hua; Zeng, Chao; Zhang, Qiming; Liu, Xueming; Hossain, Md Muntasir; Reineck, Philipp; Gu, Min
2015-01-01
Finding new ways to control and slow down the group velocity of light in media remains a major challenge in the field of optics. For the design of plasmonic slow light structures, graphene represents an attractive alternative to metals due to its strong field confinement, comparably low ohmic loss and versatile tunability. Here we propose a novel nanostructure consisting of a monolayer graphene on a silicon based graded grating structure. An external gate voltage is applied to graphene and silicon, which are separated by a spacer layer of silica. Theoretical and numerical results demonstrate that the structure exhibits an ultra-high slowdown factor above 450 for the propagation of surface plasmon polaritons (SPPs) excited in graphene, which also enables the spatially resolved trapping of light. Slowdown and trapping occur in the mid-infrared wavelength region within a bandwidth of ~2.1 μm and on a length scale less than 1/6 of the operating wavelength. The slowdown factor can be precisely tuned simply by adjusting the external gate voltage, offering a dynamic pathway for the release of trapped SPPs at room temperature. The presented results will enable the development of highly tunable optoelectronic devices such as plasmonic switches and buffers. PMID:25676462
Sol-Gel Thin Films for Plasmonic Gas Sensors
Della Gaspera, Enrico; Martucci, Alessandro
2015-01-01
Plasmonic gas sensors are optical sensors that use localized surface plasmons or extended surface plasmons as transducing platform. Surface plasmons are very sensitive to dielectric variations of the environment or to electron exchange, and these effects have been exploited for the realization of sensitive gas sensors. In this paper, we review our research work of the last few years on the synthesis and the gas sensing properties of sol-gel based nanomaterials for plasmonic sensors. PMID:26184216
Ultrafast and nonlinear surface-enhanced Raman spectroscopy.
Gruenke, Natalie L; Cardinal, M Fernanda; McAnally, Michael O; Frontiera, Renee R; Schatz, George C; Van Duyne, Richard P
2016-04-21
Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies.
NASA Astrophysics Data System (ADS)
Gezgin, Serap Yiǧit; Kepceoǧlu, Abdullah; Kılıç, Hamdi Şükür
2017-02-01
Noble metal nano-structures such as Ag, Cu, Au are used commonly to increase power conversion efficiency of the solar cell by using their surface plasmons. The plasmonic metal nanoparticles of Ag among others that have strong LSPR in near UV range. They increase photon absorbance via embedding in the active semiconductor of the solar cell. Thin films of Ag are grown in the desired particle size and interparticle distance easily and at low cost by PLD technique. Ag nanoparticle thin films were grown on micro slide glass at 25-36 mJ laser pulse energies under by PLD using ns-Nd:YAG laser. The result of this work have been presented by carrying out UV-VIS and AFM analysis. It was concluded that a laser energy increases, the density and size of Ag-NPs arriving on the substrate increases, and the interparticle distance was decreases. Therefore, LSPR wavelength shifts towards to longer wavelength region.
Tailored Surfaces/Assemblies for Molecular Plasmonics and Plasmonic Molecular Electronics.
Lacroix, Jean-Christophe; Martin, Pascal; Lacaze, Pierre-Camille
2017-06-12
Molecular plasmonics uses and explores molecule-plasmon interactions on metal nanostructures for spectroscopic, nanophotonic, and nanoelectronic devices. This review focuses on tailored surfaces/assemblies for molecular plasmonics and describes active molecular plasmonic devices in which functional molecules and polymers change their structural, electrical, and/or optical properties in response to external stimuli and that can dynamically tune the plasmonic properties. We also explore an emerging research field combining molecular plasmonics and molecular electronics.
Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W.; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François
2016-01-01
Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521
Optical Isolator Utilizing Surface Plasmons
Zayets, Vadym; Saito, Hidekazu; Ando, Koji; Yuasa, Shinji
2012-01-01
Feasibility of usage of surface plasmons in a new design of an integrated optical isolator has been studied. In the case of surface plasmons propagating at a boundary between a transition metal and a double-layer dielectric, there is a significant difference of optical loss for surface plasmons propagating in opposite directions. Utilizing this structure, it is feasible to fabricate a competitive plasmonic isolator, which benefits from a broad wavelength operational bandwidth and a good technological compatibility for integration into the Photonic Integrated Circuits (PIC). The linear dispersion relation was derived for plasmons propagating in a multilayer magneto-optical slab. PMID:28817012
2014-12-17
surface bound modes named spoofed surface plasmon polariton (SSPP) modes. Such modes mimic the common optical surface plasmon mode traveling at...Triangle Park, NC 27709-2211 Terahertz, Biosensing, Mach Zehnder Interferometer, Multiplexer and Spoof surface Plasmon Polariton REPORT DOCUMENTATION PAGE...frequencies, the textured surfaces on a subwavelength scale can support surface bound modes named spoofed surface plasmon polariton (SSPP) modes. Such modes
Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.
Li, Keke; Liu, Anping; Wei, Dapeng; Yu, Keke; Sun, Xiaonan; Yan, Sheng; Huang, Yingzhou
2018-04-25
Benefiting from the induced image charge on metal film, the light energy is confined on a film surface under metal nanoparticle dimer, which is called electromagnetic field redistribution. In this work, electromagnetic field distribution of metal nanoparticle monomer or dimer on graphene is investigated through finite-difference time-domain method. The results point out that the electromagnetic field (EM) redistribution occurs in this nanoparticle/graphene hybrid system at infrared region where light energy could also be confined on a monolayer graphene surface. Surface charge distribution was analyzed using finite element analysis, and surface-enhanced Raman spectrum (SERS) was utilized to verify this phenomenon. Furthermore, the data about dielectric nanoparticle on monolayer graphene demonstrate this EM redistribution is attributed to strong coupling between light-excited surface charge on monolayer graphene and graphene plasmon-induced image charge on dielectric nanoparticle surface. Our work extends the knowledge of monolayer graphene plasmon, which has a wide range of applications in monolayer graphene-related film.
Optical properties of plasmonic nanostructures: Theory & experiments
NASA Astrophysics Data System (ADS)
Bala Krishna, Juluri
Metal nanoparticles and thin films enable localization of electromagnetic energy in the form of localized surface plasmon resonances (LSPR) and propagating surface plasmons respectively. This research field, also known as plasmonics, involves understanding and fabricating innovative nanostructures designed to manage and utilize localized light in the nanoscale. Advances in plasmonics will facilitate innovation in sensing, biomedical engineering, energy harvesting and nanophotonic devices. In this thesis, three aspects of plasmonics are studied: 1) active plasmonic systems using charge-induced plasmon shifts (CIPS) and plasmon-molecule resonant coupling; 2) scalable solutions to fabricate large electric field plasmonic nanostructures; and 3) controlling the propagation of designer surface plasmons (DSPs) using parabolic graded media. The full potential of plasmonics can be realized with active plasmonic devices which provide tunable plasmon resonances. The work reported here develops both an understanding for and realization of various mechanisms to achieve tunable plasmonic systems. First, we show that certain nanoparticle geometries and material compositions enable large CIPS. Second, we propose and investigate systems which exhibit coupling between molecular and plasmonic resonances where energy splitting is observed due to interactions between plasmons and molecules. Large electric field nanostructures have many promising applications in the areas of surface enhanced Raman spectroscopy, higher harmonic light generation, and enhanced uorescence. High throughput techniques that utilize simple nanofabrication are essential their advancement. We contribute to this effort by using a salting-out quenching technique and colloidal lithography to fabricate nanodisc dimers and cusp nanostructures that allow localization of large electric fields, and are comparable to structures fabricated by conventional lithography/milling techniques. Designer surface plasmons (DSPs) are surface waves that are localized to the interface between a structured perfect electric conductor (PEC) surface and dielectric medium. Terahertz (THz) DSPs excited on microscale structured PEC are localized in the out-of-plane direction, with negligible in-plane localization. We addressed this problem by subjecting DSPs to a parabolic graded-index structure. Lateral confinement such as focusing, collimation, and waveguiding of DSPs is demonstrated. Such control will pave the way towards THz energy concentration, diffusion, guiding, and beam aperture modifcation.
Plasmon Excitations of Multi-layer Graphene on a Conducting Substrate
Gumbs, Godfrey; Iurov, Andrii; Wu, Jhao-Ying; Lin, M. F.; Fekete, Paula
2016-01-01
We predict the existence of low-frequency nonlocal plasmons at the vacuum-surface interface of a superlattice of N graphene layers interacting with conducting substrate. We derive a dispersion function that incorporates the polarization function of both the graphene monolayers and the semi-infinite electron liquid at whose surface the electrons scatter specularly. We find a surface plasmon-polariton that is not damped by particle-hole excitations or the bulk modes and which separates below the continuum mini-band of bulk plasmon modes. The surface plasmon frequency of the hybrid structure always lies below , the surface plasmon frequency of the conducting substrate. The intensity of this mode depends on the distance of the graphene layers from the conductor’s surface, the energy band gap between valence and conduction bands of graphene monolayer and, most importantly, on the number of two-dimensional layers. For a sufficiently large number of layers the hybrid structure has no surface plasmon. The existence of plasmons with different dispersion relations indicates that quasiparticles with different group velocity may coexist for various ranges of wavelengths determined by the number of layers in the superlattice. PMID:26883086
Shoji, Atsushi; Suenaga, Yumiko; Hosaka, Atsushi; Ishida, Yuuki; Yanagida, Akio; Sugawara, Masao
2017-10-25
We describe a simple method for evaluating the inhibition of collagen IV degradation by cathepsin B with a surface plasmon resonance (SPR) biosensor. The change in the SPR signal decreased with an increase in the concentration of cathepsin B inhibitors. The order of the inhibitory constant (Ki) obtained by the SPR method was CA074Me≈Z-Phe-Phe-FMK < leupeptin. This order was different from that obtained by benzyloxycarbonyl-Phe-Phe-Fluoromethylketone (Z-Phe-Phe-FMK) as a peptide substrate. The comparison of Ki suggested that CA074 and Z-Phe-Phe-FMK inhibited exopeptidase activity, and leupeptin inhibited the endopeptidase activity of cathepsin B more strongly. Copyright © 2017 Elsevier B.V. All rights reserved.
Three-dimensional hot electron photovoltaic device with vertically aligned TiO2 nanotubes.
Goddeti, Kalyan C; Lee, Changhwan; Lee, Young Keun; Park, Jeong Young
2018-05-09
Titanium dioxide (TiO 2 ) nanotubes with vertically aligned array structures show substantial advantages in solar cells as an electron transport material that offers a large surface area where charges travel linearly along the nanotubes. Integrating this one-dimensional semiconductor material with plasmonic metals to create a three-dimensional plasmonic nanodiode can influence solar energy conversion by utilizing the generated hot electrons. Here, we devised plasmonic Au/TiO 2 and Ag/TiO 2 nanodiode architectures composed of TiO 2 nanotube arrays for enhanced photon absorption, and for the subsequent generation and capture of hot carriers. The photocurrents and incident photon to current conversion efficiencies (IPCE) were obtained as a function of photon energy for hot electron detection. We observed enhanced photocurrents and IPCE using the Ag/TiO 2 nanodiode. The strong plasmonic peaks of the Au and Ag from the IPCE clearly indicate an enhancement of the hot electron flux resulting from the presence of surface plasmons. The calculated electric fields and the corresponding absorbances of the nanodiode using finite-difference time-domain simulation methods are also in good agreement with the experimental results. These results show a unique strategy of combining a hot electron photovoltaic device with a three-dimensional architecture, which has the clear advantages of maximizing light absorption and a metal-semiconductor interface area.
NASA Astrophysics Data System (ADS)
Talbayev, Diyar; Zhou, Jiangfeng; Lin, Shuai; Bhattarai, Khagendra
2017-05-01
Detection and identification of molecular materials based on their THz frequency vibrational resonances remains an open technological challenge. The need for such technology is illustrated by its potential uses in explosives detection (e.g., RDX) or identification of large biomolecules based on their THz-frequency vibrational fingerprints. The prevailing approaches to THz sensing often rely on a form of waveguide spectroscopy, either utilizing geometric waveguides, such as metallic parallel plate, or plasmonic waveguides made of structured metallic surfaces with sub-wavelength corrugation. The sensitivity of waveguide-based sensing devices is derived from the long (1 cm or longer) propagation and interaction distance of the THz wave with the analyte. We have demonstrated that thin InSb layers with metallic gratings can support high quality factor "true" surface plasmon (SP) resonances that can be used for THz plasmonic sensing. We find two strong SP absorption resonances in normal-incidence transmission and investigate their dispersion relations, dependence on InSb thickness, and the spatial distribution of the electric field. The sensitivity of this approach relies on the frequency shift of the SP resonance when the dielectric function changes in the immediate vicinity of the sensor, in the region of deeply sub-wavelength thickness. Our computational modeling indicates that the sensor sensitivity can exceed 0.25 THz per refractive index unit. One of the SP resonances also exhibits a splitting when tuned in resonance with a vibrational mode of an analyte, which could lead to new sensing modalities for the detection of THz vibrational features of the analyte.
NASA Astrophysics Data System (ADS)
Sun, Qi; Mundoor, Haridas; Ribot, Josep; Singh, Vivek; Smalyukh, Ivan; Nagpal, Prashant
2014-03-01
Upconversion of infrared radiation into visible light has been investigated for applications in biological imaging and photovoltaics. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb3+) , and slow rate of energy transfer (to Er3+ states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increases the rate of resonant energy transfer from Yb3+ to Er3+ ions by 6 fold. While we do observe strong metal mediated quenching (14 fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared, and hence enhances the nanocrystal UPL. This strong columbic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.
Laser-assisted heating of a plasmonic nanofluid in a microchannel
NASA Astrophysics Data System (ADS)
Walsh, Timothy
The work presented in this study analyses the theoretical modeling and experimentation of laser-assisted heating of plasmonic nanofluids (PNFs) in a microchannel for accurate, efficient, and ultra-fast heating of a microdroplet. Suspended plasmonic nanoparticles exhibit strong light absorption and scattering upon the excitation of localized surface plasmons (LSPs), resulting in intense and rapid photothermal heating. Several multi-stepped computational models were utilized to theoretically characterize and verify the laser-assisted heating behavior of gold nanoshells (GNS) and gold nanorod (GNR) plasmonic nanofluid droplets in a microchannel. From the experimental investigation, a full range of controllable steady-state temperatures, room temperature to 100°C, are confirmed to be achievable for the 780-nm-tuned plasmonic nanofluid. Droplet fluid heating is verified to occur as a result of LSP excitation, in time scales of milliseconds, and to be repeatable over many cycles. Additionally, the significance and effects of parameters in the process, such as nanoparticle structure, volumetric concentration, microchannel depth, and laser power density are established. The obtained results in this research may be integrated into other existing microfluidic technologies and biological techniques, such as the polymerase chain reaction, where accurate and ultra-fast heating of microdroplets in a microchannel can greatly improve efficiency.
Electrical tuning of a quantum plasmonic resonance
Liu, Xiaoge; Kang, Ju -Hyung; Yuan, Hongtao; ...
2017-06-12
Surface plasmon (SP) excitations in metals facilitate confinement of light into deep-subwavelength volumes and can induce strong light–matter interaction. Generally, the SP resonances supported by noble metal nanostructures are explained well by classical models, at least until the nanostructure size is decreased to a few nanometres, approaching the Fermi wavelength λ F of the electrons. Although there is a long history of reports on quantum size effects in the plasmonic response of nanometre-sized metal particles systematic experimental studies have been hindered by inhomogeneous broadening in ensemble measurements, as well as imperfect control over size, shape, faceting, surface reconstructions, contamination, chargingmore » effects and surface roughness in single-particle measurements. In particular, observation of the quantum size effect in metallic films and its tuning with thickness has been challenging as they only confine carriers in one direction. Here, we show active tuning of quantum size effects in SP resonances supported by a 20-nm-thick metallic film of indium tin oxide (ITO), a plasmonic material serving as a low-carrier-density Drude metal. An ionic liquid (IL) is used to electrically gate and partially deplete the ITO layer. The experiment shows a controllable and reversible blue-shift in the SP resonance above a critical voltage. As a result, a quantum-mechanical model including the quantum size effect reproduces the experimental results, whereas a classical model only predicts a red shift.« less
Electrical tuning of a quantum plasmonic resonance
NASA Astrophysics Data System (ADS)
Liu, Xiaoge; Kang, Ju-Hyung; Yuan, Hongtao; Park, Junghyun; Kim, Soo Jin; Cui, Yi; Hwang, Harold Y.; Brongersma, Mark L.
2017-09-01
Surface plasmon (SP) excitations in metals facilitate confinement of light into deep-subwavelength volumes and can induce strong light-matter interaction. Generally, the SP resonances supported by noble metal nanostructures are explained well by classical models, at least until the nanostructure size is decreased to a few nanometres, approaching the Fermi wavelength λF of the electrons. Although there is a long history of reports on quantum size effects in the plasmonic response of nanometre-sized metal particles, systematic experimental studies have been hindered by inhomogeneous broadening in ensemble measurements, as well as imperfect control over size, shape, faceting, surface reconstructions, contamination, charging effects and surface roughness in single-particle measurements. In particular, observation of the quantum size effect in metallic films and its tuning with thickness has been challenging as they only confine carriers in one direction. Here, we show active tuning of quantum size effects in SP resonances supported by a 20-nm-thick metallic film of indium tin oxide (ITO), a plasmonic material serving as a low-carrier-density Drude metal. An ionic liquid (IL) is used to electrically gate and partially deplete the ITO layer. The experiment shows a controllable and reversible blue-shift in the SP resonance above a critical voltage. A quantum-mechanical model including the quantum size effect reproduces the experimental results, whereas a classical model only predicts a red shift.
Zhang, Zhenyi; Jiang, Xiaoyi; Liu, Benkang; Guo, Lijiao; Lu, Na; Wang, Li; Huang, Jindou; Liu, Kuichao; Dong, Bin
2018-03-01
The ultrafast transfer of plasmon-induced hot electrons is considered an effective kinetics process to enhance the photoconversion efficiencies of semiconductors through strong localized surface plasmon resonance (LSPR) of plasmonic nanostructures. Although this classical sensitization approach is widely used in noble-metal-semiconductor systems, it remains unclear in nonmetallic plasmonic heterostructures. Here, by combining ultrafast transient absorption spectroscopy with theoretical simulations, IR-driven transfer of plasmon-induced hot electron in a nonmetallic branched heterostructure is demonstrated, which is fabricated through solvothermal growth of plasmonic W 18 O 49 nanowires (as branches) onto TiO 2 electrospun nanofibers (as backbones). The ultrafast transfer of hot electron from the W 18 O 49 branches to the TiO 2 backbones occurs within a timeframe on the order of 200 fs with very large rate constants ranging from 3.8 × 10 12 to 5.5 × 10 12 s -1 . Upon LSPR excitation by low-energy IR photons, the W 18 O 49 /TiO 2 branched heterostructure exhibits obviously enhanced catalytic H 2 generation from ammonia borane compared with that of W 18 O 49 nanowires. Further investigations by finely controlling experimental conditions unambiguously confirm that this plasmon-enhanced catalytic activity arises from the transfer of hot electron rather than from the photothermal effect. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Wei; Liu, Xiao; Hanbicki, Aubrey T.; ...
2015-10-19
Nonlinear magneto-plasmonics (NMP) describes systems where nonlinear optics, magnetics and plasmonics are all involved. In such systems, nonlinear magneto-optical Kerr effect (nonlinear MOKE) plays an important role as a characterization method, and Surface Plasmons (SPs) work as catalyst to induce many new effects. Magnetization-induced second-harmonic generation (MSHG) is the major nonlinear magneto-optical process involved. The new effects include enhanced MSHG, controlled and enhanced magnetic contrast, etc. Nanostructures such as thin films, nanoparticles, nanogratings, and nanoarrays are critical for the excitation of SPs, which makes NMP an interdisciplinary research field in nanoscience and nanotechnology. In this review article, we organize recentmore » work in this field into two categories: surface plasmon polaritons (SPPs) representing propagating surface plasmons, and localized surface plasmons (LSPs), also called particle plasmons. We review the structures, experiments, findings, and the applications of NMP from various groups.« less
Acousto-optical Transducer with Surface Plasmons
NASA Astrophysics Data System (ADS)
Kolomenskii, A. A.; Surovic, E.; Schuessler, H. A.
2018-04-01
The surface plasmon resonance (SPR) is a sensitive technique for the detection of changes in dielectric parameters in close proximity to a metal film supporting surface plasmon waves. Here we study the application of the SPR effect to an efficient conversion of an acoustic signal into an optical one. Such a transducer potentially has a large bandwidth and good sensitivity. When an acoustic wave is incident onto a receiving plate positioned within the penetration depth of the surface plasmons, it creates displacements of the surface of the plate and, thus, modulates the dielectric properties in the proximity of the gold film. This modulation, in turn, modifies the light reflection under surface plasmon resonance conditions. We simulate characteristics of this acousto-optical transducer with surface plasmons and provide sets of parameters at the optical wavelength of 800 nm and 633 nm for its realization.
2014-02-11
of refraction in the region of the “lens”, successfully focusing surface plasmon polaritons (SPP). SUPERABSORBERS: The team used the Rigorous Coupled...PLASMONIC FOCUSING: The team constructed a device capable of splitting and focusing surface plasmon polaritons into different locations depending on the...surface plasmon polaritons , plasmonics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18, NUMBER OF PAGES 19 19a. NAME
NASA Astrophysics Data System (ADS)
Sadeghi, Seyed M.; Wing, Waylin J.; Gutha, Rithvik R.; Sharp, Christina
2018-01-01
We demonstrate that a metal-oxide plasmonic metafilm consisting of a Si/Al oxide junction in the vicinity of a thin gold layer can quarantine excitons in colloidal semiconductor quantum dots against their defect environments. This process happens while the plasmon fields of the gold layer enhance spontaneous emission decay rates of the quantum dots. We study the emission dynamics of such quantum dots when the distance between the Si/Al oxide junction and the gold thin layer is varied. The results show that for distances less than a critical value the lifetime of the quantum dots can be elongated while they experience intense plasmon fields. This suggests that the metal-oxide metafilm can keep photo-excited electrons in the cores of the quantum dots, suppressing their migration to the surface defect sites. This leads to suppression of Auger recombination, offering quantum dot super-emitters with emission that is enhanced not only by the plasmon fields (Purcell effect), but also by strong suppression of the non-radiative decay caused by the defect sites.
Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures
Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev
2015-01-01
Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ3/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang
2015-09-21
Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rodmore » gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.« less
Plasmonic metamaterials with tuneable optical properties
NASA Astrophysics Data System (ADS)
Zayats, Anatoly
2008-03-01
Negative refraction in metamaterials has recently attracted significant attention due to its possible numerous applications in high-resolution imaging and photolithography with the so-called ``perfect lenses,'' for electromagnetic shielding (invisibility cloak), optical signal manipulation, etc. Among various realizations of negative index materials, plasmonic nanostructures play a prominent role as they allow negative refraction properties to be engineered in the visible and near infrared spectral ranges. The coupling of light to plasmonic modes, that are collective electronic excitations in metallic nanostructures, provides the possibility to confine the electromagnetic field on the sub-wavelength scale and manipulate it with high precision to achieve the desired mode dispersion and, thus, reflection, absorption and transmission properties of the nanostructures. In this talk we will discuss various pathways to control dispersion of the electromagnetic waves in plasmonic metamaterials, including plasmon polaritonic crystals and plasmonic nanorod arrays, and the approaches to active tuneability of their optical properties using optical and electric control signals. Both approaches take advantage of the very high sensitivity of surface plasmon mode dispersion on the refractive index of the dielectric adjacent to metallic nanostructure. Hybridization of plasmonic nanostructures with molecular species exhibiting nonlinear optical response allows the development of metamaterials with high effective nonlinear susceptibility due to the electromagnetic field enhancement related to plasmonic excitations. Signal and control light are then coupled to plasmonic modes that strongly interact via nonlinearity introduced by the hybridization. Concurrently, the use of electro-optically active dielectrics incorporated into plasmonic nanostructures provides the route to control optical signals electronically. Plasmonic metamaterials with tuneable optical properties can be used to control negative refraction and electromagnetic field propagation in various applications in nanophotonics, optoelectronics and optical communications.
Devices based on surface plasmon interference filters
NASA Technical Reports Server (NTRS)
Wang, Yu (Inventor)
2001-01-01
Devices based on surface plasmon filters having at least one metal-dielectric interface to support surface plasmon waves. A multi-layer-coupled surface plasmon notch filter is provided to have more than two symmetric metal-dielectric interfaces coupled with one another to produce a transmission spectral window with desired spectral profile and bandwidth. Such notch filters can form various color filtering devices for color flat panel displays.
Bouhelier, Alexandre [Westmont, IL; Wiederrecht, Gary P [Elmhurst, IL
2008-02-19
A system and method for generating and using broadband surface plasmons in a metal film for characterization of analyte on or near the metal film. The surface plasmons interact with the analyte and generate leakage radiation which has spectral features which can be used to inspect, identify and characterize the analyte. The broadband plasmon excitation enables high-bandwidth photonic applications.
Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components
NASA Astrophysics Data System (ADS)
Zhang, Ying; Xu, Yuehong; Tian, Chunxiu; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili
2018-01-01
In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.
Plasmon-assisted optical vias for photonic ASICS
Skogen, Erik J.; Vawter, Gregory A.; Tauke-Pedretti, Anna
2017-03-21
The present invention relates to optical vias to optically connect multilevel optical circuits. In one example, the optical via includes a surface plasmon polariton waveguide, and a first optical waveguide formed on a first substrate is coupled to a second optical waveguide formed on a second substrate by the surface plasmon polariton waveguide. In some embodiments, the first optical waveguide includes a transition region configured to convert light from an optical mode to a surface plasmon polariton mode or from a surface plasmon polariton mode to an optical mode.
Petoukhoff, Christopher E.; O'Carroll, Deirdre M.
2015-01-01
Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900
Sarkar, S; Kanchibotla, B; Nelson, J D; Edwards, J D; Anderson, J; Tepper, G C; Bandyopadhyay, S
2014-10-08
The fluorescence of organic fluorophore molecules is enhanced when they are placed in contact with certain metals (Al, Ag, Cu, Au, etc.) whose surface plasmon waves couple into the radiative modes of the molecules and increase the radiative efficiency. Here, we report a hitherto unknown size dependence of this metal-enhanced fluorescence (MEF) effect in the nanoscale. When the molecules are deposited in nanoporous anodic alumina films with exposed aluminum at the bottom of the pores, they form organic nanowires standing on aluminum nanoparticles whose plasmon waves have much larger amplitudes. This increases the MEF strongly, resulting in several orders of magnitude increase in the fluorescence intensity of the organic fluorophores. The increase in intensity shows an inverse superlinear dependence on nanowire diameter because the nanowires also act as plasmonic "waveguides" that concentrate the plasmons and increase the coupling of the plasmons with the radiative modes of the molecules. Furthermore, if the nanoporous template housing the nanowires has built-in electric fields due to space charges, a strong molecule-specific red- or blue-shift is induced in the fluorescence peak owing to a renormalization of the dipole moment of the molecule. This can be exploited to detect minute amounts of target molecules in a mixture using their optical signature (fluorescence) despite the presence of confounding background signals. It can result in a unique new technology for biosensing and chemical sensing.
NASA Astrophysics Data System (ADS)
Ran, G. Z.; Jiang, D. F.; Kan, Q.; Chen, H. D.
2010-12-01
We have observed a strongly polarized edge-emission from an organic light emitting device (OLED) with a silicon anode and a stacked Sm/Au (or Ag) cathode. For the OLED with a Sm/Au cathode, the transverse magnetic (TM) mode is stronger than the transverse electric (TE) mode by a factor of 2, while the polarization ratio of TM:TE is close to 300 for that with a Sm/Ag cathode. The polarization results from the scattering of surface plasmon polaritons at the device boundary. Such a silicon-based OLED is potentially an electrically excited SPP source in plasmonics.
EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS
NASA Astrophysics Data System (ADS)
Bozhevolnyi, Sergey; García-Vidal, Francisco
2008-10-01
Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev, Zhengtong Liu, Hsiao-Kuan Yuan, Rasmus H Pedersen, Alexandra Boltasseva, Jiji Chen, Joseph Irudayaraj, Alexander V Kildishev and Vladimir M Shalaev Confinement and propagation characteristics of subwavelength plasmonic modes R F Oulton, G Bartal, D F P Pile and X Zhang Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film F de León-Pérez, G Brucoli, F J García-Vidal and L Martín-Moreno Shaping and manipulation of light fields with bottom-up plasmonic structures C Girard, E Dujardin, G Baffou and R Quidant Gold nanorods and nanospheroids for enhancing spontaneous emission A Mohammadi, V Sandoghdar and M Agio Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon J-Y Laluet, A Drezet, C Genet and T W Ebbesen Mode mapping of plasmonic stars using TPL microscopy P Ghenuche, S Cherukulappurath and R Quidant Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field G A Wurtz, W Hendren, R Pollard, R Atkinson, L Le Guyader, A Kirilyuk, Th Rasing, I I Smolyaninov and A V Zayats Nanoplasmonic renormalization and enhancement of Coulomb interactions M Durach, A Rusina, V I Klimov and M I Stockman Bulk and surface sensitivities of surface plasmon waveguides Pierre Berini Mapping plasmons in nanoantennas via cathodoluminescence R Gómez-Medina, N Yamamoto, M Nakano and F J García de Abajo Theoretical analysis of gold nano-strip gap plasmon resonators T Søndergaard, J Jung, S I Bozhevolnyi and G Della Valle Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings J Gómez Rivas, G Vecchi and V Giannini Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit Mark W Knight and Naomi J Halas Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency T H Taminiau, F D Stefani and N F van Hulst Green's tensor calculations of plasmon resonances of single holes and hole pairs in thin gold films Joan Alegret, Peter Johansson and Mikael Käll Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits K J Ahn, K G Lee, H W Kihm, M A Seo, A J L Adam, P C M Planken and D S Kim Fluorescence enhancement through modified dye molecule absorption associated with the localized surface plasmon resonances of metallic dimers George Zoriniants and William L Barnes
NASA Astrophysics Data System (ADS)
Ma, Qilin; Liu, Guangqiang; Chen, Yiqing; Zhao, Qian; Guo, Jing; Yang, Shaosong; Cai, Weiping
2018-03-01
Dimer nanoparticles in a sandwich structure exhibit a large electric-field intensity enhancement. The dispersion relation between the surface plasmon resonance (SPR) and particle size has not been reported yet, owing to the effects of the particle size, shape, materials, etc. A sandwich structure, which contains a nano-right-triangle dimer array, SiO2 spacer, and Au film, is proposed, with a significant electric-field intensity enhancement and polarization-changing properties. The dependence of the peak positions of the two localized surface plasmon resonance (LSPR) modes as a function of the triangle thicknesses is discussed; different trends are observed for the different LSPR modes. We introduce a concept on the rule for LSPR peak position change, which can contribute to a better understanding of the LSPR modes. In addition, centrosymmetric but not axisymmetric structures, which like in our study exhibit surface plasmon polaritons typically show different responses to a different polarization of the incident light. Here, we showed that our centrosymmetric but not axisymmetric structure can change the linearly polarized light into a circularly or elliptically polarized wave, by surface plasmon-induced polarization properties. Far-field distribution maps are used to study the properties of the surface plasmons-induced circular or elliptic polarization wave. These findings could be employed to better understand the surface plasmon-induced polarization properties showed in previous reports and near-field of surface plasmons. These findings could be employed to better understand the near-field of surface plasmons and polarization properties.
