Flambaum, V V
2006-09-01
The relative effects of the variation of the fine structure constant alpha = e2/variant Planck's over 2pi c and the dimensionless strong interaction parameter m(q)/LambdaQCD are enhanced by 5-6 orders of magnitude in a very narrow ultraviolet transition between the ground and the first excited states in the 229Th nucleus. It may be possible to investigate this transition with laser spectroscopy. Such an experiment would have the potential of improving the sensitivity to temporal variation of the fundamental constants by many orders of magnitude.
Spatio-temporal variation of fish taxonomic composition in a South-East Asian flood-pulse system.
Kong, Heng; Chevalier, Mathieu; Laffaille, Pascal; Lek, Sovan
2017-01-01
The Tonle Sap Lake (TSL) is a flood-pulse system. It is the largest natural lake in South-East Asia and constitutes one of the largest fisheries over the world, supporting the livelihood of million peoples. Nonetheless, the Mekong River Basin is changing rapidly due to accelerating water infrastructure development (hydropower, irrigation, flood control, and water supply) and climate change, bringing considerable modifications to the annual flood-pulse of the TSL. Such modifications are expected to have strong impacts on fish biodiversity and abundance. This paper aims to characterize the spatio-temporal variations of fish taxonomic composition and to highlights the underlying determinants of these variations. For this purpose, we used data collected from a community catch monitoring program conducted at six sites during 141 weeks, covering two full hydrological cycles. For each week, we estimated beta diversity as the total variance of the site-by-species community matrix and partitioned it into Local Contribution to Beta Diversity (LCBD) and Species Contribution to Beta Diversity (SCBD). We then performed multiple linear regressions to determine whether species richness, species abundances and water level explained the temporal variation in the contribution of site and species to beta diversity. Our results indicate strong temporal variation of beta diversity due to differential contributions of sites and species to the spatial variation of fish taxonomic composition. We further found that the direction, the shape and the relative effect of species richness, abundances and water level on temporal variation in LCBD and SCBD values greatly varied among sites, thus suggesting spatial variation in the processes leading to temporal variation in community composition. Overall, our results suggest that fish taxonomic composition is not homogeneously distributed over space and time and is likely to be impacted in the future if the flood-pulse dynamic of the system is altered by human activities.
NASA Astrophysics Data System (ADS)
Kobayashi, Yasuhito; Motohashi, Yutaka; Miyazaki, Yoshifumi; Yatagai, Mitsuyoshi; Takano, Takehito
1991-12-01
Temporal variations in cytochrome P-450 isozymes of rat testis, PB-P-450 (forms of cytochrome P-450 strongly induced by phenobarbital) and MC-P-448 (forms of cytochrome P-450 strongly induced by 3-methylcholanthrene), were investigated immunohistochemically by the avidin-biotin-complex method using specific antibodies against PB-P-450 and MC-P-448 isozymes. Immunoreactivity to both PB-P-450 and MC-P-448 isozymes was observed in Leydig cells. The number of PB-P-450 positive Leydig cells was found to undergo significant time-of-day variation with a peak time of 0000 hours (light phase from 0800 to 2000 hours). Injection of cadinenes (300 mg/kg per day intraperitoneally at 48 and 96 h before sacrifice) induced PB-P-450 isozyme but did not induce MC-P-448 isozyme. The induction of PB-P-450 isozyme by cadinenes was time dependent, and the early dark phase (2000 and 0000 hours) was most sensitive. These results suggest that temporal variation of cytochrome P-450 isozymes is one of the important physiological variations in detoxification and activation of various xenobiotics and chemicals in the testis.
NASA Astrophysics Data System (ADS)
Borge, Rafael; Narros, Adolfo; Artíñano, Begoña; Yagüe, Carlos; Gómez-Moreno, Francisco Javier; de la Paz, David; Román-Cascón, Carlos; Díaz, Elías; Maqueda, Gregorio; Sastre, Mariano; Quaassdorff, Christina; Dimitroulopoulou, Chrysanthi; Vardoulakis, Sotiris
2016-09-01
Poor urban air quality is one of the main environmental concerns worldwide due to its implications for population exposure and health-related issues. However, the development of effective abatement strategies in cities requires a consistent and holistic assessment of air pollution processes, taking into account all the relevant scales within a city. This contribution presents the methodology and main results of an intensive experimental campaign carried out in a complex pollution hotspot in Madrid (Spain) under the TECNAIRE-CM research project, which aimed at understanding the microscale spatio-temporal variation of ambient concentration levels in areas where high pollution values are recorded. A variety of instruments were deployed during a three-week field campaign to provide detailed information on meteorological and micrometeorological parameters and spatio-temporal variations of the most relevant pollutants (NO2 and PM) along with relevant information needed to simulate pedestrian fluxes. The results show the strong dependence of ambient concentrations on local emissions and meteorology that turns out in strong spatial and temporal variations, with gradients up to 2 μg m-3 m-1 for NO2 and 55 μg m-3 min-1 for PM10. Pedestrian exposure to these pollutants also presents strong variations temporally and spatially but it concentrates on pedestrian crossings and bus stops. The analysis of the results show that the high concentration levels found in urban hotspots depend on extremely complex dynamic processes that cannot be captured by routinely measurements made by air quality monitoring stations used for regulatory compliance assessment. The large influence from local traffic in the concentration fields highlights the need for a detailed description of specific variables that determine emissions and dispersion at microscale level. This also indicates that city-scale interventions may be complemented with local control measures and exposure management, to improve air quality and reduce air pollution health effects more effectively.
Schwanz, Lisa E; Spencer, Ricky-John; Bowden, Rachel M; Janzen, Fredric J
2010-10-01
Conditions experienced early in life can influence phenotypes in ecologically important ways, as exemplified by organisms with environmental sex determination. For organisms with temperature-dependent sex determination (TSD), variation in nest temperatures induces phenotypic variation that could impact population growth rates. In environments that vary over space and time, how does this variation influence key demographic parameters (cohort sex ratio and hatchling recruitment) in early life stages of populations exhibiting TSD? We leverage a 17-year data set on a population of painted turtles, Chrysemys picta, to investigate how spatial variation in nest vegetation cover and temporal variation in climate influence early life-history demography. We found that spatial variation in nest cover strongly influenced nest temperature and sex ratio, but was not correlated with clutch size, nest predation, total nest failure, or hatching success. Temporal variation in climate influenced percentage of total nest failure and cohort sex ratio, but not depredation rate, mean clutch size, or mean hatching success. Total hatchling recruitment in a year was influenced primarily by temporal variation in climate-independent factors, number of nests constructed, and depredation rate. Recruitment of female hatchlings was determined by stochastic variation in nest depredation and annual climate and also by the total nest production. Overall population demography depends more strongly on annual variation in climate and predation than it does on the intricacies of nest-specific biology. Finally, we demonstrate that recruitment of female hatchlings translates into recruitment of breeding females into the population, thus linking climate (and other) effects on early life stages to adult demographics.
Climatic change by cloudiness linked to the spatial variability of sea surface temperatures
NASA Technical Reports Server (NTRS)
Otterman, J.
1975-01-01
An active role in modifying the earth's climate is suggested for low cloudiness over the circumarctic oceans. Such cloudiness, linked to the spatial differences in ocean surface temperatures, was studied. The temporal variations from year to year of ocean temperature patterns can be pronounced and therefore, the low cloudiness over this region should also show strong temporal variations, affecting the albedo of the earth and therefore the climate. Photographs are included.
Spatial and temporal drivers of phenotypic diversity in polymorphic snakes.
Cox, Christian L; Davis Rabosky, Alison R
2013-08-01
Color polymorphism in natural populations presents an ideal opportunity to study the evolutionary drivers of phenotypic diversity. Systems with striking spatial, temporal, and qualitative variation in color can be leveraged to study the mechanisms promoting the distribution of different types of variation in nature. We used the highly polymorphic ground snake (Sonora semiannulata), a putative coral snake mimic with both cryptic and conspicuous morphs, to compare patterns of neutral genetic variation and variation over space and time in color polymorphism to investigate the mechanistic drivers of phenotypic variation across scales. We found that strong selection promotes color polymorphism across spatial and temporal scales, with morph frequencies differing markedly between juvenile and adult age classes within a single population, oscillating over time within multiple populations, and varying drastically over the landscape despite minimal population genetic structure. However, we found no evidence that conspicuousness of morphs was related to which color pattern was favored by selection or to any geographic factors, including sympatry with coral snakes. We suggest that complex patterns of phenotypic variation in polymorphic systems may be a fundamental outcome of the conspicuousness of morphs and that explicit tests of temporal and geographic variation are critical to the interpretation of conspicuousness and mimicry.
Strong Temporal Variation Over One Saturnian Year: From Voyager to Cassini
NASA Technical Reports Server (NTRS)
Li, Liming; Achterberg, Richard K.; Conrath, Barney J.; Gierasch, Peter J.; Smith, Mark A.; Simon-Miller, Amy A.; Nixon, Conor A.; Orton, Glenn S.; Flasar, F. Michael; Jiang, Xun;
2013-01-01
Here we report the combined spacecraft observations of Saturn acquired over one Saturnian year (approximately 29.5 Earth years), from the Voyager encounters (1980-81) to the new Cassini reconnaissance (2009-10). The combined observations reveal a strong temporal increase of tropic temperature (approximately 10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (approximately a few Kelvins). We also provide the first estimate of the zonal winds at 750 mbar, which is close to the zonal winds at 2000 mbar. The quasi-consistency of zonal winds between these two levels provides observational support to a numerical suggestion inferring that the zonal winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of zonal winds decreases its magnitude with depth, implying that the relatively deep zonal winds are stable with time.
Strong Temporal Variation Over One Saturnian Year: From Voyager to Cassini
Li, Liming; Achterberg, Richard K.; Conrath, Barney J.; Gierasch, Peter J.; Smith, Mark A.; Simon-Miller, Amy A.; Nixon, Conor A.; Orton, Glenn S.; Flasar, F. Michael; Jiang, Xun; Baines, Kevin H.; Morales-Juberías, Raúl; Ingersoll, Andrew P.; Vasavada, Ashwin R.; Del Genio, Anthony D.; West, Robert A.; Ewald, Shawn P.
2013-01-01
Here we report the combined spacecraft observations of Saturn acquired over one Saturnian year (~29.5 Earth years), from the Voyager encounters (1980–81) to the new Cassini reconnaissance (2009–10). The combined observations reveal a strong temporal increase of tropic temperature (~10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (~a few Kelvins). We also provide the first estimate of the zonal winds at 750 mbar, which is close to the zonal winds at 2000 mbar. The quasi-consistency of zonal winds between these two levels provides observational support to a numerical suggestion inferring that the zonal winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of zonal winds decreases its magnitude with depth, implying that the relatively deep zonal winds are stable with time. PMID:23934437
Lü, Xiao-Tao; Reed, Sasha C.; Hou, Shuang-Li; Hu, Yan-Yu; Wei, Hai-Wei; Lü, Fu-Mei; Cui, Qiang; Han, Xing Guo
2017-01-01
Plant nutrient concentrations and stoichiometry drive fundamental ecosystem processes, with important implications for primary production, diversity, and ecosystem sustainability. While a range of evidence exists regarding how plant nutrients vary across spatial scales, our understanding of their temporal variation remains less well understood. Nevertheless, we know nutrients regulate plant function across time, and that important temporal controls could strongly interact with environmental change. Here, we report results from a 3-year assessment of inter-annual changes of foliar nitrogen (N) and phosphorus (P) concentrations and stoichiometry in three dominant grasses in response to N deposition and prescribed fire in a temperate steppe of northern China. Foliar N and P concentrations and their ratios varied greatly among years, with this temporal variation strongly related to inter-annual variation in precipitation. Nitrogen deposition significantly increased foliar N concentrations and N:P ratios in all species, while fire significantly altered foliar N and P concentrations but had no significant impacts on N:P ratios. Generally, N addition enhanced the temporal stability of foliar N and decreased that of foliar P and of N:P ratios. Our results indicate that plant nutrient status and response to environmental change are temporally dynamic and that there are differential effects on the interactions between environmental change drivers and timing for different nutrients. These responses have important implications for consideration of global change effects on plant community structure and function, management strategies, and the modeling of biogeochemical cycles under global change scenarios.
Stochastic and deterministic processes regulate spatio-temporal variation in seed bank diversity
Alejandro A. Royo; Todd E. Ristau
2013-01-01
Seed banks often serve as reservoirs of taxonomic and genetic diversity that buffer plant populations and influence post-disturbance vegetation trajectories; yet evaluating their importance requires understanding how their composition varies within and across spatial and temporal scales (α- and β-diversity). Shifts in seed bank diversity are strongly...
Radial and temporal variations in surface heat transfer during cryogen spray cooling.
Franco, Walfre; Liu, Jie; Wang, Guo-Xiang; Nelson, J Stuart; Aguilar, Guillermo
2005-01-21
Cryogen spray cooling (CSC) is a heat extraction process that protects the epidermis from thermal damage during dermatologic laser surgery. The objective of the present work is to investigate radial and temporal variations in the heat transferred through the surface of a skin phantom during CSC. A fast-response thermal sensor is used to measure surface temperatures every 1 mm across a 16 mm diameter of the sprayed surface of the phantom. An analytical expression based on Fourier's law and Duhamel's theorem is used to compute surface heat fluxes from temperature measurements. Results show that radial and temporal variations of the boundary conditions have a strong influence on the homogeneity of heat extraction from the skin phantom. However, there is a subregion of uniform cooling whose size is time dependent. It is also observed that the surface heat flux undergoes a marked dynamic variation, with a maximum heat flux occurring at the centre of the sprayed surface early in the spurt followed by a quick decrease. The study shows that radial and temporal variations of boundary conditions must be taken into account and ideally controlled to guarantee uniform protection during CSC of human skin.
Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest
Shi, Zheng; Xu, Xia; Souza, Lara; Wilcox, Kevin; Jiang, Lifen; Liang, Junyi; Xia, Jianyang; García-Palacios, Pablo; Luo, Yiqi
2016-01-01
Past global change studies have identified changes in species diversity as a major mechanism regulating temporal stability of production, measured as the ratio of the mean to the standard deviation of community biomass. However, the dominant plant functional group can also strongly determine the temporal stability. Here, in a grassland ecosystem subject to 15 years of experimental warming and hay harvest, we reveal that warming increases while hay harvest decreases temporal stability. This corresponds with the biomass of the dominant C4 functional group being higher under warming and lower under hay harvest. As a secondary mechanism, biodiversity also explains part of the variation in temporal stability of production. Structural equation modelling further shows that warming and hay harvest regulate temporal stability through influencing both temporal mean and variation of production. Our findings demonstrate the joint roles that dominant plant functional group and biodiversity play in regulating the temporal stability of an ecosystem under global change. PMID:27302085
NASA Astrophysics Data System (ADS)
Kathiravan, K.; Natesan, Usha; Vishnunath, R.
2017-03-01
The intention of this study was to appraise the spatial and temporal variations in the physico-chemical parameters of coastal waters of Rameswaram Island, Gulf of Mannar Marine Biosphere Reserve, south India, using multivariate statistical techniques, such as cluster analysis, factor analysis and principal component analysis. Spatio-temporal variations among the physico-chemical parameters are observed in the coastal waters of Gulf of Mannar, especially during northeast and post monsoon seasons. It is inferred that the high loadings of pH, temperature, suspended particulate matter, salinity, dissolved oxygen, biochemical oxygen demand, chlorophyll a, nutrient species of nitrogen and phosphorus strongly determine the discrimination of coastal water quality. Results highlight the important role of monsoonal variations to determine the coastal water quality around Rameswaram Island.
Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel
2014-01-01
Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.
Seismic Velocity and Its Temporal Variations of Hutubi Basin Revealed by Near Surface Trapped Waves
NASA Astrophysics Data System (ADS)
Ji, Z.; Wang, B.; Wang, H.; Wang, Q.; Su, J.
2017-12-01
Sedimentary basins amplify bypassing seismic waves, which may increase the seismic hazard in basin area. The study of basin structure and its temporal variation is of key importance in the assessment and mitigation of seismic hazard in basins. Recent investigations of seismic exploration have shown that basins may host a distinct wave train with strong energy. It is usually named as Trapped Wave or Whispering Gallery (WG) Phase. In this study, we image the velocity structure and monitor its temporal changes of Hutubi basin in Xinjiang, Northwestern China with trapped wave generated from an airgun source. Hutubi basin is located at mid-segment of the North Tianshan Mountain. Hutubi aigun signal transmitting station was constructed in May 2013. It is composed of six longlife airgun manufactured by BOLT. Prominent trapped waves with strong energy and low velocity are observed within 40km from the source. The airgun source radiates repeatable seismic signals for years. The trapped waves have relative low frequency 0.15s-4s and apparent low velocities of 200m/s to 1000m/s. In the temporal-frequency diagram, at least two groups of wave train can be identified. Based on the group velocity dispersion curves, we invert the S-wave velocity profile of Hutubi basin. The velocity structure is further verified with synthetic seismogram. Velocity variations and Rayleigh wave polarization changes are useful barometers of underground stress status. We observed that the consistent seasonal variations in velocity and polarization. According to the simulate results, we suggest that the variations may be related to the changes of groundwater level and the formation and disappearance of frozen soil.
Multiscale spatial and temporal estimation of the b-value
NASA Astrophysics Data System (ADS)
García-Hernández, R.; D'Auria, L.; Barrancos, J.; Padilla, G.
2017-12-01
The estimation of the spatial and temporal variations of the Gutenberg-Richter b-value is of great importance in different seismological applications. One of the problems affecting its estimation is the heterogeneous distribution of the seismicity which makes its estimate strongly dependent upon the selected spatial and/or temporal scale. This is especially important in volcanoes where dense clusters of earthquakes often overlap the background seismicity. Proposed solutions for estimating temporal variations of the b-value include considering equally spaced time intervals or variable intervals having an equal number of earthquakes. Similar approaches have been proposed to image the spatial variations of this parameter as well.We propose a novel multiscale approach, based on the method of Ogata and Katsura (1993), allowing a consistent estimation of the b-value regardless of the considered spatial and/or temporal scales. Our method, named MUST-B (MUltiscale Spatial and Temporal characterization of the B-value), basically consists in computing estimates of the b-value at multiple temporal and spatial scales, extracting for a give spatio-temporal point a statistical estimator of the value, as well as and indication of the characteristic spatio-temporal scale. This approach includes also a consistent estimation of the completeness magnitude (Mc) and of the uncertainties over both b and Mc.We applied this method to example datasets for volcanic (Tenerife, El Hierro) and tectonic areas (Central Italy) as well as an example application at global scale.
Ryan A. Long; R. Terry Bowyer; Warren P. Porter; Paul Mathewson; Kevin L. Monteith; John G. Kie
2014-01-01
Temporal changes in net energy balance of animals strongly influence fitness; consequently, natural selection should favor behaviors that increase net energy balance by buffering individuals against negative effects of environmental variation. The relative importance of behavioral responses to climate-induced variation in costs vs. supplies of energy, however, is...
Time-series analysis of foreign exchange rates using time-dependent pattern entropy
NASA Astrophysics Data System (ADS)
Ishizaki, Ryuji; Inoue, Masayoshi
2013-08-01
Time-dependent pattern entropy is a method that reduces variations to binary symbolic dynamics and considers the pattern of symbols in a sliding temporal window. We use this method to analyze the instability of daily variations in foreign exchange rates, in particular, the dollar-yen rate. The time-dependent pattern entropy of the dollar-yen rate was found to be high in the following periods: before and after the turning points of the yen from strong to weak or from weak to strong, and the period after the Lehman shock.
Davy, Richard; Esau, Igor
2016-05-25
The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response.
Davy, Richard; Esau, Igor
2016-01-01
The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response. PMID:27221757
Temporal Variation and Scaling of Hydrological Variables in a Typical Watershed
NASA Astrophysics Data System (ADS)
Yang, C.; Zhang, Y. K.; Liang, X.; Liu, J.
2016-12-01
Temporal variations of the main hydrological variables over 16 years were systematically investigated based on the results from an integrated hydrological modeling at the Sagehen Creek Watershed in northern Sierra Nevada. Temporal scaling of these variables and damping effects of the hydrological system as well as its subsystems, i.e., the land surface, unsaturated zone, and saturated zone, were analyzed with spectral analyses. It was found that the hydrological system may act as a cascade of hierarchical fractal filters which sequentially transfer a non-fractal or less correlated fractal hydrological signal to a more correlated fractal signal. Temporal scaling of infiltration (I), actual evapotraspiration (ET), recharge (R), baseflow (BF), streamflow (SF) exist and the temporal autocorrelation of these variables increase as water moves through the system. The degree of the damping effect of the subsystems is different and is strongest in the unsaturated zone compared with that of the land surface and saturated zone. The temporal scaling of the groundwater levels (h) also exists and is strongly affected by the river: the temporal autocorrelation of h near the river is similar to that of the river stage fluctuations and increases away from the river. There is a break in the temporal scaling of h near the river at low frequencies due to the effect of the river. Temporal variations of the soil moisture (θ) is more complicated: the value of the scaling exponent (β) for θ increases with depth as water moves downwards and its high-frequency fluctuations are damped by the unsaturated zone. The temporal fluctuations of precipitation (P) and I are fractional Gauss noise (fGn), those of ET, R, BF, and SF are fractional Brownian motion (fBm), and those of h away from the river are 2nd-order fBm based on the values of β obtained in this study. Keywords: Temporal variations, Scaling, Damping effect, Hydrological system.
de Rooij, Myrna M T; Heederik, Dick J J; Borlée, Floor; Hoek, Gerard; Wouters, Inge M
2017-02-01
Several studies have reported associations between farming and respiratory health in neighboring residents. Health effects are possibly linked to fine dust and endotoxin emissions from livestock farms. Little is known about levels of these air pollutants in ambient air in livestock dense areas. We aimed to explore temporal and spatial variation of PM10 and endotoxin concentrations, and the association with livestock-related spatial and meteorological temporal determinants. From March till September 2011, one week average PM10 samples were collected using Harvard Impactors at eight sites (residential gardens) representing a variety of nearby livestock-related characteristics. A background site was included in the study area, situated at least 500m away from the nearest farm. PM10 mass was determined by gravimetric analysis and endotoxin level by means of Limulus-Amebocyte-Lysate assay. Data were analyzed using mixed models. The range between sites of geometric mean concentrations was for PM10 19.8-22.3µg/m 3 and for endotoxin 0.46-0.66EU/m 3 . PM10 concentrations and spatial variation were very similar for all sites, while endotoxin concentrations displayed a more variable pattern over time with larger differences between sites. Nonetheless, the temporal pattern at the background location was highly comparable to the sites mean temporal pattern both for PM10 and endotoxin (Pearson correlation: 0.92, 0.62). Spatial variation was larger for endotoxin than for PM10 (within/between site variance ratio: 0.63, 2.03). Spatial livestock-related characteristics of the surroundings were more strongly related to endotoxin concentrations, while temporal determinants were more strongly related to PM10 concentrations. The effect of local livestock-related sources on PM10 concentration was limited in this study carried out in a livestock dense area. The effect on endotoxin concentrations was more profound. To gain more insight in the effect of livestock-related sources on ambient levels of PM10 and endotoxin, measurements should be based on a broader set of locations. Copyright © 2016. Published by Elsevier Inc.
Facilitation drives 65 years of vegetation change in the Sonoran Desert
Butterfield, Bradley J.; Betancourt, Julio L.; Turner, Raymond M.; Briggs, John M.
2010-01-01
Ecological processes of low-productivity ecosystems have long been considered to be driven by abiotic controls with biotic interactions playing an insignificant role. However, existing studies present conflicting evidence concerning the roles of these factors, in part due to the short temporal extent of most data sets and inability to test indirect effects of environmental variables modulated by biotic interactions. Using structural equation modeling to analyze 65 years of perennial vegetation change in the Sonoran Desert, we found that precipitation had a stronger positive effect on recruitment beneath existing canopies than in open microsites due to reduced evaporation rates. Variation in perennial canopy cover had additional facilitative effects on juvenile recruitment, which was indirectly driven by effects of density and precipitation on cover. Mortality was strongly influenced by competition as indicated by negative density-dependence, whereas precipitation had no effect. The combined direct, indirect, and interactive facilitative effects of precipitation and cover on recruitment were substantial, as was the effect of competition on mortality, providing strong evidence for dual control of community dynamics by climate and biotic interactions. Through an empirically derived simulation model, we also found that the positive feedback of density on cover produces unique temporal abundance patterns, buffering changes in abundance from high frequency variation in precipitation, amplifying effects of low frequency variation, and decoupling community abundance from precipitation patterns at high abundance. Such dynamics should be generally applicable to low-productivity systems in which facilitation is important and can only be understood within the context of long-term variation in climatic patterns. This predictive model can be applied to better manage low-productivity ecosystems, in which variation in biogeochemical processes and trophic dynamics may be driven by positive density-dependent feedbacks that influence temporal abundance and productivity patterns.
Nordey, Thibault; Léchaudel, Mathieu; Génard, Michel; Joas, Jacques
2014-11-01
Managing fruit quality is complex because many different attributes have to be taken into account, which are themselves subjected to spatial and temporal variations. Heterogeneous fruit quality has been assumed to be partly related to temperature and maturity gradients within the fruit. To test this assumption, we measured the spatial variability of certain mango fruit quality traits: colour of the peel and of the flesh, and sourness and sweetness, at different stages of fruit maturity using destructive methods as well as vis-NIR reflectance. The spatial variability of mango quality traits was compared to internal variations in thermal time, simulated by a physical model, and to internal variations in maturity, using ethylene content as an indicator. All the fruit quality indicators analysed showed significant spatial and temporal variations, regardless of the measurement method used. The heterogeneity of internal fruit quality traits was not correlated with the marked internal temperature gradient we modelled. However, variations in ethylene content revealed a strong internal maturity gradient which was correlated with the spatial variations in measured mango quality traits. Nonetheless, alone, the internal maturity gradient did not explain the variability of fruit quality traits, suggesting that other factors, such as gas, abscisic acid and water gradients, are also involved. Copyright © 2014 Elsevier GmbH. All rights reserved.
Plant reproductive allocation predicts herbivore dynamics across spatial and temporal scales.
Miller, Tom E X; Tyre, Andrew J; Louda, Svata M
2006-11-01
Life-history theory suggests that iteroparous plants should be flexible in their allocation of resources toward growth and reproduction. Such plasticity could have consequences for herbivores that prefer or specialize on vegetative versus reproductive structures. To test this prediction, we studied the response of the cactus bug (Narnia pallidicornis) to meristem allocation by tree cholla cactus (Opuntia imbricata). We evaluated the explanatory power of demographic models that incorporated variation in cactus relative reproductive effort (RRE; the proportion of meristems allocated toward reproduction). Field data provided strong support for a single model that defined herbivore fecundity as a time-varying, increasing function of host RRE. High-RRE plants were predicted to support larger insect populations, and this effect was strongest late in the season. Independent field data provided strong support for these qualitative predictions and suggested that plant allocation effects extend across temporal and spatial scales. Specifically, late-season insect abundance was positively associated with interannual changes in cactus RRE over 3 years. Spatial variation in insect abundance was correlated with variation in RRE among five cactus populations across New Mexico. We conclude that plant allocation can be a critical component of resource quality for insect herbivores and, thus, an important mechanism underlying variation in herbivore abundance across time and space.
NASA Technical Reports Server (NTRS)
Steffl, A. J.; Delamere, P. A.; Bagenal, F.
2006-01-01
In this third paper in a series presenting observations by the Cassini Ultraviolet Imaging Spectrometer (UVIS) of the Io plasma torus, we show remarkable, though subtle, spatio-temporal variations in torus properties. The Io torus is found to exhibit significant, near sinusoidal variations in ion composition as a functions of azimuthal position. The azimuthal variation in composition is such that the mixing ratio of S II us strongly correlated with the mixing ratio of S III and the equatorial electron density and strongly anti-correlated with the mixing ratios of both S IV and O II and the equatorial electron temperature. Surprisingly, the azimuthal variation in ion composition is observed to have a period of 10.07 h -- 1.5% longer than the System III rotation period of Jupiter, yet 1.3% shorter than the System UV period defined by [Brown, M. E., 1995. J. Geophys. Res. 100, 21683-21696]. Although the amplitude of the azimuthal variation of S III and O II remained in the range of 2-5%, the amplitude of the S II and S IV compositional variation ranged between 5 and 25% during the UVIS observations. Furthermore, the amplitude of the azimuthal variations of S II and S IV appears to be modulated by its location in System III longitude, such that when the region of maximum S II mixing ration (minimum S IV mixing ratio) is aligned with a System III longitude of 200 deg +/-, the amplitude is a factor of 4 greater than when the variation is anti-aligned. This behavior can explain numerous, often apparently contradictory, observations of variations in the properties of the Io plasma torus with the System III and System IV coordinate systems.
NASA Astrophysics Data System (ADS)
Yang, Y.; Liu, B.
2017-12-01
Climate change and human activities are two critical factors causing the dramatical variations of streamflow in the Yellow River Basin of China during the last several decades. More and more attention has been paid to the temporal relationships of streamflow with precipitation and temperature recently. The objective of the current study was to explore the contributions of precipitation and temperature to the temporal variations of streamflow on the Loess Plateau using a multiple wavelet coherency method. Annual streamflow during 1961-2013 for 17 small catchments were collected from the Yellow River Conservancy Commission and annual precipitation and temperature for each catchment were derived from the meteorological data at the national weather stations across the Loess Plateau through the China Meteorological Data Sharing Service System. An abrupt decrease was observed in the annual streamflow around year 2000 for any of the 17 catchments investigated, which was believed to be related with the extensive Grain for Green Project. According to bivariate wavelet coherences, however, annual streamflow showed strong temporal variations with annual precipitation at 8 out of the 17 catchments, where the percentage area of significant coherency (PASC) exceeded 50%. Especially in Weihe and Yiluohe catchments, the corresponding PASC were close to 100%, suggesting that annual precipitation change accounted for almost all the temporal streamflow variations. Compared to annual precipitation, the temporal correlation of temperature with streamflow was relatively small, as implied in the lower mean wavelet coherence (MWC) and PASC. Moreover, including temperature in addition to precipitation in the multiple wavelet coherency analysis failed to increase either MWC or PASC in any of the 17 catchments except for Qingjianhe and Qiushuihe catchments. It was indicated that for most catchments on the Loess Plateau, annual temperature was not significantly different from the red noise in explaining the additional variation in streamflow. In view of the small PASC values resulted for most catchments, there existed other environmental and/or anthropogenic factors responsible for the temporal variations of streamflow.
Selection on female behaviour fluctuates with offspring environment.
Taylor, R W; Boutin, S; Humphries, M M; McAdam, A G
2014-11-01
Temporal variation in selection has long been proposed as a mechanism by which genetic variation could be maintained despite short-term strong directional selection and has been invoked to explain the maintenance of consistent individual differences in behaviour. We tested the hypothesis that ecological changes through time lead to fluctuating selection, which could promote the maintenance of variation in female behavioural traits in a wild population of North American red squirrels. As predicted, linear selection gradients on female aggression and activity significantly fluctuated across years depending on the level of competition among juveniles for vacant territories. This selection acted primarily through juvenile overwinter survival rather than maternal fecundity. Incorporating uncertainty in individual measures of behaviour reduced the magnitude of annual selection gradients and increased uncertainty in these estimates, but did not affect the overall pattern of temporal fluctuations in natural selection that coincided with the intensity of competition for vacant territories. These temporal fluctuations in selection might, therefore, promote the maintenance of heritable individual differences in behaviour in this wild red squirrel population. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Editorial for Journal of Hydrology: Regional Studies
Willems, Patrick; Batelaan, Okke; Hughes, Denis A.; Swarzenski, Peter W.
2014-01-01
Hydrological regimes and processes show strong regional differences. While some regions are affected by extreme drought and desertification, others are under threat of increased fluvial and/or pluvial floods. Changes to hydrological systems as a consequence of natural variations and human activities are region-specific. Many of these changes have significant interactions with and implications for human life and ecosystems. Amongst others, population growth, improvements in living standards and other demographic and socio-economic trends, related changes in water and energy demands, change in land use, water abstractions and returns to the hydrological system (UNEP, 2008), introduce temporal and spatial changes to the system and cause contamination of surface and ground waters. Hydro-meteorological boundary conditions are also undergoing spatial and temporal changes. Climate change has been shown to increase temporal and spatial variations of rainfall, increase temperature and cause changes to evapotranspiration and other hydro-meteorological variables (IPCC, 2013). However, these changes are also region specific. In addition to these climate trends, (multi)-decadal oscillatory changes in climatic conditions and large variations in meteorological conditions will continue to occur.
NASA Astrophysics Data System (ADS)
Wang, Jue
Understanding the influences of climate on productivity remains a major challenge in landscape ecology. Satellite remote sensing of normalized difference vegetation index (NDVI) provides a useful tool to study landscape patterns, based on generalization of local measurements, and to examine relations between climate and variation in productivity. This dissertation examines temporal and spatial relations between NDVI, productivity, and climatic factors over the course of nine years in the central Great Plains. Two general findings emerge: (1) integrated NDVI is a reliable measure of production, as validated with ground-based productivity measurements; and (2) precipitation is the primary factor that determines spatial and temporal patterns of NDVI. NDVI, integrated over appropriate time intervals, is strongly correlated with ground productivity measurements in forests, grasslands, and croplands. Most tree productivity measurements (tree ring size, tree diameter growth, and seed production) are strongly correlated with NDVI integrated for a period during the early growing season; foliage production is most strongly correlated with NDVI integrated over the entire growing season; and tree height growth corresponds with NDVI integrate during the previous growing season. Similarly, productivity measurements for herbaceous plants (grassland biomass and crop yield) are strongly correlated with NDVI. Within the growing season, the temporal pattern of grassland biomass production covaries with NDVI, with a four-week lag time. Across years, grassland biomass production covaries with NDVI integrated from part to all of the current growing season. Corn and wheat yield are most strongly related to NDVI integrated from late June to early August and from late April to mid-May, respectively. Precipitation strongly influences both temporal and spatial patterns of NDVI, while temperature influences NDVI only during the early and late growing season. In terms of temporal patterns, NDVI integrated over the growing season is strongly correlated with precipitation received during the current growing season plus the seven preceding months (fifteen month period); NDVI within the growing season responds to changes in precipitation with a four to eight week lag time; and major precipitation events lead to changes in NDVI with a two to four week lag time. Temperature has a positive correlation with NDVI during the early and late growing season, and a weak negative correlation during the middle of the growing season. In terms of spatial patterns, average precipitation is a strong predictor of the major east-west gradient of NDVI. Deviation from average precipitation explains most of the year-to-year variation in spatial patterns. NDVI and precipitation deviations from average covary (both positive or both negative) for 60--95% of the total land area in Kansas. Minimum and average temperatures are positively correlated with NDVI, but temperature deviation from average is generally not correlated with NDVI deviation from average. The strong relationships between NDVI and productivity, and between precipitation and NDVI, along with detailed analysis of the temporal and spatial patterns for our study region, provides the basis for prediction of productivity at landscape scales under different climate regimes.
Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013
NASA Astrophysics Data System (ADS)
Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua
2018-05-01
In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for annual temperature in China and its first-level basins. It was therefore feasible to estimate the annual average temperature by the annual temperature recorded by the representative meteorological station in the region. Moreover, it was of great significance to assess average temperature changes quickly and forecast future change tendencies in the region.
The epigenomic landscape of African rainforest hunter-gatherers and farmers.
Fagny, Maud; Patin, Etienne; MacIsaac, Julia L; Rotival, Maxime; Flutre, Timothée; Jones, Meaghan J; Siddle, Katherine J; Quach, Hélène; Harmant, Christine; McEwen, Lisa M; Froment, Alain; Heyer, Evelyne; Gessain, Antoine; Betsem, Edouard; Mouguiama-Daouda, Patrick; Hombert, Jean-Marie; Perry, George H; Barreiro, Luis B; Kobor, Michael S; Quintana-Murci, Lluis
2015-11-30
The genetic history of African populations is increasingly well documented, yet their patterns of epigenomic variation remain uncharacterized. Moreover, the relative impacts of DNA sequence variation and temporal changes in lifestyle and habitat on the human epigenome remain unknown. Here we generate genome-wide genotype and DNA methylation profiles for 362 rainforest hunter-gatherers and sedentary farmers. We find that the current habitat and historical lifestyle of a population have similarly critical impacts on the methylome, but the biological functions affected strongly differ. Specifically, methylation variation associated with recent changes in habitat mostly concerns immune and cellular functions, whereas that associated with historical lifestyle affects developmental processes. Furthermore, methylation variation--particularly that correlated with historical lifestyle--shows strong associations with nearby genetic variants that, moreover, are enriched in signals of natural selection. Our work provides new insight into the genetic and environmental factors affecting the epigenomic landscape of human populations over time.
Analysis of tropospheric ozone concentration on a Western Mediterranean site: Castellon (Spain).
Castell, Nuria; Mantilla, Enrique; Millan, Millan M
2008-01-01
Ozone dynamics in our study area (Castellon, Spain) is both strongly bound to the mesoscale circulations that develop under the effect of high insolation (especially in summer) and conditioned by the morphological characteristics of the Western Mediterranean Basin. In this work we present a preliminary analysis of ozone time series on five locations in Castellon for the period 1997-2003. We study their temporal and spatial variations at different scales: daily, weekly, seasonally and interannually. Because both the O3 concentration and its temporal variation depend on the topographic location of the observing station, they can show large differences within tens of kilometer. We also contrast the variation in the ozone concentration with the variations found for meteorological variables such as radiation, temperature, relative humidity and recirculation of the air mass. The link between elevated ozone concentrations and high values of the recirculation factor (r=0.7-0.9) shown the importance of recirculating flows on the local air pollution episodes.
Spatial and Temporal Stress Drop Variations of the 2011 Tohoku Earthquake Sequence
NASA Astrophysics Data System (ADS)
Miyake, H.
2013-12-01
The 2011 Tohoku earthquake sequence consists of foreshocks, mainshock, aftershocks, and repeating earthquakes. To quantify spatial and temporal stress drop variations is important for understanding M9-class megathrust earthquakes. Variability and spatial and temporal pattern of stress drop is a basic information for rupture dynamics as well as useful to source modeling. As pointed in the ground motion prediction equations by Campbell and Bozorgnia [2008, Earthquake Spectra], mainshock-aftershock pairs often provide significant decrease of stress drop. We here focus strong motion records before and after the Tohoku earthquake, and analyze source spectral ratios considering azimuth- and distance dependency [Miyake et al., 2001, GRL]. Due to the limitation of station locations on land, spatial and temporal stress drop variations are estimated by adjusting shifts from the omega-squared source spectral model. The adjustment is based on the stochastic Green's function simulations of source spectra considering azimuth- and distance dependency. We assumed the same Green's functions for event pairs for each station, both the propagation path and site amplification effects are cancelled out. Precise studies of spatial and temporal stress drop variations have been performed [e.g., Allmann and Shearer, 2007, JGR], this study targets the relations between stress drop vs. progression of slow slip prior to the Tohoku earthquake by Kato et al. [2012, Science] and plate structures. Acknowledgement: This study is partly supported by ERI Joint Research (2013-B-05). We used the JMA unified earthquake catalogue and K-NET, KiK-net, and F-net data provided by NIED.
Food web dynamics in a seasonally varying wetland
DeAngelis, D.L.; Trexler, J.C.; Donalson, D.D.
2008-01-01
A spatially explicit model is developed to simulate the small fish community and its underlying food web, in the freshwater marshes of the Everglades. The community is simplified to a few small fish species feeding on periphyton and invertebrates. Other compartments are detritus, crayfish, and a piscivorous fish species. This unit food web model is applied to each of the 10,000 spatial cells on a 100 x 100 pixel landscape. Seasonal variation in water level is assumed and rules are assigned for fish movement in response to rising and falling water levels, which can cause many spatial cells to alternate between flooded and dry conditions. It is shown that temporal variations of water level on a spatially heterogeneous landscape can maintain at least three competing fish species. In addition, these environmental factors can strongly affect the temporal variation of the food web caused by top-down control from the piscivorous fish.
NASA Astrophysics Data System (ADS)
Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.
2018-04-01
River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.
Time series study of concentrations of SO4(2-) and H+ in precipitation and soil waters in Norway.
Kvaalen, H; Solberg, S; Clarke, N; Torp, T; Aamlid, D
2002-01-01
Along with a steady reduction of acid inputs during 14 years of intensive forest monitoring in Norway, the influence of acid deposition upon soil water acidity is gradually reduced in favour of other and internal sources of H+ and sulphate, in particular from processes in the upper soil layer. We used statistical analyses in two steps for precipitation, throughfall and soil water at 5, 15 and 40 cm depths. Firstly, we employed time series analyses to model the temporal variation as a long-term linear trend and a monthly variation, and by this filtered out residual, weekly variation. Secondly, we used the parameter estimates and the residuals from this to show that the long term, the monthly and the weekly variation in one layer were correlated to similar temporal variation in the above, adjacent layer. This was strongly evident for throughfall correlated to precipitation, but much weaker for soil water. Continued acidification in soil water on many plots suggests that the combined effects of anthropogenic and natural acid inputs exceed in places the buffering capacity of the soil.
NASA Astrophysics Data System (ADS)
Tóth, Balázs
2018-03-01
Some new dual and mixed variational formulations based on a priori nonsymmetric stresses will be developed for linearly coupled irreversible thermoelastodynamic problems associated with second sound effect according to the Lord-Shulman theory. Having introduced the entropy flux vector instead of the entropy field and defining the dissipation and the relaxation potential as the function of the entropy flux, a seven-field dual and mixed variational formulation will be derived from the complementary Biot-Hamilton-type variational principle, using the Lagrange multiplier method. The momentum-, the displacement- and the infinitesimal rotation vector, and the a priori nonsymmetric stress tensor, the temperature change, the entropy field and its flux vector are considered as the independent field variables of this formulation. In order to handle appropriately the six different groups of temporal prescriptions in the relaxed- and/or the strong form, two variational integrals will be incorporated into the seven-field functional. Then, eliminating the entropy from this formulation through the strong fulfillment of the constitutive relation for the temperature change with the use of the Legendre transformation between the enthalpy and Gibbs potential, a six-field dual and mixed action functional is obtained. As a further development, the elimination of the momentum- and the velocity vector from the six-field principle through the a priori satisfaction of the kinematic equation and the constitutive relation for the momentum vector leads to a five-field variational formulation. These principles are suitable for the transient analyses of the structures exposed to a thermal shock of short temporal domain or a large heat flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagle, Pradeep; Xiao, Xiangming; Scott, Russell L.
Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere–atmosphere feedbacks of grasslands. We used ground-based eddy flux and meteorological data, and the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) from 12 grasslands across the United States to examine the spatial variability in carbon and water vapor fluxes and to evaluate the biophysical controls on the spatial patterns of fluxes. Precipitation was strongly associatedmore » with spatial and temporal variability in carbon and water vapor fluxes and vegetation productivity. Grasslands with annual average precipitation <600 mm generally had neutral annual carbon balance or emitted small amount of carbon to the atmosphere. Despite strong coupling between gross primary production (GPP)and evapotranspiration (ET) across study sites, GPP showed larger spatial variation than ET, and EVI had a greater effect on GPP than on ET. Consequently, large spatial variation in ecosystem water use efficiency (EWUE = annual GPP/ET; varying from 0.67 ± 0.55 to 2.52 ± 0.52 g C mm⁻¹ET) was observed. Greater reduction in GPP than ET at high air temperature and vapor pressure deficit caused a reduction in EWUE in dry years, indicating a response which is opposite than what has been reported for forests. Our results show that spatial and temporal variations in ecosystem carbon uptake, ET, and water use efficiency of grasslands were strongly associated with canopy greenness and coverage, as indicated by EVI.« less
Home ranges of lions in the Kalahari, Botswana exhibit vast sizes and high temporal variability.
Zehnder, André; Henley, Stephen; Weibel, Robert
2018-06-01
The central Kalahari region in Botswana is one of the few remaining ecosystems with a stable lion population. Yet, relatively little is known about the ecology of the lions there. As an entry point, home range estimations provide information about the space utilization of the studied animals. The home ranges of eight lions in this region were determined to investigate their spatial overlaps and spatiotemporal variations. We found that, except for MCP, all home range estimators yielded comparable results regarding size and shape. The home ranges of all individuals were located predominantly inside the protected reserves. Their areas were among the largest known for lions with 1131 - 4314km 2 (95%), with no significant differences between males and females. Numerous overlaps between lions of different sexes were detected, although these originate from different groups. A distance chart confirmed that most of these lions directly encountered each other once or several times. Strong temporal variations of the home ranges were observed that did not match a seasonal pattern. The exceptionally large home ranges are likely to be caused by the sparse and dynamic prey populations. Since the ungulates in the study area move in an opportunistic way, too, strong spatiotemporal home range variations emerge. This can lead to misleading home ranges. We therefore recommend clarifying the stability of the home ranges by applying several levels of temporal aggregation. The lack of strict territoriality is likely an adaptation to the variable prey base and the high energetic costs associated with defending a large area. Copyright © 2018 Elsevier GmbH. All rights reserved.
Hou, Xiyong; Li, Mingjie; Gao, Meng; Yu, Liangju; Bi, Xiaoli
2013-01-01
Annual normalized difference vegetation index (NDVI) and chlorophyll-a (Chl-a) concentration are the most important large-scale indicators of terrestrial and oceanic ecosystem net primary productivity. In this paper, the Sea-viewing Wide Field-of-view Sensor level 3 standard mapped image annual products from 1998 to 2009 are used to study the spatial-temporal characters of terrestrial NDVI and oceanic Chl-a concentration on two sides of the coastline of China by using the methods of mean value (M), coefficient of variation (CV), the slope of unary linear regression model (Slope), and the Hurst index (H). In detail, we researched and analyzed the spatial-temporal dynamics, the longitudinal zonality and latitudinal zonality, the direction, intensity, and persistency of historical changes. The results showed that: (1) spatial patterns of M and CV between NDVI and Chl-a concentration from 1998 to 2009 were very different. The dynamic variation of terrestrial NDVI was much mild, while the variation of oceanic Chl-a concentration was relatively much larger; (2) distinct longitudinal zonality was found for Chl-a concentration and NDVI due to their hypersensitivity to the distance to shoreline, and strong latitudinal zonality existed for Chl-a concentration while terrestrial NDVI had a very weak latitudinal zonality; (3) overall, the NDVI showed a slight decreasing trend while the Chl-a concentration showed a significant increasing trend in the past 12 years, and both of them exhibit strong self-similarity and long-range dependence which indicates opposite future trends between land and ocean.
Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales
Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias
2016-01-01
Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625
Woody, Carol Ann; Olsen, Jeffrey B.; Reynolds, Joel H.; Bentzen, Paul
2000-01-01
Sockeye salmon Oncorhynchus nerka in two tributary streams (about 20 km apart) of the same lake were compared for temporal variation in phenotypic (length, depth adjusted for length) and genotypic (six microsatellite loci) traits. Peak run time (July 16 versus 11 August) and run duration (43 versus 26 d) differed between streams. Populations were sampled twice, including an overlapping point in time. Divergence at microsatellite loci followed a temporal cline: Population sample groups collected at the same time were not different (F ST = 0), whereas those most separated in time were different (F ST = 0.011, P = 0.001). Although contemporaneous sample groups did not differ significantly in microsatellite genotypes (F ST = 0), phenotypic traits did differ significantly (MANOVA, P < 0.001). Fish from the larger stream were larger; fish from the smaller stream were smaller, suggesting differential fitness related to size. Results indicate run time differences among and within sockeye salmon populations may strongly influence levels of gene flow.
Noreen, Asma; Khokhar, Muhammad Fahim; Zeb, Naila; Yasmin, Naila; Hakeem, Khalid Rehman
2018-03-01
This study uses the tropospheric ozone data derived from combined observations of Ozone Monitoring Instrument/Microwave Limb Sounder instruments by using the tropospheric ozone residual method. The main objective was to study the spatial distribution and temporal evolution in the troposphere ozone columns over Pakistan during the time period of 2004 to 2014. Results showed an overall increase of 3.2 ± 1.1 DU in tropospheric ozone columns over Pakistan. Spatial distribution showed enhanced ozone columns in the Punjab and southern Sindh consistent to high population, urbanization, and extensive anthropogenic activities, and exhibited statistically significant temporal increase. Seasonal variations in tropospheric ozone columns are driven by various factors such as seasonality in UV-B fluxes, seasonality in ozone precursor gases such as NO x and volatile organic compounds (caused by temperature dependent biogenic emission) and agricultural fire activities in Pakistan. A strong correlation of 96% (r = 0.96) was found between fire events and tropospheric ozone columns in Pakistan.
Medvedinskiĭ, A B; Tikhonova, I A; Li, B L; Malchow, H
2003-01-01
The dynamics of aquatic biological communities in a patchy environment is of great interest in respect to interrelations between phenomena at various spatial and time scales. To study the complex plankton dynamics in relation to variations of such a biologically essential parameter as the fish predation rate, we use a simple reaction-diffusion model of trophic interactions between phytoplankton, zooplankton, and fish. We suggest that plankton is distributed between two habitats one of which is fish-free due to hydrological inhomogeneity, while the other is fish-populated. We show that temporal variations in the fish predation rate do not violate the strong correspondence between the character of spatial distribution of plankton and changes of plankton biomass in time: regular temporal oscillations of plankton biomass correspond to large-scale plankton patches, while chaotic oscillations correspond to small-scale plankton patterns. As in the case of the constant fish predation rate, the chaotic plankton dynamics is characterized by coexistence of the chaotic attractor and limit cycle.
Exoplanetary System HD 189733 - Chromosphere, Transit, Activity
NASA Astrophysics Data System (ADS)
Krejcova, T.; Czesla, S.; Wolter, U.; Schmitt, J. H. M. M.
2015-01-01
We present a study of the temporal evolution of the chromospherically sensitive lines in the transiting exoplanetary system HD 189733 using high-resolution UVES spectra. With its fast temporal cadence of only 45 s and its wide spectral coverage, our time series is ideal to study the influence of the transiting planetary disk on chromospheric lines . We measured the equivalent width and central line depression of the Ca II H and K lines, Hα, and the Ca II infrared triplet. While all these lines show temporal evolution on a scale potentially induced by the occulting planetary disk, strong intrinsic stellar variability prevents us from uniquely ascribing the observed variation to the planetary transit.
Dunham, J.B.; Cade, B.S.; Terrell, J.W.
2002-01-01
We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P < 0.10) negative slopes estimated for the higher quantiles (>80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.
Exploring the temporal effects of seasonal water availability on the snail kite of Florida: Part III
Mooij, Wolf M.; Martin, Julien; Kitchens, Wiley M.; DeAngelis, Donald L.
2007-01-01
The Florida snail kite (Rostrhamus sociabilis) is an endangered raptor that occurs as an isolated population, currently of about 2,000 birds, in the wetlands of southern and central Florida, USA. Its exclusive prey species, the apple snail (Pomacea paludosa) is strongly influenced by seasonal changes in water abundance. Droughts during the snail kite breeding season have a direct negative effect on snail kite survival and reproduction, but droughts are also needed to maintain aquatic vegetation types favorable to snail kite foraging for snails. We used a spatially explicit matrix model to explore the effects of temporal variation in water levels on the viability of the snail kite population under different temporal drought regimes in its wetland breeding habitat. We focused on three aspects of variations in water levels that were likely to affect kites: (1) drought frequency; (2) drought duration; and (3) drought timing within the year. We modeled a 31-year historical scenario using four different scenarios in which the average water level was maintained constant, but the amplitude of water level fluctuations was modified. Our results reveal the complexity of the effects of temporal variation in water levels on snail kite population dynamics. Management implications of these results are discussed. In particular, management decisions should not be based on annual mean water levels alone, but must consider the intra-annual variability.
NASA Astrophysics Data System (ADS)
Lui, Karen K. Y.; Ng, Jasmine S. S.; Leung, Kenneth M. Y.
2007-05-01
In subtropical Hong Kong, western waters (WW) are strongly influenced by the freshwater input from the Pearl River estuary, especially during summer monsoon, whereas eastern waters (EW) are predominantly influenced by oceanic currents throughout the year. Such hydrographical differences may lead to spatio-temporal differences in biodiversity of benthic communities. This study investigated the diversity and abundance of commercially important decapods and stomatopods in EW (i.e. Tolo Harbour and Channel) and WW (i.e. Tuen Mun and Lantau Island) of Hong Kong using monthly trawl surveys (August 2003-May 2005). In total, 22 decapod and nine stomatopod species were recorded. The penaeid Metapenaeopsis sp. and stomatopod Oratosquillina interrupta were the most abundant and dominant crustaceans in EW and WW, respectively. Both univariate and multivariate analyses showed that WW supported significantly higher abundance, biomass and diversity of crustaceans than EW, although there were significant between-site and within-site variations in community structure. Higher abundance and biomass of crustaceans were recorded in summer than winter. Such spatio-temporal variations could be explained by differences in the hydrography, environmental conditions and anthropogenic impacts between the two areas. Temporal patterns in the abundance-biomass comparison curves and negative W-statistics suggest that the communities have been highly disturbed in both areas, probably due to anthropogenic activities such as bottom trawling and marine pollution.
ON THE VARIATION OF SOLAR RADIUS IN ROTATION CYCLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Z. N.; Kong, D. F.; Xiang, N. B.
2015-01-10
The Date Compensated Discrete Fourier Transform and CLEANest algorithm are used to study the temporal variations of the solar radius observed at Rio de Janeiro Observatory from 1998 March 2 to 2009 November 6. The CLEANest spectra show several significant periodicities around 400, 312, 93.5, 86.2, 79.4, 70.9, 53.2, and 26.3 days. Then, combining the data on the daily solar radius measured at Calern Observatory and Rio de Janeiro Observatory and the corresponding daily sunspot areas, we study the short-term periodicity of the solar radius and the role of magnetic field in the variation of the solar radius. The rotation periodmore » of the daily solar radius is determined to be statistically significant. Moreover, its temporal evolution is anti-phase with that of sunspot activity, and it is found anti-phase with solar activity. Generally, the stronger solar activity is, the more obvious is the anti-phase relation of radius with solar activity. This indicates that strong magnetic fields have a greater inhibitive effect than weak magnetic fields on the variation of the radius.« less
Giroux, Marie-Andrée; Berteaux, Dominique; Lecomte, Nicolas; Gauthier, Gilles; Szor, Guillaume; Bêty, Joël
2012-05-01
1. Flows of nutrients and energy across ecosystem boundaries have the potential to subsidize consumer populations and modify the dynamics of food webs, but how spatio-temporal variations in autochthonous and allochthonous resources affect consumers' subsidization remains largely unexplored. 2. We studied spatio-temporal patterns in the allochthonous subsidization of a predator living in a relatively simple ecosystem. We worked on Bylot Island (Nunavut, Canada), where arctic foxes (Vulpes lagopus L.) feed preferentially on lemmings (Lemmus trimucronatus and Dicrostonyx groenlandicus Traill), and alternatively on colonial greater snow geese (Anser caerulescens atlanticus L.). Geese migrate annually from their wintering grounds (where they feed on farmlands and marshes) to the Canadian Arctic, thus generating a strong flow of nutrients and energy across ecosystem boundaries. 3. We examined the influence of spatial variations in availability of geese on the diet of fox cubs (2003-2005) and on fox reproductive output (1996-2005) during different phases of the lemming cycle. 4. Using stable isotope analysis and a simple statistical routine developed to analyse the outputs of a multisource mixing model (SIAR), we showed that the contribution of geese to the diet of arctic fox cubs decreased with distance from the goose colony. 5. The probability that a den was used for reproduction by foxes decreased with distance from the subsidized goose colony and increased with lemming abundance. When lemmings were highly abundant, the effect of distance from the colony disappeared. The goose colony thus generated a spatial patterning of reproduction probability of foxes, while the lemming cycle generated a strong temporal variation of reproduction probability of foxes. 6. This study shows how the input of energy owing to the large-scale migration of prey affects the functional and reproductive responses of an opportunistic consumer, and how this input is spatially and temporally modulated through the foraging behaviour of the consumer. Thus, perspectives of both landscape and foraging ecology are needed to fully resolve the effects of subsidies on animal demographic processes and population dynamics. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Rosenkrantz, Andrew B; Hughes, Danny R; Duszak, Richard
2016-04-01
To determine recent trends related to temporal as well as national and statewide geographic variation in the U.S. radiologist and radiology resident workforce. This retrospective HIPAA-compliant study was exempted from the internal review board. Federal Area Health Resources Files and Medicare 5% research identifiable files were used to compute parameters related to the radiologist workforce. Geographic variation and annual temporal trends were analyzed. Pearson and Spearman correlations were assessed. Nationally, the number of radiology trainees increased 84.2% from a nadir in 1997 (3080 trainees) to 2011 (5674 trainees) and showed high state-to-state variation (range, 0-678 trainees in 2011). However, total radiologists nationally increased 39.2% from 1995 (27 906 radiologists) to 2011 (38 875 radiologists), and radiologists per 100 000 population nationally increased by 7.5% from 1995 (10.62%) to 2011 (11.42%), while showing high state-to-state variation (highest-to-lowest state ratio of 4.3). Radiologists' share of the overall physician workforce declined nationally by 8.8% from 1995 (4.0%) to 2011 (3.7%), with moderate state-to-state variation (highest-to-lowest state ratio of 1.7). Radiology trainee numbers exhibited weak-to-moderate positive state-by-state correlation with radiologists per 100 000 population (r = 0.292-0.532), but moderate-to-strong inverse correlation with the percentage of radiologists in rural practice (r = -0.464 to -0.635). Although the number of radiology trainees dramatically increased, radiologists per 100 000 population increased only slightly, and radiologists' share of the overall physician workforce declined. State-to-state variations in radiologist and radiology resident workforces are high, which suggests a potential role for geographic redistribution rather than changes in the overall workforce size.
Tarroux, Arnaud; Bêty, Joël; Gauthier, Gilles; Berteaux, Dominique
2012-01-01
Inter-individual variation in diet within generalist animal populations is thought to be a widespread phenomenon but its potential causes are poorly known. Inter-individual variation can be amplified by the availability and use of allochthonous resources, i.e., resources coming from spatially distinct ecosystems. Using a wild population of arctic fox as a study model, we tested hypotheses that could explain variation in both population and individual isotopic niches, used here as proxy for the trophic niche. The arctic fox is an opportunistic forager, dwelling in terrestrial and marine environments characterized by strong spatial (arctic-nesting birds) and temporal (cyclic lemmings) fluctuations in resource abundance. First, we tested the hypothesis that generalist foraging habits, in association with temporal variation in prey accessibility, should induce temporal changes in isotopic niche width and diet. Second, we investigated whether within-population variation in the isotopic niche could be explained by individual characteristics (sex and breeding status) and environmental factors (spatiotemporal variation in prey availability). We addressed these questions using isotopic analysis and bayesian mixing models in conjunction with linear mixed-effects models. We found that: i) arctic fox populations can simultaneously undergo short-term (i.e., within a few months) reduction in both isotopic niche width and inter-individual variability in isotopic ratios, ii) individual isotopic ratios were higher and more representative of a marine-based diet for non-breeding than breeding foxes early in spring, and iii) lemming population cycles did not appear to directly influence the diet of individual foxes after taking their breeding status into account. However, lemming abundance was correlated to proportion of breeding foxes, and could thus indirectly affect the diet at the population scale.
Tarroux, Arnaud; Bêty, Joël; Gauthier, Gilles; Berteaux, Dominique
2012-01-01
Inter-individual variation in diet within generalist animal populations is thought to be a widespread phenomenon but its potential causes are poorly known. Inter-individual variation can be amplified by the availability and use of allochthonous resources, i.e., resources coming from spatially distinct ecosystems. Using a wild population of arctic fox as a study model, we tested hypotheses that could explain variation in both population and individual isotopic niches, used here as proxy for the trophic niche. The arctic fox is an opportunistic forager, dwelling in terrestrial and marine environments characterized by strong spatial (arctic-nesting birds) and temporal (cyclic lemmings) fluctuations in resource abundance. First, we tested the hypothesis that generalist foraging habits, in association with temporal variation in prey accessibility, should induce temporal changes in isotopic niche width and diet. Second, we investigated whether within-population variation in the isotopic niche could be explained by individual characteristics (sex and breeding status) and environmental factors (spatiotemporal variation in prey availability). We addressed these questions using isotopic analysis and Bayesian mixing models in conjunction with linear mixed-effects models. We found that: i) arctic fox populations can simultaneously undergo short-term (i.e., within a few months) reduction in both isotopic niche width and inter-individual variability in isotopic ratios, ii) individual isotopic ratios were higher and more representative of a marine-based diet for non-breeding than breeding foxes early in spring, and iii) lemming population cycles did not appear to directly influence the diet of individual foxes after taking their breeding status into account. However, lemming abundance was correlated to proportion of breeding foxes, and could thus indirectly affect the diet at the population scale. PMID:22900021
Hansen, Michael J.; Nate, Nancy A.
2014-01-01
We evaluated the dynamics of walleye Sander vitreus population size structure, as indexed by the proportional size distribution (PSD) of quality-length fish, in Escanaba Lake during 1967–2003 and in 204 other lakes in northern Wisconsin during 1990–2011. We estimated PSD from angler-caught walleyes in Escanaba Lake and from spring electrofishing in 204 other lakes, and then related PSD to annual estimates of recruitment to age-3, length at age 3, and annual angling exploitation rate. In Escanaba Lake during 1967–2003, annual estimates of PSD were highly dynamic, growth (positively) explained 35% of PSD variation, recruitment explained only 3% of PSD variation, and exploitation explained only 7% of PSD variation. In 204 other northern Wisconsin lakes during 1990–2011, PSD varied widely among lakes, recruitment (negatively) explained 29% of PSD variation, growth (positively) explained 21% of PSD variation, and exploitation explained only 4% of PSD variation. We conclude that population size structure was most strongly driven by recruitment and growth, rather than exploitation, in northern Wisconsin walleye populations. Studies of other species over wide spatial and temporal ranges of recruitment, growth, and mortality are needed to determine which dynamic rate most strongly influences population size structure of other species. Our findings indicate a need to be cautious about assuming exploitation is a strong driver of walleye population size structure.