Partially coherent axiconic surface plasmon polariton fields
NASA Astrophysics Data System (ADS)
Chen, Yahong; Norrman, Andreas; Ponomarenko, Sergey A.; Friberg, Ari T.
2018-04-01
We introduce a class of structured polychromatic surface electromagnetic fields, reminiscent of conventional optical axicon fields, through a judicious superposition of partially correlated surface plasmon polaritons. We show that such partially coherent axiconic surface plasmon polariton fields are structurally stable and statistically highly versatile with regard to spectral density, polarization state, energy flow, and degree of coherence. These fields can be created by plasmon coherence engineering and may prove instrumental broadly in surface physics and in various nanophotonics applications.
Spoof surface plasmon based planar antennas for the realization of Terahertz hotspots
Zhang, Yusheng; Han, Zhanghua
2015-01-01
Novel spoof surface plasmon based terahertz (THz) antennas are realized using a few number of rectangular grooves perforated in ultrathin metal stripes and the properties of them, including both scattering cross sections and field enhancement, are numerically analyzed. The dependence of these properties on the incident angle and groove number is discussed and the results show that sharp resonances in scattering cross section spectra associated with strong local field enhancement can be achieved. These resonances are due to the formation of Fabry-Perot resonances of the spoof surface plasmon mode and it is found that the order of resonance exhibiting strongest field enhancements is found to coincide with the number of grooves at normal incidence, due to hybridization of the antenna resonance with the individual groove resonance. The terahertz hotspots within the grooves at resonances due to the local field enhancement may open up new possibilities for the investigation of terahertz-matter interactions and boost a variety of THz applications including novel sensing and THz detections. The planar stripe antennas with sharper resonances than dipolar-like resonances, together with their ease of fabrication may also promise new design methodology for metamaterials. PMID:26691003
NASA Astrophysics Data System (ADS)
Figueiredo, N. M.; Serra, R.; Manninen, N. K.; Cavaleiro, A.
2018-05-01
Gold clusters were produced by plasma gas condensation method and studied in great detail for the first time. The influence of argon flow, discharge power applied to the Au target and aggregation chamber length on the size distribution and deposition rate of Au clusters was evaluated. Au clusters with sizes between 5 and 65 nm were deposited with varying deposition rates and size dispersion curves. Nanocomposite Au-TiO2 and Au-Al2O3 coatings were then deposited by alternating sputtering. These coatings were hydrophobic and showed strong colorations due to the surface plasmon resonance effect. By simulating the optical properties of the nanocomposites it was possible to identify each individual contribution to the overall surface plasmon resonance signal. These coatings show great potential to be used as high performance localized surface plasmon resonance sensors or as robust self-cleaning decorative protective layers. The hybrid method used for depositing the nanocomposites offers several advantages over co-sputtering or thermal evaporation processes, since a broader range of particle sizes can be obtained (up to tens of nanometers) without the application of any thermal annealing treatments and the properties of clusters and matrix can be controlled separately.
Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes.
Wu, Jiangjiexing; Qin, Kang; Yuan, Dan; Tan, Jun; Qin, Li; Zhang, Xuejin; Wei, Hui
2018-04-18
One of the current challenges in nanozyme-based nanotechnology is the utilization of multifunctionalities in one material. In this regard, Au@Pt nanoparticles (NPs) with excellent enzyme-mimicking activities due to the Pt shell and unique surface plasmon resonance features from the Au core have attracted enormous research interest. However, the unique surface plasmon resonance features from the Au core have not been widely utilized. The practical problem of the optical-damping nature of Pt hinders the research into the combination of Au@Pt NPs' enzyme-mimicking properties with their surface-enhanced Raman scattering (SERS) activities. Herein, we rationally tuned the Pt amount to achieve Au@Pt NPs with simultaneous plasmonic and enzyme-mimicking activities. The results showed that Au@Pt NPs with 2.5% Pt produced the highest Raman signal in 2 min, which benefited from the remarkably accelerated catalytic oxidation of 3,3',5,5'-tetramethylbenzidine with the decorated Pt and strong electric field retained from the Au core for SERS. This study not only demonstrates the great promise of combining bimetallic nanomaterials' multiple functionalities but also provides rational guidelines to design high-performance nanozymes for potential biomedical applications.
McMahon, Jeffrey M; Henry, Anne-Isabelle; Wustholz, Kristin L; Natan, Michael J; Freeman, R Griffith; Van Duyne, Richard P; Schatz, George C
2009-08-01
Finite element method calculations were carried out to determine extinction spectra and the electromagnetic (EM) contributions to surface-enhanced Raman spectroscopy (SERS) for 90-nm Au nanoparticle dimers modeled after experimental nanotags. The calculations revealed that the EM properties depend significantly on the junction region, specifically the distance between the nanoparticles for spacings of less than 1 nm. For extinction spectra, spacings below 1 nm lead to maxima that are strongly red-shifted from the 600-nm plasmon maximum associated with an isolated nanoparticle. This result agrees qualitatively well with experimental transmission electron microscopy images and localized surface plasmon resonance spectra that are also presented. The calculations further revealed that spacings below 0.5 nm, and especially a slight fusing of the nanoparticles to give tiny crevices, leads to EM enhancements of 10(10) or greater. Assuming a uniform coating of SERS molecules around both nanoparticles, we determined that regardless of the separation, the highest EM fields always dominate the SERS signal. In addition, we determined that for small separations less than 3% of the molecules always contribute to greater than 90% of the signal.
Defense AT&L Magazine. Volume 43, Number 5. September-October 2014
2014-10-01
Air Warfare Center Weapons Atlas V launches third Advanced Extremely High Frequency Satellite for the U.S. Air Force in September 2013. United...nanoparticles have been extensively studied for their unique optical properties which arise from localized surface plasmon resonance (LSPR). This... resonance results in a very strong attenuation of light in the visible and near-infrared regions due to the strong enhancement of the local electric
Surface plasmon-enhanced fluorescence on Au nanohole array for prostate-specific antigen detection
Zhang, Qingwen; Wu, Lin; Wong, Ten It; Zhang, Jinling; Liu, Xiaohu; Zhou, Xiaodong; Bai, Ping; Liedberg, Bo; Wang, Yi
2017-01-01
Localized surface plasmon (LSP) has been widely applied for the enhancement of fluorescence emission for biosensing owing to its potential for strong field enhancement. However, due to its small penetration depth, LSP offers limited fluorescence enhancement over a whole sensor chip and, therefore, insufficient sensitivity for the detection of biomolecules, especially large molecules. We demonstrate the simultaneous excitation of LSP and propagating surface plasmon (PSP) on an Au nanohole array under Kretschmann configuration for the detection of prostate-specific antigen with a sandwich immunoassay. The proposed method combines the advantages of high field enhancement by LSP and large surface area probed by PSP field. The simulated results indicated that a maximum enhancement of electric field intensity up to 1,600 times can be achieved under the simultaneous excitation of LSP and PSP modes. The sandwich assay of PSA carried out on gold nanohole array substrate showed a limit of detection of 140 fM supporting coexcitation of LSP and PSP modes. The limit of detection was approximately sevenfold lower than that when only LSP was resonantly excited on the same substrate. The results of this study demonstrate high fluorescence enhancement through the coexcitation of LSP and PSP modes and pave a way for its implementation as a highly sensitive bioassay. PMID:28392689
NASA Astrophysics Data System (ADS)
Gwon, Minji; Sohn, Ahrum; Cho, Yunae; Kim, Dong-Wook
2017-03-01
ZnO has attracted growing research attention as a strong candidate material for various optoelectronic device applications. It is important to understand and control the interactions between surface plasmons (SPs) and charge carriers in metal-ZnO hybrid nanostructures to improve the optical characteristics. In this work, we fabricated ZnO/Ag nanogratings using patterned polymer and Si templates. Excitation of the surface plasmon polaritons (SPPs) well explained the optical reflectance and photoluminescence spectra of the ZnO/Ag nanogratings [1,2]. Nanoscopic mapping of surface photovoltage (SPV), i.e., changes in the surface potential under illumination, obtained by Kelvin probe force microscopy (KPFM) enabled us to investigate the local behaviors of the photo-generated carriers. The magnitude and relaxation time of the measured SPV depended on the wavelength and polarization of the incident light [3]. This showed that the SP excitation in the nanogratings directly affected the creation and recombination processes of the charge carriers. All of these results suggested that SPV measurements using KPFM should be very useful for studying the SP effects in metal/semiconductor hybrid nanostructures. References [1] Gwon et al., Opt. Express 19, 5895 (2011). [2] Gwon et al., ACS Appl. Mater. Interfaces. 6, 8602 (2014). [3] Gwon et al., Sci. Rep. 5, 16727; doi: 10.1038/srep16727 (2015).
SPM of nonlinear surface plasmon waveguides
NASA Astrophysics Data System (ADS)
Li, Yuee; Zhang, Xiaoping
2008-10-01
Pulse propagation equation of nonlinear dispersion surface plasmon waveguide is educed strictly from wave equation. The nonlinear coefficient is defined and then used to assess and compare the nonlinear characteristic of three popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. SPM (self-phase modulation) of the typical surface plasmon waveguide is predicted and discussed.
Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement
NASA Astrophysics Data System (ADS)
Gray, Stephen K.
2018-02-01
Classical electrodynamics and quantum mechanical models of quantum dots and molecules interacting with plasmonic systems are discussed. Calculations show that just one quantum dot interacting with a plasmonic system can lead to interesting optical effects, including optical transparencies and more general Fano resonance features that can be tailored with ultrafast laser pulses. Such effects can occur in the limit of moderate coupling between quantum dot and plasmonic system. The approach to the strong coupling regime is also discussed. In cases with two or more quantum dots within a plasmonic system, the possibility of quantum entanglement mediated through the dissipative plasmonic structure arises.
Nonlinear Terahertz Absorption of Graphene Plasmons.
Jadidi, Mohammad M; König-Otto, Jacob C; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin
2016-04-13
Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a terahertz pump-terahertz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by 2 orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results. The model shows that the observed strong linearity is caused by an unexpected red shift of plasmon resonance together with a broadening and weakening of the resonance caused by the transient increase in electron temperature. The model further predicts that even greater resonant enhancement of the nonlinear response can be expected in high-mobility graphene, suggesting that nonlinear graphene plasmonic devices could be promising candidates for nonlinear optical processing.
Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.
Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue
2017-01-01
Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.
Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua
2010-12-20
We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.
Coupling between graphene and intersubband collective excitations in quantum wells
NASA Astrophysics Data System (ADS)
Gonzalez de la Cruz, G.
2017-08-01
Recently, strong light-matter coupling between the electromagnetic modes in plasmonic metasurfaces with quantum-engineering electronic intersubband transitions in quantum wells has been demonstrated experimentally (Benz et al., [14], Lee et al., [15]). These novel materials combining different two-dimensional electronic systems offer new opportunities for tunable optical devices and fundamental studies of collective excitations driven by interlayer Coulomb interactions. In this work, our aim is to study the plasmon spectra of a hybrid structure consisting of conventional two-dimensional electron gas (2DEG) in a semiconductor quantum well and a graphene sheet with an interlayer separation of a. This electronic bilayer structure is immersed in a nonhomgeneous dielectric background of the system. We use a simple model in which the graphene surface plasmons and both; the intrasubband and intersubband collective electron excitations in the quantum well are coupled via screened Coulomb interaction. Here we calculate the dispersion of these relativistic/nonrelativistic new plasmon modes taking into account the thickness of the quantum well providing analytical expressions in the long-wavelength limit.
Plasmonic and SERS performances of compound nanohole arrays fabricated by shadow sphere lithography
NASA Astrophysics Data System (ADS)
Skehan, Connor; Ai, Bin; Larson, Steven R.; Stone, Keenan M.; Dennis, William M.; Zhao, Yiping
2018-03-01
Several plasmonic compound nanohole arrays (CNAs), such as triangular nanoholes and fan-like nanoholes with multiple nanotips and nanogaps, are designed by a simple and efficient shadow sphere lithography technique by tuning the sphere mask size, the deposition and azimuthal angles, substrate temperature T S , and the number of deposition steps N. Compared with conventional circular nanohole arrays, the CNAs show more hot spots and exhibit new transmission speaks. Systematic finite-difference time-domain calculations indicate that different resonance modes excited by the various shaped and sized nanoholes are responsible for the enhanced plasmonic performances of CNAs. Compared to the CNA samples with only one circular hole in the unit cell, the Raman scattering intensity of the CNA with multiple triangular nanoholes, nanogaps, and nanotips can be enhanced up to 5-fold. These CNAs, due to the strong resonance due to the multiple structural features, are promising applications as optical filters, plasmonic sensors, and surface-enhanced spectroscopies.
Ginzburg, Pavel; Rodríguez-Fortuño, Francisco J; Martínez, Alejandro; Zayats, Anatoly V
2012-12-12
The Hanle effect, one of the first manifestations of quantum theory introducing the concept of coherent superposition between pure states, plays a key role in numerous aspects of science varying from applicative spectroscopy to fundamental astrophysical investigations. Optical analogues of quantum effects help to achieve deeper understanding of quantum phenomena and, in turn, to develop cross-disciplinary approaches to realizations of new applications in photonics. Here we show that metallic nanostructures can be designed to exhibit a plasmonic analogue of the quantum Hanle effect and the associated polarization rotation. In the original Hanle effect, time-reversal symmetry is broken by a static magnetic field. We achieve this by introducing dissipative level crossing of localized surface plasmons due to nonuniform losses, designed using a non-Hermitian formulation of quantum mechanics. Such artificial plasmonic "atoms" have been shown to exhibit strong circular birefringence and circular dichroism which depends on the value of loss or gain in the metal-dielectric nanostructure.
Dispersion and shape engineered plasmonic nanosensors
NASA Astrophysics Data System (ADS)
Jeong, Hyeon-Ho; Mark, Andrew G.; Alarcón-Correa, Mariana; Kim, Insook; Oswald, Peter; Lee, Tung-Chun; Fischer, Peer
2016-04-01
Biosensors based on the localized surface plasmon resonance (LSPR) of individual metallic nanoparticles promise to deliver modular, low-cost sensing with high-detection thresholds. However, they continue to suffer from relatively low sensitivity and figures of merit (FOMs). Herein we introduce the idea of sensitivity enhancement of LSPR sensors through engineering of the material dispersion function. Employing dispersion and shape engineering of chiral nanoparticles leads to remarkable refractive index sensitivities (1,091 nm RIU-1 at λ=921 nm) and FOMs (>2,800 RIU-1). A key feature is that the polarization-dependent extinction of the nanoparticles is now characterized by rich spectral features, including bipolar peaks and nulls, suitable for tracking refractive index changes. This sensing modality offers strong optical contrast even in the presence of highly absorbing media, an important consideration for use in complex biological media with limited transmission. The technique is sensitive to surface-specific binding events which we demonstrate through biotin-avidin surface coupling.
Lin, Kai-Qiang; Yi, Jun; Zhong, Jin-Hui; Hu, Shu; Liu, Bi-Ju; Liu, Jun-Yang; Zong, Cheng; Lei, Zhi-Chao; Wang, Xiang; Aizpurua, Javier; Esteban, Rubén; Ren, Bin
2017-01-01
Surface-enhanced Raman scattering (SERS) spectroscopy has attracted tremendous interests as a highly sensitive label-free tool. The local field produced by the excitation of localized surface plasmon resonances (LSPRs) dominates the overall enhancement of SERS. Such an electromagnetic enhancement is unfortunately accompanied by a strong modification in the relative intensity of the original Raman spectra, which highly distorts spectral features providing chemical information. Here we propose a robust method to retrieve the fingerprint of intrinsic chemical information from the SERS spectra. The method is established based on the finding that the SERS background originates from the LSPR-modulated photoluminescence, which contains the local field information shared also by SERS. We validate this concept of retrieval of intrinsic fingerprint information in well controlled single metallic nanoantennas of varying aspect ratios. We further demonstrate its unambiguity and generality in more complicated systems of tip-enhanced Raman spectroscopy (TERS) and SERS of silver nanoaggregates. PMID:28348368
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei
2018-05-01
The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.
Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
Grefe, Sarah E; Leiva, Daan; Mastel, Stefan; Dhuey, Scott D; Cabrini, Stefano; Schuck, P James; Abate, Yohannes
2013-11-21
Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge-charge, dipole-dipole and charge-dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.
Surface plasmon resonance sensor using vari-focal liquid lens under angular interrogation
NASA Astrophysics Data System (ADS)
Lee, Muyoung; Bang, Yousung; Lee, Jooho; Jang, Wonjae; Won, Yong Hyub
2017-02-01
In this paper, a surface plasmon resonance sensor for the detection of refractive index variation is presented. A novel waveguide type surface plasmon resonance sensing configuration with focal length variable liquid lens is introduced. The method of surface plasmon resonance sensor is based on the waveguide type with incident angle variation. The incident angle is varied by using an electrowetting liquid lens which is possible to actively change focal length as applying voltage. The optical system, which is adapted to electrowetting lens can continuously change the incident angle of light from 73 to 78 degrees with compact size. The surface plasmon waves are excited between metal and dielectric interface. The sensing surfaces are prepared by a coating of gold metal above high refractive index glass substrate. The incident light which is 532nm monochromatic light source passes through a noble metal coated substrate to detect intensity with incident angle variation. An analysis to distinguish the contribution of light with various incident angle is focused on the angular characteristics of the surface plasmon sensor under wavelength interrogation. The resonance angle is determined corresponding to sensing material refractive index with high sensitivity. The result suggests that the performance of surface plasmon resonance sensor can be improved by real time varying incident angle. From this presented study, it provides a different approach for angular interrogation surface plasmon resonance sensor and can be miniaturized for a portable device.
Chiral surface and edge plasmons in ferromagnetic conductors
NASA Astrophysics Data System (ADS)
Zhang, Steven S.-L.; Vignale, Giovanni
2018-06-01
The recently introduced concept of "surface Berry plasmons" is studied in the concrete instance of a ferromagnetic conductor in which the Berry curvature, generated by spin-orbit (SO) interaction, has opposite signs for carrier with spins parallel or antiparallel to the magnetization. By using collisionless hydrodynamic equations with appropriate boundary conditions, we study both the surface plasmons of a three-dimensional ferromagnetic conductor and the edge plasmons of a two-dimensional one. The anomalous velocity and the broken inversion symmetry at the surface or the edge of the conductor create a "handedness" whereby the plasmon frequency depends not only on the angle between the wave vector and the magnetization, but also on the direction of propagation along a given line. In particular, we find that the frequency of the edge plasmon depends on the direction of propagation along the edge. These Berry curvature effects are compared and contrasted with similar effects on plasmon dispersions induced by an external magnetic field in the absence of Berry curvature. We argue that Berry curvature effects may be used to control the direction of propagation of the surface plasmons via coupling with the magnetization of ferromagnetic conductors, and thus create a link between plasmonics and spintronics.
NASA Astrophysics Data System (ADS)
Lu, Tien-Chang; Chou, Yu-Hsun; Hong, Kuo-Bin; Chung, Yi-Cheng; Lin, Tzy-Rong; Arakelian, S. M.; Alodjants, A. P.
2017-08-01
Nanolasers with ultra-compact footprint are able to provide high intensity coherent light, which have various potential applications in high capacity signal processing, biosensing, and sub-wavelength imaging. Among various nanolasers, those lasers with cavities surrounded with metals have shown to have superior light emission properties due to the surface plasmon effect providing better field confinement capability and allowing exotic light-matter interaction. In this talk, we report robust ultraviolet ZnO nanolaser by using silver (Ag) [1] and aluminum (Al) [2] to strongly shrink the mode volume. The nanolasers operated at room temperature and even high temperature (353K) shows several distinct features including an extremely small mode volume, large Purcell factor and group index. Comparison of characteristics between Ag- and Al-based will also be made.
Surface-plasmon-polariton hybridized cavity modes in submicrometer slits in a thin Au film
NASA Astrophysics Data System (ADS)
Walther, R.; Fritz, S.; Müller, E.; Schneider, R.; Maniv, T.; Cohen, H.; Matyssek, C.; Busch, K.; Gerthsen, D.
2016-06-01
The excitation of cavity standing waves in double-slit structures in thin gold films, with slit lengths between 400 and 2560 nm, was probed with a strongly focused electron beam in a transmission electron microscope. The energies and wavelengths of cavity modes up to the 11 th mode order were measured with electron energy loss spectroscopy to derive the corresponding dispersion relation. For all orders, a significant redshift of mode energies accompanied by a wavelength elongation relative to the expected resonator energies and wavelengths is observed. The resultant dispersion relation is found to closely follow the well-known dispersion law of surface-plasmon polaritons (SPPs) propagating on a gold/air interface, thus providing direct evidence for the hybridized nature of the detected cavity modes with SPPs.
Optical biosensors using surface plasmon resonance
NASA Astrophysics Data System (ADS)
Homola, Jiri; Brynda, Eduard; Tobiska, Petr; Tichy, Ivo; Skvor, Jiri
1999-12-01
We present a surface plasmon resonance sensor base on prism excitation of surface plasmons and spectral interrogation. For specific detection of biomolecular analytes, multilayers of monoclonal antibodies are immobilized on the surface of the sensor. Detection of biomolecular analytes such as human (beta) -2)-microglobulin, choriogonadotropin, hepatitis B surface antigen, salmonella enteritidis is demonstrated.
NASA Astrophysics Data System (ADS)
Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.
2018-04-01
The photodetection improvement previously observed in mid-infrared (IR) quantum dot photodetectors (QDIPs) coupled with periodic metal metasurfaces is usually attributed to the surface light trapping and confinement due to generation of surface plasmon waves (SPWs). In the present work, a Ge/Si QDIP integrated with a metal plasmonic structure is fabricated to experimentally measure the photoresponse enhancement and verify that this enhancement is caused by the excitation of the mid-IR surface plasmons. A 50 nm-thick gold film perforated with a 1.2 μm-period two-dimensional square array of subwavelength holes is employed as a plasmonic coupler to convert the incident electromagnetic IR radiation into SPWs. Measurements of the polarization and angular dependencies of the photoresponse allow us to determine the dispersion of plasmon modes. We find that experimental dispersion relations agree well with that derived from a computer simulation for fundamental plasmon resonance, which indicates that the photodetection improvement in the mid-IR spectral region is actually caused by the excitations of surface plasmon Bloch waves.
Integrated optical isolators using magnetic surface plasmon (Presentation Recording)
NASA Astrophysics Data System (ADS)
Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi
2015-09-01
Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).
Farsinezhad, Samira; Banerjee, Shyama Prasad; Bangalore Rajeeva, Bharath; Wiltshire, Benjamin D; Sharma, Himani; Sura, Anton; Mohammadpour, Arash; Kar, Piyush; Fedosejevs, Robert; Shankar, Karthik
2017-01-11
Localized surface plasmon resonances (LSPR) in TiO 2 nanorod and nanotube arrays decorated by gold nanoparticles can be exploited to improve photocatalytic activity, enhance nonlinear optical coefficients, and increase light harvesting in solar cells. However, the LSPR typically has a low quality factor, and the resonance is often obscured by the Urbach tail of the TiO 2 band gap absorption. Attempts to increase the LSPR extinction intensity by increasing the density of gold nanoparticles on the surface of the TiO 2 nanostructures invariably produce peak broadening due to the effects of either agglomeration or polydispersity. We present a new class of hybrid nanostructures containing gold nanoparticles (NPs) partially embedded in nanoporous/nanotubular TiO 2 by performing the anodization of cosputtered Ti-Au thin films containing a relatively high ratio of Au:Ti. Our method of anodizing thin film stacks containing alternate layers of Ti and TiAu results in very distinctive LSPR peaks with quality factors as high as 6.9 and ensemble line widths as small as 0.33 eV even in the presence of an Urbach tail. Unusual features in the anodization of such films are observed and explained, including oscillatory current transients and the observation of coherent heterointerfaces between the Au NPs and anatase TiO 2 . We further show that such a plasmonic NP-embedded nanotube structure dramatically outperforms a plasmonic NP-decorated anodic nanotube structure in terms of the extinction coefficient, and achieves a strongly enhanced two-photon fluorescence due to the high density of gold nanoparticles in the composite film and the plasmonic local field enhancement.
NASA Astrophysics Data System (ADS)
Namdar, Abdolrahman; Feizollahi Onsoroudi, Rana; Khoshsima, Habib; Sahrai, Mostafa
2018-03-01
The surface plasmon-polaritons in one-dimensional graphene-based Fibonacci photonic superlattices in the terahertz frequency range have been theoretically investigated. Our numerical study shows that surface plasmon-polaritons can be realized in both transverse electric and transverse magnetic polarizations. It is shown that these modes are manageable by varying the quasi-periodic generation orders which play a critical role in the occurrence of surface modes. In addition, the effect of thickness of cap layer and chemical potential of graphene sheets on surface plasmon-polaritons and their electric field distribution are studied. We have verified the excitation of surface plasmon-polaritons by using the attenuated total reflection method. This inspection confirms that all the predicted surface modes in the dispersion curves are actually excitable with this method.
Surface Plasmon Coupling and Control Using Spherical Cap Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yu; Joly, Alan G.; Zhang, Xin
2017-06-05
Propagating surface plasmons (PSPs) launched from a protruded silver spherical cap structure are investigated using photoemission electron microscopy (PEEM) and finite difference time domain (FDTD) calculations. Our combined experimental and theoretical findings reveal that PSP coupling efficiency is comparable to conventional etched-in plasmonic coupling structures. Additionally, plasmon propagation direction can be varied by a linear rotation of the driving laser polarization. A simple geometric model is proposed in which the plasmon direction selectivity is proportional to the projection of the linear laser polarization on the surface normal. An application for the spherical cap coupler as a gate device is proposed.more » Overall, our results indicate that protruded cap structures hold great promise as elements in emerging surface plasmon applications.« less
Ultra-sensing with slit-enhanced infrared spectroscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mayerhöfer, Thomas G.; Knipper, Richard; Hübner, Uwe; Cialla-May, Dana; Weber, Karina; Popp, Jürgen
2017-02-01
Infrared spectroscopy enables the label-free detection of structure specific fingerprints of analytes. The sensitivity of corresponding methods can strongly be enhanced by attaching analytes on plasmonic active surfaces. We introduce a slit array metamaterial perfect absorber (SAMPA) [1] consisting of a dielectric layer sandwiched between two Au layers of which the upper layer is perforated with a periodic array of slits. This structure combines the principle of Extraordinary Optical Transmission (more light is transmitted through a hole than is incident on its surface) with that of Perfect Absorption (reflectance and transmittance are virtually zero). Accordingly, within the slights the electric fields are strongly enhanced and light-matter interaction is correspondingly greatly amplified. Thus, already small concentrations of analytes down to a monolayer can be detected and identified by their spectral fingerprints with a standard mid-infrared spectrometer. Closely related to the SAMPAs are plasmonic slit absorbers, which simply consist of slit arrays in thin gold layers deposited on a layer of Si3N4.[2] These slit arrays operate like unstructured gold layers if the incident light is polarized parallel to the long slit axes. In contrast, for light polarized perpendicular to the long slit axis, the plasmon is excited. By the introduction of a second slit, which is rotated relative to the first slit, both principal polarization states excite plasmon resonances which can be made to differ in wavelength. As a consequence, the operating wavelength range of this slit array can be tuned by adjusting the polarization state of the incoming light. [1] Mayerhöfer, T.G., et al.. ACS Photonics, 2015. 2(11): p. 1567-1575. [2] Knipper, R., et. al., in preparation.
Versatile plasmonic-effects at the interface of inverted perovskite solar cells.
Shalan, Ahmed Esmail; Oshikiri, Tomoya; Sawayanagi, Hiroki; Nakamura, Keisuke; Ueno, Kosei; Sun, Quan; Wu, Hui-Ping; Diau, Eric Wei-Guang; Misawa, Hiroaki
2017-01-19
Plasmonics is a highly promising approach to enhancing the light-harvesting properties of hybrid organic/inorganic perovskite solar cells. In the present work, our cells have a p-i-n inverted planar structure. An ultrathin NiO film with two different thicknesses of 5 and 10 nm prepared by a pulsed laser deposition process on an ITO substrate with a faceted and furrowed surface enabled the formation of a continuous and compact layer of well-crystallized CH 3 NH 3 PbI 3 via an anti-solvent chlorobenzene process. The coverage mechanism of the NiO film on the ITO was clearly demonstrated through the J-V and external quantum efficiency (EQE) curves. Moreover, the results demonstrated that the gold nanoislands (Au NIs) increased the power conversion efficiency to 5.1%, almost double that of the samples without Au NIs. This result is due to the excitation of surface plasmons, which is characterized by strong scattering and enhancement of the electric field in the vicinity of the Au NIs loaded at the interface between the NiO and perovskite films. Additionally, we observed an enhancement of the EQE at wavelengths shorter than the plasmon resonance peak. In the current state, we speculate that the plasmoelectric potential effect is considered to be a good explanation of the photocurrent enhancement at the off-resonance region. Our work provides good guidance for the design and fabrication of solar-energy-related devices employing NiO electrodes and plasmonic Au NIs.
Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift
Alharbi, Raed; Irannejad, Mehrdad; Yavuz, Mustafa
2017-01-01
Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene) enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local) sensitivity than a regular surface plasmon resonance (SPR) sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit) at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection. PMID:28106850
2016-05-05
SECURITY CLASSIFICATION OF: The goal of this proposal is to purchase the GWC Technologies, Inc. Horizontal Surface Plasmon Resonance Imaging (SPRi...Unlimited UU UU UU UU 05-05-2016 1-Feb-2014 31-Jan-2016 Final Report: Acquisition of a Surface Plasmon Resonance Imager, Digital Microscope, and...S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Surface Plasmon Resonance Imager, Digital
Surface plasmon polaritons in topological Weyl semimetals
NASA Astrophysics Data System (ADS)
Hofmann, Johannes; Das Sarma, Sankar
2016-06-01
We consider theoretically surface plasmon polaritons in Weyl semimetals. These materials contain pairs of band touching points—Weyl nodes—with a chiral topological charge, which induces an optical anisotropy and anomalous transport through the chiral anomaly. We show that these effects, which are not present in ordinary metals, have a direct fundamental manifestation in the surface plasmon dispersion. The retarded Weyl surface plasmon dispersion depends on the separation of the Weyl nodes in energy and momentum space. For Weyl semimetals with broken time-reversal symmetry, the distance between the nodes acts as an effective applied magnetic field in momentum space, and the Weyl surface plasmon polariton dispersion is strikingly similar to magnetoplasmons in ordinary metals. In particular, this implies the existence of nonreciprocal surface modes. In addition, we obtain the nonretarded Weyl magnetoplasmon modes, which acquire an additional longitudinal magnetic field dependence. These predicted surface plasmon results are observable manifestations of the chiral anomaly in Weyl semimetals and might have technological applications.
NASA Astrophysics Data System (ADS)
Huang, Xiaoping; Zhang, Peifeng; Lin, En; Wang, Peng; Mei, Mingwei; Huang, Qiuying; Jiao, Jiao; Zhao, Qing
2017-09-01
We present the design and fabrication of a novel regularly arrayed plasmonic nanolasers. This main microstructure of the device is composed of a hexagonal array of n-ZnO/p-GaN nanoheterojunctions fabricated using the micro-fabrication method. Furthermore, the optically pumped lasing in the device is demonstrated. The spectroscopy characterization results of the device show that the surface plasmon excited around the NWs surface can be used to stimulate and strongly compress the optical modes in the NW cavity. This electromagnetic confinement effect is employed to optimize the beam quality and increase the light intensity compared to the laser fabricated with the bare NWs array. The impact of the array arrangement on the coherent combining efficiency of the arrayed nanolasers has been numerically studied. The results show that the arrayed hexagonal nanolasers could improve the combining efficiency compared to the nanolaser with the randomly positioned array. Qualitatively, these calculated results agree well with the experimental results of the laser beam spot mapping. This demonstrates the scope for using such architectures to improve the combination efficiency of the arrayed nanolasers.
Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics.
Dubrovkin, Alexander M; Qiang, Bo; Krishnamoorthy, Harish N S; Zheludev, Nikolay I; Wang, Qi Jie
2018-05-02
Improvements in device density in photonic circuits can only be achieved with interconnects exploiting highly confined states of light. Recently this has brought interest to highly confined plasmon and phonon polaritons. While plasmonic structures have been extensively studied, the ultimate limits of phonon polariton squeezing, in particular enabling the confinement (the ratio between the excitation and polariton wavelengths) exceeding 10 2 , is yet to be explored. Here, exploiting unique structure of 2D materials, we report for the first time that atomically thin van der Waals dielectrics (e.g., transition-metal dichalcogenides) on silicon carbide substrate demonstrate experimentally record-breaking propagating phonon polaritons confinement resulting in 190-times squeezed surface waves. The strongly dispersive confinement can be potentially tuned to greater than 10 3 near the phonon resonance of the substrate, and it scales with number of van der Waals layers. We argue that our findings are a substantial step towards infrared ultra-compact phonon polaritonic circuits and resonators, and would stimulate further investigations on nanophotonics in non-plasmonic atomically thin interface platforms.
NASA Astrophysics Data System (ADS)
Mezdrogina, M. M.; Vinogradov, A. Ya.; Kozhanova, Yu. V.; Levitskii, V. S.
2018-04-01
It has been shown that Ag and Au nanoparticles and thin layers influence charge carrier generation in InGaN/GaN multiple quantum well structures and crystalline ZnO films owing to the surface morphology heterogeneity of the semiconductors. When nanoparticles 10 < d < 20 nm in size are applied on InGaN/GaN multiple quantum well structures with surface morphology less nonuniform than that of ZnO films, the radiation intensity has turned out to grow considerably because of a plasmon resonance with the participation of localized plasmons. The application of Ag or Au layers on the surface of the structures strongly attenuates the radiation. When Ag and Au nanoparticles are applied on crystalline ZnO films obtained by rf magnetron sputtering, the radiation intensity in the short-wavelength part of the spectrum increases insignificantly because of their highly heterogeneous surface morphology.
NASA Astrophysics Data System (ADS)
Huang, Xiaohua; El-Sayed, Ivan H.; El-Sayed, Mostafa A.
2005-08-01
Gold nanoparticles with unique optical properties offer useful applications in biotechnology. In this article two applications that we have developed are summarized, in one they are used in cancer cell diagnostics and in the other they are found to have catalytic property for the NADH oxidation reaction which is important in ATP formations. By conjugation with anti-EGFR antibodies which specifically target EGFR that are usually overexpressed on most cancer cells, gold nanoparticles are used as a molecular contrast agent for cancer cell diagnostics using their both strong surface plasmon absorption and efficient Mie scattering properties. Au nanoparticles are also good catalysts for many reactions due to their high surface to volume ratio. Au nanoparticles are found to be the catalyst for the NADH oxidation reaction. This was studied by monitoring the effect of the nanoparticles on NADH fluorescence intensity and lifetime as well as the change of the surface plasmon absorption band during the reaction.
Abdi, Mahnaz M; Abdullah, Luqman Chuah; Sadrolhosseini, Amir R; Mat Yunus, Wan Mahmood; Moksin, Mohd Maarof; Tahir, Paridah Md
2011-01-01
A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.
Plasmonic Paper as a Novel Chem/Bio Detection Platform
NASA Astrophysics Data System (ADS)
Tian, Limei
The time varying electric field of electromagnetic (EM) radiation causes oscillation of conduction electrons of metal nanoparticles. The resonance of such oscillation, termed localized surface plasmon resonance (LSPR), falls into the visible spectral region for noble metals such as gold, silver and copper. LSPR of metal nanostructures is sensitive to numerous factors such as composition, size, shape, dielectric properties of surrounding medium, and proximity to other nanostructures (plasmon coupling). The sensitivity of LSPR to the refractive index of surrounding medium renders it an attractive platform for chemical and biological sensing. When the excitation light is in resonance with the plasmon frequency of the metal nanoparticle, it radiates a characteristic dipolar radiation causing a characteristic spatial distribution in which certain areas show higher EM field intensity, which is manifested as electromagnetic field enhancement. Surface enhanced Raman scattering (SERS) involves dramatic enhancement of the intensity of the Raman scattering from the analyte adsorbed on or in proximity to a nanostructured metal surface exhibiting such strong EM field enhancement. Both LSPR and SERS have been widely investigated for highly sensitive and label-free chemical & biological sensors. Most of the SERS/LSPR sensors demonstrated so far rely on rigid planar substrates (e.g., glass, silicon) owing to the well-established lithographic approaches, which are routinely employed for either fabrication or assembly of plasmonic nanotransducers. In many cases, their rigid nature results in low conformal contact with the sample and hence poor sample collection efficiency. We hypothesized that paper substrates are an excellent alternative to conventional rigid substrates to significantly improve the (multi-)functionality of LSPR/SERS substrates, dramatically simplify the fabrication procedures and lower the cost. The choice of paper substrates for the implementation of SERS/LSPR sensors is rationalized by numerous advantages such as (i) high specific surface area resulting in large dynamic range (ii) excellent wicking properties for rapid uptake and transport of analytes to test domains (iii) compatibility with conventional printing approaches, enabling multi-analyte plasmonic sensors (iv) significant reduction in cost (v) smaller sample volume requirement (vi) easy disposability. In this work, we have introduced novel SERS and LSPR substrates based on conventional filter paper decorated with plasmonic nanostructures, called plasmonic paper. A flexible SERS substrate based on common filter paper adsorbed with gold nanostructures allows conformal contact with real-world surfaces, enabling rapid trace detection. To realize multifunctional SERS substrates, paper substrates were cut into star-shaped structures and the fingers were differentially functionalized with polyelectrolytes that allows separation and pre-concentration of different components of a complex sample in a small surface area by taking advantage of the properties of cellulose paper and shape-enhanced capillary effect. Plasmonic paper can also serve as a novel LSPR biosensing platform by decorating the paper substrate with biofunctionalized nanostructures. Furthermore, calligraphy approach was employed to create well-isolated test domains on paper substrates using functionalized plasmonic nanostructures as ink for multiplexed chemical sensing and label-free biosensing. These plasmonic paper substrates exhibit excellent sample collection efficiency and do not require complex fabrication processes. This class of substrates is expected to have applications not only to first responders and military personal but also to several areas of medical, food analysis, and environmental research.
Probing plasmon resonances of individual aluminum nanoparticles
NASA Astrophysics Data System (ADS)
Wei, Zhongxia; Mao, Peng; Cao, Lu; Song, Fengqi
2018-01-01
The plasmon resonances of individual aluminum nanoparticles are investigated by electron energy-loss spectroscopy (EELS) in scanning transmission electron microscope (STEM). Surface plasmon mode and bulk plasmon mode of Al nanoparticles are clearly characterized in the EEL spectra. Discrete dipole approximation (DDA) calculations show that as the particle diameter increases from 20 nm to 100 nm, the plasmon resonance shifts to lower energy and higher mode of surface plasmon arises when the diameter reaches 60 nm and larger.
Viarbitskaya, S; Arocas, J; Heintz, O; Colas-Des-Francs, G; Rusakov, D; Koch, U; Leuthold, J; Markey, L; Dereux, A; Weeber, J-C
2018-04-16
Damping distances of surface plasmon polariton modes sustained by different thin titanium nitride (TiN) films are measured at the telecom wavelength of 1.55 μm. The damping distances are correlated to the electrical direct current resistivity of the films sustaining the surface plasmon modes. It is found that TiN/Air surface plasmon mode damping distances drop non-linearly from 40 to 16μm as the resistivity of the layers increases from 28 to 130μΩ.cm, respectively. The relevance of the direct current (dc) electrical resistivity for the characterization of TiN plasmonic properties is investigated in the framework of the Drude model, on the basis of parameters extracted from spectroscopic ellipsometry experiments. By probing a parametric space of realistic values for parameters of the Drude model, we obtain a nearly univocal dependence of the surface plasmon damping distance on the dc resistivity demonstrating the relevance of dc resistivity for the evaluation of the plasmonic performances of TiN at telecom frequencies. Finally, we show that better plasmonic performances are obtained for TiN films featuring a low content of oxygen. For low oxygen content and corresponding low resistivity, we attribute the increase of the surface plasmon damping distances to a lower confinement of the plasmon field into the metal and not to a decrease of the absorption of TiN.
Ultrasmooth Patterned Metals for Plasmonics and Metamaterials
NASA Astrophysics Data System (ADS)
Nagpal, Prashant; Lindquist, Nathan C.; Oh, Sang-Hyun; Norris, David J.
2009-07-01
Surface plasmons are electromagnetic waves that can exist at metal interfaces because of coupling between light and free electrons. Restricted to travel along the interface, these waves can be channeled, concentrated, or otherwise manipulated by surface patterning. However, because surface roughness and other inhomogeneities have so far limited surface-plasmon propagation in real plasmonic devices, simple high-throughput methods are needed to fabricate high-quality patterned metals. We combined template stripping with precisely patterned silicon substrates to obtain ultrasmooth pure metal films with grooves, bumps, pyramids, ridges, and holes. Measured surface-plasmon-propagation lengths on the resulting surfaces approach theoretical values for perfectly flat films. With the use of our method, we demonstrated structures that exhibit Raman scattering enhancements above 107 for sensing applications and multilayer films for optical metamaterials.
Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam
NASA Astrophysics Data System (ADS)
Vinogradov, A. P.; Dorofeenko, A. V.; Pukhov, A. A.; Lisyansky, A. A.
2018-06-01
We consider exciting surface plasmon polaritons in the Kretschmann configuration. Contrary to common belief, we show that a plane-wave incident at an angle greater than the angle of total internal reflection does not excite surface plasmon polaritons. These excitations do arise, however, if the incident light forms a narrow beam composed of an infinite number of plane waves. The surface plasmon polariton is formed at the geometrical edge of the beam as a result of interference of reflected plane waves.
Plasmon absorption modulator systems and methods
Kekatpure, Rohan Deodatta; Davids, Paul
2014-07-15
Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.
Microcavity surface plasmon resonance bio-sensors
NASA Astrophysics Data System (ADS)
Mosavian, Nazanin
This work discusses a miniature surface plasmon biosensor which uses a dielectric sub- micron diameter core with gold spherical shell. The shell has a subwavelength nanoaperture believed to excite stationary plasmon resonances at the biosensor's surface. The sub-micron cavity enhances the measurement sensitivity of molecules binding to the sensor surface. We used visible-range optical spectroscopy to study the wavelength shift as bio-molecules absorbed-desorbed at the shell surface. We also used Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) ablation to study the characteristics of microcavity surface plasmon resonance sensor (MSPRS) and the inner structure formed with metal deposition and its spectrum. We found that resonances at 580 nm and 670 nm responded to bound test agents and that Surface Plasmon Resonance (SPR) sensor intensity could be used to differentiate between D-glucose and L-glucose. The responsiveness of the system depended upon the mechanical integrity of the metallic surface coating.
NASA Astrophysics Data System (ADS)
Li, Dongfang; Pacifici, Domenico
The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.
NASA Astrophysics Data System (ADS)
Kaveh Baghbadorani, Masoud
In this dissertation, the dynamics of excitons in hybrid metal/organic/nanowire structures possessing nanometer thick deposited molecular and metal films on top of InP and GaAs nanowire (NW) surfaces were investigated. Optical characterizations were carried out as a function of the semiconductor NW material, design, NW size and the type and thickness of the organic material and metal used. Hybrid organic and plasmonic semiconductor nanowire heterostructures were fabricated using organic molecular beam deposition technique. I investigated the photon emission of excitons in 150 nm diameter polytype wurtzite/zincblende InP NWs and the influence of a few ten nanometer thick organic and metal films on the emission using intensity- and temperature-dependent time-integrated and time resolved (TR) photoluminescence (PL). The plasmonic NWs were coated with an Aluminum quinoline (Alq3) interlayer and magnesium-silver (Mg0.9:Ag0.1) top layer. In addition, the nonlinear optical technique of heterodyne four-wave mixing was used (in collaboration with Prof. Wolfgang Langbein, University of Cardiff) to study incoherent and coherent carrier relaxation processes on bare nanowires on a 100 femtosecond time-scale. Alq3 covered NWs reveal a stronger emission and a longer decay time of exciton transitions indicating surface state passivation at the Alq3/NW interface. Alq3/Mg:Ag NWs reveal a strong quenching of the exciton emission which is predominantly attributed to Forster energy-transfer from excitons to plasmon oscillations in the metal cluster film. Changing the Mg:Ag to gold and the organic Alq3 spacer layer to PTCDA leads to a similar behavior, but the PL quenching is strongly increased. The observed behavior is attributed to a more continuous gold deposition leading to an increased Forster energy transfer and to a metal induced band-bending. I also investigated ensembles of bare and gold/Alq3 coated GaAs-AlGaAs-GaAs core shell NWs of 130 nm diameter. Plasmonic NWs with Au coating reveal a significant reduction of the PL intensity compared with the uncoated NWs. Organic-plasmonic NWs with an additional Alq3 interlayer show a noticeably stronger PL intensity which increases with rising Alq3 spacer thickness. Metal induced band bending is mainly attributed to be responsible for the PL quenching. TR PL measurements support our interpretation by showing an increase in the exciton decay times as we increase the spacer thickness. Au coated NWs also reveal a strong polarization dependent absorption which is mainly due to the significant dielectric mismatch between the nanowires and the adjacent vacuum environment. Finally, the amplified spontaneous emission (ASE) and possible plasmonic NW lasing from hybrid plasmonic core-shell GaAs NW heterostructures was investigated. The plasmonic heterostructures are composed of either bare NWs on an Au coated glass substrate or Au coated NWs on a bare glass substrate. Intensity-dependent PL on plasmonic NW samples reveals a super linear increase of the PL intensities which is attributed to an ASE at a threshold energy fluence of 1 GW/cm 2. Measurements above the threshold power reveal few weakly resolved broad bands around the maximum emission of the PL band which suggest plasmonic film induced lasing. This interpretation is supported by the fact that lasing from such 100 nm narrow uncoated GaAs NWs is not possible.
Evaluating Plasmonic Transport in Current-carrying Silver Nanowires
Song, Mingxia; Stolz, Arnaud; Zhang, Douguo; Arocas, Juan; Markey, Laurent; Colas des Francs, Gérard; Dujardin, Erik; Bouhelier, Alexandre
2013-01-01
Plasmonics is an emerging technology capable of simultaneously transporting a plasmonic signal and an electronic signal on the same information support1,2,3. In this context, metal nanowires are especially desirable for realizing dense routing networks4. A prerequisite to operate such shared nanowire-based platform relies on our ability to electrically contact individual metal nanowires and efficiently excite surface plasmon polaritons5 in this information support. In this article, we describe a protocol to bring electrical terminals to chemically-synthesized silver nanowires6 randomly distributed on a glass substrate7. The positions of the nanowire ends with respect to predefined landmarks are precisely located using standard optical transmission microscopy before encapsulation in an electron-sensitive resist. Trenches representing the electrode layout are subsequently designed by electron-beam lithography. Metal electrodes are then fabricated by thermally evaporating a Cr/Au layer followed by a chemical lift-off. The contacted silver nanowires are finally transferred to a leakage radiation microscope for surface plasmon excitation and characterization8,9. Surface plasmons are launched in the nanowires by focusing a near infrared laser beam on a diffraction-limited spot overlapping one nanowire extremity5,9. For sufficiently large nanowires, the surface plasmon mode leaks into the glass substrate9,10. This leakage radiation is readily detected, imaged, and analyzed in the different conjugate planes in leakage radiation microscopy9,11. The electrical terminals do not affect the plasmon propagation. However, a current-induced morphological deterioration of the nanowire drastically degrades the flow of surface plasmons. The combination of surface plasmon leakage radiation microscopy with a simultaneous analysis of the nanowire electrical transport characteristics reveals the intrinsic limitations of such plasmonic circuitry. PMID:24378340
Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.
Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang
2015-02-14
Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.
Surface plasmon microscopy with low-cost metallic nanostructures for biosensing I
NASA Astrophysics Data System (ADS)
Lindquist, Nathan; Oh, Sang-Hyun; Otto, Lauren
2012-02-01
The field of plasmonics aims to manipulate light over dimensions smaller than the optical wavelength by exploiting surface plasmon resonances in metallic films. Typically, surface plasmons are excited by illuminating metallic nanostructures. For meaningful research in this exciting area, the fabrication of high-quality nanostructures is critical, and in an undergraduate setting, low-cost methods are desirable. Careful optical characterization of the metallic nanostructures is also required. Here, we present the use of novel, inexpensive nanofabrication techniques and the development of a customized surface plasmon microscopy setup for interdisciplinary undergraduate experiments in biosensing, surface-enhanced Raman spectroscopy, and surface plasmon imaging. A Bethel undergraduate student performs the nanofabrication in collaboration with the University of Minnesota. The rewards of mentoring undergraduate students in cooperation with a large research university are numerous, exposing them to a wide variety of opportunities. This research also interacts with upper-level, open-ended laboratory projects, summer research, a semester-long senior research experience, and will enable a large range of experiments into the future.
Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.
Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J
2012-11-09
A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.
NASA Astrophysics Data System (ADS)
Yun, Jin-Hyeon; Kim, Kyu Cheol; Yu, Yeon Tae; Yang, Jin Kyu; Polyakov, Alexander Y.; Lee, In-Hwan
2017-10-01
Improved performance of blue InGaN/GaN light-emitting diodes (LEDs) is realized as a result of fabricating nanohole patterns in the p-GaN contact layer and embedding the nanoholes with Ag/SiO2 nanoparticles to generate localized surface plasmons (LSPs). Good matching between LSP resonance energy and LED emission energy together with the close proximity between nanoparticles and the active region results in strong coupling between them. Consequently, the photoluminescence and electroluminescence intensities increased to 1.75 and 1.10, respectively, compared with nanohole patterned reference LEDs.
Gómez, D E; Teo, Z Q; Altissimo, M; Davis, T J; Earl, S; Roberts, A
2013-08-14
Plasmonic dark modes are pure near-field modes that can arise from the plasmon hybridization in a set of interacting nanoparticles. When compared to bright modes, dark modes have longer lifetimes due to their lack of a net dipole moment, making them attractive for a number of applications. We demonstrate the excitation and optical detection of a collective dark plasmonic mode from individual plasmonic trimers. The trimers consist of triangular arrangements of gold nanorods, and due to this symmetry, the lowest-energy dark plasmonic mode can interact with radially polarized light. The experimental data presented confirm the excitation of this mode, and its assignment is supported with an electrostatic approximation wherein these dark modes are described in terms of plasmon hybridization. The strong confinement of energy in these modes and their associated near fields hold great promise for achieving strong coupling to single photon emitters.
Spectral dependence of fluorescence near plasmon resonant metal nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Yeechi
The optical properties of fluorophores are significantly modified when placed within the near field (0--100 nm) of plasmon resonant metal nanostructures, due to the competition between increased decay rates and "hotspots" of concentrated electric fields. The decay rates and effective electric field intensities are highly dependent on the relative position of dye and metal and the overlap between plasmon resonance and dye absorption and emission. Understanding these dependencies can greatly improve the performance of biosensing and nanophotonic devices. In this dissertation, the fluorescence intensity of organic dyes and CdSe quantum dots near single metal nanoparticles is studied as a function of the local surface plasmon resonance (LSPR) of the nanoparticle. Single metal nanoparticles have narrow, well-defined, intense local surface plasmon resonances that are tunable across the visible spectrum by changes in size and shape. First, we show that organic dyes can be self-assembled on single silver nanoprisms into known configurations by the hybridization of thiolated DNA oligomers. We correlate the fluorescence intensity of the dyes to the LSPR of the individual nanoprism to which they are attached. For each of three different organic dyes, we observe a strong correlation between the fluorescence intensity of the dye and the degree of spectral overlap with the plasmon resonance of the nanoparticle. On average, we observe the brightest fluorescence from dyes attached to metal nanoparticles that have a LSPR scattering peak 40--120 meV higher in energy than the emission peak of the fluorophore. Second, the plasmon-enhanced fluorescence from CdSe/CdS/CdZnS/ZnS core/shell quantum dots is studied near a variety of silver and gold nanoparticles. With single-particle scattering spectroscopy, the localized surface plasmon resonance spectra of single metal nanoparticles is correlated with the photoluminescence excitation (PLE) spectra of the nearby quantum dots. The PLE spectra closely track the scattering spectra of the metal nanoparticles. By taking advantage of the ability to excite quantum dots across a wide range of wavelengths while detecting a single emission wavelength, we measure an excitation enhancement factor for single metal nanoparticles. The data also provide a calculation of a lower-bound of experimentally attainable enhancement factors solely due to increased near-field excitation. This factor was found to range from ˜3 to 10 for Au spheres, Ag cubes and Ag nanoprisms.
Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays
Yang, Jiun-Chan; Gao, Hanwei; Suh, Jae Yong; Zhou, Wei; Lee, Min Hyung; Odom, Teri W.
2010-01-01
This paper describes 3D nanohole arrays whose high optical transmission is mediated more by localized surface plasmon (LSP) excitations than by surface plasmon polaritons (SPPs). First, LSPs on 3D hole arrays lead to optical transmission an order of magnitude higher than 2D planar hole arrays. Second, LSP-mediated transmission is broadband and more tunable than SPP-enhanced transmission which is restricted by Bragg coupling. Third, for the first time, two types of surface plasmons can be selectively excited and manipulated on the same plasmonic substrate. This new plasmonic substrate fabricated by high-throughput nanolithography techniques paves the way for cutting-edge optoelectronic and biomedical applications. PMID:20698633
Li, Xiaowei; Huang, Lingling; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan
2011-03-28
A semi-circular plasmonic launcher integrated with dielectric-loaded surface plasmon-polaritons waveguide (DLSPPW) is proposed and analyzed theoretically, which can focus and efficiently couple the excited surface plasmon polaritons (SPPs) into the DLSPPW via the highly matched spatial field distribution with the waveguide mode in the focal plane. By tuning the incident angle or polarization of the illuminating beam, it is shown that the launcher may be conveniently used as a switch or a multiplexer that have potential applications in plasmonic circuitry. Furthermore, from an applicational point of view, it is analyzed how the coupling performance of the launcher can be further improved by employing multiple semi-circular slits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensen, Matthias; Heilpern, Tal; Gray, Stephen K.
Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance linemore » width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.« less
Laboratory Experiments for Exploring the Surface Plasmon Resonance
ERIC Educational Resources Information Center
Pluchery, Olivier; Vayron, Romain; Van, Kha-Man
2011-01-01
The surface plasmon wave is a surface wave confined at the interface between a dielectric and a metal. The excitation of the surface plasmon resonance (SPR) on a gold thin film is discussed within the Kretschmann configuration, where the coupling with the excitation light is achieved by means of a prism in total reflection. The electromagnetic…
Lee, Kuang-Li; Chang, Chia-Chun; You, Meng-Lin; Pan, Ming-Yang; Wei, Pei-Kuen
2018-06-27
Improving surface sensitivities of nanostructure-based plasmonic sensors is an important issue to be addressed. Among the SPR measurements, the wavelength interrogation is commonly utilized. We proposed using blue-shifted surface plasmon mode and Fano resonance, caused by the coupling of a cavity mode (angle-independent) and the surface plasmon mode (angle-dependent) in a long-periodicity silver nanoslit array, to increase surface (wavelength) sensitivities of metallic nanostructures. It results in an improvement by at least a factor of 4 in the spectral shift as compared to sensors operated under normal incidence. The improved surface sensitivity was attributed to a high refractive index sensitivity and the decrease of plasmonic evanescent field caused by two effects, the Fano coupling and the blue-shifted resonance. These concepts can enhance the sensing capability and be applicable to various metallic nanostructures with periodicities.
Backward and forward plasmons in symmetric structures
NASA Astrophysics Data System (ADS)
Davidovich, Mikhael V.
2018-04-01
The electric and magnetic surface plasmons in symmetric structures of metallic and dielectric layers are considered. The existence of backward and forward waves and the slow and fast plasmon-polaritons are obtained. It is shown that the anomalous negative dispersion in the structures with dissipation does not necessarily indicate the backward surface plasmons.
Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens.
Liu, Aiping; Rui, Guanghao; Ren, Xifeng; Zhan, Qiwen; Guo, Guangcan; Guo, Guoping
2012-10-22
Both spin angular momentum (SAM) and orbital angular momentum (OAM) can be used to carry information in classical optics and quantum optics. In this paper, the encoding of angular momentum (AM) information of photons onto surface plasmon polaritons (SPPs) is demonstrated using a nano-ring plasmonic lens. Near-field energy distribution on the metal surface is measured using a near-field scanning optical microscope (NSOM) when the plasmonic lens is excited by photons with different combinations of SAM and OAM. It is found that both the SAM and OAM can influence the near field energy distribution of SPPs. More interestingly, numerical and experimental studies reveal that the energy distribution on the plasmonic lens surface is determined by the absolute value of the total AM. This gives direct evidences that SPPs can be encoded with the photonic SAM and OAM information simultaneously and the spin degeneracy of the photons can be removed using the interactions between photonic OAM and plasmonic lens. The findings are useful not only for the fundamental understanding of the photonic AM but also for the future design of plasmonic quantum optics devices and systems.
Lee, Jiwon; Zhang, Qianpeng; Park, Seungyoung; Choe, Ayoung; Fan, Zhiyong; Ko, Hyunhyub
2016-01-13
Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level.
Surface-enhanced Raman scattering from finite arrays of gold nano-patches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincenti, M. A.; Ceglia, D. de; US Army-Charles M. Bowden Research Laboratory, 35898 Redstone Arsenal, Huntsville, Alabama
We experimentally investigate the surface-enhanced Raman scattering (SERS) response of a 2D-periodic array of square gold nano-patches, functionalized by means of a conjugated, rigid thiol. We measure a Raman signal enhancement up to 200 times more intense compared to other plasmon-based nanostructures functionalized with the same molecule, and show that the enhancement is not strictly correlated to the presence of plasmonic resonances. The agreement between experimental and theoretical results reveals the importance of a full-wave analysis based on the inclusion of the actual scattering cross section of the molecule. The proposed numerical approach may serve not only as a toolmore » to predict the enhancement of Raman signal scattered from strongly resonant nanostructure but also as an effective instrument to engineer SERS platforms that target specific molecules.« less
Chemoresponsive Colloidosomes via Ag⁺ Soldering of Surface-Assembled Nanoparticle Monolayers.
Liu, Miao; Tian, Qian; Li, Yulin; You, Bo; Xu, An; Deng, Zhaoxiang
2015-04-28
Colloidosomes with a hollow interior and a porous plasmonic shell are highly desired for many applications including nanoreactors, surface-enhanced Raman scattering (SERS), photothermal therapy, and controlled drug release. We herein report a silica nanosphere-templated electrostatic self-assembly in conjunction with a newly developed Ag(+) soldering to fabricate gold colloidosomes toward multifunctionality and stimuli-responsibility. The gold colloidosomes are capable of capturing a nanosized object and releasing it via structural dissociation upon responding to a biochemical input (GSH, glutathione) at a concentration close to its cellular level. In addition, the colloidosomes have a tunable nanoporous shell composed of strongly coupled gold nanoparticles, which exhibit broadened near-infrared plasmon resonance. These features along with the simplicity and high tunability of the fabrication process make the gold colloidosomes quite promising for applications in a chemical or cellular environment.