Evidence of Dynamic Crustal Deformation in Tohoku, Japan, From Time-Varying Receiver Functions
NASA Astrophysics Data System (ADS)
Porritt, R. W.; Yoshioka, S.
2017-10-01
Temporal variation of crustal structure is key to our understanding of Earth processes on human timescales. Often, we expect that the most significant structural variations are caused by strong ground shaking associated with large earthquakes, and recent studies seem to confirm this. Here we test the possibility of using P receiver functions (PRF) to isolate structural variations over time. Synthetic receiver function tests indicate that structural variation could produce PRF changes on the same order of magnitude as random noise or contamination by local earthquakes. Nonetheless, we find significant variability in observed receiver functions over time at several stations located in northeastern Honshu. Immediately following the Tohoku-oki earthquake, we observe high PRF variation clustering spatially, especially in two regions near the beginning and end of the rupture plane. Due to the depth sensitivity of PRF and the timescales over which this variability is observed, we infer this effect is primarily due to fluid migration in volcanic regions and shear stress/strength reorganization. While the noise levels in PRF are high for this type of analysis, by sampling small data sets, the computational cost is lower than other methods, such as ambient noise, thereby making PRF a useful tool for estimating temporal variations in crustal structure.
Flow in Atherosclerotic Blood Vessels
NASA Astrophysics Data System (ADS)
Berger, Stanley A.; Stroud, Jenn S.
2000-11-01
Atherosclerotic lesions occur in arteries where there are major changes in flow structure, e.g. bifurcations and junctions. The reduction of vessel lumen alters the flow, including the mechanical forces on the walls. We have examined the flow in carotid artery bifurcations with realistic plaque contours. The unsteady, incompressible, Navier-Stokes equations are solved in finite-volume form. Steady and pulsatile flows have been analyzed for laminar and turbulent flows, using for the latter a low-Reynolds number k- ɛ model and a k-ω model. Non-Newtonian viscosity is also considered using a power-law model. In general the very irregular contours of the vessels lead to recirculating regions, strong spatial variations of wall shear stresses, and in some cases, vortex shedding. Even steady inlet flow exhibits fluctuating, unsteady behavior. Neither turbulence models captures all the physics of the flow. The flow, in fact, appears to be transitional and not fully turbulent. For unsteady flow, there are also strong temporal variations of normal and shear stresses, which together with the strong spatial variations, has important implications for the onset and progression of atherosclerotic disease.
Characterizing nonlinearity in invasive EEG recordings from temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Casdagli, M. C.; Iasemidis, L. D.; Sackellares, J. C.; Roper, S. N.; Gilmore, R. L.; Savit, R. S.
Invasive electroencephalographic (EEG) recordings from depth and subdural electrodes, performed in eight patients with temporal lobe epilepsy, are analyzed using a variety of nonlinear techniques. A surrogate data technique is used to find strong evidence for nonlinearities in epileptogenic regions of the brain. Most of these nonlinearities are characterized as “spiking” by a wavelet analysis. A small fraction of the nonlinearities are characterized as “recurrent” by a nonlinear prediction algorithm. Recurrent activity is found to occur in spatio-temporal patterns related to the location of the epileptogenic focus. Residual delay maps, used to characterize “lag-one nonlinearity”, are remarkably stationary for a given electrode, and exhibit striking variations among electrodes. The clinical and theoretical implications of these results are discussed.
Rainfall effects on rare annual plants
Levine, J.M.; McEachern, A.K.; Cowan, C.
2008-01-01
Variation in climate is predicted to increase over much of the planet this century. Forecasting species persistence with climate change thus requires understanding of how populations respond to climate variability, and the mechanisms underlying this response. Variable rainfall is well known to drive fluctuations in annual plant populations, yet the degree to which population response is driven by between-year variation in germination cueing, water limitation or competitive suppression is poorly understood.We used demographic monitoring and population models to examine how three seed banking, rare annual plants of the California Channel Islands respond to natural variation in precipitation and their competitive environments. Island plants are particularly threatened by climate change because their current ranges are unlikely to overlap regions that are climatically favourable in the future.Species showed 9 to 100-fold between-year variation in plant density over the 5–12 years of censusing, including a severe drought and a wet El Niño year. During the drought, population sizes were low for all species. However, even in non-drought years, population sizes and per capita growth rates showed considerable temporal variation, variation that was uncorrelated with total rainfall. These population fluctuations were instead correlated with the temperature after the first major storm event of the season, a germination cue for annual plants.Temporal variation in the density of the focal species was uncorrelated with the total vegetative cover in the surrounding community, suggesting that variation in competitive environments does not strongly determine population fluctuations. At the same time, the uncorrelated responses of the focal species and their competitors to environmental variation may favour persistence via the storage effect.Population growth rate analyses suggested differential endangerment of the focal annuals. Elasticity analyses and life table response experiments indicated that variation in germination has the same potential as the seeds produced per germinant to drive variation in population growth rates, but only the former was clearly related to rainfall.Synthesis. Our work suggests that future changes in the timing and temperatures associated with the first major rains, acting through germination, may more strongly affect population persistence than changes in season-long rainfall.
NASA Astrophysics Data System (ADS)
Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph K.
2017-11-01
We investigate nocturnal flow dynamics and temperature behaviour near the surface of a 170-m long gentle slope in a mid-range mountain valley. In contrast to many existing studies focusing on locations with significant topographic variations, gentle slopes cover a greater spatial extent of the Earth's surface. Air temperatures were measured using the high-resolution distributed-temperature-sensing method within a two-dimensional fibre-optic array in the lowest metre above the surface. The main objectives are to characterize the spatio-temporal patterns in the near-surface temperature and flow dynamics, and quantify their responses to the microtopography and land cover. For the duration of the experiment, including even clear-sky nights with weak winds and strong radiative forcing, the classical cold-air drainage predicted by theory could not be detected. In contrast, we show that the airflow for the two dominant flow modes originates non-locally. The most abundant flow mode is characterized by vertically-decoupled layers featuring a near-surface flow perpendicular to the slope and strong stable stratification, which contradicts the expectation of a gravity-driven downslope flow of locally produced cold air. Differences in microtopography and land cover clearly affect spatio-temporal temperature perturbations. The second most abundant flow mode is characterized by strong mixing, leading to vertical coupling with airflow directed down the local slope. Here variations of microtopography and land cover lead to negligible near-surface temperature perturbations. We conclude that spatio-temporal temperature perturbations, but not flow dynamics, can be predicted by microtopography, which complicates the prediction of advective-heat components and the existence and dynamics of cold-air pools in gently sloped terrain in the absence of observations.
NASA Technical Reports Server (NTRS)
Liu, Yi; van Dijk, Albert I.J.M.; Owe, Manfred
2007-01-01
Spatiotemporal patterns in soil moisture and vegetation water content across mainland Australia were investigated from 1998 through 2005, using TRMMITMI passive microwave observations. The Empirical Orthogonal Function technique was used to extract dominant spatial and temporal patterns in retrieved estimates of moisture content for the top 1-cm of soil (theta) and vegetation moisture content (via optical depth tau). The dominant temporal theta and tau patterns were strongly correlated to El Nino/Southern Oscillation (ENSO) in spring (3 = 0.90), and to a progressively lesser extent autumn, summer and winter. The Indian Ocean Dipole (IOD) index also explained part of the variation in spring 8 and z. Cluster analysis suggested that the regions most affected by ENS0 are mainly located in eastern Australia. The results suggest that the drought conditions experienced in eastern Australia since 2000 an clearly expressed in these satellite observations have a strong connection with ENSO patterns.
Burnik Šturm, Martina; Pukazhenthi, Budhan; Reed, Dolores; Ganbaatar, Oyunsaikhan; Sušnik, Stane; Haymerle, Agnes; Voigt, Christian C; Kaczensky, Petra
2015-06-15
In recent years, segmental stable isotope analysis of hair has been a focus of research in animal dietary ecology and migration. To correctly assign tail hair segments to seasons or even Julian dates, information on tail hair growth rates is a key parameter, but is lacking for most species. We (a) reviewed the literature on tail hair growth rates in mammals; b) made own measurements of three captive equid species; (c) measured δ(2)H, δ(13)C and δ(15)N values in sequentially cut tail hairs of three sympatric, free-ranging equids from the Mongolian Gobi, using isotope ratio mass spectrometry (IRMS); and (d) collected environmental background data on seasonal variation by measuring δ(2)H values in precipitation by IRMS and by compiling pasture productivity measured by remote sensing via the normalized difference vegetation index (NDVI). Tail hair growth rates showed significant inter- and intra-specific variation making temporal alignment problematic. In the Mongolian Gobi, high seasonal variation of δ(2)H values in precipitation results in winter lows and summer highs of δ(2)H values of available water sources. In water-dependent equids, this seasonality is reflected in the isotope signatures of sequentially cut tails hairs. In regions which are subject to strong seasonal patterns we suggest identifying key isotopes which show strong seasonal variation in the environment and can be expected to be reflected in the animal tissue. The known interval between the maxima and minima of these isotope values can then be used to correctly temporally align the segmental stable isotope signature for each individual animal. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.
Burnik Šturm, Martina; Pukazhenthi, Budhan; Reed, Dolores; Ganbaatar, Oyunsaikhan; Sušnik, Stane; Haymerle, Agnes; Voigt, Christian C; Kaczensky, Petra
2015-01-01
Rationale In recent years, segmental stable isotope analysis of hair has been a focus of research in animal dietary ecology and migration. To correctly assign tail hair segments to seasons or even Julian dates, information on tail hair growth rates is a key parameter, but is lacking for most species. Methods We (a) reviewed the literature on tail hair growth rates in mammals; b) made own measurements of three captive equid species; (c) measured δ2H, δ13C and δ15N values in sequentially cut tail hairs of three sympatric, free-ranging equids from the Mongolian Gobi, using isotope ratio mass spectrometry (IRMS); and (d) collected environmental background data on seasonal variation by measuring δ2H values in precipitation by IRMS and by compiling pasture productivity measured by remote sensing via the normalized difference vegetation index (NDVI). Results Tail hair growth rates showed significant inter- and intra-specific variation making temporal alignment problematic. In the Mongolian Gobi, high seasonal variation of δ2H values in precipitation results in winter lows and summer highs of δ2H values of available water sources. In water-dependent equids, this seasonality is reflected in the isotope signatures of sequentially cut tails hairs. Conclusions In regions which are subject to strong seasonal patterns we suggest identifying key isotopes which show strong seasonal variation in the environment and can be expected to be reflected in the animal tissue. The known interval between the maxima and minima of these isotope values can then be used to correctly temporally align the segmental stable isotope signature for each individual animal. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26044272
Climate-induced variations in global wildfire danger from 1979 to 2013
W. Matt Jolly; Mark A. Cochrane; Patrick H. Freeborn; Zachary A. Holden; Timothy J. Brown; Grant J. Williamson; David M. J. S. Bowman
2015-01-01
Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have...
How Surface Composition and Meteoroid Impacts Mediate Sodium and Potassium in the Lunar Exosphere
NASA Technical Reports Server (NTRS)
Colaprete, A.; Sarantos, M.; Wooden, D. H.; Stubbs, T. J.; Cook, A. M.; Shirley, M.
2016-01-01
Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition.
Spotswood, Erica N.; Bartolome, James W.; Allen-Diaz, Barbara
2015-01-01
Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery. PMID:26222069
Spotswood, Erica N; Bartolome, James W; Allen-Diaz, Barbara
2015-01-01
Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.
NASA Astrophysics Data System (ADS)
Leena, P. P.; Vijayakumar, K.; Anilkumar, V.; Pandithurai, G.
2017-11-01
Airborne particulate matter (PM) plays a vital role on climate change as well as human health. In the present study, temporal variability associated with mass concentrations of PM10, PM2.5, and PM1.0 were analysed using ground observations from Mahabaleswar (1348 m AMSL, 17.56 0N, 73.4 0E), a high-altitude station in the Western Ghats, India from June 2012 to May 2013. Concentrations of PM10, PM2.5, and PM1.0 showed strong diurnal, monthly, seasonal and weekday-weekend trends. The seasonal variation of PM1.0 and PM2.5 has showed highest concentrations during winter season compared to monsoon and pre-monsoon, but in the case of PM10 it showed highest concentrations in pre-monsoon season. Similarly, slightly higher PM concentrations were observed during weekends compared to weekdays. In addition, possible contributing factors to this temporal variability has been analysed based on the variation of secondary pollutants such as NO2, SO2, CO and O3 and long range transport of dust.
Marsden, Clare D; Woodroffe, Rosie; Mills, Michael G L; McNutt, J Weldon; Creel, Scott; Groom, Rosemary; Emmanuel, Masenga; Cleaveland, Sarah; Kat, Pieter; Rasmussen, Gregory S A; Ginsberg, Joshua; Lines, Robin; André, Jean-Marc; Begg, Colleen; Wayne, Robert K; Mable, Barbara K
2012-03-01
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA-DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (N(e) < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift. © 2012 Blackwell Publishing Ltd.
OH PLIF measurement in a spark ignition engine with a tumble flow
NASA Astrophysics Data System (ADS)
Kumar, Siddhartha; Moronuki, Tatsuya; Shimura, Masayasu; Minamoto, Yuki; Yokomori, Takeshi; Tanahashi, Mamoru; Strategic Innovation Program (SIP) Team
2017-11-01
Under lean conditions, high compression ratio and strong tumble flow; cycle-to-cycle variations of combustion in spark ignition (SI) engines is prominent, therefore, relation between flame propagation characteristics and increase of pressure needs to be clarified. The present study is aimed at exploring the spatial and temporal development of the flame kernel using OH planar laser-induced fluorescence (OH PLIF) in an optical SI engine. Equivalence ratio is changed at a fixed indicated mean effective pressure of 400 kPa. From the measurements taken at different crank angle degrees (CAD) after ignition, characteristics of flame behavior were investigated considering temporal evolution of in-cylinder pressure, and factors causing cycle-to-cycle variations are discussed. In addition, the effects of tumble flow intensity on flame propagation behavior were also investigated. This work is supported by the Cross-ministerial Strategic Innovation Program (SIP), `Innovative Combustion Technology'.
Nath, Cheryl D; Dattaraja, H S; Suresh, H S; Joshi, N V; Sukumar, R
2006-12-01
Tree diameter growth is sensitive to environmental fluctuations and tropical dry forests experience high seasonal and inter-annual environmental variation. Tree growth rates in a large permanent plot at Mudumalai, southern India, were examined for the influences of rainfall and three intrinsic factors (size, species and growth form) during three 4-year intervals over the period 1988-2000. Most trees had lowest growth during the second interval when rainfall was lowest, and skewness and kurtosis of growth distributions were reduced during this interval. Tree diameter generally explained less than 10% of growth variation and had less influence on growth than species identity or time interval. Intraspecific variation was high, yet species identity accounted for up to 16% of growth variation in the community. There were no consistent differences between canopy and understory tree growth rates; however, a few subgroups of species may potentially represent canopy and understory growth guilds. Environmentally-induced temporal variations in growth generally did not reduce the odds of subsequent survival. Growth rates appear to be strongly influenced by species identity and environmental variability in the Mudumalai dry forest. Understanding and predicting vegetation dynamics in the dry tropics thus also requires information on temporal variability in local climate.
Low-Altitude Satellite Measurements of Pulsating Auroral Electrons
NASA Technical Reports Server (NTRS)
Samara, M.; Michell, R. G.; Redmon, R. J.
2015-01-01
We present observations from the Defense Meteorological Satellite Program and Reimei satellites, where common-volume high-resolution ground-based auroral imaging data are available. These satellite overpasses of ground-based all-sky imagers reveal the specific features of the electron populations responsible for different types of pulsating aurora modulations. The energies causing the pulsating aurora mostly range from 3 keV to 20 keV but can at times extend up to 30 keV. The secondary, low-energy electrons (<1 keV) are diminished from the precipitating distribution when there are strong temporal variations in auroral intensity. There are often persistent spatial structures present inside regions of pulsating aurora, and in these regions there are secondary electrons in the precipitating populations. The reduction of secondary electrons is consistent with the strongly temporally varying pulsating aurora being associated with field-aligned currents and hence parallel potential drops of up to 1 kV.
Tracking modern human population history from linguistic and cranial phenotype
Reyes-Centeno, Hugo; Harvati, Katerina; Jäger, Gerhard
2016-01-01
Languages and genes arguably follow parallel evolutionary trajectories, descending from a common source and subsequently differentiating. However, although common ancestry is established within language families, it remains controversial whether language preserves a deep historical signal. To address this question, we evaluate the association between linguistic and geographic distances across 265 language families, as well as between linguistic, geographic, and cranial distances among eleven populations from Africa, Asia, and Australia. We take advantage of differential population history signals reflected by human cranial anatomy, where temporal bone shape reliably tracks deep population history and neutral genetic changes, while facial shape is more strongly associated with recent environmental effects. We show that linguistic distances are strongly geographically patterned, even within widely dispersed groups. However, they are correlated predominantly with facial, rather than temporal bone, morphology, suggesting that variation in vocabulary likely tracks relatively recent events and possibly population contact. PMID:27833101
Temporal and Spatial Variations in the Twinning Rate in Norway.
Fellman, Johan
2016-08-01
Strong geographical variations have been noted in the twinning rate (TWR). In general, the rate is high among people of African origin, intermediate among Europeans, and low among most Asiatic populations. In Europe, there tends to be a south-north cline, with a progressive increase in the TWR from south to north and a minimum around the Basque provinces. The highest TWRs in Europe have been found among the Nordic populations. Furthermore, within larger populations, small isolated subpopulations have been identified to have extreme, mainly high, TWRs. In the study of the temporal variation of the TWR in Norway, we consider the period from 1900 to 2014. The regional variation of the TWR in Norway is analyzed for the different counties for two periods, 1916-1926 and 1960-1988. Heterogeneity between the regional TWRs in Norway during 1916-1926 was found, but the goodness of fit for the alternative spatial models was only slight. The optimal regression model for the TWR in Norway has the longitude and its square as regressors. According to this model, the spatial variation is distributed in a west-east direction. For 1960-1988, no significant regional variation was observed. One may expect that the environmental and genetic differences between the counties in Norway have disappeared and that the regional TWRs have converged towards a common low level.
Cosmic rays, solar activity, magnetic coupling, and lightning incidence
NASA Technical Reports Server (NTRS)
Ely, J. T. A.
1984-01-01
A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.
Colaprete, A; Sarantos, M; Wooden, D H; Stubbs, T J; Cook, A M; Shirley, M
2016-01-15
Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition. Copyright © 2016, American Association for the Advancement of Science.
Manifestation of resonance-related chaos in coupled Josephson junctions
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.; Botha, A. E.; Suzuki, M.
2012-11-01
Manifestation of chaos in the temporal dependence of the electric charge is demonstrated through the calculation of the maximal Lyapunov exponent, phase-charge and charge-charge Lissajous diagrams and correlation functions. It is found that the number of junctions in the stack strongly influences the fine structure in the current-voltage characteristics and a strong proximity effect results from the nonperiodic boundary conditions. The observed resonance-related chaos exhibits intermittency. The criteria for a breakpoint region with no chaos are obtained. Such criteria could clarify recent experimental observations of variations in the power output from intrinsic Josephson junctions in high temperature superconductors.
Temporal dynamics of biogeochemical processes at the Norman Landfill site
Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.
2013-01-01
The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.
NASA Astrophysics Data System (ADS)
Thomas, Yoann; Mazurié, Joseph; Alunno-Bruscia, Marianne; Bacher, Cédric; Bouget, Jean-François; Gohin, Francis; Pouvreau, Stéphane; Struski, Caroline
2011-11-01
In order to assess the potential of various marine ecosystems for shellfish aquaculture and to evaluate their carrying capacities, there is a need to clarify the response of exploited species to environmental variations using robust ecophysiological models and available environmental data. For a large range of applications and comparison purposes, a non-specific approach based on 'generic' individual growth models offers many advantages. In this context, we simulated the response of blue mussel ( Mytilus edulis L.) to the spatio-temporal fluctuations of the environment in Mont Saint-Michel Bay (North Brittany) by forcing a generic growth model based on Dynamic Energy Budgets with satellite-derived environmental data (i.e. temperature and food). After a calibration step based on data from mussel growth surveys, the model was applied over nine years on a large area covering the entire bay. These simulations provide an evaluation of the spatio-temporal variability in mussel growth and also show the ability of the DEB model to integrate satellite-derived data and to predict spatial and temporal growth variability of mussels. Observed seasonal, inter-annual and spatial growth variations are well simulated. The large-scale application highlights the strong link between food and mussel growth. The methodology described in this study may be considered as a suitable approach to account for environmental effects (food and temperature variations) on physiological responses (growth and reproduction) of filter feeders in varying environments. Such physiological responses may then be useful for evaluating the suitability of coastal ecosystems for shellfish aquaculture.
Crow, Ryan S.; Karl Karlstrom,; Laura Crossey,; Richard Young,; Michael Ort,; Yemane Asmerom,; Victor Polyak,; Andrew Darling,
2014-01-01
The Grand Canyon region provides an excellent laboratory to examine the interplay between river incision, magmatism, and the geomorphic and tectonic processes that shape landscapes. Here we apply U-series, Ar–Ar, and cosmogenic burial dating of river terraces to examine spatial variations in incision rates along the 445 km length of the Colorado River through Grand Canyon. We also analyze strath terrace sequences that extend to heights of several hundred meters above the river, and integrate these with speleothem constrained maximum incision rates in several reaches to examine any temporal incision variations at the million-year time frame. This new high-resolution geochronology shows temporally steady long-term incision in any given reach of Grand Canyon but significant variations along its length from 160 m/Ma in the east to 101 m/Ma in the west. Spatial and temporal patterns of incision, and the long timescale of steady incision rule out models where geomorphic controls such as climate oscillations, bedrock strength, sediment load effects, or isostatic response to differential denudation are the first order drivers of canyon incision. The incision pattern is best explained by a model of Neogene and ongoing epeirogenic uplift due to an eastward propagating zone of increased upper mantle buoyancy that we infer from propagation of Neogene basaltic volcanism and a strong lateral gradient in modern upper mantle seismic structure.
Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.
1990-01-01
We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) over four breeding seasons to determine if this species exhibited sex-specific or temporal variation in foraging behavior. Significant differences between sexes during the prenestling period were found for foraging height and substrate height (foraging method, plant species/substrate, perch diameter, horizontal location from trunk, and prey location were not significantly different). During the nestling period, this divergence between sexes was evident for foraging height, substrate height, substrate / tree species, and prey location. Additionally, male warblers significantly altered their behavior for all seven foraging variables between the two periods, whereas females exhibited changes similar to those of males for five of the foraging variables. This parallel shift suggests a strong behavioral response by both sexes to proximate factors (such as vegetation structure, and prey abundance and distribution) that varied throughout the breeding season. Sex-specific foraging behavior during the prenestling period was best explained by differences in reproductive responsibilities rather than by the theory of intersexual competition for limited resources. During the nestling period, neither hypothesis by itself explained foraging divergences adequately. However, when integrated with the temporal responses of the warblers to changes in prey availability, reproductive responsibilities seemed to be of primary importance in explaining intersexual niche partitioning during the nestling period. We emphasize the importance of considering both intersexual and intraseasonal variation when quantifying a species' foraging ecology.
Evaluation of the temporal variations of air quality in Taipei City, Taiwan, from 1994 to 2003.
Chang, Shuenn-Chin; Lee, Chung-Te
2008-03-01
Data collected from the five air-quality monitoring stations established by the Taiwan Environmental Protection Administration in Taipei City from 1994 to 2003 are analyzed to assess the temporal variations of air quality. Principal component analysis (PCA) is adopted to convert the original measuring pollutants into fewer independent components through linear combinations while still retaining the majority of the variance of the original data set. Two principal components (PCs) are retained together explaining 82.73% of the total variance. PC1, which represents primary pollutants such as CO, NO(x), and SO(2), shows an obvious decrease over the last 10 years. PC2, which represents secondary pollutants such as ozone, displays a yearly increase over the time period when a reduction of primary pollutants is obvious. In order to track down the control measures put forth by the authorities, 47 days of high PM(10) concentrations caused by transboundary transport have been eliminated in analyzing the long-term trend of PM(10) in Taipei City. The temporal variations over the past 10 years show that the moderate peak in O(3) demonstrates a significant upward trend even when the local primary pollutants have been well under control. Monthly variations of PC scores demonstrate that primary pollution is significant from January to April, while ozone increases from April to August. The results of the yearly variations of PC scores show that PM(10) has gradually shifted from a strong correlation with PC1 during the early years to become more related to PC2 in recent years. This implies that after a reduction of primary pollutants, the proportion of secondary aerosols in PM(10) may increase. Thus, reducing the precursor concentrations of secondary aerosols will be an effective way to lower PM(10) concentrations.
Szigeti, Tamás; Dunster, Christina; Cattaneo, Andrea; Spinazzè, Andrea; Mandin, Corinne; Le Ponner, Eline; de Oliveira Fernandes, Eduardo; Ventura, Gabriela; Saraga, Dikaia E; Sakellaris, Ioannis A; de Kluizenaar, Yvonne; Cornelissen, Eric; Bartzis, John G; Kelly, Frank J
2017-06-01
In the frame of the OFFICAIR project, office buildings were investigated across Europe to assess how the office workers are exposed to different particulate matter (PM) characteristics (i.e. PM 2.5 mass concentration, particulate oxidative potential (OP) based on ascorbate and reduced glutathione depletion, trace element concentration and total particle number concentration (PNC)) within the buildings. Two offices per building were investigated during the working hours (5 consecutive days; 8h per day) in two campaigns. Differences were observed for all parameters across the office buildings. Our results indicate that the monitoring of the PM 2.5 mass concentration in different offices within a building might not reflect the spatial variation of the health relevant PM characteristics such as particulate OP or the concentration of certain trace elements (e.g., Cu, Fe), since larger differences were apparent within a building for these parameters compared to that obtained for the PM 2.5 mass concentration in many cases. The temporal variation was larger for almost all PM characteristics (except for the concentration of Mn) than the spatial differences within the office buildings. These findings indicate that repeated or long-term monitoring campaigns are necessary to have information about the temporal variation of the PM characteristics. However, spatial variation in exposure levels within an office building may cause substantial differences in total exposure in the long term. We did not find strong associations between the investigated indoor activities such as printing or windows opening and the PNC values. This might be caused by the large number of factors affecting PNC indoors and outdoors. Copyright © 2017 Elsevier B.V. All rights reserved.
Do Older Listeners With Hearing Loss Benefit From Dynamic Pitch for Speech Recognition in Noise?
Shen, Jing; Souza, Pamela E
2017-10-12
Dynamic pitch, the variation in the fundamental frequency of speech, aids older listeners' speech perception in noise. It is unclear, however, whether some older listeners with hearing loss benefit from strengthened dynamic pitch cues for recognizing speech in certain noise scenarios and how this relative benefit may be associated with individual factors. We first examined older individuals' relative benefit between natural and strong dynamic pitches for better speech recognition in noise. Further, we reported the individual factors of the 2 groups of listeners who benefit differently from natural and strong dynamic pitches. Speech reception thresholds of 13 older listeners with mild-moderate hearing loss were measured using target speech with 3 levels of dynamic pitch strength. Individuals' ability to benefit from dynamic pitch was defined as the speech reception threshold difference between speeches with and without dynamic pitch cues. The relative benefit of natural versus strong dynamic pitch varied across individuals. However, this relative benefit remained consistent for the same individuals across those background noises with temporal modulation. Those listeners who benefited more from strong dynamic pitch reported better subjective speech perception abilities. Strong dynamic pitch may be more beneficial than natural dynamic pitch for some older listeners to recognize speech better in noise, particularly when the noise has temporal modulation.
SuperDARN convection and Sondrestrom plasma drift
NASA Astrophysics Data System (ADS)
Xu, L.; Koustov, A. V.; Thayer, J.; McCready, M. A.
2001-07-01
Plasma convection measurements by the Goose Bay and Stokkseyri SuperDARN radar pair and the Sondrestrom incoherent scatter radar are compared in three different ways, by looking at the line-of-sight (l-o-s) velocities, by comparing the SuperDARN vectors and corresponding Sondrestrom l-o-s velocities and by comparing the end products of the instruments, the convection maps. All three comparisons show overall reasonable agreement of the convection measurements though the data spread is significant and for some points a strong disagreement is obvious. The convection map comparison shows a tendency for the SuperDARN velocities to be often less than the Sondrestrom drifts for strong flows (velocities > 1000 m/s) and larger for weak flows (velocities < 500 m/s). On average, both effects do not exceed 35%. Data indicate that inconsistencies between the two data sets occur largely at times of fast temporal variations of the plasma drift and for strongly irregular flow ac-cording to the SuperDARN convection maps. These facts indicate that the observed discrepancies are in many cases a result of the different spatial and temporal resolutions of the instruments.
2014-01-01
Background Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. Results In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. Conclusions In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist. PMID:24447386
Kesäniemi, Jenni E; Mustonen, Marina; Boström, Christoffer; Hansen, Benni W; Knott, K Emily
2014-01-22
Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist.
Wright, Emma L; Black, Colin R; Turner, Benjamin L; Sjögersten, Sofie
2013-12-01
Tropical peatlands play an important role in the global storage and cycling of carbon (C) but information on carbon dioxide (CO2) and methane (CH4) fluxes from these systems is sparse, particularly in the Neotropics. We quantified short and long-term temporal and small scale spatial variation in CO2 and CH4 fluxes from three contrasting vegetation communities in a domed ombrotrophic peatland in Panama. There was significant variation in CO2 fluxes among vegetation communities in the order Campnosperma panamensis > Raphia taedigera > Cyperus. There was no consistent variation among sites and no discernible seasonal pattern of CH4 flux despite the considerable range of values recorded (e.g. -1.0 to 12.6 mg m(-2) h(-1) in 2007). CO2 fluxes varied seasonally in 2007, being greatest in drier periods (300-400 mg m(-2) h(-1)) and lowest during the wet period (60-132 mg m(-2) h(-1)) while very high emissions were found during the 2009 wet period, suggesting that peak CO2 fluxes may occur following both low and high rainfall. In contrast, only weak relationships between CH4 flux and rainfall (positive at the C. panamensis site) and solar radiation (negative at the C. panamensis and Cyperus sites) was found. CO2 fluxes showed a diurnal pattern across sites and at the Cyperus sp. site CO2 and CH4 fluxes were positively correlated. The amount of dissolved carbon and nutrients were strong predictors of small scale within-site variability in gas release but the effect was site-specific. We conclude that (i) temporal variability in CO2 was greater than variation among vegetation communities; (ii) rainfall may be a good predictor of CO2 emissions from tropical peatlands but temporal variation in CH4 does not follow seasonal rainfall patterns; and (iii) diurnal variation in CO2 fluxes across different vegetation communities can be described by a Fourier model. © 2013 John Wiley & Sons Ltd.
Compensation of Gradient-Induced Magnetic Field Perturbations
Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.
2008-01-01
Pulsed magnetic field gradients are essential for MR imaging and localized spectroscopy applications. However, besides the desired linear field gradients, pulsed currents in a strong external magnetic field also generate unwanted effects like eddy currents, gradient coil vibrations and acoustic noise. While the temporal magnetic field perturbations associated with eddy currents lead to spectral line shape distortions and signal loss, the vibration-related modulations lead to anti-symmetrical sidebands of any large signal (i.e. water), thereby obliterating the signals from smaller signals (i.e. metabolites). Here the measurement, characterization and compensation of vibrations-related magnetic field perturbations is presented. Following a quantitative evaluation of the various temporal components of the main magnetic field, a digital B0 magnetic field waveform is generated which reduces all temporal variations of the main magnetic field to within the spectral noise level. PMID:18329304
NASA Astrophysics Data System (ADS)
Kiss, T. S.; Erdélyi, R.
2018-04-01
This study aims to provide further evidence for the potential influence of the global solar magnetic field on localized chromospheric jets, the macrospicules (MS). To find a connection between the long-term variation of properties of MS and other solar activity proxies, including, e.g., the temporal variation of the frequency shift of solar global oscillations, sunspot area, etc., a database overarching seven years of observations was compiled. This database contains 362 MS, based on observations at the 30.4 nm of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Three of the five investigated physical properties of MS show a clear long-term temporal variation after smoothing the raw data. Wavelet analysis of the temporal variation of maximum length, maximum area, and average velocity is carried out. The results reveal a strong pattern of periodicities at around 2 years (also referred to as quasi-biennial oscillations—QBOs). A comparison with solar activity proxies that also possess the properties of QBOs provides some interesting features: the minima and maxima of QBOs of MS properties occur at around the same epoch as the minima and maxima of these activity proxies. For most of the time span investigated, the oscillations are out of phase. This out-of-phase behavior was also corroborated by a cross-correlation analysis. These results suggest that the physical processes that generate and drive the long-term evolution of the global solar activity proxies may be coupled to the short-term local physical processes driving the macrospicules, and, therefore modulate the properties of local dynamics.
Ducret-Stich, Regina E; Tsai, Ming-Yi; Ragettli, Martina S; Ineichen, Alex; Kuenzli, Nino; Phuleria, Harish C
2013-07-01
Traffic-related air pollutants show high spatial variability near roads, posing a challenge to adequately assess exposures. Recent modeling approaches (e.g. dispersion models, land-use regression (LUR) models) have addressed this but mostly in urban areas where traffic is abundant. In contrast, our study area was located in a rural Swiss Alpine valley crossed by the main North-south transit highway of Switzerland. We conducted an extensive measurement campaign collecting continuous nitrogen dioxide (NO₂), particulate number concentrations (PN), daily respirable particulate matter (PM10), elemental carbon (EC) and organic carbon (OC) at one background, one highway and seven mobile stations from November 2007 to June 2009. Using these measurements, we built a hybrid model to predict daily outdoor NO₂ concentrations at residences of children participating in an asthma panel study. With the exception of OC, daily variations of the pollutants followed the temporal trends of heavy-duty traffic counts on the highway. In contrast, variations of weekly/seasonal means were strongly determined by meteorological conditions, e.g., winter inversion episodes. For pollutants related to primary exhaust emissions (i.e. NO₂, EC and PN) local spatial variation strongly depended on proximity to the highway. Pollutant concentrations decayed to background levels within 150 to 200 m from the highway. Two separate daily NO₂ prediction models were built using LUR approaches with (a) short-term traffic and weather data (model 1) and (b) subsequent addition of daily background NO₂ to previous model (model 2). Models 1 and 2 explained 70% and 91% of the variability in outdoor NO₂ concentrations, respectively. The biweekly averaged predictions from the final model 2 agreed very well with the independent biweekly integrated passive measurements taken at thirteen homes and nine community sites (validation R(2)=0.74). The excellent spatio-temporal performance of our model provides a very promising basis for the health effect assessment of the panel study. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, K.; Tape, C.; Bruton, C. P.; West, M. E.
2016-12-01
Continuous seismic recordings-or ambient noise-provide means for time-dependent monitoring of site conditions. Frequency-domain amplitude spectra of seismic recordings can be used to characterize time-dependent variations as a function of period (or frequency). Spatial variations can be characterized by using a set of stations across a large region. We analyze time-dependent ambient noise spectra from stations across central Alaska with three purposes. First, we are interested in monitoring the station performance and quality of a new array (FLATS) of 13 posthole seismometers near the Tanana River in Minto Flats. Second, we want to understand time-dependent threshold levels for earthquake detection: when noise is high, earthquake detections are low. Third, we are interested in identifying the effects of nature and Earth structure on seismic stations at different spatial-temporal scales. Our results show that seismic stations are sensitive to variations in wind speed and river flow. Correlations between wind speed and long-period (>10 seconds) seismic noise variations are probably due to tilt effects that have been previously documented. We identify a seismic signal at 10 Hz that is present only on stations close (<100 m) to the main channel of the Tanana river. The 10-Hz signal is strongly correlated with river gage height during summer and weakly correlated during the winter, when the river surface is covered in 1 m of ice. Spatial correlations among stations reveal large variations at shorter time scales (days); these could be due to weather anomalies. The amplitude of seismic noise at periods 2-10 s is strongly influenced by the thickness of sediment, which ranges from 0 m at bedrock sites to 6000 m at sites in the deepest part of Nenana basin. Our analysis allows us to better monitor the performance of temporary and permanent seismic stations, and to understand the physical causes of time-dependent noise variations in Alaska. Our findings show that seismic stations near rivers can potentially be used to monitor the flow of the river during summer and during ice-covered winter, raising the possibility for monitoring river ice break-up during April.
Temporal variations of Escherichia coli concentrations in a large Midwestern river
NASA Astrophysics Data System (ADS)
Schilling, Keith E.; Zhang, You-Kuan; Hill, Dennis R.; Jones, Christopher S.; Wolter, Calvin F.
2009-02-01
SummaryThe Raccoon River used by the Des Moines Water Works to serve more than 400,000 people in central Iowa is threatened by contamination from Escherichia coli bacteria from point and nonpoint sources. The 9389 km 2 watershed is highly agricultural, with 73% of the land in row crop production and widespread animal production. Results from 2155 grab samples from 1997 to 2005 for E. coli analysis were examined for temporal variations. E. coli concentrations were found to vary across years, seasons, and flow conditions, with a 9-year mean value of 1156 most probable number (MPN)/100 ml. Monthly concentrations exhibited clear seasonality with highest values in May through July. Although E. coli concentrations were higher during periods of greater discharge, the relation of log E. coli to log discharge was not particularly strong ( r2 = 0.35). The variogram of E. coli concentrations showed temporal correlation within a span of 4 days suggesting that concentrations measured on 1 day may be related in time to concentrations measured up to 3 days later and beyond 4 days the concentrations vary randomly. The spectral analysis of the time series of E. coli was also carried out and was fitted well with the spectrum of an exponential covariance function. Deciphering temporal patterns and correlation of E. coli bacteria in streams may be useful for developing future monitoring strategies to track concentration patterns and loads.
Seasonal and spatial patterns of growth of rainbow trout in the Colorado River in Grand Canyon, AZ
Yard, Micheal D.; Korman, Josh; Walters, Carl J.; Kennedy, T.A.
2016-01-01
Rainbow trout (Oncorhynchus mykiss) have been purposely introduced in many regulated rivers, with inadvertent consequences on native fishes. We describe how trout growth rates and condition could be influencing trout population dynamics in a 130 km section of the Colorado River below Glen Canyon Dam based on a large-scale mark–recapture program where ∼8000 rainbow trout were recaptured over a 3-year period (2012–2014). There were strong temporal and spatial variations in growth in both length and weight as predicted from von Bertalanffy and bioenergetic models, respectively. There was more evidence for seasonal variation in the growth coefficient and annual variation in the asymptotic length. Bioenergetic models showed more variability for growth in weight across seasons and years than across reaches. These patterns were consistent with strong seasonal variation in invertebrate drift and effects of turbidity on foraging efficiency. Highest growth rates and relative condition occurred in downstream reaches with lower trout densities. Results indicate that reduction in rainbow trout abundance in Glen Canyon will likely increase trout size in the tailwater fishery and may reduce downstream dispersal into Grand Canyon.
Chabanet, Pascale; Guillemot, Nicolas; Kulbicki, Michel; Vigliola, Laurent; Sarramegna, Sébastien
2010-01-01
From 2008 onwards, the coral reefs of Koné (New Caledonia) will be subjected to a major anthropogenic perturbation linked to development of a nickel mine. Dredging and sediment runoff may directly damage the reef environment whereas job creation should generate a large demographic increase and thus a rise in fishing activities. This study analyzed reef fish assemblages between 2002 and 2007 with a focus on spatio-temporal variability. Our results indicate strong spatial structure of fish assemblages through time. Total species richness, density and biomass were highly variable between years but temporal variations were consistent among biotopes. A remarkable spatio-temporal stability was observed for trophic (mean 4.6% piscivores, 53.1% carnivores, 30.8% herbivores and 11.4% planktivores) and home range structures of species abundance contributions. These results are discussed and compared with others sites of the South Pacific. For monitoring perspectives, some indicators related to expected disturbances are proposed. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Spatio-temporal variability of faunal and floral assemblages in Mediterranean temporary wetlands.
Rouissi, Maya; Boix, Dani; Muller, Serge D; Gascón, Stéphanie; Ruhí, Albert; Sala, Jordi; Bouattour, Ali; Ben Haj Jilani, Imtinen; Ghrabi-Gammar, Zeineb; Ben Saad-Limam, Samia; Daoud-Bouattour, Amina
2014-12-01
Six temporary wetlands in the region of Sejenane (Mogods, NW Tunisia) were studied in order to characterize the aquatic flora and fauna and to quantify their spatio-temporal variability. Samplings of aquatic fauna, phytosociological relevés, and measurements of the physicochemical parameters of water were taken during four different field visits carried out during the four seasons of the year (November 2009-July 2010). Despite the strong anthropic pressures on them, these temporary wetlands are home to rich and diversified biodiversity, including rare and endangered species. Spatial and temporal variations affect fauna and flora differently, as temporal variability influences the fauna rather more than the plants, which are relatively more dependent on spatial factors. These results demonstrate the interest of small water bodies for maintaining biodiversity at the regional level, and thus underscore the conservation issues of Mediterranean temporary wetlands that are declining on an ongoing basis currently. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Nakahashi, Wataru; Wakano, Joe Yuichiro; Henrich, Joseph
2012-12-01
Long before the origins of agriculture human ancestors had expanded across the globe into an immense variety of environments, from Australian deserts to Siberian tundra. Survival in these environments did not principally depend on genetic adaptations, but instead on evolved learning strategies that permitted the assembly of locally adaptive behavioral repertoires. To develop hypotheses about these learning strategies, we have modeled the evolution of learning strategies to assess what conditions and constraints favor which kinds of strategies. To build on prior work, we focus on clarifying how spatial variability, temporal variability, and the number of cultural traits influence the evolution of four types of strategies: (1) individual learning, (2) unbiased social learning, (3) payoff-biased social learning, and (4) conformist transmission. Using a combination of analytic and simulation methods, we show that spatial-but not temporal-variation strongly favors the emergence of conformist transmission. This effect intensifies when migration rates are relatively high and individual learning is costly. We also show that increasing the number of cultural traits above two favors the evolution of conformist transmission, which suggests that the assumption of only two traits in many models has been conservative. We close by discussing how (1) spatial variability represents only one way of introducing the low-level, nonadaptive phenotypic trait variation that so favors conformist transmission, the other obvious way being learning errors, and (2) our findings apply to the evolution of conformist transmission in social interactions. Throughout we emphasize how our models generate empirical predictions suitable for laboratory testing.
Byrne, Andrew W; Fogarty, Ursula; O'Keeffe, James; Newman, Chris
2015-09-01
Variation in climatic and habitat conditions can affect populations through a variety of mechanisms, and these relationships can act at different temporal and spatial scales. Using post-mortem badger body weight records from 15 878 individuals captured across the Republic of Ireland (7224 setts across ca. 15 000 km(2) ; 2009-2012), we employed a hierarchical multilevel mixed model to evaluate the effects of climate (rainfall and temperature) and habitat quality (landscape suitability), while controlling for local abundance (unique badgers caught/sett/year). Body weight was affected strongly by temperature across a number of temporal scales (preceding month or season), with badgers being heavier if preceding temperatures (particularly during winter/spring) were warmer than the long-term seasonal mean. There was less support for rainfall across different temporal scales, although badgers did exhibit heavier weights when greater rainfall occurred one or 2 months prior to capture. Badgers were also heavier in areas with higher landscape habitat quality, modulated by the number of individuals captured per sett, consistent with density-dependent effects reducing weights. Overall, the mean badger body weight of culled individuals rose during the study period (2009-2012), more so for males than for females. With predicted increases in temperature, and rainfall, augmented by ongoing agricultural land conversion in this region, we project heavier individual badger body weights in the future. Increased body weight has been associated with higher fecundity, recruitment and survival rates in badgers, due to improved food availability and energetic budgets. We thus predict that climate change could increase the badger population across the Republic of Ireland. Nevertheless, we emphasize that, locally, populations could still be vulnerable to extreme weather variability coupled with detrimental agricultural practice, including population management. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Jung, H.; Alsdorf, D.
2006-12-01
Monitoring discharge in the main channels of rivers and upland tributaries as well as storage changes in floodplain lakes is necessary for understanding flooding hazards, methane production, sediment transport, and nutrient exchange. Interferometric processing of synthetic aperture radar (SAR) data may enable hydrologists to detect environmental and ecological changes in hydrological systems over space and time. An aim of our experiments is to characterize interferometric SAR coherence variations that occur in Amazon aquatic habitats. We analyze coherence variations in JERS-1 data at three central Amazon sites; Lake Balbina, the Cabaliana floodplain, and the confluence of the Purus and Amazon rivers. Because radar pulse interactions with inundated vegetation typically follow a double-bounce travel path which returns energy to the antenna, coherence will vary with vegetation type, physical baseline, and temporal baseline. Balbina's vegetation consists mostly of forest and inundated trunks of dead, leafless trees as opposed to Cabaliana and Amazon- Purus (dominated by flooded forests), thus it serves to isolate the vegetation signal. Coherence variations with baselines were determined from 253 interferograms at Balbina, 210 at Calbaliana, and 153 at Purus. The average temporal and perpendicular baselines (mean std.) are 574 394 days and 1708 1159 m at Balbina, 637 435 days and 1381 981 m at Cabaliana, and 587 425 days and 1430 964 m at Purus. Balbina has a stronger coherence than either Cabaliana or Amazon-Purus. With results of Mann-Whitney statistical tests, Balbina has a difference between terre-firme and flooded coherence values plotted with perpendicular baseline but Cabaliana and Amazon-Purus do not show this difference. Balbina has a linearly decreasing trend in coherence plotted with temporal baseline whereas Cabaliana and Amazon-Purus have a steep drop-off, non- linear change. A strong annual periodicity is evident on power spectrums of the coherence values for Cabaliana and Amazon-Purus, but not in Balbina and is likely an indicator of the annual Amazon flood wave. Each ecological habitat is delineated in the Balbina coherence values plotted with temporal baseline, but only during high water and time-periods less than 2 years is such delineation visible in the Cabaliana and Amazon-Purus regions. Taken together, these observations suggest terre-firme does not have a seasonal variation whereas flooded areas vary with the season.
NASA Astrophysics Data System (ADS)
Makov, Y. N.; Espinosa, V.; Sánchez-Morcillo, V. J.; Ramis, J.; Cruañes, J.; Camarena, F.
2006-05-01
On the basis of theoretical concepts, an accurate and complete experimental and numerical examination of the on-axis distribution and the corresponding temporal profiles for low-Fresnel-number focused ultrasound beams under increasing transducer input voltage has been performed. For a real focusing transducer with sufficiently small Fresnel number, a strong initial (linear) shift of the main on-axis pressure maximum from geometrical focal point towards the transducer, and its following displacement towards the focal point and backward motion as the driving transducer voltage increase until highly nonlinear regimes were fixed. The simultaneous monitoring of the temporal waveform modifications determines the real roles and interplay between different nonlinear effects (refraction and attenuation) in the observed dynamics of on-axis pressure maximum. The experimental results are in good agreement with numerical solutions of KZK equation, confirming that the observed dynamic shift of the maximum pressure point is related only to the interplay between diffraction, dissipation and nonlinearity of the acoustic wave.
Local adaptation in transgenerational responses to predators
Walsh, Matthew R.; Castoe, Todd; Holmes, Julian; Packer, Michelle; Biles, Kelsey; Walsh, Melissa; Munch, Stephan B.; Post, David M.
2016-01-01
Environmental signals can induce phenotypic changes that span multiple generations. Along with phenotypic responses that occur during development (i.e. ‘within-generation’ plasticity), such ‘transgenerational plasticity’ (TGP) has been documented in a diverse array of taxa spanning many environmental perturbations. New theory predicts that temporal stability is a key driver of the evolution of TGP. We tested this prediction using natural populations of zooplankton from lakes in Connecticut that span a large gradient in the temporal dynamics of predator-induced mortality. We reared more than 120 clones of Daphnia ambigua from nine lakes for multiple generations in the presence/absence of predator cues. We found that temporal variation in mortality selects for within-generation plasticity while consistently strong (or weak) mortality selects for increased TGP. Such results provide us the first evidence for local adaptation in TGP and argue that divergent ecological conditions select for phenotypic responses within and across generations. PMID:26817775
Temporal variation of intertidal seagrass in southern China (2008-2014)
NASA Astrophysics Data System (ADS)
Qiu, Guanglong; Short, Frederick T.; Fan, Hangqing; Liu, Guohua
2017-09-01
Understanding the temporal dynamics of seagrasses and the major influences on seagrass growth is critical for seagrass habitat conservation and administration. However, little work has been done regarding these issues in southern China. To examine inter-annual and seasonal variations of the intertidal Halophila ovalis community in southern China, we conducted quarterly sampling using the SeagrassNet methodology and assessed environmental conditions as well as direct anthropogenic impacts on the seagrass meadow from July 2008 to October 2014. Our study demonstrated strong inter-annual and seasonal dynamics of the intertidal seagrass meadow in the study area. Generally, the community performed best (highest seagrass cover, leaf area, shoot density, total biomass) in summer and worst in spring among the 4 seasons. The temporal variations in the seagrass community attributes (e.g. above-ground biomass) were significantly affected by precipitation, atmospheric visibility, and salinity, while leaf width was significantly negatively correlated with temperature, atmospheric visibility and salinity. Temperature was a major factor influencing the seagrass community (both macroalgae and seagrass), with temperature data showing an inverse relationship between seagrass and macroalgae. The above-ground: below-ground biomass ratio and leaf width of H. ovalis were the most sensitive plant parameters monitored when assessing environmental interactions. Human physical disturbances did not have a significant effect on seagrass dynamics in the study area. We concluded that long-term monitoring (like SeagrassNet) is valuable in understanding the relationship between environmental variables and seagrasses.
Amato, Katherine R; Leigh, Steven R; Kent, Angela; Mackie, Roderick I; Yeoman, Carl J; Stumpf, Rebecca M; Wilson, Brenda A; Nelson, Karen E; White, Bryan A; Garber, Paul A
2015-02-01
For most mammals, including nonhuman primates, diet composition varies temporally in response to differences in food availability. Because diet influences gut microbiota composition, it is likely that the gut microbiota of wild mammals varies in response to seasonal changes in feeding patterns. Such variation may affect host digestive efficiency and, ultimately, host nutrition. In this study, we investigate the temporal variation in diet and gut microbiota composition and function in two groups (N = 13 individuals) of wild Mexican black howler monkeys (Alouatta pigra) over a 10-month period in Palenque National Park, Mexico. Temporal changes in the relative abundances of individual bacterial taxa were strongly correlated with changes in host diet. For example, the relative abundance of Ruminococcaceae was highest during periods when energy intake was lowest, and the relative abundance of Butyricicoccus was highest when young leaves and unripe fruit accounted for 68 % of the diet. Additionally, the howlers exhibited increased microbial production of energy during periods of reduced energy intake from food sources. Because we observed few changes in howler activity and ranging patterns during the course of our study, we propose that shifts in the composition and activity of the gut microbiota provided additional energy and nutrients to compensate for changes in diet. Energy and nutrient production by the gut microbiota appears to provide an effective buffer against seasonal fluctuations in energy and nutrient intake for these primates and is likely to have a similar function in other mammal species.
Temporal Variation in the Association between Benzene and Leukemia Mortality
Richardson, David B.
2008-01-01
Background Benzene is a human carcinogen. Exposure to benzene occurs in occupational and environmental settings. Objective I evaluated variation in benzene-related leukemia with age at exposure and time since exposure. Methods I evaluated data from a cohort of 1,845 rubber hydrochloride workers. Benzene exposure–leukemia mortality trends were estimated by applying proportional hazards regression methods. Temporal variation in the impact of benzene on leukemia rates was assessed via exposure time windows and fitting of a multistage cancer model. Results The association between leukemia mortality and benzene exposures was of greatest magnitude in the 10 years immediately after exposure [relative rate (RR) at 10 ppm-years = 1.19; 95% confidence interval (CI), 1.10–1.29]; the association was of smaller magnitude in the period 10 to < 20 years after exposure (RR at 10 ppm-years = 1.05; 95% CI, 0.97–1.13); and there was no evidence of association ≥ 20 years after exposure. Leukemia was more strongly associated with benzene exposures accrued at ≥ 45 years of age (RR at 10 ppm-years = 1.11; 95% CI, 1.04–1.17) than with exposures accrued at younger ages (RR at 10 ppm-years = 1.01; 95% CI, 0.92–1.09). Jointly, these temporal effects can be efficiently modeled as a multistage process in which benzene exposure affects the penultimate stage in disease induction. Conclusions Further attention should be given to evaluating the susceptibility of older workers to benzene-induced leukemia. PMID:18335105
Systematic Variations of Macrospicule Properties Observed by SDO/AIA over Half a Decade
NASA Astrophysics Data System (ADS)
Kiss, T. S.; Gyenge, N.; Erdélyi, R.
2017-01-01
Macrospicules (MSs) are localized small-scale jet-like phenomena in the solar atmosphere, which have the potential to transport a considerable amount of momentum and energy from the lower solar atmospheric regions to the transition region and the low corona. A detailed statistical analysis of their temporal behavior and spatial properties is carried out in this work. Using state-of-the-art spatial and temporal resolution observations, yielded by the Atmospheric Imaging Assembly of Solar Dynamics Observatory, we constructed a database covering a 5.5 year long period, containing 301 macrospicules that occurred between 2010 June and 2015 December, detected at 30.4 nm wavelength. Here, we report the long-term variation of the height, length, average speed, and width of MS in coronal holes and Quiet Sun areas both in the northern and southern hemisphere of the Sun. This new database helps to refine our knowledge about the physical properties of MSs. Cross-correlation of these properties shows a relatively strong correlation, but not always a dominant one. However, a more detailed analysis indicates a wave-like signature in the behavior of MS properties in time. The periods of these long-term oscillatory behaviors are just under two years. Also, in terms of solar north/south hemispheres, a strong asymmetry was found in the spatial distribution of MS properties, which may be accounted for by the solar dynamo. This latter feature may then indicate a strong and rather intrinsic link between global internal and local atmospheric phenomena in the Sun.
Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.
Kim, Yeongmi; Harders, Matthias; Gassert, Roger
2015-01-01
Delivering distance information of nearby obstacles from sensors embedded in a white cane-in addition to the intrinsic mechanical feedback from the cane-can aid the visually impaired in ambulating independently. Haptics is a common modality for conveying such information to cane users, typically in the form of vibrotactile signals. In this context, we investigated the effect of tactile rendering methods, tactile feedback configurations and directions of tactile flow on the identification of obstacle distance. Three tactile rendering methods with temporal variation only, spatio-temporal variation and spatial/temporal/intensity variation were investigated for two vibration feedback configurations. Results showed a significant interaction between tactile rendering method and feedback configuration. Spatio-temporal variation generally resulted in high correct identification rates for both feedback configurations. In the case of the four-finger vibration, tactile rendering with spatial/temporal/intensity variation also resulted in high distance identification rate. Further, participants expressed their preference for the four-finger vibration over the single-finger vibration in a survey. Both preferred rendering methods with spatio-temporal variation and spatial/temporal/intensity variation for the four-finger vibration could convey obstacle distance information with low workload. Overall, the presented findings provide valuable insights and guidance for the design of haptic displays for electronic travel aids for the visually impaired.
Grazing weakens temporal stabilizing effects of diversity in the Eurasian steppe.
Ren, Haiyan; Taube, Friedhelm; Stein, Claudia; Zhang, Yingjun; Bai, Yongfei; Hu, Shuijin
2018-01-01
Many biodiversity experiments have demonstrated that plant diversity can stabilize productivity in experimental grasslands. However, less is known about how diversity-stability relationships are mediated by grazing. Grazing is known for causing species losses, but its effects on plant functional groups (PFGs) composition and species asynchrony, which are closely correlated with ecosystem stability, remain unclear. We conducted a six-year grazing experiment in a semi-arid steppe, using seven levels of grazing intensity (0, 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 sheep per hectare) and two grazing systems (i.e., a traditional, continuous grazing system during the growing period (TGS), and a mixed one rotating grazing and mowing annually (MGS)), to examine the effects of grazing system and grazing intensity on the abundance and composition of PFGs and diversity-stability relationships. Ecosystem stability was similar between mixed and continuous grazing treatments. However, within the two grazing systems, stability was maintained through different pathways, that is, along with grazing intensity, persistence biomass variations in MGS, and compensatory interactions of PFGs in their biomass variations in TGS. Ecosystem temporal stability was not decreased by species loss but rather remain unchanged by the strong compensatory effects between PFGs, or a higher grazing-induced decrease in species asynchrony at higher diversity, and a higher grazing-induced increase in the temporal variation of productivity in diverse communities. Ecosystem stability of aboveground net primary production was not related to species richness in both grazing systems. High grazing intensity weakened the temporal stabilizing effects of diversity in this semi-arid grassland. Our results demonstrate that the productivity of dominant PFGs is more important than species richness for maximizing stability in this system. This study distinguishes grazing intensity and grazing system from diversity effects on the temporal stability, highlighting the need to better understand how grazing regulates ecosystem stability, plant diversity, and their synergic relationships.
Jacquet, Stéphanie; Huber, Karine; Guis, Hélène; Setier-Rio, Marie-Laure; Goffredo, Maria; Allène, Xavier; Rakotoarivony, Ignace; Chevillon, Christine; Bouyer, Jérémy; Baldet, Thierry; Balenghien, Thomas; Garros, Claire
2016-03-11
Introduction of vector species into new areas represents a main driver for the emergence and worldwide spread of vector-borne diseases. This poses a substantial threat to livestock economies and public health. Culicoides imicola Kieffer, a major vector species of economically important animal viruses, is described with an apparent range expansion in Europe where it has been recorded in south-eastern continental France, its known northern distribution edge. This questioned on further C. imicola population extension and establishment into new territories. Studying the spatio-temporal genetic variation of expanding populations can provide valuable information for the design of reliable models of future spread. Entomological surveys and population genetic approaches were used to assess the spatio-temporal population dynamics of C. imicola in France. Entomological surveys (2-3 consecutive years) were used to evaluate population abundances and local spread in continental France (28 sites in the Var department) and in Corsica (4 sites). We also genotyped at nine microsatellite loci insects from 3 locations in the Var department over 3 years (2008, 2010 and 2012) and from 6 locations in Corsica over 4 years (2002, 2008, 2010 and 2012). Entomological surveys confirmed the establishment of C. imicola populations in Var department, but indicated low abundances and no apparent expansion there within the studied period. Higher population abundances were recorded in Corsica. Our genetic data suggested the absence of spatio-temporal genetic changes within each region but a significant increase of the genetic differentiation between Corsican and Var populations through time. The lack of intra-region population structure may result from strong gene flow among populations. We discussed the observed temporal variation between Corsica and Var as being the result of genetic drift following introduction, and/or the genetic characteristics of populations at their range edge. Our results suggest that local range expansion of C. imicola in continental France may be slowed by the low population abundances and unsuitable climatic and environmental conditions.
Nistelberger, Heidi; Byrne, Margaret; Coates, David; Roberts, J. Dale
2014-01-01
The Yilgarn Banded Iron Formations of Western Australia are topographical features that behave as terrestrial islands within the otherwise flat, semi-arid landscape. The formations are characterised by a high number of endemic species, some of which are distributed across multiple formations without inhabiting the intervening landscape. These species provide an ideal context for phylogeographic analysis, to investigate patterns of genetic variation at both spatial and temporal scales. We examined genetic variation in the spirostreptid millipede, Atelomastix bamfordi, found on five of these Banded Iron Formations at two mitochondrial loci and 11 microsatellite loci. Strong phylogeographic structuring indicated the five populations became isolated during the Pleistocene, a period of intensifying aridity in this landscape, when it appears populations have been restricted to pockets of moist habitat provided by the formations. The pattern of reciprocal monophyly identified within the mtDNA and strong differentiation within the nuclear microsatellite data highlight the evolutionary significance of these divergent populations and we suggest the degree of differentiation warrants designation of each as a conservation unit. PMID:24663390
NASA Astrophysics Data System (ADS)
Metzen, D.; Sheridan, G. J.; Benyon, R. G.; Bolstad, P. V.; Nyman, P.; Lane, P. N. J.
2017-12-01
Large areas of forest are often treated as being homogeneous just because they fall in a single climate category. However, we observe strong vegetation patterns in relation to topography in SE Australian forests and thus hypothesise that ET will vary spatially as well. Spatial heterogeneity evolves over different temporal scales in response to climatic forcing with increasing time lag from soil moisture (sub-yearly), to vegetation (10s -100s of years) to soil properties and topography (>100s of years). Most importantly, these processes and time scales are not independent, creating feedbacks that result in "co-evolved stable states" which yield the current spatial terrain, vegetation and ET patterns. We used up-scaled sap flux and understory ET measurements from water-balance plots, as well as LiDAR derived terrain and vegetation information, to infer links between spatio-temporal energy and water fluxes, topography and vegetation patterns at small catchment scale. Topography caused variations in aridity index between polar and equatorial-facing slopes (1.3 vs 1.8), which in turn manifested in significant differences in sapwood area index (6.9 vs 5.8), overstory LAI (3.0 vs 2.3), understory LAI (0.5 vs 0.4), sub-canopy radiation load (4.6 vs 6.8 MJ m-2 d-1), overstory transpiration (501 vs 347 mm a-1) and understory ET (79 vs 155 mm a-1). Large spatial variation in overstory transpiration (195 to 891 mm a-1) was observed over very short distances (100s m); a range representative of diverse forests such as arid open woodlands and wet mountain ash forests. Contrasting, non-linear overstory and understory ET patterns were unveiled between aspects, and topographic thresholds were lower for overstory than understory ET. While ET partitioning remained stable on polar-facing slopes regardless of slope position, overstory contribution gradually decreased with increasing slope inclination on equatorial aspects. Further, we show that ET patterns and controls underlie strong seasonality and overstory LAI explained 61% of variations in ET partitioning over the entire domain. Strong links between vegetation, topography and energy and water fluxes offer the potential to exploit terrain and vegetation patterns to infer spatio-temporal ET dynamics ultimately helping manage water resources in a changing climate.