Two-Photon Vibrational Spectroscopy using local optical fields of gold and silver nanostructures
NASA Astrophysics Data System (ADS)
Kneipp, Katrin; Kneipp, Janina; Kneipp, Harald
2007-03-01
Spectroscopic effects can be strongly affected when they take place in the immediate vicinity of metal nanostructures due to coupling to surface plasmons. We introduce a new approach that suggests highly efficient two-photon labels as well as two-photon vibrational spectroscopy for non-destructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states performed in the enhanced local optical fields of gold nanoparticles, surface enhanced hyper Raman scattering (SEHRS). We infer effective two-photon cross sections for SEHRS on the order of 10^5 GM, similar or higher than the best known cross sections for two-photon fluorescence. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy, and the high sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy.
NASA Astrophysics Data System (ADS)
Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei
2018-01-01
Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.
Some optical and catalytic properties of metallic nanoparticles
NASA Astrophysics Data System (ADS)
Tabor, Christopher Eugene
Nanomaterials have been the focus of many previous publications and studies. This fact is due to the wealth of new and tunable properties that exist when a material is confined in size. This thesis discusses some of those properties pertaining to metallic nanoparticles. The primarily focus is on the plasmonic properties of gold nanoparticles with a final chapter discussing nanocatalysis and the nature of nanocatalytic reactions. The strong electromagnetic field that is induced at the surface of a plasmonic nanoparticle can be utilized for many important applications, including spectroscopic enhancements for molecular sensors and electromagnetic waveguides for sub-wavelength light manipulation. For many of these applications, it is necessary to use two or more nanoparticles in close proximity with overlapping plasmonic fields. Knowledge of how these overlapping fields are affected by the particle orientation, size, and shape is critically important, not only in understanding the fundamental properties of plasmons but also in designing future architectures that employ plasmonic particles. The field of metallic nanoparticles is introduced from its beginning, with artistic use as early as the 4th century AD through current applications and understanding. The broad spectrum of current methodologies for fabricating nanoparticles is discussed, from top down methods using lithography and from bottom up methods using metal salt reduction in solution. There are several methods used in this thesis, all of which are discussed in great detail, with some details pertaining to the specific instrumentation used here. The first study is on the transfer of surface supported gold nanoprisms from a substrate into solution using photo-thermal heating with a femtosecond pulse coincident with the plasmon resonance frequency of the nanoprisms. The mechanism of transfer is discovered to be due to super heating of solvent molecules dissolved at the particle-substrate interface. This process is studied as a function of irradiance fluence and solvent. The stability of the unprotected nanoprisms in solution is discussed. This technique has applications for creating a colloidal suspension of nanoparticle without a surfactant layer covering the surface. The particles can be chemically functionalized with any desired moiety for specific solution phase applications. The second study is on the fundamentals of plasmonic near-field coupling between two plasmonic nanoparticles as a function of the nanoparticle size, shape, and orientation. Experimental results using electron beam lithography fabricated samples are used to better understand the plasmonic coupling between dimers. Previously, the coupling between plasmonic fields around nanoparticles has been described as a near-exponential decay dependence on interparticle separation. This decay was proposed to be consistent among all sizes and shapes of nanoparticles, which was quantitatively measured using the best-fit decay length in units of the nanoparticle size. Experimental proof is presented of the shape dependence of this decay length, which is roughly 50% greater for nanoprisms than for nanodiscs, nanospheres, and nanoellipses. This was shown using simulated and experimental data. Using simulated results, the coupling decay length was shown to be independent of size for all nanoparticle shapes examined. Additionally, the effect of particle orientation on the coupling of the induced nearfields of the plasmonic particles is intensely investigated. Systematic studies using a combination of experimental samples and computer simulations are presented that examine the role of one particle's orientation to another within a plasmonic dimer system. This dependence is compared to the mathematically derived dependence and shown to be in excellent agreement. The plasmon hybridization method is given as a straightforward method to understand and predict the effect of plasmon near-field coupling on orientation. Previous methods used to understand the effect of separation on the plasmon coupling are incorporated into this method. As an extension, the coupling between plasmonic nanoparticles is shown in a common application, namely surface enhanced Raman scattering. This phenomenon is studied using colloidally prepared silver nanocubes deposited on a substrate using the Langmuir-Blodgett technique. Using various surface pressures during deposition, the surface density of the deposited nanocubes can be controlled, and thus the degree of plasmonic coupling. By controlling the plasmonic coupling, the enhancement of the Raman scattering from the PVP capping layer was altered and a correlation between the enhancement and the plasmon field intensity is reported. The final study investigates the nature of nanocatalysis for several reactions using metal nanoparticles. Arguably, the largest unanswered question currently in nanocatalysis is the nature of the catalytic reaction, namely homogeneous catalysis or heterogeneous catalysis. This question has been very difficult to answer because of the lack of current techniques to completely restrict one form of catalysis. The issue is reviewed in this thesis with new insights discussed while using experiments that show evidence of both sides of the issues, homogeneous and heterogeneous.
Scattering of Light and Surface Plasmon Polaritons from Rough Surfaces
2013-06-14
Scattering of an electromagnetic wave from a slightly random dielectric surface: Yoneda peak and Brewster angle in incoherent scattering.” Waves...device applications. Thus, the negative refraction of a surface plasmon polariton was studied in two papers. In the first [1], all- angle negative... angle of incidence, measured counterclockwise from the negative x1 axis, is . The surface plasmon polariton of frequency transmitted through the
Gold nanostar synthesis with a silver seed mediated growth method.
Kereselidze, Zurab; Romero, Victor H; Peralta, Xomalin G; Santamaria, Fidel
2012-01-15
The physical, chemical and optical properties of nano-scale colloids depend on their material composition, size and shape. There is a great interest in using nano-colloids for photo-thermal ablation, drug delivery and many other biomedical applications. Gold is particularly used because of its low toxicity. A property of metal nano-colloids is that they can have a strong surface plasmon resonance. The peak of the surface plasmon resonance mode depends on the structure and composition of the metal nano-colloids. Since the surface plasmon resonance mode is stimulated with light there is a need to have the peak absorbance in the near infrared where biological tissue transmissivity is maximal. We present a method to synthesize star shaped colloidal gold, also known as star shaped nanoparticles or nanostars. This method is based on a solution containing silver seeds that are used as the nucleating agent for anisotropic growth of gold colloids. Scanning electron microscopy (SEM) analysis of the resulting gold colloid showed that 70 % of the nanostructures were nanostars. The other 30 % of the particles were amorphous clusters of decahedra and rhomboids. The absorbance peak of the nanostars was detected to be in the near infrared (840 nm). Thus, our method produces gold nanostars suitable for biomedical applications, particularly for photo-thermal ablation.
Lee, Cheng-Kuang; Tseng, Hung-Yu; Lee, Chia-Yun; Wu, Shou-Yen; Chi, Ting-Ta; Yang, Kai-Min; Chou, Han-Yi Elizabeth; Tsai, Meng-Tsan; Wang, Jyh-Yang; Kiang, Yean-Woei; Chiang, Chun-Pin; Yang, C. C.
2010-01-01
The characterization results of the localized surface plasmon resonance (LSPR) of Au nanorings (NRs) with optical coherence tomography (OCT) are first demonstrated. Then, the diffusion behaviors of Au NRs in mouse liver samples tracked with OCT are shown. For such research, aqueous solutions of Au NRs with two different localized surface plasmon resonance (LSPR) wavelengths are prepared and characterized. Their LSPR-induced extinction cross sections at 1310 nm are estimated with OCT scanning of solution droplets on coverslip to show reasonably consistent results with the data at individual LSPR wavelengths and at 1310 nm obtained from transmission measurements of Au NR solutions and numerical simulations. The resonant and non-resonant Au NRs are delivered into mouse liver samples for tracking Au NR diffusion in the samples through continuous OCT scanning for one hour. With resonant Au NRs, the average A-mode scan profiles of OCT scanning at different delay times clearly demonstrate the extension of strong backscattering depth with time. The calculation of speckle variance among successive OCT scanning images, which is related to the local transport speed of Au NRs, leads to the illustrations of downward propagation and spreading of major Au NR motion spot with time. PMID:21258530
Interference of conically scattered light in surface plasmon resonance.
Webster, Aaron; Vollmer, Frank
2013-02-01
Surface plasmon polaritons on thin metal films are a well studied phenomena when excited using prism coupled geometries such as the Kretschmann attenuated total reflection configuration. Here we describe a novel interference pattern in the conically scattered light emanating from such a configuration when illuminated by a focused beam. We observe conditions indicating only self-interference of scattered surface plasmon polaritions without any contributions from specular reflection. The spatial evolution of this field is described in the context of Fourier optics and has applications in highly sensitive surface plasmon based biosensing.
Surface Plasmon Resonance Sensors on Raman and Fluorescence Spectroscopy
Wang, Jiangcai; Lin, Weihua; Cao, En; Xu, Xuefeng; Liang, Wenjie; Zhang, Xiaofang
2017-01-01
The performance of chemical reactions has been enhanced immensely with surface plasmon resonance (SPR)-based sensors. In this review, the principle and application of SPR sensors are introduced and summarized thoroughly. We introduce the mechanism of the SPR sensors and present a thorough summary about the optical design, including the substrate and excitation modes of the surface plasmons. Additionally, the applications based on SPR sensors are described by the Raman and fluorescence spectroscopy in plasmon-driven surface catalytic reactions and the measurement of refractive index sensing, especially. PMID:29212139
Method for surface plasmon amplification by stimulated emission of radiation (SPASER)
Stockman, Mark I [Atlanta, GA; Bergman, David J [Ramat Hasharon, IL
2011-09-13
A nanostructure is used to generate a highly localized nanoscale optical field. The field is excited using surface plasmon amplification by stimulated emission of radiation (SPASER). The SPASER radiation consists of surface plasmons that undergo stimulated emission, but in contrast to photons can be localized within a nanoscale region. A SPASER can incorporate an active medium formed by two-level emitters, excited by an energy source, such as an optical, electrical, or chemical energy source. The active medium may be quantum dots, which transfer excitation energy by radiationless transitions to a resonant nanosystem that can play the same role as a laser cavity in a conventional laser. The transitions are stimulated by the surface plasmons in the nanostructure, causing the buildup of a macroscopic number of surface plasmons in a single mode.
Surface plasmon amplification by stimulated emission of radiation (SPASER)
Stockman, Mark I [Atlanta, GA; Bergman, David J [Ramat Hasharon, IL
2009-08-04
A nanostructure is used to generate a highly localized nanoscale optical field. The field is excited using surface plasmon amplification by stimulated emission of radiation (SPASER). The SPASER radiation consists of surface plasmons that undergo stimulated emission, but in contrast to photons can be localized within a nanoscale region. A SPASER can incorporate an active medium formed by two-level emitters, excited by an energy source, such as an optical, electrical, or chemical energy source. The active medium may be quantum dots, which transfer excitation energy by radiationless transitions to a resonant nanosystem that can play the same role as a laser cavity in a conventional laser. The transitions are stimulated by the surface plasmons in the nanostructure, causing the buildup of a macroscopic number of surface plasmons in a single mode.
Light-controlled plasmon switching using hybrid metal-semiconductor nanostructures.
Paudel, Hari P; Leuenberger, Michael N
2012-06-13
We present a proof of concept for the dynamic control over the plasmon resonance frequencies in a hybrid metal-semiconductor nanoshell structure with Ag core and TiO(2) coating. Our method relies on the temporary change of the dielectric function ε of TiO(2) achieved through temporarily generated electron-hole pairs by means of a pump laser pulse. This change in ε leads to a blue shift of the Ag surface plasmon frequency. We choose TiO(2) as the environment of the Ag core because the band gap energy of TiO(2) is larger than the Ag surface plasmon energy of our nanoparticles, which allows the surface plasmon being excited without generating electron-hole pairs in the environment at the same time. We calculate the magnitude of the plasmon resonance shift as a function of electron-hole pair density and obtain shifts up to 126 nm at wavelengths around 460 nm. Using our results, we develop the model of a light-controlled surface plasmon polariton switch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, Atsushi; Saito, Yuika; Watanabe, Koichi
Localized surface plasmon resonances were controlled at deep-ultraviolet (DUV) wavelengths by fabricating aluminum (Al) nanostructures in a size-controllable manner. Plasmon resonances were obtained at wavelengths from near-UV down to 270 nm (4.6 eV) depending on the fabricated structure size. Such precise size control was realized by the nanosphere lithography technique combined with additional microwave heating to shrink the spaces in a close-packed monolayer of colloidal nanosphere masks. By adjusting the microwave heating time, the sizes of the Al nanostructures could be controlled from 80 nm to 50 nm without the need to use nanosphere beads of different sizes. With themore » outstanding controllability and versatility of the presented fabrication technique, the fabricated Al nanostructure is promising for use as a DUV plasmonic substrate, a light-harvesting platform for mediating strong light-matter interactions between UV photons and molecules placed near the metal nanostructure.« less
Bontempi, Nicolò; Vassalini, Irene; Danesi, Stefano; Ferroni, Matteo; Donarelli, Maurizio; Colombi, Paolo; Alessandri, Ivano
2018-05-03
Silicon is one of the most interesting candidates for plasmon-free surface-enhaced Raman scattering (SERS), because of its high-refractive index and thermal stability. However, here we demonstrate that the alleged thermal stability of silicon nanoshells irradiated by conventional Raman laser cannot be taken for granted. We investigated the opto-thermal behavior of SiO 2 /Si core/shell microbeads (Si-rex) irradiated with three common Raman laser sources (λ = 532, 633, 785 nm) under real working conditions. We obtained an experimental proof of the critical role played by bead size and aggregation in heat and light management, demonstrating that, in the case of strong opto-thermal coupling, the temperature can exceed that of the melting points of both core and shell components. In addition, we also show that weakly coupled beads can be utilized as stable substrates for plasmon-free SERS experiments.
NASA Astrophysics Data System (ADS)
Stockman, Mark I.; Kneipp, Katrin; Bozhevolnyi, Sergey I.; Saha, Soham; Dutta, Aveek; Ndukaife, Justus; Kinsey, Nathaniel; Reddy, Harsha; Guler, Urcan; Shalaev, Vladimir M.; Boltasseva, Alexandra; Gholipour, Behrad; Krishnamoorthy, Harish N. S.; MacDonald, Kevin F.; Soci, Cesare; Zheludev, Nikolay I.; Savinov, Vassili; Singh, Ranjan; Groß, Petra; Lienau, Christoph; Vadai, Michal; Solomon, Michelle L.; Barton, David R., III; Lawrence, Mark; Dionne, Jennifer A.; Boriskina, Svetlana V.; Esteban, Ruben; Aizpurua, Javier; Zhang, Xiang; Yang, Sui; Wang, Danqing; Wang, Weijia; Odom, Teri W.; Accanto, Nicolò; de Roque, Pablo M.; Hancu, Ion M.; Piatkowski, Lukasz; van Hulst, Niek F.; Kling, Matthias F.
2018-04-01
Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons—elementary polar excitations bound to surfaces and interfaces of good nanostructured metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects, such as quantum plasmonics based on the quantum-mechanical properties of both the underlying materials and the plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists, as well as applied scientists and engineers.
NASA Astrophysics Data System (ADS)
Oates, T. W. H.; Wormeester, H.; Arwin, H.
2011-12-01
In this article, spectroscopic ellipsometry studies of plasmon resonances at metal-dielectric interfaces of thin films are reviewed. We show how ellipsometry provides valuable non-invasive amplitude and phase information from which one can determine the effective dielectric functions, and how these relate to the material nanostructure and define exactly the plasmonic characteristics of the system. There are three related plasmons that are observable using spectroscopic ellipsometry; volume plasmon resonances, surface plasmon polaritons and particle plasmon resonances. We demonstrate that the established method of exploiting surface plasmon polaritons for chemical and biological sensing may be enhanced using the ellipsometric phase information and provide a comprehensive theoretical basis for the technique. We show how the particle and volume plasmon resonances in the ellipsometric spectra of nanoparticle films are directly related to size, surface coverage and constituent dielectric functions of the nanoparticles. The regularly observed splitting of the particle plasmon resonance is theoretically described using modified effective medium theories within the framework of ellipsometry. We demonstrate the wealth of information available from real-time in situ spectroscopic ellipsometry measurements of metal film deposition, including the evolution of the plasmon resonances and percolation events. Finally, we discuss how generalized and Mueller matrix ellipsometry hold great potential for characterizing plasmonic metamaterials and sub-wavelength hole arrays.
Yang, Yuanmu; Kravchenko, Ivan I.; Briggs, Dayrl P.; ...
2014-12-16
Fano-resonant plasmonic metamaterials and nanostructures have become a major focus of the nanophotonics fields over the past several years due their ability to produce high quality factor (Q-factor) resonances. The origin of such resonances is the interference between a broad and narrow resonance, ultimately allowing suppression of radiative damping. However, Fano-resonant plasmonic structures still suffer non-radiative damping due to Ohmic loss, ultimately limiting the achievable Q-factors to values less than ~10. Here, we report experimental demonstration of Fano-resonant silicon-based metamaterials that have a response that mimics the electromagnetically induced transparency (EIT) found in atomic systems. Due to extremely low absorptionmore » loss, a record-high quality factor (Q-factor) of 306 was experimentally observed. Furthermore, the unit cell of the metamaterial was designed with a feed-gap which results in strong local field enhancement in the surrounding medium resulting in strong light-matter interaction. This allows the metamaterial to serve as a refractive index sensor with a figure-of-merit (FOM) of 101, far exceeding the performance of previously demonstrated localized surface plasmon resonance sensors.« less
Oh, Jeong-Wook; Lim, Dong-Kwon; Kim, Gyeong-Hwan; Suh, Yung Doug; Nam, Jwa-Min
2014-10-08
The design, synthesis and control of plasmonic nanostructures, especially with ultrasmall plasmonically coupled nanogap (∼1 nm or smaller), are of significant interest and importance in chemistry, nanoscience, materials science, optics and nanobiotechnology. Here, we studied and established the thiolated DNA-based synthetic principles and methods in forming and controlling Au core-nanogap-Au shell structures [Au-nanobridged nanogap particles (Au-NNPs)] with various interior nanogap and Au shell structures. We found that differences in the binding affinities and modes among four different bases to Au core, DNA sequence, DNA grafting density and chemical reagents alter Au shell growth mechanism and interior nanogap-forming process on thiolated DNA-modified Au core. Importantly, poly A or poly C sequence creates a wider interior nanogap with a smoother Au shell, while poly T sequence results in a narrower interstitial interior gap with rougher Au shell, and on the basis of the electromagnetic field calculation and experimental results, we unraveled the relationships between the width of the interior plasmonic nanogap, Au shell structure, electromagnetic field and surface-enhanced Raman scattering. These principles and findings shown in this paper offer the fundamental basis for the thiolated DNA-based chemistry in forming and controlling metal nanostructures with ∼1 nm plasmonic gap and insight in the optical properties of the plasmonic NNPs, and these plasmonic nanogap structures are useful as strong and controllable optical signal-generating nanoprobes.
NASA Astrophysics Data System (ADS)
Kuriakose, Sini; Sahu, Kavita; Khan, Saif A.; Tripathi, A.; Avasthi, D. K.; Mohapatra, Satyabrata
2017-02-01
Au-ZnO plasmonic nanohybrids were synthesized by a facile two step process. In the first step, nanostructured ZnO thin films were prepared by carbothermal evaporation followed by thermal annealing in oxygen atmosphere. Deposition of ultrathin Au films onto the nanostructured ZnO thin films by sputtering combined with thermal annealing resulted in the formation of Au-ZnO plasmonic nanohybrid thin films. The structural, optical, plasmonic and photocatalytic properties of the Au-ZnO nanohybrid thin films were studied. XRD studies on the Au-ZnO hybrid thin films revealed the presence of Au and ZnO nanostructures. UV-visible absorption studies showed two peaks corresponding to the excitonic absorption of ZnO nanostructures in the UV region and the surface plasmon resonance (SPR) absorption of Au nanoparticles in the visible region. The Au-ZnO nanohybrid thin films annealed at 400 °C showed enhanced photocatalytic activity as compared to nanostructrured ZnO thin films towards sun light driven photocatalytic degradation of methylene blue (MB) dye in water. The observed enhanced photocatalytic activity of Au-ZnO plasmonic nanohybrids is attributed to the efficient suppression of the recombination of photogenerated charge carriers in ZnO due to the strong electron scavenging action of Au nanoparticles combined with the improved sun light utilization capability of Au-ZnO nanohybrids coming from the plasmonic response of Au nanoparticles decorating ZnO nanostructures.
Fabrication of tunable plasmonic 3D nanostructures for SERS applications
NASA Astrophysics Data System (ADS)
Ozbay, Ayse; Yuksel, Handan; Solmaz, Ramazan; Kahraman, Mehmet
2016-03-01
Surface-enhanced Raman scattering (SERS) is a powerful technique used for characterization of biological and nonbiological molecules and structures. Since plasmonic properties of the nanomaterials is one of the most important factor influencing SERS activity, tunable plasmonic properties (wavelength of the surface plasmons and magnitude of the electromagnetic field generated on the surface) of SERS substrates are crucial in SERS studies. SERS enhancement can be maximized by controlling of plasmonic properties of the nanomaterials. In this study, a novel approach to fabricate tunable plasmonic 3D nanostructures based on combination of soft lithography and nanosphere lithography is studied. Spherical latex particles having different diameters are uniformly deposited on glass slides with convective assembly method. The experimental parameters for the convective assembly are optimized by changing of latex spheres concentration, stage velocity and latex particles volume placed between to two glass slides that staying with a certain angle to each other. Afterwards, polydimethylsiloxane (PDMS) elastomer is poured on the deposited latex particles and cured to obtain nanovoids on the PDMS surfaces. The diameter and depth of the nanovoids on the PDMS surface are controlled by the size of the latex particles. Finally, fabricated nanovoid template on the PDMS surfaces are filled with the silver coating to obtain plasmonic 3D nanostructures. Characterization of the fabricated surfaces is performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SERS performance of fabricated 3D plasmonic nanostructures will be evaluated using Raman reporter molecules.
Radiative energy transfer from MoS2 excitons to surface plasmons
NASA Astrophysics Data System (ADS)
Kang, Yimin; Li, Bowen; Fang, Zheyu
2017-12-01
In this work, we demonstrated the energy transfer process from few-layer MoS2 to gold dimer arrays via ultrafast pump-probe spectroscopy. With the overlap between the MoS2 exciton and the designed plasmon dipolar modes in the frequency domain, the exciton energy can be radiatively transferred to plasmonic structures, excited the localized surface plasmon resonance, and then enhanced the oscillation of coherent acoustic phonons. Power-dependent differential reflection signals and an analytical model based on the rate equation of exciton density were carried out to quantitatively study the energy transfer process. Our finding explores the energy flow between MoS2 excitons and surface plasmons, and can be contributed to the design of exciton-plasmon structures utilizing ultrathin materials.
NASA Astrophysics Data System (ADS)
Shan, Feng; Su, Dan; Li, Wei; Hu, Wei; Zhang, Tong
2018-02-01
In this paper, a novel gold nanostar (NS)@SiO2@CdSe/ZnS quantum dots (QDs) complex with plasmon-enhanced fluorescence synthesized using a step-by-step surface linkage method was presented. The gold NS was synthesized by the seed growth method. The synthesized gold NS with the apexes structure has a hot-spot effect due to the strong electric field distributed at its sharp apexes, which leads to a plasmon resonance enhancement. Because the distance between QDs and metal nanostructures can be precisely controlled by this method, the relationship between enhancement and distance was revealed. The thickness of SiO2 shell was also optimized and the optimum distance of about 21 nm was obtained. The highest fluorescence enhancement of 4.8-fold accompanied by a minimum fluorescence lifetime of 2.3 ns were achieved. This strong enhancement comes from the hot spots distributed at the sharp tip of our constructed nanostructure. Through the finite element method, we calculated the field distribution on the surface of NS and found that gold NS with the sharpest apexes exhibited the highest field enhancement, which matches well with our experiment result. This complex shows tremendous potential applications for liquid-dependent biometric imaging systems.
Optimal control of the strong-field ionization of silver clusters in helium droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truong, N. X.; Goede, S.; Przystawik, A.
Optimal control techniques combined with femtosecond laser pulse shaping are applied to steer and enhance the strong-field induced emission of highly charged atomic ions from silver clusters embedded in helium nanodroplets. With light fields shaped in amplitude and phase we observe a substantial increase of the Ag{sup q+} yield for q>10 when compared to bandwidth-limited and optimally stretched pulses. A remarkably simple double-pulse structure, containing a low-intensity prepulse and a stronger main pulse, turns out to produce the highest atomic charge states up to Ag{sup 20+}. A negative chirp during the main pulse hints at dynamic frequency locking to themore » cluster plasmon. A numerical optimal control study on pure silver clusters with a nanoplasma model converges to a similar pulse structure and corroborates that the optimal light field adapts to the resonant excitation of cluster surface plasmons for efficient ionization.« less
Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun
2018-06-15
External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate 'bond and peel' method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.
NASA Astrophysics Data System (ADS)
Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun
2018-06-01
External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate ‘bond and peel’ method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.
Hill, Ryan T
2015-01-01
The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.
Tunable plasmonic toroidal terahertz metamodulator
NASA Astrophysics Data System (ADS)
Gerislioglu, Burak; Ahmadivand, Arash; Pala, Nezih
2018-04-01
Optical modulators are essential and strategic parts of micro- and nanophotonic circuits to encode electro-optical signals in the optical domain. Here, by using arrays of multipixel toroidal plasmonic terahertz (THz) metamolecules, we developed a functional plasmonic metamodulator with high efficiency and tunability. Technically, the dynamic toroidal dipole induces nonradiating charge-current arrangements leading to have an exquisite role in defining the inherent spectral features of various materials. By categorizing in a different family of multipoles far from the traditional electromagnetic multipoles, the toroidal dipole corresponds to poloidal currents flowing on the surface of a closed-loop torus. Utilizing the sensitivity of the optically driven toroidal momentum to the incident THz beam power and by employing both numerical tools and experimental analysis, we systematically studied the spectral response of the proposed THz plasmonic metadevice. In this Rapid Communication, we uncover a correlation between the existence and the excitation of the toroidal response and the incident beam power. This mechanism is employed to develop THz toroidal metamodulators with a strong potential to be employed for practical advanced and next-generation communication, filtering, and routing applications.
Template directed synthesis of plasmonic gold nanotubes with tunable IR absorbance.
Bridges, Colin R; Schon, Tyler B; DiCarmine, Paul M; Seferos, Dwight S
2013-04-01
A nearly parallel array of pores can be produced by anodizing aluminum foils in acidic environments. Applications of anodic aluminum oxide (AAO) membranes have been under development since the 1990's and have become a common method to template the synthesis of high aspect ratio nanostructures, mostly by electrochemical growth or pore-wetting. Recently, these membranes have become commercially available in a wide range of pore sizes and densities, leading to an extensive library of functional nanostructures being synthesized from AAO membranes. These include composite nanorods, nanowires and nanotubes made of metals, inorganic materials or polymers. Nanoporous membranes have been used to synthesize nanoparticle and nanotube arrays that perform well as refractive index sensors, plasmonic biosensors, or surface enhanced Raman spectroscopy (SERS) substrates, as well as a wide range of other fields such as photo-thermal heating, permselective transport, catalysis, microfluidics, and electrochemical sensing. Here, we report a novel procedure to prepare gold nanotubes in AAO membranes. Hollow nanostructures have potential application in plasmonic and SERS sensing, and we anticipate these gold nanotubes will allow for high sensitivity and strong plasmon signals, arising from decreased material dampening.
Broadband gate-tunable terahertz plasmons in graphene heterostructures
NASA Astrophysics Data System (ADS)
Yao, Baicheng; Liu, Yuan; Huang, Shu-Wei; Choi, Chanyeol; Xie, Zhenda; Flor Flores, Jaime; Wu, Yu; Yu, Mingbin; Kwong, Dim-Lee; Huang, Yu; Rao, Yunjiang; Duan, Xiangfeng; Wong, Chee Wei
2018-01-01
Graphene, a unique two-dimensional material comprising carbon in a honeycomb lattice1, has brought breakthroughs across electronics, mechanics and thermal transport, driven by the quasiparticle Dirac fermions obeying a linear dispersion2,3. Here, we demonstrate a counter-pumped all-optical difference frequency process to coherently generate and control terahertz plasmons in atomic-layer graphene with octave-level tunability and high efficiency. We leverage the inherent surface asymmetry of graphene for strong second-order nonlinear polarizability4,5, which, together with tight plasmon field confinement, enables a robust difference frequency signal at terahertz frequencies. The counter-pumped resonant process on graphene uniquely achieves both energy and momentum conservation. Consequently, we demonstrate a dual-layer graphene heterostructure with terahertz charge- and gate-tunability over an octave, from 4.7 THz to 9.4 THz, bounded only by the pump amplifier optical bandwidth. Theoretical modelling supports our single-volt-level gate tuning and optical-bandwidth-bounded 4.7 THz phase-matching measurements through the random phase approximation, with phonon coupling, saturable absorption and below the Landau damping, to predict and understand graphene plasmon physics.
In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models.
Register, Janna K; Fales, Andrew M; Wang, Hsin-Neng; Norton, Stephen J; Cho, Eugenia H; Boico, Alina; Pradhan, Sulolit; Kim, Jason; Schroeder, Thies; Wisniewski, Natalie A; Klitzman, Bruce; Vo-Dinh, Tuan
2015-11-01
Surface-enhanced Raman scattering (SERS)-active plasmonic nanomaterials have become a promising agent for molecular imaging and multiplex detection. Among the wide variety of plasmonics-active nanoparticles, gold nanostars offer unique plasmon properties that efficiently induce strong SERS signals. Furthermore, nanostars, with their small core size and multiple long thin branches, exhibit high absorption cross sections that are tunable in the near-infrared region of the tissue optical window, rendering them efficient for in vivo spectroscopic detection. This study investigated the use of SERS-encoded gold nanostars for in vivo detection. Ex vivo measurements were performed using human skin grafts to investigate the detection of SERS-encoded nanostars through tissue. We also integrated gold nanostars into a biocompatible scaffold to aid in performing in vivo spectroscopic analyses. In this study, for the first time, we demonstrate in vivo SERS detection of gold nanostars using small animal (rat) as well as large animal (pig) models. The results of this study establish the usefulness and potential of SERS-encoded gold nanostars for future use in long-term in vivo analyte sensing.