Cai, PingGen; Takahashi, Ryosuke; Kuribayashi-Shigetomi, Kaori; Subagyo, Agus; Sueoka, Kazuhisa; Maloney, John M; Van Vliet, Krystyn J; Okajima, Takaharu
2017-08-08
Changes in the cytoskeletal organization within cells can be characterized by large spatial and temporal variations in rheological properties of the cell (e.g., the complex shear modulus G ∗ ). Although the ensemble variation in G ∗ of single cells has been elucidated, the detailed temporal variation of G ∗ remains unknown. In this study, we investigated how the rheological properties of individual fibroblast cells change under a spatially confined environment in which the cell translational motion is highly restricted and the whole cell shape remains unchanged. The temporal evolution of single-cell rheology was probed at the same measurement location within the cell, using atomic force microscopy-based oscillatory deformation. The measurements reveal that the temporal variation in the power-law rheology of cells is quantitatively consistent with the ensemble variation, indicating that the cell system satisfies an ergodic hypothesis in which the temporal statistics are identical to the ensemble statistics. The autocorrelation of G ∗ implies that the cell mechanical state evolves in the ensemble of possible states with a characteristic timescale. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Infrared Radiance Structure of the Aurora and Airglow,
1982-06-30
rate does not vary strongly over the horizontal path, which is 7 x 80 = 560 km. In practice nonuniformity of the hydroxyl emission profile (discussed in... nonuniformity of the wavelength. From the near-zenith temporal (and spatial) variations anj gravity wave theory, it may be concluded that a broad band of...Private communication (1982). 11-4. D.H. Archer, Further Requirements for Improved Pre- diction Capability: LWIR , DNA 5471F (31 Oct 80). 11-5. B.D
Hwang, Chiachi; Wu, Weimin; Gentry, Terry J; Carley, Jack; Corbin, Gail A; Carroll, Sue L; Watson, David B; Jardine, Phil M; Zhou, Jizhong; Criddle, Craig S; Fields, Matthew W
2009-01-01
Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5-year period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate and ethanol were strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate reducers and metal reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared with the population variation through canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bioreduction; however, the two biostimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.
Online elemental analysis of process gases with ICP-OES: a case study on waste wood combustion.
Wellinger, Marco; Wochele, Joerg; Biollaz, Serge M A; Ludwig, Christian
2012-10-01
A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium. Copyright © 2012 Elsevier Ltd. All rights reserved.
Temporal changes of 210Po in temperate coastal waters.
Wildgust, M A; McDonald, P; White, K N
1998-06-18
The temporal variation of Polonium-210 (210Po) was examined in coastal sea water, the mussel Mytilus edulis, the winkle Littorina littorea and green alga Ulva lactuca in order to investigate the entry of 210Po into the marine food chain. More than 99% of 210Po in the water column occurred in the particulate phase. Dissolved 210Po concentrations peaked during the spring phytoplankton bloom and it is suggested this is related to preferential scavenging of 210Po by the increased numbers of bacteria, viruses and small dissolved particulates. Changes in L. littorea 210Po specific activity are thought not to be related to food, but to a drop in body weight following spawning. Much of the 210Po accumulated by M. edulis was located in the digestive gland. The specific activity of 210Po in the digestive gland of M. edulis was shown to be strongly correlated with changes in sea water suspended particulate specific activity. Examination of other trace metal (Ag, Al, As, Ca, Cd, Cr, Co, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Sb, Se, Sn and Zn) variations in the digestive gland revealed that class B and borderline metals had a strong positive correlation with 210Po. On-going work is investigating whether the accumulation and loss of 210Po is affected by the presence of metallothioneins.
Determining hydroclimatic extreme events over the south-central Andes
NASA Astrophysics Data System (ADS)
RamezaniZiarani, Maryam; Bookhagen, Bodo; Schmidt, Torsten; Wickert, Jens; de la Torre, Alejandro; Volkholz, Jan
2017-04-01
The south-central Andes in NW Argentina are characterized by a strong rainfall asymmetry. In the east-west direction exists one of the steepest rainfall gradients on Earth, resulting from the large topographic differences in this region. In addition, in the north-south direction the rainfall intensity varies as the climatic regime shifts from the tropical central Andes to the subtropical south-central Andes. In this study, we investigate hydroclimatic extreme events over the south-central Andes using ERA-Interim reanalysis data of the ECMWF (European Centre for Medium-Range Weather Forecasts), the high resolution regional climate model (COSMO-CLM) data and TRMM (Tropical Rainfall Measuring Mission) data. We divide the area in three different study regions based on elevation: The high-elevation Altiplano-Puna plateau, an intermediate area characterized by intramontane basins, and the foreland area. We analyze the correlations between climatic variables, such as specific humidity, zonal wind component, meridional wind component and extreme rainfall events in all three domains. The results show that there is a high positive temporal correlation between extreme rainfall events (90th and 99th percentile rainfall) and extreme specific humidity events (90th and 99th percentile specific humidity). In addition, the temporal variations analysis represents a trend of increasing specific humidity with time during time period (1994-2013) over the Altiplano-Puna plateau which is in agreement with rainfall trend. Regarding zonal winds, our results indicate that 99th percentile rainfall events over the Altiplano-Puna plateau coincide temporally with strong easterly winds from intermountain and foreland regions in the east. In addition, the results regarding the meridional wind component represent strong northerly winds in the foreland region coincide temporally with 99th percentile rainfall over the Altiplano-Puna plateau.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yuelu; Huang, Shengzhi; Chang, Jianxia
It is of importance to comprehensively investigate the spatial-temporal changes in potential evaporation patterns, which helps guide the long-term water resource allocation and irrigation managements. In this study, the Cloud model was adopted to quantify the average, uniformity, and stability of annual potential evaporation in the Wei River Basin (WRB), a typical arid and semi-arid region in China.. The cross wavelet analysis was then applied to explore the correlations between potential evaporation and Arctic Oscillation (AO)/El Niño Southern Oscillation (ENSO) with an aim to determine the possible causes of potential evaporation variations. Results indicated that: (1) the average of annualmore » potential evaporation in the WRB first declined and then increased, which was similar with its stability, whilst its dispersion degree exhibited a decreasing trend, implying that potential evaporation has a small inter-annual variation; (2) the average of potential evaporation in the western basin was obviously smaller than that in the other areas, while its uniformity and stability in the Guanzhong plain and the Loess Plateau areas are larger than those in other areas, particularly in the western basin where the uniformity and stability are the smallest; (3) both AO and ENSO exhibited strong correlations with potential evaporation variations, indicating that both AO and ENSO have played an important role in the annual potential evaporation variations in the WRB.« less
NASA Astrophysics Data System (ADS)
Meinen, Christopher S.; Speich, Sabrina; Piola, Alberto R.; Ansorge, Isabelle; Campos, Edmo; Kersalé, Marion; Terre, Thierry; Chidichimo, Maria Paz; Lamont, Tarron; Sato, Olga T.; Perez, Renellys C.; Valla, Daniel; van den Berg, Marcel; Le Hénaff, Matthieu; Dong, Shenfu; Garzoli, Silvia L.
2018-05-01
Six years of simultaneous moored observations near the western and eastern boundaries of the South Atlantic are combined with satellite winds to produce a daily time series of the basin-wide meridional overturning circulation (MOC) volume transport at 34.5°S. The results demonstrate that barotropic and baroclinic signals at both boundaries cause significant transport variations, and as such must be concurrently observed. The data, spanning 20 months during 2009-2010 and 4 years during 2013-2017, reveal a highly energetic MOC record with a temporal standard deviation of 8.3 Sv, and strong variations at time scales ranging from a few days to years (peak-to-peak range = 54.6 Sv). Seasonal transport variations are found to have both semiannual (baroclinic) and annual (Ekman and barotropic) timescales. Interannual MOC variations result from both barotropic and baroclinic changes, with density profile changes at the eastern boundary having the largest impact on the year-to-year variations.
Temporal variations of Escherichia coli concentrations in a large Midwestern river
Schilling, K.E.; Zhang, Y.-K.; Hill, D.R.; Jones, C.S.; Wolter, C.F.
2009-01-01
The Raccoon River used by the Des Moines Water Works to serve more than 400,000 people in central Iowa is threatened by contamination from Escherichia coli bacteria from point and nonpoint sources. The 9389 km2 watershed is highly agricultural, with 73% of the land in row crop production and widespread animal production. Results from 2155 grab samples from 1997 to 2005 for E. coli analysis were examined for temporal variations. E. coli concentrations were found to vary across years, seasons, and flow conditions, with a 9-year mean value of 1156 most probable number (MPN)/100 ml. Monthly concentrations exhibited clear seasonality with highest values in May through July. Although E. coli concentrations were higher during periods of greater discharge, the relation of log E. coli to log discharge was not particularly strong (r2 = 0.35). The variogram of E. coli concentrations showed temporal correlation within a span of 4 days suggesting that concentrations measured on 1 day may be related in time to concentrations measured up to 3 days later and beyond 4 days the concentrations vary randomly. The spectral analysis of the time series of E. coli was also carried out and was fitted well with the spectrum of an exponential covariance function. Deciphering temporal patterns and correlation of E. coli bacteria in streams may be useful for developing future monitoring strategies to track concentration patterns and loads. ?? 2008 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wiese, D. N.; McCullough, C. M.
2017-12-01
Studies have shown that both single pair low-low satellite-to-satellite tracking (LL-SST) and dual-pair LL-SST hypothetical future satellite gravimetry missions utilizing improved onboard measurement systems relative to the Gravity Recovery and Climate Experiment (GRACE) will be limited by temporal aliasing errors; that is, the error introduced through deficiencies in models of high frequency mass variations required for the data processing. Here, we probe the spatio-temporal characteristics of temporal aliasing errors to understand their impact on satellite gravity retrievals using high fidelity numerical simulations. We find that while aliasing errors are dominant at long wavelengths and multi-day timescales, improving knowledge of high frequency mass variations at these resolutions translates into only modest improvements (i.e. spatial resolution/accuracy) in the ability to measure temporal gravity variations at monthly timescales. This result highlights the reliance on accurate models of high frequency mass variations for gravity processing, and the difficult nature of reducing temporal aliasing errors and their impact on satellite gravity retrievals.
Method of and apparatus for measuring vapor density
Nelson, Loren D.; Cerni, Todd A.
1989-01-01
Apparatus and method determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavlength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to: ##EQU1## where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4)+K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation.
NASA Astrophysics Data System (ADS)
Benyon, Richard G.; Lane, Patrick N. J.; Jaskierniak, Dominik; Kuczera, George; Haydon, Shane R.
2015-07-01
Mean sapwood thickness, measured in fifteen 73 year old Eucalyptus regnans and E. delegatensis stands, correlated strongly with forest overstorey stocking density (R2 0.72). This curvilinear relationship was used with routine forest stocking density and basal area measurements to estimate sapwood area of the forest overstorey at various times in 15 research catchments in undisturbed and disturbed forests located in the Great Dividing Range, Victoria, Australia. Up to 45 years of annual precipitation and streamflow data available from the 15 catchments were used to examine relationships between mean annual loss (evapotranspiration estimated as mean annual precipitation minus mean annual streamflow), and sapwood area. Catchment mean sapwood area correlated strongly (R2 0.88) with catchment mean annual loss. Variation in sapwood area accounted for 68% more variation in mean annual streamflow than precipitation alone (R2 0.90 compared with R2 0.22). Changes in sapwood area accounted for 96% of the changes in mean annual loss observed after forest thinning or clear-cutting and regeneration. We conclude that forest inventory data can be used reliably to predict spatial and temporal variation in catchment annual losses and streamflow in response to natural and imposed disturbances in even-aged forests. Consequently, recent advances in mapping of sapwood area using airborne light detection and ranging will enable high resolution spatial and temporal mapping of mean annual loss and mean annual streamflow over large areas of forested catchment. This will be particularly beneficial in management of water resources from forested catchments subject to disturbance but lacking reliable long-term (years to decades) streamflow records.
Nakano, M.; Kumagai, H.
2005-01-01
We investigate temporal variations in the complex frequencies (frequency and quality factor Q) of long-period (LP) events that occurred at Kusatsu-Shirane Volcano, central Japan. We analyze LP waveforms observed at this volcano in the period between 1988 and 1995, which covers a seismically active period between 1989 and 1993. Systematic temporal variations in the complex frequencies are observed in October-November 1989, July-October 1991, and September 1992-January 1993. We use acoustic properties of a crack filled with hydrothermal fluids to interpret the observed temporal variations in the complex frequencies. The temporal variations in October-November 1989 can be divided into two periods, which are explained by a gradual decrease and increase of a gas-volume fraction in a water-steam mixture in a crack, respectively. The temporal variations in July-October 1991 can be also divided into two periods. These variations in the first and second periods are similar to those observed in November 1989 and in September-November 1992, respectively, and are interpreted as drying of a water-steam mixture and misty gas in a crack, respectively. The repeated nature of the temporal variations observed in similar seasons between July and November suggests the existence of seasonality in the occurrence of LP events. This may be caused by a seasonally variable meteoritic water supply to a hydrothermal system, which may have been heated by the flux of volcanic gases from magma beneath this volcano. ?? 2005 Elsevier B.V. All rights reserved.
Factorizing the motion sensitivity function into equivalent input noise and calculation efficiency.
Allard, Rémy; Arleo, Angelo
2017-01-01
The photopic motion sensitivity function of the energy-based motion system is band-pass peaking around 8 Hz. Using an external noise paradigm to factorize the sensitivity into equivalent input noise and calculation efficiency, the present study investigated if the variation in photopic motion sensitivity as a function of the temporal frequency is due to a variation of equivalent input noise (e.g., early temporal filtering) or calculation efficiency (ability to select and integrate motion). For various temporal frequencies, contrast thresholds for a direction discrimination task were measured in presence and absence of noise. Up to 15 Hz, the sensitivity variation was mainly due to a variation of equivalent input noise and little variation in calculation efficiency was observed. The sensitivity fall-off at very high temporal frequencies (from 15 to 30 Hz) was due to a combination of a drop of calculation efficiency and a rise of equivalent input noise. A control experiment in which an artificial temporal integration was applied to the stimulus showed that an early temporal filter (generally assumed to affect equivalent input noise, not calculation efficiency) could impair both the calculation efficiency and equivalent input noise at very high temporal frequencies. We conclude that at the photopic luminance intensity tested, the variation of motion sensitivity as a function of the temporal frequency was mainly due to early temporal filtering, not to the ability to select and integrate motion. More specifically, we conclude that photopic motion sensitivity at high temporal frequencies is limited by internal noise occurring after the transduction process (i.e., neural noise), not by quantal noise resulting from the probabilistic absorption of photons by the photoreceptors as previously suggested.
Maza-Villalobos, Susana; Poorter, Lourens; Martínez-Ramos, Miguel
2013-01-01
The effects of temporal variation of rainfall on secondary succession of tropical dry ecosystems are poorly understood. We studied effects of inter-seasonal and inter-year rainfall variation on the dynamics of regenerative successional communities of a tropical dry forest in Mexico. We emphasized the effects caused by the severe El Niño Southern Oscillation (ENSO) occurred in 2005. We established permanent plots in sites representing a chronosequence of Pasture (abandoned pastures, 0–1 years fallow age), Early (3–5), Intermediate (8–12), and Old-Growth Forest categories (n = 3 per category). In total, 8210 shrubs and trees 10 to 100-cm height were identified, measured, and monitored over four years. Rates of plant recruitment, growth and mortality, and gain and loss of species were quantified per season (dry vs. rainy), year, and successional category, considering whole communities and separating seedlings from sprouts and shrubs from trees. Community rates changed with rainfall variation without almost any effect of successional stage. Mortality and species loss rates peaked during the ENSO year and the following year; however, after two rainy years mortality peaked in the rainy season. Such changes could result from the severe drought in the ENSO year, and of the outbreak of biotic agents during the following rainy years. Growth, recruitment and species gain rates were higher in the rainy season but they were significantly reduced after the ENSO year. Seedlings exhibited higher recruitment and mortality rate than sprouts, and shrubs showed higher recruitment than trees. ENSO strongly impacted both the dynamics and trajectory of succession, creating transient fluctuations in the abundance and species richness of the communities. Overall, there was a net decline in plant and species density in most successional stages along the years. Therefore, strong drought events have critical consequences for regeneration dynamics, delaying the successional process and modifying the resilience of these systems. PMID:24349179
NASA Astrophysics Data System (ADS)
Svejkosky, Joseph
The spectral signatures of vehicles in hyperspectral imagery exhibit temporal variations due to the preponderance of surfaces with material properties that display non-Lambertian bi-directional reflectance distribution functions (BRDFs). These temporal variations are caused by changing illumination conditions, changing sun-target-sensor geometry, changing road surface properties, and changing vehicle orientations. To quantify these variations and determine their relative importance in a sub-pixel vehicle reacquisition and tracking scenario, a hyperspectral vehicle BRDF sampling experiment was conducted in which four vehicles were rotated at different orientations and imaged over a six-hour period. The hyperspectral imagery was calibrated using novel in-scene methods and converted to reflectance imagery. The resulting BRDF sampled time-series imagery showed a strong vehicle level BRDF dependence on vehicle shape in off-nadir imaging scenarios and a strong dependence on vehicle color in simulated nadir imaging scenarios. The imagery also exhibited spectral features characteristic of sampling the BRDF of non-Lambertian targets, which were subsequently verified with simulations. In addition, the imagery demonstrated that the illumination contribution from vehicle adjacent horizontal surfaces significantly altered the shape and magnitude of the vehicle reflectance spectrum. The results of the BRDF sampling experiment illustrate the need for a target vehicle BRDF model and detection scheme that incorporates non-Lambertian BRDFs. A new detection algorithm called Eigenvector Loading Regression (ELR) is proposed that learns a hyperspectral vehicle BRDF from a series of BRDF measurements using regression in a lower dimensional space and then applies the learned BRDF to make test spectrum predictions. In cases of non-Lambertian vehicle BRDF, this detection methodology performs favorably when compared to subspace detections algorithms and graph-based detection algorithms that do not account for the target BRDF. The algorithms are compared using a test environment in which observed spectral reflectance signatures from the BRDF sampling experiment are implanted into aerial hyperspectral imagery that contain large quantities of vehicles.
NASA Astrophysics Data System (ADS)
Batterman, Stuart; Cook, Richard; Justin, Thomas
2015-04-01
Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates.
Batterman, Stuart; Cook, Richard; Justin, Thomas
2015-01-01
Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates. PMID:25844042
Powell, Brian S; Kerry, Colette G; Cornuelle, Bruce D
2013-10-01
Measurements of acoustic ray travel-times in the ocean provide synoptic integrals of the ocean state between source and receiver. It is known that the ray travel-time is sensitive to variations in the ocean at the transmission time, but the sensitivity of the travel-time to spatial variations in the ocean prior to the acoustic transmission have not been quantified. This study examines the sensitivity of ray travel-time to the temporally and spatially evolving ocean state in the Philippine Sea using the adjoint of a numerical model. A one year series of five day backward integrations of the adjoint model quantify the sensitivity of travel-times to varying dynamics that can alter the travel-time of a 611 km ray by 200 ms. The early evolution of the sensitivities reveals high-mode internal waves that dissipate quickly, leaving the lowest three modes, providing a connection to variations in the internal tide generation prior to the sample time. They are also strongly sensitive to advective effects that alter density along the ray path. These sensitivities reveal how travel-time measurements are affected by both nearby and distant waters. Temporal nonlinearity of the sensitivities suggests that prior knowledge of the ocean state is necessary to exploit the travel-time observations.
Osborne, Megan J; Pilger, Tyler J; Lusk, Joel D; Turner, Thomas F
2017-01-01
Climate change will strongly impact aquatic ecosystems particularly in arid and semi-arid regions. Fish-parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species' adaptive capacity. Here, we combine genetic (MHC class IIβ and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio-temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIβ with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio-temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies. © 2016 John Wiley & Sons Ltd.
Endogenous and exogenous control of ecosystem function: N cycling in headwater streams.
Valett, H M; Thomas, S A; Mulholland, P J; Webster, J R; Dahm, C N; Fellows, C S; Crenshaw, C L; Peterson, C G
2008-12-01
Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of 15N as nitrate in six streams differing in riparian-stream interaction and metabolic character. Nitrate removal was quantified using a nutrient spiraling approach based on measurements of downstream decline in 15N flux. Respiration (R) and gross primary production (GPP) were measured with whole-stream diel oxygen budgets. Uptake and metabolism metrics were addressed as z scores relative to site means to assess temporal variation. In open-canopied streams, areal uptake (U; microg N x m(-2) x s(-1)) was closely related to GPP, metabolic rates increased with temperature, and R was accurately predicted by metabolic scaling relationships. In forested streams, N spiraling was not related to GPP; instead, uptake velocity (v(f); mm/s) was closely related to R. In contrast to open-canopied streams, N uptake and metabolic activity were negatively correlated to temperature and poorly described by scaling laws. We contend that streams differ along a gradient of exogenous and endogenous control that relates to the relative influences of resource subsidies and in-stream energetics as determinants of seasonal patterns of metabolism and N cycling. Our research suggests that temporal variation in the propagation of ecological influence between adjacent systems generates phases when ecosystems are alternatively characterized as endogenously and exogenously controlled.
Transport of particle-associated elements in two agriculture-dominated boreal river systems.
Marttila, Hannu; Saarinen, Tuomas; Celebi, Ahmet; Kløve, Bjørn
2013-09-01
Transport of particulate pollutants in fluvial systems can contribute greatly to total loads. Understanding transport mechanics under different hydrological conditions is key in successful load estimation. This study analysed trace elements and physico-chemical parameters in time-integrated suspended sediment samples, together with dissolved and total concentrations of pollutants, along two agriculture- and peatland-dominated boreal river systems. The samples were taken in a spatially and temporally comprehensive sampling programme during the ice-free seasons of 2010 and 2011. The hydrochemistry and transport of particle-bound elements in the rivers were strongly linked to intense land use and acid sulphate soils in the catchment area, with arable, pasture and peat areas in particular being main diffuse sources. There were significant seasonal and temporal variations in dissolved and particulate fluxes, but spatial variations were small. Continuous measurements of EC, turbidity and discharge proved to be an accurate indicator of dissolved and particulate fluxes. Overall, the results show that transport of particle-bound elements makes a major contribution to total transport fluxes in agriculture-dominated boreal rivers. Copyright © 2013 Elsevier B.V. All rights reserved.
Bourret, V; O'Reilly, P T; Carr, J W; Berg, P R; Bernatchez, L
2011-03-01
In some wild Atlantic salmon populations, rapid declines in numbers of wild returning adults has been associated with an increase in the prevalence of farmed salmon. Studies of phenotypic variation have shown that interbreeding between farmed and wild salmon may lead to loss of local adaptation. Yet, few studies have attempted to assess the impact of interbreeding at the genome level, especially among North American populations. Here, we document temporal changes in the genetic makeup of the severely threatened Magaguadavic River salmon population (Bay of Fundy, Canada), a population that might have been impacted by interbreeding with farmed salmon for nearly 20 years. Wild and farmed individuals caught entering the river from 1980 to 2005 were genotyped at 112 single-nucleotide polymorphisms (SNPs), and/or eight microsatellite loci, to scan for potential shifts in adaptive genetic variation. No significant temporal change in microsatellite-based estimates of allele richness or gene diversity was detected in the wild population, despite its precipitous decline in numbers over the last two decades. This might reflect the effect of introgression from farmed salmon, which was corroborated by temporal change in linkage-disequilibrium. Moreover, SNP genome scans identified a temporal decrease in candidate loci potentially under directional selection. Of particular interest was a SNP previously shown to be strongly associated with an important quantitative trait locus for parr mark number, which retained its genetic distinctiveness between farmed and wild fish longer than other outliers. Overall, these results indicate that farmed escapees have introgressed with wild Magaguadavic salmon resulting in significant alteration of the genetic integrity of the native population, including possible loss of adaptation to wild conditions.
Bourret, V; O'Reilly, P T; Carr, J W; Berg, P R; Bernatchez, L
2011-01-01
In some wild Atlantic salmon populations, rapid declines in numbers of wild returning adults has been associated with an increase in the prevalence of farmed salmon. Studies of phenotypic variation have shown that interbreeding between farmed and wild salmon may lead to loss of local adaptation. Yet, few studies have attempted to assess the impact of interbreeding at the genome level, especially among North American populations. Here, we document temporal changes in the genetic makeup of the severely threatened Magaguadavic River salmon population (Bay of Fundy, Canada), a population that might have been impacted by interbreeding with farmed salmon for nearly 20 years. Wild and farmed individuals caught entering the river from 1980 to 2005 were genotyped at 112 single-nucleotide polymorphisms (SNPs), and/or eight microsatellite loci, to scan for potential shifts in adaptive genetic variation. No significant temporal change in microsatellite-based estimates of allele richness or gene diversity was detected in the wild population, despite its precipitous decline in numbers over the last two decades. This might reflect the effect of introgression from farmed salmon, which was corroborated by temporal change in linkage-disequilibrium. Moreover, SNP genome scans identified a temporal decrease in candidate loci potentially under directional selection. Of particular interest was a SNP previously shown to be strongly associated with an important quantitative trait locus for parr mark number, which retained its genetic distinctiveness between farmed and wild fish longer than other outliers. Overall, these results indicate that farmed escapees have introgressed with wild Magaguadavic salmon resulting in significant alteration of the genetic integrity of the native population, including possible loss of adaptation to wild conditions. PMID:21224876
Spatial and temporal variation in evapotranspiration
USDA-ARS?s Scientific Manuscript database
Spatial and temporal variation in evapotranspiration occurs at multiple scales as the result of several different spatial and temporal patterns in precipitation, soil water holding capacity, cloudiness (available energy), types of crops, and residue and tillage management practices. We have often as...
USDA-ARS?s Scientific Manuscript database
Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences...
Khana, Diba; Rossen, Lauren M; Hedegaard, Holly; Warner, Margaret
2018-01-01
Hierarchical Bayes models have been used in disease mapping to examine small scale geographic variation. State level geographic variation for less common causes of mortality outcomes have been reported however county level variation is rarely examined. Due to concerns about statistical reliability and confidentiality, county-level mortality rates based on fewer than 20 deaths are suppressed based on Division of Vital Statistics, National Center for Health Statistics (NCHS) statistical reliability criteria, precluding an examination of spatio-temporal variation in less common causes of mortality outcomes such as suicide rates (SRs) at the county level using direct estimates. Existing Bayesian spatio-temporal modeling strategies can be applied via Integrated Nested Laplace Approximation (INLA) in R to a large number of rare causes of mortality outcomes to enable examination of spatio-temporal variations on smaller geographic scales such as counties. This method allows examination of spatiotemporal variation across the entire U.S., even where the data are sparse. We used mortality data from 2005-2015 to explore spatiotemporal variation in SRs, as one particular application of the Bayesian spatio-temporal modeling strategy in R-INLA to predict year and county-specific SRs. Specifically, hierarchical Bayesian spatio-temporal models were implemented with spatially structured and unstructured random effects, correlated time effects, time varying confounders and space-time interaction terms in the software R-INLA, borrowing strength across both counties and years to produce smoothed county level SRs. Model-based estimates of SRs were mapped to explore geographic variation.
Monitoring Seismic Velocity Change to Explore the Earthquake Seismogenic Structures
NASA Astrophysics Data System (ADS)
Liao, C. F.; Wen, S.; Chen, C.
2017-12-01
Studying spatial-temporal variations of subsurface velocity structures is still a challenge work, but it can provide important information not only on geometry of a fault, but also the rheology change induced from the strong earthquake. In 1999, a disastrous Chi-Chi earthquake (Mw7.6; Chi-Chi EQ) occurred in central Taiwan and caused great impacts on Taiwan's society. Therefore, the major objective of this research is to investigate whether the rheology change of fault can be associated with seismogenic process before strong earthquake. In addition, after the strike of the Chi-Chi EQ, whether the subsurface velocity structure resumes to its steady state is another issue in this study. Therefore, for the above purpose, we have applied a 3D tomographic technique to obtain P- and S-wave velocity structures in central Taiwan using travel time data provided by the Central Weather Bureau (CWB). One major advantage of this method is that we can include out-of-network data to improve the resolution of velocity structures at deeper depths in our study area. The results show that the temporal variations of Vp are less significant than Vs (or Vp/Vs ratio), and Vp is not prominent perturbed before and after the occurrence of the Chi-Chi EQ. However, the Vs (or Vp/Vs ratio) structure in the source area demonstrates significant spatial-temporal difference before and after the mainshock. From the results, before the mainshock, Vs began to decrease (Vp/Vs ratio was increased as well) at the hanging wall of Chelungpu fault, which may be induced by the increasing density of microcracks and fluid. But in the vicinities of Chi-Chi Earthquake's source area, Vs was increasing (Vp/Vs ratio was also decreased). This phenomenon may be owing to the closing of cracks or migration of fluid. Due to the different physical characteristics around the source area, strong earthquake may be easily nucleated at the junctional zone. Our findings suggest that continuously monitoring the Vp and Vs (or Vp/Vs ratio) structures in high seismic potential zones is an important task which can lead to reduce seismic hazard for a future large earthquake.
Temporal-Spatial Variation of Global GPS-Derived Total Electron Content, 1999–2013
Guo, Jinyun; Li, Wang; Liu, Xin; Kong, Qiaoli; Zhao, Chunmei; Guo, Bin
2015-01-01
To investigate the temporal-spatial distribution and evolutions of global Total Electron Content (TEC), we estimate the global TEC data from 1999 to 2013 by processing the GPS data collected by the International Global Navigation Satellite System (GNSS) Service (IGS) stations, and robustly constructed the TEC time series at each of the global 5°×2.5° grids. We found that the spatial distribution of the global TEC has a pattern where the number of TECs diminishes gradually from a low-latitude region to high-latitude region, and anomalies appear in the equatorial crest and Greenland. Temporal variations show that the peak TEC appears in equinoctial months, and this corresponds to the semiannual variation of TEC. Furthermore, the winter anomaly is also observed in the equatorial area of the northern hemisphere and high latitudes of the southern hemisphere. Morlet wavelet analysis is used to determine periods of TEC variations and results indicate that the 1-day, 26.5-day, semi-annual and annual cycles are the major significant periods. The fitting results of a quadratic polynomial show that the effect of solar activity on TEC is stronger in low latitudes than in mid-high latitudes, and stronger in the southern hemisphere than in the northern hemisphere. But the effect in low latitudes in the northern hemisphere is stronger than that in low latitudes in the southern hemisphere. The effect of solar activity on TECs was analyzed with the cross wavelet analysis and the wavelet coherence transformation, and we found that there appears to be a strong coherence in the period of about 27 days. So the sunspot as one index of solar activity seriously affects the TEC variations with the sun’s rotation. We fit the TEC data with the least squares spectral analysis to study the periodic variations of TEC. The changing trend of TEC is generally -0.08 TECu per year from 1999 to 2013. So TECs decrease over most areas year by year, but TECs over the Arctic around Greenland maintained a rising trend during these 15 years. PMID:26193101
Li, Zhao; Dosso, Stan E; Sun, Dajun
2016-07-01
This letter develops a Bayesian inversion for localizing underwater acoustic transponders using a surface ship which compensates for sound-speed profile (SSP) temporal variation during the survey. The method is based on dividing observed acoustic travel-time data into time segments and including depth-independent SSP variations for each segment as additional unknown parameters to approximate the SSP temporal variation. SSP variations are estimated jointly with transponder locations, rather than calculated separately as in existing two-step inversions. Simulation and sea-trial results show this localization/SSP joint inversion performs better than two-step inversion in terms of localization accuracy, agreement with measured SSP variations, and computational efficiency.
Dynamics and distribution of black abalone populations at San Nicolas Island
VanBlaricom, Glenn R.; Hochberg, F.G.
1993-01-01
Dense populations of black abalones (Haliotis cracherodii Leach) were monitored in permanent intertidal plots at nine sites on San Nicolas Island from 1981 through 1990. Densities were essentially constant at all four sites along the north shore of the island throughout the study period. Densities at five sites along the south shore were more variable, possibly reflecting asynchronous variation in recruitment, mortality resulting from wave disturbance, and removal by people. Temporal variation of abalone densities apparently was not influenced by sea otters or abalone withering syndrome during this study. Abalones were strongly aggregated in space. Highest densities occurred in areas of irregular substrata, apparently as a result of preference for crevices and vertical faces. The locations of dense patches were persistent in time.
Yang, Yong-Gang; Hu, Jin-Fei; Xiao, Hong-Lang; Zou, Song-Bing; Yin, Zhen-Liang
2013-10-01
There are few studies on the hydrological characteristics on the landscape zone scale in alpine cold region at present. This paper aimed to identify the spatial and temporal variations in the origin and composition of the runoff, and to reveal the hydrological characteristics in each zone, based on the isotopic analysis of glacier, snow, frozen soil, groundwater, etc. The results showed that during the wet season, heavy precipitation and high temperature in the Mafengou River basin caused secondary evaporation which led to isotope fractionation effects. Therefore, the isotope values remained high. Temperature effects were significant. During the dry season, the temperature was low. Precipitation was in the solid state during the cold season and the evaporation was weak. Water vapor came from the evaporation of local water bodies. Therefore, less secondary evaporation and water vapor exchange occurred, leading to negative values of delta18O and deltaD. delta18O and deltaD values of precipitation and various water bodies exhibited strong seasonal variations. Precipitation exhibited altitude effects, delta18O = -0. 005 2H - 8. 951, deltaD = -0.018 5H - 34. 873. Other water bodies did not show altitude effects in the wet season and dry season, because the runoff was not only recharged by precipitation, but also influenced by the freezing and thawing process of the glacier, snow and frozen soil. The mutual transformation of precipitation, melt water, surface water and groundwater led to variations in isotopic composition. Therefore, homogenization and evaporation effect are the main control factors of isotope variations.
Measurement error corrected sodium and potassium intake estimation using 24-hour urinary excretion.
Huang, Ying; Van Horn, Linda; Tinker, Lesley F; Neuhouser, Marian L; Carbone, Laura; Mossavar-Rahmani, Yasmin; Thomas, Fridtjof; Prentice, Ross L
2014-02-01
Epidemiological studies of the association of sodium and potassium intake with cardiovascular disease risk have almost exclusively relied on self-reported dietary data. Here, 24-hour urinary excretion assessments are used to correct the dietary self-report data for measurement error under the assumption that 24-hour urine recovery provides a biomarker that differs from usual intake according to a classical measurement model. Under this assumption, dietary self-reports underestimate sodium by 0% to 15%, overestimate potassium by 8% to 15%, and underestimate sodium/potassium ratio by ≈20% using food frequency questionnaires, 4-day food records, or three 24-hour dietary recalls in Women's Health Initiative studies. Calibration equations are developed by linear regression of log-transformed 24-hour urine assessments on corresponding log-transformed self-report assessments and several study subject characteristics. For each self-report method, the calibration equations turned out to depend on race and age and strongly on body mass index. After adjustment for temporal variation, calibration equations using food records or recalls explained 45% to 50% of the variation in (log-transformed) 24-hour urine assessments for sodium, 60% to 70% of the variation for potassium, and 55% to 60% of the variation for sodium/potassium ratio. These equations may be suitable for use in epidemiological disease association studies among postmenopausal women. The corresponding signals from food frequency questionnaire data were weak, but calibration equations for the ratios of sodium and potassium/total energy explained ≈35%, 50%, and 45% of log-biomarker variation for sodium, potassium, and their ratio, respectively, after the adjustment for temporal biomarker variation and may be suitable for cautious use in epidemiological studies. Clinical Trial Registration- URL: www.clinicaltrials.gov. Unique identifier: NCT00000611.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Chiachi; Wu, Weimin; Gentry, Terry J.
2009-05-22
Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction, and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5 y period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate, and ethanol strongly correlated with particular bacterialmore » populations. As sulfate and U(VI) levels declined, sequences representative of sulfate-reducers and metal-reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared to the population variation via canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bio-reduction; however, the two bio-stimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.« less
NASA Technical Reports Server (NTRS)
Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Kolgotin, A.; Dubovik, O.; Perez-Ramirez, D.; Suvorina, A.
2013-01-01
The results of the application of the linear estimation technique to multiwavelength Raman lidar measurements performed during the summer of 2011 in Greenbelt, MD, USA, are presented. We demonstrate that multiwavelength lidars are capable not only of providing vertical profiles of particle properties but also of revealing the spatio-temporal evolution of aerosol features. The nighttime 3 Beta + 1 alpha lidar measurements on 21 and 22 July were inverted to spatio-temporal distributions of particle microphysical parameters, such as volume, number density, effective radius and the complex refractive index. The particle volume and number density show strong variation during the night, while the effective radius remains approximately constant. The real part of the refractive index demonstrates a slight decreasing tendency in a region of enhanced extinction coefficient. The linear estimation retrievals are stable and provide time series of particle parameters as a function of height at 4 min resolution. AERONET observations are compared with multiwavelength lidar retrievals showing good agreement.
NASA Astrophysics Data System (ADS)
Pawson, S.; Nielsen, J.; Ott, L. E.; Darmenov, A.; Putman, W.
2015-12-01
Model-data fusion approaches, such as global inverse modeling for surface flux estimation, have traditionally been performed at spatial resolutions of several tens to a few hundreds of kilometers. Use of such coarse scales presents a fundamental limitation in reconciling the modeled field with both the atmospheric observations and the distribution of surface emissions and uptake. Emissions typically occur on small scales, including point sources (e.g. power plants, forest fires) or with inhomegeneous structure. Biological uptake can have spatial variations related to complex, diverse vegetation, etc. Atmospheric observations of CO2 are either surface based, providing information at a single point, or space based with a finite-sized footprint. For instance, GOSAT and OCO-2 have footprint sizes of around 10km and proposed active sensors (such as ASCENDS) will likely have even finer footprints. One important aspect of reconciling models to measurements is the representativeness of the observation for the model field, and this depends on the generally unknown spatio-temporal variations of the CO2 field around the measurement location and time. This work presents an assessment of the global spatio-temporal variations of the CO2 field using the "7km GEOS-5 Nature Run" (7km-G5NR), which includes CO2 emissions and uptake mapped to the finest possible resolution. Results are shown for surface CO2 concentrations, total-column CO2, and separate upper and lower tropospheric columns. Spatial variability is shown to be largest in regions with strong point sources and at night in regions with complex terrain, especially where biological processes dominate the local CO2 fluxes, where the day-night differences are also most marked. The spatio-temporal variations are strongest for surface concentrations and for lower tropospheric CO2. While these results are largely anticipated, these high resolution simulations provide quantitative estimates of the global nature of spatio-temporal CO2 variability. Implications for characterizing representativeness of passive CO2 observations will be discussed. Differences between daytime and nighttime structures will be considered in light of active CO2 sensors. Finally, some possible limitations of the model will be highlighted, using some global 3-km simulations.
NASA Astrophysics Data System (ADS)
Lin, X.; Dreger, D.; Ge, H.; Xu, P.; Wu, M.; Chiang, A.; Zhao, G.; Yuan, H.
2018-03-01
Following the mainshock of the 2008 M8 Wenchuan Earthquake, there were more than 300 ML ≥ 4.0 aftershocks that occurred between 12 May 2008 and 8 September 2010. We analyzed the broadband waveforms for these events and found 160 events with sufficient signal-to-noise levels to invert for seismic moment tensors. Considering the length of the activated fault and the distances to the recording stations, four velocity models were employed to account for variability in crustal structure. The moment tensor solutions show considerable variations with a mixture of mainly reverse and strike-slip mechanisms and a small number of normal events and ambiguous events. We analyzed the spatial and temporal distribution of the aftershocks and their mechanism types to characterize the structure and the deformation occurring in the Longmen Shan fold and thrust belt. Our results suggest that the stress is very complex at the Longmen Shan fault zone. The moment tensors have both a spatial segmentation with two major categories of the moment tensor of thrust and strike slip; and a temporal pattern that the majority of the aftershocks gradually migrated to thrust-type events. The variability of aftershock mechanisms is a strong indication of significant tectonic release and stress reorganization that activated numerous small faults in the system.
Detecting spatio-temporal modes in multivariate data by entropy field decomposition
NASA Astrophysics Data System (ADS)
Frank, Lawrence R.; Galinsky, Vitaly L.
2016-09-01
A new data analysis method that addresses a general problem of detecting spatio-temporal variations in multivariate data is presented. The method utilizes two recent and complimentary general approaches to data analysis, information field theory (IFT) and entropy spectrum pathways (ESPs). Both methods reformulate and incorporate Bayesian theory, thus use prior information to uncover underlying structure of the unknown signal. Unification of ESP and IFT creates an approach that is non-Gaussian and nonlinear by construction and is found to produce unique spatio-temporal modes of signal behavior that can be ranked according to their significance, from which space-time trajectories of parameter variations can be constructed and quantified. Two brief examples of real world applications of the theory to the analysis of data bearing completely different, unrelated nature, lacking any underlying similarity, are also presented. The first example provides an analysis of resting state functional magnetic resonance imaging data that allowed us to create an efficient and accurate computational method for assessing and categorizing brain activity. The second example demonstrates the potential of the method in the application to the analysis of a strong atmospheric storm circulation system during the complicated stage of tornado development and formation using data recorded by a mobile Doppler radar. Reference implementation of the method will be made available as a part of the QUEST toolkit that is currently under development at the Center for Scientific Computation in Imaging.
McCord, Gordon C; Anttila-Hughes, Jesse K
2017-03-01
Reducing the global health burden of malaria is complicated by weak reporting systems for infectious diseases and a paucity of vital statistics registration. This limits our ability to predict changes in malaria health burden intensity, target antimalarial resources where needed, and identify malaria impacts in retrospective data. We refined and deployed a temporally and spatially varying Malaria Ecology Index (MEI) incorporating climatological and ecological data to estimate malaria transmission strength and validate it against cross-sectional serology data from 39,875 children from seven sub-Saharan African countries. The MEI is strongly associated with malaria burden; a 1 standard deviation higher MEI is associated with a 50-117% increase in malaria risk and a 3-5 g/dL lower level of Hg. Results show that the relationship between malaria ecology and disease burden is attenuated with sufficient coverage of insecticide treated nets (ITNs) or indoor residual spraying (IRS). Having both ITNs and IRS reduce the added risk from adverse malaria ecology conditions by half. Readily available climate and ecology data can be used to estimate the spatial and temporal variation in malaria disease burden, providing a feasible alternative to direct surveillance. This will help target resources for malaria programs in the absence of national coverage of active case detection systems, and facilitate malaria research using retrospective health data.
NASA Astrophysics Data System (ADS)
Schaefer, Andreas M.; Daniell, James E.; Wenzel, Friedemann
2017-07-01
Earthquake clustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation for probabilistic seismic hazard assessment. This study introduces the Smart Cluster Method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal cluster identification. It utilises the magnitude-dependent spatio-temporal earthquake density to adjust the search properties, subsequently analyses the identified clusters to determine directional variation and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010-2011 Darfield-Christchurch sequence, a reclassification procedure is applied to disassemble subsequent ruptures using near-field searches, nearest neighbour classification and temporal splitting. The method is capable of identifying and classifying earthquake clusters in space and time. It has been tested and validated using earthquake data from California and New Zealand. A total of more than 1500 clusters have been found in both regions since 1980 with M m i n = 2.0. Utilising the knowledge of cluster classification, the method has been adjusted to provide an earthquake declustering algorithm, which has been compared to existing methods. Its performance is comparable to established methodologies. The analysis of earthquake clustering statistics lead to various new and updated correlation functions, e.g. for ratios between mainshock and strongest aftershock and general aftershock activity metrics.
Jueterbock, Alexander; Coyer, James A; Olsen, Jeanine L; Hoarau, Galice
2018-06-15
The spatial distribution of genetic diversity and structure has important implications for conservation as it reveals a species' strong and weak points with regard to stability and evolutionary capacity. Temporal genetic stability is rarely tested in marine species other than commercially important fishes, but is crucial for the utility of temporal snapshots in conservation management. High and stable diversity can help to mitigate the predicted northward range shift of seaweeds under the impact of climate change. Given the key ecological role of fucoid seaweeds along rocky shores, the positive effect of genetic diversity may reach beyond the species level to stabilize the entire intertidal ecosystem along the temperate North Atlantic. In this study, we estimated the effective population size, as well as temporal changes in genetic structure and diversity of the seaweed F. serratus using 22 microsatellite markers. Samples were taken across latitudes and a range of temperature regimes at seven locations with decadal sampling (2000 and 2010). Across latitudes, genetic structure and diversity remained stable over 5-10 generations. Stable small-scale structure enhanced regional diversity throughout the species' range. In accordance with its biogeographic history, effective population size and diversity peaked in the species' mid-range in Brittany (France), and declined towards its leading and trailing edge to the north and south. At the species' southern edge, multi-locus-heterozygosity displayed a strong decline from 1999 to 2010. Temporally stable genetic structure over small spatial scales is a potential driver for local adaptation and species radiation in the genus Fucus. Survival and adaptation of the low-diversity leading edge of F. serratus may be enhanced by regional gene flow and 'surfing' of favorable mutations or impaired by the accumulation of deleterious mutations. Our results have clear implications for the conservation of F. serratus at its genetically unique southern edge in Northwest Iberia, where increasing temperatures are likely the major cause for the decline not only of F. serratus, but also other intertidal and subtidal macroalgae. We expect that F. serratus will disappear from Northwest Iberia by 2100 if genetic rescue is not induced by the influx of genetic variation from Brittany.
Ross, Zev; Kheirbek, Iyad; Clougherty, Jane E; Ito, Kazuhiko; Matte, Thomas; Markowitz, Steven; Eisl, Holger
2011-11-01
Epidemiological studies have linked both noise and air pollution to common adverse health outcomes such as increased blood pressure and myocardial infarction. In urban settings, noise and air pollution share important sources, notably traffic, and several recent studies have shown spatial correlations between noise and air pollution. The temporal association between these exposures, however, has yet to be thoroughly investigated despite the importance of time series studies in air pollution epidemiology and the potential that correlations between these exposures could at least partly confound statistical associations identified in these studies. An aethelometer, for continuous elemental carbon measurement, was co-located with a continuous noise monitor near a major urban highway in New York City for six days in August 2009. Hourly elemental carbon measurements and hourly data on overall noise levels and low, medium and high frequency noise levels were collected. Hourly average concentrations of fine particles and nitrogen oxides, wind speed and direction and car, truck and bus traffic were obtained from nearby regulatory monitors. Overall temporal patterns, as well as day-night and weekday-weekend patterns, were characterized and compared for all variables. Noise levels were correlated with car, truck, and bus traffic and with air pollutants. We observed strong day-night and weekday-weekend variation in noise and air pollutants and correlations between pollutants varied by noise frequency. Medium and high frequency noise were generally more strongly correlated with traffic and traffic-related pollutants than low frequency noise and the correlation with medium and high frequency noise was generally stronger at night. Correlations with nighttime high frequency noise were particularly high for car traffic (Spearman rho=0.84), nitric oxide (0.73) and nitrogen dioxide (0.83). Wind speed and direction mediated relationships between pollutants and noise. Noise levels are temporally correlated with traffic and combustion pollutants and correlations are modified by the time of day, noise frequency and wind. Our results underscore the potential importance of assessing temporal variation in co-exposures to noise and air pollution in studies of the health effects of these urban pollutants. Copyright © 2011 Elsevier Inc. All rights reserved.
Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Natalie A.; Sebestyen, Stephen D.
We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and thesemore » patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. In conclusion, characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models.« less
Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland
Griffiths, Natalie A.; Sebestyen, Stephen D.
2016-10-14
We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and thesemore » patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. In conclusion, characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models.« less
Sizing ocean giants: patterns of intraspecific size variation in marine megafauna
Balk, Meghan A.; Benfield, Mark C.; Branch, Trevor A.; Chen, Catherine; Cosgrove, James; Dove, Alistair D.M.; Gaskins, Lindsay C.; Helm, Rebecca R.; Hochberg, Frederick G.; Lee, Frank B.; Marshall, Andrea; McMurray, Steven E.; Schanche, Caroline; Stone, Shane N.; Thaler, Andrew D.
2015-01-01
What are the greatest sizes that the largest marine megafauna obtain? This is a simple question with a difficult and complex answer. Many of the largest-sized species occur in the world’s oceans. For many of these, rarity, remoteness, and quite simply the logistics of measuring these giants has made obtaining accurate size measurements difficult. Inaccurate reports of maximum sizes run rampant through the scientific literature and popular media. Moreover, how intraspecific variation in the body sizes of these animals relates to sex, population structure, the environment, and interactions with humans remains underappreciated. Here, we review and analyze body size for 25 ocean giants ranging across the animal kingdom. For each taxon we document body size for the largest known marine species of several clades. We also analyze intraspecific variation and identify the largest known individuals for each species. Where data allows, we analyze spatial and temporal intraspecific size variation. We also provide allometric scaling equations between different size measurements as resources to other researchers. In some cases, the lack of data prevents us from fully examining these topics and instead we specifically highlight these deficiencies and the barriers that exist for data collection. Overall, we found considerable variability in intraspecific size distributions from strongly left- to strongly right-skewed. We provide several allometric equations that allow for estimation of total lengths and weights from more easily obtained measurements. In several cases, we also quantify considerable geographic variation and decreases in size likely attributed to humans. PMID:25649000
Vogel, Erin R; Alavi, Shauhin E; Utami-Atmoko, Sri Suci; van Noordwijk, Maria A; Bransford, Timothy D; Erb, Wendy M; Zulfa, Astri; Sulistyo, Fransiska; Farida, Wartika Rosa; Rothman, Jessica M
2017-04-01
The spatial and temporal variation in food abundance has strong effects on wildlife feeding and nutrition. This variation is exemplified by the peatland forests of Central Kalimantan, which are characterized by unpredictable fruiting fluctuations, relatively low levels of fruit availability, and low fruit periods (<3% of trees fruiting) that can last nearly a year. Challenged by these environments, large, arboreal frugivores like orangutans must periodically rely on non-preferred, lower-quality foods to meet their nutritional needs. We examined variation in nutrient intake among age-sex classes and seasons over a 7-year period at the Tuanan Orangutan Research Station in Central Kalimantan. We conducted 2,316 full-day focal follows on 62 habituated orangutans (Pongo pygmaeus wurmbii). We found differences in total energy and macronutrient intake across age-sex classes, controlling for metabolic body mass. Intake of both total energy and macronutrients varied with fruit availability, and preference of dietary items increased with their nutritional quality. Foraging-related variables, such as day journey length, travel time, and feeding time, also varied among age-sex classes and with fruit availability. Our results add to the growing body of literature suggesting that great variation in foraging strategies exists among species, populations, and age-sex classes and in response to periods of resource scarcity. The spatial and temporal variation in food abundance has strong effects on wildlife feeding and nutrition. Here we present the first long term study of the effects of variation in fruit availability and age/sex class on nutritional ecology of wild Bornean orangutans. We examined variation in nutrient intake of wild orangutans in living in a peat swamp habitat over a 7-year period at the Tuanan Orangutan Research Station in Central Kalimantan. We conducted 2,316 full-day focal follows on 62 habituated orangutans (Pongo pygmaeus wurmbii). We found differences in total energy and macronutrient intake across age-sex classes, controlling for metabolic body mass. Intake of both total energy and macronutrients varied with fruit availability, and preference of dietary items increased with their nutritional quality. Foraging-related variables, such as day journey length, travel time, and feeding time, also varied among age-sex classes and with fruit availability. Our results add to the growing body of literature suggesting that great variation in foraging strategies exists among species, populations, and age-sex classes and in response to periods of resource scarcity. © 2016 Wiley Periodicals, Inc.
Variations in phenology and growth of European white birch (Betula pendula) clones.
Rousi, Matti; Pusenius, Jyrki
2005-02-01
Phenology can have a profound effect on growth and climatic adaptability of northern tree species. Although the large interannual variations in dates of bud burst and growth termination have been widely discussed, little is known about the genotypic and spatial variations in phenology and how these sources of variation are related to temporal variation. We measured bud burst of eight white birch (Betula pendula Roth) clones in two field experiments daily over 6 years, and determined the termination of growth for the same clones over 2 years. We also measured yearly height growth. We found considerable genetic variation in phenological characteristics among the birch clones. There was large interannual variation in the date of bud burst and especially in the termination of growth, indicating that, in addition to genetic effects, environmental factors have a strong influence on both bud burst and growth termination. Height growth was correlated with timing of growth termination, length of growth period and bud burst, but the relationships were weak and varied among years. We accurately predicted the date of bud burst from the temperature accumulation after January 1, and base temperatures between +2 and -1 degrees C. There was large clonal variation in the duration of bud burst. Interannual variation in bud burst may have important consequences for insect herbivory of birches.
NASA Astrophysics Data System (ADS)
Soczka Mandac, Rok; Žagar, Dušan; Faganeli, Jadran
2013-04-01
In this study influence of fresh water discharge on the spatial and temporal variability of thermohaline (TH) conditions is explored for the Bay of Koper (Bay). The Bay is subject to different driving agents: wind stress (bora, sirocco), tidal and seiches effect, buoyancy fluxes, general circulation of the Adriatic Sea and discharge of the Rizana and Badaševica rivers. These rivers have torrential characteristics that are hard to forecast in relation to meteorological events (precipitation). Therefore, during episodic events the spatial and temporal variability of TH properties in the Bay is difficult to determine [1]. Measurements of temperature, salinity and turbidity were conducted monthly on 35 sampling points in the period: June 2011 - December 2012. The data were processed and spatial interpolated with an objective analysis method. Furthermore, empirical orthogonal function analysis (EOF) [2] was applied to investigate spatial and temporal TH variations. Strong horizontal and vertical stratification was observed in the beginning of June 2011 due to high fresh water discharge of the Rizana (31 m3/s) and Badaševica (2 m3/s) rivers. The horizontal gradient (ΔT = 6°C) was noticed near the mouth of the Rizana river. Similar pattern was identified for salinity field on the boundary of the front where the gradient was ΔS = 20 PSU. Vertical temperature gradient was ΔT = 4°C while salinity gradient was ΔS = 18 PSU in the subsurface layer at depth of 3 m. Spatial analysis of the first principal component (86% of the total variance) shows uniform temperature distribution in the surface layer (1m) during the studied period. Furthermore, temporal variability of temperature shows seasonal variation with a minimum in February and maximum in August. This confirms that episodic events have a negligible effect on spatial and temporal variation of temperature in the subsurface layer. Further analysis will include application of EOF on the salinity, density and total suspended matter. Additionally, we will investigate the cross correlations between the above mentioned parameters with singular value decomposition method. Reference: 1. Faganeli, J., Planinc, R., Pezdic, J., Smodis, B., Stegnar, P., and Ogorelec, B. 1991. Marine geology of Gulf of Trieste (northern Adriatic): Geochemical aspects. Marine Geology, 99: 93-108. 2. Glover, M., Jenkins, J., and Doney, S. C. 2011. Modeling methods for marine science. Cambridge University Press, 571 p.
Method of and apparatus for measuring vapor density
Nelson, L.D.; Cerni, T.A.
1989-10-17
Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.
NASA Technical Reports Server (NTRS)
Rottger, J.
1983-01-01
Mesospheric echoes are strongly influenced by the electron density profile of the ionospheric D region. These echoes therefore are only observed during daylight hours or high energy particle precipitation. The turbulence occurs in layers, which often confines the radar echoes to rather thin regions of several 100 m vertical extent, although layers as thick as several kilometers are also observed. Evaluable echoes are not observed through the entire altitude region of the mesosphere for the given power aperture product. The echoes indicate temporal variation.
Low-energy electron intensities at large distances over the earth's polar cap
NASA Technical Reports Server (NTRS)
Yeager, D. M.; Frank, L. A.
1975-01-01
The results of the character and temporal fluctuations study of electron intensities in the energy range of hundreds of electron volts, are reported which were measured at high latitudes and altitudes on geomagnetic field lines corresponding to those of the polar cap and magnetotail lobes. It is concluded that such electron intensities are diminutive relative to those found in other regions of the magnetosphere. Severe variations of intensities were found and the magnitudes of electron intensities appear to be strongly coupled to the directions of the interplanetary magnetic fields.
Satellite microwave observations of the Utah Great Salt Lake Desert
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Dellwig, L. F.; Schmugge, T.
1975-01-01
Microwave data acquired over the Great Salt Lake Desert area by sensors aboard Skylab and Nimbus 5 indicate that the microwave emission and backscatter were strongly influenced by contributions from subsurface layers of sediment saturated with brine. This phenomenon was observed by Skylab's S-194 radiometer operating at 1.4 GHz, S-193 RADSCAT (Radiometer-Scatterometer) operating at 13.9 GHz, and the Nimbus 5 ESMR (Electrically Scanning Microwave Radiometer) operating at 19.35 GHz. The availability of ESMR data over an 18-month period allowed an investigation of temporal variations.
Krasnov, Helena; Kloog, Itai; Friger, Michael; Katra, Itzhak
2016-01-01
Dust storms are a common phenomenon in arid and semi-arid areas, and their impacts on both physical and human environments are of great interest. Number of studies have associated atmospheric PM pollution in urban environments with origin in natural soil/dust, but less evaluated the dust spatial patterns over a city. We aimed to analyze the spatial-temporal behavior of PM concentrations over the city of Beer Sheva, in southern Israel, where dust storms are quite frequent. PM data were recorded during the peak of each dust episode simultaneously in 23 predetermined fixed points around the city. Data were analyzed for both dust days and non-dust days (background). The database was constructed using Geographic Information System and includes distributions of PM that were derived using inverse distance weighted (IDW) interpolation. The results show that the daily averages of atmospheric PM10 concentrations during the background period are within a narrow range of 31 to 48 μg m-3 with low variations. During dust days however, the temporal variations are significant and can range from an hourly PM10 concentration of 100 μg m-3 to more than 1280 μg m-3 during strong storms. IDW analysis demonstrates that during the peak time of the storm the spatial variations in PM between locations in the city can reach 400 μg m-3. An analysis of site and storm contribution to total PM concentration revealed that higher concentrations are found in parts of the city that are proximal to dust sources. The results improve the understanding of the dynamics of natural PM and the dependence on wind direction. This may have implications for environmental and health outcomes. PMID:27513479
The influence of canopy shading of snow on effective albedo in forested environments
NASA Astrophysics Data System (ADS)
Webster, C.; Jonas, T.
2017-12-01
The overlap of highly reflective snow and absorbent forested areas creates strong heterogeneity in the effective surface albedo compared to forest-free areas. Current errors in calculations of effective forest snow albedo arise due to uncertainties in how models should treat masking of snow by vegetation but improvement of local and large scale models is currently limited by a lack of measurements that demonstrate both spatial and temporal variability over forests. We present above-canopy measurements of winter-time effective forest snow albedo using up- and down-looking radiometers mounted on an octocopter UAV for a total of fifteen flights on eight different days. Ground-view fractions across the flight path were between 0.12 and 0.81. Correlations between effective albedo and both ground-view fraction and canopy height were statistically significant during 14 out of 15 flights, but varied between flights due to solar angle and snow cover. Measured effective albedo across the flight path differed by up to 0.33 during snow-on canopy conditions. A comparison between maximum interception and no interception showed effective albedo varied by up 0.17, which was the same variation between effective albedo during high (46°) and low (23°) solar elevation angles. Temporal and spatial variations in effective albedo caused by canopy shading of the snow surface are therefore as important as temporal variations caused by interception of snow by the canopy. Calculation of effective albedo over forested areas therefore requires careful consideration of canopy height, canopy coverage, solar angle and interception load. The results of this study should be used to inform snow albedo and canopy structure parametrisations in local and larger scale land surface models.
NASA Astrophysics Data System (ADS)
Xu, Si-Yao; Li, Zhuo
2014-04-01
Complete high-resolution light curves of GRB 080319B observed by Swift present an opportunity for detailed temporal analysis of prompt optical emission. With a two-component distribution of initial Lorentz factors, we simulate the dynamical process of shells being ejected from the central engine in the framework of the internal shock model. The emitted radiations are decomposed into different frequency ranges for a temporal correlation analysis between the light curves in different energy bands. The resulting prompt optical and gamma-ray emissions show similar temporal profiles, with both showing a superposition of a component with slow variability and a component with fast variability, except that the gamma-ray light curve is much more variable than its optical counterpart. The variability in the simulated light curves and the strong correlation with a time lag between the optical and gamma-ray emissions are in good agreement with observations of GRB 080319B. Our simulations suggest that the variations seen in the light curves stem from the temporal structure of the shells injected from the central engine of gamma-ray bursts. Future observations with high temporal resolution of prompt optical emission from GRBs, e.g., by UFFO-Pathfinder and SVOM-GWAC, will provide a useful tool for investigating the central engine activity.
NASA Astrophysics Data System (ADS)
Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.
2010-09-01
To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the temporal variations of soil CO2 flux, CH4 uptake, and N2O emission. The soil water condition associated with soil hydraulic properties was also the important controlling factor of the spatial distributions of these gas fluxes.
Optimal balance of the striatal medium spiny neuron network.
Ponzi, Adam; Wickens, Jeffery R
2013-04-01
Slowly varying activity in the striatum, the main Basal Ganglia input structure, is important for the learning and execution of movement sequences. Striatal medium spiny neurons (MSNs) form cell assemblies whose population firing rates vary coherently on slow behaviourally relevant timescales. It has been shown that such activity emerges in a model of a local MSN network but only at realistic connectivities of 10 ~ 20% and only when MSN generated inhibitory post-synaptic potentials (IPSPs) are realistically sized. Here we suggest a reason for this. We investigate how MSN network generated population activity interacts with temporally varying cortical driving activity, as would occur in a behavioural task. We find that at unrealistically high connectivity a stable winners-take-all type regime is found where network activity separates into fixed stimulus dependent regularly firing and quiescent components. In this regime only a small number of population firing rate components interact with cortical stimulus variations. Around 15% connectivity a transition to a more dynamically active regime occurs where all cells constantly switch between activity and quiescence. In this low connectivity regime, MSN population components wander randomly and here too are independent of variations in cortical driving. Only in the transition regime do weak changes in cortical driving interact with many population components so that sequential cell assemblies are reproducibly activated for many hundreds of milliseconds after stimulus onset and peri-stimulus time histograms display strong stimulus and temporal specificity. We show that, remarkably, this activity is maximized at striatally realistic connectivities and IPSP sizes. Thus, we suggest the local MSN network has optimal characteristics - it is neither too stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond in a consistent repeatable way. Rather, it is optimized to generate stimulus dependent activity patterns for long periods after variations in cortical excitation.