Fermi arc plasmons in Weyl semimetals
NASA Astrophysics Data System (ADS)
Song, Justin C. W.; Rudner, Mark S.
2017-11-01
In the recently discovered Weyl semimetals, the Fermi surface may feature disjoint, open segments—the so-called Fermi arcs—associated with topological states bound to exposed crystal surfaces. Here we show that the collective dynamics of electrons near such surfaces sharply departs from that of a conventional three-dimensional metal. In magnetic systems with broken time reversal symmetry, the resulting Fermi arc plasmons (FAPs) are chiral, with dispersion relations featuring open, hyperbolic constant frequency contours. As a result, a large range of surface plasmon wave vectors can be supported at a given frequency, with corresponding group velocity vectors directed along a few specific collimated directions. Fermi arc plasmons can be probed using near-field photonics techniques, which may be used to launch highly directional, focused surface plasmon beams. The unusual characteristics of FAPs arise from the interplay of bulk and surface Fermi arc carrier dynamics and give a window into the unusual fermiology of Weyl semimetals.
Hagglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; ...
2016-01-29
In this study, when optical resonances interact strongly, hybridized modes are formed with mixed properties inherited from the basic modes. Strong coupling therefore tends to equalize properties such as damping and oscillator strength of the spectrally separate resonance modes. This effect is here shown to be very useful for the realization of near-perfect dual-band absorption with ultrathin (~10 nm) layers in a simple geometry. Absorber layers are constructed by atomic layer deposition of the heavy-damping semiconductor tin monosulfide (SnS) onto a two-dimensional gold nanodot array. In combination with a thin (55 nm) SiO 2 spacer layer and a highly reflectivemore » Al film on the back, a semiopen nanocavity is formed. The SnS-coated array supports a localized surface plasmon resonance in the vicinity of the lowest order antisymmetric Fabry–Perot resonance of the nanocavity. Very strong coupling of the two resonances is evident through anticrossing behavior with a minimum peak splitting of 400 meV, amounting to 24% of the plasmon resonance energy. The mode equalization resulting from this strong interaction enables simultaneous optical impedance matching of the system at both resonances and thereby two near-perfect absorption peaks, which together cover a broad spectral range. When paired with the heavy damping from SnS band-to-band transitions, this further enables approximately 60% of normal incident solar photons with energies exceeding the band gap to be absorbed in the 10 nm SnS coating. Thereby, these results establish a distinct relevance of strong coupling phenomena to efficient, nanoscale photovoltaic absorbers and more generally for fulfilling a specific optical condition at multiple spectral positions.« less
Plasmonic nanostructures for surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Jiang, Ruiqian
In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a AgCN based plating solution was used to replace Cu shell to form Au/Ag core-shell nanoparticles. These two plasmonic nanostructures were tested as substrates for Raman spectroscopy. It demonstrated that these plasmonic nanostructures could enhance Raman signal from the molecules on their surface. The results indicate that these plasmonic nanostructures could be utilized in many fields, such as such as biological and environmental sensors.
NASA Astrophysics Data System (ADS)
Xie, Yu-Bo; Liu, Zheng-Yang; Wang, Qian-Jin; Sun, Guang-Hou; Zhang, Xue-Jin; Zhu, Yong-Yuan
2016-03-01
Optical nanoantennas, usually referring to metal structures with localized surface plasmon resonance, could efficiently convert confined optical energy to free-space light, and vice versa. But it is difficult to manipulate the confined visible light energy for its nanoscale spatial extent. Here, a simple method is proposed to solve this problem by controlling surface plasmon polaritons to indirectly manipulate the localized plasmons. As a proof of principle, we demonstrate an optical rotation device which is a grating with central circular polarization optical nanoantenna. It realized the arbitrary optical rotation of linear polarized light by controlling the retard of dual surface plasmon polaritons sources from both side grating structures. Furthermore, we use a two-parameter theoretical model to explain the experimental results.
Channel surface plasmons in a continuous and flat graphene sheet
NASA Astrophysics Data System (ADS)
Chaves, A. J.; Peres, N. M. R.; da Costa, D. R.; Farias, G. A.
2018-05-01
We derive an integral equation describing surface-plasmon polaritons in graphene deposited on a substrate with a planar surface and a dielectric protrusion in the opposite surface of the dielectric slab. We show that the problem is mathematically equivalent to the solution of a Fredholm equation, which we solve exactly. In addition, we show that the dispersion relation of the channel surface plasmons is determined by the geometric parameters of the protrusion alone. We also show that such a system supports both even and odd modes. We give the electrostatic potential and the intensity plot of the electrostatic field, which clearly show the transverse localized nature of the surface plasmons in a continuous and flat graphene sheet.
Compact Magnetic Antennas for Directional Excitation of Surface Plasmons
2012-07-01
Steininger, G.; Koch, M.; von Plessen, G.; Feldmann, J. Launching surface plasmons into nanoholes in metal films. Appl. Phys. Lett. 2000, 76, 140−142...plasmons at single nanoholes in Au films. Appl. Phys. Lett. 2004, 85, 467−469. (14) Baudrion, A.-L.; et al. Coupling efficiency of light to surface
NASA Astrophysics Data System (ADS)
Itoh, Tamitake; Yamamoto, Yuko S.
2017-11-01
Electronic transition rates of a molecule located at a crevasse or a gap of a plasmonic nanoparticle (NP) dimer are largely enhanced up to the factor of around 106 due to electromagnetic (EM) coupling between plasmonic and molecular electronic resonances. The coupling rate is determined by mode density of the EM fields at the crevasse and the oscillator strength of the local electronic resonance of a molecule. The enhancement by EM coupling at a gap of plasmonic NP dimer enables us single molecule (SM) Raman spectroscopy. Recently, this type of research has entered a new regime wherein EM enhancement effects cannot be treated by conventional theorems, namely EM mechanism. Thus, such theorems used for the EM enhancement effect should be re-examined. We here firstly summarize EM mechanism by using surface-enhanced Raman scattering (SERS), which is common in EM enhancement phenomena. Secondly, we focus on recent two our studies on probing SM fluctuation by SERS within the spatial resolution of sub-nanometer scales. Finally, we discuss the necessity of re-examining the EM mechanism with respect to two-fold breakdowns of the weak coupling assumption: the breakdown of Kasha's rule induced by the ultra-fast plasmonic de-excitation and the breakdown of the weak coupling by EM coupling rates exceeding both the plasmonic and molecular excitonic dephasing rates.
Inelastic X-ray Scattering Studies of Plasmons in Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Upton, M. H.; Casa, D.; Gog, T.; Misewich, J.; Hill, J. P.; Lowndes, D.; Eres, G.
2006-03-01
We report preliminary inelastic x-ray scattering measurements of the plasmon dispersions in oriented multi- and single- walled carbon nanotubes (M- and S- WCNT) and compare them to the plasmon dispersion in graphite. Two plasmon bands are observed dispersing along the nanotubes' axes: the π and π+σ plasmon bands. The π+σ plasmon band exhibits an apparent systematic variation in energy. Specifically, it has a lower energy in MWCNT than in graphite, and a still lower energy in SWCNT. The energy of the π+σ plasmon band is determined by the plasma frequency of the material, which is proportional to the square root of the electron density. We postulate that the energy shift is a result of a surface effect -- the electron wave function extends past the surface, lowering the average electron density in the bulk. The higher surface-to-volume ratio of the mostly SW sample would then lower the plasmon frequency with respect to the MWCNT sample and graphite. Thus, the systematic variation in plasmon frequency may be explained by a lowering of the net electron density by the surfaces in S- and M-WCNT. Work performed at BNL and the Advanced Photon Source was supported by the US DOE under contracts No. DE-AC02-98CH10886 and No. W-31-109-Eng-38 respectively.
NASA Astrophysics Data System (ADS)
Kim, Mee Rahn; Hafez, Hassan A.; Chai, Xin; Besteiro, Lucas V.; Tan, Long; Ozaki, Tsuneyuki; Govorov, Alexander O.; Izquierdo, Ricardo; Ma, Dongling
2016-06-01
Semiconductor nanocrystals that show plasmonic resonance represent an emerging class of highly promising plasmonic materials with potential applications in diverse fields, such as sensing and optical and optoelectronic devices. We report a new approach to synthesizing homogeneous covellite CuS nanoplatelets in air and the almost complete disappearance of their plasmonic resonance once coupled with multiwalled carbon nanotubes (MWCNTs). These nanoplatelets were rapidly synthesized by a simple microwave-assisted approach at a relatively low reaction temperature in air, instead of under N2 as reported previously. These less severe synthesis conditions were enabled by appropriately selecting a Cu precursor and preparing a precursor sulfur solution (instead of using solid sulfur) and by using microwave radiation as the heat source. The advantages of utilizing microwave irradiation, including uniform and rapid heating, became clear after comparing the results of the synthesis with those achieved using a conventional oil-bath method under N2. The CuS nanoplatelets prepared in this way showed very strong plasmon resonance at c. 1160 nm as a result of their free charge carriers at the calculated density of nh = 1.5 × 1022 cm-3 based on the Drude model. With the aim of exploring their potential for near-infrared responsive optoelectronic devices, they were hybridized with functionalized MWCNTs. Their strong plasmon resonance almost completely disappeared on hybridization. Detailed investigations excluded the effect of possible structural changes in the CuS nanoplatelets during the hybridization process and a possible effect on the plasmon resonance arising from the chemical bonding of surface ligands. Charge transfer was considered to be the main reason for the almost complete disappearance of the plasmon resonance, which was further confirmed by terahertz (THz) time-domain spectrometry and THz time-resolved spectrometry measurements performed on the CuS-MWCNT nanohybrids. By extracting the rising and relaxation constants through fitting a single-exponential rising function and a bi-exponential relaxation function, in combination with the results of THz differential transmission as a function of the NIR pump fluence, it was found that hole injection changed the electronic properties of the MWCNTs only subtly on a short picosecond time scale, whereas the nature of the band structure of the MWCNTs remained largely unchanged. These findings aid our understanding of recently emerging semiconductor plasmonics and will also help in developing practical applications.Semiconductor nanocrystals that show plasmonic resonance represent an emerging class of highly promising plasmonic materials with potential applications in diverse fields, such as sensing and optical and optoelectronic devices. We report a new approach to synthesizing homogeneous covellite CuS nanoplatelets in air and the almost complete disappearance of their plasmonic resonance once coupled with multiwalled carbon nanotubes (MWCNTs). These nanoplatelets were rapidly synthesized by a simple microwave-assisted approach at a relatively low reaction temperature in air, instead of under N2 as reported previously. These less severe synthesis conditions were enabled by appropriately selecting a Cu precursor and preparing a precursor sulfur solution (instead of using solid sulfur) and by using microwave radiation as the heat source. The advantages of utilizing microwave irradiation, including uniform and rapid heating, became clear after comparing the results of the synthesis with those achieved using a conventional oil-bath method under N2. The CuS nanoplatelets prepared in this way showed very strong plasmon resonance at c. 1160 nm as a result of their free charge carriers at the calculated density of nh = 1.5 × 1022 cm-3 based on the Drude model. With the aim of exploring their potential for near-infrared responsive optoelectronic devices, they were hybridized with functionalized MWCNTs. Their strong plasmon resonance almost completely disappeared on hybridization. Detailed investigations excluded the effect of possible structural changes in the CuS nanoplatelets during the hybridization process and a possible effect on the plasmon resonance arising from the chemical bonding of surface ligands. Charge transfer was considered to be the main reason for the almost complete disappearance of the plasmon resonance, which was further confirmed by terahertz (THz) time-domain spectrometry and THz time-resolved spectrometry measurements performed on the CuS-MWCNT nanohybrids. By extracting the rising and relaxation constants through fitting a single-exponential rising function and a bi-exponential relaxation function, in combination with the results of THz differential transmission as a function of the NIR pump fluence, it was found that hole injection changed the electronic properties of the MWCNTs only subtly on a short picosecond time scale, whereas the nature of the band structure of the MWCNTs remained largely unchanged. These findings aid our understanding of recently emerging semiconductor plasmonics and will also help in developing practical applications. Electronic supplementary information (ESI) available: TEM, XRD, SAED and UV-Vis-NIR absorption spectra of the control reaction results. See DOI: 10.1039/c6nr03426h
Strong Coupling of Single Emitters to Surface Plasmons
2007-07-01
however, we can make an eikonal approximation,39 assuming that the plas- mons are emitted completely into the end of the tip z=0 and that the propagative...restricts the re- gimes of validity to ki w, ki d1. An additional set of as- sumptions is made in using the eikonal approximation to arrive at Eq. 49
Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.
Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir
2017-09-15
In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.
Liow, Chi Hao; Lu, Xin; Tan, Chuan Fu; Chan, Kwok Hoe; Zeng, Kaiyang; Li, Shuzhou; Ho, Ghim Wei
2018-02-01
Surface plasmon-based photonics offers exciting opportunities to enable fine control of the site, span, and extent of mechanical harvesting. However, the interaction between plasmonic photothermic and piezoresponse still remains underexplored. Here, spatially localized and controllable piezoresponse of a hybrid self-polarized polymeric-metallic system that correlates to plasmonic light-to-heat modulation of the local strain is demonstrated. The piezoresponse is associated to the localized plasmons that serve as efficient nanoheaters leading to self-regulated strain via thermal expansion of the electroactive polymer. Moreover, the finite-difference time-domain simulation and linear thermal model also deduce the local strain to the surface plasmon heat absorption. The distinct plasmonic photothermic-piezoelectric phenomenon mediates not only localized external stimulus light response but also enhances dynamic piezoelectric energy harvesting. The present work highlights a promising surface plasmon coordinated piezoelectric response which underpins energy localization and transfer for diversified design of unique photothermic-piezotronic technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.
2012-09-01
The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.
One-dimensional Tamm plasmons: Spatial confinement, propagation, and polarization properties
NASA Astrophysics Data System (ADS)
Chestnov, I. Yu.; Sedov, E. S.; Kutrovskaya, S. V.; Kucherik, A. O.; Arakelian, S. M.; Kavokin, A. V.
2017-12-01
Tamm plasmons are confined optical states at the interface of a metal and a dielectric Bragg mirror. Unlike conventional surface plasmons, Tamm plasmons may be directly excited by an external light source in both TE and TM polarizations. Here we consider the one-dimensional propagation of Tamm plasmons under long and narrow metallic stripes deposited on top of a semiconductor Bragg mirror. The spatial confinement of the field imposed by the stripe and its impact on the structure and energy of Tamm modes are investigated. We show that the Tamm modes are coupled to surface plasmons arising at the stripe edges. These plasmons form an interference pattern close to the bottom surface of the stripe that involves modification of both the energy and loss rate for the Tamm mode. This phenomenon is pronounced only in the case of TE polarization of the Tamm mode. These findings pave the way to application of laterally confined Tamm plasmons in optical integrated circuits as well as to engineering potential traps for both Tamm modes and hybrid modes of Tamm plasmons and exciton polaritons with meV depth.
NASA Astrophysics Data System (ADS)
Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.; Link, Stephan; Nordlander, Peter; Halas, Naomi J.; Mortensen, N. Asger
2017-01-01
Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic colours and recent nanofabrication developments, comparing technology-performance indicators for traditional and nanophotonic colour technologies. The structures of interest include diffraction gratings, nanoaperture arrays, thin films, and multilayers and structures that support Mie resonances and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk-hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large-area printing and nanoscale lithography compatible with complementary metal-oxide semiconductor technologies, including nanoimprint lithography and self-assembly. Finally, we review recent developments in dynamically reconfigurable plasmonic colours and in the laser-induced post-processing of plasmonic colour surfaces.
Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.
Kim, Deok-Soo; Heo, Jinhwa; Ahn, Sung-Hyun; Han, Sang Woo; Yun, Wan Soo; Kim, Zee Hwan
2009-10-01
We carried out the near-field optical imaging of isolated and dimerized gold nanocubes to directly investigate the strong coupling between two adjacent nanoparticles. The high-resolution (approximately 10 nm) local field maps (intensities and phases) of self-assembled nanocube dimers reveal antisymmetric plasmon modes that are starkly different from a simple superposition of two monomeric dipole plasmons, which is fully reproduced by the electrodynamics simulations. The result decisively proves that, for the closely spaced pair of nanoparticles (interparticle distance/particle size approximately 0.04), the strong Coulombic attraction between the charges at the interparticle gap dominates over the intraparticle charge oscillations, resulting in a hybridized dimer plasmon mode that is qualitatively different from those expected from a simple dipole-dipole coupling model.
Strong-field plasmonic photoemission in the mid-IR at <1 GW/cm² intensity.
Teichmann, S M; Rácz, P; Ciappina, M F; Pérez-Hernández, J A; Thai, A; Fekete, J; Elezzabi, A Y; Veisz, L; Biegert, J; Dombi, P
2015-01-12
We investigated nonlinear photoemission from plasmonic films with femtosecond, mid-infrared pulses at 3.1 μm wavelength. Transition between regimes of multi-photon-induced and tunneling emission is demonstrated at an unprecedentedly low intensity of <1 GW/cm(2). Thereby, strong-field nanophysics can be accessed at extremely low intensities by exploiting nanoscale plasmonic field confinement, enhancement and ponderomotive wavelength scaling at the same time. Results agree well with quantum mechanical modelling. Our scheme demonstrates an alternative paradigm and regime in strong-field physics.
Kim, Ji-Wan; Kovalenko, Oleksandr; Liu, Yu; Bigot, Jean-Yves
2016-12-27
We report the anharmonic angstrom dynamics of self-assembled Au nanoparticles (Au:NPs) away from a nickel surface on top of which they are coupled by their near-field interaction. The deformation and the oscillatory excursion away from the surface are induced by picosecond acoustic pulses and probed at the surface plasmon resonance with femtosecond laser pulses. The overall dynamics are due to an efficient transfer of translational momentum from the Ni surface to the Au:NPs, therefore avoiding usual thermal effects and energy redistribution among the electronic states. Two modes are clearly revealed by the oscillatory shift of the Au:NPs surface plasmon resonance-the quadrupole deformation mode due to the transient ellipsoid shape and the excursion mode when the Au:NPs bounce away from the surface. We find that, contrary to the quadrupole mode, the excursion mode is sensitive to the distance between Au:NPs and Ni. Importantly, the excursion dynamics display a nonsinusoidal motion that cannot be explained by a standard harmonic potential model. A detailed modeling of the dynamics using a Hamaker-type Lennard-Jones potential between two media is performed, showing that each Au:NPs coherently evolves in a nearly one-dimensional anharmonic potential with a total excursion of ∼1 Å. This excursion induces a shift of the surface plasmon resonance detectable because of the strong near-field interaction. This general method of observing the spatiotemporal dynamics with angstrom and picosecond resolutions can be directly transposed to many nanostructures or biosystems to reveal the interaction and contact mechanism with their surrounding medium while remaining in their fundamental electronic states.
Radiative decay engineering 3. Surface plasmon-coupled directional emission
Lakowicz, Joseph R.
2009-01-01
A new method of fluorescence detection that promises to increase sensitivity by 20- to 1000-fold is described. This method will also decrease the contribution of sample autofluorescence to the detected signal. The method depends on the coupling of excited fluorophores with the surface plasmon resonance present in thin metal films, typically silver and gold. The phenomenon of surface plasmon-coupled emission (SPCE) occurs for fluorophores 20–250 nm from the metal surface, allowing detection of fluorophores over substantial distances beyond the metal–sample interface. SPCE depends on interactions of the excited fluorophore with the metal surface. This interaction is independent of the mode of excitation; that is, it does not require evanescent wave or surface-plasmon excitation. In a sense, SPCE is the inverse process of the surface plasmon resonance absorption of thin metal films. Importantly, SPCE occurs over a narrow angular distribution, converting normally isotropic emission into easily collected directional emission. Up to 50% of the emission from unoriented samples can be collected, much larger than typical fluorescence collection efficiencies near 1% or less. SPCE is due only to fluorophores near the metal surface and may be regarded as emission from the induced surface plasmons. Autofluorescence from more distal parts of the sample is decreased due to decreased coupling. SPCE is highly polarized and autofluorescence can be further decreased by collecting only the polarized component or only the light propagating with the appropriate angle. Examples showing how simple optical configurations can be used in diagnostics, sensing, or biotechnology applications are presented. Surface plasmon-coupled emission is likely to find widespread applications throughout the biosciences. PMID:14690679
NASA Astrophysics Data System (ADS)
Pal, Anil Kumar; Bharathi Mohan, D.
2017-10-01
Metal enhanced ultraviolet light emission has been explored in ZnO/Ag hybrid structures prepared by hydrothermal growth of multi-angled ZnO nanorods on slanted Ag nanorods array fabricated by the thermal evaporation technique. Slanted Ag nanorods are realized to be the stacking of non-spherical Ag nanoparticles, resulting in asymmetric surface plasmon resonance spectra. The surface roughness of Ag nanorod array films significantly influences the growth mechanism of ZnO nanorods, leading to the formation of multi-angled ZnO microflowers. ZnO/Ag hybrid structures facilitate the interfacial charge transfer from Ag to ZnO with the realization of negative shift in binding energy of Ag 3d orbitals by ˜0.8 eV. These high quality ZnO nanorods in ZnO/Ag hybrid nanostructures exhibit strong ultraviolet emission in the 383-396 nm region without broad deep level emission, which can be explained by a suitable band diagram. The metal enhanced photoluminescence is witnessed mainly due to interfacial charge transfer with its dependence on surface roughness of bottom layer Ag nanorods, number density of ZnO nanorods and diversity in the interfacial area between Ag and ZnO nanorods. The existence of strong ultraviolet light with minor blue light emission and appearance of CIE shade in strong violet-blue region by ZnO/Ag hybrid structures depict exciting possibilities towards near UV-blue light emitting devices.
Pal, Anil Kumar; Mohan, D Bharathi
2017-10-13
Metal enhanced ultraviolet light emission has been explored in ZnO/Ag hybrid structures prepared by hydrothermal growth of multi-angled ZnO nanorods on slanted Ag nanorods array fabricated by the thermal evaporation technique. Slanted Ag nanorods are realized to be the stacking of non-spherical Ag nanoparticles, resulting in asymmetric surface plasmon resonance spectra. The surface roughness of Ag nanorod array films significantly influences the growth mechanism of ZnO nanorods, leading to the formation of multi-angled ZnO microflowers. ZnO/Ag hybrid structures facilitate the interfacial charge transfer from Ag to ZnO with the realization of negative shift in binding energy of Ag 3d orbitals by ∼0.8 eV. These high quality ZnO nanorods in ZnO/Ag hybrid nanostructures exhibit strong ultraviolet emission in the 383-396 nm region without broad deep level emission, which can be explained by a suitable band diagram. The metal enhanced photoluminescence is witnessed mainly due to interfacial charge transfer with its dependence on surface roughness of bottom layer Ag nanorods, number density of ZnO nanorods and diversity in the interfacial area between Ag and ZnO nanorods. The existence of strong ultraviolet light with minor blue light emission and appearance of CIE shade in strong violet-blue region by ZnO/Ag hybrid structures depict exciting possibilities towards near UV-blue light emitting devices.
Surface Plasmons in Silver Films--A Novel Undergraduate Experiment
ERIC Educational Resources Information Center
Simon, H. J.; And Others
1975-01-01
Describes an experiment in which a 500-A-thick silver film is evaporated on the hypotenuse face of a right glass prism. The surface plasmon mode in the film is excited with a He-Ne laser. The dispersion relation for the surface plasmon and the reflectivity due to the excitation of this mode are calculated. (Author/MLH)
Leem, Jung Woo; Kim, Sehwan; Park, Chihyun; Kim, Eunkyoung; Yu, Jae Su
2015-04-01
We propose the biomimetic moth-eye nanoarchitectures as a novel plasmonic light-harvesting structure for further enhancing the solar-generated photocurrents in organic photovoltaics (OPVs). The full moth-eye nanoarchitectures are composed of two-dimensional hexagonal periodic grating arrays on surfaces of both the front zinc oxide (ZnO) and rear active layers, which are prepared by a simple and cost-effective soft imprint nanopatterning technique. For the 380 nm period ZnO and 650 nm period active gratings (i.e., ZnO(P380)/Active(P650)), the poly(3-hexylthiophene-2,5-diyl):indene-C60 bis-adduct (P3HT:ICBA)-based plasmonic OPVs exhibit an improvement of the absorption spectrum compared to the pristine OPVs over a broad wavelength range of 350-750 nm, showing absorption enhancement peaks at wavelengths of ∼370, 450, and 670 nm, respectively. This leads to a considerable increase of short-circuit current density (Jsc) from 10.9 to 13.32 mA/cm(2), showing a large Jsc enhancement percentage of ∼22.2%. As a result, the strongly improved power conversion efficiency (PCE) of 6.28% is obtained compared to that (i.e., PCE = 5.12%) of the pristine OPVs. For the angle-dependent light-absorption characteristics, the plasmonic OPVs with ZnO(P380)/Active(P650) have a better absorption performance than that of the pristine OPVs at incident angles of 20-70°. For optical absorption characteristics and near-field intensity distributions of plasmonic OPVs, theoretical analyses are also performed by a rigorous coupled-wave analysis method, which gives a similar tendency with the experimentally measured data.
Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods.
Jung, Insub; Ih, Seongkeun; Yoo, Haneul; Hong, Seunghun; Park, Sungho
2018-03-14
In this study, we demonstrate the synthesis and application of magnetic plasmonic gyro-nanodisks (GNDs) for Fourier transform surface plasmon resonance based biodetection. Plasmonically active and magnetically responsive gyro-nanodisks were synthesized using electrochemical methods with anodized aluminum templates. Due to the unique properties of GNDs (magnetic responsiveness and surface plasmon bands), periodic extinction signals were generated under an external rotating magnetic field, which is, in turn, converted into frequency domains using Fourier transformation. After the binding of a target on GNDs, an increase in the shear force causes a shift in the frequency domain, which allows us to investigate biodetection for HA1 (the influenza virus). Most importantly, by modulating the number and the location of plasmonic nanodisks (a method for controlling the hydrodynamic forces by rationally designing the nanomaterial architecture), we achieved enhanced biodetection sensitivity. We expect that our results will contribute to improved sensing module performance, as well as a better understanding of dynamic nanoparticle systems, by harnessing the perturbed periodic fluctuation of surface plasmon bands under the modulated magnetic field.
NASA Astrophysics Data System (ADS)
Alobaidi, Wissam M.; Nima, Zeid A.; Sandgren, Eric
2018-01-01
Localised surface plasmon (LSP)-like resonance phenomena were simulated in COMSOL Multiphysics™, and the electric field enhancement was evaluated in eight pipe defects using the microwave band from 1.80 to 3.00 GHz and analysed by finite element analysis (FEA). The simulation was carried out, in each defect case, on a pipe that has 762 mm length and 152.4 mm inner diameter, and 12.7 mm pipe wall thickness. Defects were positioned in the middle of the pipe and were named as follows; SD: Square Defect, FCD: fillet corner defect, FD: fillet defect, HCD: half circle defect, TCD: triangle corner defect, TD: triangle defect, ZD: zigzag defect, GD: gear defect. The LSP electric field, and scattering parametric (S21, and S11) waves were evaluated in all cases and found to be strongly dependent on the size and the shape of the defect rather than the pipe and or the medium materials.
Enhanced optical gradient forces between coupled graphene sheets
Xu, Xinbiao; Shi, Lei; Liu, Yang; Wang, Zheqi; Zhang, Xinliang
2016-01-01
Optical gradient forces between monolayer infinite-width graphene sheets as well as single-mode graphene nanoribbon pairs of graphene surface plasmons (GSPs) at mid-infrared frequencies were theoretically investigated. Although owing to the strongly enhanced optical field, the normalized optical force, fn, can reach 50 nN/μm/mW, which is the largest fn as we know, the propagation loss is also large. But we found that by changing the chemical potential of graphene, fn and the optical propagation loss can be balanced. The total optical force acted on the nanoribbon waveguides can thus enhance more than 1 order of magnitude than that in metallic surface plasmons (MSPs) waveguides with the same length and the loss can be lower. Owing to the enhanced optical force and the significant neff tuning by varying the chemical potential of graphene, we also propose an ultra-compact phase shifter. PMID:27338252
Woods, Lucy A; Dolezal, Olan; Ren, Bin; Ryan, John H; Peat, Thomas S; Poulsen, Sally-Ann
2016-03-10
Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.
Feng, Yulong; Chen, Zhizhong; Jiang, Shuang; Li, Chengcheng; Chen, Yifan; Zhan, Jinglin; Chen, Yiyong; Nie, Jingxin; Jiao, Fei; Kang, Xiangning; Li, Shunfeng; Yu, Tongjun; Zhang, Guoyi; Shen, Bo
2018-04-16
We analyzed the coupling behavior between the localized surface plasmon (LSP) and quantum wells (QWs) using cathodoluminescence (CL) in a green light-emitting diodes (LED) with Ag nanoparticles (NPs) filled in photonic crystal (PhC) holes. Photoluminescence (PL) suppression and CL enhancement were obtained for the same green LED sample with the Ag NP array. Time-resolved PL (TRPL) results indicate strong coupling between the LSP and the QWs. Three-dimensional (3D) finite difference time domain (FDTD) simulation was performed using a three-body model consisting of two orthogonal dipoles and a single Ag NP. The LSP–QWs coupling effect was separated from the electron-beam (e-beam)–LSP–QW system by linear approximation. The energy dissipation was significantly reduced by the z-dipole introduction under the e-beam excitation. In this paper, the coupling mechanism is discussed and a novel emission structure is proposed.
Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials
NASA Astrophysics Data System (ADS)
Yang, Shengyan; Liu, Zhe; Xia, Xiaoxiang; E, Yiwen; Tang, Chengchun; Wang, Yujin; Li, Junjie; Wang, Li; Gu, Changzhi
2016-06-01
We experimentally demonstrate a metamaterial structure composed of two mirror-symmetric joint split ring resonators (JSRRs) that support extremely sharp trapped-mode resonance with a large modulation depth in the terahertz region. Contrary to the regular mirror-arranged SRR arrays in which both the subradiant inductive-capacitive (LC) resonance and quadrupole-mode resonance can be excited, our designed structure features a metallic microstrip bridging the adjacent SRRs, which leads to the emergence of an otherwise inaccessible ultrahigh-quality-factor resonance. The ultrasharp resonance occurs near the Wood-Rayleigh anomaly frequency, and the underlying mechanism can be attributed to the strong coupling between the in-plane propagating collective lattice surface mode originating from the array periodicity and localized surface plasmon resonance in mirror-symmetric coupled JSRRs, which dramatically reduces radiative damping. The ultrasharp resonance shows great potential for multifunctional applications such as plasmonic switching, low-power nonlinear processing, and chemical and biological sensing.
NASA Astrophysics Data System (ADS)
Tang, Wen Xuan; Zhang, Hao Chi; Liu, Jun Feng; Xu, Jie; Cui, Tie Jun
2017-01-01
Spoof surface plasmon polariton (SPP) has been realized at low frequencies through corrugated metallic structures. As two-dimensional application, the ultrathin SPP transmission lines (TLs) have been proposed with great potentials for microwave compact circuits due to the strong field confinement and enhancement, as well as controllable dispersive properties. In this paper, we examine the radiation loss at small-radius bend, which may cause severe crosstalk in highly-integrated circuits or systems, for the SPP TLs. We theoretically analyze that the SPP TL has essential merit of low radiation loss, and show better performance of SPP TL than the conventional microstrip line through numerical simulations and experiments. Both simulated and measured results demonstrate that the new type of transmission line can efficiently suppress the radiation loss at small-radius bend, and hence reduce the crosstalk in circuits and systems.
Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure
NASA Astrophysics Data System (ADS)
Motogaito, Atsushi; Nakajima, Tomoyasu; Miyake, Hideto; Hiramatsu, Kazumasa
2017-12-01
We characterize the optical properties of a double-layer wire grid structure and investigate in detail the excitation mechanism of surface plasmon polaritons (SPPs). Angular spectra for the transmittance of the transverse magnetic polarized light that are obtained through the experiment reveal two peaks. In addition, simulated mapping of the transmittance and the magnetic field distribution indicate that SPPs are excited in two areas of the wire grid structures: at the interface between the Au layer and the resist layer or the glass substrate and at the interface between the Au layer and air. The experimental data are consistent with the transmittance mapping result and the distribution of the magnetic field. Accordingly, we constructed a model of SPPs propagation. We consider that SPPs excited at the interface between the Au layer and the resist layer or the glass substrate strongly contribute to the extraordinary transmission observed in the wire grid structures.
Yavuz, Mustafa S.; Jensen, Gary C.; Penaloza, David P.; Seery, Thomas A. P.; Pendergraph, Samuel A.; Rusling, James F.; Sotzing, Gregory A.
2010-01-01
We have achieved reversible tunability of local surface plasmon resonance in conjugated polymer functionalized gold nanoparticles. This property was facilitated by the preparation of 3,4-ethylenedioxythiophene (EDOT) containing polynorbornene brushes on gold nanoparticles via surface-initiated ring-opening metathesis polymerization. Reversible tuning of the surface plasmon band was achieved by electrochemically switching the EDOT polymer between its reduced and oxidized states. PMID:19839619
Electride Mediated Surface Enhanced Raman Scattering (SERS)
NASA Technical Reports Server (NTRS)
Anderson, Mark S. (Inventor)
2016-01-01
An electride may provide surface enhanced Raman scattering (SERS). The electride, a compound where the electrons serve as anions, may be a ceramic electride, such as a conductive ceramic derived from mayenite, or an organic electride, for example. The textured electride surface or electride particles may strongly enhance the Raman scattering of organic or other Raman active analytes. This may also provide a sensitive method for monitoring the chemistry and electronic environment at the electride surface. The results are evidence of a new class of polariton (i.e., a surface electride-polariton resonance mechanism) that is analogous to the surface plasmon-polariton resonance that mediates conventional SERS.
Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates.
Gao, Long; Chen, Li; Wei, Hong; Xu, Hongxing
2018-06-14
Fabricating plasmonic nanowire waveguides and circuits by lithographic fabrication methods is highly desired for nanophotonic circuitry applications. Here we report an approach for fabricating metal nanowire networks by using electron beam lithography and metal film deposition techniques. The gold nanowire structures are fabricated on quartz substrates without using any adhesion layer but coated with a thin layer of Al2O3 film for immobilization. The thermal annealing during the Al2O3 deposition process decreases the surface plasmon loss. In a Y-shaped gold nanowire network, the surface plasmons can be routed to different branches by controlling the polarization of the excitation light, and the routing behavior is dependent on the length of the main nanowire. Simulated electric field distributions show that the zigzag distribution of the electric field in the nanowire network determines the surface plasmon routing. By using two laser beams to excite surface plasmons in a Y-shaped nanowire network, the output intensity can be modulated by the interference of surface plasmons, which can be used to design Boolean logic gates. We experimentally demonstrate that AND, OR, XOR and NOT gates can be realized in three-terminal nanowire networks, and NAND, NOR and XNOR gates can be realized in four-terminal nanowire networks. This work takes a step toward the fabrication of on-chip integrated plasmonic circuits.
Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications
Nguyen, Hoang Hiep; Park, Jeho; Kang, Sebyung; Kim, Moonil
2015-01-01
Surface plasmon resonance (SPR) is a label-free detection method which has emerged during the last two decades as a suitable and reliable platform in clinical analysis for biomolecular interactions. The technique makes it possible to measure interactions in real-time with high sensitivity and without the need of labels. This review article discusses a wide range of applications in optical-based sensors using either surface plasmon resonance (SPR) or surface plasmon resonance imaging (SPRI). Here we summarize the principles, provide examples, and illustrate the utility of SPR and SPRI through example applications from the biomedical, proteomics, genomics and bioengineering fields. In addition, SPR signal amplification strategies and surface functionalization are covered in the review. PMID:25951336
Liu, Yang; Wilson, W David
2010-01-01
Surface plasmon resonance (SPR) technology with biosensor surfaces has become a widely-used tool for the study of nucleic acid interactions without any labeling requirements. The method provides simultaneous kinetic and equilibrium characterization of the interactions of biomolecules as well as small molecule-biopolymer binding. SPR monitors molecular interactions in real time and provides significant advantages over optical or calorimetic methods for systems with strong binding coupled to small spectroscopic signals and/or reaction heats. A detailed and practical guide for nucleic acid interaction analysis using SPR-biosensor methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples, as well as extensive information on experimental design, quantitative and qualitative data analysis and presentation. A specific example of the interaction of a minor-groove-binding agent with DNA is evaluated by both kinetic and steady-state SPR methods to illustrate the technique. Since the molecules that bind cooperatively to specific DNA sequences are attractive for many applications, a cooperative small molecule-DNA interaction is also presented.
Engineering plasmonic nanostructured surfaces by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Ghidelli, Matteo; Mascaretti, Luca; Bricchi, Beatrice Roberta; Zapelli, Andrea; Russo, Valeria; Casari, Carlo Spartaco; Li Bassi, Andrea
2018-03-01
The synthesis and the optical response of gold nanoparticles (NPs) and thin nanostructured films grown by pulsed laser deposition (PLD) are here studied. Different PLD process parameters - including background gas pressure and the number of laser shots as well as post-deposition annealing treatments - have been varied to control the growth of Au NPs and films, thus tuning the surface plasmon characteristics. The mechanisms of NPs and film growth have been explored performing a morphological characterization by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), and the correlation with the optical behavior is investigated. We show that the size distribution and the morphology of the as deposited Au NPs depend on growth mechanisms which are controlled by tuning the deposition process, while the optical behavior is strongly affected by the average size and surface density of NPs or by the length of percolated Au domains. Furthermore, nucleation in gas phase has been reported at high (1000 Pa Ar) background pressures, enabling independent control of NP size and coverage, contrary to surface driven NP growth by diffusion and aggregation on substrate.
Study of UV surface plasmons on metallic nanostructures and its applications to nanophotonics
NASA Astrophysics Data System (ADS)
Zhou, Liangcheng
Modern nanotechnology requires the characterization ability in the order of 100 nm or smaller. This resolution requirement cannot be met by using conventional optical microscopy. Nowadays, the mainstream technique that is universally adopted to characterize optical properties on this length scale is Near-field Scanning Optical Microscopy (NSOM). In the effort to improve the resolution and efficiency of NSOM techniques, both nanoscopic fabrication and imaging techniques are critical because the light field strongly intereacts with the metallic NSOM probe or other surfaces to form surface plasmons (SPs). However, much is still unknown about the behavior of light interacting with metallic nanostructures. This calls for research that develops the tool set, methodology and that includes both experimental characterization, and numerical simulations, for the investigation of SPs. The short wavelength of UV light makes it particularly desirable for many industrial processes. So far, little research has been carried out to understand surface plasmon in the UV spectral region. Like conventional optics, UV SPs have unique properties and optical behavior. For this purpose, we modified our existing NSOM into a Photon Scanning Tunneling Microscope (PTSM) and demonstrate its power for the imaging of UV SPs. We present what we believe to be the first direct mapping of the UV SPs on an Al2O3/Al surface. UV SP modes launched by one-dimensional slits or two-dimensional groove arrays and corresponding interference phenomenon were both observed. We then use the same methodology in the engineering of optimized nano aperture such as UV bowtie nanoantenna. For the latter, we find a strong UV intensity profile which is localized to less than 50nm caused by a localized surface plasmon resonance. The relationship of optical field enhancement and antenna geometric shape is studied using numerical simulations and NSOM experiments. In another project, we examine the propagation of light from near-field to far-field. For that purpose, a micro-lens with bull's-eye ring structure, similar to a Fresnel zone plate, is fabricated. We mapped the far-field light distribution from the micro-lens' output by using confocal microscope, which shows that this ring structure exhibit focusing ability as well. Furthermore, we study the ultraviolet (UV) extraordinary optical transmission through nanoslit structures into the far field as well as the localized field enhancement in the near field. The experimental results are compared to numerical modeling results showing good agreement.
Surface plasmon resonances in liquid metal nanoparticles
NASA Astrophysics Data System (ADS)
Ershov, A. E.; Gerasimov, V. S.; Gavrilyuk, A. P.; Karpov, S. V.
2017-06-01
We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition "solid-liquid" in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates.
NASA Astrophysics Data System (ADS)
Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish
2017-10-01
We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.
Numerical modelling of surface plasmonic polaritons
NASA Astrophysics Data System (ADS)
Mansoor, Riyadh; AL-Khursan, Amin Habbeb
2018-06-01
Extending optoelectronics into the nano-regime seems problematic due to the relatively long wavelengths of light. The conversion of light into plasmons is a possible way to overcome this problem. Plasmon's wavelengths are much shorter than that of light which enables the propagation of signals in small size components. In this paper, a 3D simulation of surface plasmon polariton (SPP) excitation is performed. The Finite integration technique was used to solve Maxwell's equations in the dielectric-metal interface. The results show how the surface plasmon polariton was generated at the grating assisted dielectric-metal interface. SPP is a good candidate for signal confinement in small size optoelectronics which allow high density optical integrated circuits in all optical networks.
Chen, Jianjun; Sun, Chengwei; Li, Hongyun; Gong, Qihuang
2014-11-21
Surface-plasmon-polariton (SPP) launchers, which can couple the free space light to the SPPs on the metal surface, are among the key elements for the plasmonic devices and nano-photonic systems. Downscaling the SPP launchers below the diffraction limit and directly delivering the SPPs to the desired subwavelength plasmonic waveguides are of importance for high-integration plasmonic circuits. By designing a submicron double-slit structure with different slit widths, an ultra-broadband (>330 nm) unidirectional SPP launcher is realized theoretically and experimentally based on the different phase delays of SPPs propagating along the metal surface and the near-field interfering effect. More importantly, the broadband and unidirectional properties of the SPP launcher are still maintained when the slit length is reduced to a subwavelength scale. This can make the launcher occupy only a very small area of <λ(2)/10 on the metal surface. Such a robust unidirectional SPP launcher beyond the diffraction limit can be directly coupled to a subwavelength plasmonic waveguide efficiently, leading to an ultra-tight SPP source, especially as a subwavelength localized guided SPP source.
Aluminum nanostructures for ultraviolet plasmonics
NASA Astrophysics Data System (ADS)
Martin, Jérôme; Khlopin, Dmitry; Zhang, Feifei; Schuermans, Silvère; Proust, Julien; Maurer, Thomas; Gérard, Davy; Plain, Jérôme
2017-08-01
An electromagnetic field is able to produce a collective oscillation of free electrons at a metal surface. This allows light to be concentrated in volumes smaller than its wavelength. The resulting waves, called surface plasmons can be applied in various technological applications such as ultra-sensitive sensing, Surface Enhanced Raman Spectroscopy, or metal-enhanced fluorescence, to name a few. For several decades plasmonics has been almost exclusively studied in the visible region by using nanoparticles made of gold or silver as these noble metals support plasmonic resonances in the visible and near-infrared range. Nevertheless, emerging applications will require the extension of nano-plasmonics toward higher energies, in the ultraviolet range. Aluminum is one of the most appealing metal for pushing plasmonics up to ultraviolet energies. The subsequent applications in the field of nano-optics are various. This metal is therefore a highly promising material for commercial applications in the field of ultraviolet nano-optics. As a consequence, aluminum (or ultraviolet, UV) plasmonics has emerged quite recently. Aluminium plasmonics has been demonstrated efficient for numerous potential applications including non-linear optics, enhanced fluorescence, UV-Surface Enhanced Raman Spectroscopy, optoelectronics, plasmonic assisted solid-state lasing, photocatalysis, structural colors and data storage. In this article, different preparation methods developed in the laboratory to obtain aluminum nanostructures with different geometries are presented. Their optical and morphological characterizations of the nanostructures are given and some proof of principle applications such as fluorescence enhancement are discussed.
Experimental verification of ‘waveguide’ plasmonics
NASA Astrophysics Data System (ADS)
Prudêncio, Filipa R.; Costa, Jorge R.; Fernandes, Carlos A.; Engheta, Nader; Silveirinha, Mário G.
2017-12-01
Surface plasmons polaritons are collective excitations of an electron gas that occur at an interface between negative-ɛ and positive-ɛ media. Here, we report the experimental observation of such surface waves using simple waveguide metamaterials filled only with available positive-ɛ media at microwave frequencies. In contrast to optical designs, in our setup the propagation length of the surface plasmons can be rather long as low loss conventional dielectrics are chosen to avoid typical losses from negative-ɛ media. Plasmonic phenomena have potential applications in enhancing light-matter interactions, implementing nanoscale photonic circuits and integrated photonics.
Plasmon-Enhanced Optical Sensors: A Review
Li, Ming; Cushing, Scott K
2014-01-01
Surface plasmon resonance (SPR) has found extensive applications in chemi-sensors and biosensors. Plasmons play different roles in different types of optical sensors. SPR transduces a signal in a colorimetric sensor through shifts in the spectral position and intensity in response to external stimuli. SPR can also concentrate the incident electromagnetic field in a nanostructure, modulating fluorescence emission and enabling plasmon-enhanced fluorescence to be used for ultrasensitive detection. Furthermore, plasmons have been extensively used for amplifying a Raman signal in a surface-enhanced Raman scattering sensor. This paper presents a review of recent research progress in plasmon-enhanced optical sensing, giving an emphasis on the physical basis of plasmon-enhanced sensors and how these principles guide the design of sensors. In particular, this paper discusses the design strategies for nanomaterials and nanostructures to plasmonically enhance optical sensing signals, also highlighting the applications of plasmon-enhanced optical sensors in health care, homeland security, food safety and environmental monitoring. PMID:25365823
Reflection Spectromicroscopy for the Design of Nanopillar Optical Antenna Detectors
2014-08-29
diameter of individual nanowires makes surface plasmon polariton (SPP) resonances an attractive option, as regular metal scattering centers can overcome...individual nanowires makes surface plasmon polariton (SPP) resonances an attractive option, as regular metal scattering centers can overcome the momentum...minimized. The ability to lithographically define the position and diameter of individual nanowires makes surface plasmon polariton (SPP) resonances an
Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei
2013-01-14
Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).
Surface plasmon polaritons in a topological insulator embedded in an optical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L. L., E-mail: lllihfcas@foxmail.com; Xu, W., E-mail: wenxu-issp@aliyun.com; Department of Physics, Yunnan University, Kunming 650091
Very recently, the surface plasmons in a topological insulator (TI) have been experimentally observed by exciting these collective modes with polarized light [P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, Nat. Nanotechnol. 8, 556 (2013)]. Motivated by this experimental work, here we present a theoretical study on the surface plasmon polaritons (SPPs) induced by plasmon-photon interactions in a TI thin film embedded in an optical cavity. It is found that the frequencies of SPP modes are within the terahertz (THz) bandwidthmore » and can be tuned effectively by adjusting the surface electron density and/or the optical cavity length. Since the surface electron density can be well controlled by the gate-voltage applied perpendicular to the TI surface, our theoretical results indicate that gated TI thin films may have potential applications in the electrically tunable THz plasmonic devices.« less
Surface plasmon polaritons in a topological insulator embedded in an optical cavity
NASA Astrophysics Data System (ADS)
Li, L. L.; Xu, W.
2014-03-01
Very recently, the surface plasmons in a topological insulator (TI) have been experimentally observed by exciting these collective modes with polarized light [P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi, Nat. Nanotechnol. 8, 556 (2013)]. Motivated by this experimental work, here we present a theoretical study on the surface plasmon polaritons (SPPs) induced by plasmon-photon interactions in a TI thin film embedded in an optical cavity. It is found that the frequencies of SPP modes are within the terahertz (THz) bandwidth and can be tuned effectively by adjusting the surface electron density and/or the optical cavity length. Since the surface electron density can be well controlled by the gate-voltage applied perpendicular to the TI surface, our theoretical results indicate that gated TI thin films may have potential applications in the electrically tunable THz plasmonic devices.
Self-assembled diatom substrates with plasmonic functionality
NASA Astrophysics Data System (ADS)
Kwon, Sun Yong; Park, Sehyun; Nichols, William T.
2014-04-01
Marine diatoms have an exquisitely complex exoskeleton that is promising for engineered surfaces such as sensors and catalysts. For such applications, creating uniform arrays of diatom frustules across centimeter scales will be necessary. Here, we present a simple, low-cost floating interface technique to self-assemble the diatom frustules. We show that well-prepared diatoms form floating hexagonal close-packed arrays at the air-water interface that can be transferred directly to a substrate. We functionalize the assembled diatom surfaces with gold and characterize the plasmonic functionality by using surface enhanced Raman scattering (SERS). Thin gold films conform to the complex, hierarchical diatom structure and produce a SERS enhancement factor of 2 × 104. Small gold nanoparticles attached to the diatom's surface produce a higher enhancement of 7 × 104 due to stronger localization of the surface plasmons. Taken together, the large-scale assembly and plasmonic functionalization represent a promising platform to control the energy and the material flows at a complex surface for applications such as sensors and plasmonic enhanced catalysts.
Special issue on aluminium plasmonics
Gerard, Davy; Gray, Stephen K.
2015-04-08
Plasmonics is a rapidly growing field that takes advantage of the intense and confined electromagnetic fields that appear near metallic nanostructures illuminated at frequencies near their surface plasmon resonances. As plasmonics continues to develop, it faces the need to find new materials supporting well-defined surface plasmon resonances in different frequency ranges. In the visible and near-infrared ranges the noble metals, most typically gold and silver, exhibit relatively low losses. This is why they are quite ubiquitous in plasmonics literature. However it is somewhat ironic to see that a non-noble metal, aluminium, the metal upon which surface plasmons where first evidencedmore » in the 1950s, is now reappearing after fifty years of near oblivion as one of the 'hottest' materials for plasmonics. Several reasons explain the return of aluminium to the centre stage. First, aluminium exhibits good plasmonic properties in the ultraviolet and deep ultraviolet—a spectral range where gold and silver no longer behave as metals. Second, aluminium is cheap and widely available (Al is the third most abundant element in the earth's crust), criteria of paramount importance when discussing industry-related applications. It is furthermore compatible with complementary metal–oxide–semiconductor (CMOS) technology. In conclusion, this is why an ever-increasing number of papers report new advances on aluminium plasmonics.« less
Special issue on aluminium plasmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerard, Davy; Gray, Stephen K.
Plasmonics is a rapidly growing field that takes advantage of the intense and confined electromagnetic fields that appear near metallic nanostructures illuminated at frequencies near their surface plasmon resonances. As plasmonics continues to develop, it faces the need to find new materials supporting well-defined surface plasmon resonances in different frequency ranges. In the visible and near-infrared ranges the noble metals, most typically gold and silver, exhibit relatively low losses. This is why they are quite ubiquitous in plasmonics literature. However it is somewhat ironic to see that a non-noble metal, aluminium, the metal upon which surface plasmons where first evidencedmore » in the 1950s, is now reappearing after fifty years of near oblivion as one of the 'hottest' materials for plasmonics. Several reasons explain the return of aluminium to the centre stage. First, aluminium exhibits good plasmonic properties in the ultraviolet and deep ultraviolet—a spectral range where gold and silver no longer behave as metals. Second, aluminium is cheap and widely available (Al is the third most abundant element in the earth's crust), criteria of paramount importance when discussing industry-related applications. It is furthermore compatible with complementary metal–oxide–semiconductor (CMOS) technology. In conclusion, this is why an ever-increasing number of papers report new advances on aluminium plasmonics.« less
Synergic combination of the sol–gel method with dip coating for plasmonic devices
Patrini, Maddalena; Floris, Francesco; Fornasari, Lucia; Pellacani, Paola; Marchesini, Gerardo; Valsesia, Andrea; Artizzu, Flavia; Marongiu, Daniela; Saba, Michele; Marabelli, Franco; Mura, Andrea; Bongiovanni, Giovanni
2015-01-01
Summary Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic surface was modified through a controlled, silica platform, which enables the improvement of the plasmonic-based sensor functionality. The key processing parameters that allow for the fine-tuning of the silica layer thickness on the plasmonic structure were studied. Control of the silica coating thickness was achieved through a combined approach involving sol–gel and dip-coating techniques. The silica films were characterized using spectroscopic ellipsometry, contact angle measurements, atomic force microscopy and dispersive spectroscopy. The effect of the use of silica layers on the optical properties of the plasmonic structures was evaluated. The obtained results show that the silica coating enables surface protection of the plasmonic structures, preserving their stability for an extended time and inducing a suitable reduction of the regeneration time of the chip. PMID:25821692
Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches
Unser, Sarah; Bruzas, Ian; He, Jie; Sagle, Laura
2015-01-01
Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure biomolecular interactions, several challenges remain. In this article, we have categorized these challenges into four categories: improving sensitivity and limit of detection, selectivity in complex biological solutions, sensitive detection of membrane-associated species, and the adaptation of sensing elements for point-of-care diagnostic devices. The first section of this article will involve a conceptual discussion of surface plasmon resonance and the factors affecting changes in optical signal detected. The following sections will discuss applications of LSPR biosensing with an emphasis on recent advances and approaches to overcome the four limitations mentioned above. First, improvements in limit of detection through various amplification strategies will be highlighted. The second section will involve advances to improve selectivity in complex media through self-assembled monolayers, “plasmon ruler” devices involving plasmonic coupling, and shape complementarity on the nanoparticle surface. The following section will describe various LSPR platforms designed for the sensitive detection of membrane-associated species. Finally, recent advances towards multiplexed and microfluidic LSPR-based devices for inexpensive, rapid, point-of-care diagnostics will be discussed. PMID:26147727
On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS
Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling
2016-01-01
An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (<−9 dB) with excellent transmission efficiency (averagely −1.9 dB) from 110 GHz–325 GHz. The demonstrated compact and wideband SPP T-lines with mode converter have shown great potentials to replace existing waveguides as future on-chip THz interconnects. To the best of the author’s knowledge, this is the first time to demonstrate the (sub)-THz surface mode conversion on-chip in CMOS technology. PMID:27444782
3D metamaterial absorber for attomole molecular detection (Conference Presentation)
NASA Astrophysics Data System (ADS)
Tanaka, Takuo; Ishikawa, Atsushi
2016-09-01
3D Metamaterial absorber was used for a background-suppressed surface-enhanced molecular detection technique. By utilizing the resonant coupling of plasmonic modes of a metamaterial absorber and infrared (IR) vibrational modes of a self-assembled monolayer (SAM), attomole level molecular sensitivity was experimentally demonstrated. IR absorption spectroscopy of molecular vibrations is of importance in chemical, material, medical science and so on, since it provides essential information of the molecular structure, composition, and orientation. In the vibrational spectroscopic techniques, in addition to the weak signals from the molecules, strong background degrades the signal-to-noise ratio, and suppression of the background is crucial for the further improvement of the sensitivity. Here, we demonstrate low-background resonant Surface enhanced IR absorption (SEIRA) by using the metamaterial IR absorber that offers significant background suppression as well as plasmonic enhancement. The fabricated metamaterial consisted of 1D array of Au micro-ribbons on a thick Au film separated by a transparent gap layer made of MgF2. The surface structures were designed to exhibit an anomalous IR absorption at 3000 cm-1, which spectrally overlapped with C-H stretching vibrational modes. 16-Mercaptohexadecanoic acid (16-MHDA) was used as a test molecule, which formed a 2-nm thick SAM with their thiol head-group chemisorbed on the Au surface. In the FTIR measurements, the symmetric and asymmetric C-H stretching modes were clearly observed as reflection peaks within a broad plasmonic absorption of the metamaterial.
Liu, Xinfeng; Zhang, Qing; Yip, Jing Ngei; Xiong, Qihua; Sum, Tze Chien
2013-01-01
Wavelength tunable semiconductor nanowire (NW) lasers are promising for multifunctional applications ranging from optical communication to spectroscopy analysis. Here, we present a demonstration of utilizing the surface plasmon polariton (SPP) enhanced Burstein-Moss (BM) effect to tune the lasing wavelength of a single semiconductor NW. The photonic lasing mode of the CdS NW (with length ~10 μm and diameter ~220 nm) significantly blue shifts from 504 to 483 nm at room temperature when the NW is in close proximity to the Au film. Systematic steady state power dependent photoluminescence (PL) and time-resolved PL studies validate that the BM effect in the hybrid CdS NW devices is greatly enhanced as a consequence of the strong coupling between the SPP and CdS excitons. With decreasing dielectric layer thickness h from 100 to 5 nm, the enhancement of the BM effect becomes stronger, leading to a larger blue shift of the lasing wavelength. Measurements of enhanced exciton emission intensities and recombination rates in the presence of Au film further support the strong interaction between SPP and excitons, which is consistent with the simulation results.
Single-mode surface plasmon distributed feedback lasers.
Karami Keshmarzi, Elham; Tait, R Niall; Berini, Pierre
2018-03-29
Single-mode surface plasmon distributed feedback (DFB) lasers are realized in the near infrared using a two-dimensional non-uniform long-range surface plasmon polariton structure. The surface plasmon mode is excited onto a 20 nm-thick, 1 μm-wide metal stripe (Ag or Au) on a silica substrate, where the stripe is stepped in width periodically, forming a 1st order Bragg grating. Optical gain is provided by optically pumping a 450 nm-thick IR-140 doped PMMA layer as the top cladding, which covers the entire length of the Bragg grating, thus creating a DFB laser. Single-mode lasing peaks of very narrow linewidth were observed for Ag and Au DFBs near 882 nm at room temperature. The narrow linewidths are explained by the low spontaneous emission rate into the surface plasmon lasing mode as well as the high quality factor of the DFB structure. The lasing emission is exclusively TM polarized. Kinks in light-light curves accompanied by spectrum narrowing were observed, from which threshold pump power densities can be clearly identified (0.78 MW cm-2 and 1.04 MW cm-2 for Ag and Au DFB lasers, respectively). The Schawlow-Townes linewidth for our Ag and Au DFB lasers is estimated and very narrow linewidths are predicted for the lasers. The lasers are suitable as inexpensive, recyclable and highly coherent sources of surface plasmons, or for integration with other surface plasmon elements of similar structure.
Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit.
Liu, Renming; Zhou, Zhang-Kai; Yu, Yi-Cong; Zhang, Tengwei; Wang, Hao; Liu, Guanghui; Wei, Yuming; Chen, Huanjun; Wang, Xue-Hua
2017-06-09
Reaching the quantum optics limit of strong light-matter interactions between a single exciton and a plasmon mode is highly desirable, because it opens up possibilities to explore room-temperature quantum devices operating at the single-photon level. However, two challenges severely hinder the realization of this limit: the integration of single-exciton emitters with plasmonic nanostructures and making the coupling strength at the single-exciton level overcome the large damping of the plasmon mode. Here, we demonstrate that these two hindrances can be overcome by attaching individual J aggregates to single cuboid Au@Ag nanorods. In such hybrid nanosystems, both the ultrasmall mode volume of ∼71 nm^{3} and the ultrashort interaction distance of less than 0.9 nm make the coupling coefficient between a single J-aggregate exciton and the cuboid nanorod as high as ∼41.6 meV, enabling strong light-matter interactions to be achieved at the quantum optics limit in single open plasmonic nanocavities.
Graphene enhanced surface plasmon resonance sensing based on Goos-Hänchen shift
NASA Astrophysics Data System (ADS)
Chen, Huifang; Tong, Jinguang; Wang, Yiqin; Jiang, Li
2018-03-01
A graphene/Ag structure is engineered as an enhanced platform for surface plasmon resonance sensing due to the high impermeability nature of graphene and the superior surface plasmon resonance performance of Ag. This structure is ultrasensitive to even tiny refractive index change of analytes based on Goos-Hänchen shift measurement compared to the traditional SPR sensor with bare Au film. The graphene/Ag configuration is consisted of five components, including BK7 glass slide, titanium thin film, silver thin film, two-dimensional graphene layers and biomolecular analyte layer. We have optimized the parameters of each layer and theoretically analyzed Goos-Hänchen shift of the plasmonic structure under surface plasmon resonance effect. The optimized graphene/Ag structure is monolayer graphene coated on Ag thin film with the thickness of 42 nm.