Optimal Balance of the Striatal Medium Spiny Neuron Network
Ponzi, Adam; Wickens, Jeffery R.
2013-01-01
Slowly varying activity in the striatum, the main Basal Ganglia input structure, is important for the learning and execution of movement sequences. Striatal medium spiny neurons (MSNs) form cell assemblies whose population firing rates vary coherently on slow behaviourally relevant timescales. It has been shown that such activity emerges in a model of a local MSN network but only at realistic connectivities of and only when MSN generated inhibitory post-synaptic potentials (IPSPs) are realistically sized. Here we suggest a reason for this. We investigate how MSN network generated population activity interacts with temporally varying cortical driving activity, as would occur in a behavioural task. We find that at unrealistically high connectivity a stable winners-take-all type regime is found where network activity separates into fixed stimulus dependent regularly firing and quiescent components. In this regime only a small number of population firing rate components interact with cortical stimulus variations. Around connectivity a transition to a more dynamically active regime occurs where all cells constantly switch between activity and quiescence. In this low connectivity regime, MSN population components wander randomly and here too are independent of variations in cortical driving. Only in the transition regime do weak changes in cortical driving interact with many population components so that sequential cell assemblies are reproducibly activated for many hundreds of milliseconds after stimulus onset and peri-stimulus time histograms display strong stimulus and temporal specificity. We show that, remarkably, this activity is maximized at striatally realistic connectivities and IPSP sizes. Thus, we suggest the local MSN network has optimal characteristics – it is neither too stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond in a consistent repeatable way. Rather, it is optimized to generate stimulus dependent activity patterns for long periods after variations in cortical excitation. PMID:23592954
Fine scale variations of surface water chemistry in an ephemeral to perennial drainage network
Margaret A. Zimmer; Scott W. Bailey; Kevin J. McGuire; Thomas D. Bullen
2013-01-01
Although temporal variation in headwater stream chemistry has long been used to document baseline conditions and response to environmental drivers, less attention is paid to fine scale spatial variations that could yield clues to processes controlling stream water sources. We documented spatial and temporal variation in water composition in a headwater catchment (41 ha...
NASA Astrophysics Data System (ADS)
Cherrington, E. A.; Vincent, G.; Barbier, N.; Pélissier, R.; Sabatier, D.; Berger, U.
2017-12-01
In recent years, there has been controversy regarding applying vegetation indices (VIs) for monitoring tropical forests because of data artefacts related to sun-sensor geometry issues. One means of addressing the issue is comparing the VI variation of tropical forests in similar latitudes. That is, if intra-annual variation in VIs is not driven by real structural and biological changes in the vegetation, then one would expect that forests on the same latitudes should display similar patterns of VI variation. Data from multiple vegetation indices (from MODIS and SPOT VEGETATION) were analyzed over three ten degree by ten degree tiles covering the Guianas, western-central Africa, and northern Borneo in Southeast Asia. In addition to comparing the intra-annual trends across the three regions, the trends were also compared with intra-annual patterns of temporal variation, to see if these explained the VI variation. Those analyses showed that not only did the VI variation across the three regions differ significantly, but the patterns in VI variation for at least two of the three regions were largely correlated with intra-annual variation in environmental factors such as rainfall or light availability. For the Guianas, the pattern of VI variation was largely correlated with the variation in solar radiation, while for western-central Africa, the pattern of variation was more correlated to the variation in rainfall. In contrast, for northern Borneo, the pattern of VI variation did not correlate well with either variation in solar elevation or with intra-annual variation in environmental factors. Firstly, the data would seem to suggest that the patterns of variation in VI data for tropical forests are not strongly biased by artefacts related to sun-sensor geometry effects. More importantly, however, the results also suggest that the phenological of forests in both the Guianas and in western-central Africa are governed by different environmental regimes. That is to say, the forests in the Guianas appear to be light-limited, whereas in contrast, the forests in western-central Africa appear to be moisture-limited. This research suggests that vegetation index data - when corrected for artefacts related to bi-directional effects - can indeed be used to study patterns of temporal variation of forests in the tropics.
Luo, Ji; Chen, Youchao; Wu, Yanhong; Shi, Peili; She, Jia; Zhou, Peng
2012-01-01
Soil respiration (SR) is an important process in the global carbon cycle. It is difficult to estimate SR emission accurately because of its temporal and spatial variability. Primary forest succession on Glacier forehead provides the ideal environment for examining the temporal-spatial variation and controlling factors of SR. However, relevant studies on SR are relatively scarce, and variations, as well as controlling factors, remain uncertain in this kind of region. In this study, we used a static chamber system to measure SR in six sites which represent different stages of forest succession on forehead of a temperate glacier in Gongga Mountain, China. Our results showed that there was substantial temporal (coefficient of variation (CV) ranged from 39.3% to 73.9%) and spatial (CV ranged from 12.3% to 88.6%) variation in SR. Soil temperature (ST) at 5 cm depth was the major controlling factor of temporal variation in all six sites. Spatial variation in SR was mainly caused by differences in plant biomass and Total N among the six sites. Moreover, soil moisture (SM), microbial biomass carbon (MBC), soil organic carbon (SOC), pH and bulk density could influence SR by directly or indirectly affecting plant biomass and Total N. Q10 values (ranged from 2.1 to 4.7) increased along the forest succession, and the mean value (3.3) was larger than that of temperate ecosystems, which indicated a general tendency towards higher-Q10 in colder ecosystems than in warmer ecosystems. Our findings provided valuable information for understanding temporal-spatial variation and controlling factors of SR. PMID:22879950
Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellinger, Marco, E-mail: marco.wellinger@gmail.com; Ecole Polytechnique Federale de Lausanne; Wochele, Joerg
2012-10-15
Highlights: Black-Right-Pointing-Pointer Simultaneous measurements of 23 elements in process gases of a waste wood combustor. Black-Right-Pointing-Pointer Mobile ICP spectrometer allows measurements of high quality at industrial plants. Black-Right-Pointing-Pointer Continuous online measurements with high temporal resolution. Black-Right-Pointing-Pointer Linear correlations among element concentrations in the raw flue gas were detected. Black-Right-Pointing-Pointer Novel sampling and calibration methods for ICP-OES analysis of process gases. - Abstract: A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. Themore » analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium.« less
Spatial and Temporal Microbial Patterns in a Tropical Macrotidal Estuary Subject to Urbanization
Kaestli, Mirjam; Skillington, Anna; Kennedy, Karen; Majid, Matthew; Williams, David; McGuinness, Keith; Munksgaard, Niels; Gibb, Karen
2017-01-01
Darwin Harbour in northern Australia is an estuary in the wet-dry tropics subject to increasing urbanization with localized water quality degradation due to increased nutrient loads from urban runoff and treated sewage effluent. Tropical estuaries are poorly studied compared to temperate systems and little is known about the microbial community-level response to nutrients. We aimed to examine the spatial and temporal patterns of the bacterial community and its association with abiotic factors. Since Darwin Harbour is macrotidal with strong seasonal patterns and mixing, we sought to determine if a human impact signal was discernible in the microbiota despite the strong hydrodynamic forces. Adopting a single impact–double reference design, we investigated the bacterial community using next-generation sequencing of the 16S rRNA gene from water and sediment from reference creeks and creeks affected by effluent and urban runoff. Samples were collected over two years during neap and spring tides, in the dry and wet seasons. Temporal drivers, namely seasons and tides had the strongest relationship to the water microbiota, reflecting the macrotidal nature of the estuary and its location in the wet-dry tropics. The neap-tide water microbiota provided the clearest spatial resolution while the sediment microbiota reflected current and past water conditions. Differences in patterns of the microbiota between different parts of the harbor reflected the harbor's complex hydrodynamics and bathymetry. Despite these variations, a microbial signature was discernible relating to specific effluent sources and urban runoff, and the composite of nutrient levels accounted for the major part of the explained variation in the microbiota followed by salinity. Our results confirm an overall good water quality but they also reflect the extent of some hypereutrophic areas. Our results show that the microbiota is a sensitive indicator to assess ecosystem health even in this dynamic and complex ecosystem. PMID:28751882
NASA Astrophysics Data System (ADS)
Zhao, Yifei; Zou, Xinqing; Cao, Liguo; Yao, Yulong; Fu, Guanghe
2017-07-01
This study investigated the spatial-temporal patterns and trends of potential evapotranspiration (ET0) and aridity index (AI) over Southwest China during 1960-2013 based on daily temperature, precipitation, wind speed, sunshine duration, total solar radiation, and relative humidity data from 108 meteorological stations. The Penman-Monteith model, Mann-Kendall (M-K) test, moving t test, and Morlet wavelet method were used. The results indicated that ET0 and AI across the region displayed decreasing trends, but the former was significant. After 2000, regionally average trends in ET0 and AI increased rapidly, indicating that droughts increased over Southwest China in recent years. Spatially, the changes of ET0 and AI were dissimilar and not clustered, either. Temporally, both ET0 and AI displayed obvious abrupt change points over different timescales and that of AI was during the winter monsoon period. Significant periodic variations with periods of 27, 13, and 5 years were found in ET0, but only of 13 and 5 years existed in AI. Correlation analysis revealed that the sunshine duration and wind speed were the dominant factors affecting ET0 and that AI showed strong negative correlation with precipitation. The findings of this study enhance the understanding of the relationship between climate change and drought in Southwest China, while the mechanism controlling the variation in drought requires further study.
NASA Astrophysics Data System (ADS)
Ozyurt, N. Nur; Bayari, C. Serdar
2008-03-01
Proper management of karst aquifers requires a better understanding of flow and transport mechanisms in these systems. Flow in karst aquifers is inherently very complex due to the non-linear and non-stationary relationship between recharge and discharge. Information on this relationship has been acquired for a large (1,000 km2), mountainous (>3,500 m asl) karst aquifer with a deep unsaturated zone (>2,000 m) in the Aladaglar mountain range of south-central Turkey. All major discharges from the aquifer, which drain almost all the recharge, have been observed periodically for specific electrical conductivity, tritium and oxygen-18 variations during a period of 12 months. Observations reveal that the system’s response to recharge depends strongly on the competition between the infiltration and drainage velocities. These velocities, which are controlled by variables such as the time of precipitation, time of infiltration, intensity, and continuity of recharge, determine the degree of dominance of different types of flow mechanisms in the aquifer. Bypass, well-mixed and piston flow mechanisms are used to explain the response of the aquifer to the spatio-temporal variations in recharge. It appears that the aquifer switches among these flow mechanisms depending on the prevailing recharge mode and the competition between infiltration and drainage velocities.
Wang, Shang; Dong, Hailiang; Hou, Weiguo; Jiang, Hongchen; Huang, Qiuyuan; Briggs, Brandon R.; Huang, Liuqin
2014-01-01
Temporal variation in geochemistry can cause changes in microbial community structure and diversity. Here we studied temporal changes of microbial communities in Tengchong hot springs of Yunnan Province, China in response to geochemical variations by using microbial and geochemical data collected in January, June and August of 2011. Greater temporal variations were observed in individual taxa than at the whole community structure level. Water and sediment communities exhibited different temporal variation patterns. Water communities were largely stable across three sampling times and dominated by similar microbial lineages: Hydrogenobaculum in moderate-temperature acidic springs, Sulfolobus in high-temperature acidic springs, and Hydrogenobacter in high-temperature circumneutral to alkaline springs. Sediment communities were more diverse and responsive to changing physicochemical conditions. Most of the sediment communities in January and June were similar to those in waters. However, the August sediment community was more diverse and contained more anaerobic heterotrophs than the January and June: Desulfurella and Acidicaldus in moderate-temperature acidic springs, Ignisphaera and Desulfurococcus in high-temperature acidic springs, the candidate division OP1 and Fervidobacterium in alkaline springs, and Thermus and GAL35 in neutral springs. Temporal variations in physicochemical parameters including temperature, pH, and dissolved organic carbon may have triggered the observed microbial community shifts. PMID:25524763
On the Comparison of the Global Surface Soil Moisture product and Land Surface Modeling
NASA Astrophysics Data System (ADS)
Delorme, B., Jr.; Ottlé, C.; Peylin, P.; Polcher, J.
2016-12-01
Thanks to its large spatio-temporal coverage, the new ESA CCI multi-instruments dataset offers a good opportunity to assess and improve land surface models parametrization. In this study, the ESA CCI surface soil moisture (SSM) combined product (v2.2) has been compared to the simulated top first layers of the ORCHIDEE LSM (the continental part of the IPSL earth system model), in order to evaluate its potential of improvements with data assimilation techniques. The ambition of the work was to develop a comprehensive comparison methodology by analyzing simultaneously the temporal and spatial structures of both datasets. We analyzed the SSM synoptic, seasonal, and inter-annual variations by decomposing the signals into fast and slow components. ORCHIDEE was shown to adequately reproduce the observed SSM dynamics in terms of temporal correlation. However, these correlation scores are supposed to be strongly influenced by SSM seasonal variability and the quality of the model input forcing. Autocorrelation and spectral analyses brought out disagreements in the temporal inertia of the upper soil moisture reservoirs. By linking our results to land cover maps, we found that ORCHIDEE is more dependent on rainfall events compared to the observations in regions with sparse vegetation cover. These diflerences might be due to a wrong partition of rainfall between soil evaporation, transpiration, runofl and drainage in ORCHIDEE. To refine this analysis, a single value decomposition (SVD) of the co-variability between rainfall provided by WFDEI and soil moisture was pursued over Central Europe and South Africa. It showed that spatio-temporal co-varying patterns between ORCHIDEE and rainfall and the ESA-CCI product and rainfall are in relatively good agreement. However, the leading SVD pattern, which exhibits a strong annual cycle and explains the same portion of covariance for both datasets, explains a much larger fraction of variance for ORCHIDEE than for the ESA-CCI product. These results highlight that the role of other surface variables presenting a strong seasonal variability (like vegetation cover, possibly irrigation) is not accounted for similarly in both the model and the product, and that further work is needed to explore these discrepancies.
Zhu, Xian-Jin; Zhang, Han-Qi; Zhao, Tian-Hong; Li, Jian-Dong; Yin, Hong
2017-10-12
Spatial and temporal variations are important points of focus in ecological research. Analysing their differences improves our understanding on the variations of ecological phenomena. Using data from the Liaoning Statistical Yearbook, we investigated the spatial and temporal variations of cropland carbon transfer (CCT), an important ecological phenomenon in quantifying the regional carbon budget, in particular, the influencing factors and difference. The results showed that, from 1992 to 2014, the average CCT in Liaoning province was 18.56 TgC yr -1 and decreased from northwest to southeast. CCT spatial variation was primarily affected by the ratio of planting area to regional area (RPR) via its effect on the magnitude of carbon transfer (MCT), which depended mainly on fertilizer usage per area (FUA). From 1992 to 2014, CCT exhibited a significantly increasing trend with a rate of 0.48 TgC yr -1 . The inter-annual variation of CCT was dominated by carbon transfer per planting area (CTP) through its effect on MCT, which significantly correlated with FUA but showed no significant correlation with climatic factors. Therefore, the factors affecting the spatial variation of CCT differed from those that affected its inter-annual variation, indicating that the spatial and temporal variations of ecological phenomena were affected by divergent factors.
Flambaum, V V; Kozlov, M G
2007-10-12
Sensitivity to temporal variation of the fundamental constants may be strongly enhanced in transitions between narrow close levels of different nature. This enhancement may be realized in a large number of molecules due to cancellation between the ground state fine-structure omega{f} and vibrational interval omega{v} [omega=omega{f}-nomega{v} approximately 0, delta omega/omega=K(2delta alpha/alpha+0.5 delta mu/mu), K>1, mu=m{p}/m{e}]. The intervals between the levels are conveniently located in microwave frequency range and the level widths are very small. Required accuracy of the shift measurements is about 0.01-1 Hz. As examples, we consider molecules Cl(+)(2), CuS, IrC, SiBr, and HfF(+).
Identification of hydrological model parameter variation using ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Deng, Chao; Liu, Pan; Guo, Shenglian; Li, Zejun; Wang, Dingbao
2016-12-01
Hydrological model parameters play an important role in the ability of model prediction. In a stationary context, parameters of hydrological models are treated as constants; however, model parameters may vary with time under climate change and anthropogenic activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and different types of parameter variations, including trend, abrupt change and periodicity. Various levels of observation uncertainty are designed to examine the performance of the EnKF. The results show that the EnKF can successfully capture the temporal variations of the model parameters. The application to the Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is explained by land use and land cover changes due to soil and water conservation measures. In contrast, the application to the Tongtianhe basin shows that the estimated SC has no significant variation during the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The proposed method provides an effective tool for quantifying the temporal variations of the model parameters, thereby improving the accuracy and reliability of model simulations and forecasts.
Spatio-temporal variation in chemical characteristics of PM10 over Indo Gangetic Plain of India.
Sharma, S K; Mandal, T K; Srivastava, M K; Chatterjee, A; Jain, Srishti; Saxena, M; Singh, B P; Saraswati; Sharma, A; Adak, A; K Ghosh, S
2016-09-01
The paper presents the spatio-temporal variation of chemical compositions (organic carbon (OC), elemental carbon (EC), and water-soluble inorganic ionic components (WSIC)) of particulate matter (PM10) over three locations (Delhi, Varanasi, and Kolkata) of Indo Gangetic Plain (IGP) of India for the year 2011. The observational sites are chosen to represent the characteristics of upper (Delhi), middle (Varanasi), and lower (Kolkata) IGP regions as converse to earlier single-station observation. Average mass concentration of PM10 was observed higher in the middle IGP (Varanasi 206.2 ± 77.4 μg m(-3)) as compared to upper IGP (Delhi 202.3 ± 74.3 μg m(-3)) and lower IGP (Kolkata 171.5 ± 38.5 μg m(-3)). Large variation in OC values from 23.57 μg m(-3) (Delhi) to 12.74 μg m(-3) (Kolkata) indicating role of formation of secondary aerosols, whereas EC have not shown much variation with maximum concentration over Delhi (10.07 μg m(-3)) and minimum over Varanasi (7.72 μg m(-3)). As expected, a strong seasonal variation was observed in the mass concentration of PM10 as well as in its chemical composition over the three locations. Principal component analysis (PCA) identifies the contribution of secondary aerosol, biomass burning, fossil fuel combustion, vehicular emission, and sea salt to PM10 mass concentration at the observational sites of IGP, India. Backward trajectory analysis indicated the influence of continental type aerosols being transported from the Bay of Bengal, Pakistan, Afghanistan, Rajasthan, Gujarat, and surrounding areas to IGP region.
NASA Astrophysics Data System (ADS)
Pye, K.; Blott, S. J.
2008-12-01
Monitoring of frontal dune erosion and accretion on the Sefton coast in northwest England over the past 50 years has revealed significant spatial and temporal variations. Previous work has shown that the spatial variations primarily reflect longshore differences in beach and nearshore morphology, energy regime and sediment budget, but the causes of temporal variations have not previously been studied in detail. This paper presents the results of work carried out to test the hypothesis that a major cause of temporal variation is changes in the frequency and magnitude of storms, surges and resulting high tides. Dune toe erosion/accretion records dating from 1958 have been compared with tide gauge records at Liverpool and Heysham. Relatively high dune erosion rates at Formby Point 1958-1968 were associated with a relatively large number of storm tides. Slower erosion at Formby, and relatively rapid accretion in areas to the north and south, occurred during the 1970's and 1980's when there were relatively few major storm tides. After 1990 rates of dune erosion at Formby increased again, and dunes to the north and south experienced slower accretion. During this period high storm tides have been more frequent, and the annual number of hours with water levels above the critical level for dune erosion has increased significantly. An increase in the rate of mean sea-level rise at both Liverpool and Heysham is evident since 1990, but we conclude that this factor is of less importance than the occurrence of extreme high tides and wave action associated with storms. The incidence of extreme high tides shows an identifiable relationship with the lunar nodal tidal cycle, but the evidence indicates that meteorological forcing has also had a significant effect. Storms and surges in the eastern Irish Sea are associated with Atlantic depressions whose direction and rate of movement have a strong influence on wind speeds, wave energy and the height of surge tides. However, preliminary analysis has indicated only a modest relationship between dune erosion/accretion rates and the North Atlantic Oscillation index.
Rosas, Antonio; Peña-Melián, Angel; García-Tabernero, Antonio; Bastir, Markus; De La Rasilla, Marco
2014-12-01
Correspondence between temporal lobe sulcal pattern and bony impressions on the middle cranial fossae (MCF) was analyzed. MCF bone remains (SD-359, SD-315, and SD-1219) from the El Sidrón (Spain) neandertal site are analyzed in this context. Direct comparison of the soft and hard tissues from the same individual was studied by means of: 1) dissection of two human heads; 2) optic (white light) surface scans; 3) computed tomography and magnetic resonance of the same head. The inferior temporal sulcus and gyrus are the features most strongly influencing MCF bone surface. The Superior temporal sulcus and middle temporal and fusiform gyri also leave imprints. Temporal lobe form differs between Homo sapiens and neandertals. A wider and larger post-arcuate fossa (posterior limit of Brodmann area 20 and the anterior portion of area 37) is present in modern humans as compared to neandertals. However other traits of the MCF surface are similar in these two large-brained human groups. A conspicuous variation is appreciated in the more vertical location of the inferior temporal gyrus in H. sapiens. In parallel, structures of the lower surface of the temporal lobe are more sagittally orientated. Grooves accommodating the fusiform and the lower temporal sulci become grossly parallel to the temporal squama. These differences can be understood within the context of a supero-lateral deployment of the lobe in H. sapiens, a pattern previously identified (Bastir et al., Nat Commun 2 (2011) 588-595). Regarding dural sinus pattern, a higher incidence of petrosquamous sinus is detected in neandertal samples. © 2014 Wiley Periodicals, Inc.
Evans, Melissa L; Dionne, Mélanie; Miller, Kristina M; Bernatchez, Louis
2012-01-22
Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.
Takken, Willem; van Vliet, Arnold J H; Verhulst, Niels O; Jacobs, Frans H H; Gassner, Fedor; Hartemink, Nienke; Mulder, Sara; Sprong, Hein
2017-02-01
A longitudinal investigation on tick populations and their Borrelia infections in the Netherlands was undertaken between 2006 and 2011 with the aim to assess spatial and temporal patterns of the acarological risk in forested sites across the country and to assess variations in Borrelia genospecies diversity. Ticks were collected monthly in 11 sites and nymphs were examined for Borrelia infections. Tick populations expressed strong seasonal variations, with consistent and significant differences in mean tick densities between sites. Borrelia infections were present in all study sites, with a site-specific mean prevalence per month ranging from 7% to 26%. Prevalence was location-dependent and was not associated with tick densities. Mean Borrelia prevalence was lowest in January (4%), gradually increasing to reach a maximum (24%) in August. Borrelia afzelii represented 70% of all infections, with Borrelia burgdorferi sensu stricto, Borrelia garinii, and Borrelia valaisiana represented with 4%, 8%, and 10%, respectively. The density of infected nymphs and the proportional distribution of the four Borrelia genospecies, were significantly different between sites. The results show a consistent and significant spatial and temporal difference in acarological risk across the Netherlands.
Monitoring of oceanographic properties of Glacier Bay, Alaska 2004
Madison, Erica N.; Etherington, Lisa L.
2005-01-01
Glacier Bay is a recently (300 years ago) deglaciated fjord estuarine system that has multiple sills, very deep basins, tidewater glaciers, and many streams. Glacier Bay experiences a large amount of runoff, high sedimentation, and large tidal variations. High freshwater discharge due to snow and ice melt and the presence of the tidewater glaciers makes the bay extremely cold. There are many small- and large-scale mixing and upwelling zones at sills, glacial faces, and streams. The complex topography and strong currents lead to highly variable salinity, temperature, sediment, primary productivity, light penetration, stratification levels, and current patterns within a small area. The oceanographic patterns within Glacier Bay drive a large portion of the spatial and temporal variability of the ecosystem. It has been widely recognized by scientists and resource managers in Glacier Bay that a program to monitor oceanographic patterns is essential for understanding the marine ecosystem and to differentiate between anthropogenic disturbance and natural variation. This year’s sampling marks the 12th continuous year of monitoring the oceanographic conditions at 23 stations along the primary axes within Glacier Bay, AK, making this a very unique and valuable data set in terms of its spatial and temporal coverage.
Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau.
Wang, Yuanyuan; Zhang, Yongqiang; Chiew, Francis H S; McVicar, Tim R; Zhang, Lu; Li, Hongxia; Qin, Guanghua
2017-11-13
As the "Asian Water Tower", the Tibetan Plateau (TP) provides water resources for more than 1.4 billion people, but suffers from climatic and environmental changes, followed by the changes in water balance components. We used state-of-the-art satellite-based products to estimate spatial and temporal variations and trends in annual precipitation, evapotranspiration and total water storage change across eastern TP, which were then used to reconstruct an annual runoff variability series for 2003-2014. The basin-scale reconstructed streamflow variability matched well with gauge observations for five large rivers. Annual runoff increased strongly in dry part because of increases in precipitation, but decreased in wet part because of decreases in precipitation, aggravated by noticeable increases in evapotranspiration in the north of wet part. Although precipitation primarily governed temporal-spatial pattern of runoff, total water storage change contributed greatly to runoff variation in regions with wide-spread permanent snow/ice or permafrost. Our study indicates that the contrasting runoff trends between the dry and wet parts of eastern TP requires a change in water security strategy, and attention should be paid to the negative water resources impacts detected for southwestern part which has undergone vast glacier retreat and decreasing precipitation.
Evans, Melissa L.; Dionne, Mélanie; Miller, Kristina M.; Bernatchez, Louis
2012-01-01
Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures. PMID:21697172
On the link between martian total ozone and potential vorticity
NASA Astrophysics Data System (ADS)
Lewis, S.; Holmes, J.; Patel, M.
2016-12-01
We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable.The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone can be of use to investigate the origin of potential vorticity filaments.
On the link between martian total ozone and potential vorticity
NASA Astrophysics Data System (ADS)
Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.
2017-01-01
We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.
Growns, Ivor; Astles, Karen; Gehrke, Peter
2006-03-01
We studied the multiscale (sites, river reaches and rivers) and short-term temporal (monthly) variability in a freshwater fish assemblage. We found that small-scale spatial variation and short-term temporal variability significantly influenced fish community structure in the Macquarie and Namoi Rivers. However, larger scale spatial differences between rivers were the largest source of variation in the data. The interaction between temporal change and spatial variation in fish community structure, whilst statistically significant, was smaller than the variation between rivers. This suggests that although the fish communities within each river changed between sampling occasions, the underlying differences between rivers were maintained. In contrast, the strongest interaction between temporal and spatial effects occurred at the smallest spatial scale, at the level of individual sites. This means whilst the composition of the fish assemblage at a given site may fluctuate, the magnitude of these changes is unlikely to affect larger scale differences between reaches within rivers or between rivers. These results suggest that sampling at any time within a single season will be sufficient to show spatial differences that occur over large spatial scales, such as comparisons between rivers or between biogeographical regions.
NASA Astrophysics Data System (ADS)
Fillion, Anthony; Bocquet, Marc; Gratton, Serge
2018-04-01
The analysis in nonlinear variational data assimilation is the solution of a non-quadratic minimization. Thus, the analysis efficiency relies on its ability to locate a global minimum of the cost function. If this minimization uses a Gauss-Newton (GN) method, it is critical for the starting point to be in the attraction basin of a global minimum. Otherwise the method may converge to a local extremum, which degrades the analysis. With chaotic models, the number of local extrema often increases with the temporal extent of the data assimilation window, making the former condition harder to satisfy. This is unfortunate because the assimilation performance also increases with this temporal extent. However, a quasi-static (QS) minimization may overcome these local extrema. It accomplishes this by gradually injecting the observations in the cost function. This method was introduced by Pires et al. (1996) in a 4D-Var context. We generalize this approach to four-dimensional strong-constraint nonlinear ensemble variational (EnVar) methods, which are based on both a nonlinear variational analysis and the propagation of dynamical error statistics via an ensemble. This forces one to consider the cost function minimizations in the broader context of cycled data assimilation algorithms. We adapt this QS approach to the iterative ensemble Kalman smoother (IEnKS), an exemplar of nonlinear deterministic four-dimensional EnVar methods. Using low-order models, we quantify the positive impact of the QS approach on the IEnKS, especially for long data assimilation windows. We also examine the computational cost of QS implementations and suggest cheaper algorithms.
Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer
NASA Astrophysics Data System (ADS)
Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel
2017-04-01
This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.
Temporal variations of cosmic rays over a variety of time scales
NASA Technical Reports Server (NTRS)
Jokipii, J. R.; Marti, K.
1986-01-01
The variation of the intensity of Galactic cosmic rays in the inner solar system over a wide variety of time scales is discussed, and the generally accepted physical model which can account quantitatively for these modulations is reviewed. The use of direct measurements and of nuclear reactions to study the temporal intensity variations is summarized. It is demonstrated that all of the observed variations could easily be the result of solar variations on long and short time scales.
Detecting Spatio-Temporal Modes in Multivariate Data by Entropy Field Decomposition
Frank, Lawrence R.; Galinsky, Vitaly L.
2016-01-01
A new data analysis method that addresses a general problem of detecting spatio-temporal variations in multivariate data is presented. The method utilizes two recent and complimentary general approaches to data analysis, information field theory (IFT) and entropy spectrum pathways (ESP). Both methods reformulate and incorporate Bayesian theory, thus use prior information to uncover underlying structure of the unknown signal. Unification of ESP and IFT creates an approach that is non-Gaussian and non-linear by construction and is found to produce unique spatio-temporal modes of signal behavior that can be ranked according to their significance, from which space-time trajectories of parameter variations can be constructed and quantified. Two brief examples of real world applications of the theory to the analysis of data bearing completely different, unrelated nature, lacking any underlying similarity, are also presented. The first example provides an analysis of resting state functional magnetic resonance imaging (rsFMRI) data that allowed us to create an efficient and accurate computational method for assessing and categorizing brain activity. The second example demonstrates the potential of the method in the application to the analysis of a strong atmospheric storm circulation system during the complicated stage of tornado development and formation using data recorded by a mobile Doppler radar. Reference implementation of the method will be made available as a part of the QUEST toolkit that is currently under development at the Center for Scientific Computation in Imaging. PMID:27695512
Temporal Structure of the Southern Oscillation as Revealed by Waveform and Wavelet Analysis.
NASA Astrophysics Data System (ADS)
Wang, Bin; Wang, Yan
1996-07-01
Wavelet transforms (WLT) and waveform transforms (WFT) are effective tools that reveal temporal structure of nonstationary time series. The authors discuss principles and practical aspects of their geophysical applications. The WLT can display variance as a continuous function of time and frequency, but the frequency (time) locality reduces at the high (low) frequency bands. The WFT, on the other hand, provides a sharp view of the locality in both time and frequency, but presents variance by discrete base functions. The two techniques are complementary. The authors use both Morlet WLT and Gabor WFT to analyze temporal structure of the Southern Oscillation (50).The principal period of the SO has experienced two rapid changes since 1872, one in the early 1910s and the other in the mid-1960s. The dominant period was 3-4 years in the earliest four decades (1872-1910), 5-7 years in the ensuing five decades (1911-1960. except the 1920s), and about 5 years in the last two decades (1970-1992). Ale SO also exhibits noticeable amplitude changes. It was most energetic during two periods. 1872-1892 and 1970-1992, but powerless during the 1920s, 1930s. and 1960s. The powerless period is dominated by quasi-biennial oscillation. Excessively strong cold phases of the El Niño-Southern Oscillation cycle enhance annual variation of SST in the Equatorial eastern and central Pacific. The enhancement, however, appears to be modulated by an interdecadal variation.
Explaining intraspecific diversity in plant secondary metabolites in an ecological context.
Moore, Ben D; Andrew, Rose L; Külheim, Carsten; Foley, William J
2014-02-01
Plant secondary metabolites (PSMs) are ubiquitous in plants and play many ecological roles. Each compound can vary in presence and/or quantity, and the composition of the mixture of chemicals can vary, such that chemodiversity can be partitioned within and among individuals. Plant ontogeny and environmental and genetic variation are recognized as sources of chemical variation, but recent advances in understanding the molecular basis of variation may allow the future deployment of isogenic mutants to test the specific adaptive function of variation in PSMs. An important consequence of high intraspecific variation is the capacity to evolve rapidly. It is becoming increasingly clear that trait variance linked to both macro- and micro-environmental variation can also evolve and may respond more strongly to selection than mean trait values. This research, which is in its infancy in plants, highlights what could be a missing piece of the picture of PSM evolution. PSM polymorphisms are probably maintained by multiple selective forces acting across many spatial and temporal scales, but convincing examples that recognize the diversity of plant population structures are rare. We describe how diversity can be inherently beneficial for plants and suggest fruitful avenues for future research to untangle the causes and consequences of intraspecific variation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Alothman, A. O.; Alsubaie, M. A.; Ayhan, M. E.
2011-09-01
The ionosphere is a dispersive medium for radio waves with the refractive index which is a function of frequency and total electron content (TEC). TEC has a strong diurnal variation in addition to monthly, seasonal and solar cycle variations and small and large scale irregularities. Dual frequency GPS observations can be utilized to obtain TEC and investigate its spatial and temporal variations. We here studied short term TEC variations over the Kingdom of Saudi Arabia (KSA). A regional GPS network is formed consisting of 16 sites in and around KSA. GPS observations, acquired between 1st and 11th February 2009, were processed on a daily basis by using the Bernese v5.0 software and IGS final products. The geometry-free zero difference smoothed code observables were used to obtain two hour interval snapshots of TEC and their RMS errors at 0.5 × 0.5 degree grid nodes and regional ionosphere models in a spherical harmonics expansion to degree and order six. The equatorial ionized anomaly (EIA) is recovered in the south of 20°N from 08:00 to 12:00 UT. We found that day-by-day TEC variation is more stable than the night time variation.
Diurnal lighting patterns and habitat alter opsin expression and colour preferences in a killifish
Johnson, Ashley M.; Stanis, Shannon; Fuller, Rebecca C.
2013-01-01
Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish. PMID:23698009
Geomagnetic temporal change: 1903-1982 - A spline representation
NASA Technical Reports Server (NTRS)
Langel, R. A.; Kerridge, D. J.; Barraclough, D. R.; Malin, S. R. C.
1986-01-01
The secular variation of the earth's magnetic field is itself subject to temporal variations. These are investigated with the aid of the coefficients of a series of spherical harmonic models of secular variation deduced from data for the interval 1903-1982 from the worldwide network of magnetic observatories. For some studies it is convenient to approximate the time variation of the spherical harmonic coefficients with a smooth, continuous, function; for this a spline fitting is used. The phenomena that are investigated include periodicities, discontinuities, and correlation with the length of day. The numerical data presented will be of use for further investigations and for the synthesis of secular variation at any place and at any time within the interval of the data - they are not appropriate for temporal extrapolations.
Kohashi, Tsunehiko; Carlson, Bruce A
2014-01-01
Temporal patterns of spiking often convey behaviorally relevant information. Various synaptic mechanisms and intrinsic membrane properties can influence neuronal selectivity to temporal patterns of input. However, little is known about how synaptic mechanisms and intrinsic properties together determine the temporal selectivity of neuronal output. We tackled this question by recording from midbrain electrosensory neurons in mormyrid fish, in which the processing of temporal intervals between communication signals can be studied in a reduced in vitro preparation. Mormyrids communicate by varying interpulse intervals (IPIs) between electric pulses. Within the midbrain posterior exterolateral nucleus (ELp), the temporal patterns of afferent spike trains are filtered to establish single-neuron IPI tuning. We performed whole-cell recording from ELp neurons in a whole-brain preparation and examined the relationship between intrinsic excitability and IPI tuning. We found that spike frequency adaptation of ELp neurons was highly variable. Postsynaptic potentials (PSPs) of strongly adapting (phasic) neurons were more sharply tuned to IPIs than weakly adapting (tonic) neurons. Further, the synaptic filtering of IPIs by tonic neurons was more faithfully converted into variation in spiking output, particularly at short IPIs. Pharmacological manipulation under current- and voltage-clamp revealed that tonic firing is mediated by a fast, large-conductance Ca(2+)-activated K(+) (KCa) current (BK) that speeds up action potential repolarization. These results suggest that BK currents can shape the temporal filtering of sensory inputs by modifying both synaptic responses and PSP-to-spike conversion. Slow SK-type KCa currents have previously been implicated in temporal processing. Thus, both fast and slow KCa currents can fine-tune temporal selectivity.
Pernet, Fabrice; Lagarde, Franck; Jeannée, Nicolas; Daigle, Gaetan; Barret, Jean; Le Gall, Patrik; Quere, Claudie; D’orbcastel, Emmanuelle Roque
2014-01-01
Although spatial studies of diseases on land have a long history, far fewer have been made on aquatic diseases. Here, we present the first large-scale, high-resolution spatial and temporal representation of a mass mortality phenomenon cause by the Ostreid herpesvirus (OsHV-1) that has affected oysters (Crassostrea gigas) every year since 2008, in relation to their energetic reserves and the quality of their food. Disease mortality was investigated in healthy oysters deployed at 106 locations in the Thau Mediterranean lagoon before the start of the epizootic in spring 2011. We found that disease mortality of oysters showed strong spatial dependence clearly reflecting the epizootic process of local transmission. Disease initiated inside oyster farms spread rapidly beyond these areas. Local differences in energetic condition of oysters, partly driven by variation in food quality, played a significant role in the spatial and temporal dynamics of disease mortality. In particular, the relative contribution of diatoms to the diet of oysters was positively correlated with their energetic reserves, which in turn decreased the risk of disease mortality. PMID:24551106
Pernet, Fabrice; Lagarde, Franck; Jeannée, Nicolas; Daigle, Gaetan; Barret, Jean; Le Gall, Patrik; Quere, Claudie; D'orbcastel, Emmanuelle Roque
2014-01-01
Although spatial studies of diseases on land have a long history, far fewer have been made on aquatic diseases. Here, we present the first large-scale, high-resolution spatial and temporal representation of a mass mortality phenomenon cause by the Ostreid herpesvirus (OsHV-1) that has affected oysters (Crassostrea gigas) every year since 2008, in relation to their energetic reserves and the quality of their food. Disease mortality was investigated in healthy oysters deployed at 106 locations in the Thau Mediterranean lagoon before the start of the epizootic in spring 2011. We found that disease mortality of oysters showed strong spatial dependence clearly reflecting the epizootic process of local transmission. Disease initiated inside oyster farms spread rapidly beyond these areas. Local differences in energetic condition of oysters, partly driven by variation in food quality, played a significant role in the spatial and temporal dynamics of disease mortality. In particular, the relative contribution of diatoms to the diet of oysters was positively correlated with their energetic reserves, which in turn decreased the risk of disease mortality.
Temporal and spatial variations of the Chesapeake Bay plume
NASA Technical Reports Server (NTRS)
Ruzecki, E. P.
1981-01-01
Historical records and data obtained during the Superflux experiments are used to describe the temporal and spatial variations of the effluent waters of Chesapeake Bay. The alongshore extent of the plume resulting from variations of freshwater discharge into the Bay and the effects of wind are illustrated. Variations of the cross sectional configuration of the plume over portions of a tidal cycle and results of a rapid underway water sampling system are discussed.
NASA Astrophysics Data System (ADS)
Ryan, Diarmuid; Wögerbauer, Ciara; Roche, William
2016-12-01
The ability to determine connectivity between juveniles in nursery estuaries and adult populations is an important tool for fisheries management. Otoliths of juvenile fish contain geochemical tags, which reflect the variation in estuarine elemental chemistry, and allow discrimination of their natal and/or nursery estuaries. These tags can be used to investigate connectivity patterns between juveniles and adults. However, inter-annual variability of geochemical tags may limit the accuracy of nursery origin determinations. Otolith elemental composition was used to assign a single cohort of 0-group sea bass Dicentrarchus labrax to their nursery estuary thus establishing an initial baseline for stocks in waters around Ireland. Using a standard LDFA model, high classification accuracies to nursery sites (80-88%) were obtained. Temporal stability of otolith geochemical tags was also investigated to assess if annual sampling is required for connectivity studies. Geochemical tag stability was found to be strongly estuary dependent.
NASA Astrophysics Data System (ADS)
Laforce, M.; Gorman, P.; Constantz, J.
2004-12-01
Temporal and spatial variations of flux and vertical hydraulic conductivity were measured in the Russian River streambed in Sonoma County, California. In-situ vertical hydraulic conductivity measurements were made using a modified seepage meter, equipped with mini-piezometers and sediment was collected with a bucket and shovel. We sampled three different streambed (near bank, midpoint, and thalweg) locations at five different sample locales throughout the river system. Vertical hydraulic conductivity of the streambed ranged from 8.55X10-5 cm/sec to 1.52X10-1 cm/sec. Flux varied from -240 to 600 cm/day, which indicates both gaining and losing reaches of the stream occur in our study area. There was not a strong correlation (r=0.08) between particle size distribution and vertical hydraulic conductivity. Our findings will assist the Sonoma County Water Agency in managing water needs for the citizens of Sonoma County.
Application of a time-magnitude prediction model for earthquakes
NASA Astrophysics Data System (ADS)
An, Weiping; Jin, Xueshen; Yang, Jialiang; Dong, Peng; Zhao, Jun; Zhang, He
2007-06-01
In this paper we discuss the physical meaning of the magnitude-time model parameters for earthquake prediction. The gestation process for strong earthquake in all eleven seismic zones in China can be described by the magnitude-time prediction model using the computations of the parameters of the model. The average model parameter values for China are: b = 0.383, c=0.154, d = 0.035, B = 0.844, C = -0.209, and D = 0.188. The robustness of the model parameters is estimated from the variation in the minimum magnitude of the transformed data, the spatial extent, and the temporal period. Analysis of the spatial and temporal suitability of the model indicates that the computation unit size should be at least 4° × 4° for seismic zones in North China, at least 3° × 3° in Southwest and Northwest China, and the time period should be as long as possible.
Directional selection in temporally replicated studies is remarkably consistent.
Morrissey, Michael B; Hadfield, Jarrod D
2012-02-01
Temporal variation in selection is a fundamental determinant of evolutionary outcomes. A recent paper presented a synthetic analysis of temporal variation in selection in natural populations. The authors concluded that there is substantial variation in the strength and direction of selection over time, but acknowledged that sampling error would result in estimates of selection that were more variable than the true values. We reanalyze their dataset using techniques that account for the necessary effect of sampling error to inflate apparent levels of variation and show that directional selection is remarkably constant over time, both in magnitude and direction. Thus we cannot claim that the available data support the existence of substantial temporal heterogeneity in selection. Nonetheless, we conject that temporal variation in selection could be important, but that there are good reasons why it may not appear in the available data. These new analyses highlight the importance of applying techniques that estimate parameters of the distribution of selection, rather than parameters of the distribution of estimated selection (which will reflect both sampling error and "real" variation in selection); indeed, despite availability of methods for the former, focus on the latter has been common in synthetic reviews of the aspects of selection in nature, and can lead to serious misinterpretations. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Dimming Titan Revealed by the Cassini Observations
Li, Liming
2015-01-01
Here we report the temporal variation of Titan's emitted energy with the Cassini/CIRS observations. In the northern hemisphere, the hemispheric-average emitted power decreased from 2007 to 2009 and increased from 2009 to 2012–13, which make the net change insignificant (0.1 ± 0.2%) during the period 2007–2013. The decrease from 2007 to 2009 is mainly due to the cooling around the stratospause, and the increase from 2009 to 2012–13 is probably related to temporal variation of atmospheric temperature around the tropopuase in the northern hemisphere. In the southern hemisphere, the emitted power continuously decreased by 5.0 ± 0.6% from 2.40 ± 0.01 W/m2 in 2007 to 2.28 ± 0.01 in 2012–13, which is mainly related to Titan's seasonal variation. The asymmetry in the temporal variation between the two hemispheres results in the global-average emitted power decreasing by 2.5 ± 0.6% from 2.41 ± 0.01 W/m2 in 2007 to 2.35 ± 0.01 W/m2 in 2012–13. The solar constant at Titan decreased by ~13.0% in the same period 2007–2013, which is much stronger than the temporal variation of emitted power. The measurements of Titan's absorbed solar power are needed to determine the temporal variation of the global energy budget. PMID:25649341
NASA Astrophysics Data System (ADS)
Pineda, Gustavo; Atehortúa, Angélica; Iregui, Marcela; García-Arteaga, Juan D.; Romero, Eduardo
2017-11-01
External auditory cues stimulate motor related areas of the brain, activating motor ways parallel to the basal ganglia circuits and providing a temporary pattern for gait. In effect, patients may re-learn motor skills mediated by compensatory neuroplasticity mechanisms. However, long term functional gains are dependent on the nature of the pathology, follow-up is usually limited and reinforcement by healthcare professionals is crucial. Aiming to cope with these challenges, several researches and device implementations provide auditory or visual stimulation to improve Parkinsonian gait pattern, inside and outside clinical scenarios. The current work presents a semiautomated strategy for spatio-temporal feature extraction to study the relations between auditory temporal stimulation and spatiotemporal gait response. A protocol for auditory stimulation was built to evaluate the integrability of the strategy in the clinic practice. The method was evaluated in transversal measurement with an exploratory group of people with Parkinson's (n = 12 in stage 1, 2 and 3) and control subjects (n =6). The result showed a strong linear relation between auditory stimulation and cadence response in control subjects (R=0.98 +/-0.008) and PD subject in stage 2 (R=0.95 +/-0.03) and stage 3 (R=0.89 +/-0.05). Normalized step length showed a variable response between low and high gait velocity (0.2> R >0.97). The correlation between normalized mean velocity and stimulus was strong in all PD stage 2 (R>0.96) PD stage 3 (R>0.84) and controls (R>0.91) for all experimental conditions. Among participants, the largest variation from baseline was found in PD subject in stage 3 (53.61 +/-39.2 step/min, 0.12 +/- 0.06 in step length and 0.33 +/- 0.16 in mean velocity). In this group these values were higher than the own baseline. These variations are related with direct effect of metronome frequency on cadence and velocity. The variation of step length involves different regulation strategies and could need others specific external cues. In conclusion the current protocol (and their selected parameters, kind of sound time for training, step of variation, range of variation) provide a suitable gait facilitation method specially for patients with the highest gait disturbance (stage 2 and 3). The method should be adjusted for initial stages and evaluated in a rehabilitation program.
Temporal variability of bacterial communities in cryoconite on an alpine glacier.
Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Ambrosini, Roberto
2017-04-01
Cryoconite holes, that is, small ponds that form on glacier surface, are considered the most biologically active environments on glaciers. Bacterial communities in these environments have been extensively studied, but often through snapshot studies based on the assumption of a general stability of community structure. In this study, the temporal variation of bacterial communities in cryoconite holes on the Forni Glacier (Italian Alps) was investigated by high throughput DNA sequencing. A temporal change of bacterial communities was observed with autotrophic Cyanobacteria populations dominating communities after snowmelt, and heterotrophic Sphingobacteriales populations increasing in abundance later in the season. Bacterial communities also varied according to hole depth and area, amount of organic matter in the cryoconite and oxygen concentration. However, variation in environmental features explained a lower fraction of the variation in bacterial communities than temporal variation. Temporal change along ablation season seems therefore more important than local environmental conditions in shaping bacterial communities of cryoconite of the Forni Glacier. These findings challenge the assumption that bacterial communities of cryoconite holes are stable. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Evolution of trust and trustworthiness: social awareness favours personality differences
McNamara, John M.; Stephens, Philip A.; Dall, Sasha R.X.; Houston, Alasdair I.
2008-01-01
Interest in the evolution and maintenance of personality is burgeoning. Individuals of diverse animal species differ in their aggressiveness, fearfulness, sociability and activity. Strong trade-offs, mutation–selection balance, spatio-temporal fluctuations in selection, frequency dependence and good-genes mate choice are invoked to explain heritable personality variation, yet for continuous behavioural traits, it remains unclear which selective force is likely to maintain distinct polymorphisms. Using a model of trust and cooperation, we show how allowing individuals to monitor each other's cooperative tendencies, at a cost, can select for heritable polymorphisms in trustworthiness. This variation, in turn, favours costly ‘social awareness’ in some individuals. Feedback of this sort can explain the individual differences in trust and trustworthiness so often documented by economists in experimental public goods games across a range of cultures. Our work adds to growing evidence that evolutionary game theorists can no longer afford to ignore the importance of real world inter-individual variation in their models. PMID:18957369
Natural Changes in Brain Temperature Underlie Variations in Song Tempo during a Mating Behavior
Aronov, Dmitriy; Fee, Michale S.
2012-01-01
The song of a male zebra finch is a stereotyped motor sequence whose tempo varies with social context – whether or not the song is directed at a female bird – as well as with the time of day. The neural mechanisms underlying these changes in tempo are unknown. Here we show that brain temperature recorded in freely behaving male finches exhibits a global increase in response to the presentation of a female bird. This increase strongly correlates with, and largely explains, the faster tempo of songs directed at a female compared to songs produced in social isolation. Furthermore, we find that the observed diurnal variations in song tempo are also explained by natural variations in brain temperature. Our findings suggest that brain temperature is an important variable that can influence the dynamics of activity in neural circuits, as well as the temporal features of behaviors that some of these circuits generate. PMID:23112858
Energy deposition rates by charged particles. [in upper atmosphere
NASA Technical Reports Server (NTRS)
Torkar, K. M.; Urban, A.; Bjordal, J.; Lundblad, J. A.; Soraas, F.; Smith, L. G.; Dumbs, A.; Grandal, B.; Ulwick, J. C.; Vancour, R. P.
1985-01-01
A summary of measurements of the precipitation of electrons and positive ions (in the keV-MeV range) detected aboard eight rockets launched within the Energy Budget Campaign from Northern Scandinavia is given, together with corresponding satellite data. In some cases strong temporal variations of the downgoing integral fluxes were observed. The fluxes provide the background for the calculated ion production rates and altitude profiles of the energy deposition into the atmosphere at different levels of geomagnetic disturbance and cosmic noise absorption. The derived ion production rates by eneretic particles are compared to other night-time ionisation sources.
Lee, Myungmo; Song, Changho; Lee, Kyoungjin; Shin, Doochul; Shin, Seungho
2014-07-14
Treadmill gait analysis was more advantageous than over-ground walking because it allowed continuous measurements of the gait parameters. The purpose of this study was to investigate the concurrent validity and the test-retest reliability of the OPTOGait photoelectric cell system against the treadmill-based gait analysis system by assessing spatio-temporal gait parameters. Twenty-six stroke patients and 18 healthy adults were asked to walk on the treadmill at their preferred speed. The concurrent validity was assessed by comparing data obtained from the 2 systems, and the test-retest reliability was determined by comparing data obtained from the 1st and the 2nd session of the OPTOGait system. The concurrent validity, identified by the intra-class correlation coefficients (ICC [2, 1]), coefficients of variation (CVME), and 95% limits of agreement (LOA) for the spatial-temporal gait parameters, were excellent but the temporal parameters expressed as a percentage of the gait cycle were poor. The test-retest reliability of the OPTOGait System, identified by ICC (3, 1), CVME, 95% LOA, standard error of measurement (SEM), and minimum detectable change (MDC95%) for the spatio-temporal gait parameters, was high. These findings indicated that the treadmill-based OPTOGait System had strong concurrent validity and test-retest reliability. This portable system could be useful for clinical assessments.
Warren, Victoria E; Marques, Tiago A; Harris, Danielle; Thomas, Len; Tyack, Peter L; Aguilar de Soto, Natacha; Hickmott, Leigh S; Johnson, Mark P
2017-03-01
Passive acoustic monitoring has become an increasingly prevalent tool for estimating density of marine mammals, such as beaked whales, which vocalize often but are difficult to survey visually. Counts of acoustic cues (e.g., vocalizations), when corrected for detection probability, can be translated into animal density estimates by applying an individual cue production rate multiplier. It is essential to understand variation in these rates to avoid biased estimates. The most direct way to measure cue production rate is with animal-mounted acoustic recorders. This study utilized data from sound recording tags deployed on Blainville's (Mesoplodon densirostris, 19 deployments) and Cuvier's (Ziphius cavirostris, 16 deployments) beaked whales, in two locations per species, to explore spatial and temporal variation in click production rates. No spatial or temporal variation was detected within the average click production rate of Blainville's beaked whales when calculated over dive cycles (including silent periods between dives); however, spatial variation was detected when averaged only over vocal periods. Cuvier's beaked whales exhibited significant spatial and temporal variation in click production rates within vocal periods and when silent periods were included. This evidence of variation emphasizes the need to utilize appropriate cue production rates when estimating density from passive acoustic data.
Spatiotemporal variation in reproductive parameters of yellow-bellied marmots.
Ozgul, Arpat; Oli, Madan K; Olson, Lucretia E; Blumstein, Daniel T; Armitage, Kenneth B
2007-11-01
Spatiotemporal variation in reproductive rates is a common phenomenon in many wildlife populations, but the population dynamic consequences of spatial and temporal variability in different components of reproduction remain poorly understood. We used 43 years (1962-2004) of data from 17 locations and a capture-mark-recapture (CMR) modeling framework to investigate the spatiotemporal variation in reproductive parameters of yellow-bellied marmots (Marmota flaviventris), and its influence on the realized population growth rate. Specifically, we estimated and modeled breeding probabilities of two-year-old females (earliest age of first reproduction), >2-year-old females that have not reproduced before (subadults), and >2-year-old females that have reproduced before (adults), as well as the litter sizes of two-year old and >2-year-old females. Most reproductive parameters exhibited spatial and/or temporal variation. However, reproductive parameters differed with respect to their relative influence on the realized population growth rate (lambda). Litter size had a stronger influence than did breeding probabilities on both spatial and temporal variations in lambda. Our analysis indicated that lambda was proportionately more sensitive to survival than recruitment. However, the annual fluctuation in litter size, abetted by the breeding probabilities, accounted for most of the temporal variation in lambda.
Baker, Christa A.; Ma, Lisa; Casareale, Chelsea R.
2016-01-01
In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8–12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. SIGNIFICANCE STATEMENT The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. PMID:27559179
Baker, Christa A; Ma, Lisa; Casareale, Chelsea R; Carlson, Bruce A
2016-08-24
In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8-12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. Copyright © 2016 the authors 0270-6474/16/368985-16$15.00/0.
Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi
2015-05-20
Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months.
Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi
2015-01-01
Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months. PMID:26006121
NASA Astrophysics Data System (ADS)
Kemna, A.; Weigand, M.; Wagner, F.; Hilbich, C.; Hauck, C.
2016-12-01
Flow of (liquid) water plays a crucial role in the dynamics of coupled thermo-hydro-mechanical processes in terrestrial permafrost systems. To better understand these processes in the active layer of permafrost regions, with the ultimate goal of adequately incorporating them in numerical models for improved scenario prediction, monitoring approaches offering high spatial and temporal resolution, areal coverage, and especially sensitivity to subsurface water flow, are highly desired. This particularly holds for high-mountain slopes, where strong variability in topography, precipitation, and snow cover, along with significant subsurface soil/rock heterogeneity, gives rise to complex spatio-temporal patterns of water flow during seasonal thawing and freezing periods. The electrical self-potential (SP) method is well known to, in theory, meeting the above monitoring demands by measuring the electrical streaming potential which is generated at the microscopic scale when water flows along electrically non-neutral interfaces. Despite its inherent sensitivity to subsurface water flow, the SP method has not yet been used for the monitoring of high-mountain permafrost sites. We here present first results from an SP monitoring survey conducted at the Schilthorn (2970 m asl) in the Bernese Alps, Switzerland, where SP data have been collected since September 2013 at a sampling rate of 10 min on a permanently installed array of 12 non-polarizing electrodes covering an area of 35 m by 15 m. While the SP time series exhibit systematic daily variations, with part of the signal clearly correlated with temperature, in particular in the snow-free periods, the largest temporal changes in the SP signal occur in spring, when the snow cover melts and thawing sets on in the active layer. The period of higher temporal SP variations continues until autumn, when the signal gradually returns to relatively low variations, coinciding with the freezing of the ground. Our results suggest that the SP method is a suitable tool for the monitoring of seasonal water flow dynamics at high-mountain permafrost sites. Current work is directed towards an improved field setup, as well as the quantitative analysis of the SP data based on laboratory calibration measurements.
Temporal variation in the importance of a dominant consumer to stream nutrient cycling
Griffiths, Natalie A.; Hill, Walter
2014-06-19
Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availabilitymore » (measured as gross primary production) and water temperature (multiple linear regression, R 2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.« less
Temporal variation in the importance of a dominant consumer to stream nutrient cycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Natalie A.; Hill, Walter
Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availabilitymore » (measured as gross primary production) and water temperature (multiple linear regression, R 2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.« less
Spatial and temporal temperature distribution optimization for a geostationary antenna
NASA Technical Reports Server (NTRS)
Tsuyuki, G.; Miyake, R.
1992-01-01
The Geostationary Microwave Precipitation Radiometer antenna is considered and a thermal design analysis is performed to determine a design that would minimize on-orbit antenna temporal and spatial temperature gradients. The final design is based on an optically opaque radome which covered the antenna. The average orbital antenna temperature is found to be 9 C with maximum temporal and spatial variations of 34 C and 1 C, respectively. An independent thermal distortion analysis showed that this temporal variation would give an antenna figure error of 14 microns.
Vierck, C J; Cannon, R L; Fry, G; Maixner, W; Whitsel, B L
1997-08-01
Temporal summation of sensory intensity was investigated in normal subjects using novel methods of thermal stimulation. A Peltier thermode was heated and then applied in a series of brief (700 ms) contacts to different sites on the glabrous skin of either hand. Repetitive contacts on the thenar or hypothenar eminence, at interstimulus intervals (ISIs) of 3 s, progressively increased the perceived intensity of a thermal sensation that followed each contact at an onset latency > 2 s. Temporal summation of these delayed (late) sensations was proportional to thermode temperature over a range of 45-53 degrees C, progressing from a nonpainful level (warmth) to painful sensations that could be rated as very strong after 10 contacts. Short-latency pain sensations rarely were evoked by such stimuli and never attained levels substantially above pain threshold for the sequences and temperatures presented. Temporal summation produced by brief contacts was greater in rate and amount than increases in sensory intensity resulting from repetitive ramping to the same temperature by a thermode in constant contact with the skin. Variation of the interval between contacts revealed a dependence of sensory intensity on interstimulus interval that is similar to physiological demonstrations of windup, where increasing frequencies of spike train activity are evoked from spinal neurons by repetitive activation of unmyelinated nociceptors. However, substantial summation at repetition rates of > or = 0.33 Hz was observed for temperatures that produced only late sensations of warmth when presented at frequencies < 0.16 Hz. Measurements of subepidermal skin temperature from anesthetized monkeys revealed different time courses for storage and dissipation of heat by the skin than for temporal summation and decay of sensory intensity for the human subjects. For example, negligible heat loss occurred during a 6-s interval between two trials of 10 contacts at 0.33 Hz, but ratings of sensory magnitude decreased from very strong levels of pain to sensations of warmth during the same interval. Evidence that temporal summation of sensory intensity during series of brief contacts relies on central integration, rather than a sensitization of peripheral receptors, was obtained using two approaches. In the first, a moderate degree of temporal summation was observed during alternating stimulation of adjacent but nonoverlapping skin sites at 0.33 Hz. Second, temporal summation was significantly attenuated by prior administration of dextromethorphan, a N-methyl-D-aspartate receptor antagonist.
Soil anomaly mapping using a caesium magnetometer: Limits in the low magnetic amplitude case
NASA Astrophysics Data System (ADS)
Mathé, Vivien; Lévêque, François; Mathé, Pierre-Etienne; Chevallier, Claude; Pons, Yves
2006-03-01
Caesium magnetometers are new tools for soil property mapping with a decimetric resolution [Mathé, V., Lévêque, F., 2003. High resolution magnetic survey for soil monitoring: detection of drainage and soil tillage effects. Earth and Planetary Science Letters 212 (1-2), 241-251]. However, when the magnetic anomalies are only a few nanoteslas (nT), the geologic and pedogenic signal must first be isolated from magnetic disturbances for this method to be useful. This paper investigates the instrumental artifacts and environmental disturbances to adapt the survey protocol to slightly magnetic soils. Among the possible instrumental sources of disturbances listed and quantified, the most significant are: 1) The battery effect upon sensors 2 m away (classic protocol, about ± 0.15 nT) while increasing this distance up to 10 m cancelled it; 2) The noise level of magnetometers and sensors, which, according to tests on two magnetometers and three sensors, rarely and randomly exceeds 0.1 nT, but seems to increase with the electronic component age. Among the environmental disturbances, temporal variations such as diurnal variation or fluctuations linked to the moving of metallic masses play a major role, although the pseudogradient or base-station methods have commonly cancelled them. The efficiency of the latter is strongly dependent on the source nature. However, the ground currents and electromagnetic fields propagating in soils cause more problems. As a first step to better understand such disturbance sources, uncommon magnetic signal variations supposedly due to electromagnetic wave conversions and likely linked to the railway traffic are presented. Based on previous results, an adapted protocol using one magnetometer and two caesium sensors (0.3 and 1.6 m above the surface) is proposed to increase the signal / noise ratio. At first, to maintain an accurate horizontal and vertical location of the sensors, the latter are affixed to a wooden handcart running on plastic rails. Rails adapt to micro-topography, thereby decreasing strongly the soil-sensors distance variations. Anomalies due to topography rarely exceed 0.1 nT. Finally, a method to remove diurnal variations from high-resolution magnetic maps is proposed. Parallel profiles performed successively are adjusted by a cross-profile. Assuming that the temporal variations during each profile are negligible (less than 0.05 nT), this technique, contrary to the pseudogradient, preserves both the decimetric and the metric anomalies (gain of more than 1 nT).
Parametric fMRI analysis of visual encoding in the human medial temporal lobe.
Rombouts, S A; Scheltens, P; Machielson, W C; Barkhof, F; Hoogenraad, F G; Veltman, D J; Valk, J; Witter, M P
1999-01-01
A number of functional brain imaging studies indicate that the medial temporal lobe system is crucially involved in encoding new information into memory. However, most studies were based on differences in brain activity between encoding of familiar vs. novel stimuli. To further study the underlying cognitive processes, we applied a parametric design of encoding. Seven healthy subjects were instructed to encode complex color pictures into memory. Stimuli were presented in a parametric fashion at different rates, thus representing different loads of encoding. Functional magnetic resonance imaging (fMRI) was used to assess changes in brain activation. To determine the number of pictures successfully stored into memory, recognition scores were determined afterwards. During encoding, brain activation occurred in the medial temporal lobe, comparable to the results obtained by others. Increasing the encoding load resulted in an increase in the number of successfully stored items. This was reflected in a significant increase in brain activation in the left lingual gyrus, in the left and right parahippocampal gyrus, and in the right inferior frontal gyrus. This study shows that fMRI can detect changes in brain activation during variation of one aspect of higher cognitive tasks. Further, it strongly supports the notion that the human medial temporal lobe is involved in encoding novel visual information into memory.
A space-time multiscale modelling of Earth's gravity field variations
NASA Astrophysics Data System (ADS)
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2017-04-01
The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1988-01-01
Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.
Temporal variations of Cu in Jiaozhou Bay 1982-1986
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Zhu, Sixi; Wang, Zhikang; Su, Chunhua; Wang, Qiang
2017-12-01
This paper analyzed the temporal variations of Cu in Jiaozhou Bay during 1982-1986. Results showed that Cu contents in study years were 0.15-5.31 μg L-1, 0.77-20.60 μg L-1, 0.11-4.00 μg L-1, 0.10-0.43 μg L-1 and 0.18-0.77 μg L-1, respectively. The Cu pollution level in this bay was moderate during 1982-1983, yet for temporal variations Cu contents in surface waters were showing decreasing trend. Cu contents in spring, summer and autumn were 0.11-20.60 μg L-1, 0.10-4.86 μg L-1 and 0.11-3.56 μg L-1, respectively. This bay was moderate pollution in spring in 1982-1983, while in other seasons in study years was still slight. These indicated that the temporal variations of Cu pollution in this bay should be taken in to account in decision-making of pollution control practice.
NASA Astrophysics Data System (ADS)
Hang, F.; Wang, X.; Yu, Z.
2017-12-01
The Yellow-Bohai Sea is a semi-closed marginal sea in the east of China, affected much by human activities, especially the Bohai Sea. The present study evaluates spatial and seasonal variations of surface particulate organic carbon (POC) that was derived from MODIS month-average data for the period of July 2002-December 2016. Our analyses show that POC concentrations are significantly higher in the Bohai Sea (314.7-587.9 mg m-3) than in the Yellow Sea (181.3-492.2 mg m-3). In general, POC concentrations were higher in the nearshore waters than in the offshore. There are strong seasonal to interannual variations in POC. Mean POC was highest in spring in both Bohai Sea and Yellow Sea; the lowest POC was found in summer in the Yellow Sea, but in winter in the Bohai Sea. The elevated POC from summer to fall indicates that there was allochthonous source of POC. Overall, there was a decreasing trend in POC prior to year 2012, followed by a strong upward trend until the end of 2015. The interannual variability in POC was significantly correlated with NPGO, PDO and ENSO in the Yellow Sea, but only with NPGO in the Bohai Sea. Our analyses point out that both climate variability and human activity may impacts the carbon cycle in the Yellow-Bohai Sea.
Chen, Anqiang; Lei, Baokun; Hu, Wanli; Wang, Hongyuan; Zhai, Limei; Mao, Yanting; Fu, Bin; Zhang, Dan
2018-02-01
Nitrogen export from the nearshore vegetable field of Erhai Lake seriously threatens the water quality of Erhai Lake, which is the second largest highland freshwater lake in Yunnan Province, China. Among the nitrogen flows into Erhai Lake, shallow groundwater migration is a major pathway. The nitrogen variation and influencing factors in the shallow groundwater of the nearshore vegetable field of Erhai Lake are not well documented. A 2-year field experiment was conducted to determine the concentrations of nitrogen species in the shallow groundwater and their influencing factors in the nearshore vegetable field of Erhai Lake. The results showed that concentrations of TN, NO 3 - -N, and NO 2 - -N gradually increased with increasing elevation and distance from Erhai Lake, but the opposite was observed for NH 4 + -N in the shallow groundwater. The concentrations of nitrogen species in the rainy season were greater than those in the dry season. NO 3 - -N accounted for more than 79% of total nitrogen in shallow groundwater. Redundancy analysis showed that more than 70% of the temporal and spatial variations of nitrogen concentrations in the shallow groundwater were explained by shallow groundwater depth, and only approximately 10% of variation was explained by the factors of soil porosity, silt clay content of soil, and NH 4 + -N and NO 3 - -N concentrations of soil (p < 0.05). The shallow groundwater depth had more notable effects on nitrogen concentrations in the shallow groundwater than other factors. This result will strongly support the need for further research regarding the management practices for reducing nitrogen concentrations in shallow groundwater.
Temporal patterns in the foraging behavior of sea otters in Alaska
Esslinger, George G.; Bodkin, James L.; Breton, André R.; Burns, Jennifer M.; Monson, Daniel H.
2014-01-01
Activity time budgets in apex predators have been proposed as indicators of population status relative to resource limitation or carrying capacity. We used archival time-depth recorders implanted in 15 adult female and 4 male sea otters (Enhydra lutris) from the northernmost population of the species, Prince William Sound, Alaska, USA, to examine temporal patterns in their foraging behavior. Sea otters that we sampled spent less time foraging during summer (females 8.8 hr/day, males 7.9 hr/day) than other seasons (females 10.1–10.5 hr/day, males 9.2–9.5 hr/day). Both sexes showed strong preferences for diurnal foraging and adjusted their foraging effort in response to the amount of available daylight. One exception to this diurnal foraging mode occurred after females gave birth. For approximately 3 weeks post-partum, females switched to nocturnal foraging, possibly in an effort to reduce the risk of predation by eagles on newborn pups. We used multilevel mixed regression models to assess the contribution of several biological and environmental covariates to variation in the daily foraging effort of parous females. In the random effects only model, 87% of the total variation in foraging effort was within-otter variation. The relatively small among-otter variance component (13%) indicates substantial consistency in the foraging effort of sea otters in this northern population. In the top 3 models, 17% of the within-otter variation was explained by reproductive stage, day length, wind speed, air temperature and a wind speed × air temperature interaction. This study demonstrates the potential importance of environmental and reproductive effects when using activity budgets to assess population status relative to carrying capacity.
Movements of wintering surf scoters: Predator responses to different prey landscapes
Kirk, M.; Esler, Daniel N.; Iverson, S.A.; Boyd, W.S.
2008-01-01
The distribution of predators is widely recognized to be intimately linked to the distribution of their prey. Foraging theory suggests that predators will modify their behaviors, including movements, to optimize net energy intake when faced with variation in prey attributes or abundance. While many studies have documented changes in movement patterns of animals in response to temporal changes in food, very few have contrasted movements of a single predator species naturally occurring in dramatically different prey landscapes. We documented variation in the winter movements, foraging range size, site fidelity, and distribution patterns of a molluscivorous sea duck, the surf scoter (Melanitta perspicillata), in two areas of coastal British Columbia with very different shellfish prey features. Baynes Sound has extensive tidal flats with abundant clams, which are high-quality and temporally stable prey for scoters. Malaspina Inlet is a rocky fjord-like inlet where scoters consume mussels that are superabundant and easily accessible in some patches but are heavily depleted over the course of winter. We used radio telemetry to track surf scoter movements in both areas and found that in the clam habitats of Baynes Sound, surf scoters exhibited limited movement, small winter ranges, strong foraging site fidelity, and very consistent distribution patterns. By contrast, in mussel habitats in the Malaspina Inlet, surf scoters displayed more movement, larger ranges, little fidelity to specific foraging sites, and more variable distribution patterns. We conclude that features associated with the different prey types, particularly the higher depletion rates of mussels, strongly influenced seasonal space use patterns. These findings are consistent with foraging theory and confirm that predator behavior, specifically movements, is environmentally mediated. ?? 2008 Springer-Verlag.
Spatial and temporal patterns of subtidal and intertidal crabs excursions
NASA Astrophysics Data System (ADS)
Silva, A. C. F.; Boaventura, D. M.; Thompson, R. C.; Hawkins, S. J.
2014-01-01
Highly mobile predators such as fish and crabs are known to migrate from the subtidal zone to forage in the intertidal zone at high-tide. The extent and variation of these habitat linking movements along the vertical shore gradient have not been examined before for several species simultaneously, hence not accounting for species interactions. Here, the foraging excursions of Carcinus maenas (L.), Necora puber (Linnaeus, 1767) and Cancer pagurus (Linnaeus, 1758) were assessed in a one-year mark-recapture study on two replicated rocky shores in southwest U.K. A comparison between the abundance of individuals present on the shore at high-tide with those present in refuges exposed at low-tide indicated considerable intertidal migration by all species, showing strong linkage between subtidal and intertidal habitats. Estimates of population size based on recapture of marked individuals indicated that an average of ~ 4000 individuals combined for the three crab species, can be present on the shore during one tidal cycle. There was also a high fidelity of individuals and species to particular shore levels. Underlying mechanisms for these spatial patterns such as prey availability and agonistic interactions are discussed. Survival rates were estimated using the Cormack-Jolly-Seber model from multi-recapture analysis and found to be considerably high with a minimum of 30% for all species. Growth rates were found to vary intraspecifically with size and between seasons. Understanding the temporal and spatial variations in predation pressure by crabs on rocky shores is dependent on knowing who, when and how many of these commercially important crab species depend on intertidal foraging. Previous studies have shown that the diet of these species is strongly based on intertidal prey including key species such as limpets; hence intertidal crab migration could be associated with considerable impacts on intertidal assemblages.
NASA Astrophysics Data System (ADS)
Zheng, Z.; Zhu, W.
2016-12-01
Plant phenology is strongly controlled by climate and has become a sensitive bio-indicator to study the plant response to climate change. Since the high altitude, permafrost geography and harsh physical environment of the Tibetan Plateau (TP), the phenology shift in the TP was thought to be more sensitive than many other regions. However, the study of phenology in the TP was greatly limited by the lack of ground-observed phenological data. In this study, we collected the phonological records of first leaf date (FLD) and the first flowering date (FFD) of two herbaceous species (Plantago asiatica and Taraxacum mongolicum) both from 14 stations across the TP during 2000-2011 and analyzed the spatio-temporal variations of spring phenology. The results showed that the onset dates of FLD and FFD exhibited strong dependence on latitude, longitude and altitude because the onset dates of spring phenology occurred earlier at warmer locations. The sensitivities of spring phenology temperature varied among stations and earlier phenological events showed more negative temperature sensitivity except for the FFD of Taraxacum mongolicum. But the relationship between spring phenology and precipitation was not clear. Though the diverse trends of spring phenology of Plantago asiatica and Taraxacum mongolicum were found, the differences between the onset dates of FLD of the two species tended to increase (P < 0.05). However, the differences between the onset dates of FFD of the two species showed a reducing tendency (P < 0.01). These findings can help us to better understand the responses of plants to climate change in alpine ecosystem and provide information for phenology modelling.
Temporal Variation in Oscillatory Characteristics of Long-period Tremor at Aso Volcano, Japan.
NASA Astrophysics Data System (ADS)
Yamamoto, M.; Ohkura, T.; Kaneshima, S.; Kawakatsu, H.
2017-12-01
At Aso volcano, Japan, various kinds of volcanic signals with broad frequency contents have been observed since 1930s. One of these signals is long-period tremor (LPT) with a dominant period of around 15 s, which is intermittently emitted from the volcano regardless of the surface activity. Our broadband seismic observations have revealed that LPTs are a kind of resonance oscillation of a crack-like conduit beneath the crater. In this study, aiming to detect a temporal variation of volcanic system, we analyze the long-term variation of LPTs from 1994 to the present.We first examine the temporal variation of dominant periods of LPTs (fundamental mode of around 15 s and the first overtone of around 7 s) using the continuous data recorded at broadband stations close to the active crater. The result shows a clear temporal change in the dominant periods of LPTs in 2003-2005 and 2014-2015. In 2003-2005, the periods of the two modes show correlated temporal change, and it can be interpreted as compositional and/or thermal change of hydrothermal fluids. On the other hand, in 2014-2015, the period of first overtone is almost constant at around 8 s, while that of the fundamental mode shows relatively large temporal fluctuations between 16 s and 12 s. To explain the different behavior among the two resonant modes, we examine the oscillatory characteristics of a fluid-filled crack having linearly varying thickness. With this model, we find that the ratio between resonance periods becomes smaller than that in the case of a flat crack having constant thickness. This behavior can be understood by considering the effective thickness of the crack depends on the wavelength of each resonant mode. Based on these results, the different temporal variation of dominant periods can be interpreted by depth-dependent thickness of the crack-like conduit which may be caused by pressurization and/or intrusion of magma at deeper portion of the conduit. These results suggest the importance of continuous observation, and at the same time, imply that the temporal variation of volcanic fluid systems beneath active volcanoes may be monitored by seismological means.
[Hydrogeochemical characteristics of a typical karst groundwater system in Chongqing].
Yang, Ping-Heng; Lu, Bing-Qing; He, Qiu-Fang; Chen, Xue-Bin
2014-04-01
The two-year hydrologic process, hydrochemistry, and a portion of deltaD, delta18O of both the surface water at the inlet and the groundwater at the outlet, were investigated to identify the spatial and temporal variations of hydrogeochemistry in the Qingmuguan karst groundwater system. Research results show that there are wet and dry periods in the groundwater system owing to the striking influence of seasonal rainfall. The evolution of the chemical compositions in the groundwater is significantly influenced by the water and rock interaction, anthropogenic activities and rainwater dilution. The variations of the chemical compositions in the groundwater exhibit obvious spatiality and temporality. The deltaD and delta18O of the surface water beneath the local Meteoric Water Line of Chonqing indicate that the surface water is strongly evaporated. Furthermore, the deltaD and delta18O of the surface water are more positive in the dry period than in the wet period, showing a distinct seasonal effect. The deltaD and delta18O of the groundwater are quite stable and much negative compared with those of the surface water, which suggests that the rainwater recharge the groundwater via two pathways, one directly through sinkholes and the other via the vadose zone.
Spatio-temporal dynamic climate model for Neoleucinodes elegantalis using CLIMEX
NASA Astrophysics Data System (ADS)
da Silva, Ricardo Siqueira; Kumar, Lalit; Shabani, Farzin; da Silva, Ezio Marques; da Silva Galdino, Tarcisio Visintin; Picanço, Marcelo Coutinho
2017-05-01
Seasonal variations are important components in understanding the ecology of insect population of crops. Ecological studies through modeling may be a useful tool for enhancing knowledge of seasonal patterns of insects on field crops as well as seasonal patterns of favorable climatic conditions for species. Recently CLIMEX, a semi-mechanistic niche model, was upgraded and enhanced to consider spatio-temporal dynamics of climate suitability through time. In this study, attempts were made to determine monthly variations of climate suitability for Neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae) in five commercial tomato crop localities through the latest version of CLIMEX. We observed that N. elegantalis displays seasonality with increased abundance in tomato crops during summer and autumn, corresponding to the first 6 months of the year in monitored areas in this study. Our model demonstrated a strong accord between the CLIMEX weekly growth index (GIw) and the density of N. elegantalis for this period, thus indicating a greater confidence in our model results. Our model shows a seasonal variability of climatic suitability for N. elegantalis and provides useful information for initiating methods for timely management, such as sampling strategies and control, during periods of high degree of suitability for N. elegantalis. In this study, we ensure that the simulation results are valid through our verification using field data.
Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
Meyer, Bernd T; Brand, Thomas; Kollmeier, Birger
2011-01-01
The aim of this study is to quantify the gap between the recognition performance of human listeners and an automatic speech recognition (ASR) system with special focus on intrinsic variations of speech, such as speaking rate and effort, altered pitch, and the presence of dialect and accent. Second, it is investigated if the most common ASR features contain all information required to recognize speech in noisy environments by using resynthesized ASR features in listening experiments. For the phoneme recognition task, the ASR system achieved the human performance level only when the signal-to-noise ratio (SNR) was increased by 15 dB, which is an estimate for the human-machine gap in terms of the SNR. The major part of this gap is attributed to the feature extraction stage, since human listeners achieve comparable recognition scores when the SNR difference between unaltered and resynthesized utterances is 10 dB. Intrinsic variabilities result in strong increases of error rates, both in human speech recognition (HSR) and ASR (with a relative increase of up to 120%). An analysis of phoneme duration and recognition rates indicates that human listeners are better able to identify temporal cues than the machine at low SNRs, which suggests incorporating information about the temporal dynamics of speech into ASR systems.
The Greenland Sea Odden: Intra- and inter-annual variability
Russell, C.A.; Fischer, K.W.; Shuchman, R.A.; Josberger, E.G.
1997-01-01
The "Odden" is a large sea ice feature that forms in the East Greenland Sea which generally forms at the beginning of the winter season and can cover 300,000 km2. Throughout the winter, the outer edge of the Odden may advance and retreat by several hundred kilometers on time scales of a few days to weeks. Satellite passive microwave observations from 1978 through 1995 provide a continuous record of the spatial and temporal variations of this extremely dynamic phenomenon. The 17 year record shows both strong inter- and intra-annual variations in Odden extent and temporal behavior. An analysis of the satellite passive microwave derived ice area and extent time series along with meteorological data from the Arctic Drifting Buoy Network determined the meteorological forcing required for Odden growth, maintenance and decay. The key meteorological parameters which cause the rapid ice formation and decay associated with the Odden are, in order of importance, air temperature, wind speed, and wind direction. Atmospheric pressure was found not to play a significant role in the Odden events. Air temperature and wind direction are the dominant variables with temperatures below -9.5??C and winds from the west required to trigger significant Odden ice formation events. ??2004 Copyright SPIE - The International Society for Optical Engineering.
Genetic drift and collective dispersal can result in chaotic genetic patchiness.
Broquet, Thomas; Viard, Frédérique; Yearsley, Jonathan M
2013-06-01
Chaotic genetic patchiness denotes unexpected patterns of genetic differentiation that are observed at a fine scale and are not stable in time. These patterns have been described in marine species with free-living larvae, but are unexpected because they occur at a scale below the dispersal range of pelagic larvae. At the scale where most larvae are immigrants, theory predicts spatially homogeneous, temporally stable genetic variation. Empirical studies have suggested that genetic drift interacts with complex dispersal patterns to create chaotic genetic patchiness. Here we use a co-ancestry model and individual-based simulations to test this idea. We found that chaotic genetic patterns (qualified by global FST and spatio-temporal variation in FST's between pairs of samples) arise from the combined effects of (1) genetic drift created by the small local effective population sizes of the sessile phase and variance in contribution among breeding groups and (2) collective dispersal of related individuals in the larval phase. Simulations show that patchiness levels qualitatively comparable to empirical results can be produced by a combination of strong variance in reproductive success and mild collective dispersal. These results call for empirical studies of the effective number of breeders producing larval cohorts, and population genetics at the larval stage. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.
Pérez-Del-Olmo, A; Montero, F E; Fernández, M; Barrett, J; Raga, J A; Kostadinova, A
2010-10-01
We address the effect of spatial scale and temporal variation on model generality when forming predictive models for fish assignment using a new data mining approach, Random Forests (RF), to variable biological markers (parasite community data). Models were implemented for a fish host-parasite system sampled along the Mediterranean and Atlantic coasts of Spain and were validated using independent datasets. We considered 2 basic classification problems in evaluating the importance of variations in parasite infracommunities for assignment of individual fish to their populations of origin: multiclass (2-5 population models, using 2 seasonal replicates from each of the populations) and 2-class task (using 4 seasonal replicates from 1 Atlantic and 1 Mediterranean population each). The main results are that (i) RF are well suited for multiclass population assignment using parasite communities in non-migratory fish; (ii) RF provide an efficient means for model cross-validation on the baseline data and this allows sample size limitations in parasite tag studies to be tackled effectively; (iii) the performance of RF is dependent on the complexity and spatial extent/configuration of the problem; and (iv) the development of predictive models is strongly influenced by seasonal change and this stresses the importance of both temporal replication and model validation in parasite tagging studies.
Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin)
Bouillon, Steven; Yambélé, Athanase; Gillikin, David P.; Teodoru, Cristian; Darchambeau, François; Lambert, Thibault; Borges, Alberto V.
2014-01-01
The Oubangui is a major tributary of the Congo River. We describe the biogeochemistry of contrasting tributaries within its central catchment, with watershed vegetation ranging from wooded savannahs to humid rainforest. Compared to a 2-year monitoring record on the mainstem Oubangui, these tributaries show a wide range of biogeochemical signatures, from highly diluted blackwaters (low turbidity, pH, conductivity, and total alkalinity) in rainforests to those more typical for savannah systems. Spectral analyses of chromophoric dissolved organic matter showed wide temporal variations in the Oubangui compared to spatio-temporal variations in the tributaries, and confirm that different pools of dissolved organic carbon are mobilized during different hydrological stages. δ13C of dissolved inorganic carbon ranged between −28.1‰ and −5.8‰, and was strongly correlated to both partial pressure of CO2 and to the estimated contribution of carbonate weathering to total alkalinity, suggesting an important control of the weathering regime on CO2 fluxes. All tributaries were oversaturated in dissolved greenhouse gases (CH4, N2O, CO2), with highest levels in rivers draining rainforest. The high diversity observed underscores the importance of sampling that covers the variability in subcatchment characteristics, to improve our understanding of biogeochemical cycling in the Congo Basin. PMID:24954525
Interindividual variability in the hemispheric organization for speech.
Tzourio-Mazoyer, N; Josse, G; Crivello, F; Mazoyer, B
2004-01-01
A PET activation study was designed to investigate hemispheric specialization during speech comprehension and production in right- and left-handed subjects. Normalized regional cerebral blood flow (NrCBF) was repeatedly monitored while subjects either listened to factual stories (Story) or covertly generated verbs semantically related to heard nouns (Gener), using silent resting (Rest) as a common control condition. NrCBF variations in each task, as compared to Rest, as well as functional asymmetry indices (FAI = right minus left NrCBF variations), were computed in anatomical regions of interest (AROIs) defined on the single-subject MNI template. FAIs were predominantly leftward in all regions during both tasks, although larger FAIs were observed during Gener. Subjects were declared "typical" for language hemispheric specialization based on the presence of significant leftward asymmetries (FAI < 0) in the pars triangularis and opercularis of the inferior frontal gyrus during Gener, and in the middle and inferior temporal AROIs during Story. Six subjects (including five LH) showed an atypical language representation. Among them, one presented a right hemisphere specialization during both tasks, another a shift in hemispheric specialization from production to comprehension (left during Gener, right during Story). The group of 14 typical subjects showed significant positive correlation between homologous left and right AROIs NrCBF variations in temporal areas during Story, and in temporal and inferior frontal areas during Gener, almost all regions presenting a leftward FAI. Such correlations were also present in deactivated areas with strong leftward asymmetry (supramarginalis gyrus, inferior parietal region). These results suggest that entry into a language task translates into a hemispheric reconfiguration of lateral cortical areas with global NrCBF increase in the dominant hemisphere and decrease in the minor hemisphere. This can be considered as the setting up of a "language mode", under the control of a mechanism that operates at a perisylvian level. On top of this global organization, regional variations carry on the performance of the cognitive operations specific to the language task to be performed. Hemispheric relationships could be different in atypical subjects, with either between task hemispheric regulation differences or differences in regional specialization.
NASA Astrophysics Data System (ADS)
Nahlawi, Layan; Goncalves, Caroline; Imani, Farhad; Gaed, Mena; Gomez, Jose A.; Moussa, Madeleine; Gibson, Eli; Fenster, Aaron; Ward, Aaron D.; Abolmaesumi, Purang; Mousavi, Parvin; Shatkay, Hagit
2017-03-01
Recent studies have shown the value of Temporal Enhanced Ultrasound (TeUS) imaging for tissue characterization in transrectal ultrasound-guided prostate biopsies. Here, we present results of experiments designed to study the impact of temporal order of the data in TeUS signals. We assess the impact of variations in temporal order on the ability to automatically distinguish benign prostate-tissue from malignant tissue. We have previously used Hidden Markov Models (HMMs) to model TeUS data, as HMMs capture temporal order in time series. In the work presented here, we use HMMs to model malignant and benign tissues; the models are trained and tested on TeUS signals while introducing variation to their temporal order. We first model the signals in their original temporal order, followed by modeling the same signals under various time rearrangements. We compare the performance of these models for tissue characterization. Our results show that models trained over the original order-preserving signals perform statistically significantly better for distinguishing between malignant and benign tissues, than those trained on rearranged signals. The performance degrades as the amount of temporal-variation increases. Specifically, accuracy of tissue characterization decreases from 85% using models trained on original signals to 62% using models trained and tested on signals that are completely temporally-rearranged. These results indicate the importance of order in characterization of tissue malignancy from TeUS data.
NASA Astrophysics Data System (ADS)
Hirota, N.; Takayabu, Y. N.; Watanabe, M.; Kimoto, M.; Chikira, M.
2013-12-01
This study shows that a proper treatment of convective entrainment is essential in determining spatial distributions and temporal variations of precipitation by numerical experiments. They have performed and compared four experiments with different entrainment characteristics: a control (Ctl), no entrainment (NoEnt), original Arakawa Schubert (AS), and AS with simple empirical suppression of convection (ASRH). The fractional entrainment rate of AS and ASRH are constant for each cloud type and are very small near cloud base compared to Ctl, in which half of buoyancy-generated energy is consumed by the entrainment. Ctl well reproduces the spatial and temporal variations, whereas NoEnt and AS, which are very similar to each other, significantly underestimated the variations with the so-called the double ITCZ problem. The enhanced variations in Ctl are due to the larger entrainment that strengthens the coupling of convection and free tropospheric humidity. Time variations are also more realistic in Ctl; mid-height convection moistens mid-troposphere and large precipitation events occur after sufficient moisture is available. In contrast, deep convection is more frequent but with smaller precipitation amount in NoEnt and AS. ASRH shows smaller spatial but excessive temporal variations suggesting that its empirical suppression condition is too simple and a more sophisticated formulation is required for more realistic precipitation variations. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (GRENE), and by the Ministry of the Environment (2A-1201), Japan.
Describing temporal variation in reticuloruminal pH using continuous monitoring data.
Denwood, M J; Kleen, J L; Jensen, D B; Jonsson, N N
2018-01-01
Reticuloruminal pH has been linked to subclinical disease in dairy cattle, leading to considerable interest in identifying pH observations below a given threshold. The relatively recent availability of continuously monitored data from pH boluses gives new opportunities for characterizing the normal patterns of pH over time and distinguishing these from abnormal patterns using more sensitive and specific methods than simple thresholds. We fitted a series of statistical models to continuously monitored data from 93 animals on 13 farms to characterize normal variation within and between animals. We used a subset of the data to relate deviations from the normal pattern to the productivity of 24 dairy cows from a single herd. Our findings show substantial variation in pH characteristics between animals, although animals within the same farm tended to show more consistent patterns. There was strong evidence for a predictable diurnal variation in all animals, and up to 70% of the observed variation in pH could be explained using a simple statistical model. For the 24 animals with available production information, there was also a strong association between productivity (as measured by both milk yield and dry matter intake) and deviations from the expected diurnal pattern of pH 2 d before the productivity observation. In contrast, there was no association between productivity and the occurrence of observations below a threshold pH. We conclude that statistical models can be used to account for a substantial proportion of the observed variability in pH and that future work with continuously monitored pH data should focus on deviations from a predictable pattern rather than the frequency of observations below an arbitrary pH threshold. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chaves, Esteban J; Schwartz, Susan Y
2016-01-01
In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.
NASA Astrophysics Data System (ADS)
Lim, H. S.; Lee, J. Y.; Yoon, H.
2016-12-01
Soil temperatures, water temperatures, and weather parameters were monitored at a variety of locations in the vicinity of King Sejong station, King George Island, Antarctica, during summer 2010-2011. Thermal characteristics of soil and water were analysed using time-series analyses, apparent thermal diffusivity (ATD), and active layer thickness. The temperatures of pond water and nearby seawater showed the distinctive diurnal variations and correlated strongly with solar radiation (r = 0.411-0.797). Soil temperature (0.1-0.3 m depth) also showed diurnal fluctuations that decreased with depth and were directly linked to air temperature (r = 0.513-0.783) rather than to solar radiation; correlation decreased with depth and the time lag in the response increased by 2-3 hours per 0.1 m of soil depth. Owing to the lack of snow cover, summertime soil temperature was not decoupled from air temperature. Estimated ATD was between 0.022 and 29.209 mm2/sec, showed temporal and spatial variations, and correlated strongly with soil moisture content. The maximum estimated active layer thickness in the study area was a 41-70 cm, which is consistent with values reported in the previous work.
Wind-waves interactions in the Gulf of Eilat
NASA Astrophysics Data System (ADS)
Shani-Zerbib, Almog; Liberzon, Dan; T-SAIL Team
2017-11-01
The Gulf of Eilat, at the southern tip of Israel, with its elongated rectangular shape and unique diurnal wind pattern is an appealing location for wind-waves interactions research. Results of experimental work will be reported analyzing a continuous, 50 hour long, data. Using a combined array of wind and waves sensing instruments, the wave field statistics and its response to variations of wind forcing were investigated. Correlations between diurnal fluctuations in wind magnitude and direction and the wave field response will be discussed. The directional spread of waves' energy, as estimated by the Wavelet Directional Method, showed a strong response to small variations in wind flow direction attributed to the unique topography of the gulf surroundings and its bathymetry. Influenced by relatively strong winds during the light hours, the wave field was dominated by a significant amount of breakings that are well pronounced in the saturation range of waves spectra. Temporal growth and decay behavior of the waves during the morning and evening wind transition periods was examined. Sea state induced roughness, as experienced by the wind flow turbulent boundary layer, is examined in view of the critical layer theory. Israel Science Foundation Grant # 1521/15.
NASA Technical Reports Server (NTRS)
Ricko, Martina; Adler, Robert F.; Huffman, George J.
2016-01-01
Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.
Capra, Hervé; Plichard, Laura; Bergé, Julien; Pella, Hervé; Ovidio, Michaël; McNeil, Eric; Lamouroux, Nicolas
2017-02-01
Modeling individual fish habitat selection in highly variable environments such as hydropeaking rivers is required for guiding efficient management decisions. We analyzed fish microhabitat selection in the heterogeneous hydraulic and thermal conditions (modeled in two-dimensions) of a reach of the large hydropeaking Rhône River locally warmed by the cooling system of a nuclear power plant. We used modern fixed acoustic telemetry techniques to survey 18 fish individuals (five barbels, six catfishes, seven chubs) signaling their position every 3s over a three-month period. Fish habitat selection depended on combinations of current microhabitat hydraulics (e.g. velocity, depth), past microhabitat hydraulics (e.g. dewatering risk or maximum velocities during the past 15days) and to a lesser extent substrate and temperature. Mixed-effects habitat selection models indicated that individual effects were often stronger than specific effects. In the Rhône, fish individuals appear to memorize spatial and temporal environmental changes and to adopt a "least constraining" habitat selection. Avoiding fast-flowing midstream habitats, fish generally live along the banks in areas where the dewatering risk is high. When discharge decreases, however, they select higher velocities but avoid both dewatering areas and very fast-flowing midstream habitats. Although consistent with the available knowledge on static fish habitat selection, our quantitative results demonstrate temporal variations in habitat selection, depending on individual behavior and environmental history. Their generality could be further tested using comparative experiments in different environmental configurations. Copyright © 2016 Elsevier B.V. All rights reserved.
Temporal and spatial distribution of Microcystis biomass and genotype in bloom areas of Lake Taihu.
Guan, Dong-Xing; Wang, Xingyu; Xu, Huacheng; Chen, Li; Li, Pengfu; Ma, Lena Q
2018-06-26
Cyanobacterial blooms as a global environmental issue are of public health concern. In this study, we investigated the spatial (10 sites) and temporal (June, August and October) variations in: 1) their biomass based on chlorophyll-a (chl-a) concentration, 2) their toxic genotype based on gene copy ratio of mcyJ to cpcBA, and 3) their cpcBA genotype composition of Microcystis during cyanobacterial bloom in Lake Taihu. While spatial-temporal variations were found in chl-a and mcyJ/cpcBA ratio, only spatial variation was observed in cpcBA genotype composition. Samples from northwestern part had a higher chl-a, but mcyJ/cpcBA ratio didn't vary among the sites. High chl-a was observed in August, while mcyJ/cpcBA ratio and genotypic richness increased with time. The spatial variations in chl-a and mcyJ/cpcBA ratio and temporal variation in cpcBA genotype were correlated negatively with dissolved N and positively with dissolved P. Spatial distribution of Microcystis biomass was positively correlated with nitrite and P excluding October, but no correlation was found for spatial distribution of mcyJ/cpcBA ratio and cpcBA genotype. Spatial distribution of toxic and cpcBA genotypes may result from horizontal transport of Microcystis colonies, while spatial variation in Microcystis biomass was probably controlled by both nutrient-mediated growth and horizontal transport of Microcystis. The temporal variation in Microcystis biomass, toxic genotype and cpcBA genotype composition were related to nutrient levels, but cause-and-effect relationships require further study. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tunaley, C.; Tetzlaff, D.; Lessels, J. S.; Soulsby, C.
2014-12-01
In order to understand aquatic ecosystem functioning it is critical to understand the processes that control the spatial and temporal variations in DOC. DOC concentrations are highly dynamic, however, our understanding at short, high frequency timescales is still limited. Optical sensors which act as a proxy for DOC provide the opportunity to investigate near-continuous DOC variations in order to understand the hydrological and biogeochemical processes that control concentrations at short temporal scales. Here we present inferred 15 minute stream water DOC data for a 12 month period at three nested scales (1km2, 3km2 and 31km2) for the Bruntland Burn, a headwater catchment in NE Scotland. High frequency data were measured using FDOM and CDOM probes which work by measuring the fluorescent component and coloured component, respectively, of DOC when exposed to ultraviolet light. Both FDOM and CDOM were strongly correlated (r2 >0.8) with DOC allowing high frequency estimations. Results show the close coupling of DOC with discharge throughout the sampling period at all three spatial scales. However, analysis at the event scale highlights anticlockwise hysteresis relationships between DOC and discharge due to the delay in DOC being flushed from the increasingly large areas of peaty soils as saturation zones expand and increase hydrological connectivity. Lag times vary between events dependent on antecedent conditions. During a 10 year drought period in late summer 2013 it was apparent that very small changes in discharge on a 15 minute timescale result in high increases in DOC. This suggests transport limitation during this period where DOC builds up in the soil and is not flushed regularly, therefore any subsequent increase in discharge results in large DOC peaks. The high frequency sensors also reveal diurnal variability during summer months related to the photo-oxidation, evaporative and biological influences of DOC during the day. This relationship is less significant during the winter months.
NASA Astrophysics Data System (ADS)
Desai, A. R.; Reed, D. E.; Dugan, H. A.; Loken, L. C.; Schramm, P.; Golub, M.; Huerd, H.; Baldocchi, A. K.; Roberts, R.; Taebel, Z.; Hart, J.; Hanson, P. C.; Stanley, E. H.; Cartwright, E.
2017-12-01
Freshwater ecosystems are hotspots of regional to global carbon cycling. However, significant sample biases limit our ability to quantify and predict these fluxes. For lakes, scaled flux estimates suffer biased sampling toward 1) low-nutrient pristine lakes, 2) infrequent temporal sampling, 3) field campaigns limited to the growing season, and 4) replicates limited to near the center of the lake. While these biases partly reflect the realities of ecological sampling, there is a need to extend observations towards the large fraction of freshwater systems worldwide that are impaired by human activities and those facing significant interannual variability owing to climatic change. Also, for seasonally ice-covered lakes, much of the annual budget of carbon fluxes is thought to be explained by variation in the shoulder seasons of spring ice melt and fall turnover. Recent advances in automated, continuous multi-year temporal sampling coupled with rapid methods for spatial mapping of CO2 fluxes has strong potential to rectify these sampling biases. Here, we demonstrate these advances in an eutrophic seasonally-ice covered lake with an urban shoreline and agricultural watershed. Multiple years of half-hourly eddy covariance flux tower observations from two locations are coupled with frequent spatial samples of these fluxes and drivers by speedboat, floating chamber fluxes, automated buoy-based monitoring of lake nutrient and physical profiles, and ensemble of physical-ecosystem models. High primary productivity in the water column leads to an average net carbon sink during the growing season in much of the lake, but annual net carbon fluxes show the lake can act as an annual source or a sink of carbon depending the timing of spring and fall turnover. Trophic interactions and internal waves drive shorter-term variation while nutrients and biology drive seasonal variation. However, discrepancies remain among methods to quantify fluxes, requiring further investigation.
Ramachandran, S; Srivastava, Rohit
2016-06-01
Mixing can influence the optical, physical, and chemical characteristics of aerosols, which in turn can modify their life cycle and radiative effects. Assumptions on the mixing state can lead to uncertain estimates of aerosol radiative effects. To examine the effect of mixing on the aerosol characteristics, and their influence on radiative effects, aerosol mixing states are determined over four environmentally distinct locations (Karachi, Gwangju, Osaka, and Singapore) in Asia, an aerosol hot spot region, using measured spectral aerosol optical properties and optical properties model. Aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (g) exhibit spectral, spatial, and temporal variations. Aerosol mixing states exhibit large spatial and temporal variations consistent with aerosol characteristics and aerosol type over each location. External mixing of aerosol species is unable to reproduce measured SSA over Asia, thus providing a strong evidence that aerosols exist in mixed state. Mineral dust (MD) (core)-Black carbon (BC) (shell) is one of the most preferred aerosol mixing states. Over locations influenced by biomass burning aerosols, BC (core)-water soluble (WS, shell) is a preferred mixing state, while dust gets coated by anthropogenic aerosols (BC, WS) over urban regions influenced by dust. MD (core)-sea salt (shell) mixing is found over Gwangju corroborating the observations. Aerosol radiative forcing exhibits large seasonal and spatial variations consistent with features seen in aerosol optical properties and mixing states. TOA forcing is less negative/positive for external mixing scenario because of lower SSA. Aerosol radiative forcing in Karachi is a factor of 2 higher when compared to Gwangju, Osaka, and Singapore. The influence of g on aerosol radiative forcing is insignificant. Results emphasize that rather than prescribing one single aerosol mixing state in global climate models regionally and temporally varying aerosol mixing states should be included for more accurate assessment of aerosol radiative effects.
The influence of drought on flow‐ecology relationships in Ozark Highland streams
Lynch, Dustin T.; Leasure, D. R.; Magoulick, Daniel D.
2018-01-01
Drought and summer drying can have strong effects on abiotic and biotic components of stream ecosystems. Environmental flow‐ecology relationships may be affected by drought and drying, adding further uncertainty to the already complex interaction of flow with other environmental variables, including geomorphology and water quality.Environment–ecology relationships in stream communities in Ozark Highland streams, USA, were examined over two years with contrasting environmental conditions, a drought year (2012) and a flood year (2013). We analysed fish, crayfish and benthic macroinvertebrate assemblages using two different approaches: (1) a multiple regression analysis incorporating predictor variables related to habitat, water quality, geomorphology and hydrology and (2) a canonical ordination procedure using only hydrologic variables in which forward selection was used to select predictors that were most related to our response variables.Reach‐scale habitat quality and geomorphology were found to be the most important influences on community structure, but hydrology was also important, particularly during the flood year. We also found substantial between‐year variation in environment–ecology relationships. Some ecological responses differed significantly between drought and flood years, while others remained consistent. We found that magnitude was the most important flow component overall, but that there was a shift in relative importance from low flow metrics during the drought year to average flow metrics during the flood year, and the specific metrics of importance varied markedly between assemblages and years.Findings suggest that understanding temporal variation in flow‐ecology relationships may be crucial for resource planning. While some relationships show temporal variation, others are consistent between years. Additionally, different kinds of hydrologic variables can differ greatly in terms of which assemblages they affect and how they affect them. Managers can address this complexity by focusing on relationships that are temporally stable and flow metrics that are consistently important across groups, such as flood frequency and flow variability.
NASA Astrophysics Data System (ADS)
Sánchez Jiménez, Araceli; Heal, Mathew R.; Beverland, Iain J.
2012-07-01
Particle number concentration (PNC) and transition metal content are implicated in the health effects of airborne particulate matter (PM) but they are difficult to measure so consequently their temporal and spatial variations are not well characterized. Daily concentrations of PNC and particle-bound water-soluble metals (V, Cr, Mn, Fe, Ni, Cu, As, Cd and Pb) were measured at background and kerbside sites in Glasgow and London to examine if other metrics of air pollution such as optical darkness (absorbance) of collected filter samples of PM, gravimetric PM, and NO, NO2 and CO gas concentrations, can be used as surrogates for the temporal and spatial variations of the former. NO2 and NOx exhibited a high degree of within-site correlation and with PNC and water-soluble metals (Fe, Cu, As, Cd, Pb) at background sites in both cities. There is therefore potential to use NO2 and NOx as surrogates for PNC and water-soluble metal at background sites. However, correlation was weaker in complex street canyon environments where pollutant concentrations are strongly affected by local sources and the small-scale variations in pollutant dispersion induced by the wind regimes within street canyons. The corollary of the high correlation between NO2 and PNC and water-soluble metals at the background sites is that the latter pollutants may act as confounders for health effects attributed to NO2 from such sites. Concentrations of CO cannot be used as a surrogate for PNC. Increments in daily NOx and NO2 concentrations between trafficked and background sites were shown to be a simple and novel surrogate for daily spatial variation of PNC; for example, increments in NOx explained 78-79% of the variance in PNC at the paired sites in both Glasgow and London, but relationships were city specific. The increments in NOx also explained 70% of the spatial variation in Cu and Ni in Glasgow but not in London. Weekly NO2 measurements derived from passive diffusion tubes were also shown to correlate well with increments in PNC. A high temporal correlation between PNC and 1,3-butadiene and benzene (which can also be measured by passive sampler) implies that passive sampler measurements may be a straightforward tool for deriving long-term spatial patterns in PNC.
Dong, Shirley Xiaobi; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Supardi, M N Nur; Kassim, Abd Rahman; Tan, Sylvester; Moorcroft, Paul R
2012-10-07
The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.
Kivlin, Stephanie N; Hawkes, Christine V
2016-01-01
The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change. PMID:27391450
Kivlin, Stephanie N; Hawkes, Christine V
2016-01-01
The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.
Near-Term Fetuses Process Temporal Features of Speech
ERIC Educational Resources Information Center
Granier-Deferre, Carolyn; Ribeiro, Aurelie; Jacquet, Anne-Yvonne; Bassereau, Sophie
2011-01-01
The perception of speech and music requires processing of variations in spectra and amplitude over different time intervals. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, but whether they can process complex auditory streams, such as speech sequences and more specifically their temporal variations, fast or…
Monitoring scale-specific and temporal variation in electromagnetic conductivity images
USDA-ARS?s Scientific Manuscript database
In the semi-arid and arid landscapes of southwest USA, irrigation sustains agricultural activity; however, there are increasing demands on water resources. As such spatial temporal variation of soil moisture needs to be monitored. One way to do this is to use electromagnetic (EM) induction instrumen...
Observations at mercury encounter by the plasma science experiment on mariner 10.
Ogilvie, K W; Scudder, J D; Hartle, R E; Siscoe, G L; Bridge, H S; Lazarus, A J; Asbridge, J R; Bame, S J; Yeates, C M
1974-07-12
A fully developed bow shock and magnetosheath were observed near Mercury, providing unambiguous evidence for a strong interaction between Mercury and the solar wind. Inside the sheath there is a distinct region analogous to the magnetosphere or magnetotail of Earth, populated by electrons with lower density and higher temperature than the electrons observed in the solar wind or magnetosheath. At the time of encounter, conditions were such that a perpendicular shock was observed on the inbound leg and a parallel shock was observed on the outbound leg of the trajectory, and energetic plasma electron events were detected upstream from the outbound shock crossing. The interaction is most likely not atmospheric, but the data clearly indicate that the obstacle to solar wind flow is magnetic, either intrinsic or induced. The particle fluxes and energy spectra showed large variations while the spacecraft was inside the magnetosphere, and these variations could be either spatial or temporal.
NASA Astrophysics Data System (ADS)
Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Mandea, Mioara; Civet, François; Beucler, Éric
2017-04-01
A complete description of the main geomagnetic field temporal variation is crucial to understand dynamics in the core. This variation, termed secular variation (SV), is known with high accuracy at ground magnetic observatory locations. However the description of its spatial variability is hampered by the globally uneven distribution of the observatories. For the past two decades a global coverage of the field changes has been allowed by satellites. Their surveys of the geomagnetic field have been used to derive and improve global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. But discrepancies remain between ground measurements and field predictions by these models. Indeed, the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose a modified Virtual Observatory (VO) approach by defining a globally homogeneous mesh of VOs at satellite altitude. With this approach we directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. As satellite measurements are acquired at different altitudes a correction for the altitude is needed. Therefore, we apply an Equivalent Source Dipole (ESD) technique for each VO and each given time interval to reduce all measurements to a unique location, leading to time series similar to those available at ground magnetic observatories. Synthetic data is first used to validate the new VO-ESD approach. Then, we apply our scheme to measurements from the Swarm mission. For the first time, a 2.5 degrees resolution global mesh of VO times series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. The approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are also used to derive global SH models. Without regularization these models describe well the secular trend of the magnetic field. The derivation of longer VO-ESD time series, as more data will be made available, will allow the study of field temporal variations features such as geomagnetic jerks.
Spatio-temporal characteristics of PM10 concentration across Malaysia
NASA Astrophysics Data System (ADS)
Juneng, Liew; Latif, Mohd Talib; Tangang, Fredolin T.; Mansor, Haslina
The recurrence of forest fires in Southeast Asia and associated biomass burning, has contributed markedly to the problem of trans-boundary haze and the long-range movement of pollutants in the region. Air pollutants, specifically particulate matter in the atmosphere, have received extensive attention, mainly because of their adverse effect on people's health. In this study, the spatial and temporal variability of the PM10 concentration across Malaysia was analyzed by means of the rotated principal component analysis. The results suggest that the variability of the PM10 concentration can be decomposed into four dominant modes, each characterizing different spatial and temporal variations. The first mode characterizes the southwest coastal region of the Malaysian Peninsular with the PM10 showing a peak concentration during the summer monsoon i.e. when the winds are predominantly southerlies or southwesterlies, and a minimal concentration during the winter monsoon. The second mode features the region of western Borneo with the PM10 exhibiting a concentration surge in August-September, which is likely to be the result of the northward shift of the Inter Tropical Convergence Zone (ITCZ) and the subsequent rapid arrival of the rainy season. The third mode delineates the northern region of the Malaysian Peninsular with strong bimodality in the PM10 concentration. Seasonally, this component exhibits two concentration maxima during the late winter and summer monsoons, as well as two minima during the inter-monsoon periods. The fourth dominant mode characterizes the northern Borneo region which exhibits weaker seasonality of the PM10 concentration. Generally, the seasonal fluctuation of the PM10 concentration is largely associated with the seasonal variation of rainfall in the country. However, in addition to this, the PM10 concentration also fluctuates markedly in two timescale bands i.e. 10-20 days quasi-biweekly (QBW) and 30-60 days lower frequency (LF) band of the intra-seasonal timescales. These intra-seasonal fluctuations show strong seasonality with the largest fraction of variance occurring during the boreal summer and the weakest variance during the winter. Generally, the LF intra-seasonal oscillation is stronger compared to the QBW intra-seasonal band.
Disentangling how landscape spatial and temporal heterogeneity affects Savanna birds.
Price, Bronwyn; McAlpine, Clive A; Kutt, Alex S; Ward, Doug; Phinn, Stuart R; Ludwig, John A
2013-01-01
In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1-100 ha) and landscape (100-1000s ha) scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes.
Disentangling How Landscape Spatial and Temporal Heterogeneity Affects Savanna Birds
Price, Bronwyn; McAlpine, Clive A.; Kutt, Alex S.; Ward, Doug; Phinn, Stuart R.; Ludwig, John A.
2013-01-01
In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1–100 ha) and landscape (100–1000s ha) scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes. PMID:24066138
Controls of Lithospheric Mechanical Strength on the Deformation Pattern of Tien Shan
NASA Astrophysics Data System (ADS)
Li, Y.; Xiong, X.; Zheng, Y.; Hu, X.; Zhang, Y.
2015-12-01
The Tien Shan is an outstanding example of intracontinental mountain belt, which was built rapidly and formed far away from plate boundaries. It exhibits 300~500 km in width and extends ~2000 km EW, located in central Asia. The Tien Shan is a key area for solution of the problems relating to intracontinental geodynamics. During last decades, despite a large amount of results based on various geological, geophysical and geodetic data about the Tien Shan, however, deformation mechanism remains controversial and other several principal problems related to its structure and evolution also have not been completely resolved. As for patterns of continental deformation, they are always controlled by both the forces applied to the lithosphere and by lithospheric resistance to the forces. The latter is often measured by the mechanical strength of lithosphere. The lateral variation of strength of lithosphere has been recognized to be an important factor controlling the spatial construction and temporal evolution of continent. In this study, we investigate the mechanical strength (Te) of lithosphere in the Tien Shan using wavelet coherency between Bouguer anomaly and topography. The patterns of Te variations are closely related to major tectonic boundaries and blocks. Mechanical strength exhibits a weak zone (Te~5-20km) beneath the Tien Shan while its surrounding blocks including Tarim Basin, Junggar Basin and Kazakh platform are characterized by a strong lithosphere (Te>40km). The lateral variations in mechanical strength and velocity field of horizontal movement with GPS demonstrate that strain localization appears at the margins of Tarim Basin, which is also the strong lithospheric domain. It is suggested that the weak lithosphere allows the crustal stress accumulation and the strong lithosphere helps to stress transfer. There is also a good agreement between mechanical strength and shear wave velocity structure in upper mantle. It indicates a strong domain located in the lower crust and lithospheric mantle. Combined with results of analog models, the location and style of deformation are preliminary determined and thus the related topography evolution in the Tien Shan is mainly controlled by the lateral and depth variation in lithospheric mechanical strength of surrounding areas.
Quantification of intensity variations in functional MR images using rotated principal components
NASA Astrophysics Data System (ADS)
Backfrieder, W.; Baumgartner, R.; Sámal, M.; Moser, E.; Bergmann, H.
1996-08-01
In functional MRI (fMRI), the changes in cerebral haemodynamics related to stimulated neural brain activity are measured using standard clinical MR equipment. Small intensity variations in fMRI data have to be detected and distinguished from non-neural effects by careful image analysis. Based on multivariate statistics we describe an algorithm involving oblique rotation of the most significant principal components for an estimation of the temporal and spatial distribution of the stimulated neural activity over the whole image matrix. This algorithm takes advantage of strong local signal variations. A mathematical phantom was designed to generate simulated data for the evaluation of the method. In simulation experiments, the potential of the method to quantify small intensity changes, especially when processing data sets containing multiple sources of signal variations, was demonstrated. In vivo fMRI data collected in both visual and motor stimulation experiments were analysed, showing a proper location of the activated cortical regions within well known neural centres and an accurate extraction of the activation time profile. The suggested method yields accurate absolute quantification of in vivo brain activity without the need of extensive prior knowledge and user interaction.
Holt, Galen; Chesson, Peter
2014-03-01
Temporal environmental variation is a leading hypothesis for the coexistence of desert annual plants. Environmental variation is hypothesized to cause species-specific patterns of variation in germination, which then generates the storage effect coexistence mechanism. However, it has never been shown how sufficient species differences in germination patterns for multispecies coexistence can arise from a shared fluctuating environment. Here we show that nonlinear germination responses to a single fluctuating physical environmental factor can lead to sufficient differences between species in germination pattern for the storage effect to yield coexistence of multiple species. We derive these nonlinear germination responses from experimental data on the effects of varying soil moisture duration. Although these nonlinearities lead to strong species asymmetries in germination patterns, the relative nonlinearity coexistence mechanism is minor compared with the storage effect. However, these asymmetries mean that the storage effect can be negative for some species, which then only persist in the face of interspecific competition through average fitness advantages. This work shows how a low dimensional physical environment can nevertheless stabilize multispecies coexistence when the species have different nonlinear responses to common conditions, as supported by our experimental data. Copyright © 2013 Elsevier Inc. All rights reserved.
Paredes, Ricardo; Fariñas-Sánchez, Ana Isabel; Medina-Rodrı Guez, Bryan; Samaniego, Samantha; Aray, Yosslen; Álvarez, Luis Javier
2018-03-06
The process of equilibration of the tetradecane-water interface in the presence of sodium hexadecane-benzene sulfonate is studied using intensive atomistic molecular dynamics simulations. Starting as an initial point with all of the surfactants at the interface, it is obtained that the equilibration time of the interface (several microseconds) is orders of magnitude higher than previously reported simulated times. There is strong evidence that this slow equilibration process is due to the aggregation of surfactants molecules on the interface. To determine this fact, temporal evolution of interfacial tension and interfacial formation energy are studied and their temporal variations are correlated with cluster formation. To study cluster evolution, the mean cluster size and the probability that a molecule of surfactant chosen at random is free are obtained as a function of time. Cluster size distribution is estimated, and it is observed that some of the molecules remain free, whereas the rest agglomerate. Additionally, the temporal evolution of the interfacial thickness and the structure of the surfactant molecules on the interface are studied. It is observed how this structure depends on whether the molecules agglomerate or not.
Foundations of reading comprehension in children with intellectual disabilities.
van Wingerden, Evelien; Segers, Eliane; van Balkom, Hans; Verhoeven, Ludo
2017-01-01
Knowledge about predictors for reading comprehension in children with intellectual disabilities (ID) is still fragmented. This study compared reading comprehension, word decoding, listening comprehension, and reading related linguistic and cognitive precursor measures in children with mild ID and typically developing controls. Moreover, it was explored how the precursors related to reading achievement. Children with mild ID and typical controls were assessed on reading comprehension, decoding, language comprehension, and linguistic (early literacy skills, vocabulary, grammar) and cognitive (rapid naming, phonological short-term memory, working memory, temporal processing, nonverbal reasoning) precursor measures. It was tested to what extent variations in reading comprehension could be explained from word decoding, listening comprehension and precursor measures. The ID group scored significantly below typical controls on all measures. Word decoding was at or above first grade level in half the ID group. Reading comprehension in the ID group was related to word decoding, listening comprehension, early literacy skills, and temporal processing. The reading comprehension profile of children with mild ID strongly resembles typical early readers. The simple view of reading pertains to children with mild ID, with additional influence of early literacy skills and temporal processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Chen, Zheng; Zhang, Mingyi; Lai, Qingbo; Lu, Yanli; Wang, Yongxin
2009-08-01
Microscopic phase field simulation is performed to study antisite defect type and temporal evolution characteristic of D022-Ni3V structure in Ni75Al x V25- x ternary system. The result demonstrates that two types of antisite defect VNi and NiV coexist in D022 structure; however, the amount of NiV is far greater than VNi; when precipitates transform from D022 singe phase to two phases mixture of D022 and L12 with enhanced Al:V ratio, the amount of VNi has no evident response to the secondary L12 phase, while NiV exhibits a definitely contrary variation tendency: NiV rises without L12 structure precipitating from matrix but declines with it; temporal evolution characteristic and temperature dependent antisite defect VNi, NiV are also studied in this paper: The concentrations of the both defects decline from high antistructure state to equilibrium level with elapsed time but rise with elevated temperature; the ternary alloying element aluminium atom occupies both α and β sublattices of D022 structure with a strong site preference of substituting α site.
Vanderwel, Mark C; Coomes, David A; Purves, Drew W
2013-05-01
The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio-temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot-level variation in mortality (relative to a long-term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1-5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data-constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long-term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least- and most-disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long-term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early-successional species. The effects of increased tree mortality on carbon stocks and forest composition may thus depend partly on whether future mortality increases are chronic or episodic in nature. © 2013 Blackwell Publishing Ltd.
Vanderwel, Mark C; Coomes, David A; Purves, Drew W
2013-01-01
The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio-temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot-level variation in mortality (relative to a long-term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1–5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data-constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long-term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least- and most-disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long-term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early-successional species. The effects of increased tree mortality on carbon stocks and forest composition may thus depend partly on whether future mortality increases are chronic or episodic in nature. PMID:23505000
Stand-level variation in evapotranspiration in non-water-limited eucalypt forests
NASA Astrophysics Data System (ADS)
Benyon, Richard G.; Nolan, Rachael H.; Hawthorn, Sandra N. D.; Lane, Patrick N. J.
2017-08-01
To better understand water and energy cycles in forests over years to decades, measurements of spatial and long-term temporal variability in evapotranspiration (Ea) are needed. In mountainous terrain, plot-level measurements are important to achieving this. Forest inventory data including tree density and size measurements, often collected repeatedly over decades, sample the variability occurring within the geographic and topographic range of specific forest types. Using simple allometric relationships, tree stocking and size data can be used to estimate variables including sapwood area index (SAI), which may be strongly correlated with annual Ea. This study analysed plot-level variability in SAI and its relationship with overstorey and understorey transpiration, interception and evaporation over a 670 m elevation gradient, in non-water-limited, even-aged stands of Eucalyptus regnans F. Muell. to determine how well spatial variation in annual Ea from forests can be mapped using SAI. Over the 3 year study, mean sap velocity in five E. regnans stands was uncorrelated with overstorey sapwood area index (SAI) or elevation: annual transpiration was predicted well by SAI (R2 0.98). Overstorey and total annual interception were positively correlated with SAI (R2 0.90 and 0.75). Ea from the understorey was strongly correlated with vapour pressure deficit (VPD) and net radiation (Rn) measured just above the understorey, but relationships between understorey Ea and VPD and Rn differed between understorey types and understorey annual Ea was not correlated with SAI. Annual total Ea was also strongly correlated with SAI: the relationship being similar to two previous studies in the same region, despite differences in stand age and species. Thus, spatial variation in annual Ea can be reliably mapped using measurements of SAI.
Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation
NASA Astrophysics Data System (ADS)
Li, Mingming; Zhong, Shijie; Olson, Peter
2018-04-01
The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.
CLASP/SJ Observations of Rapid Time Variations in the Ly α Emission in a Solar Active Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Shin-nosuke; Kubo, Masahito; Katsukawa, Yukio
The Chromospheric Ly α SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on 2015 September 3 to investigate the solar chromosphere and transition region. The slit-jaw (SJ) optical system captured Ly α images with a high time cadence of 0.6 s. From the CLASP/SJ observations, many variations in the solar chromosphere and transition region emission with a timescale of <1 minute were discovered. In this paper, we focus on the active region within the SJ field of view and investigate the relationship between short (<30 s) temporal variations in the Ly α emission and the coronal structures observed by Solarmore » Dynamics Observatory/Atmospheric Imaging Assembly (AIA). We compare the Ly α temporal variations at the coronal loop footpoints observed in the AIA 211 Å (≈2 MK) and AIA 171 Å (≈0.6 MK) channels with those in the regions with bright Ly α features without a clear association with the coronal loop footpoints. We find more short (<30 s) temporal variations in the Ly α intensity in the footpoint regions. Those variations did not depend on the temperature of the coronal loops. Therefore, the temporal variations in the Ly α intensity at this timescale range could be related to the heating of the coronal structures up to temperatures around the sensitivity peak of 171 Å. No signature was found to support the scenario that these Ly α intensity variations were related to the nanoflares. Waves or jets from the lower layers (lower chromosphere or photosphere) are possible causes for this phenomenon.« less
Barton D. Clinton
1995-01-01
Understanding spatial and temporal variation in the understory light regime of southern Appalachian forests is central to understanding regeneration patterns of overstory species. One of the important contributors to this variability is the distribution of evergreen shrub species, primarily Rhododendron maximum L. We measured photosynthetically...
Barton D. Clinton
1995-01-01
Understanding spatial and temporal variation in, the understory light regime of southern Appalachian forests is central to understanding regeneration patterns of overstory species. One of the important contributors to this variability is the distribution of evergreen shrub species, primarily Rhododendrun maximun L, We measured...
NASA Technical Reports Server (NTRS)
Anderson, Mark; Rowe, Clinton; Kuivinen, Karl; Mote, Thomas
1996-01-01
The primary goals of this research were to identify and begin to comprehend the spatial and temporal variations in surface characteristics of the Greenland ice sheet using passive microwave observations, physically-based models of the snowpack and field observations of snowpack and firn properties.
Temporal variation in pelagic food chain length in response to environmental change
Ruiz-Cooley, Rocio I.; Gerrodette, Tim; Fiedler, Paul C.; Chivers, Susan J.; Danil, Kerri; Ballance, Lisa T.