NASA Astrophysics Data System (ADS)
Gupta, Banshi D.; Kant, Ravi
2018-05-01
Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.
Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters
NASA Technical Reports Server (NTRS)
Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.
1997-01-01
Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.
NASA Astrophysics Data System (ADS)
Oshikane, Yasushi; Murai, Kensuke; Higashi, Takaya; Yamamoto, Fumihiko; Nakano, Motohiro; Inoue, Haruyuki
2012-10-01
Interaction between surface plasmons at two interfaces inside a meta-insulator-metal (MIM) structure is one of the interesting physical phenomena in nanophotonics. We have started to create a plasmonic active spectral filter based on the MIM structure for a developing white light-emitting diode (LED) visible-light communication. An optical active filter at visible region assisted by surface plasmon resonance (SPR) in MIM structure of vacuum-deposited thin films on glass substrate has been studied both experimentally and theoretically. Interface between the first thin silver layer (M1, around 50 nm-thick) and bulk glass slide is appropriate for excitation of SPR at particular wavelength and incident angle of illumination light. And spatial extension of the SPR wave may cause an effective propagating mode confined in the insulator layer (I, around 150 nm-thick) by both M1 and the second thick silver layer (M2, around 200 nm-thick). Such an energy conversion from the illuminating light to the propagating SPR modes corresponds to an evident absorption dip on spectral reflectance curve of the MIM structure, and the shape of dip may vary widely in response to material and configuration of the MIM. The spectral and angular reflectance of the prototypical MIM structure has been measured by spectrophotometer for P- and S-polarized light because the plasmonic effect inside the MIM structure depends strongly on the polarization of light. Such the characteristic reflection feature has also been studied by using both the usual transfer matrix method and 2D electromagnetic simulation based on the finite element method. In this talk, several striking and preliminary MIM prototypes will be introduced and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, Rajesh; Malla, Shova; Gyawali, Gobinda
2013-09-01
Graphical abstract: - Highlights: • Ag-CdMoO{sub 4} solar light driven photocatalyst was successfully synthesized. • Photocatalyst exhibited strong absorption in the visible region. • Photocatalytic activity was significantly enhanced. • Enhanced activity was caused by the SPR effect induced by Ag nanoparticles. - Abstract: Ag-CdMoO{sub 4} plasmonic photocatalyst was synthesized in ethanol/water mixture by photo assisted co-precipitation method at room temperature. As synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) surface area analyzer. Photocatalytic activity was evaluated by performing the degradation experiment over methylenemore » blue (MB) and indigo carmine (IC) as model dyes under simulated solar light irradiation. The results revealed that the Ag-CdMoO{sub 4} showed the higher photocatalytic performance as compared to CdMoO{sub 4} nanoparticles. Dispersion of Ag nanoparticles over the surface of CdMoO{sub 4} nanoparticles causes the surface plasmon resonance (SPR) and enhances the broad absorption in the entire visible region of the solar spectrum. Hence, dispersion of Ag nanoparticles over CdMoO{sub 4} nanoparticles could be the better alternative to enhance the absorption of visible light by scheelite crystal family for effective photocatalysis.« less
High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.
Hobbs, Richard G; Yang, Yujia; Fallahi, Arya; Keathley, Philip D; De Leo, Eva; Kärtner, Franz X; Graves, William S; Berggren, Karl K
2014-11-25
Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods. We have also studied the effects of surface plasmon damping induced by metallic interface layers at the substrate/nanorod interface on near-field enhancement and electron emission. We have identified the peak optical field at which the electron emission mechanism transitions from a 3-photon absorption mechanism to strong-field tunneling emission. Moreover, we have investigated the effects of nanorod array density on nanorod charge yield, including measurement of space-charge effects. The Au nanorod photocathodes presented in this work display 100-1000 times higher conversion efficiency relative to previously reported UV triggered emission from planar Au photocathodes. Consequently, the Au nanorod arrays triggered by ultrafast pulses of 800 nm light in this work may outperform equivalent UV-triggered Au photocathodes, while also offering nanostructuring of the electron pulse produced from such a cathode, which is of interest for X-ray free-electron laser (XFEL) development where nanostructured electron pulses may facilitate more efficient and brighter XFEL radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shioi, Masahiko, E-mail: shioi.masahiko@jp.panasonic.com; Department of Electric and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501; Jans, Hilde
With a view to biomedical and environmental applications, we investigate the plasmonic properties of a rectangular gold nanodisk array in water to boost surface enhanced Raman scattering (SERS) effects. To control the resonance wavelengths of the surface plasmon polariton and the localized surface plasmon, their dependence on the array period and diameter in water is studied in detail using a finite difference time domain method. A good agreement is obtained between calculated resonant wavelengths and those of gold nanodisk arrays fabricated using electron beam lithography. For the optimized structure, a SERS enhancement factor of 7.8 × 10{sup 7} is achieved in watermore » experimentally.« less
Solar cell comprising a plasmonic back reflector and method therefor
Ding, I-Kang; Zhu, Jia; Cui, Yi; McGehee, Michael David
2014-11-25
A method for forming a solar cell having a plasmonic back reflector is disclosed. The method includes the formation of a nanoimprinted surface on which a metal electrode is conformally disposed. The surface structure of the nanoimprinted surface gives rise to a two-dimensional pattern of nanometer-scale features in the metal electrode enabling these features to collectively form the plasmonic back reflector.
High-performance mushroom plasmonic metamaterial absorbers for infrared polarimetric imaging
NASA Astrophysics Data System (ADS)
Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Kuboyama, Takafumi; Kimata, Masafumi
2017-02-01
Infrared (IR) polarimetric imaging is a promising approach to enhance object recognition with conventional IR imaging for applications such as artificial object recognition from the natural environment and facial recognition. However, typical infrared polarimetric imaging requires the attachment of polarizers to an IR camera or sensor, which leads to high cost and lower performance caused by their own IR radiation. We have developed asymmetric mushroom plasmonic metamaterial absorbers (A-MPMAs) to address this challenge. The A-MPMAs have an all-Al construction that consists of micropatches and a reflector layer connected with hollow rectangular posts. The asymmetric-shaped micropatches lead to strong polarization-selective IR absorption due to localized surface plasmon resonance at the micropatches. The operating wavelength region can be controlled mainly by the micropatch and the hollow rectangular post size. AMPMAs are complicated three-dimensional structures, the fabrication of which is challenging. Hollow rectangular post structures are introduced to enable simple fabrication using conventional surface micromachining techniques, such as sacrificial layer etching, with no degradation of the optical properties. The A-MPMAs have a smaller thermal mass than metal-insulator-metal based metamaterials and no influence of the strong non-linear dispersion relation of the insulator materials constant, which produces a gap in the wavelength region and additional absorption insensitive to polarization. A-MPMAs are therefore promising candidates for uncooled IR polarimetric image sensors in terms of both their optical properties and ease of fabrication. The results presented here are expected to contribute to the development of highperformance polarimetric uncooled IR image sensors that do not require polarizers.
Limitations of a localized surface plasmon resonance sensor on Salmonella detection
USDA-ARS?s Scientific Manuscript database
We have designed a localized surface plasmon resonance (LSPR) biosensor to perform the whole cell detection of Salmonella using gold nanoparticls fabricated by oblique angle deposition technique. The LSPR sensor showed a plasmon peak shift due to the Salmonella antigen and anti-Salmonella antibody r...
Zhu, Zhendong; Bai, Benfeng; Duan, Huigao; Zhang, Haosu; Zhang, Mingqian; You, Oubo; Li, Qunqing; Tan, Qiaofeng; Wang, Jia; Fan, Shoushan; Jin, Guofan
2014-04-24
Plasmonic nanostructures separated by nanogaps enable strong electromagnetic-field confinement on the nanoscale for enhancing light-matter interactions, which are in great demand in many applications such as surface-enhanced Raman scattering (SERS). A simple M-shaped nanograting with narrow V-shaped grooves is proposed. Both theoretical and experimental studies reveal that the electromagnetic field on the surface of the M grating can be pronouncedly enhanced over that of a grating without such grooves, due to field localization in the nanogaps formed by the narrow V grooves. A technique based on room-temperature nanoimprinting lithography and anisotropic reactive-ion etching is developed to fabricate this device, which is cost-effective, reliable, and suitable for fabricating large-area nanostructures. As a demonstration of the potential application of this device, the M grating is used as a SERS substrate for probing Rhodamine 6G molecules. Experimentally, an average SERS enhancement factor as high as 5×10⁸ has been achieved, which verifies the greatly enhanced light-matter interaction on the surface of the M grating over that of traditional SERS surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tailoring optical metamaterials to tune the atom-surface Casimir-Polder interaction.
Chan, Eng Aik; Aljunid, Syed Abdullah; Adamo, Giorgio; Laliotis, Athanasios; Ducloy, Martial; Wilkowski, David
2018-02-01
Metamaterials are fascinating tools that can structure not only surface plasmons and electromagnetic waves but also electromagnetic vacuum fluctuations. The possibility of shaping the quantum vacuum is a powerful concept that ultimately allows engineering the interaction between macroscopic surfaces and quantum emitters such as atoms, molecules, or quantum dots. The long-range atom-surface interaction, known as Casimir-Polder interaction, is of fundamental importance in quantum electrodynamics but also attracts a significant interest for platforms that interface atoms with nanophotonic devices. We perform a spectroscopic selective reflection measurement of the Casimir-Polder interaction between a Cs(6P 3/2 ) atom and a nanostructured metallic planar metamaterial. We show that by engineering the near-field plasmonic resonances of the metamaterial, we can successfully tune the Casimir-Polder interaction, demonstrating both a strong enhancement and reduction with respect to its nonresonant value. We also show an enhancement of the atomic spontaneous emission rate due to its coupling with the evanescent modes of the nanostructure. Probing excited-state atoms next to nontrivial tailored surfaces is a rigorous test of quantum electrodynamics. Engineering Casimir-Polder interactions represents a significant step toward atom trapping in the extreme near field, possibly without the use of external fields.
Piątkowski, Dawid; Schmidt, Mikołaj K; Twardowska, Magdalena; Nyk, Marcin; Aizpurua, Javier; Maćkowski, Sebastian
2017-08-04
We experimentally demonstrate strong spectral selectivity of plasmonic interaction that occurs between α-NaYF₄:Er 3+ /Yb 3+ nanocrystals, which feature two emission bands, and spherical gold nanoparticles, with plasmon frequency resonant with one of the emission bands. Spatially-resolved luminescence intensity maps acquired for individual nanocrystals, together with microsecond luminescence lifetime images, show two qualitatively different effects that result from the coupling between plasmon excitations in metallic nanoparticles and emitting states of the nanocrystals. On the one hand, we observe nanocrystals, whose emission intensity is strongly enhanced for both resonant and non-resonant bands with respect to the plasmon resonance. Importantly, this increase is accompanied with shortening of luminescence decays times. In contrast, a significant number of nanocrystals exhibits almost complete quenching of the emission resonant with the plasmon resonance of gold nanoparticles. Theoretical analysis indicates that such an effect can occur for emitters placed at distances of about 5 nm from gold nanoparticles. While under these conditions, both transitions experience significant increases of the radiative emission rates due to the Purcell effect, the non-radiative energy transfer between resonant bands results in strong quenching, which in that situation nullifies the enhancement.
Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface
NASA Astrophysics Data System (ADS)
Kosobukin, V. A.; Korotchenkov, A. V.
2016-12-01
A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.
Flexible coherent control of plasmonic spin-Hall effect.
Xiao, Shiyi; Zhong, Fan; Liu, Hui; Zhu, Shining; Li, Jensen
2015-09-29
The surface plasmon polariton is an emerging candidate for miniaturizing optoelectronic circuits. Recent demonstrations of polarization-dependent splitting using metasurfaces, including focal-spot shifting and unidirectional propagation, allow us to exploit the spin degree of freedom in plasmonics. However, further progress has been hampered by the inability to generate more complicated and independent surface plasmon profiles for two incident spins, which work coherently together for more flexible and tunable functionalities. Here by matching the geometric phases of the nano-slots on silver to specific superimpositions of the inward and outward surface plasmon profiles for the two spins, arbitrary spin-dependent orbitals can be generated in a slot-free region. Furthermore, motion pictures with a series of picture frames can be assembled and played by varying the linear polarization angle of incident light. This spin-enabled control of orbitals is potentially useful for tip-free near-field scanning microscopy, holographic data storage, tunable plasmonic tweezers, and integrated optical components.
Integrated amorphous silicon-aluminum long-range surface plasmon polariton (LR-SPP) waveguides
NASA Astrophysics Data System (ADS)
Sturlesi, Boaz; Grajower, Meir; Mazurski, Noa; Levy, Uriel
2018-03-01
We demonstrate the design, fabrication, and experimental characterization of a long range surface plasmon polariton waveguide that is compatible with complementary metal-oxide semiconductor backend technology. The structure consists of a thin aluminum strip embedded in amorphous silicon. This configuration offers a symmetric environment in which surface plasmon polariton modes undergo minimal loss. Furthermore, the plasmonic mode profile matches the modes of the dielectric (amorphous silicon) waveguide, thus allowing efficient coupling between silicon photonics and plasmonic platforms. The propagation length of the plasmonic waveguide was measured to be about 27 μm at the telecom wavelength around 1550 nm, in good agreement with numerical simulations. As such, the waveguide features both tight mode confinement and decent propagation length. On top of its photonic properties, placing a metal within the structure may also allow for additional functionalities such as photo-detection, thermo-optic tuning, and electro-optic control to be implemented.
Surface plasmon polaritons and waveguide modes at structured and inhomogeneous surfaces
NASA Astrophysics Data System (ADS)
Polanco, Javier
In chapter 1, properties of a p-polarized surface plasmon polariton are studied, propagating circumferentially around a portion of a cylindrical interface between vacuum and a metal, a situation investigated earlier by M. V. Berry (J. Phys. A: Math. Gen. 8, (1975) 1952). When the metal is convex toward the vacuum this mode is radiative and consequently is attenuated as it propagates on the cylindrical surface. An approximate analytic solution of the dispersion relation for this wave is obtained by an approach different from the one used by Berry, and plots of the real and imaginary parts of its wave number are presented. When the metal is concave to the vacuum, the resulting dispersion relation possesses a multiplicity of solutions that have the nature of waveguide modes that owe their existence to the curvature of the interface. In chapter 2, the reduced Rayleigh equation for the scattering of a surface plasmon polariton incident normally on a one-dimensional ridge or groove on an otherwise planar metal surface is solved by a purely numerical approach. The solution is used to calculate the reflectivity and transmissivity of the surface plasmon polariton, and its conversion into volume electromagnetic waves in the vacuum above the metal surface. The results obtained are compared with those of earlier calculations of these quantities. In chapter 3, the results of the previous chapter are extended to the scattering of a surface plasmon polariton incident non-normally on a one-dimensional ridge or groove on an otherwise planar metal surface. As before, the reflectivity and transmissivity of the surface plasmon polariton are calculated, and its conversion into volume electromagnetic waves in the vacuum above the metal surface. In chapter 4, the dynamics of the scattering of surface plasmon polariton (SPP) pulses are investigated theoretically, by single nanoscale metal Gaussian defects through a rigorous calculation of the time dependence of the reflected and transmitted SPP and of the angular distribution of the scattered light.
Exact surface-plasmon polariton solutions at a lossy interface.
Norrman, Andreas; Setälä, Tero; Friberg, Ari T
2013-04-01
Making use of a rigorous electromagnetic treatment, we demonstrate that the approximate results that are customarily employed for the analysis of a plasmon field at a metal/dielectric boundary are incorrect even in some situations in which they are supposed to hold. We show further that a new type of surface-plasmon solution exists that does not follow from the standard approximate analysis. Energy-flow considerations indicate that the new polariton is a backward-propagating surface wave, as encountered in manmade structures. Our results are likely to find applications in metal/semiconductor and metamaterial plasmonics.
Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode
NASA Astrophysics Data System (ADS)
Zhang, Z.; Li, R.; To, H.; Andonian, G.; Pirez, E.; Meade, D.; Maxson, J.; Musumeci, P.
2017-09-01
Nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.
Surface-PlasmonoDielectric-polaritonic devices and systems
None, None
2013-06-25
There is provided a structure for supporting propagation of surface plasmon polaritons. The structure includes a plasmonic material region and a dielectric material region, disposed adjacent to a selected surface of the plasmonic material region. At least one of the plasmonic material region and the dielectric material region have a dielectric permittivity distribution that is specified as a function of depth through the corresponding material region. This dielectric permittivity distribution is selected to impose prespecified group velocities, v.sub.gj, on a dispersion relation for a surface polaritonic mode of the structure for at least one of a corresponding set of prespecified frequencies, .omega..sub.j, and corresponding set of prespecified wavevectors, where j=1 to N.
Orientation-Dependent Exciton-Plasmon Coupling in Embedded Organic/Metal Nanowire Heterostructures.
Li, Yong Jun; Hong, Yan; Peng, Qian; Yao, Jiannian; Zhao, Yong Sheng
2017-10-24
The excitation of surface plasmons by optical emitters based on exciton-plasmon coupling is important for plasmonic devices with active optical properties. It has been theoretically demonstrated that the orientation of exciton dipole can significantly influence the coupling strength, yet systematic study of the coupling process in nanostructures is still hindered by the lack of proper material systems. In this work, we have experimentally investigated the orientation-dependent exciton-plasmon coupling in a rationally designed organic/metal nanowire heterostructure system. The heterostructures were prepared by inserting silver nanowires into crystalline organic waveguides during the self-assembly of dye molecules. Structures with different exciton orientations exhibited varying coupling efficiencies. The near-field exciton-plasmon coupling facilitates the design of nanophotonic devices based on the directional surface plasmon polariton propagations.
Terahertz optoelectronics with surface plasmon polariton diode.
Vinnakota, Raj K; Genov, Dentcho A
2014-05-09
The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.
Hu, Li; Tian, Xiaorui; Huang, Yingzhou; Fang, Liang; Fang, Yurui
2016-02-14
Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole model and a finite element method model. The surface charge distributions showed that the circular current yielded by the splitting rectangle ring causes the ring to behave like a magneton at some resonant modes, which then interact with the electric modes, resulting in a mixing of the two types of modes. The strong interplay of the two mode types is primarily responsible for the giant CD. The analysis of the chiral near-field of the structure shows potential applications for chiral molecule sensing.
Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes
Song, Jibin; Huang, Peng; Chen, Xiaoyuan
2016-01-01
Gold nanovesicles contain multiple nanocrystals within a polymeric coating. The strong plasmonic coupling between adjacent nanoparticles in their vesicular shell makes ultrasensitive biosensing and bioimaging possible. In our laboratory, multifunctional plasmonic vesicles are assembled from amphiphilic gold nanocrystals (such as gold nanoparticles and gold nanorods) coated with mixed hydrophilic and hydrophobic polymer brushes or amphiphilic diblock co-polymer brushes. To fulfill the different requirements of biomedical applications, different polymers that are either pH=responsive, photoactive or biodegradable can be used to form the hydrophobic brush, while the hydrophilicity is maintained by polyethylene glycol (PEG). This protocol covers the preparation, surface functionalization and self-assembly of amphiphilic gold nanocrystals grafted covalently with polymer brushes. The protocol can be completed within 2 d. The preparation of amphiphilic gold nanocrystals, coated with amphiphilic diblock polymer brushes using a ‘grafting to’ method or mixed hydrophilic and hydrophobic polymer brushes using tandem ‘grafting to’ and ‘grafting from’ methods, is described. We also provide detailed procedures for the preparation and characterization of pH-responsive plasmonic gold nanovesicles from amphiphilic gold nanocrystals using a film-rehydration method that can be completed within ~3 d. PMID:27763624
Directed-assembled multi-band moiré plasmonic metasurfaces
NASA Astrophysics Data System (ADS)
Nagavalli Yogeesh, Maruthi; Wu, Zilong; Li, Wei; Akinwande, Deji; Zheng, Yuebing
With the large number of component sets and high rotational symmetry, plasmonic metamaterials with moiré patterns can support multiple plasmonic modes for multi-functional applications. Herein, we introduce moiré plasmonic metasurfaces using both gold and graphene, by a recently developed directed-assembled method known as moiré nanosphere lithography (MNSL). The graphene moiré metasurfaces show multiple and tunable resonance modes in the mid-infrared wavelength regime. The number and wavelength of the resonance modes can be tuned by controlling the moiré patterns, which can be easily achieved by changing the relative in-plane rotation angle during MNSL. Furthermore, we have designed a metal-insulator-metal (MIM) patch structure with a thin Au moiré metasurface layer and an optically thick Au layer separated by a dielectric spacer layer. Benefiting from the combination of moiré patterns and field enhancement from the MIM configuration, the moiré metasurface patch exhibits strong broadband absorption in the NIR ( 1.3 μm) and MIR ( 5 μm) range. The dual-band optical responses make moiré metasurface patch a multi-functional platform for surface-enhanced infrared spectroscopy, optical capture and patterning of bacteria, and photothermal denaturation of proteins.
Shi, Jiayuan; Kuwahara, Yasutaka; Wen, Meicheng; Navlani-García, Miriam; Mori, Kohsuke; An, Taicheng; Yamashita, Hiromi
2016-09-06
A straightforward aqueous synthesis of MoO3-x nanoparticles at room temperature was developed by using (NH4 )6 Mo7 O24 ⋅4 H2 O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as-prepared products are nanoparticles with diameters of 90-180 nm. The diffuse reflectance UV-visible-near-IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible-light and near-infrared region, such nanostructures exhibit an enhancement of activity toward visible-light catalytic hydrogen generation. MoO3-x nanoparticles synthesized with a molar ratio of Mo(VI) /Mo(V) 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as-prepared plasmonic MoO3-x nanoparticles, which reveals its potential application in visible-light catalytic hydrogen production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Ping; Kang, Leilei; Mack, Nathan H.; ...
2013-10-21
We investigate surface plasmon assisted catalysis (SPAC) reactions of 4-aminothiophenol (4ATP) to and back from 4,4'-dimercaptoazobenzene (DMAB) by single particle surface enhanced Raman spectroscopy, using a self-designed gas flow cell to control the reductive/oxidative environment over the reactions. Conversion of 4ATP into DMAB is induced by energy transfer (plasmonic heating) from surface plasmon resonance to 4ATP, where O 2 (as an electron acceptor) is essential and H 2O (as a base) can accelerate the reaction. In contrast, hot electron (from surface plasmon decay) induction drives the reverse reaction of DMAB to 4ATP, where H 2O (or H 2) acts asmore » the hydrogen source. More interestingly, the cyclic redox between 4ATP and DMAB by SPAC approach has been demonstrated. Finally, this SPAC methodology presents a unique platform for studying chemical reactions that are not possible under standard synthetic conditions.« less
Rifat, Ahmmed A.; Mahdiraji, G. Amouzad; Chow, Desmond M.; Shee, Yu Gang; Ahmed, Rajib; Adikan, Faisal Rafiq Mahamd
2015-01-01
We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber’s properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU−1) with resolution as high as 2.4 × 10−5 RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46–1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor’s footprint. PMID:25996510
Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.
Otte, Marinus A; Sepúlveda, Borja; Ni, Weihai; Juste, Jorge Pérez; Liz-Marzán, Luis M; Lechuga, Laura M
2010-01-26
We present a theoretical and experimental study involving the sensing characteristics of wavelength-interrogated plasmonic sensors based on surface plasmon polaritons (SPP) in planar gold films and on localized surface plasmon resonances (LSPR) of single gold nanorods. The tunability of both sensing platforms allowed us to analyze their bulk and surface sensing characteristics as a function of the plasmon resonance position. We demonstrate that a general figure of merit (FOM), which is equivalent in wavelength and energy scales, can be employed to mutually compare both sensing schemes. Most interestingly, this FOM has revealed a spectral region for which the surface sensitivity performance of both sensor types is optimized, which we attribute to the intrinsic dielectric properties of plasmonic materials. Additionally, in good agreement with theoretical predictions, we experimentally demonstrate that, although the SPP sensor offers a much better bulk sensitivity, the LSPR sensor shows an approximately 15% better performance for surface sensitivity measurements when its FOM is optimized. However, optimization of the substrate refractive index and the accessibility of the relevant molecules to the nanoparticles can lead to a total 3-fold improvement of the FOM in LSPR sensors.
Gold Nanoparticles in Photonic Crystals Applications: A Review
Venditti, Iole
2017-01-01
This review concerns the recently emerged class of composite colloidal photonic crystals (PCs), in which gold nanoparticles (AuNPs) are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR) realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field. PMID:28772458
NASA Astrophysics Data System (ADS)
Hu, Jianbo; Zhang, Hang; Sun, Yi; Misochko, Oleg V.; Nakamura, Kazutaka G.
2018-04-01
The coupling between longitudinal optical (LO) phonons and plasmons plays a fundamental role in determining the performance of doped semiconductor devices. In this work, we report a comparative investigation into the dependence of the coupling on temperature and doping in n - and p -type GaAs by using ultrafast coherent phonon spectroscopy. A suppression of coherent oscillations has been observed in p -type GaAs at lower temperature, strikingly different from n -type GaAs and other materials in which coherent oscillations are strongly enhanced by cooling. We attribute this unexpected observation to a cooling-induced elongation of the depth of the depletion layer which effectively increases the screening time of the surface field due to a slow diffusion of photoexcited carriers in p -type GaAs. Such an increase breaks the requirement for the generation of coherent LO phonons and, in turn, LO phonon-plasmon coupled modes because of their delayed formation in time.
Self-hybridization within non-Hermitian localized plasmonic systems
NASA Astrophysics Data System (ADS)
Lourenço-Martins, Hugo; Das, Pabitra; Tizei, Luiz H. G.; Weil, Raphaël; Kociak, Mathieu
2018-04-01
The orthogonal eigenmodes are well-defined solutions of Hermitian equations describing many physical situations from quantum mechanics to acoustics. However, a large variety of non-Hermitian problems, including gravitational waves close to black holes or leaky electromagnetic cavities, require the use of a bi-orthogonal eigenbasis with consequences challenging our physical understanding1-4. The need to compensate for energy losses made the few successful attempts5-8 to experimentally probe non-Hermiticity extremely complicated. We overcome this problem by considering localized plasmonic systems. As the non-Hermiticity in these systems does not stem from temporal invariance breaking but from spatial symmetry breaking, its consequences can be observed more easily. We report on the theoretical and experimental evidence for non-Hermiticity-induced strong coupling between surface plasmon modes of different orders within silver nanodaggers. The symmetry conditions for triggering this counter-intuitive self-hybridization phenomenon are provided. Similar observable effects are expected to exist in any system exhibiting bi-orthogonal eigenmodes.
NASA Astrophysics Data System (ADS)
Do, Minh Thanh; Tong, Quang Cong; Luong, Mai Hoang; Lidiak, Alexander; Ledoux-Rak, Isabelle; Lai, Ngoc Diep
2016-05-01
We report fabrication of Au nanoisland films on different substrates by thermally annealing a sputtered Au nanolayer and investigation of their structure, morphology, and optical properties. It was found that high-temperature annealing leads to transformation of the initial, continuous film into the forms of hillock and isolated island film. The final nanoisland films exhibit remarkably enhanced and localized plasmon resonance spectra with respect to the original sputtered film. The strong dependence of the resonance band spectra of the resulting structures on the annealing temperature and supporting substrate is presented and analyzed, suggesting that both of these factors could be used to tune the optical spectroscopic properties of such structures. Moreover, we propose and demonstrate a novel and effective approach for fabrication of patterned Au structures by thermally annealing the Au layer deposited onto modulated-surface substrates. The experimental results indicate that this method could become a promising approach for manufacturing plasmonic array structures, which have been extensively investigated and widely applied in many fields.
Gold Nanoparticles in Photonic Crystals Applications: A Review.
Venditti, Iole
2017-01-24
This review concerns the recently emerged class of composite colloidal photonic crystals (PCs), in which gold nanoparticles (AuNPs) are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR) realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.
NASA Astrophysics Data System (ADS)
Zapata-Herrera, Mario; Camacho, Ángela S.; Ramírez, Hanz Y.
2018-06-01
In this paper, different confinement potential approaches are considered in the simulation of size effects on the optical response of silver spheres with radii at the few nanometer scale. By numerically obtaining dielectric functions from different sets of eigenenergies and eigenstates, we simulate the absorption spectrum and the field enhancement factor for nanoparticles of various sizes, within a quantum framework for both infinite and finite potentials. The simulations show significant dependence on the sphere radius of the dipolar surface plasmon resonance, as a direct consequence of energy discretization associated to the strong confinement experienced by conduction electrons in small nanospheres. Considerable reliance of the calculated optical features on the chosen wave functions and transition energies is evidenced, so that discrepancies in the plasmon resonance frequencies obtained with the three studied models reach up to above 30%. Our results are in agreement with reported measurements and shade light on the puzzling shift of the plasmon resonance in metallic nanospheres.
Lee, Dong-Jin; Yim, Hae-Dong; Lee, Seung-Gol; O, Beom-Hoan
2011-10-10
We propose a tiny surface plasmon resonance (SPR) sensor integrated on a silicon waveguide based on vertical coupling into a finite thickness metal-insulator-metal (f-MIM) plasmonic waveguide structure acting as a Fabry-Perot resonator. The resonant characteristics of vertically coupled f-MIM plasmonic waveguides are theoretically investigated and optimized. Numerical results show that the SPR sensor with a footprint of ~0.0375 μm2 and a sensitivity of ~635 nm/RIU can be designed at a 1.55 μm transmission wavelength.
Plasmon-Exciton Coupling Interaction for Surface Catalytic Reactions.