2017-01-01
Climate variability alters nitrogen cycling, primary productivity, and dissolved oxygen concentration in marine ecosystems. We examined the role of this variability (as measured by six variables) on food chain length (FCL) in the California Current (CC) by reconstructing a time series of amino acid–specific δ15N values derived from common dolphins, an apex pelagic predator, and using two FCL proxies. Strong declines in FCL were observed after the 1997–1999 El Niño Southern Oscillation (ENSO) event. Bayesian models revealed longer FCLs under intermediate conditions for surface temperature, chlorophyll concentration, multivariate ENSO index, and total plankton volume but not for hypoxic depth and nitrate concentration. Our results challenge the prevalent paradigm that suggested long-term stability in the food web structure in the CC and, instead, reveal that pelagic food webs respond strongly to disturbances associated with ENSO events, local oceanography, and ongoing changes in climate. PMID:29057322
Anomalous radon emission as precursor of medium to strong earthquakes
NASA Astrophysics Data System (ADS)
Zoran, Maria
2016-03-01
Anomalous radon (Rn222) emissions enhanced by forthcoming earthquakes is considered to be a precursory phenomenon related to an increased geotectonic activity in seismic areas. Rock microfracturing in the Earth's crust preceding a seismic rupture may cause local surface deformation fields, rock dislocations, charged particle generation and motion, electrical conductivity changes, radon and other gases emission, fluid diffusion, electrokinetic, piezomagnetic and piezoelectric effects as well as climate fluctuations. Space-time anomalies of radon gas emitted in underground water, soil and near the ground air weeks to days in the epicentral areas can be associated with the strain stress changes that occurred before the occurrence of medium and strong earthquakes. This paper aims to investigate temporal variations of radon concentration levels in air near or in the ground by the use of solid state nuclear track detectors (SSNTD) CR-39 and LR-115 in relation with some important seismic events recorded in Vrancea region, Romania.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polivka, Karl; Bennett, Rita L.
2009-03-31
We studied variation in productivity in headwater reaches of the Wenatchee subbasin for multiple field seasons with the objective that we could develop methods for monitoring headwater stream conditions at the subcatchment and stream levels, assign a landscape-scale context via the effects of geoclimatic parameters on biological productivity (macroinvertebrates and fish) and use this information to identify how variability in productivity measured in fishless headwaters is transmitted to fish communities in downstream habitats. In 2008, we addressed this final objective. In collaboration with the University of Alaska Fairbanks we found some broad differences in the production of aquatic macroinvertebrates andmore » in fish abundance across categories that combine the effects of climate and management intensity within the subbasin (ecoregions). From a monitoring standpoint, production of benthic macroinvertebrates was not a good predictor of drifting macroinvertebrates and therefore might be a poor predictor of food resources available to fish. Indeed, there is occasionally a correlation between drifting macroinvertebrate abundance and fish abundance which suggests that headwater-derived resources are important. However, fish in the headwaters appeared to be strongly food-limited and there was no evidence that fishless headwaters provided a consistent subsidy to fish in reaches downstream. Fish abundance and population dynamics in first order headwaters may be linked with similar metrics further down the watershed. The relative strength of local dynamics and inputs into productivity may be constrained or augmented by large-scale biogeoclimatic control. Headwater streams are nested within watersheds, which are in turn nested within ecological subregions; thus, we hypothesized that local effects would not necessarily be mutually exclusive from large-scale influence. To test this we examined the density of primarily salmonid fishes at several spatial and temporal scales within a major sub-basin of the Columbia River and associations of density with ecoregion and individuals drainages within the sub-basin. We further examined habitat metrics that show positive associations with fish abundance to see if these relationships varied at larger spatial scales. We examined the extent to which headwater fish density and temporal variation in density were correlated between the headwaters and the main tributaries of the sub-basin, and the influence of ecoregion influence on density differences, particularly at wider temporal scales. Finally, we examined demographic parameters such as growth and emigration to determine whether density-dependence differs among ecoregions or whether responses were more strongly influenced by the demography of the local fish population.« less
Librero, Julián; Ibañez, Berta; Martínez-Lizaga, Natalia; Peiró, Salvador; Bernal-Delgado, Enrique
2017-01-01
To illustrate the ability of hierarchical Bayesian spatio-temporal models in capturing different geo-temporal structures in order to explain hospital risk variations using three different conditions: Percutaneous Coronary Intervention (PCI), Colectomy in Colorectal Cancer (CCC) and Chronic Obstructive Pulmonary Disease (COPD). This is an observational population-based spatio-temporal study, from 2002 to 2013, with a two-level geographical structure, Autonomous Communities (AC) and Health Care Areas (HA). The Spanish National Health System, a quasi-federal structure with 17 regional governments (AC) with full responsibility in planning and financing, and 203 HA providing hospital and primary care to a defined population. A poisson-log normal mixed model in the Bayesian framework was fitted using the INLA efficient estimation procedure. The spatio-temporal hospitalization relative risks, the evolution of their variation, and the relative contribution (fraction of variation) of each of the model components (AC, HA, year and interaction AC-year). Following PCI-CCC-CODP order, the three conditions show differences in the initial hospitalization rates (from 4 to 21 per 10,000 person-years) and in their trends (upward, inverted V shape, downward). Most of the risk variation is captured by phenomena occurring at the HA level (fraction variance: 51.6, 54.7 and 56.9%). At AC level, the risk of PCI hospitalization follow a heterogeneous ascending dynamic (interaction AC-year: 17.7%), whereas in COPD the AC role is more homogenous and important (37%). In a system where the decisions loci are differentiated, the spatio-temporal modeling allows to assess the dynamic relative role of different levels of decision and their influence on health outcomes.
NASA Astrophysics Data System (ADS)
Cui, Xujia; Sun, Hu; Dong, Zhibao; Liu, Zhengyao; Li, Chao; Zhang, Zhengcai; Li, Xiaolan; Li, Lulu
2018-02-01
Research on the wind environment variation improves our understanding of the process of climate change. This study examines temporal variation of the near-surface wind environment and investigates its possible causes in the Mu Us Dunefield of Northern China from 1960 to 2014, through analyzing the meteorological data from seven stations and the land use and land cover (LUCC) change data with 100 m resolution. The wind speed had a widespread significant decrease with an average trend of - 0.111 m s-1 decade-1, although the rate of decrease differed seasonally. This negative trend was also found in the winds that were above a 5 m s-1 threshold, as well as the percentage of their days, which influenced the wind speed change more strongly. Overall, 88.69% of the annual decrease resulted from decreases in the maximum wind speed, and the percentage even reached 100% in autumn and winter. We further found that the drift potential decreased at decadal time scales, mainly focusing on three prevailing wind groups: the northerly, westerly, and southerly winds. This revealed the weakened East Asian monsoon and westerly circulation in the lower atmosphere. Against the context of climate warming, the decline of wind speeds in spring was closely related to the greenhouse gas, while the winter decline was closely associated with the aerosol or atmospheric dust. Moreover, the LUCC change showed the decreased areas of sand land and the increased areas of vegetation-covered land, which increased the ground surface roughness and was another reason for the weakened wind environment.
NASA Astrophysics Data System (ADS)
Ding, Jingyi; Zhao, Wenwu; Daryanto, Stefani; Wang, Lixin; Fan, Hao; Feng, Qiang; Wang, Yaping
2017-05-01
Desert riparian forests are the main restored vegetation community in Heihe River basin. They provide critical habitats and a variety of ecosystem services in this arid environment. Since desert riparian forests are also sensitive to disturbance, examining the spatial distribution and temporal variation of these forests and their influencing factors is important to determine the limiting factors of vegetation recovery after long-term restoration. In this study, field experiment and remote sensing data were used to determine the spatial distribution and temporal variation of desert riparian forests and their relationship with the environmental factors. We classified five types of vegetation communities at different distances from the river channel. Community coverage and diversity formed a bimodal pattern, peaking at the distances of 1000 and 3000 m from the river channel. In general, the temporal normalized difference vegetation index (NDVI) trend from 2000 to 2014 was positive at different distances from the river channel, except for the region closest to the river bank (i.e. within 500 m from the river channel), which had been undergoing degradation since 2011. The spatial distribution of desert riparian forests was mainly influenced by the spatial heterogeneity of soil properties (e.g. soil moisture, bulk density and soil particle composition). Meanwhile, while the temporal variation of vegetation was affected by both the spatial heterogeneity of soil properties (e.g. soil moisture and soil particle composition) and to a lesser extent, the temporal variation of water availability (e.g. annual average and variability of groundwater, soil moisture and runoff). Since surface (0-30 cm) and deep (100-200 cm) soil moisture, bulk density and the annual average of soil moisture at 100 cm obtained from the remote sensing data were regarded as major determining factors of community distribution and temporal variation, conservation measures that protect the soil structure and prevent soil moisture depletion (e.g. artificial soil cover and water conveyance channels) were suggested to better protect desert riparian forests under climate change and intensive human disturbance.
NASA Astrophysics Data System (ADS)
Schaefer, Andreas; Daniell, James; Khazai, Bijan; Wenzel, Friedemann
2016-04-01
The occurrence and impact of strong earthquakes often triggers the long-lasting impact of a seismic sequence. Strong earthquakes are generally followed by many aftershocks or even strong subsequently triggered ruptures. The Nepal 2015 earthquake sequence is one of the most recent examples where aftershocks significantly contributed to human and economic losses. In addition, rumours about upcoming mega-earthquakes, false predictions and on-going cycles of aftershocks induced a psychological burden on the society, which caused panic, additional casualties and prevented people from returning to normal life. This study shows the current phase of development of an operationalised aftershock intensity index, which will contribute to the mitigation of aftershock hazard. Hereby, various methods of earthquake forecasting and seismic risk assessments are utilised and an integration of the inherent aftershock intensity is performed. A spatio-temporal analysis of past earthquake clustering provides first-hand data about the nature of aftershock occurrence. Epidemic methods can additionally provide time-dependent variation indices of the cascading effects of aftershock generation. The aftershock hazard is often combined with the potential for significant losses through the vulnerability of structural systems and population. A historical database of aftershock socioeconomic effects from CATDAT has been used in order to calibrate the index based on observed impacts of historical events and their aftershocks. In addition, analytical analysis of cyclic behaviour and fragility functions of various building typologies are explored. The integration of many different probabilistic computation methods will provide a combined index parameter which can then be transformed into an easy-to-read spatio-temporal intensity index. The index provides daily updated information about the probability of the inherent seismic risk of aftershocks by providing a scalable scheme fordifferent aftershock intensities. These intensities define spatial locations and the temporal period when aftershocks are either probable or damaging. Instead of providing a highly scientific probability mesh-up, the aftershock intensity index is an easy-to-communicate system of intensity levels for rescue and relief organizations but also governments and the common people. For this study, the metric is tested retrospectively on the earthquake sequences of Nepal 2015 and Darfield-Christchurch of 2010/2011.
Spatial and temporal variations of aridity indices in Iraq
NASA Astrophysics Data System (ADS)
Şarlak, Nermin; Mahmood Agha, Omar M. A.
2017-06-01
This study investigates the spatial and temporal variations of the aridity indices to reveal the desertification vulnerability of Iraq region. Relying on temperature and precipitation data taken from 28 meteorological stations for 31 years, the study aims to determine (1) dry land types and their delineating boundaries and (2) temporal change in aridity conditions in Iraq. Lang's aridity (Im), De Martonne's aridity (Am), United Nations Environmental Program (UNEP) aridity (AIu), and Erinç aridity (IE) indices were selected in this study because of the scarcity of the observed data. The analysis of the spatial variation of aridity indices exhibited that the arid and semi-arid regions cover about 97% of the country's areas. As for temporal variations, it was observed that the aridity indices tend to decrease (statistically significant or not) for all stations. The cumulative sum charts (CUSUMs) were applied to detect the year on which the climate pattern of aridity indices had changed from one pattern to another. The abrupt change point was detected around year 1997 for the majority of the stations. Thus, the spatial and temporal aridity characteristics in Iraq were examined for the two periods 1980-1997 and 1998-2011 (before and after the change-point year) to observe the influence of abrupt change point on aridity phenomena. The spatial variation after 1997 was observed from semi-arid (dry sub humid) to arid (semi-arid) especially at the stations located in northern Iraq, while hyper-arid and arid climatic conditions were still dominant over southern and central Iraq. Besides, the negative temporal variations of the two periods 1980-1997 and 1998-2011 were obtained for almost every station. As a result, it was emphasized that Iraq region, like other Middle East regions, has become drier after 1997. The observed reduction in precipitation and increase in temperature for this region seem to make the situation worse in future.
Onozuka, Daisuke; Hagihara, Akihito
2016-02-15
Several studies have reported the burden of climate change on extreme heat-related mortality or morbidity. However, few studies have investigated the spatial and temporal variation in emergency transport during periods of extreme heat on a national scale. Daily emergency ambulance dispatch data from 2007 to 2010 were acquired from all 47 prefectures of Japan. The temporal variability in the relationship between heat and morbidity in each prefecture was estimated using Poisson regression combined with a distributed lag non-linear model and adjusted for time trends. The spatial variability in the heat-morbidity relationships between prefectures was estimated using a multivariate meta-analysis. A total of 5,289,660 emergency transports were reported during the summer months (June through September) within the study period. The overall cumulative relative risk (RR) at the 99th percentile vs. the minimum morbidity percentile was 1.292 (95% CI: 1.251-1.333) for all causes, 1.039 (95% CI: 0.989-1.091) for cardiovascular diseases, and 1.287 (95% CI: 1.210-1.368) for respiratory diseases. Temporal variation in the estimated effects indicated a non-linear relationship, and there were differences in the temporal variations between heat and all-cause and cause-specific morbidity. Spatial variation between prefectures was observed for all causes (Cochran Q test, p<0.001; I(2)=45.8%); however, there was no significant spatial heterogeneity for cardiovascular (Cochran Q test, p=0.054; I(2)=15.1%) and respiratory (Cochran Q test, p=0.681; I(2)=1.0%) diseases. Our nationwide study demonstrated differences in the spatial and temporal variations in the relative risk for all-cause and cause-specific emergency transport during periods of extreme heat in Japan between 2007 and 2010. Our results suggest that public health strategies aimed at controlling heat-related morbidity should be tailored according to region-specific weather conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robey, H. F.; MacGowan, B. J.; Landen, O. L.
Indirectly driven capsule implosions on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are being performed with the goal of compressing a layer of cryogenic deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain the self-propagating burn wave that is required for fusion power gain greater than unity. These implosions are driven with a temporally shaped laser pulse that is carefully tailored to keep the DT fuel on a low adiabat (ratio of fuel pressure to the Fermi degenerate pressure). In this report, the impact of variations in the laser pulse shapemore » (both intentionally and unintentionally imposed) on the in-flight implosion adiabat is examined by comparing the measured shot-to-shot variations in ρR from a large ensemble of DT-layered ignition target implosions on NIF spanning a two-year period. A strong sensitivity to variations in the early-time, low-power foot of the laser pulse is observed. It is shown that very small deviations (∼0.1% of the total pulse energy) in the first 2 ns of the laser pulse can decrease the measured ρR by 50%.« less
Moore, Ian C; Tompa, Emile
2011-11-01
The objective of this study is to better understand the inter-temporal variation in workers' compensation claim rates using time series analytical techniques not commonly used in the occupational health and safety literature. We focus specifically on the role of unemployment rates in explaining claim rate variations. The major components of workers' compensation claim rates are decomposed using data from a Canadian workers' compensation authority for the period 1991-2007. Several techniques are used to undertake the decomposition and assess key factors driving rates: (i) the multitaper spectral estimator, (ii) the harmonic F test, (iii) the Kalman smoother and (iv) ordinary least squares. The largest component of the periodic behaviour in workers' compensation claim rates is seasonal variation. Business cycle fluctuations in workers' compensation claim rates move inversely to unemployment rates. The analysis suggests that workers' compensation claim rates between 1991 and 2008 were driven by (in order of magnitude) a strong negative long term growth trend, periodic seasonal trends and business cycle fluctuations proxied by the Ontario unemployment rate.
Carravieri, Alice; Cherel, Yves; Jaeger, Audrey; Churlaud, Carine; Bustamante, Paco
2016-06-01
Penguins have been recently identified as useful bioindicators of mercury (Hg) transfer to food webs in the Southern Ocean over different spatial and temporal scales. Here, feather Hg concentrations were measured in adults and chicks of all the seven penguin species breeding in the southern Indian Ocean, over a large latitudinal gradient spanning Antarctic, subantarctic and subtropical sites. Hg was also measured in feathers of museum specimens of penguins collected at the same sites in the 1950s and 1970s. Our aim was to evaluate geographical and historical variations in Hg transfer to penguins, while accounting for feeding habits by using the stable isotope technique (δ(13)C, habitat; δ(15)N, diet/trophic level). Adult feather Hg concentrations in contemporary individuals ranged from 0.7 ± 0.2 to 5.9 ± 1.9 μg g(-1) dw in Adélie and gentoo penguins, respectively. Inter-specific differences in Hg accumulation were strong among both adults and chicks, and mainly linked to feeding habits. Overall, penguin species that feed in Antarctic waters had lower feather Hg concentrations than those that feed in subantarctic and subtropical waters, irrespective of age class and dietary group, suggesting different Hg incorporation into food webs depending on the water mass. While accounting for feeding habits, we detected different temporal variations in feather Hg concentrations depending on species. Notably, the subantarctic gentoo and macaroni penguins had higher Hg burdens in the contemporary rather than in the historical sample, despite similar or lower trophic levels, respectively. Whereas increases in Hg deposition have been recently documented in the Southern Hemisphere, future monitoring is highly needed to confirm or not this temporal trend in penguins, especially in the context of actual changing Hg emission patterns and global warming. Copyright © 2016. Published by Elsevier Ltd.
Spatial-temporal population dynamics across species range: from center to margin
Guo, Q.; Taper, M.L.; Schoenberger, M.; Brandl, J.
2005-01-01
Understanding the boundaries of species' ranges and the variations in population dynamics from the centre to margin of a species' range is critical. This study simulated spatial-temporal patterns of birth and death rates and migration across a species' range in different seasons. Our results demonstrated the importance of dispersal and migration in altering birth and death rates, balancing source and sink habitats, and governing expansion or contraction of species' ranges in changing environments. We also showed that the multiple equilibria of metapopulations across a species' range could be easily broken following climatic changes or physical disturbances either or local or regional. Although we refer to our models as describing the population dynamics across whole species' range, they should also apply to small-scale habitats (metapopulations) in which species abundance follows a humped pattern or to any ecosystem or landscape where strong central-marginal (C-M) environmental gradients exist. Conservation of both central and marginal populations would therefore be equally important considerations in making management decisions.
Spatial-temporal population dynamics across species range: From centre to margin
Guo, Q.; Taper, M.; Schoenberger, M.; Brandle, J.
2005-01-01
Understanding the boundaries of species' ranges and the variations in population dynamics from the centre to margin of a species' range is critical. This study simulated spatial-temporal patterns of birth and death rates and migration across a species' range in different seasons. Our results demonstrated the importance of dispersal and migration in altering birth and death rates, balancing source and sink habitats, and governing expansion or contraction of species' ranges in changing environments. We also showed that the multiple equilibria of metapopulations across a species' range could be easily broken following climatic changes or physical disturbances either local or regional. Although we refer to our models as describing the population dynamics across whole species' range, they should also apply to small-scale habitats (metapopulations) in which species abundance follows a humped pattern or to any ecosystem or landscape where strong central-marginal (C-M) environmental gradients exist. Conservation of both central and marginal populations would therefore be equally important considerations in making management decisions.
Mind the cell: Seasonal variation in telomere length mirrors changes in leucocyte profile.
Beaulieu, Michaël; Benoit, Laure; Abaga, Steven; Kappeler, Peter M; Charpentier, Marie J E
2017-10-01
Leucocytes are typically considered as a whole in studies examining telomere dynamics in mammals. Such an approach may be precarious, as leucocytes represent the only nucleated blood cells in mammals, their composition varies temporally, and telomere length differs between leucocyte types. To highlight this limitation, we examined here whether seasonal variation in leucocyte composition was related to variation in telomere length in free-ranging mandrills (Mandrilllus sphinx). We found that the leucocyte profile of mandrills varied seasonally, with lower lymphocyte proportion being observed during the long dry season presumably because of the combined effects of high nematode infection and stress at that time of the year. Interestingly, this low lymphocyte proportion during the long dry season was associated with shorter telomeres. Accordingly, based on longitudinal data, we found that seasonal changes in lymphocyte proportion were reflected by corresponding seasonal variation in telomere length. Overall, these results suggest that variation in lymphocyte proportion in blood can significantly affect telomere measurements in mammals. However, lymphocyte proportion did not entirely explain variation in telomere length. For instance, a lower lymphocyte proportion with age could not fully explain shorter telomeres in older individuals. Overall, our results show that telomere length and leucocyte profile are strongly although imperfectly intertwined, which may obscure the relationship between telomere dynamics and ageing processes in mammals. © 2017 John Wiley & Sons Ltd.
Lockwood, Charles A; Lynch, John M; Kimbel, William H
2002-12-01
The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade.
Keijsers, Joep G. S.; Poortinga, Ate; Riksen, Michel J. P. M.; Maroulis, Jerry
2014-01-01
Depending on the amount of aeolian sediment input and dune erosion, dune size and morphology change over time. Since coastal foredunes play an important role in the Dutch coastal defence, it is important to have good insight in the main factors that control these changes. In this paper the temporal variations in foredune erosion and accretion were studied in relation to proxies for aeolian transport potential and storminess using yearly elevation measurements from 1965 to 2012 for six sections of the Dutch coast. Longshore differences in the relative impacts of erosion and accretion were examined in relation to local beach width. The results show that temporal variability in foredune accretion and erosion is highest in narrow beach sections. Here, dune erosion alternates with accretion, with variability displaying strong correlations with yearly values of storminess (maximum sea levels). In wider beach sections, dune erosion is less frequent, with lower temporal variability and stronger correlations with time series of transport potential. In erosion dominated years, eroded volumes decrease from narrow to wider beaches. When accretion dominates, dune-volume changes are relatively constant alongshore. Dune erosion is therefore suggested to control spatial variability in dune-volume changes. On a scale of decades, the volume of foredunes tends to increase more on wider beaches. However, where widths exceed 200 to 300 m, this trend is no longer observed. PMID:24603812
Keijsers, Joep G S; Poortinga, Ate; Riksen, Michel J P M; Maroulis, Jerry
2014-01-01
Depending on the amount of aeolian sediment input and dune erosion, dune size and morphology change over time. Since coastal foredunes play an important role in the Dutch coastal defence, it is important to have good insight in the main factors that control these changes. In this paper the temporal variations in foredune erosion and accretion were studied in relation to proxies for aeolian transport potential and storminess using yearly elevation measurements from 1965 to 2012 for six sections of the Dutch coast. Longshore differences in the relative impacts of erosion and accretion were examined in relation to local beach width. The results show that temporal variability in foredune accretion and erosion is highest in narrow beach sections. Here, dune erosion alternates with accretion, with variability displaying strong correlations with yearly values of storminess (maximum sea levels). In wider beach sections, dune erosion is less frequent, with lower temporal variability and stronger correlations with time series of transport potential. In erosion dominated years, eroded volumes decrease from narrow to wider beaches. When accretion dominates, dune-volume changes are relatively constant alongshore. Dune erosion is therefore suggested to control spatial variability in dune-volume changes. On a scale of decades, the volume of foredunes tends to increase more on wider beaches. However, where widths exceed 200 to 300 m, this trend is no longer observed.
Twining, Brian V.; Fisher, Jason C.
2015-01-01
Normalized mean head values were analyzed for all 11 multilevel monitoring wells for the period of record (2007–13). The mean head values suggest a moderately positive correlation among all boreholes and generally reflect regional fluctuations in water levels in response to seasonal climatic changes. Boreholes within volcanic rift zones and near the southern boundary (USGS 103, USGS 105, USGS 108, USGS 132, USGS 135, USGS 137A) display a temporal correlation that is strongly positive. Boreholes in the Big Lost Trough display some variations in temporal correlations that may result from proximity to the mountain front to the northwest and episodic flow in the Big Lost River drainage system. For example, during June 2012, boreholes MIDDLE 2050A and MIDDLE 2051 showed head buildup within the upper zones when compared to the June 2010 profile event, which correlates to years when surface water was reported for the Big Lost River several months preceding the measurement period. With the exception of borehole USGS 134, temporal correlation between MLMS wells completed within the Big Lost Trough is generally positive. Temporal correlation for borehole USGS 134 shows the least agreement with other MLMS boreholes located within the Big Lost Trough; however, borehole USGS 134 is close to the mountain front where tributary valley subsurface inflow is suspected.
deCarvalho, Tagide N.; Shaw, Kerry L.
2011-01-01
The Hawaiian cricket genus Laupala (Gryllidae: Trigonidiinae) has undergone rapid and extensive speciation, with divergence in male song and female acoustic preference playing a role in maintaining species boundaries. Recent study of interspecific differences in the diel rhythmicity of singing and mating, suggests that temporal variation in behavior may reduce gene flow between species. In addition, Laupala perform an elaborate and protracted courtship, providing potential for further temporal variation. However, whether these behavioral differences have a genetic basis or result from environmental variation is unknown. We observed courtship and mating in a common garden study of the sympatric species, Laupala cerasina and Laupala paranigra. We document interspecific differences in the onset and duration of courtship, spermatophore production rate, and diel mating rhythmicity. Our study demonstrates a genetic contribution to interspecific behavioral differences, and suggests an evolutionary pathway to the origins of novel timing phenotypes. PMID:20878226
NASA Astrophysics Data System (ADS)
Iinuma, Takeshi
2018-04-01
A monitoring method to grasp the spatio-temporal change in the interplate coupling in a subduction zone based on the spatial gradients of surface displacement rate fields is proposed. I estimated the spatio-temporal change in the interplate coupling along the plate boundary in northeastern (NE) Japan by applying the proposed method to the surface displacement rates based on global positioning system observations. The gradient of the surface velocities is calculated in each swath configured along the direction normal to the Japan Trench for time windows such as 0.5, 1, 2, 3 and 5 yr being shifted by one week during the period of 1997-2016. The gradient of the horizontal velocities is negative and has a large magnitude when the interplate coupling at the shallow part (less than approximately 50 km in depth) beneath the profile is strong, and the sign of the gradient of the vertical velocity is sensitive to the existence of the coupling at the deep part (greater than approximately 50 km in depth). The trench-parallel variation of the spatial gradients of a displacement rate field clearly corresponds to the trench-parallel variation of the amplitude of the interplate coupling on the plate interface, as well as the rupture areas of previous interplate earthquakes. Temporal changes in the trench-parallel variation of the spatial gradient of the displacement rate correspond to the strengthening or weakening of the interplate coupling. We can monitor the temporal change in the interplate coupling state by calculating the spatial gradients of the surface displacement rate field to some extent without performing inversion analyses with applying certain constraint conditions that sometimes cause over- and/or underestimation at areas of limited spatial resolution far from the observation network. The results of the calculation confirm known interplate events in the NE Japan subduction zone, such as the post-seismic slip of the 2003 M8.0 Tokachi-oki and 2005 M7.2 Miyagi-oki earthquakes and the recovery of the interplate coupling around the rupture area of the 1994 M7.6 Sanriku-Haruka-oki earthquake. The results also indicate the semi-periodic occurrence of slow slip events and the expansion of the area of slow slip events before the 2011 Tohoku-oki earthquake (M9.0) approaching the hypocentre of the Tohoku-oki earthquake.
Hovenden, Mark J; Newton, Paul C D; Porter, Meagan
2017-05-01
Global warming is expected to increase the mortality rate of established plants in water-limited systems because of its effect on evapotranspiration. The rising CO 2 concentration ([CO 2 ]), however, should have the opposite effect because it reduces plant transpiration, delaying the onset of drought. This potential for elevated [CO 2 ] (eCO 2 ) to modify the warming effect on mortality should be related to prevailing moisture conditions. This study aimed to determine the impacts of warming by 2 °C and eCO 2 (550 μmol mol -1 ) on plant mortality in an Australian temperate grassland over a 6-year period and to test how interannual variation in rainfall influenced treatment effects. Analyses were based on results from a field experiment, TasFACE, in which grassland plots were exposed to a combination of eCO 2 by free air CO 2 enrichment (FACE) and warming by infrared heaters. Using an annual census of established plants and detailed estimates of recruitment, annual mortality of all established plants was calculated. The influence of rainfall amount and timing on the relative impact of treatments on mortality in each year was analysed using multiple regression techniques. Warming and eCO 2 effects had an interactive influence on mortality which varied strongly from year to year and this variation was determined by temporal rainfall patterns. Warming tended to increase density-adjusted mortality and eCO 2 moderated that effect, but to a greater extent in years with fewer dry periods. These results show that eCO 2 reduced the negative effect of warming but this influence varied strongly with rainfall timing. Importantly, indices involving the amount of rainfall were not required to explain interannual variation in mortality or treatment effects on mortality. Therefore, predictions of global warming effects on plant mortality will be reliant not only on other climate change factors, but also on the temporal distribution of rainfall. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Newton, Paul C. D.; Porter, Meagan
2017-01-01
Abstract Background and aims Global warming is expected to increase the mortality rate of established plants in water-limited systems because of its effect on evapotranspiration. The rising CO2 concentration ([CO2]), however, should have the opposite effect because it reduces plant transpiration, delaying the onset of drought. This potential for elevated [CO2] (eCO2) to modify the warming effect on mortality should be related to prevailing moisture conditions. This study aimed to determine the impacts of warming by 2 °C and eCO2 (550 μmol mol−1) on plant mortality in an Australian temperate grassland over a 6-year period and to test how interannual variation in rainfall influenced treatment effects. Methods Analyses were based on results from a field experiment, TasFACE, in which grassland plots were exposed to a combination of eCO2 by free air CO2 enrichment (FACE) and warming by infrared heaters. Using an annual census of established plants and detailed estimates of recruitment, annual mortality of all established plants was calculated. The influence of rainfall amount and timing on the relative impact of treatments on mortality in each year was analysed using multiple regression techniques. Key Results Warming and eCO2 effects had an interactive influence on mortality which varied strongly from year to year and this variation was determined by temporal rainfall patterns. Warming tended to increase density-adjusted mortality and eCO2 moderated that effect, but to a greater extent in years with fewer dry periods. Conclusions These results show that eCO2 reduced the negative effect of warming but this influence varied strongly with rainfall timing. Importantly, indices involving the amount of rainfall were not required to explain interannual variation in mortality or treatment effects on mortality. Therefore, predictions of global warming effects on plant mortality will be reliant not only on other climate change factors, but also on the temporal distribution of rainfall. PMID:28334161
ERIC Educational Resources Information Center
Näykki, Piia; Järvenoja, Hanna; Järvelä, Sanna; Kirschner, Paul
2017-01-01
The aim of this process-oriented video-observation study is to explore how groups that perform differently differ in terms of the number, quality, and temporal variation of their content-level (knowledge co-construction) and meta-level (monitoring) activities. Five groups of teacher education students (n = 22) were observed throughout a 3-month…
Solar irradiance (W/m2) and downwelling diffuse attenuation coefficients (Kd; m-1) were determined in several locations in Prince William Sound, Alaska, USA, between April 2003 and December 2005 to assess temporal and spatial variation in solar radiation and the risks of photoenh...
ERIC Educational Resources Information Center
Goff, Peter T.; Kam, Jihye; Kraszewski, Jacek
2015-01-01
Survey tools are used in education to direct policy, drive leadership decisions, and inform research. Increasingly survey measures of school climate and perspectives of leadership are incorporated into measures of school and principal quality. This study examines the role of temporal variations in survey response patterns using the data from the…
Kim, Yoon-Chul; Narayanan, Shrikanth S; Nayak, Krishna S
2011-05-01
In speech production research using real-time magnetic resonance imaging (MRI), the analysis of articulatory dynamics is performed retrospectively. A flexible selection of temporal resolution is highly desirable because of natural variations in speech rate and variations in the speed of different articulators. The purpose of the study is to demonstrate a first application of golden-ratio spiral temporal view order to real-time speech MRI and investigate its performance by comparison with conventional bit-reversed temporal view order. Golden-ratio view order proved to be more effective at capturing the dynamics of rapid tongue tip motion. A method for automated blockwise selection of temporal resolution is presented that enables the synthesis of a single video from multiple temporal resolution videos and potentially facilitates subsequent vocal tract shape analysis. Copyright © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Shoji, Y.
2012-12-01
Procedures for retrieving two indices indicating the degree of anisotropy of water vapor using the carrier phase of a Global Positioning System (GPS) are introduced. One index describes the spatial concentration of water vapor; the other indicates higher-order water vapor inhomogeneity. GPS analysis can provide more atmospheric information than just PWV. Following MacMillan (1995), the slant path delay (SPD) between a GPS satellite and a receiver at the elevation angle θ and direction angle φ can be written in the following form: SPD(θ,φ)=m(θ)[ZTD+cotθ(Gncosφ+Gesinφ)]+ɛ, where ɛ is postfit residual. The postfit residuals contain information on higher-order atmospheric inhomogeneity (HI). However, other errors that do not originate from the atmosphere are also included (e.g., antenna phase center variation (PCV), signal scattering, multipath, and satellite orbit errors). Therefore, in order to estimate SPD accurately, it is necessary to remove all errors not due to atmospheric inhomogeneity. Shoji et al. (2004) demonstrated that the horizontal scale of the ZTD can be considered as about 600 km, the gradient component (Gn and Ge) as 60 km, and the HI as 2 to 3 km. This result insists that ZTD, Gn and Ge, and HI relate to atmospheric motion of the meso- , meso- , and meso- scales, respectively. The fact allows us defining two new atmospheric indices from GPS SPD as: (1) Water vapor concentration (WVC) index Inner product of nabla operator and gradient vector (Gn and Ge) (2) Water vapor inhomogeneity (WVI) index Standard deviation of ɛ after removing non-atmospheric noises The characteristics of the water vapor field over Japan in August 2011 were studied using the temporal-spatial variation in the two indices along with GPS-derived precipitable water vapor (PWV). The monthly averaged indices indicate distinct diurnal variation in the mountainous region of central Honshu and coincidence with the diurnal variation in precipitation frequencies in the area. The relationships between these indices and precipitation were examined statistically. The results indicate that the anisotropy indices are more strongly correlated with strong rainfall than PWV, whereas PWV seems to be related to weak and/or modest precipitation. These relations hold true for both present and upcoming precipitation. The spatial-temporal variation in the indices for a thunderstorm on 11 August 2011 was also examined. Both water vapor concentration and higher-order inhomogeneity showed an increase ahead of the initiation of convective precipitation. The results suggest that the two GPS-derived indices of water vapor anisotropy reflect local variation in water vapor associated with convection phenomena and can be potentially used for the monitoring of thunderstorms.
Altitude-temporal behaviour of atmospheric ozone, temperature and wind velocity observed at Svalbard
NASA Astrophysics Data System (ADS)
Petkov, Boyan H.; Vitale, Vito; Svendby, Tove M.; Hansen, Georg H.; Sobolewski, Piotr S.; Láska, Kamil; Elster, Josef; Pavlova, Kseniya; Viola, Angelo; Mazzola, Mauro; Lupi, Angelo; Solomatnikova, Anna
2018-07-01
The vertical features of the variations in the atmospheric ozone density, temperature and wind velocity observed at Ny-Ålesund, Svalbard were studied by applying the principal component analysis to the ozonesounding data collected during the 1992-2016 period. Two data sets corresponding to intra-seasonal (IS) variations, which are composed by harmonics with lower than 1 year periods and inter-annual (IA) variations, characterised by larger periods, were extracted and analysed separately. The IS variations in all the three parameters were found to be composed mainly by harmonics typical for the Madden-Julian Oscillation (from 30- to 60-day periods) and, while the first four principal components (PCs) associated with the temperature and wind contributed about 90% to the IS variations, the ozone IS oscillations appeared to be a higher dimensional object for which the first 15 PCs presented almost the same extent of contribution. The IA variations in the three parameters were consisted of harmonics that correspond to widely registered over the globe Quasi-Biennial, El Niño-Southern, North Atlantic and Arctic Oscillations respectively, and the IA variations turned out to be negligible below the tropopause that characterises the Svalbard troposphere as comparatively closed system with respect to the long-period global variations. The behaviour of the first and second PCs associated with IS ozone variations in the time of particular events, like the strong ozone depletion over Arctic in the spring 2011 and solar eclipses was discussed and the changes in the amplitude-frequency features of these PCs were assumed as signs of the atmosphere response to the considered phenomena.
Climate drives phenological reassembly of a mountain wildflower meadow community.
Theobald, Elli J; Breckheimer, Ian; HilleRisLambers, Janneke
2017-11-01
Spatial community reassembly driven by changes in species abundances or habitat occupancy is a well-documented response to anthropogenic global change, but communities can also reassemble temporally if the environment drives differential shifts in the timing of life events across community members. Much like spatial community reassembly, temporal reassembly could be particularly important when critical species interactions are temporally concentrated (e.g., plant-pollinator dynamics during flowering). Previous studies have documented species-specific shifts in phenology driven by climate change, implying that temporal reassembly, a process we term "phenological reassembly," is likely. However, few studies have documented changes in the temporal co-occurrence of community members driven by environmental change, likely because few datasets of entire communities exist. We addressed this gap by quantifying the relationship between flowering phenology and climate for 48 co-occurring subalpine wildflower species at Mount Rainier (Washington, USA) in a large network of plots distributed across Mt. Rainier's steep environmental gradients; large spatio-temporal variability in climate over the 6 yr of our study (including the earliest and latest snowmelt year on record) provided robust estimates of climate-phenology relationships for individual species. We used these relationships to examine changes to community co-flowering composition driven by 'climate change analog' conditions experienced at our sites in 2015. We found that both the timing and duration of flowering of focal species was strongly sensitive to multiple climatic factors (snowmelt, temperature, and soil moisture). Some consistent responses emerged, including earlier snowmelt and warmer growing seasons driving flowering phenology earlier for all focal species. However, variation among species in their phenological sensitivities to these climate drivers was large enough that phenological reassembly occurred in the climate change analog conditions of 2015. An unexpected driver of phenological reassembly was fine-scale variation in the direction and magnitude of climatic change, causing phenological reassembly to be most apparent early and late in the season and in topographic locations where snow duration was shortest (i.e., at low elevations and on ridges in the landscape). Because phenological reassembly may have implications for many types of ecological interactions, failing to monitor community-level repercussions of species-specific phenological shifts could underestimate climate change impacts. © 2017 by the Ecological Society of America.
The role of soil communities in improving ecosystem services in organic farming
NASA Astrophysics Data System (ADS)
Zandbergen, Jelmer; Koorneef, Guusje; Veen, Cees; Schrama, Jan; van der Putten, Wim
2017-04-01
Worldwide soil fertility decreases and it is generally believed that organic matter (OM) addition to agricultural soils can improve soil properties leading to beneficial ecosystem services. However, it remains unknown under which conditions and how fast biotic, physical and chemical soil properties respond to varying quality and quantity of OM inputs. Therefore, the aims of this research project are (1) to unravel biotic, physical and chemical responses of soils to varying quantity and quality of OM addition; and (2) to understand how we can accelerate the response of soils in order to improve beneficial soil ecosystem services faster. The first step in our research project is to determine how small-scale spatio-temporal patterns in soil biotic, physical and chemical properties relate to crop production and quality. To do this we combine field measurements on soil properties with remote and proximate sensing measures on crop development and yield in a long-term farming systems experiment in the Netherlands (Vredepeel). We hypothesize that spatio-temporal variation in crop development and yield are strongly related to spatio-temporal variation in soil parameters. In the second step of our project we will use this information to identify biological interactions underlying improving soil functions in response to OM addition over time. We will specifically focus on the role of soil communities in driving nutrient cycling, disease suppression and the formation of soil structure, all crucial elements of key soil services in agricultural soils. The knowledge that will be generated in our project can be used to detect specific organic matter qualities that support the underlying ecological processes to accelerate the transition towards improved soil functioning thereby governing enhanced crop yields.
de Moor, Maarten; Kern, Christoph; Avard, Geoffroy; Muller, Cyril; Aiuppa, Sandro; Saballos, Armando; Ibarra, Martha; LaFemina, Peter; Protti, Mario; Fischer, Tobias
2017-01-01
This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015–2016. We report ∼300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ∼500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972–2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015–2016 than in any period since ∼1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time‐series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short‐lived degassing events and arc systems likely display significant short‐term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.
NASA Astrophysics Data System (ADS)
de Moor, J. M.; Kern, C.; Avard, G.; Muller, C.; Aiuppa, A.; Saballos, A.; Ibarra, M.; LaFemina, P.; Protti, M.; Fischer, T. P.
2017-12-01
This work presents a new database of SO2 and CO2 fluxes from the Southern Central American Volcanic Arc (SCAVA) for the period 2015-2016. We report ˜300 SO2 flux measurements from 10 volcanoes and gas ratios from 11 volcanoes in Costa Rica and Nicaragua representing the most extensive available assessment of this ˜500 km arc segment. The SO2 flux from SCAVA is estimated at 6,240 ± 1,150 T/d, about a factor of three higher than previous estimations (1972-2013). We attribute this increase in part to our more complete assessment of the arc. Another consideration in interpreting the difference is the context of increased volcanic activity, as there were more eruptions in 2015-2016 than in any period since ˜1980. A potential explanation for increased degassing and volcanic activity is a change in crustal stress regime (from compression to extension, opening volcanic conduits) following two large (Mw > 7) earthquakes in the region in 2012. The CO2 flux from the arc is estimated at 22,500 ± 4,900 T/d, which is equal to or greater than estimates of C input into the SCAVA subduction zone. Time-series data sets for arc degassing need to be improved in temporal and spatial coverage to robustly constrain volatile budgets and tectonic controls. Arc volatile budgets are strongly influenced by short-lived degassing events and arc systems likely display significant short-term variations in volatile output, calling for expansion of nascent geochemical monitoring networks to achieve spatial and temporal coverage similar to traditional geophysical networks.
NASA Astrophysics Data System (ADS)
Song, C.; Sheng, Y.
2015-12-01
High-altitude lakes in the Tibetan Plateau (TP) showed strong spatio-temporal variability during past decades. The lake dynamics can be associated with several key factors including lake type, supply of glacial meltwater, local climate variations. It is important to differentiate these factors when analyzing the driving force of lakes dynamics. With a focus on lakes over the Tanggula Mountains of the central TP, this study investigates the temporal evolution patterns of lake area and water level of different types: glacier-fed closed lake, non-glacier-fed closed lake and upstream lake (draining into closed lakes). We collected all available Landsat archive data and quantified the inter-annual variability of lake extents. Results show accelerated expansions of both glacier-fed and non-glacier-fed lakes during 1970s-2013, and different temporal patterns of the two types of lakes: the non-glacier-fed lakes displayed a batch-wise growth pattern, with obvious growth in 2002, 2005 and 2011 and slight changes in other years, while glacier-fed lakes showed steady expanding tendency. The contrasting patterns are confirmed by the distinction of lake level change between the two groups derived from satellite altimetry during 2003-2009. The upstream lakes remained largely stable due to natural drainage regulation. The intermittent expansions for non-glacier-fed lakes were found to be related to excessive precipitation events and positive "precipitation-evaporation". In contrast, glacier-fed lake changes showed weak correlations with precipitation variations, which imply a joint contribution from glacial meltwater to water budgets. A simple estimation reveals that the increased water storage for all of examined lakes contributed from precipitation/evaporation (0.31±0.09 Gt/yr) slightly overweighed the glacial meltwater supply (0.26±0.08 Gt/yr).
Human recreation affects spatio-temporal habitat use patterns in red deer (Cervus elaphus)
Coppes, Joy; Burghardt, Friedrich; Hagen, Robert; Suchant, Rudi; Braunisch, Veronika
2017-01-01
The rapid spread and diversification of outdoor recreation can impact on wildlife in various ways, often leading to the avoidance of disturbed habitats. To mitigate human-wildlife conflicts, spatial zonation schemes can be implemented to separate human activities from key wildlife habitats, e.g., by designating undisturbed wildlife refuges or areas with some level of restriction to human recreation and land use. However, mitigation practice rarely considers temporal differences in human-wildlife interactions. We used GPS telemetry data from 15 red deer to study the seasonal (winter vs. summer) and diurnal (day vs. night) variation in recreation effects on habitat use in a study region in south-western Germany where a spatial zonation scheme has been established. Our study aimed to determine if recreation infrastructure and spatial zonation affected red deer habitat use and whether these effects varied daily or seasonally. Recreation infrastructure did not affect home range selection in the study area, but strongly determined habitat use within the home range. The spatial zonation scheme was reflected in both of these two levels of habitat selection, with refuges and core areas being more frequently used than the border zones. Habitat use differed significantly between day and night in both seasons. Both summer and winter recreation trails, and nearby foraging habitats, were avoided during day, whereas a positive association was found during night. We conclude that human recreation has an effect on red deer habitat use, and when designing mitigation measures daily and seasonal variation in human-wildlife interactions should be taken into account. We advocate using spatial zonation in conjunction with temporal restrictions (i.e., banning nocturnal recreation activities) and the creation of suitable foraging habitats away from recreation trails. PMID:28467429
Mercier Shanks, Catherine; Sérodes, Jean-Baptiste; Rodriguez, Manuel J
2013-06-01
The non-regulated disinfection by-products (NrDBP) targeted in this study include four haloacetonitriles (trichloroacetonitrile (TCAN); dichloroacetonitrile (DCAN); bromochloroacetonitrile (BCAN) and dibromoacetonitrile (DBAN)); one halonitromethane (trichloronitromethane, better known under the name chloropicrin (CPK)); and two haloketones (1,1-dichloro-2-propanone (11DCPone) and 1,1,1-trichloro-2-propanone (111TCPone)). This study provides a detailed picture of the spatial and temporal variability of these NrDBP concentrations throughout a drinking water distribution system located in a region with major seasonal climate variations. The results obtained show that the concentrations of the investigated NrDBPs varied significantly according to time and location. The average concentrations of TCAN, DCAN, CKP and 111TCPone were significantly higher in summer. Surprisingly, the average concentrations of 11DCPone were significantly higher in winter. For BCAN and DBAN, the average concentrations observed in winter were higher, but not in a statistically significant way. On the other hand, the four HANs, CPK and 111TCPone generally had spatial profiles involving an increase of the concentrations along the network according to increasing water residence times, whereas 11DCPone overall had a profile where concentrations increased at the beginning of the network, followed by a drop in the concentrations towards the ends of the network. In spite of certain disparities in the individual spatio-temporal variation profiles, strong correlations were generally observed between NrDBPs, and trihalomethanes (THMs) and haloacetic acids (HAAs). Therefore, THMs and HAAs could be good statistical indicators of the presence of NrDBPs in the drinking water of the system under study. Copyright © 2013 Elsevier Ltd. All rights reserved.
Heinen, De Carlo E.; Anthony, S.S.
2002-01-01
Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input. ?? 2002 Elsevier Science Ltd. All rights reserved.
Perrier, Frédéric; Richon, Patrick
2010-04-01
Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m(-3) in summer to about 800-1400 Bq m(-3) in winter, indicating winter ventilation rates varying from 0.6 to 2.5 x 10(-6) s(-1). Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from -7 to -26 Bq m(-3) hPa(-1). This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Torres, Mark A.; Baronas, J. Jotautas; Clark, Kathryn E.; Feakins, Sarah J.; West, A. Joshua
2017-04-01
The response of hillslope processes to changes in precipitation may drive the observed changes in the solute geochemistry of rivers with discharge. This conjecture is most robust when variations in the key environmental factors that affect hillslope processes (e.g., lithology, erosion rate, and climate) are minimal across a river's catchment area. For rivers with heterogenous catchments, temporal variations in the relative contributions of different tributary subcatchments may modulate variations in solute geochemistry with runoff. In the absence of a dense network of hydrologic gauging stations, alternative approaches are required to distinguish between the different drivers of temporal variability in river solute concentrations. In this contribution, we apportion the water and solute fluxes of a reach of the Madre de Dios River (Peru) between its four major tributary subcatchments during two sampling campaigns (wet and dry seasons) using spatial variations in conservative tracers. Guided by the results of a mixing model, we identify temporal variations in solute concentrations of the main stem Madre de Dios that are due to changes in the relative contributions of each tributary. Our results suggest that variations in tributary mixing are, in part, responsible for the observed concentration-discharge (C-Q) relationships. The implications of these results are further explored by reanalyzing previously published C-Q data from this region, developing a theoretical model of tributary mixing, and, in a companion paper, comparing the C-Q behavior of a suite of major and trace elements in the Madre de Dios River system.
NASA Astrophysics Data System (ADS)
Kamakura, Katsutoshi
2007-01-01
In this study we measured the variation of brain blood quantity (Oxy-Hb, Deoxy-Hb and Total-Hb) in the temporal lobes using near infrared spectroscopy (NIRS) when the tasks of the memories were presented to the subjects. The memories are classified into the short-term memory (STM) and the long-term memory (LTM) including the episodic and semantic memories. The subjects joined in this study are 11 persons who are university students including graduate students. We used the language task of letter-number sequencing, also reverse sequencing to measure STM and the task of the episodic memory to measure LTM. As a result of analysis, concerning the episodic memory, the variation of Oxy-Hb in the left temporal lobe was larger than that of Oxy-Hb in the right temporal lobe. The result might suggest that the episodic memory has a relationship with cerebral dominance concerning language area in the left temporal lobe. It seems that the episodic memory meditated with the function of language used in this study is much stored in the left temporal lobe than in the right temporal lobe. This result coincides with the principles of lateralization. The variation of Oxy-Hb in the language task of letter-number sequencing was smaller than that of Oxy-Hb in the language task of the episodic memory.
Can we quantify the variability of soil moisture across scales using Electromagnetic Induction ?
NASA Astrophysics Data System (ADS)
Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan
2017-04-01
Soil moisture is a key variable in many natural processes. Therefore, technological and methodological advancements are of primary importance to provide accurate measurements of spatial and temporal variability of soil moisture. In that context, ElectroMagnetic Induction (EMI) instruments are often cited as a hydrogeophysical method with a large potential, through the measurement of the soil apparent electrical conductivity (ECa). To our knowledge, no studies have evaluated the potential of EMI to characterize variability of soil moisture on both agricultural and forested land covers in a (sub-) tropical environment. These differences in land use could be critical as differences in temperature, transpiration and root water uptake can have significant effect, notably on the electrical conductivity of the pore water. In this study, we used an EMI instrument to carry out a first assessment of the impact of deforestation and agriculture on soil moisture in a subtropical region in the south of Brazil. We selected slopes of different topographies (gentle vs. steep) and contrasting land uses (natural forest vs. agriculture) within two nearby catchments. At selected locations on the slopes, we measured simultaneously ECa using EMI and a depth-weighted average of the soil moisture using TDR probes installed within soil pits. We found that the temporal variability of the soil moisture could not be measured accurately with EMI, probably because of important temporal variations of the pore water electrical conductivity and the relatively small temporal variations in soil moisture content. However, we found that its spatial variability could be effectively quantified using a non-linear relationship, for both intra- and inter-slopes variations. Within slopes, the ECa could explained between 67 and 90% of the variability of the soil moisture, while a single non-linear model for all the slopes could explain 55% of the soil moisture variability. We eventually showed that combining a specific relationship for the most degraded slope (steep slope under agriculture) and a single relationship for all the other slopes, both non-linear relations, yielded the best results with an overall explained variance of 90%. We applied the latter model to measurements of the ECa along transects at the different slopes, which allowed us to highlight the strong control of topography on the soil moisture content. We also observed a significant impact of the land use with higher moisture content on the agricultural slopes, probably due to a reduced evapotranspiration.
Docherty, Kathryn M; Borton, Hannah M; Espinosa, Noelle; Gebhardt, Martha; Gil-Loaiza, Juliana; Gutknecht, Jessica L M; Maes, Patrick W; Mott, Brendon M; Parnell, John Jacob; Purdy, Gayle; Rodrigues, Pedro A P; Stanish, Lee F; Walser, Olivia N; Gallery, Rachel E
2015-01-01
Soil microbial communities play a critical role in nutrient transformation and storage in all ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and functional variation of soil microorganisms in response to biotic and abiotic changes within and across ecosystems will inform our understanding of the effect of climate change on these processes. We examined spatial and seasonal variation in microbial communities based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland (Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based instructional approach leveraging the iPlant Collaborative to examine publicly available National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that quantify microbial diversity, composition, and growth. Both profiling techniques revealed that microbial communities grouped strongly by ecosystem and were predominately influenced by three edaphic factors: pH, soil water content, and cation exchange capacity. Temporal variability of microbial communities differed by profiling technique; 16S-based community measurements showed significant temporal variability only in the subtropical coniferous forest communities, specifically through changes within subgroups of Acidobacteria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga and tropical broadleaf forest systems. These differences may be due to the premise that 16S-based measurements are predominantly influenced by large shifts in the abiotic soil environment, while PLFA-based analyses reflect the metabolically active fraction of the microbial community, which is more sensitive to local disturbances and biotic interactions. To address the technical issue of the response of soil microbial communities to sample storage temperature, we compared 16S-based community structure in soils stored at -80°C and -20°C and found no significant differences in community composition based on storage temperature. Free, open access datasets and data sharing platforms are powerful tools for integrating research and teaching in undergraduate and graduate student classrooms. They are a valuable resource for fostering interdisciplinary collaborations, testing ecological theory, model development and validation, and generating novel hypotheses. Training in data analysis and interpretation of large datasets in university classrooms through project-based learning improves the learning experience for students and enables their use of these significant resources throughout their careers.
Borton, Hannah M.; Espinosa, Noelle; Gebhardt, Martha; Gil-Loaiza, Juliana; Gutknecht, Jessica L. M.; Maes, Patrick W.; Mott, Brendon M.; Parnell, John Jacob; Purdy, Gayle; Rodrigues, Pedro A. P.; Stanish, Lee F.; Walser, Olivia N.
2015-01-01
Soil microbial communities play a critical role in nutrient transformation and storage in all ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and functional variation of soil microorganisms in response to biotic and abiotic changes within and across ecosystems will inform our understanding of the effect of climate change on these processes. We examined spatial and seasonal variation in microbial communities based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland (Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based instructional approach leveraging the iPlant Collaborative to examine publicly available National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that quantify microbial diversity, composition, and growth. Both profiling techniques revealed that microbial communities grouped strongly by ecosystem and were predominately influenced by three edaphic factors: pH, soil water content, and cation exchange capacity. Temporal variability of microbial communities differed by profiling technique; 16S-based community measurements showed significant temporal variability only in the subtropical coniferous forest communities, specifically through changes within subgroups of Acidobacteria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga and tropical broadleaf forest systems. These differences may be due to the premise that 16S-based measurements are predominantly influenced by large shifts in the abiotic soil environment, while PLFA-based analyses reflect the metabolically active fraction of the microbial community, which is more sensitive to local disturbances and biotic interactions. To address the technical issue of the response of soil microbial communities to sample storage temperature, we compared 16S-based community structure in soils stored at -80°C and -20°C and found no significant differences in community composition based on storage temperature. Free, open access datasets and data sharing platforms are powerful tools for integrating research and teaching in undergraduate and graduate student classrooms. They are a valuable resource for fostering interdisciplinary collaborations, testing ecological theory, model development and validation, and generating novel hypotheses. Training in data analysis and interpretation of large datasets in university classrooms through project-based learning improves the learning experience for students and enables their use of these significant resources throughout their careers. PMID:26536666
Spatial-temporal analysis of building surface temperatures in Hung Hom
NASA Astrophysics Data System (ADS)
Zeng, Ying; Shen, Yueqian
2015-12-01
This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.
Vortices in Saturn’s Northern Hemisphere (2008–2015) Observed by Cassini ISS
Trammell, Harold Justin; Li, Liming; Jiang, Xun; Pan, Yefeng; Smith, Mark A.; Bering, Edgar A.; Hörst, Sarah M.; Vasavada, Ashwin R.; Ingersoll, Andrew P.; Janssen, Michael A.; West, Robert A.; Porco, Carolyn C.; Li, Cheng; Simon, Amy A.; Baines, Kevin H.
2018-01-01
We use observations from the Imaging Science Subsystem on Cassini to create maps of Saturn’s Northern Hemisphere (NH) from 2008 to 2015, a time period including a seasonal transition (i.e., Spring Equinox in 2009) and the 2010 giant storm. The processed maps are used to investigate vortices in the NH during the period of 2008–2015. All recorded vortices have diameters (east-west) smaller than 6000 km except for the largest vortex that developed from the 2010 giant storm. The largest vortex decreased its diameter from ~11000 km in 2011 to ~5000 km in 2015, and its average diameter is ~6500 km during the period of 2011–2015. The largest vortex lasts at least 4 years, which is much longer than the lifetimes of most vortices (less than 1 year). The largest vortex drifts to north, which can be explained by the beta drift effect. The number of vortices displays varying behaviors in the meridional direction, in which the 2010 giant storm significantly affects the generation and development of vortices in the middle latitudes (25–45°N). In the higher latitudes (45–90°N), the number of vortices also displays strong temporal variations. The solar flux and the internal heat do not directly contribute to the vortex activities, leaving the temporal variations of vortices in the higher latitudes (45–90°N) unexplained. PMID:29629249
Matos, Jislene B; Oliveira, Suellen M O DE; Pereira, Luci C C; Costa, Rauquírio M DA
2016-09-01
The present study aimed to analyze the structure and the temporal variation of the phytoplankton of Ajuruteua beach (Bragança, Pará) and to investigate the influence of environmental variables on the dynamics of this community to provide a basis about the trophic state of this environment. Biological, hydrological and hydrodynamic samplings were performed during a nyctemeral cycle in the months of November/08, March/09, June/09 and September/09. We identified 110 taxa, which were distributed among the diatoms (87.3%), dinoflagellates (11.8%) and cyanobacteria (0.9%), with the predominance of neritic species, followed by the tychoplankton species. Chlorophyll-a concentrations were the highest during the rainy period (24.5 mg m-3), whereas total phytoplankton density was higher in the dry period (1,255 x 103 cell L-1). However, phytoflagellates density was significantly higher during the rainy period. Cluster Analysis revealed the formation of four groups, which were influenced by the monthly differences in the environmental variables. The Principal Component Analysis indicated salinity and chlorophyll-a as the main variables that explained the components. Spearman correlation analysis supported the influence of these variables on the local phytoplankton community. Overall, the results obtained suggest that rainfall and strong local hydrodynamics play an important role in the dynamic of the phytoplankton of Ajuruteua beach, by influencing both environmental and biological variables.
Qasemian, Leila; Guiral, Daniel; Farnet, Anne-Marie
2014-10-15
Mediterranean coastal ecosystems suffer many different types of natural and anthropogenic environmental pressure. Microbial communities, major conductors of organic matter decomposition are also subject to these environmental constraints. In this study, our aim was to understand how microbial activities vary at a small spatio-temporal scale in a Mediterranean coastal environment. Microbial activities were monitored in a Pinus halepensis litter collected from two areas, one close to (10 m) and one far from (300 m) the French Mediterranean coast. Litters were transferred from one area to the other using litterbags and studied via different microbial indicators after 2, 5 and 13 months. Microbial Basal Respiration, qCO₂, certain enzyme activities (laccase, cellulase, β-glucosidase and acid phosphatase) and functional diversity via Biolog microplates were assayed in litterbags left in the area of origin as well as in litterbags transferred from one area to the other. Results highlight that microbial activities differ significantly in this short spatial scale over time. The influence of microlocal conditions more intensified for litters situated close to the sea, especially during summer seems to have a stressful effect on microbial communities, leading to less efficient functional activities. However, microbial activities were more strongly influenced by temporal variations linked to seasonality than by location. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamazaki, Ken'ichi
2016-07-01
Fault ruptures in the Earth's crust generate both elastic and electromagnetic (EM) waves. If the corresponding EM signals can be observed, then earthquakes could be detected before the first seismic waves arrive. In this study, I consider the piezomagnetic effect as a mechanism that converts elastic waves to EM energy, and I derive analytical formulas for the conversion process. The situation considered in this study is a whole-space model, in which elastic and EM properties are uniform and isotropic. In this situation, the governing equations of the elastic and EM fields, combined with the piezomagnetic constitutive law, can be solved analytically in the time domain by ignoring the displacement current term. Using the derived formulas, numerical examples are investigated, and the corresponding characteristics of the expected magnetic signals are resolved. I show that temporal variations in the magnetic field depend strongly on the electrical conductivity of the medium, meaning that precise detection of signals generated by the piezomagnetic effect is generally difficult. Expected amplitudes of piezomagnetic signals are estimated to be no larger than 0.3 nT for earthquakes with a moment magnitude of ≥7.0 at a source distance of 25 km; however, this conclusion may not extend to the detection of real earthquakes, because piezomagnetic stress sensitivity is currently poorly constrained.
Hardebeck, J.L.; Michael, A.J.
2006-01-01
We present a new focal mechanism stress inversion technique to produce regional-scale models of stress orientation containing the minimum complexity necessary to fit the data. Current practice is to divide a region into small subareas and to independently fit a stress tensor to the focal mechanisms of each subarea. This procedure may lead to apparent spatial variability that is actually an artifact of overfitting noisy data or nonuniquely fitting data that does not completely constrain the stress tensor. To remove these artifacts while retaining any stress variations that are strongly required by the data, we devise a damped inversion method to simultaneously invert for stress in all subareas while minimizing the difference in stress between adjacent subareas. This method is conceptually similar to other geophysical inverse techniques that incorporate damping, such as seismic tomography. In checkerboard tests, the damped inversion removes the stress rotation artifacts exhibited by an undamped inversion, while resolving sharper true stress rotations than a simple smoothed model or a moving-window inversion. We show an example of a spatially damped stress field for southern California. The methodology can also be used to study temporal stress changes, and an example for the Coalinga, California, aftershock sequence is shown. We recommend use of the damped inversion technique for any study examining spatial or temporal variations in the stress field.
Yuan, N; Comes, H P; Cao, Y N; Guo, R; Zhang, Y H; Qiu, Y X
2015-06-01
Elucidating the demographic and landscape features that determine the genetic effects of habitat fragmentation has become fundamental to research in conservation and evolutionary biology. Land-bridge islands provide ideal study areas for investigating the genetic effects of habitat fragmentation at different temporal and spatial scales. In this context, we compared patterns of nuclear microsatellite variation between insular populations of a shrub of evergreen broad-leaved forest, Loropetalum chinense, from the artificially created Thousand-Island Lake (TIL) and the Holocene-dated Zhoushan Archipelago of Southeast China. Populations from the TIL region harboured higher levels of genetic diversity than those from the Zhoushan Archipelago, but these differences were not significant. There was no correlation between genetic diversity and most island features, excepting a negative effect of mainland-island distance on allelic richness and expected heterozygosity in the Zhoushan Archipelago. In general, levels of gene flow among island populations were moderate to high, and tests of alternative models of population history strongly favoured a gene flow-drift model over a pure drift model in each region. In sum, our results showed no obvious genetic effects of habitat fragmentation due to recent (artificial) or past (natural) island formation. Rather, they highlight the importance of gene flow (most likely via seed) in maintaining genetic variation and preventing inter-population differentiation in the face of habitat 'insularization' at different temporal and spatial scales.
Flood inundation mapping in the Logone floodplain from multi temporal Landsat ETM+ imagery
NASA Astrophysics Data System (ADS)
Jung, H.; Alsdorf, D. E.; Moritz, M.; Lee, H.; Vassolo, S.
2011-12-01
Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to ~5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.
Smart, Adam S; Tingley, Reid; Weeks, Andrew R; van Rooyen, Anthony R; McCarthy, Michael A
2015-10-01
Effective management of alien species requires detecting populations in the early stages of invasion. Environmental DNA (eDNA) sampling can detect aquatic species at relatively low densities, but few studies have directly compared detection probabilities of eDNA sampling with those of traditional sampling methods. We compare the ability of a traditional sampling technique (bottle trapping) and eDNA to detect a recently established invader, the smooth newt Lissotriton vulgaris vulgaris, at seven field sites in Melbourne, Australia. Over a four-month period, per-trap detection probabilities ranged from 0.01 to 0.26 among sites where L. v. vulgaris was detected, whereas per-sample eDNA estimates were much higher (0.29-1.0). Detection probabilities of both methods varied temporally (across days and months), but temporal variation appeared to be uncorrelated between methods. Only estimates of spatial variation were strongly correlated across the two sampling techniques. Environmental variables (water depth, rainfall, ambient temperature) were not clearly correlated with detection probabilities estimated via trapping, whereas eDNA detection probabilities were negatively correlated with water depth, possibly reflecting higher eDNA concentrations at lower water levels. Our findings demonstrate that eDNA sampling can be an order of magnitude more sensitive than traditional methods, and illustrate that traditional- and eDNA-based surveys can provide independent information on species distributions when occupancy surveys are conducted over short timescales.
Flood Inundation Mapping in the Logone Floodplain from Multi Temporal Landsat ETM+Imagery
NASA Technical Reports Server (NTRS)
Jung, Hahn Chul; Alsdorf, Douglas E.; Moritz, Mark; Lee, Hyongki; Vassolo, Sara
2011-01-01
Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to approximately 5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.
Haldin, Charlotte; Nymark, Soile; Aho, Ann-Christine; Koskelainen, Ari; Donner, Kristian
2009-05-06
Human vision is approximately 10 times less sensitive than toad vision on a cool night. Here, we investigate (1) how far differences in the capacity for temporal integration underlie such differences in sensitivity and (2) whether the response kinetics of the rod photoreceptors can explain temporal integration at the behavioral level. The toad was studied as a model that allows experimentation at different body temperatures. Sensitivity, integration time, and temporal accuracy of vision were measured psychophysically by recording snapping at worm dummies moving at different velocities. Rod photoresponses were studied by ERG recording across the isolated retina. In both types of experiments, the general timescale of vision was varied by using two temperatures, 15 and 25 degrees C. Behavioral integration times were 4.3 s at 15 degrees C and 0.9 s at 25 degrees C, and rod integration times were 4.2-4.3 s at 15 degrees C and 1.0-1.3 s at 25 degrees C. Maximal behavioral sensitivity was fivefold lower at 25 degrees C than at 15 degrees C, which can be accounted for by inability of the "warm" toads to integrate light over longer times than the rods. However, the long integration time at 15 degrees C, allowing high sensitivity, degraded the accuracy of snapping toward quickly moving worms. We conclude that temporal integration explains a considerable part of all variation in absolute visual sensitivity. The strong correlation between rods and behavior suggests that the integration time of dark-adapted vision is set by rod phototransduction at the input to the visual system. This implies that there is an inexorable trade-off between temporal integration and resolution.
Roberts, James H.; Hitt, Nathaniel P.
2010-01-01
Five conceptual models of longitudinal fish community organization in streams were examined: (1) niche diversity model (NDM), (2) stream continuum model (SCM), (3) immigrant accessibility model (IAM), (4) environmental stability model (ESM), and (5) adventitious stream model (ASM). We used differences among models in their predictions about temporal species turnover, along with five spatiotemporal fish community data sets, to evaluate model applicability. Models were similar in predicting a positive species richness–stream size relationship and longitudinal species nestedness, but differed in predicting either similar temporal species turnover throughout the stream continuum (NDM, SCM), higher turnover upstream (IAM, ESM), or higher turnover downstream (ASM). We calculated measures of spatial and temporal variation from spatiotemporal fish data in five wadeable streams in central and eastern North America spanning 34–68 years (French Creek [New York], Piasa Creek [Illinois], Spruce Run [Virginia], Little Stony Creek [Virginia], and Sinking Creek [Virginia]). All streams exhibited substantial species turnover (i.e., at least 27% turnover in stream-scale species pools), in contrast to the predictions of the SCM. Furthermore, community change was greater in downstream than upstream reaches in four of five streams. This result is most consistent with the ASM and suggests that downstream communities are strongly influenced by migrants to and from species pools outside the focal stream. In Sinking Creek, which is isolated from external species pools, temporal species turnover (via increased richness) was higher upstream than downstream, which is a pattern most consistent with the IAM or ESM. These results corroborate the hypothesis that temperate stream habitats and fish communities are temporally dynamic and that fish migration and environmental disturbances play fundamental roles in stream fish community organization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka
Weather Research and Forecasting (WRF)-chem model calculations were conducted to study aerosol optical properties around Beijing, China, during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006) period. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. In general, model calculations reproduced observed features of spatial and temporal variations of various surface and column aerosol optical parameters in and around Beijing. Spatial and temporal variations of aerosol absorption, scattering, and extinction coefficient corresponded well to those of elemental carbon (primary aerosol),more » sulfate (secondary aerosol), and the total aerosol mass concentration, respectively. These results show that spatial and temporal variations of the absorption coefficient are controlled by local emissions (within 100 km around Beijing during the preceding 24 h), while those of the scattering coefficient are controlled by regional-scale emissions (within 500 km around Beijing during the preceding 3 days) under synoptic-scale meteorological conditions, as discussed in our previous study of aerosol mass concentration. Vertical profiles of aerosol extinction revealed that the contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer, leading to a considerable increase in column aerosol optical depth (AOD) around Beijing. These effects are the main factors causing differences in regional and temporal variations between particulate matter (PM) mass concentration at the surface and column AOD over a wide region in the northern part of the Great North China Plain.« less
Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake
Ji, C.; Helmberger, D.V.; Wald, D.J.; Ma, K.-F.
2003-01-01
We investigate the rupture process of the 1999 Chi-Chi, Taiwan, earthquake using extensive near-source observations, including three-component velocity waveforms at 36 strong motion stations and 119 GPS measurements. A three-plane fault geometry derived from our previous inversion using only static data [Ji et al., 2001] is applied. The slip amplitude, rake angle, rupture initiation time, and risetime function are inverted simultaneously with a recently developed finite fault inverse method that combines a wavelet transform approach with a simulated annealing algorithm [Ji et al., 2002b]. The inversion results are validated by the forward prediction of an independent data set, the teleseismic P and SH ground velocities, with notable agreement. The results show that the total seismic moment release of this earthquake is 2.7 ?? 1020 N m and that most of the slip occured in a triangular-shaped asperity involving two fault segments, which is consistent with our previous static inversion. The rupture front propagates with an average rupture velocity of ???2.0 km s-1, and the average slip duration (risetime) is 7.2 s. Several interesting observations related to the temporal evolution of the Chi-Chi earthquake are also investigated, including (1) the strong effect of the sinuous fault plane of the Chelungpu fault on spatial and temporal variations in slip history, (2) the intersection of fault 1 and fault 2 not being a strong impediment to the rupture propagation, and (3 the observation that the peak slip velocity near the surface is, in general, higher than on the deeper portion of the fault plane, as predicted by dynamic modeling.
NASA Technical Reports Server (NTRS)
Wilson, P. R.; Rees, D. E.; Beckers, J. M.; Brown, D. R.
1972-01-01
Two independent sets of high resolution time series spectra of the Ca II H and K emission obtained at the Solar Tower and at the Big Dome of the Sacramento Peak Observatory on September 11th, 1971 are reported. The evolutionary behavior of the emission first reported by Wilson and Evans is confirmed, but the detail of the evolution is found to be more complex. In one case, a doubly peaked feature showing some K3 emission evolves into a single K2 (red) peak with no K3 emission. Coincidentally, a neighboring doubly peaked feature evolves to a very strong blue peak. In an entirely independent sequence a doubly peaked feature evolves into a single red peak. The K2 emission then fades completely although the continuum threads are still strong. Finally a strong K2 blue peak appears. It is concluded that the observed evolution of the K2 emission is due to temporal variations in the physical conditions which give rise to them.
NASA Astrophysics Data System (ADS)
Manikandan, M.; Tamilmani, D.
2015-09-01
The present study aims to investigate the spatial and temporal variation of meteorological drought in the Parambikulam-Aliyar basin, Tamil Nadu using the Standardized Precipitation Index (SPI) as an indicator of drought severity. The basin was divided into 97 grid-cells of 5 × 5 km with each grid correspondence to approximately 1.03 % of total area. Monthly rainfall data for the period of 40 years (1972-2011) from 28 rain gauge stations in the basin was spatially interpolated and gridded monthly rainfall was created. Regional representative of SPI values calculated from mean areal rainfall were used to analyse the temporal variation of drought at multiple time scales. Spatial variation of drought was analysed based on highest drought severity derived from the monthly gridded SPI values. Frequency analyse was applied to assess the recurrence pattern of drought severity. The temporal analysis of SPI indicated that moderate, severe and extreme droughts are common in the basin and spatial analysis of drought severity identified the areas most frequently affected by drought. The results of this study can be used for developing drought preparedness plan and formulating mitigation strategies for sustainable water resource management within the basin.
Spatial and temporal variability of chorus and hiss
NASA Astrophysics Data System (ADS)
Santolik, O.; Hospodarsky, G. B.; Kurth, W. S.; Kletzing, C.
2017-12-01
Whistler-mode electromagnetic waves, especially natural emissions of chorus and hiss, have been shown to influence the dynamics of the Van Allen radiation belts via quasi-linear or nonlinear wave particle interactions, transferring energy between different electron populations. Average intensities of chorus and hiss emissions have been found to increase with increasing levels of geomagnetic activity but their stochastic variations in individual spacecraft measurements are usually larger these large-scale temporal effects. To separate temporal and spatial variations of wave characteristics, measurements need to be simultaneously carried out in different locations by identical and/or well calibrated instrumentation. We use two-point survey measurements of the Waves instruments of the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard two Van Allen Probes to asses spatial and temporal variability of chorus and hiss. We take advantage of a systematic analysis of this large data set which has been collected during 2012-2017 over a range of separation vectors of the two spacecraft. We specifically address the question whether similar variations occur at different places at the same time. Our results indicate that power variations are dominated by separations in MLT at scales larger than 0.5h.
Bemmels, Jordan B; Title, Pascal O; Ortego, Joaquín; Knowles, L Lacey
2016-10-01
Past climate change has caused shifts in species distributions and undoubtedly impacted patterns of genetic variation, but the biological processes mediating responses to climate change, and their genetic signatures, are often poorly understood. We test six species-specific biologically informed hypotheses about such processes in canyon live oak (Quercus chrysolepis) from the California Floristic Province. These hypotheses encompass the potential roles of climatic niche, niche multidimensionality, physiological trade-offs in functional traits, and local-scale factors (microsites and local adaptation within ecoregions) in structuring genetic variation. Specifically, we use ecological niche models (ENMs) to construct temporally dynamic landscapes where the processes invoked by each hypothesis are reflected by differences in local habitat suitabilities. These landscapes are used to simulate expected patterns of genetic variation under each model and evaluate the fit of empirical data from 13 microsatellite loci genotyped in 226 individuals from across the species range. Using approximate Bayesian computation (ABC), we obtain very strong support for two statistically indistinguishable models: a trade-off model in which growth rate and drought tolerance drive habitat suitability and genetic structure, and a model based on the climatic niche estimated from a generic ENM, in which the variables found to make the most important contribution to the ENM have strong conceptual links to drought stress. The two most probable models for explaining the patterns of genetic variation thus share a common component, highlighting the potential importance of seasonal drought in driving historical range shifts in a temperate tree from a Mediterranean climate where summer drought is common. © 2016 John Wiley & Sons Ltd.
Mentoring Temporal and Spatial Variations in Rainfall across Wadi Ar-Rumah, Saudi Arabia
NASA Astrophysics Data System (ADS)
Alharbi, T.; Ahmed, M.
2015-12-01
Across the Kingdom of Saudi Arabia (KSA), the fresh water resources are limited only to those found in aquifer systems. Those aquifers were believed to be recharged during the previous wet climatic period but still receiving modest local recharge in interleaving dry periods such as those prevailing at present. Quantifying temporal and spatial variabilities in rainfall patterns, magnitudes, durations, and frequencies is of prime importance when it comes to sustainable management of such aquifer systems. In this study, an integrated approach, using remote sensing and field data, was used to assess the past, the current, and the projected spatial and temporal variations in rainfall over one of the major watersheds in KSA, Wadi Ar-Rumah. This watershed was selected given its larger areal extent and population intensity. Rainfall data were extracted from (1) the Climate Prediction Centers (CPC) Merged Analysis of Precipitation (CMAP; spatial coverage: global; spatial resolution: 2.5° × 2.5°; temporal coverage: January 1979 to April 2015; temporal resolution: monthly), and (2) the Tropical Rainfall Measuring Mission (TRMM; spatial coverage: 50°N to 50°S; spatial resolution: 0.25° × 0.25°; temporal coverage: January 1998 to March 2015; temporal resolution: 3 hours) and calibrated against rainfall measurements extracted from rain gauges. Trends in rainfall patterns were examined over four main investigation periods: period I (01/1979 to 12/1985), period II (01/1986 to 12/1992), period III (01/1993 to 12/2002), and period IV (01/2003 to 12/2014). Our findings indicate: (1) a significant increase (+14.19 mm/yr) in rainfall rates were observed during period I, (2) a significant decrease in rainfall rates were observed during periods II (-5.80 mm/yr), III (-9.38 mm/yr), and IV (-2.46 mm/yr), and (3) the observed variations in rainfall rates are largely related to the temporal variations in the northerlies (also called northwesterlies) and the monsoonal wind regimes.
NASA Astrophysics Data System (ADS)
Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.
2017-11-01
Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.
Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai
2016-08-24
This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302-480 km, while the annual precipitation showed smaller scales of 111-182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions.
NASA Astrophysics Data System (ADS)
Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai
2016-08-01
This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302-480 km, while the annual precipitation showed smaller scales of 111-182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions.
Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai
2016-01-01
This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302–480 km, while the annual precipitation showed smaller scales of 111–182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions. PMID:27553388
Nowosad, J; Stach, A; Kasprzyk, I; Grewling, Ł; Latałowa, M; Puc, M; Myszkowska, D; Weryszko-Chmielewska, E; Piotrowska-Weryszko, K; Chłopek, K; Majkowska-Wojciechowska, B; Uruska, A
The aim of the study was to determine the characteristics of temporal and space-time autocorrelation of pollen counts of Alnus , Betula , and Corylus in the air of eight cities in Poland. Daily average pollen concentrations were monitored over 8 years (2001-2005 and 2009-2011) using Hirst-designed volumetric spore traps. The spatial and temporal coherence of data was investigated using the autocorrelation and cross-correlation functions. The calculation and mathematical modelling of 61 correlograms were performed for up to 25 days back. The study revealed an association between temporal variations in Alnus , Betula , and Corylus pollen counts in Poland and three main groups of factors such as: (1) air mass exchange after the passage of a single weather front (30-40 % of pollen count variation); (2) long-lasting factors (50-60 %); and (3) random factors, including diurnal variations and measurements errors (10 %). These results can help to improve the quality of forecasting models.
Genome-scale modelling of microbial metabolism with temporal and spatial resolution.
Henson, Michael A
2015-12-01
Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated. © 2015 Authors; published by Portland Press Limited.
Li, Li; Qian, Jun; Ou, Chun-Quan; Zhou, Ying-Xue; Guo, Cui; Guo, Yuming
2014-07-01
There is an increasing interest in spatial and temporal variation of air pollution and its association with weather conditions. We presented the spatial and temporal variation of Air Pollution Index (API) and examined the associations between API and meteorological factors during 2001-2011 in Guangzhou, China. A Seasonal-Trend Decomposition Procedure Based on Loess (STL) was used to decompose API. Wavelet analyses were performed to examine the relationships between API and several meteorological factors. Air quality has improved since 2005. APIs were highly correlated among five monitoring stations, and there were substantial temporal variations. Timescale-dependent relationships were found between API and a variety of meteorological factors. Temperature, relative humidity, precipitation and wind speed were negatively correlated with API, while diurnal temperature range and atmospheric pressure were positively correlated with API in the annual cycle. Our findings should be taken into account when determining air quality forecasts and pollution control measures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Malvisi, Lucio; Troisi, Catherine L; Selwyn, Beatrice J
2018-06-23
The risk of malaria infection displays spatial and temporal variability that is likely due to interaction between the physical environment and the human population. In this study, we performed a spatial analysis at three different time points, corresponding to three cross-sectional surveys conducted as part of an insecticide-treated bed nets efficacy study, to reveal patterns of malaria incidence distribution in an area of Northern Guatemala characterized by low malaria endemicity. A thorough understanding of the spatial and temporal patterns of malaria distribution is essential for targeted malaria control programs. Two methods, the local Moran's I and the Getis-Ord G * (d), were used for the analysis, providing two different statistical approaches and allowing for a comparison of results. A distance band of 3.5 km was considered to be the most appropriate distance for the analysis of data based on epidemiological and entomological factors. Incidence rates were higher at the first cross-sectional survey conducted prior to the intervention compared to the following two surveys. Clusters or hot spots of malaria incidence exhibited high spatial and temporal variations. Findings from the two statistics were similar, though the G * (d) detected cold spots using a higher distance band (5.5 km). The high spatial and temporal variability in the distribution of clusters of high malaria incidence seems to be consistent with an area of unstable malaria transmission. In such a context, a strong surveillance system and the use of spatial analysis may be crucial for targeted malaria control activities.
Botwe, Paul K; Barmuta, Leon A; Magierowski, Regina; McEvoy, Paul; Goonan, Peter; Carver, Scott
2015-01-01
Temporary streams are characterised by short periods of seasonal or annual stream flow after which streams contract into waterholes or pools of varying hydrological connectivity and permanence. Although these streams are widespread globally, temporal variability of their ecology is understudied, and understanding the processes that structure community composition in these systems is vital for predicting and managing the consequences of anthropogenic impacts. We used multivariate and univariate approaches to investigate temporal variability in macroinvertebrate compositional data from 13 years of sampling across multiple sites from autumn and spring, in South Australia, the driest state in the driest inhabited continent in the world. We examined the potential of land-use, geographic and environmental variables to predict the temporal variability in macroinvertebrate assemblages, and also identified indicator taxa, that is, those highly correlated with the most significantly associated physical variables. Temporal trajectories of macroinvertebrate communities varied within site in both seasons and across years. A combination of land-use, geographic and environmental variables accounted for 24% of the variation in community structure in autumn and 27% in spring. In autumn, community composition among sites were more closely clustered together relative to spring suggesting that communities were more similar in autumn than in spring. In both seasons, community structure was most strongly correlated with conductivity and latitude, and community structure was more associated with cover by agriculture than urban land-use. Maintaining temporary streams will require improved catchment management aimed at sustaining seasonal flows and critical refuge habitats, while also limiting the damaging effects from increased agriculture and urban developments.
Temporal Patterns and Environmental Correlates of Macroinvertebrate Communities in Temporary Streams
Botwe, Paul K.; Barmuta, Leon A.; Magierowski, Regina; McEvoy, Paul; Goonan, Peter; Carver, Scott
2015-01-01
Temporary streams are characterised by short periods of seasonal or annual stream flow after which streams contract into waterholes or pools of varying hydrological connectivity and permanence. Although these streams are widespread globally, temporal variability of their ecology is understudied, and understanding the processes that structure community composition in these systems is vital for predicting and managing the consequences of anthropogenic impacts. We used multivariate and univariate approaches to investigate temporal variability in macroinvertebrate compositional data from 13 years of sampling across multiple sites from autumn and spring, in South Australia, the driest state in the driest inhabited continent in the world. We examined the potential of land-use, geographic and environmental variables to predict the temporal variability in macroinvertebrate assemblages, and also identified indicator taxa, that is, those highly correlated with the most significantly associated physical variables. Temporal trajectories of macroinvertebrate communities varied within site in both seasons and across years. A combination of land-use, geographic and environmental variables accounted for 24% of the variation in community structure in autumn and 27% in spring. In autumn, community composition among sites were more closely clustered together relative to spring suggesting that communities were more similar in autumn than in spring. In both seasons, community structure was most strongly correlated with conductivity and latitude, and community structure was more associated with cover by agriculture than urban land-use. Maintaining temporary streams will require improved catchment management aimed at sustaining seasonal flows and critical refuge habitats, while also limiting the damaging effects from increased agriculture and urban developments. PMID:26556711
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Dembinski, H.; Denkiewicz, A.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gascon, A.; Gelmini, G.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hórandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karhan, P.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou c, V.; Payet, K.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tapia, A.; Tarutina, T.; Taşcǎu, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto a, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.
2011-01-01
Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.
Crossover from BCS to Bose superconductivity: A functional integral approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randeria, M.; Sa de Melo, C.A.R.; Engelbrecht, J.R.
1993-04-01
We use a functional integral formulation to study the crossover from cooperative Cooper pairing to the formation and condensation of tightly bound pairs in a 3D continuum model of fermions with attractive interactions. The inadequacy of a saddle point approximation with increasing coupling is pointed out, and the importance of temporal (quantum) fluctuations for normal state properties at intermediate and strong coupling is emphasized. In addition to recovering the Nozieres-Schmitt-Pink interpolation scheme for T{sub c}, and the Leggett variational results for T = 0, we also present results for evolution of the time-dependent Ginzburg-Landau equation and collective mode spectrum asmore » a function of the coupling.« less
Temporal and spatial correlation patterns of air pollutants in Chinese cities
Dai, Yue-Hua
2017-01-01
As a huge threat to the public health, China’s air pollution has attracted extensive attention and continues to grow in tandem with the economy. Although the real-time air quality report can be utilized to update our knowledge on air quality, questions about how pollutants evolve across time and how pollutants are spatially correlated still remain a puzzle. In view of this point, we adopt the PMFG network method to analyze the six pollutants’ hourly data in 350 Chinese cities in an attempt to find out how these pollutants are correlated temporally and spatially. In terms of time dimension, the results indicate that, except for O3, the pollutants have a common feature of the strong intraday patterns of which the daily variations are composed of two contraction periods and two expansion periods. Besides, all the time series of the six pollutants possess strong long-term correlations, and this temporal memory effect helps to explain why smoggy days are always followed by one after another. In terms of space dimension, the correlation structure shows that O3 is characterized by the highest spatial connections. The PMFGs reveal the relationship between this spatial correlation and provincial administrative divisions by filtering the hierarchical structure in the correlation matrix and refining the cliques as the tinny spatial clusters. Finally, we check the stability of the correlation structure and conclude that, except for PM10 and O3, the other pollutants have an overall stable correlation, and all pollutants have a slight trend to become more divergent in space. These results not only enhance our understanding of the air pollutants’ evolutionary process, but also shed lights on the application of complex network methods into geographic issues. PMID:28832599
Functional implications of Major Histocompatibility (MH) variation using estuarine fish populations.
Cohen, Sarah; Tirindelli, Joëlle; Gomez-Chiarri, Marta; Nacci, Diane
2006-12-01
Recently, there has been a dramatic expansion of studies of major histocompatibility complex (MHC) variation aimed at discovering functional differences in immunity across wild populations of diverse vertebrate species. Some species with relatively low genetic diversity or under strong directional selection by pathogens have revealed fascinating cases of MHC allelic disease linkage. More generally in genetically diverse species, however, these linkages may be hard to find. In this paper, we review approaches for assessing functional variation in MHC and discuss their potential use for discovering smaller-scale intraspecific spatial and temporal patterns of MHC variation. Then, we describe and illustrate an approach using the structural model to produce a population composite of variation in antigen-binding regions by mapping population-specific substitutions onto functional regions of the molecule. We are producing models of variation in major histocompatibility (MH) loci for populations of non-migratory fish (killifish, Fundulus heteroclitus) resident at sites that vary dramatically in environmental quality. We discuss the goal of relating MH population variation to functional differences in disease susceptibility such as those inferred by observations of parasitic infection and direct measurement of bacterial challenges in the laboratory. Our study has focused on relatively well-studied killifish populations, including those resident in a highly disturbed, chemically contaminated estuary and nearby less contaminated sites. Population-specific genetic changes at MHC antigen-binding loci are described, and evidence relevant to functional implications of these changes is reviewed. Population-specific patterns of variation in antigen-binding regions in combination with a range of assessments of immune function will provide a powerful new approach to reveal functional changes in MHC.
The effect of the pulse repetition rate on the fast ionization wave discharge
NASA Astrophysics Data System (ADS)
Huang, Bang-Dou; Carbone, Emile; Takashima, Keisuke; Zhu, Xi-Ming; Czarnetzki, Uwe; Pu, Yi-Kang
2018-06-01
The effect of the pulse repetition rate (PRR) on the generation of high energy electrons in a fast ionization wave (FIW) discharge is investigated by both experiment and modelling. The FIW discharge is driven by nanosecond high voltage pulses and is generated in helium with a pressure of 30 mbar. The axial electric field (E z ), as the driven force of high energy electron generation, is strongly influenced by PRR. Both the measurement and the model show that, during the breakdown, the peak value of E z decreases with the PRR, while after the breakdown, the value of E z increases with the PRR. The electron energy distribution function (EEDF) is calculated with a model similar to Boeuf and Pitchford (1995 Phys. Rev. E 51 1376). It is found that, with a low value of PRR, the EEDF during the breakdown is strongly non-Maxwellian with an elevated high energy tail, while the EEDF after the breakdown is also non-Maxwellian but with a much depleted population of high energy electrons. However, with a high value of PRR, the EEDF is Maxwellian-like without much temporal variation both during and after the breakdown. With the calculated EEDF, the temporal evolution of the population of helium excited species given by the model is in good agreement with the measured optical emission, which also depends critically on the shape of the EEDF.
Black Sea thermohaline properties: Long‐term trends and variations
Stips, A.; Garcia‐Gorriz, E.; Macias Moy, D.
2017-01-01
Abstract The current knowledge about spatial and temporal dynamics of the Black Sea's thermohaline structure is incomplete because of missing data and sparse distribution of existing measurements in space and time. This study presents 56 year continuous simulations of the Black Sea's hydrodynamics using the 3D General Estuarine Transport Model (GETM), without incorporating any relaxation toward climatological or observational data fields. This property of the model allows us to estimate independent temporal trends, in addition to resolving the spatial structure. The simulations suggest that the intermediate layer temperature is characterized by a weak positive trend (warming), whereas the surface temperature does not show a clear linear trend. Different salinity trends have been established at the surface (negative), upper (weaker negative) and main halocline (positive). Three distinct dynamic periods are identified (1960–1970, 1970–1995, 1995–2015), which exhibit pronounced changes in the Black Sea's thermohaline properties and basin circulation. Strengthening of the main cyclonic circulation, accompanied by intensification of the mesoscale anticyclonic eddy formation is found. Both events strongly affect the sea surface salinity but contribute in opposing directions. Specifically, strong composite large‐scale circulation leads to an increase in sea surface salinity, while enhanced formation of mesoscale anticyclones decreases it. Salinity evolution with time is thus the result of the competition of these two opposing yet interdependent processes. PMID:28989833
NASA Astrophysics Data System (ADS)
Salvador, Bianca; Bersano, José Guilherme F.
2017-12-01
Spatial and temporal dynamics of zooplankton assemblages were studied in the Paranaguá Estuarine System (southern Brazil), including data from the summer (rainy) and winter (dry) periods of 2012 and 2013. Zooplankton and environmental data were collected at 37 stations along the estuary and examined by multivariate methods. The results indicated significantly distinct assemblages; differences in abundance were the major source of variability, mainly over the temporal scale. The highest abundances were observed during rainy periods, especially in 2012, when the mean density reached 16378 ind.m-3. Winter assemblages showed lower densities but higher species diversity, due to the more extensive intrusion of coastal waters. Of the 14 taxonomic groups recorded, Copepoda was the most abundant and diverse (92% of total abundance and 22 species identified). The coastal copepods Acartia lilljeborgi (44%) and Oithona hebes (26%) were the most important species in both abundance and frequency, followed by the estuarine Pseudodiaptomus acutus and the neritic Temora turbinata. The results indicated strong influences of environmental parameters on the community structure, especially in response to seasonal variations. The spatial distribution of species was probably determined mainly by their preferences and tolerances for specific salinity conditions. On the other hand, the abundances were strongly related to higher water temperature and precipitation rates, which can drive nutrient inputs and consequently food supply in the system, due to intense continental drainage.
Temporal variations of the anomalous oxygen component
NASA Technical Reports Server (NTRS)
Cummings, A. C.; Webber, W. R.
1983-01-01
Data from the cosmic ray experiment on Voyagers 1 and 2 was used to examine anomalous oxygen in the time period from launch in 1977 to the end of 1981. Several time periods were found where large periodic (typically 26 day) temporal variations of the oxygen intensity between approximately 5 - 15 MeV/nuc are present. Variations in intensity by up to a factor of 10 are observed during these periods. Several characteristics of these variations indicate that they are not higher energy extensions of the low energy particle (approximately 1 MeV/nuc) increases found in many corotating interaction regions (CIR's). Many of these periodic temporal variations are correlated with similar, but much smaller, recurrent variations in the 75 MeV proton rate. Voyager 1 and Voyager 2 counting rates were compared to estimate the local radial gradient for both the protons and the oxygen. The proton gradients during periods of both maximum and minumum fluxes are consistent with the overall positive radial gradients reported by others from Pioneer and near-Earth observations, supporting the view that these variations are due to local modulation of a source outside the radial range of project measurements. In contrast, the oxygen gradients during periods of maximum proton flux differ in sign from those during minimum proton fluxes, suggesting that the origin of the oxygen variations is different from that of the protons.
NASA Astrophysics Data System (ADS)
Son, Y. T.; Chang, K. I.; Nam, S.; Kang, D. J.
2016-02-01
Coastal monitoring buoy (called it as ESROB) has been continually operated to monitor meteorological (wind, air temperature, air pressure, PAR) and oceanic properties (temperature, salinity, current, chlorophyll fluorescence, DO, turbidity) using equipment such as CTD, fluorometer and WQM (Water Quality Monitor) in the eastern coastal region of Korea (the East/Japan Sea) since April 2011. The ESROB produced temporal evolution of physical and biogeochemical parameters of the water column with high resolution of 10 min interval. In order to understand horizontal influence of physical and biogeochemical parameters on variation of subsurface chlorophyll maximum layer (SCM), interdisciplinary in-situ surveys with small R/V in the study area for about week were conducted in June/October 2014 and in May 2015. A wirewalker, a wave-driven vertically profiling platform (Rainville and Pinkel 2001), was also deployed at two points (about 30 m and 80 m water depth) along cross-shore direction with the ESROB for about one or two weeks with in-situ survey durations. The wirewalker was equipped with CTD, turbidity and chlorophyll a fluorometer profiler, which was completed approximately every 3 10 minute depending on sea surface state. The SCM was observed in almost every deployment nearest coast, except for June in 2014, with variation of semi- and diurnal time periods. Temporal evolution of the wirewalker showed that disappearance and reoccurrence of the SCM within the water column in October 2014, which was associated with vertical mixing induced by strong wind stress. Low salinity plume in the surface layer and shoaling of bottom cold water were concurrently observed after homogeneous water column, affecting another condition to the vertical distribution of chlorophyll a in this coastal region. Moreover in-situ observation with densely points and temporal interval for 1 day revealed that distribution with high concentration of chlorophyll a on isopycnal was association with the horizontal local circulation that has influence on stability (vertical stratification and shear) of the water column. Optical and biogeochemical parameter analyzed from the water samples, affecting on the variation of chlorophyll a concentration within the water column, will be also discussed in the presentation of Ocean Science Meeting.
Rico-Sánchez, Axel Eduardo; Rodríguez-Romero, Alexis Joseph; López-López, Eugenia; Sedeño-Díaz, Jacinto Elías
2014-04-01
Lake Tecocomulco, Hidalgo, is a relic of the ancient lakes ofAnahuac, important for the conservation of resident and migratory birds. However, the composition of aquatic macroinvertebrates is unknown; this is an important gap in conservation as they play an important role in the food web. This study analyzed the spatial and temporal variations in macroinvertebrate assemblages and their relationship with habitat characteristics. We carried out four monitoring campaigns covering the rainy and dry seasons. The monitoring was conducted at six study sites (four in the littoral zone and two in the middle part of the lake), environmental factors were recorded at each study site, water samples were collected for their physical and chemical analysis and aquatic macroinvertebrates were collected. A principal component analysis (PCA) was used to group study sites based on physical and chemical characteristics. Richness of taxa was analysed with rarefaction. We assessed the importance value index of each taxon (considering their frequency of occurrence and abundance). Similarity analyzes were performed between study sites and similarity of taxa with indices of Jaccard and Bray-Curtis, respectively. We performed a canonical correspondence analysis (CCA) between environmental factors and macroinvertebrate taxa. The PCA showed a marked seasonal variation represented by warm periods, with high values of conductivity, alkalinity, hardness, sulfates, and macronutrients (N and P) and the cold period with low values. We found a total of 26 taxa of aquatic macroinvertebrates and the highest richness was found in August. The Jaccard similarity analysis found differences between the littoral area and the limnetic zone, which differ also in the composition of macrophytes. The littoral zone had the highest taxa richness of macroinvertebrates and macrophytes, while the lowest diversity was found in the offshore zone. The CCA related physicochemical characteristics of the water body with macroinvertebrate taxa showing the influence of both physicochemical characteristics and the composition of macrophytes in the spatio-temporal patterns of aquatic macroinvertebrates in the lake. The dominance of Corixidae highlights a strong grazing activity in the lake and in turn suggests an important amount of food available for higher trophic levels. Our study shows that the macroinvertebrates of Tecocomulco Lake have spatial and seasonal variations that are related to both environmental and biotic factors with groups being dominant.
NASA Astrophysics Data System (ADS)
Yu, Tao; Zuo, Xiaomin; Xia, Chunliang; Li, Mingyuan; Huang, Cong; Mao, Tian; Zhang, Xiaoxin; Zhao, Biqiang; Liu, Libo
2017-04-01
A new method for estimating daily averaged peak height of the OH airglow layer from a ground-based meteor radar (MR) and a Fabry-Perot interferometer (FPI) is presented. The first results are derived from 4 year simultaneous measurements of winds by a MR and a FPI at two adjacent stations over center China and are compared with observations from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The OH airglow peak heights, which are derived by using correlation analysis between winds of the FPI and MR, are found to generally peak at an altitude of 87 km and frequently varied between 80 km and 90 km day to day. In comparison with SABER OH 1.6 μm observations, reasonable similarity of airglow peak heights is found, and rapid day-to-day variations are also pronounced. Lomb-Scargle analysis is used to determine cycles of temporal variations of airglow peak heights, and there are obvious periodic variations both in our airglow peak heights and in the satellite observations. In addition to the annual, semiannual, monthly, and three monthly variations, the shorter time variations, e.g., day-to-day and several days' variations, are also conspicuous. The day-to-day variations of airglow height obviously could reduce observation accuracy and lead to some deviations in FPI measurements. These FPI wind deviations arising from airglow height variations are also estimated to be about 3-5 m/s from 2011 to 2015, with strong positive correlation with airglow peak height variation. More attention should be paid to the wind deviations associated with airglow height variation when using and interpreting winds measured by FPI.
NASA Technical Reports Server (NTRS)
Le, G.; Wang, Y.; Slavin, J. A.; Strangeway, R. L.
2009-01-01
Space Technology 5 (ST5) is a constellation mission consisting of three microsatellites. It provides the first multipoint magnetic field measurements in low Earth orbit, which enables us to separate spatial and temporal variations. In this paper, we present a study of the temporal variability of field-aligned currents using the ST5 data. We examine the field-aligned current observations during and after a geomagnetic storm and compare the magnetic field profiles at the three spacecraft. The multipoint data demonstrate that mesoscale current structures, commonly embedded within large-scale current sheets, are very dynamic with highly variable current density and/or polarity in approx.10 min time scales. On the other hand, the data also show that the time scales for the currents to be relatively stable are approx.1 min for mesoscale currents and approx.10 min for large-scale currents. These temporal features are very likely associated with dynamic variations of their charge carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of mesoscale field-aligned currents are found to be consistent with those of auroral parallel electric field.
Variations in lake and reservoir storage associated with Middle East droughts
NASA Astrophysics Data System (ADS)
Marlier, M. E.; Kim, J.; Khandelwal, A.; Karpatne, A.; Kumar, V.; Zhou, T.; Lettenmaier, D. P.
2016-12-01
The Middle East experienced severe drought conditions from 1998-2000 and again from 2007-2009; during both periods cumulative monthly precipitation averaged over the Fertile Crescent fell below the 10th percentile of the 1940-2009 climatology. The severity of the drought has been linked to rising greenhouse gas concentrations and may have contributed to the conflict in Syria. We use multiple sources of satellite data to examine how these droughts impacted surface water storage in Turkey, Syria, Iran, and Iraq. We first apply a MODIS-based classification algorithm to map variations in the areal extent of lakes and reservoirs from 2000-2015 at 500 m spatial resolution and nominal eight-day intervals. We combine this information with estimates of changes in water levels from several archives of radar altimetry products (Global Reservoir and Lake Monitor (G-REALM), Database for Hydrological Time Series of Inland Waters (DAHITI), and HydroWeb) for 16 lakes and reservoirs across the region at 10-day and/or 35-day intervals, and then estimate storage variations as far back as the 1990s. We find strong correlations between surface areal extent and water level variations, with preliminary results for reservoirs ranging from R=0.30-0.98 (median R=0.84). Taken together, we use this information to explore variations in temporal trends in water storage across the region.
Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas
NASA Astrophysics Data System (ADS)
Zadvitskiy, G. V.; Heuraux, S.; Lechte, C.; Hacquin, S.; Sabot, R.
2018-02-01
Ultra-fast frequency-swept reflectometry (UFSR) enables one to provide information about the turbulence radial wave-number spectrum and perturbation amplitude with good spatial and temporal resolutions. However, a data interpretation of USFR is quiet tricky. An iterative algorithm to solve this inverse problem was used in past works, Gerbaud (2006 Rev. Sci. Instrum. 77 10E928). For a direct solution, a fast 1D Helmholtz solver was used. Two-dimensional effects are strong and should be taken into account during data interpretation. As 2D full-wave codes are still too time consuming for systematic application, fast 2D approaches based on the Born approximation are of prime interest. Such methods gives good results in the case of small turbulence levels. However in tokamak plasmas, edge turbulence is usually very strong and can distort and broaden the probing beam Sysoeva et al (2015 Nucl. Fusion 55 033016). It was shown that this can change reflectometer phase response from the plasma core. Comparison between 2D full wave computation and the simplified Born approximation was done. The approximated method can provide a right spectral shape, but it is unable to describe a change of the spectral amplitude with an edge turbulence level. Computation for the O-mode wave with the linear density profile in the slab geometry and for realistic Tore-Supra density profile, based on the experimental data turbulence amplitude and spectrum, were performed to investigate the role of strong edge turbulence. It is shown that the spectral peak in the signal amplitude variation spectrum which rises with edge turbulence can be a signature of strong edge turbulence. Moreover, computations for misaligned receiving and emitting antennas were performed. It was found that the signal amplitude variation peak changes its position with a receiving antenna poloidal displacement.
Anthony F. Lagalante; Nyssa Lewis; Michael E. Montgomery; Kathleen S. Shields
2006-01-01
The terpenoid content of eastern hemlock (Tsuga canadensis) foliage was measured over an annual cycle of development from bud opening, shoot elongation, shoot maturation, to bud-break at the start of the next growing season. The objective was to determine if variation in terpenoid composition is linked with spatial and temporal feeding preferences of...
Deng, Chen; Li-Yong, Wen
2017-10-24
As the only intermediate host of Schistosoma japonicum, Oncomelania hupensis in China is mainly distributed in the Yangtze River Basin. The origin of the O. hupensis and the spatio-temporal variations of its distribution and diffusion in the Yangtze River Basin and the influencing factors, as well as significances in schistosomiasis elimination in China are reviewed in this paper.
Unmixing the Materials and Mechanics Contributions in Non-resolved Object Signatures
2008-09-01
abundances from hyperspectral or multi-spectral time - resolved signatures. A Fourier analysis of temporal variation of material abundance provides...factorization technique to extract the temporal variation of material abundances from hyperspectral or multi-spectral time - resolved signatures. A Fourier...approximately one hundred wavelengths in the visible spectrum. The frame rate for the instrument was not large enough to collect time resolved data. However
2012-01-01
Background Charcoal burning in a sealed room has recently emerged as the second most common suicide means in Hong Kong, causing approximately 200 deaths each year. As charcoal burning suicide victims have a unique sociodemographic profile (i.e., predominantly economically active men), they may commit suicide at specific times. However, little is known about the temporal patterns of charcoal burning suicides. Methods Suicide data from 2001 to 2008 on victims of usual working age (20–59) were obtained from the registered death files of the Census and Statistics Department of Hong Kong. A total of 1649 cases of charcoal burning suicide were analyzed using a two-step procedure, which first examined the temporal asymmetries in the incidence of suicide, and second investigated whether these asymmetries were influenced by sex and/or economic activity status. Poisson regression analyses were employed to model the monthly and daily patterns of suicide by economic activity status and sex. Results Our findings revealed pronounced monthly and daily temporal variations in the pattern of charcoal burning suicides in Hong Kong. Consistent with previous findings on overall suicide deaths, there was an overall spring peak in April, and Monday was the common high risk day for all groups. Although sex determined the pattern of variation in charcoal burning suicides, the magnitude of the variation was influenced by the economic activity status of the victims. Conclusion The traditional classification of suicide methods as either violent or nonviolent tends to elide the temporal variations of specific methods. The interaction between sex and economic activity status observed in the present study indicates that sex should be taken into consideration when investigating the influence of economic activity status on temporal variations of suicide. This finding also suggests that suicide prevention efforts should be both time- and subgroup-specific. PMID:22770504
Law, Chi-kin; Leung, Candi M C
2012-07-06
Charcoal burning in a sealed room has recently emerged as the second most common suicide means in Hong Kong, causing approximately 200 deaths each year. As charcoal burning suicide victims have a unique sociodemographic profile (i.e., predominantly economically active men), they may commit suicide at specific times. However, little is known about the temporal patterns of charcoal burning suicides. Suicide data from 2001 to 2008 on victims of usual working age (20-59) were obtained from the registered death files of the Census and Statistics Department of Hong Kong. A total of 1649 cases of charcoal burning suicide were analyzed using a two-step procedure, which first examined the temporal asymmetries in the incidence of suicide, and second investigated whether these asymmetries were influenced by sex and/or economic activity status. Poisson regression analyses were employed to model the monthly and daily patterns of suicide by economic activity status and sex. Our findings revealed pronounced monthly and daily temporal variations in the pattern of charcoal burning suicides in Hong Kong. Consistent with previous findings on overall suicide deaths, there was an overall spring peak in April, and Monday was the common high risk day for all groups. Although sex determined the pattern of variation in charcoal burning suicides, the magnitude of the variation was influenced by the economic activity status of the victims. The traditional classification of suicide methods as either violent or nonviolent tends to elide the temporal variations of specific methods. The interaction between sex and economic activity status observed in the present study indicates that sex should be taken into consideration when investigating the influence of economic activity status on temporal variations of suicide. This finding also suggests that suicide prevention efforts should be both time- and subgroup-specific.
Clemens, Benjamin J.; Wyss, Lance A.; McCoun, Rebecca; Courter, Ian; Schwabe, Lawrence; Peery, Christopher; Schreck, Carl B.; Spice, Erin K.; Docker, Margaret F.
2017-01-01
Studies using neutral loci suggest that Pacific lamprey, Entosphenus tridentatus, lack strong spatial genetic population structure. However, it is unknown whether temporal genetic population structure exists. We tested whether adult Pacific lamprey: (1) show temporal genetic population structure; and (2) migrate different distances between years. We non-lethally sampled lamprey for DNA in 2009 and 2010 and used eight microsatellite loci to test for genetic population structure. We used telemetry to record the migration behaviors of these fish. Lamprey were assignable to three moderately differentiated genetic clusters (FST = 0.16–0.24 for all pairwise comparisons): one cluster was composed of individuals from 2009, and the other two contained individuals from 2010. The FST value between years was 0.13 and between genetic clusters within 2010 was 0.20. A total of 372 (72.5%) fish were detected multiple times during their migrations. Most fish (69.9%) remained in the mainstem Willamette River; the remaining 30.1% migrated into tributaries. Eighty-two lamprey exhibited multiple back-and-forth movements among tributaries and the mainstem, which may indicate searching behaviors. All migration distances were significantly greater in 2010, when the amplitude of river discharge was greater. Our data suggest genetic structuring between and within years that may reflect different cohorts.
A temporal discriminability account of children's eyewitness suggestibility.
Bright-Paul, Alexandra; Jarrold, Christopher
2009-07-01
Children's suggestibility is typically measured using a three-stage 'event-misinformation-test' procedure. We examined whether suggestibility is influenced by the time delays imposed between these stages, and in particular whether the temporal discriminability of sources (event and misinformation) predicts performance. In a novel approach, the degree of source discriminability was calculated as the relative magnitude of two intervals (the ratio of event-misinformation and misinformation-test intervals), based on an adaptation of existing 'ratio-rule' accounts of memory. Five-year-olds (n =150) watched an event, and were exposed to misinformation, before memory for source was tested. The absolute event-test delay (12 versus 24 days) and the 'ratio' of event-misinformation/misinformation-test intervals (11:1, 3:1, 1:1, 1:3 and 1:11) were manipulated across participants. The temporal discriminability of sources, measured by the ratio, was indeed a strong predictor of suggestibility. Most importantly, if the ratio was constant (e.g. 18/6 versus 9/3 days), performance was remarkably similar despite variations in absolute delay (e.g. 24 versus 12 days). This intriguing finding not only extends the ratio-rule of distinctiveness to misinformation paradigms, but also serves to illustrate a new empirical means of differentiating between explanations of suggestibility based on interference between sources and disintegration of source information over time.
Multiscale change in reef coral species diversity and composition in the Tropical Eastern Pacific
NASA Astrophysics Data System (ADS)
Gomez, Catalina G.; Gonzalez, Andrew; Guzman, Hector M.
2018-03-01
Both natural and anthropogenic factors are changing coral-reef structure and function worldwide. Long-term monitoring has revealed declines in the local composition and species diversity of reefs. Here we report changes in coral-reef community structure over 12 yr (2000-2012) at 17 sites and three spatial scales (reef, gulf and country) in the Tropical Eastern Pacific (Panama). We found a significant 4% annual decline in species population sizes at the country and gulf scales, with significant declines ranging from 3 to 32% at all but one reef. No significant temporal change in expected richness was found at the country scale or in the Gulf of Chiriquí, but a 7% annual decline in expected species richness was found in the Gulf of Panama. There was a 2% increase in community evenness in the Gulf of Chiriquí, but no change in the Gulf of Panama. Significant temporal turnover was found at the country and gulf scales and at 29% of the reefs, a finding mostly explained by changes in species abundance, and losses and gains of rare species. Temporal trends in alpha and beta diversity metrics were explained by water temperature maxima, anomalies and variation that occurred even in the absence of a strong El Niño warming event.
Cheng, Linjun; Wang, Shuai; Gong, Zhengyu; Li, Hong; Yang, Qi; Wang, Yeyao
2018-05-01
Owing to the vast territory of China and strong regional characteristic of ozone pollution, it's desirable for policy makers to have a targeted and prioritized regulation and ozone pollution control strategy in China based on scientific evidences. It's important to assess its current pollution status as well as spatial and temporal variation patterns across China. Recent advances of national monitoring networks provide an opportunity to insight the actions of ozone pollution. Here, we present rotated empirical orthogonal function (REOF) analysis that was used on studying the spatiotemporal characteristics of daily ozone concentrations. Based on results of REOF analysis in pollution seasons for 3years' observations, twelve regions with clear patterns were identified in China. The patterns of temporal variation of ozone in each region were separated well and different from each other, reflecting local meteorological, photochemical or pollution features. A rising trend in annual averaged Eight-hour Average Ozone Concentrations (O 3 -8hr) from 2014 to 2016 was observed for all regions, except for the Tibetan Plateau. The mean values of annual and 90 percentile concentrations for all 338 cities were 82.6±14.6 and 133.9±25.8μg/m 3 , respectively, in 2015. The regionalization results of ozone were found to be influenced greatly by terrain features, indicating significant terrain and landform effects on ozone spatial correlations. Among 12 regions, North China Plain, Huanghuai Plain, Central Yangtze River Plain, Pearl River Delta and Sichuan Basin were realized as priority regions for mitigation strategies, due to their higher ozone concentrations and dense population. Copyright © 2017. Published by Elsevier B.V.
Cuevas, E; Rosas-Guerrero, V
2016-01-01
Nectar robbing occurs when floral visitors remove floral nectar through floral damage and usually without providing pollination in return. Even though nectar robbing may have negative, neutral or even positive effects on plant fitness, few studies have investigated temporal and spatial variation in robbing rate and their consequences, particularly in the tropics. In this study, robbing levels were estimated during 3 years in four populations of Salvia gesneriflora, a hummingbird-pollinated shrub endemic to central Mexico that is mainly robbed by birds, carpenter bees and bumblebees. The effect of robbing on nectar availability, flower longevity and on visitation rate by floral visitors was also evaluated. Our results indicate great variation in robbing levels across years and populations and a positive relationship between robbing level and flower abundance per population. Moreover, our results show that nectar availability is about eight times higher in unrobbed flowers than in robbed flowers, and that nectar robbers prefer younger flowers, although lifespan of robbed and unrobbed flowers did not differ statistically. Primary and secondary nectar robbers showed a higher visitation rate compared to legitimate visitors, and neither legitimate nor illegitimate floral visitors seem to discriminate between robbed and unrobbed flowers. These results suggest that robbers may respond to food availability and that no floral visitors apparently could differentiate between robbed and unrobbed flowers. Finally, results show that nectar robbers prefer the youngest flowers, which suggests that strong competition for access to nectar between pollinators and robbers might occur, mainly at the first stages of the flowers. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Ultra-low-power hybrid light–matter solitons
Walker, P. M.; Tinkler, L.; Skryabin, D. V.; Yulin, A.; Royall, B.; Farrer, I.; Ritchie, D. A.; Skolnick, M. S.; Krizhanovskii, D. N.
2015-01-01
New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a platform based on strong light–matter coupling between waveguide photons and quantum-well excitons. On a sub-millimetre length scale we generate picosecond bright temporal solitons at a pulse energy of only 0.5 pJ. From this we deduce a nonlinear refractive index three orders of magnitude larger than in any other ultrafast system. We study both temporal and spatio-temporal nonlinear effects and observe dark–bright spatio-temporal polariton solitons. Theoretical modelling of soliton formation in the strongly coupled system confirms the experimental observations. These results show the promise of our system as a high speed, low power, integrated platform for physics and devices based on strong interactions between photons. PMID:26400748
Ultra-low-power hybrid light-matter solitons.
Walker, P M; Tinkler, L; Skryabin, D V; Yulin, A; Royall, B; Farrer, I; Ritchie, D A; Skolnick, M S; Krizhanovskii, D N
2015-09-24
New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a platform based on strong light-matter coupling between waveguide photons and quantum-well excitons. On a sub-millimetre length scale we generate picosecond bright temporal solitons at a pulse energy of only 0.5 pJ. From this we deduce a nonlinear refractive index three orders of magnitude larger than in any other ultrafast system. We study both temporal and spatio-temporal nonlinear effects and observe dark-bright spatio-temporal polariton solitons. Theoretical modelling of soliton formation in the strongly coupled system confirms the experimental observations. These results show the promise of our system as a high speed, low power, integrated platform for physics and devices based on strong interactions between photons.
Hopkins, D.R.
1987-01-01
Benthic core samples were collected monthly from January 1983 through January 1985 at four intertidal sites in San Francisco Bay, California, two in the northern part of the bay (North Bay) and two in the southern part of the bay (South Bay). Considerable variation was observed in numbers of species and individuals at the four sites, and abundances within species varied widely. Temporal changes in species abundances appeared to be related to freshwater inflow patterns and resultant salinity variations in the estuary. The 1982-83 winter season was extremely wet, with heavy freshwater inflow to the bay from January through March, whereas the 1983-84 winter was closer to a normal pattern, with most rainfall occurring from November through January. Species were grouped into four categories depending on their patterns of abundance during the 2-yr period. Species that showed an abundance peak in the North Bay in 1983 only were Corophium sp.B and a Chironomidae larva, apparently responding to the extended period of lowered salinity throughout spring and early summer. Species with an abundance peak only in 1984 included Corophium Acherusicum, Eteone californica, Nereis succinea, and Grandidierella japonica, typical estuarine species that might have been suppressed during the extended freshwater inflows in 1983. Species with peaks in both years were Gemma gemma and Ampelisca abdita in the South Bay; both showed strong seasonal variations. A number of species in both North and South Bays, including dominant members of the intertidal community such as Macoma balthical and Streblospio benedicti, did not show any consistent seasonal or year-to-year trends. Results of this study suggest that the intensity and timing of freshwater inflow to San Francisco Bay, particularly higher-than-normal inflow during late spring and early summer, may be an important factor in determining the composition of the intertidal benthic communities. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Selles, A.; Mikhailov, V. O.; Arora, K.; Ponomarev, A.; Gopinadh, D.; Smirnov, V.; Srinu, Y.; Satyavani, N.; Chadha, R. K.; Davulluri, S.; Rao, N. P.
2017-12-01
Well logging data and core samples from the deep boreholes in the Koyna-Warna Seismic Zone (KWSZ) provided a glimpse of the 3-D fracture network responsible for triggered earthquakes in the region. The space-time pattern of earthquakes during the last five decades show strong linkage of favourably oriented fractures system deciphered from airborne LiDAR and borehole structural logging to the seismicity. We used SAR interferometry data on surface displacements to estimate activity of the inferred faults. The failure in rocks at depths is largely governed by overlying lithostatic and pore fluid pressure in the rock matrix which are subject to change in space and time. While lithostatic pressure tends to increase with depth pore pressure is prone to fluctuations due to any change in the hydrological regime. Based on the earthquake catalogue data, the seasonal variations in seismic activity associated with annual fluctuations in the reservoir water level were analyzed over the time span of the entire history of seismological observations in this region. The regularities in the time changes in the structure of seasonal variations are revealed. An increase in pore fluid pressure can result in rock fracture and oscillating pore fluid pressures due to a reservoir loading and unloading cycles can cause iterative and cumulative damage, ultimately resulting in brittle failure under relatively low effective mean stress conditions. These regularities were verified by laboratory physical modeling. Based on our observations of main trends of spatio-temporal variations in seismicity as well as the spatial distribution of fracture network a conceptual model is presented to explain the triggered earthquakes in the KWSZ. The work was supported under the joint Russian-Indian project of the Russian Science Foundation (RSF) and the Department of Science and Technology (DST) of India (RSF project no. 16-47-02003 and DST project INT/RUS/RSF/P-13).
NASA Astrophysics Data System (ADS)
Afrifa, George Yamoah; Sakyi, Patrick Asamoah; Chegbeleh, Larry Pax
2017-07-01
Sustainable development and the management of groundwater resources for optimal socio-economic development constitutes one of the most effective strategies for mitigating the effects of climate change in rural areas where poverty is a critical cause of environmental damage. This research assessed groundwater recharge and its spatial and temporal variations in Gushiegu District in the Northern Region of Ghana, where groundwater is the main source of water supply for most uses. Isotopic data of precipitation and groundwater were used to infer the origin of groundwater and the possible relationship between groundwater and surface water in the partially metamorphosed sedimentary aquifer system in the study area. Though the data do not significantly establish strong relation between groundwater and surface water, the study suggests that groundwater in the area is of meteoric origin. However, the data also indicate significant enrichment of the heavy isotopes (18O and 2H) in groundwater relative to rainwater in the area. The Chloride Mass Balance (CMB) and Water Table Fluctuations (WTF) techniques were used to quantitatively estimate the groundwater recharge in the area. The results suggest groundwater recharge in a range of 13.9 mm/y - 218 mm/y, with an average of 89 mm/yr, representing about 1.4%-21.8% (average 8.9%) of the annual precipitation in the area. There is no clearly defined trend in the temporal variations of groundwater recharge in the area, but the spatial variations are discussed in relation to the underlying lithologies. The results suggest that the fraction of precipitation that reaches the saturated zone as groundwater recharge is largely controlled by the vertical hydraulic conductivities of the material of the unsaturated zone. The vertical hydraulic conductivity coupled with humidity variations in the area modulates the vertical infiltration and percolation of precipitation.
Strong and Long Makes Short: Strong-Pump Strong-Probe Spectroscopy.
Gelin, Maxim F; Egorova, Dassia; Domcke, Wolfgang
2011-01-20
We propose a new time-domain spectroscopic technique that is based on strong pump and probe pulses. The strong-pump strong-probe (SPSP) technique provides temporal resolution that is not limited by the durations of the pump and probe pulses. By numerically exact simulations of SPSP signals for a multilevel vibronic model, we show that the SPSP signals exhibit electronic and vibrational beatings on time scales which are significantly shorter than the pulse durations. This suggests the possible application of SPSP spectroscopy for the real-time investigation of molecular processes that cannot be temporally resolved by pump-probe spectroscopy with weak pump and probe pulses.
NASA Astrophysics Data System (ADS)
Bayrak, Erdem; Yılmaz, Şeyda; Bayrak, Yusuf
2017-05-01
The temporal and spatial variations of Gutenberg-Richter parameter (b-value) and fractal dimension (DC) during the period 1900-2010 in Western Anatolia was investigated. The study area is divided into 15 different source zones based on their tectonic and seismotectonic regimes. We calculated the temporal variation of b and DC values in each region using Zmap. The temporal variation of these parameters for the prediction of major earthquakes was calculated. The spatial distribution of these parameters is related to the stress levels of the faults. We observed that b and DC values change before the major earthquakes in the 15 seismic regions. To evaluate the spatial distribution of b and DC values, 0.50° × 0.50° grid interval were used. The b-values smaller than 0.70 are related to the Aegean Arc and Eskisehir Fault. The highest values are related to Sultandağı and Sandıklı Faults. Fractal correlation dimension varies from 1.65 to 2.60, which shows that the study area has a higher DC value. The lowest DC values are related to the joining area between Aegean and Cyprus arcs, Burdur-Fethiye fault zone. Some have concluded that b-values drop instantly before large shocks. Others suggested that temporally stable low b value zones identify future large earthquake locations. The results reveal that large earthquakes occur when b decreases and DC increases, suggesting that variation of b and DC can be used as an earthquake precursor. Mapping of b and DC values provide information about the state of stress in the region, i.e. lower b and higher DC values associated with epicentral areas of large earthquakes.
Evidence of Temporal Variation of Titan Atmospheric Density in 2005-2013
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Lim, Ryan S.
2013-01-01
One major science objective of the Cassini mission is an investigation of Titan's atmosphere constituent abundances. Titan's atmospheric density is of interest not only to planetary scientists but also to mission design and mission control engineers. Knowledge of the dependency of Titan's atmospheric density with altitude is important because any unexpectedly high atmospheric density has the potential to tumble the spacecraft during a flyby. During low-altitude Titan flyby, thrusters are fired to counter the torque imparted on the spacecraft due to the Titan atmosphere. The denser the Titan's atmosphere is, the higher are the duty cycles of the thruster firings. Therefore thruster firing telemetry data could be used to estimate the atmospheric torque imparted on the spacecraft. Since the atmospheric torque imparted on the spacecraft is related to the Titan's atmospheric density, atmospheric densities are estimated accordingly. In 2005-2013, forty-three low-altitude Titan flybys were executed. The closest approach altitudes of these Titan flybys ranged from 878 to 1,074.8 km. Our density results are also compared with those reported by other investigation teams: Voyager-1 (in November 1980) and the Huygens Atmospheric Structure Instrument, HASI (in January 2005). From our results, we observe a temporal variation of the Titan atmospheric density in 2005-2013. The observed temporal variation is significant and it isn't due to the estimation uncertainty (5.8%, 1 sigma) of the density estimation methodology. Factors that contributed to this temporal variation have been conjectured but are largely unknown. The observed temporal variation will require synergetic analysis with measurements made by other Cassini science instruments and future years of laboratory and modeling efforts to solve. The estimated atmospheric density results are given in this paper help scientists to better understand and model the density structure of the Titan atmosphere.
NASA Astrophysics Data System (ADS)
Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu
2018-01-01
Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.
Gaitán-Espitia, Juan Diego; Marshall, Dustin; Dupont, Sam; Bacigalupe, Leonardo D.; Bodrossy, Levente; Hobday, Alistair J.
2017-01-01
Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO2 variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong directional selection, associated with intense and continuous upwellings, may have depleted genetic variation in populations within these upwelling regions, favouring increased tolerances to low pH but with an associated cost in other traits. In contrast, diversifying or weak directional selection in populations with seasonal upwellings or outside major upwelling regions may have resulted in higher genetic variances and the lack of genetic correlations among traits. Testing this hypothesis in geographical regions with similar environmental conditions to those predicted under climate change will build insights into how selection may act in the future and how populations may respond to stressors such as OA. PMID:28148831
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugawara, K.; Baar, D.J.; Shiohara, Y.