Wang, Jingang; Lin, Weihua; Xu, Xuefeng; Ma, Fengcai; Sun, Mengtao
2018-05-01
In this review, we firstly reveal the physical principle of plasmon-exciton coupling interaction with steady absorption spectroscopy, and ultrafast transition absorption spectroscopy, based on the pump-prop technology. Secondly, we introduce the fabrication of electro-optical device of two-dimensional semiconductor-nanostructure noble metals hybrid, based on the plasmon-exciton coupling interactions. Thirdly, we introduce the applications of plasmon-exciton coupling interaction in the field of surface catalytic reactions. Lastly, the perspective of plasmon-exciton coupling interaction and applications closed this review. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-05-07
honeycomb lattices, M.J. Ablowitz and Y. Zhu, SIAM J. Appl. Math. 87 (2013) 19591979 11. Nonlinear Temporal-Spatial Surface Plasmon Polaritons , M. J. Ablowitz...temporal-spatial surface plasmon polaritons . Op- tics Communications, 330:49–55, 2014. 37 [39] M.C. Rechtsman, Y. Plotnik, J.M. Zeuner, , D. Song, Z...honeycomb lattices, M.J. Ablowitz and Y. Zhu, SIAM J. Appl. Math., Vol. 87 (2013) 1959-1979 11. Nonlinear Temporal-Spatial Surface Plasmon Polaritons
Terahertz Characterization of DNA: Enabling a Novel Approach
2015-11-01
DNA in a more reliable and less procedurally complicated manner. The method involves the use of terahertz surface plasmon generated on the surface of...advantages are due to overlapping resonance when the plasmon frequency generated by a foil coincides with that of the biological material. The...interference of the impinging terahertz wave and surface plasmon produces spectral graphs, which can be analyzed to identify and characterize a DNA sample
Surface-polariton propagation for scanning near-field optical microscopy application.
Keilmann, F
1999-01-01
Surface plasmon-, phonon- and exciton-polaritons exist on specific materials in specific spectral regions. We assess the properties of such travelling surface-bound electromagnetic waves relevant for scanning near-field optical microscopy applications, i.e. the tightness of surface binding, the attenuation, the phase velocity and the coupling with free-space electromagnetic waves. These quantities can be directly determined by photographic imaging of surface plasmon- and surface phonon-polaritons, in both the visible and mid-infared regions. Focusing of mid-infrared surface plasmons is demonstrated. Surface waveguides to transport and focus photons to the tip of a scanning near-field probe are outlined.
Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco
2012-10-01
We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.
Madapu, Kishore K; Sivadasan, A K; Baral, Madhusmita; Dhara, Sandip
2018-07-06
Recently, heavily doped semiconductors have been emerging as an alternative to low-loss plasmonic materials. InN, belonging to the group III nitrides, possesses the unique property of surface electron accumulation (SEA), which provides a 2D electron gas (2DEG) system. In this report, we demonstrated the surface plasmon properties of InN nanoparticles originating from SEA using the real-space mapping of the surface plasmon fields for the first time. The SEA is confirmed by Raman studies, which are further corroborated by photoluminescence and photoemission spectroscopic studies. The frequency of 2DEG corresponding to SEA is found to be in the THz region. The periodic fringes are observed in the near-field scanning optical microscopic images of InN nanostructures. The observed fringes are attributed to the interference of propagated and back-reflected surface plasmon polaritons (SPPs). The observation of SPPs is solely attributed to the 2DEG corresponding to the SEA of InN. In addition, a resonance kind of behavior with the enhancement of the near-field intensity is observed in the near-field images of InN nanostructures. Observation of SPPs indicates that InN with SEA can be a promising THz plasmonic material for light confinement.
NASA Astrophysics Data System (ADS)
Madapu, Kishore K.; Sivadasan, A. K.; Baral, Madhusmita; Dhara, Sandip
2018-07-01
Recently, heavily doped semiconductors have been emerging as an alternative to low-loss plasmonic materials. InN, belonging to the group III nitrides, possesses the unique property of surface electron accumulation (SEA), which provides a 2D electron gas (2DEG) system. In this report, we demonstrated the surface plasmon properties of InN nanoparticles originating from SEA using the real-space mapping of the surface plasmon fields for the first time. The SEA is confirmed by Raman studies, which are further corroborated by photoluminescence and photoemission spectroscopic studies. The frequency of 2DEG corresponding to SEA is found to be in the THz region. The periodic fringes are observed in the near-field scanning optical microscopic images of InN nanostructures. The observed fringes are attributed to the interference of propagated and back-reflected surface plasmon polaritons (SPPs). The observation of SPPs is solely attributed to the 2DEG corresponding to the SEA of InN. In addition, a resonance kind of behavior with the enhancement of the near-field intensity is observed in the near-field images of InN nanostructures. Observation of SPPs indicates that InN with SEA can be a promising THz plasmonic material for light confinement.
Chen, Jing-Dong; Xiang, Jin; Jiang, Shuai; Dai, Qiao-Feng; Tie, Shao-Long; Lan, Sheng
2018-05-17
Large metallic nanoparticles with sizes comparable to the wavelength of light are expected to support high-order plasmon modes exhibiting resonances in the visible to near infrared spectral range. However, the radiation behavior of high-order plasmon modes, including scattering spectra and radiation patterns, remains unexplored. Here, we report on the first observation and characterization of the high-order plasmon modes excited in large gold nanospheres by using the surface plasmon polaritons generated on the surface of a thin gold film. The polarization-dependent scattering spectra were measured by inserting a polarization analyzer in the collection channel and the physical origins of the scattering peaks observed in the scattering spectra were clearly identified. More interestingly, the radiation of electric quadrupoles and octupoles was resolved in both frequency and spatial domains. In addition, the angular dependences of the radiation intensity for all plasmon modes were extracted by fitting the polarization-dependent scattering spectra with multiple Lorentz line shapes. A significant enhancement of the electric field was found in the gap plasmon modes and it was employed to generate hot-electron intraband luminescence. Our findings pave the way for exploiting the high-order plasmon modes of large metallic nanoparticles in the manipulation of light radiation and light-matter interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeshchenko, Oleg A., E-mail: yes@univ.kiev.ua; Bondarchuk, Illya S.; Kozachenko, Viktor V.
2015-04-21
Influence of temperature on the plasmonic field in the temperature range of 78–278 K was studied employing surface plasmon enhanced photoluminescence from the fullerene C{sub 60} thin film deposited on 2D array of Au nanoparticles. It was experimentally found that temperature dependence of plasmonic enhancement factor of C{sub 60} luminescence decreases monotonically with the temperature increase. Influence of temperature on plasmonic enhancement factor was found to be considerably stronger when the frequency of surface plasmon absorption band of Au nanoparticles and the frequency of fullerene luminescence band are in resonance. Electron-phonon scattering and thermal expansion of Au nanoparticles were considered asmore » two competing physical mechanisms of the temperature dependence of plasmonic field magnitude. The calculations revealed significant prevalence of the electron-phonon scattering. The temperature induced increase in the scattering rate leads to higher plasmon damping that causes the decrease in the magnitude of plasmonic field.« less
Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
Brandt, Nathaniel C; Keller, Emily L; Frontiera, Renee R
2016-08-18
Hot electrons generated through plasmonic excitations in metal nanostructures show great promise for efficiently driving chemical reactions with light. However, the lifetime, yield, and mechanism of action of plasmon-generated hot electrons involved in a given photocatalytic process are not well understood. Here, we develop ultrafast surface-enhanced Raman scattering (SERS) as a direct probe of plasmon-molecule interactions in the plasmon-catalyzed dimerization of 4-nitrobenzenethiol to p,p'-dimercaptoazobenzene. Ultrafast SERS probing of these molecular reporters in plasmonic hot spots reveals transient Fano resonances, which we attribute to near-field coupling of Stokes-shifted photons to hot electron-driven metal photoluminescence. Surprisingly, we find that hot spots that yield more photoluminescence are much more likely to drive the reaction, which indirectly proves that plasmon-generated hot electrons induce the photochemistry. These ultrafast SERS results provide insight into the relative reactivity of different plasmonic hot spot environments and quantify the ultrafast lifetime of hot electrons involved in plasmon-driven chemistry.
Multifrequency multi-qubit entanglement based on plasmonic hot spots
Ren, Jun; Wu, Tong; Zhang, Xiangdong
2015-01-01
The theoretical method to study strong coupling between an ensemble of quantum emitters (QEs) and surface plasmons excited by the nanoparticle cluster has been presented by using a rigorous first-principles electromagnetic Green’s tensor technique. We have demonstrated that multi-qubit entanglements for two-level QEs can be produced at different coupling resonance frequencies, when they locate in the hot spots of the metallic nanoparticle cluster. The duration of quantum beats for such an entanglement can reach two orders longer than that for the entanglement in a photonic cavity. The phenomenon originates from collective coupling resonance excitation of the cluster. At the frequency of single scattering resonance, the entanglement cannot be produced although the single QE spontaneous decay rate is very big. PMID:26350051
Harnessing surface plasmons for solar energy conversion
NASA Technical Reports Server (NTRS)
Anderson, L. M.
1983-01-01
NASA research on the feasibility of solar-energy conversion using surface plasmons is reviewed, with a focus on inelastic-tunnel-diode techniques for power extraction. The need for more efficient solar converters for planned space missions is indicated, and it is shown that a device with 50-percent efficiency could cost up to 40 times as much per sq cm as current Si cells and still be competitive. The parallel-processing approach using broadband carriers and tunable diodes is explained, and the physics of surface plasmons on metal surfaces is outlined. Technical problems being addressed include phase-matching sunlight to surface plasmons, minimizing ohmic losses and reradiation in energy transport, coupling into the tunnels by mode conversion, and gaining an understanding of the tunnel-diode energy-conversion process. Diagrams illustrating the design concepts are provided.
Stimulated emission of surface plasmons by electron tunneling in metal-barrier-metal structures
NASA Technical Reports Server (NTRS)
Siu, D. P.; Gustafson, T. K.
1978-01-01
It is shown that correlation currents arising from the superposition of pairs of states on distinct sides of a potential barrier in metal-barrier-metal structures can result in inelastic tunneling through the emission of surface plasmons. Net gain of an externally excited plasmon field is possible.
Numerical study on refractive index sensor based on hybrid-plasmonic mode
NASA Astrophysics Data System (ADS)
Yun, Jeong-Geun; Kim, Joonsoo; Lee, Kyookeun; Lee, Yohan; Lee, Byoungho
2017-04-01
We propose a highly sensitive hybrid-plasmonic sensor based on thin-gold nanoslit arrays. The transmission characteristics of gold nanoslit arrays are analyzed as changing the thickness of gold layer. The surface plasmon polariton mode excited on the sensing medium, which is sensitive to refractive index change of the sensing medium, is strengthened by reducing the thickness of the gold layer. A design rule is suggested that steeper dispersion curve of the surface plasmon polariton mode leads to higher sensitivity. For the dispersion engineering, hybrid-plasmonic structure, which consists of thin-gold nanoslit arrays, sensing region and high refractive index dielectric space is introduced. The proposed sensor structure with period of 700 nm shows the improved sensitivity up to 1080 nm/RIU (refractive index unit), and the surface sensitivity is extremely enhanced.
NASA Astrophysics Data System (ADS)
Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin
2017-03-01
This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.
Au nanoparticle monolayers covered with sol-gel oxide thin films: optical and morphological study.
Della Gaspera, Enrico; Karg, Matthias; Baldauf, Julia; Jasieniak, Jacek; Maggioni, Gianluigi; Martucci, Alessandro
2011-11-15
In this work, we provide a detailed study of the influence of thermal annealing on submonolayer Au nanoparticle deposited on functionalized surfaces as standalone films and those that are coated with sol-gel NiO and TiO(2) thin films. The systems are characterized through the use of UV-vis absorption, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectroscopic ellipsometry. The surface plasmon resonance peak of the Au nanoparticles was found to red-shift and increase in intensity with increasing surface coverage, an observation that is directly correlated to the complex refractive index properties of Au nanoparticle layers. The standalone Au nanoparticles sinter at 200 °C, and a relationship between the optical properties and the annealing temperature is presented. When overcoated with sol-gel metal oxide films (NiO, TiO(2)), the optical properties of the Au nanoparticles are strongly affected by the metal oxide, resulting in an intense red shift and broadening of the plasmon band; moreover, the temperature-driven sintering is strongly limited by the metal oxide layer. Optical sensing tests for ethanol vapor are presented as one possible application, showing reversible sensing dynamics and confirming the effect of Au nanoparticles in increasing the sensitivity and in providing a wavelength dependent response, thus confirming the potential use of such materials as optical probes.
Efficiency of surface plasmon excitation at the photonic crystal – metal interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsova, T I; Raspopov, N A
2015-11-30
We report the results of a theoretical investigation of light wave transformation in a one-dimensional photonic crystal. The scheme considered comprises an incident wave directed in parallel with layers of the photonic crystal under an assumption that the wave vector is far from a forbidden zone. Expressions for propagating and evanescent electromagnetic waves in a periodic medium of the photonic crystal are obtained. It is found that the transverse structure of the propagating wave comprises a strong constant component and a weak oscillating component with a period determined by that of the photonic crystal. On the contrary, the dependence ofmore » evanescent waves on transverse coordinates is presented by a strong oscillating component and a weak constant component. The process of transformation of propagating waves to evanescent waves at a crystal – metal interface is investigated. Parameters of the photonic crystal typical for synthetic opals are used in all numerical simulations. The theoretical approach elaborated yields in an explicit form the dependence of the amplitude of a generated surface wave on the period of the dielectric function modulation in the photonic crystal. The results obtained show that in the conditions close to plasmon resonance the amplitude of the surface wave may be on the order of or even exceed that of the initial incident wave. (light wave transformation)« less
Vector vortex beam generation with dolphin-shaped cell meta-surface.
Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang
2017-09-18
We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.
Development of flexible plasmonic plastic sensor using nanograting textured laminating film
NASA Astrophysics Data System (ADS)
Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.
2017-02-01
The work presented in this paper describes the development of a cost-effective, flexible plasmonic plastic sensor using gold-coated nanograting nanoimprinted on a laminating plastic. The fabrication of plasmonic plastic sensor involved the transfer of nanograting pattern from polydimethylsiloxane (PDMS) polymer stamp to laminating plastic via thermal nanoimprint lithography, and subsequent gold film deposition. Gold-coated nanograting sample acted as a plasmonic chip, which exhibited surface plasmon resonance (SPR) mode in reflectance spectra under the white light illumination. The theoretical calculation was performed to study and analyze the excited SPR mode on the plasmonic chip. Further, the bulk refractive index sensitivity was demonstrated with respect to changing surrounding dielectric medium giving a value about 800 ± 27 nm/RIU (refractive index unit). In addition, the surface binding sensitivity upon adsorption of bovine serum albumin protein on the sensor surface was approximately 4.605 nm/(ng/mm2).We believe that our proposed low-cost plastic based plasmonic sensing device could be a potential candidate for the label-free and high-throughput screening of biological molecules.
Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals
NASA Astrophysics Data System (ADS)
Schiff, E. A.
2011-11-01
We calculate the maximum optical absorptance enhancements in thin semiconductor films on metals due to structures that diffuse light and couple it to surface plasmon polaritons. The calculations can be used to estimate plasmonic effects on light-trapping in solar cells. The calculations are based on the statistical distribution of energy in the electromagnetic modes of the structure, which include surface plasmon polariton modes at the metal interface as well as the trapped waveguide modes in the film. The enhancement has the form 4n2+nλ/h (n - film refractive index, λ - optical wavelength, h - film thickness), which is an increase beyond the non-plasmonic "classical" enhancement 4n2. Larger resonant enhancements occur for wavelengths near the surface plasmon frequency; these add up to 2 mA/cm2 to the photocurrent of a solar cell based on a 500 nm film of crystalline silicon. We also calculated the effects of plasmon dissipation in the metal. Dissipation rates typical of silver reverse the resonant enhancement effect for silicon, but a non-resonant enhancement remains.
Laser-induced surface-plasmon desorption of dye molecules from aluminum films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, I.; Callcott, T.A.; Arakawa, E.T.
1992-03-01
Rhodamine 8 molecules were desorbed without fragmentation from the surface of an Al film by surface-plasmon-induced desorption. Surface plasmons were excited In the Al film by the second harmonic of a Nd:YAG laser in an attenuated-to-tal-reflection (ATR) geometry. The desorbed neutrals were Ionized by a XeCl excimer laser and detected by a time-of-flight mass spectrometer. The desorption yields of both Al and rhodamine B showed a dependence with incidence angle which peaked at the plasmon resonance angle. The thresholds for desorption of Al and rhodamine B occur at the same laser fluence. Two models are proposed to explain these observations.more » 31 refs., 4 figs.« less
NASA Astrophysics Data System (ADS)
Zhu, X. L.; Ma, Y.; Zhang, J. S.; Xu, J.; Wu, X. F.; Zhang, Y.; Han, X. B.; Fu, Q.; Liao, Z. M.; Chen, L.; Yu, D. P.
2010-09-01
The confined modes of surface plasmon polaritons in boxing ring-shaped nanocavities have been investigated and imaged by using cathodoluminescence spectroscopy. The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons. Quality factors can be directly acquired from the spectra induced by the ultrasmooth surface of the cavity and the high reflectivity of the silver (Ag) reflectors. Because of its three-dimensional confined characteristics and the omnidirectional reflectors, the nanocavity exhibits a small modal volume, small total volume, rich resonant modes, and flexibility in mode control.
Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors
2016-05-16
have investigated the surface plasmon enhancement of the GeSn p-i-n photodiode using gold metal nanostructures. We have conducted numerical...simulation of the plasmonic structure of 2D nano-hole array to tune the surface plasmon resonance into the absorption range of the GeSn active layer. Such a...diode can indeed be enhanced with the plasmonic structure on top. Within the time span of this project, we have completed one iteration of the process
Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode
Zhang, Z.; Li, R.; To, H.; ...
2016-11-22
Here, nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.
Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Li, R.; To, H.
Here, nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.
Fluorescence enhancement and strong-coupling in faceted plasmonic nanocavities
NASA Astrophysics Data System (ADS)
Kongsuwan, Nuttawut; Demetriadou, Angela; Chikkaraddy, Rohit; Baumberg, Jeremy J.; Hess, Ortwin
2018-06-01
Emission properties of a quantum emitter can be significantly modified inside nanometre-sized gaps between two plasmonic nanostructures. This forms a nanoscopic optical cavity which allows single-molecule detection and single-molecule strong-coupling at room temperature. However, plasmonic resonances of a plasmonic nanocavity are highly sensitive to the exact gap morphology. In this article, we shed light on the effect of gap morphology on the plasmonic resonances of a faceted nanoparticle-on-mirror (NPoM) nanocavity and their interaction with quantum emitters. We find that with increasing facet width the NPoM nanocavity provides weaker field enhancement and thus less coupling strength to a single quantum emitter since the effective mode volume increases with the facet width. However, if multiple emitters are present, a faceted NPoM nanocavity is capable of accommodating a larger number of emitters, and hence the overall coupling strength is larger due to the collective and coherent energy exchange from all the emitters. Our findings pave the way to more efficient designs of nanocavities for room-temperature light-matter strong-coupling, thus providing a big step forward to a non-cryogenic platform for quantum technologies.
Verma, Roli; Gupta, Banshi D
2015-01-01
Optical fibre surface plasmon resonance (SPR) based sensor for the detection of heavy metal ions in the drinking water is designed. Silver (Ag) metal and indium tin oxide (ITO) are used for the fabrication of the SPR probe which is further modified with the coating of pyrrole and chitosan composite. The sensor works on the wavelength interrogation technique and is capable of detecting trace amounts of Cd(2+), Pb(2+), and Hg(2+) heavy metal ions in contaminated water. Four types of sensing probes are fabricated and characterised for heavy metal ions out of these pyrrole/chitosan/ITO/Ag coated probe is found to be highly sensitive among all other probes. Further, the cadmium ions bind strongly to the sensing surface than other ions and due to this the sensor is highly sensitive for Cd(2+) ions. The sensor's performance is best for the low concentrations of heavy metal ions and its sensitivity decreases with the increasing concentration of heavy metal ions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thickness-dependent surface plasmon resonance of ITO nanoparticles for ITO/In-Sn bilayer structure.
Wei, Wenzuo; Hong, Ruijin; Jing, Ming; Shao, Wen; Tao, Chunxian; Zhang, Dawei
2018-01-05
Tuning the localized surface plasmon resonance (LSPR) in doped semiconductor nanoparticles (NPs), which represents an important characteristic in LSPR sensor applications, still remains a challenge. Here, indium tin oxide/indium tin alloy (ITO/In-Sn) bilayer films were deposited by electron beam evaporation and the properties, such as the LSPR and surface morphology, were investigated by UV-VIS-NIR double beam spectrophotometer and atomic force microscopy (AFM), respectively. By simply engineering the thickness of ITO/In-Sn NPs without any microstructure fabrications, the LSPR wavelength of ITO NPs can be tuned by a large amount from 858 to 1758 nm. AFM images show that the strong LSPR of ITO NPs is closely related to the enhanced coupling between ITO and In-Sn NPs. Blue shifts of ITO LSPR from 1256 to 1104 nm are also observed in the as-annealed samples due to the higher free carrier concentration. Meanwhile, we also demonstrated that the ITO LSPR in ITO/In-Sn NPs structures has good sensitivity to the surrounding media and stability after 30 d exposure in air, enabling its application prospects in many biosensing devices.
Analysis of periodically patterned metallic nanostructures for infrared absorber
NASA Astrophysics Data System (ADS)
Peng, Sha; Yuan, Ying; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
With rapid advancement of infrared detecting technology in both military and civil domains, the photo-electronic performances of near-infrared detectors have been widely concerned. Currently, near-infrared detectors demonstrate some problems such as low sensitivity, low detectivity, and relatively small array scale. The current studies show that surface plasmons (SPs) stimulated over the surface of metallic nanostructures by incident light can be used to break the diffraction limit and thus concentrate light into sub-wavelength scale, so as to indicate a method to develop a new type of infrared absorber or detector with very large array. In this paper, we present the design and characterization of periodically patterned metallic nanostructures that combine nanometer thickness aluminum film with silicon wafer. Numerical computations show that there are some valleys caused by surface plasmons in the reflection spectrum in the infrared region, and both red shift and blue shift of the reflection spectrum were observed through changing the nanostructural parameters such as angle α and diameters D. Moreover, the strong E-field intensity is located at the sharp corner of the nano-structures.
Gabka, Grzegorz; Bujak, Piotr; Ostrowski, Andrzej; Tomaszewski, Waldemar; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam
2016-07-05
Cu-Fe-S nanocrystals exhibiting a strong localized surface plasmon resonance (LSPR) effect were synthesized for the first time. The elaborated reproducible preparation procedure involved copper(II) oleate, iron(III) stearate, and sulfur powder dissolved in oleylamine (OLA) as precursors. The wavelength of the plasmonic resonance maximum could be tuned by changing the Cu/Fe ratio in the resulting nanocrystals, being the most energetic for the 1:1 ratio (486 nm) and undergoing a bathochromic shift to ca. 1200 nm with an increase to 6:1. LSPR could also be observed in nanocrystals prepared from the same metal precursors and sulfur powder dissolved in 1-octadecene (ODE), provided that the sulfur precursor was taken in excess. Detailed analysis of the reaction mixture by chromatographic techniques, supplemented by mass spectrometry and (1)H NMR spectroscopy enabled the identification of the true chemical nature of the sulfur precursor in S/OLA, namely, (C18H35NH3(+))(C18H35NH-S8(-)), a reactive product of the reduction of elemental sulfur by the amine groups of OLA. In the case of the S/ODE precursor, the true precursors are much less reactive primary or secondary thioethers and dialkyl polysulfides.
Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.
de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L
2016-08-17
We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.
Optical Properties and Plasmonic Performance of Titanium Nitride
Patsalas, Panos; Kalfagiannis, Nikolaos; Kassavetis, Spyros
2015-01-01
Titanium nitride (TiN) is one of the most well-established engineering materials nowadays. TiN can overcome most of the drawbacks of palsmonic metals due to its high electron conductivity and mobility, high melting point and due to the compatibility of its growth with Complementary Metal Oxide Semiconductor (CMOS) technology. In this work, we review the dielectric function spectra of TiN and we evaluate the plasmonic performance of TiN by calculating (i) the Surface Plasmon Polariton (SPP) dispersion relations and (ii) the Localized Surface Plasmon Resonance (LSPR) band of TiN nanoparticles, and we demonstrate a significant plasmonic performance of TiN.
Sharp phase variations from the plasmon mode causing the Rabi-analogue splitting
NASA Astrophysics Data System (ADS)
Wang, Yujia; Sun, Chengwei; Gan, Fengyuan; Li, Hongyun; Gong, Qihuang; Chen, Jianjun
2017-06-01
The Rabi-analogue splitting in nanostructures resulting from the strong coupling of different resonant modes is of importance for lasing, sensing, switching, modulating, and quantum information processes. To give a clearer physical picture, the phase analysis instead of the strong coupling is provided to explain the Rabi-analogue splitting in the Fabry-Pérot (FP) cavity, of which one end mirror is a metallic nanohole array and the other is a thin metal film. The phase analysis is based on an analytic model of the FP cavity, in which the reflectance and the reflection phase of the end mirrors are dependent on the wavelength. It is found that the Rabi-analogue splitting originates from the sharp phase variation brought by the plasmon mode in the FP cavity. In the experiment, the Rabi-analogue splitting is realized in the plasmonic-photonic coupling system, and this splitting can be continually tuned by changing the length of the FP cavity. These experimental results agree well with the analytic and simulation data, strongly verifying the phase analysis based on the analytic model. The phase analysis presents a clear picture to understand the working mechanism of the Rabi-analogue splitting; thus, it may facilitate the design of the plasmonic-photonic and plasmonic-plasmonic coupling systems.
Wang, Alan X.; Kong, Xianming
2015-01-01
Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene. PMID:26900428
Midinfrared Surface Plasmons in Carbon Nanotube Plasmonic Metasurface
NASA Astrophysics Data System (ADS)
Afinogenov, Boris I.; Kopylova, Daria S.; Abrashitova, Ksenia A.; Bessonov, Vladimir O.; Anisimov, Anton S.; Dyakov, Sergey A.; Gippius, Nikolay A.; Gladush, Yuri G.; Fedyanin, Andrey A.; Nasibulin, Albert G.
2018-02-01
We report an experimental observation of the midinfrared surface plasmon excited in a carbon nanotube plasmonic metasurface. The absorption of a 400-nm-thick single-walled carbon nanotube film perforated with laser-drilled subwavelength holes arranged in a 2D lattice is resonantly enhanced by 75% as compared with the unstructured film. The enhancement of absorption has a resonant behavior associated with the excitation of the surface plasmon and occurs at the wavelengths around 15 μ m for the lattice period of 10 μ m . The spectral position and the magnitude of the resonance are controlled entirely by the structure geometry and can be tuned in a broad range. We demonstrate that periodic patterning can be applied to tailor the bolometric performance of carbon nanotube thin films. Namely, the voltage response of the metasurface is enhanced by 100% at the wavelength of the plasmon resonance as compared with the unstructured film. We discuss mechanisms of the enhancement and compare experimental results with the finite-difference time-domain and scattering-matrix method simulations.
Indium-free organic thin-film solar cells using a plasmonic electrode
NASA Astrophysics Data System (ADS)
Takatori, Kentaro; Nishino, Takayuki; Okamoto, Takayuki; Takei, Hiroyuki; Ishibashi, Koji; Micheletto, Ruggero
2016-05-01
We propose a new kind of organic solar cell (OSC) that substitutes the standard indium tin oxide (ITO) electrode with a silver layer with randomly arranged circular nanoholes (plasmonic electrode). The quasi-random structure in the silver layer efficiently converts wideband incident light into surface plasmon polaritons propagating along the surface of the silver film. In this way, the converted surface plasmon polaritons enhance light absorption in the active layer. We describe in detail the fabrication process we used and we give a thorough report of the resulting optical characteristics and performances. Although the transmittance of the plasmonic electrode is approximately one-third of that of the ITO electrodes, the power conversion efficiency of the OSCs with our plasmonic electrode is comparable to that of conventional inverted solar cells using ITO electrodes. Moreover, the obtained incident photon to current efficiency was better than that of the inverted solar cells in the wavelength regions around 400 nm and over 620 nm.
Flexible coherent control of plasmonic spin-Hall effect
Xiao, Shiyi; Zhong, Fan; Liu, Hui; Zhu, Shining; Li, Jensen
2015-01-01
The surface plasmon polariton is an emerging candidate for miniaturizing optoelectronic circuits. Recent demonstrations of polarization-dependent splitting using metasurfaces, including focal-spot shifting and unidirectional propagation, allow us to exploit the spin degree of freedom in plasmonics. However, further progress has been hampered by the inability to generate more complicated and independent surface plasmon profiles for two incident spins, which work coherently together for more flexible and tunable functionalities. Here by matching the geometric phases of the nano-slots on silver to specific superimpositions of the inward and outward surface plasmon profiles for the two spins, arbitrary spin-dependent orbitals can be generated in a slot-free region. Furthermore, motion pictures with a series of picture frames can be assembled and played by varying the linear polarization angle of incident light. This spin-enabled control of orbitals is potentially useful for tip-free near-field scanning microscopy, holographic data storage, tunable plasmonic tweezers, and integrated optical components. PMID:26415636
Nanoporous Gold Nanocomposites as a Versatile Platform for Plasmonic Engineering and Sensing
Zhao, Fusheng; Zeng, Jianbo; Shih, Wei-Chuan
2017-01-01
Plasmonic metal nanostructures have shown great potential in sensing applications. Among various materials and structures, monolithic nanoporous gold disks (NPGD) have several unique features such as three-dimensional (3D) porous network, large surface area, tunable plasmonic resonance, high-density hot-spots, and excellent architectural integrity and environmental stability. They exhibit a great potential in surface-enhanced spectroscopy, photothermal conversion, and plasmonic sensing. In this work, interactions between smaller colloidal gold nanoparticles (AuNP) and individual NPGDs are studied. Specifically, colloidal gold nanoparticles with different sizes are loaded onto NPGD substrates to form NPG hybrid nanocomposites with tunable plasmonic resonance peaks in the near-infrared spectral range. Newly formed plasmonic hot-spots due to the coupling between individual nanoparticles and NPG disk have been identified in the nanocomposites, which have been experimentally studied using extinction and surface-enhanced Raman scattering. Numerical modeling and simulations have been employed to further unravel various coupling scenarios between AuNP and NPGDs. PMID:28657586
Wang, Alan X; Kong, Xianming
2015-06-01
Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.