1991-05-10
This paper reports on the ESR linewidth ({Delta}{ital H}{sub p{bar p}}) of DPPH coated on the surface of powder specimens of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub y} studied under various magnetic field and temperature conditions. {Delta}{ital H}{sub p{bar p}} increases substantially with decreasing temperature in the field cooled case, whereas almost no linewidth broadening was found in the zero field cooled case. {Delta}{ital H}{sub p{bar p}} was found to be sensitive to the applied magnetic field. This effect was very pronounced at temperatures lower than 40 K, but decreased strongly with increasing temperature. The broadening of the resonance lineshape has beenmore » attributed to spatial and temporal variations of the fluxon distribution in the powder particles.« less
Decoherence in yeast cell populations and its implications for genome-wide expression noise.
Briones, M R S; Bosco, F
2009-01-20
Gene expression "noise" is commonly defined as the stochastic variation of gene expression levels in different cells of the same population under identical growth conditions. Here, we tested whether this "noise" is amplified with time, as a consequence of decoherence in global gene expression profiles (genome-wide microarrays) of synchronized cells. The stochastic component of transcription causes fluctuations that tend to be amplified as time progresses, leading to a decay of correlations of expression profiles, in perfect analogy with elementary relaxation processes. Measuring decoherence, defined here as a decay in the auto-correlation function of yeast genome-wide expression profiles, we found a slowdown in the decay of correlations, opposite to what would be expected if, as in mixing systems, correlations decay exponentially as the equilibrium state is reached. Our results indicate that the populational variation in gene expression (noise) is a consequence of temporal decoherence, in which the slow decay of correlations is a signature of strong interdependence of the transcription dynamics of different genes.
The Autumn of break-ups: When Jakobshavn Isbrae lost its floating tongue
NASA Astrophysics Data System (ADS)
Aschwanden, A.; Fahnestock, M. A.; Truffer, M.; Motyka, R. J.
2015-12-01
Capturing the temporal variability in outlet glacier flow remains one of the holy grails in ice sheet modeling. Here we demonstrate progress using the three-dimensional Parallel Ice Sheet Model. Using a first-order calving law and prescribed subshelf basal melt rates, we performed high-resolution (<1km) hindcasts of the Greenland Ice Sheet of the 1989-2012 period. These hindcasts allow us to study the processes governing ice-shelf thinning, break-up, and subsequent speed-ups and dynamic thinning. Focussing our analysis on the Jakobshavn basin we show that our simulations are able to capture the thinning of the floating tongue resulting from increased subshelf basal melt rates. Furthermore, our simulations capture both the magnitude and the timing of the dynamic thinning associated with the loss of the floating tongue, as well as the speed-up. We find little seasonal variations in surface speeds prior to 1995, and strong variations thereafter, in good agreement with observations of Echelmeyer and Harrison (1991) and Joughin et al (2012).
Patterns of seasonal variation in lagoonal macrozoobenthic assemblages (Mellah lagoon, Algeria).
Magni, Paolo; Draredja, Brahim; Melouah, Khalil; Como, Serena
2015-08-01
In coastal lagoons, many studies indicated that macrozoobenthic assemblages undergo marked temporal fluctuations as related to the strong environmental variability of these systems. However, most of these studies have not assessed the seasonal patterns of these fluctuations and none of them has investigated the consistency of this variation in different areas within the same lagoon system. In this study, we assessed patterns of variation at multiple temporal (date, season and year) scales in two different areas in the coastal lagoon of Mellah (northeast Algeria). These areas (hereafter Shore and Center) are representative of two different environments typically found in coastal lagoons. The Shore (water depth of about 1.5-2 m) is characterized by relatively higher hydrodynamics, sand to silty-sand sediments and the presence of vegetation (Ruppia maritima), the Center (water depth of about 3-3.5 m) is characterized by mud to sandy-mud, organic-enriched sediments due to fine particle accumulation. Results showed two distinct patterns of seasonal variation in Shore and Center assemblages for two consecutive years. In Shore, species richness (S), total abundance (N) and the abundance of several dominant taxa were highest in summer and/or autumn. This pattern can be related to the local environmental conditions maintaining relatively well oxidized conditions, while increasing food availability, and favoring the recruitment of species and individuals in summer/autumn. On the contrary in Center, S was lowest in summer and autumn, and N and the abundance of fewer dominant taxa were lowest in summer. In Center, the bivalve Loripes lucinalis showed a 10-fold increase from summer to autumn in both years, likely related to the lagoon's hydrodynamics favoring larval transport and settlement in the central sector of the lagoon. Overall, the seasonal variation found in Center followed a regression/recovery pattern typical of opportunistic assemblages occurring in confined organic-enriched environments. In conclusion, our results provide new insight into the patterns of seasonal variation in lagoon soft-sediment benthos and highlight the importance of local environmental conditions on this variation. This study provides a valuable tool for adopting appropriate monitoring strategies in these systems, with special reference to Southern-Eastern Mediterranean lagoons which are expected to suffer from increasing coastal development and human pressure in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lockwood, Charles A; Lynch, John M; Kimbel, William H
2002-01-01
The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade. PMID:12489757
NASA Astrophysics Data System (ADS)
Kaiser, Olga; Martius, Olivia; Horenko, Illia
2017-04-01
Regression based Generalized Pareto Distribution (GPD) models are often used to describe the dynamics of hydrological threshold excesses relying on the explicit availability of all of the relevant covariates. But, in real application the complete set of relevant covariates might be not available. In this context, it was shown that under weak assumptions the influence coming from systematically missing covariates can be reflected by a nonstationary and nonhomogenous dynamics. We present a data-driven, semiparametric and an adaptive approach for spatio-temporal regression based clustering of threshold excesses in a presence of systematically missing covariates. The nonstationary and nonhomogenous behavior of threshold excesses is describes by a set of local stationary GPD models, where the parameters are expressed as regression models, and a non-parametric spatio-temporal hidden switching process. Exploiting nonparametric Finite Element time-series analysis Methodology (FEM) with Bounded Variation of the model parameters (BV) for resolving the spatio-temporal switching process, the approach goes beyond strong a priori assumptions made is standard latent class models like Mixture Models and Hidden Markov Models. Additionally, the presented FEM-BV-GPD provides a pragmatic description of the corresponding spatial dependence structure by grouping together all locations that exhibit similar behavior of the switching process. The performance of the framework is demonstrated on daily accumulated precipitation series over 17 different locations in Switzerland from 1981 till 2013 - showing that the introduced approach allows for a better description of the historical data.
Gildor, Tsvia; Hinman, Veronica; Ben-Tabou-De-Leon, Smadar
2017-01-01
It has long been argued that heterochrony, a change in relative timing of a developmental process, is a major source of evolutionary innovation. Heterochronic changes of regulatory gene activation could be the underlying molecular mechanism driving heterochronic changes through evolution. Here, we compare the temporal expression profiles of key regulatory circuits between sea urchin and sea star, representative of two classes of Echinoderms that shared a common ancestor about 500 million years ago. The morphologies of the sea urchin and sea star embryos are largely comparable, yet, differences in certain mesodermal cell types and ectodermal patterning result in distinct larval body plans. We generated high resolution temporal profiles of 17 mesodermally-, endodermally- and ectodermally-expressed regulatory genes in the sea star, Patiria miniata, and compared these to their orthologs in the Mediterranean sea urchin, Paracentrotus lividus. We found that the maternal to zygotic transition is delayed in the sea star compared to the sea urchin, in agreement with the longer cleavage stage in the sea star. Interestingly, the order of gene activation shows the highest variation in the relatively diverged mesodermal circuit, while the correlations of expression dynamics are the highest in the strongly conserved endodermal circuit. We detected loose scaling of the developmental rates of these species and observed interspecies heterochronies within all studied regulatory circuits. Thus, after 500 million years of parallel evolution, mild heterochronies between the species are frequently observed and the tight temporal scaling observed for closely related species no longer holds.
NASA Astrophysics Data System (ADS)
Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens
2011-03-01
Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.
Austen, Emily J; Weis, Arthur E
2014-07-01
Adaptive explanations for variation in sex allocation centre on variation in resource status and variation in the mating environment. The latter can occur when dichogamy causes siring opportunity to vary across the flowering season. In this study, it is hypothesized that the widespread tendency towards declining fruit-set from first to last flowers on plants can similarly lead to a varying mating environment by causing a temporal shift in the quality (not quantity) of siring opportunities. A numerical model was developed to examine the effects of declining fruit-set on the expected male versus female reproductive success (functional gender) of first and last flowers on plants, and of early- and late-flowering plants. Within- and among-plant temporal variation in pollen production, ovule production and fruit-set in 70 Brassica rapa plants was then characterized to determine if trends in male and female investment mirror expected trends in functional gender. Under a wide range of model conditions, functional femaleness decreased sharply in the last flowers on plants, and increased from early- to late-flowering plants in the population. In B. rapa, pollen production decreased more rapidly than ovule production from first to last flowers, leading to a within-plant increase in phenotypic femaleness. Among plants, ovule production decreased from early- to late-flowering plants, causing a temporal decrease in phenotypic femaleness. The numerical model confirmed that declining fruit-set can drive temporal variation in functional gender, especially among plants. The discrepancy between observed trends in phenotypic gender in B. rapa and expected functional gender predicted by the numerical model does not rule out the possibility that male reproductive success decreases with later flowering onset. If so, plants may experience selection for early flowering through male fitness. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Aragón, Pedro; Fitze, Patrick S.
2014-01-01
Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity. PMID:25090025
NASA Astrophysics Data System (ADS)
Selleslagh, Jonathan; Lobry, Jérémy; N'Zigou, Aimé Roger; Bachelet, Guy; Blanchet, Hugues; Chaalali, Aurélie; Sautour, Benoît; Boët, Philippe
2012-10-01
Characterization of the structure and seasonal variability of biotic communities is essential for a better understanding of estuarine ecosystem functioning and in order to manage these highly fluctuating and naturally stressed systems. Numerous studies have investigated the role of environmental factors in controlling temporal variations in biotic communities. However, most have concluded that the explanatory power of physico-chemical variables was significant but not sufficient to explain ecological dynamics. The present study aimed to propose the importance of trophic interactions as an additional structuring factor of species seasonal variability by examining simultaneous dynamics of all estuarine biotic communities, using the oligo-mesohaline area of the Gironde estuary (SW France) as a case study. Data on the main biological groups (fish, shrimps, macrozoobenthos and plankton) sampled during a five-year period (2004-2008) at monthly intervals using a well standardized protocol, as well as data on environmental variables, were compiled here for the first time. According to species composition, the Gironde estuary is used as a nursery, feeding, resident and migratory habitat. For almost all species, strong seasonal fluctuations occurred with a succession of species, indicating an optimization of the use of the available resources over a typical year by estuarine biological communities. Multivariate analyses discriminated four seasonal groups of species with two distinctive ecological seasons. A clear shift in July indicated a biomass transfer from a "planktonic phase" to a "bentho-demersal phase", corresponding to spring and summer-autumn periods, respectively. With regard to the temporal fluctuations of dominant species of all biological groups, this study highlighted the possible influence of trophic relationships, predation in particular, on seasonal variations in species abundance, in addition to the physico-chemical influence. This study enabled us to collate important seasonal data and to discuss their integration into seasonal models of estuarine functioning and/or specific prey-predator models. In a global change context, prey abundance variations could generate changes in the temporal dynamics of their predators (and conversely), and potentially in the functioning of the whole estuarine system.
NASA Astrophysics Data System (ADS)
Turra, Alexander; Petracco, Marcelo; Amaral, A. Cecilia Z.; Denadai, Márcia R.
2014-10-01
Temporal variation in the structure and dynamics of a population of Tivela mactroides was examined over two periods (2003-2004 and 2007-2008) in the southern part of Caraguatatuba Bay, southeastern Brazil. During the first period from January 2003 to October 2004, sampling was conducted monthly. Sampling in the second period was performed in the summer (January and February 2007 and 2008) and winter (July and August 2007 and 2008). The von Bertalanffy growth function was applied to estimate growth parameters for both periods from length-frequency distributions. Production was determined using the mass-specific growth rate method. Results indicated that the mean abundance (±SE) of T. mactroides varied sharply between the two periods, with an increase of almost 150 times from 2003 to 2004 (8.67·102 ± 0.83·102 ind m-1) to 2007-2008 (1.25·105 ± 3.33·104 ind m-1). The higher abundance in the second period was related to successful recruitment events. While the mean biomass and the production were higher in the second (5.43 ± 0.87 kg AFDM m-1 and 7.89 kg AFDM m-1 yr-1) than in the first period (0.18 ± 0.02 kg AFDM m-1 and 0.18 kg AFDM m-1 yr-1), lower values of shell length, curvature parameter, asymptotic length of the VBGF, and the growth index phi-prime in 2007-2008 (17.57 ± 1.35 mm; K = 0.40 yr-1; L∞ = 38.60 mm, ϕ‧ = 2.78) than in 2003-2004 (26.21 ± 1.21 mm; K = 1.00 yr-1; L∞ = 40.75 mm, ϕ‧ = 3.22) were related to a strongly density-dependent growth process in the second period. The oscillation in growth observed in the second, but not in the first period also indicates a process of density-dependent growth. These sharp temporal variations in population parameters of T. mactroides suggest the occurrence of density-dependent processes, and reinforce the importance of these processes in structuring sandy-beach populations.
Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.
2012-01-01
Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.
NASA Astrophysics Data System (ADS)
Blauw, Anouk N.; Benincà, Elisa; Laane, Remi W. P. M.; Greenwood, Naomi; Huisman, Jef
2018-02-01
Phytoplankton concentrations display strong temporal variability at different time scales. Recent advances in automated moorings enable detailed investigation of this variability. In this study, we analyzed phytoplankton fluctuations at four automated mooring stations in the North Sea, which measured phytoplankton abundance (chlorophyll) and several environmental variables at a temporal resolution of 12-30 min for two to nine years. The stations differed in tidal range, water depth and freshwater influence. This allowed comparison of the predictability and environmental drivers of phytoplankton variability across different time scales and geographical regions. We analyzed the time series using wavelet analysis, cross correlations and generalized additive models to quantify the response of chlorophyll fluorescence to various environmental variables (tidal and meteorological variables, salinity, suspended particulate matter, nitrate and sea surface temperature). Hour-to-hour and day-to-day fluctuations in chlorophyll fluorescence were substantial, and mainly driven by sinking and vertical mixing of phytoplankton cells, horizontal transport of different water masses, and non-photochemical quenching of the fluorescence signal. At the macro-tidal stations, these short-term phytoplankton fluctuations were strongly driven by the tides. Along the Dutch coast, variation in salinity associated with the freshwater influence of the river Rhine played an important role, while in the central North Sea variation in weather conditions was a major determinant of phytoplankton variability. At time scales of weeks to months, solar irradiance, nutrient conditions and thermal stratification were the dominant drivers of changes in chlorophyll concentrations. These results show that the dominant drivers of phytoplankton fluctuations differ across marine environments and time scales. Moreover, our findings show that phytoplankton variability on hourly to daily time scales should not be dismissed as environmental noise, but is related to vertical and horizontal particle transport driven by winds and tides. Quantification of these transport processes contributes to an improved predictability of marine phytoplankton concentrations.
Merkle, Jerod A.; Cross, Paul C.; Scurlock, Brandon M.; Cole, Eric K.; Courtemanch, Alyson B.; Dewey, Sarah R.; Kauffman, Matthew J.
2018-01-01
Disease models typically focus on temporal dynamics of infection, while often neglecting environmental processes that determine host movement. In many systems, however, temporal disease dynamics may be slow compared to the scale at which environmental conditions alter host space-use and accelerate disease transmission.Using a mechanistic movement modelling approach, we made space-use predictions of a mobile host (elk [Cervus Canadensis] carrying the bacterial disease brucellosis) under environmental conditions that change daily and annually (e.g., plant phenology, snow depth), and we used these predictions to infer how spring phenology influences the risk of brucellosis transmission from elk (through aborted foetuses) to livestock in the Greater Yellowstone Ecosystem.Using data from 288 female elk monitored with GPS collars, we fit step selection functions (SSFs) during the spring abortion season and then implemented a master equation approach to translate SSFs into predictions of daily elk distribution for five plausible winter weather scenarios (from a heavy snow, to an extreme winter drought year). We predicted abortion events by combining elk distributions with empirical estimates of daily abortion rates, spatially varying elk seroprevelance and elk population counts.Our results reveal strong spatial variation in disease transmission risk at daily and annual scales that is strongly governed by variation in host movement in response to spring phenology. For example, in comparison with an average snow year, years with early snowmelt are predicted to have 64% of the abortions occurring on feedgrounds shift to occurring on mainly public lands, and to a lesser extent on private lands.Synthesis and applications. Linking mechanistic models of host movement with disease dynamics leads to a novel bridge between movement and disease ecology. Our analysis framework offers new avenues for predicting disease spread, while providing managers tools to proactively mitigate risks posed by mobile disease hosts. More broadly, we demonstrate how mechanistic movement models can provide predictions of ecological conditions that are consistent with climate change but may be more extreme than has been observed historically.
Temporal variations of radon in soil related to earthquakes.
Planinić, J; Radolić, V; Lazanin, Z
2001-08-01
A radon detector with LR-115 nuclear track film was constructed for radon concentration measurements in soil. Temporal radon variations, as well as the barometric pressure, precipitation and temperature were measured for two years. Negative correlation between radon concentration in soil and barometric pressure was found. For some of the recorded earthquakes that occurred during the observation period, soil radon anomalies may be noticed one month before the quakes.
Filho, J A Araujo; Brito, S V; Lima, V F; Pereira, A M A; Mesquita, D O; Albuquerque, R L; Almeida, W O
2017-05-01
Ecological characteristics and environmental variation influence both host species composition and parasite abundance. Abiotic factors such as rainfall and temperature can improve parasite development and increase its reproduction rate. The comparison of these assemblages between different environments may give us a more refined analysis of how environment affects the variation of helminth parasite abundance. The aim of the present study was to evaluate how temporal variation, host size, sex and reproduction affect helminth abundance in the Tropidurus hispidus lizard in Caatinga, Restinga and Atlantic Forest environments. Overall, larger-sized lizards showed higher helminth abundance. We found a monthly variation in the helminth species abundance in all studied areas. In the Caatinga area, monoxenic and heteroxenic parasites were related to the rainy season and to the reproductive period of lizards. In Restinga, monoxenic and heteroxenic helminth species were more abundant during the driest months. In the Atlantic Forest, the rainy and host reproductive season occurred continuously throughout the year, so parasite abundance was relatively constant. Nevertheless, heteroxenic species were more abundant in this area. The present results showed that the temporal variation, body size, sex, reproductive period and habitat type influence the abundance and composition of helminth species in T. hispidus.
Brito, Samuel V; Ferreira, Felipe S; Ribeiro, Samuel C; Anjos, Luciano A; Almeida, Waltécio O; Mesquita, Daniel O; Vasconcellos, Alexandre
2014-03-01
Parasites are natural regulators of their host populations. Despite this, little is known about variations in parasite composition (spatially or temporally) in environments subjected to water-related periodic stress such as the arid and semiarid regions. The objective of this study was to evaluate the spatial-temporal variation in endoparasite species' abundance and richness in populations of Neotropical Cnemidophorus ocellifer, Tropidurus hispidus, and Tropidurus semitaeniatus lizards in the semiarid northeast of Brazil. The location influenced the abundance of parasites in all analyzed lizard species, while season (dry and rainy) only influenced the total abundance for T. hispidus. In all seasons, males significantly showed more endoparasites than females in all lizard species, although for T. hispidus, this difference was only found in the dry season. Seasonal variations affect the abundance patterns of parasites. Likely, variables include environmental variations such as humidity and temperature, which influence the development of endoparasite eggs when outside of the host. Further, the activity of the intermediate hosts and the parasites of heteroxenous life cycles could be affected by an environmental condition. The variation in the abundance of parasites between the sampling areas could be a reflection of variations in climate and physiochemical conditions. Also, it could be due to differences in the quality of the environment in which each host population lives.
Comparison of temporal trends in VOCs as measured with PDB samplers and low-flow sampling methods
Harte, P.T.
2002-01-01
Analysis of temporal trends in tetrachloroethylene (PCE) concentration determined by two sample techniques showed that passive diffusion bag (pdb) samplers adequately sample the large variation in PCE concentrations at the site. The slopes of the temporal trends in concentrations were comparable between the two techniques, and the pdb sample concentration generally reflected the instantaneous concentration sampled by the low-flow technique. Thus, the pdb samplers provided an appropriate sampling technique for PCE at these wells. One or two wells did not make the case for widespread application of pdb samples at all sites. However, application of pdb samples in some circumstances was appropriate for evaluating temporal and spatial variations in VOC concentrations, thus, should be considered as a useful tool in hydrogeology.
Böer, Simone I; Hedtkamp, Stefanie I C; van Beusekom, Justus E E; Fuhrman, Jed A; Boetius, Antje; Ramette, Alban
2009-07-01
Bacterial community structure and microbial activity were determined together with a large number of contextual environmental parameters over 2 years in subtidal sands of the German Wadden Sea in order to identify the main factors shaping microbial community structure and activity in this habitat. Seasonal changes in temperature were directly reflected in bacterial activities and total community respiration, but could not explain variations in the community structure. Strong sediment depth-related patterns were observed for bacterial abundances, carbon production rates and extracellular enzymatic activities. Bacterial community structure also showed a clear vertical variation with higher operational taxonomic unit (OTU) numbers at 10-15 cm depth than in the top 10 cm, probably because of the decreasing disturbance by hydrodynamic forces with sediment depth. The depth-related variations in bacterial community structure could be attributed to vertical changes in bacterial abundances, chlorophyll a and NO(3)(-), indicating that spatial patterns of microbes are partially environmentally controlled. Time was the most important single factor affecting microbial community structure with an OTU replacement of up to 47% over 2 years and a contribution of 34% to the total variation. A large part of this variation was not related to any environmental parameters, suggesting that temporal variations in bacterial community structure are caused by yet unknown environmental drivers and/or by stochastic events in coastal sand habitats. Principal ecosystem functions such as benthic oxygen consumption and extracellular hydrolysis of organic matter were, however, at a high level at all times, indicating functional redundancy in the microbial communities.
Flash ionization signature in coherent cyclotron emission from brown dwarfs
NASA Astrophysics Data System (ADS)
Vorgul, I.; Helling, Ch.
2016-05-01
Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.
Cuartas-Hernández, Sandra; Medel, Rodrigo
2015-01-01
Understanding the factors determining the spatial and temporal variation of ecological networks is fundamental to the knowledge of their dynamics and functioning. In this study, we evaluate the effect of elevation and time on the structure of plant-flower-visitor networks in a Colombian mountain forest. We examine the level of generalization of plant and animal species and the identity of interactions in 44 bipartite matrices obtained from eight altitudinal levels, from 2200 to 2900 m during eight consecutive months. The contribution of altitude and time to the overall variation in the number of plant (P) and pollinator (A) species, network size (M), number of interactions (I), connectance (C), and nestedness was evaluated. In general, networks were small, showed high connectance values and non-nested patterns of organization. Variation in P, M, I and C was better accounted by time than elevation, seemingly related to temporal variation in precipitation. Most plant and insect species were specialists and the identity of links showed a high turnover over months and at every 100 m elevation. The partition of the whole system into smaller network units allowed us to detect small-scale patterns of interaction that contrasted with patterns commonly described in cumulative networks. The specialized but erratic pattern of network organization observed in this tropical mountain suggests that high connectance coupled with opportunistic attachment may confer robustness to plant-flower-visitor networks occurring at small spatial and temporal units.
Fine-scale spatial climate variation and drought mediate the likelihood of reburning.
Parks, Sean A; Parisien, Marc-André; Miller, Carol; Holsinger, Lisa M; Baggett, Larry Scott
2018-03-01
In many forested ecosystems, it is increasingly recognized that the probability of burning is substantially reduced within the footprint of previously burned areas. This self-limiting effect of wildland fire is considered a fundamental emergent property of ecosystems and is partly responsible for structuring landscape heterogeneity (i.e., mosaics of different age classes), thereby reducing the likelihood of uncharacteristically large fires in regions with active fire regimes. However, the strength and longevity of this self-limiting phenomenon is not well understood in most fire-prone ecosystems. In this study, we quantify the self-limiting effect in terms of its strength and longevity for five fire-prone study areas in western North America and investigate how each measure varies along a spatial climatic gradient and according to temporal (i.e., annual) climatic variation. Results indicate that the longevity (i.e., number of years) of the self-limiting effect ranges between 15 yr in the warm and dry study area in the southwestern United States to 33 yr in the cold, northern study areas in located in northwestern Montana and the boreal forest of Canada. We also found that spatial climatic variation has a strong influence on wildland fire's self-limiting capacity. Specifically, the self-limiting effect within each study area was stronger and lasted longer in areas with low mean moisture deficit (i.e., wetter and cooler settings) compared to areas with high mean moisture deficit (warmer and drier settings). Last, our findings show that annual climatic variation influences wildland fire's self-limiting effect: drought conditions weakened the strength and longevity of the self-limiting effect in all study areas, albeit at varying magnitudes. Overall, our study provides support for the idea that wildland fire contributes to spatial heterogeneity in fuel ages that subsequently mediate future fire sizes and effects. However, our findings show that the strength and longevity of the self-limiting effect varies considerably according to spatial and temporal climatic variation, providing land and fire managers relevant information for effective planning and management of fire and highlighting that fire itself is an important factor contributing to fire-free intervals. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Hampel, Andrea; Hetzel, Ralf
2013-04-01
The friction coefficient is a key parameter for the slip evolution of faults, but how temporal changes in friction affect fault slip is still poorly known. By using three-dimensional numerical models with a thrust fault that is alternately locked and released, we show that variations in the friction coefficient affect both coseismic and long-term fault slip (Hampel and Hetzel, 2012). Decreasing the friction coefficient by 5% while keeping the duration of the interseismic phase constant leads to a four-fold increase in coseismic slip, whereas a 5% increase nearly suppresses slip. A gradual decrease or increase of friction over several earthquake cycles (1-5% per earthquake) considerably alters the cumulative fault slip. In nature, the slip deficit (surplus) resulting from variations in the friction coefficient would presumably be compensated by a longer (shorter) interseismic phase, but the magnitude of the changes required for compensation render variations of the friction coefficient of >5% unlikely. Reference Hampel, A., R. Hetzel (2012) Temporal variation in fault friction and its effects on the slip evolution of a thrust fault over several earthquake cycles. Terra Nova, 24, 357-362, doi: 10.1111/j.1365-3121.2012.01073.x.
Balke, Nina; Maksymovych, Petro; Jesse, Stephen; ...
2014-09-25
The implementation of contact mode Kelvin probe force microscopy (KPFM) utilizes the electrostatic interactions between tip and sample when the tip and sample are in contact with each other. Surprisingly, the electrostatic forces in contact are large enough to be measured even with tips as stiff as 4.5 N/m. As for traditional non-contact KPFM, the signal depends strongly on electrical properties of the sample, such as the dielectric constant, and the tip-properties, such as the stiffness. Since the tip is in contact with the sample, bias-induced changes in the junction potential between tip and sample can be measured with highermore » lateral and temporal resolution compared to traditional non-contact KPFM. Significant and reproducible variations of tip-surface capacitance are observed and attributed to surface electrochemical phenomena. Lastly, observations of significant surface charge states at zero bias and strong hysteretic electromechanical responses at non-ferroelectric surface have significant implications for fields such as triboelectricity and piezoresponse force microscopy.« less
Anomalous radon emission as precursor of medium to strong earthquakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoran, Maria
Anomalous radon (Rn{sup 222}) emissions enhanced by forthcoming earthquakes is considered to be a precursory phenomenon related to an increased geotectonic activity in seismic areas. Rock microfracturing in the Earth’s crust preceding a seismic rupture may cause local surface deformation fields, rock dislocations, charged particle generation and motion, electrical conductivity changes, radon and other gases emission, fluid diffusion, electrokinetic, piezomagnetic and piezoelectric effects as well as climate fluctuations. Space-time anomalies of radon gas emitted in underground water, soil and near the ground air weeks to days in the epicentral areas can be associated with the strain stress changes that occurredmore » before the occurrence of medium and strong earthquakes. This paper aims to investigate temporal variations of radon concentration levels in air near or in the ground by the use of solid state nuclear track detectors (SSNTD) CR-39 and LR-115 in relation with some important seismic events recorded in Vrancea region, Romania.« less
Freestone, Amy L; Inouye, Brian D
2015-01-01
A persistent challenge for ecologists is understanding the ecological mechanisms that maintain global patterns of biodiversity, particularly the latitudinal diversity gradient of peak species richness in the tropics. Spatial and temporal variation in community composition contribute to these patterns of biodiversity, but how this variation and its underlying processes change across latitude remains unresolved. Using a model system of sessile marine invertebrates across 25 degrees of latitude, from the temperate zone to the tropics, we tested the prediction that spatial and temporal patterns of taxonomic richness and composition, and the community assembly processes underlying these patterns, will differ across latitude. Specifically, we predicted that high beta diversity (spatial variation in composition) and high temporal turnover contribute to the high species richness of the tropics. Using a standardized experimental approach that controls for several confounding factors that hinder interpretation of prior studies, we present results that support our predictions. In the temperate zone, communities were more similar across spatial scales from centimeters to tens of kilometers and temporal scales up to one year than at lower latitudes. Since the patterns at northern latitudes were congruent with a null model, stochastic assembly processes are implicated. In contrast, the communities in the tropics were a dynamic spatial and temporal mosaic, with low similarity even across small spatial scales and high temporal turnover at both local and regional scales. Unlike the temperate zone, deterministic community assembly processes such as predation likely contributed to the high beta diversity in the tropics. Our results suggest that community assembly processes and temporal dynamics vary across latitude and help structure and maintain latitudinal patterns of diversity.
3D Printed Pediatric Temporal Bone: A Novel Training Model.
Longfield, Evan A; Brickman, Todd M; Jeyakumar, Anita
2015-06-01
Temporal bone dissection is a fundamental element of otologic training. Cadaveric temporal bones (CTB) are the gold standard surgical training model; however, many institutions do not have ready access to them and their cost can be significant: $300 to $500. Furthermore, pediatric cadaveric temporal bones are not readily available. Our objective is to develop a pediatric temporal bone model. Temporal bone model. Tertiary Children's Hospital. Pediatric patient model. We describe the novel use of a 3D printer for the generation of a plaster training model from a pediatric high- resolution CT temporal bone scan of a normal pediatric temporal bone. Three models were produced and were evaluated. The models utilized multiple colors (white for bone, yellow for the facial nerve) and were of high quality. Two models were drilled as a proof of concept and found to be an acceptable facsimile of the patient's anatomy, rendering all necessary surgical landmarks accurately. The only negative comments pertaining to the 3D printed temporal bone as a training model were the lack of variation in hardness between cortical and cancellous bone, noting a tactile variation from cadaveric temporal bones. Our novel pediatric 3D temporal bone training model is a viable, low-cost training option for previously inaccessible pediatric temporal bone training. Our hope is that, as 3D printers become commonplace, these models could be rapidly reproduced, allowing for trainees to print models of patients before performing surgery on the living patient.
Compositional trends in aeolian dust along a transect across the southwestern United States
Goldstein, H.L.; Reynolds, R.L.; Reheis, M.C.; Yount, J.C.; Neff, J.C.
2008-01-01
Aeolian dust strongly influences ecology and landscape geochemistry over large areas that span several desert ecosystems of the southwestern United States. This study evaluates spatial and temporal variations and trends of the physical and chemical properties of dust in the southwestern United States by examining dust deposited in natural depressions on high isolated surfaces along a transect from the Mojave Desert to the central Colorado Plateau. Aeolian dust is recognized in these depressions on the basis of textural, chemical, isotopic, and mineralogical characteristics and comparisons of those characteristics to the underlying bedrock units. Spatial and temporal trends suggest that although local dust sources are important to the accumulated material in these depressions, Mojave Desert dust sources may also contribute. Depth trends in the depressions suggest that Mojave sources may have contributed more dust to the Colorado Plateau recently than in the past. These interpretations point to the important roles of far-traveled aeolian dust for landscape geochemistry and imply future changes to soil geochemistry under changing conditions in far-distant dust source areas. Copyright 2008 by the American Geophysical Union.
Infrared thermography of welding zones produced by polymer extrusion additive manufacturing✩
Seppala, Jonathan E.; Migler, Kalman D.
2016-01-01
In common thermoplastic additive manufacturing (AM) processes, a solid polymer filament is melted, extruded though a rastering nozzle, welded onto neighboring layers and solidified. The temperature of the polymer at each of these stages is the key parameter governing these non-equilibrium processes, but due to its strong spatial and temporal variations, it is difficult to measure accurately. Here we utilize infrared (IR) imaging - in conjunction with necessary reflection corrections and calibration procedures - to measure these temperature profiles of a model polymer during 3D printing. From the temperature profiles of the printed layer (road) and sublayers, the temporal profile of the crucially important weld temperatures can be obtained. Under typical printing conditions, the weld temperature decreases at a rate of approximately 100 °C/s and remains above the glass transition temperature for approximately 1 s. These measurement methods are a first step in the development of strategies to control and model the printing processes and in the ability to develop models that correlate critical part strength with material and processing parameters. PMID:29167755
Mass loss of the Greenland peripheral glaciers and ice caps from satellite altimetry
NASA Astrophysics Data System (ADS)
Wouters, Bert; Noël, Brice; Moholdt, Geir; Ligtenberg, Stefan; van den Broeke, Michiel
2017-04-01
At its rapidly warming margins, the Greenland Ice Sheet is surrounded by (semi-)detached glaciers and ice caps (GIC). Although they cover only roughly 5% of the total glaciated area in the region, they are estimated to account for 15-20% of the total sea level rise contribution of Greenland. The spatial and temporal evolution of the mass changes of the peripheral GICs, however, remains poorly constrained. In this presentation, we use satellite altimetry from ICESat and Cryosat-2 combined with a high-resolution regional climate model to derive a 14 year time series (2003-2016) of regional elevation and mass changes. The total mass loss has been relatively constant during this period, but regionally, the GICs show marked temporal variations. Whereas thinning was concentrated along the eastern margin during 2003-2009, western GICs became the prime sea level rise contributors in recent years. Mass loss in the northern region has been steadily increasing throughout the record, due to a strong atmospheric warning and a deterioration of the capacity of the firn layer to buffer the resulting melt water.
Infrared thermography of welding zones produced by polymer extrusion additive manufacturing.
Seppala, Jonathan E; Migler, Kalman D
2016-10-01
In common thermoplastic additive manufacturing (AM) processes, a solid polymer filament is melted, extruded though a rastering nozzle, welded onto neighboring layers and solidified. The temperature of the polymer at each of these stages is the key parameter governing these non-equilibrium processes, but due to its strong spatial and temporal variations, it is difficult to measure accurately. Here we utilize infrared (IR) imaging - in conjunction with necessary reflection corrections and calibration procedures - to measure these temperature profiles of a model polymer during 3D printing. From the temperature profiles of the printed layer (road) and sublayers, the temporal profile of the crucially important weld temperatures can be obtained. Under typical printing conditions, the weld temperature decreases at a rate of approximately 100 °C/s and remains above the glass transition temperature for approximately 1 s. These measurement methods are a first step in the development of strategies to control and model the printing processes and in the ability to develop models that correlate critical part strength with material and processing parameters.
NASA Astrophysics Data System (ADS)
Flynn, S.; Knipp, D. J.; Matsuo, T.; Mlynczak, M. G.; Hunt, L. A.
2017-12-01
Storm time energy input to the upper atmosphere is countered by infrared radiative emissions from nitric oxide (NO). The temporal profile of these energy sources and losses strongly control thermospheric density profiles, which in turn affect the drag experienced by low Earth orbiting satellites. Storm time processes create NO. In some extreme cases an overabundance of NO emissions unexpectedly decreases atmospheric temperature and density to lower than pre-storm values. Quantifying the spatial and temporal variability of the NO emissions using eigenmodes will increase the understanding of how upper atmospheric NO behaves, and could be used to increase the accuracy of future space weather and climate models. Thirteen years of NO flux data, observed at 100-250 km altitude by the SABER instrument onboard the TIMED satellite, is decomposed into five empirical orthogonal functions (EOFs) and their amplitudes to: 1) determine the strongest modes of variability in the data set, and 2) develop a compact model of NO flux. The first five EOFs account for 85% of the variability in the data, and their uncertainty is verified using cross-validation analysis. Although these linearly independent EOFs are not necessarily independent in a geophysical sense, the first three EOFs correlate strongly with different geophysical processes. The first EOF correlates strongly with Kp and F10.7, suggesting that geomagnetic storms and solar weather account for a large portion of NO flux variability. EOF 2 shows annual variations, and EOF 3 correlates with solar wind parameters. Using these relations, an empirical model of the EOF amplitudes can be derived, which could be used as a predictive tool for future NO emissions. We illustrate the NO model, highlight some of the hemispheric asymmetries, and discuss the geophysical associations of the EOFs.
Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents
NASA Technical Reports Server (NTRS)
Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.
2008-01-01
Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
Space Technology 5 (ST-5) Observations of Field-Aligned Currents: Temporal Variability
NASA Technical Reports Server (NTRS)
Le, Guan
2010-01-01
Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from STS. The data demonstrate that masoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about I min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
NASA Technical Reports Server (NTRS)
Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.
2007-01-01
Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
NASA Technical Reports Server (NTRS)
Le, Guan
2010-01-01
Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that mesoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about 1 min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
NASA Astrophysics Data System (ADS)
Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio
2017-04-01
Mushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.
NASA Astrophysics Data System (ADS)
Cui, Y.; Lin, J.; Huang, B.; Song, C.
2015-12-01
Western China has experienced rapid urbanization and industrialization since the implementation of National Western Development Strategy by Chinese Government. Most resource-intensive industries and high-pollution factories had been moved from the east coast to Western China after 2000. In this research, the spatial and temporal variations of tropospheric NO2 concentration in 2005 - 2013 is analyzed based on the satellite observations by Ozone Measurement Instrument (OMI). The annual trends and seasonality of tropospheric NO2 over Western China are calculated. The results show that large increases are observed in urban areas and the polluted regions are expanding. Additionally, the seasonal patterns of some regions over Western China are changing significantly and more clean areas tend to changing from the characteristics of natural emissions to those of anthropogenic emissions. The spatial and temporal variations of NO2 concentrations are well responded to the rapid urbanization and industrialization over Western China.
Spatial and Temporal Variations of Water Quality and Trophic Status in Sembrong Reservoir, Johor
NASA Astrophysics Data System (ADS)
Intan Najla Syed Hashim, Syarifah; Hidayah Abu Talib, Siti; Salleh Abustan, Muhammad
2018-03-01
A study of spatial and temporal variations on water quality and trophic status was conducted to determine the temporal (average reading by month) and spatial variations of water quality in Sembrong reservoir and to evaluate the trophic status of the reservoir. Water samples were collected once a month from November 2016 to June 2017 in seventeen (17) sampling stations at Sembrong Reservoir. Results obtained on the concentration of dissolved oxygen (DO), water temperature, pH and secchi depth had no significant differences compared to Total Phosphorus (TP) and chlorophyll-a. The water level has significantly decreased the value of the water temperature, pH and TP. The water quality of Sembrong reservoir is classified in Class II which is suitable for recreational uses and required conventional treatment while TSI indicates that sembrong reservoir was in lower boundary of classical eutrophic (TSI > 50).
NASA Astrophysics Data System (ADS)
Manzo, Ciro; Braga, Federica; Zaggia, Luca; Brando, Vittorio Ernesto; Giardino, Claudia; Bresciani, Mariano; Bassani, Cristiana
2018-04-01
This paper describes a procedure to perform spatio-temporal analysis of river plume dispersion in prodelta areas by multi-temporal Landsat-8-derived products for identifying zones sensitive to water discharge and for providing geostatistical patterns of turbidity linked to different meteo-marine forcings. In particular, we characterized the temporal and spatial variability of turbidity and sea surface temperature (SST) in the Po River prodelta (Northern Adriatic Sea, Italy) during the period 2013-2016. To perform this analysis, a two-pronged processing methodology was implemented and the resulting outputs were analysed through a series of statistical tools. A pixel-based spatial correlation analysis was carried out by comparing temporal curves of turbidity and SST hypercubes with in situ time series of wind speed and water discharge, providing correlation coefficient maps. A geostatistical analysis was performed to determine the spatial dependency of the turbidity datasets per each satellite image, providing maps of correlation and variograms. The results show a linear correlation between water discharge and turbidity variations in the points more affected by the buoyant plumes and along the southern coast of Po River delta. Better inverse correlation was found between turbidity and SST during floods rather than other periods. The correlation maps of wind speed with turbidity show different spatial patterns depending on local or basin-scale wind effects. Variogram maps identify different spatial anisotropy structures of turbidity in response to ambient conditions (i.e. strong Bora or Scirocco winds, floods). Since the implemented processing methodology is based on open source software and free satellite data, it represents a promising tool for the monitoring of maritime ecosystems and to address water quality analyses and the investigations of sediment dynamics in estuarine and coastal waters.
NASA Astrophysics Data System (ADS)
Luce, Charles H.; Lopez-Burgos, Viviana; Holden, Zachary
2014-12-01
Empirical sensitivity analyses are important for evaluation of the effects of a changing climate on water resources and ecosystems. Although mechanistic models are commonly applied for evaluation of climate effects for snowmelt, empirical relationships provide a first-order validation of the various postulates required for their implementation. Previous studies of empirical sensitivity for April 1 snow water equivalent (SWE) in the western United States were developed by regressing interannual variations in SWE to winter precipitation and temperature. This offers a temporal analog for climate change, positing that a warmer future looks like warmer years. Spatial analogs are used to hypothesize that a warmer future may look like warmer places, and are frequently applied alternatives for complex processes, or states/metrics that show little interannual variability (e.g., forest cover). We contrast spatial and temporal analogs for sensitivity of April 1 SWE and the mean residence time of snow (SRT) using data from 524 Snowpack Telemetry (SNOTEL) stations across the western U.S. We built relatively strong models using spatial analogs to relate temperature and precipitation climatology to snowpack climatology (April 1 SWE, R2=0.87, and SRT, R2=0.81). Although the poorest temporal analog relationships were in areas showing the highest sensitivity to warming, spatial analog models showed consistent performance throughout the range of temperature and precipitation. Generally, slopes from the spatial relationships showed greater thermal sensitivity than the temporal analogs, and high elevation stations showed greater vulnerability using a spatial analog than shown in previous modeling and sensitivity studies. The spatial analog models provide a simple perspective to evaluate potential futures and may be useful in further evaluation of snowpack with warming.
Macro-Scale Patterns in Upwelling/Downwelling Activity at North American West Coast
Saldívar-Lucio, Romeo; Di Lorenzo, Emanuele; Nakamura, Miguel; Villalobos, Héctor; Lluch-Cota, Daniel; Del Monte-Luna, Pablo
2016-01-01
The seasonal and interannual variability of vertical transport (upwelling/downwelling) has been relatively well studied, mainly for the California Current System, including low-frequency changes and latitudinal heterogeneity. The aim of this work was to identify potentially predictable patterns in upwelling/downwelling activity along the North American west coast and discuss their plausible mechanisms. To this purpose we applied the min/max Autocorrelation Factor technique and time series analysis. We found that spatial co-variation of seawater vertical movements present three dominant low-frequency signals in the range of 33, 19 and 11 years, resembling periodicities of: atmospheric circulation, nodal moon tides and solar activity. Those periodicities might be related to the variability of vertical transport through their influence on dominant wind patterns, the position/intensity of pressure centers and the strength of atmospheric circulation cells (wind stress). The low-frequency signals identified in upwelling/downwelling are coherent with temporal patterns previously reported at the study region: sea surface temperature along the Pacific coast of North America, catch fluctuations of anchovy Engraulis mordax and sardine Sardinops sagax, the Pacific Decadal Oscillation, changes in abundance and distribution of salmon populations, and variations in the position and intensity of the Aleutian low. Since the vertical transport is an oceanographic process with strong biological relevance, the recognition of their spatio-temporal patterns might allow for some reasonable forecasting capacity, potentially useful for marine resources management of the region. PMID:27893826
Schoville, Sean D.; Flowers, Jonathan M.; Burton, Ronald S.
2012-01-01
The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations. PMID:22768211
Assessing spatiotemporal variation of drought and its impact on maize yield in Northeast China
NASA Astrophysics Data System (ADS)
Guo, Enliang; Liu, Xingpeng; Zhang, Jiquan; Wang, Yongfang; Wang, Cailin; Wang, Rui; Li, Danjun
2017-10-01
In the context of global climate change, drought has become an important factor that affects the maize yield in China. To analyse the impact of drought on maize yield loss in Northeast China in current and future climate scenarios, the Composite Meteorological Drought Index (CI) is introduced to reconstruct the following drought indicators: drought accumulative days (DAD), drought accumulative intensity (DAI), and consecutive drought days (CDD). These three drought indicators are used to describe the three-dimensional characteristics of drought in this study. Sen's slope method and three-dimensional copula functions are adopted to analyse the variety of drought features, and Ensemble Empirical Mode Decomposition (EEMD) is used to analyse the variations in maize yield. A temporal assessment of the standardized yield residuals series (SYRS) of maize from 1961 to 2014 is conducted. A panel regression model is applied to demonstrate the drought impact on maize yield at various growth stages under the RCP4.5 scenario. The results show that the drought risk level for midwest Jilin Province, western Liaoning, and eastern Heilongjiang increase with global warming in the current scenario. The shorter three-dimensional joint return periods, 44-80 yr, were mainly located in western Jilin Province, Liaodong Peninsula, and northwestern Liaoning. Eastern Heilongjiang has a slightly longer joint return period of 80-100 yr. The SYRS shows a strong statistical correlation with drought indicator variations; drought-prone regions exhibit strong positive correlations. In comparison, excess precipitation regions show strong negative correlations with drought indicators in most growth stages. Drought indicators have a relatively strong association with SYRS at the milky-mature maize growth stage, and the occurrence of drought during this period primarily determines the maize yield changes in the future. Maize yield changes are -2.04%, -2.65% and -1.57% for Liaoning, Jilin, and Heilongjiang Province under the RCP4.5 scenario. These results can be used as a tool for early warning of drought risk to maize, and will accelerate the progress of drought disaster risk management.
Teige, Catarina; Mollo, Giovanna; Millman, Rebecca; Savill, Nicola; Smallwood, Jonathan; Cornelissen, Piers L; Jefferies, Elizabeth
2018-06-01
Distinct neural processes are thought to support the retrieval of semantic information that is (i) coherent with strongly-encoded aspects of knowledge, and (ii) non-dominant yet relevant for the current task or context. While the brain regions that support readily coherent and more controlled patterns of semantic retrieval are relatively well-characterised, the temporal dynamics of these processes are not well-understood. This study used magnetoencephalography (MEG) and dual-pulse chronometric transcranial magnetic stimulation (cTMS) in two separate experiments to examine temporal dynamics during the retrieval of strong and weak associations. MEG results revealed a dissociation within left temporal cortex: anterior temporal lobe (ATL) showed greater oscillatory response for strong than weak associations, while posterior middle temporal gyrus (pMTG) showed the reverse pattern. Left inferior frontal gyrus (IFG), a site associated with semantic control and retrieval, showed both patterns at different time points. In the cTMS experiment, stimulation of ATL at ∼150 msec disrupted the efficient retrieval of strong associations, indicating a necessary role for ATL in coherent conceptual activations. Stimulation of pMTG at the onset of the second word disrupted the retrieval of weak associations, suggesting this site may maintain information about semantic context from the first word, allowing efficient engagement of semantic control. Together these studies provide converging evidence for a functional dissociation within the temporal lobe, across both tasks and time. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi
2018-03-01
Combining analyses of spatial and temporal characteristics of the ionosphere is of great significance for scientific research and engineering applications. Tensor decomposition is performed to explore the temporal-longitudinal-latitudinal characteristics in the ionosphere. Three-dimensional tensors are established based on the time series of ionospheric vertical total electron content maps obtained from the Centre for Orbit Determination in Europe. To obtain large-scale characteristics of the ionosphere, rank-1 decomposition is used to obtain U^{(1)}, U^{(2)}, and U^{(3)}, which are the resulting vectors for the time, longitude, and latitude modes, respectively. Our initial finding is that the correspondence between the frequency spectrum of U^{(1)} and solar variation indicates that rank-1 decomposition primarily describes large-scale temporal variations in the global ionosphere caused by the Sun. Furthermore, the time lags between the maxima of the ionospheric U^{(2)} and solar irradiation range from 1 to 3.7 h without seasonal dependence. The differences in time lags may indicate different interactions between processes in the magnetosphere-ionosphere-thermosphere system. Based on the dataset displayed in the geomagnetic coordinates, the position of the barycenter of U^{(3)} provides evidence for north-south asymmetry (NSA) in the large-scale ionospheric variations. The daily variation in such asymmetry indicates the influences of solar ionization. The diurnal geomagnetic coordinate variations in U^{(3)} show that the large-scale EIA (equatorial ionization anomaly) variations during the day and night have similar characteristics. Considering the influences of geomagnetic disturbance on ionospheric behavior, we select the geomagnetic quiet GIMs to construct the ionospheric tensor. The results indicate that the geomagnetic disturbances have little effect on large-scale ionospheric characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abreu, P.; /Lisbon, LIFEP /Lisbon, IST; Aglietta, M.
2011-01-01
Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation withmore » neutron monitor data is found.« less
Tracking the global footprint of fisheries
NASA Astrophysics Data System (ADS)
Kroodsma, David A.; Mayorga, Juan; Hochberg, Timothy; Miller, Nathan A.; Boerder, Kristina; Ferretti, Francesco; Wilson, Alex; Bergman, Bjorn; White, Timothy D.; Block, Barbara A.; Woods, Paul; Sullivan, Brian; Costello, Christopher; Worm, Boris
2018-02-01
Although fishing is one of the most widespread activities by which humans harvest natural resources, its global footprint is poorly understood and has never been directly quantified. We processed 22 billion automatic identification system messages and tracked >70,000 industrial fishing vessels from 2012 to 2016, creating a global dynamic footprint of fishing effort with spatial and temporal resolution two to three orders of magnitude higher than for previous data sets. Our data show that industrial fishing occurs in >55% of ocean area and has a spatial extent more than four times that of agriculture. We find that global patterns of fishing have surprisingly low sensitivity to short-term economic and environmental variation and a strong response to cultural and political events such as holidays and closures.
NASA Technical Reports Server (NTRS)
Bonifazi, C.; Moreno, G.; Russell, C. T.; Lazarus, A. J.; Sullivan, J. D.
1983-01-01
The interaction of the solar wind with ions backstreaming from the earth's bow shock is investigated using plasma and magnetic field measurements on ISEE 1 and 2 and IMP 8 at widely separated positions in the earth's foreshock. This technique separates temporal and spatial variations within the foreshock. It is found that the solar wind acceleration associated with backstreaming ions is correlated with the amplitude of the MHD turbulence, and that the largest decelerations are seen close to the bow shock. The density of the backstreaming ion beam is strongly correlated with distance from the shock, and decreases by about a factor of three in a distance of about 3R(e).
Airborne and groundbased spectrophotometry of comet P/Halley from 5-13 micrometers
NASA Technical Reports Server (NTRS)
Bregman, J. D.; Witteborn, F. C.; Allamandola, L. J.; Campins, H.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Tielens, A. G. G. M.
1987-01-01
Spectrophotometry of comet Halley from 5-13 microns was obtained from the Kuiper Airborne Observatory and from the Lick Observatory Nickel Telescope, revealing a strong broad emission band at 10 microns and a weak feature at 6.8 microns. The 10-micron band is identified with silicate materials, and the primary component of the silicate emission is suggested to be due to olivine. The 6.8 micron feature may be due either to carbonates or the C-H deformation mode in organic molecules. The data indicate that small particles are abundant in the coma and that the dust contains at least two physically separate components. Significant spatial and temporal variations are also noted in the spectrum.
Iglesias, Isabel; Lorenzo, M Nieves; Lázaro, Clara; Fernandes, M Joana; Bastos, Luísa
2017-12-31
Sea level anomaly (SLA), provided globally by satellite altimetry, is considered a valuable proxy for detecting long-term changes of the global ocean, as well as short-term and annual variations. In this manuscript, monthly sea level anomaly grids for the period 1993-2013 are used to characterise the North Atlantic Ocean variability at inter-annual timescales and its response to the North Atlantic main patterns of atmospheric circulation variability (North Atlantic Oscillation, Eastern Atlantic, Eastern Atlantic/Western Russia, Scandinavian and Polar/Eurasia) and main driven factors as sea level pressure, sea surface temperature and wind fields. SLA variability and long-term trends are analysed for the North Atlantic Ocean and several sub-regions (North, Baltic and Mediterranean and Black seas, Bay of Biscay extended to the west coast of the Iberian Peninsula, and the northern North Atlantic Ocean), depicting the SLA fluctuations at basin and sub-basin scales, aiming at representing the regions of maximum sea level variability. A significant correlation between SLA and the different phases of the teleconnection patterns due to the generated winds, sea level pressure and sea surface temperature anomalies, with a strong variability on temporal and spatial scales, has been identified. Long-term analysis reveals the existence of non-stationary inter-annual SLA fluctuations in terms of the temporal scale. Spectral density analysis has shown the existence of long-period signals in the SLA inter-annual component, with periods of ~10, 5, 4 and 2years, depending on the analysed sub-region. Also, a non-uniform increase in sea level since 1993 is identified for all sub-regions, with trend values between 2.05mm/year, for the Bay of Biscay region, and 3.98mm/year for the Baltic Sea (no GIA correction considered). The obtained results demonstrated a strong link between the atmospheric patterns and SLA, as well as strong long-period fluctuations of this variable in spatial and temporal scales. Copyright © 2017 Elsevier B.V. All rights reserved.
Earth Observation for monitoring phenology for european land use and ecosystems over 1998-2011
NASA Astrophysics Data System (ADS)
Ceccherini, Guido; Gobron, Nadine
2013-04-01
Long-term measurements of plant phenology have been used to track vegetation responses to climate change but are often limited to particular species and locations and may not represent synoptic patterns. Given the limitations of working directly with in-situ data, many researchers have instead used available satellite remote sensing. Remote sensing extends the possible spatial coverage and temporal range of phenological assessments of environmental change due to the greater availability of observations. Variations and trends of vegetation dynamics are important because they alter the surface carbon, water and energy balance. For example, the net ecosystem CO2 exchange of vegetation is strongly linked to length of the growing season: extentions and decreases in length of growing season modify carbon uptake and the amount of CO2 in the atmosphere. Advances and delays in starting of growing season also affect the surface energy balance and consequently transpiration. The Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) is a key climate variable identified by Global Terrestrial Observing System (GTOS) that can be monitored from space. This dimensionless variable - varying between 0 and 1- is directly linked to the photosynthetic activity of vegetation, and therefore, can monitor changes in phenology. In this study, we identify the spatio/temporal patterns of vegetation dynamics using a long-term remotely sensed FAPAR dataset over Europe. Our aim is to provide a quantitative analysis of vegetation dynamics relevant to climate studies in Europe. As part of this analysis, six vegetation phenological metrics have been defined and made routinely in Europe. Over time, such metrics can track simple, yet critical, impacts of climate change on ecosystems. Validation has been performed through a direct comparison against ground-based data over ecological sites. Subsequently, using the spatio/temporal variability of this suite of metrics, we classify areas with similar vegetation dynamics. This permits assessment of variations and trends of vegetation dynamics over Europe. Statistical tests to assess the significance of temporal changes are used to evaluate trends in the metrics derived from the recorded time series of the FAPAR.
Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui
2018-02-01
Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.
May-Tec, A L; Pech, D; Aguirre-Macedo, M L; Lewis, J W; Vidal-Martínez, V M
2013-03-01
The aim of the present investigation was to determine whether temporal variation in environmental factors such as rainfall or temperature influence long-term fluctuations in the prevalence and mean abundance of the nematode Mexiconema cichlasomae in the cichlid fish Cichlasoma uropthalmus and its crustacean intermediate host, Argulus yucatanus. The study was undertaken in a tropical coastal lagoon in the Yucatan Peninsula (south-eastern Mexico) over an 8-year period. Variations in temperature, rainfall and monthly infection levels for both hosts were analysed using time series and cross-correlations to detect possible recurrent patterns. Infections of M. cichlasomae in A. yucatanus showed annual peaks, while in C. urophthalmus peaks were bi-annual. The latter appear to be related to the accumulation of several generations of this nematode in C. urophthalmus. Rainfall and temperature appear to be key environmental factors in influencing temporal variation in the infection of M. cichlasomae over periods longer than a year together with the accumulation of larval stages throughout time.
Hartl, Daniel L.
2008-01-01
Simple models of molecular evolution assume that sequences evolve by a Poisson process in which nucleotide or amino acid substitutions occur as rare independent events. In these models, the expected ratio of the variance to the mean of substitution counts equals 1, and substitution processes with a ratio greater than 1 are called overdispersed. Comparing the genomes of 10 closely related species of Drosophila, we extend earlier evidence for overdispersion in amino acid replacements as well as in four-fold synonymous substitutions. The observed deviation from the Poisson expectation can be described as a linear function of the rate at which substitutions occur on a phylogeny, which implies that deviations from the Poisson expectation arise from gene-specific temporal variation in substitution rates. Amino acid sequences show greater temporal variation in substitution rates than do four-fold synonymous sequences. Our findings provide a general phenomenological framework for understanding overdispersion in the molecular clock. Also, the presence of substantial variation in gene-specific substitution rates has broad implications for work in phylogeny reconstruction and evolutionary rate estimation. PMID:18480070
NASA Astrophysics Data System (ADS)
Hyun, Sangmin; Suh, Yean Jee; Ikehara, Miroru
2015-04-01
A piston core collected from the Korean Plateau, East Sea (Japan Sea) of Korea was conducted in terms of variations in paleoproductivity and influx of terrestrial biomarker. The distribution of terrestrial n-alkanes signatures is characterized by the occurrence of high odd number frequency with a minor contribution of specific compound (nC27 only). Average Chain Length (ACL) and Carbon Preferences Index (CPI), both of which are derived from n-alkane combination, show similar shifting between glacial and interglacial periods. Previous studies of SST variation have shown that glacial-interglacial scale changes were quite variable with the maximum range of 26oC in MIS 7, and the minimum range of 12oC during MIS 2 and 6. Therefore, paleovegetation communities had been changed in responding to paleoclimatological variations, and the input amount of terrestrial compound was strongly linked with paleoclimatologic changes. The isotopic composition of δ13C and δ15N of organic matter, which showed extreme temporal variation since MIS 11, indicates the influx of large amount of terrestrial organic matter from the neighboring terrestrial environments during MIS 2, 8 and 10. In particular, depleted values of δ13Corg during MIS 2, 8 and 10 were coincident with lower nitrogen isotope values indicating local paleoceanographic effects such as paleoproductivity changes. Decoupling between δ13Corg and δ15Norg during MIS 1, 3, 5, 7 and coupling of the two during MIS 8 and 11 can be observed, which appear to be interpreted as local productivity changes. In particular, high abundance of cholesterol and C21 n-alkanes, which were derived from diatom, increased during interglacial periods. Therefore, alkenones, SST and n-alkanes signatures coincide with δ13Corg and δ15Norg variations during glacial-interglacial cycles and further strongly associated with cholesterol abundance suggesting that the paleoenvironmental conditions in East Sea during glacial-interglacial periods were sensitive not only to global climate changes but also to local paleceanographic variations.
Austin, Peter C.; van Klaveren, David; Vergouwe, Yvonne; Nieboer, Daan; Lee, Douglas S.; Steyerberg, Ewout W.
2018-01-01
Background Stability in baseline risk and estimated predictor effects both geographically and temporally is a desirable property of clinical prediction models. However, this issue has received little attention in the methodological literature. Our objective was to examine methods for assessing temporal and geographic heterogeneity in baseline risk and predictor effects in prediction models. Methods We studied 14,857 patients hospitalized with heart failure at 90 hospitals in Ontario, Canada, in two time periods. We focussed on geographic and temporal variation in baseline risk (intercept) and predictor effects (regression coefficients) of the EFFECT-HF mortality model for predicting 1-year mortality in patients hospitalized for heart failure. We used random effects logistic regression models for the 14,857 patients. Results The baseline risk of mortality displayed moderate geographic variation, with the hospital-specific probability of 1-year mortality for a reference patient lying between 0.168 and 0.290 for 95% of hospitals. Furthermore, the odds of death were 11% lower in the second period than in the first period. However, we found minimal geographic or temporal variation in predictor effects. Among 11 tests of differences in time for predictor variables, only one had a modestly significant P value (0.03). Conclusions This study illustrates how temporal and geographic heterogeneity of prediction models can be assessed in settings with a large sample of patients from a large number of centers at different time periods. PMID:29350215
NASA Astrophysics Data System (ADS)
Shen, Mingxi; Chen, Jie; Zhuan, Meijia; Chen, Hua; Xu, Chong-Yu; Xiong, Lihua
2018-01-01
Uncertainty estimation of climate change impacts on hydrology has received much attention in the research community. The choice of a global climate model (GCM) is usually considered as the largest contributor to the uncertainty of climate change impacts. The temporal variation of GCM uncertainty needs to be investigated for making long-term decisions to deal with climate change. Accordingly, this study investigated the temporal variation (mainly long-term) of uncertainty related to the choice of a GCM in predicting climate change impacts on hydrology by using multi-GCMs over multiple continuous future periods. Specifically, twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission scenarios were adapted to adequately represent this uncertainty envelope, fifty-one 30-year future periods moving from 2021 to 2100 with 1-year interval were produced to express the temporal variation. Future climatic and hydrological regimes over all future periods were compared to those in the reference period (1971-2000) using a set of metrics, including mean and extremes. The periodicity of climatic and hydrological changes and their uncertainty were analyzed using wavelet analysis, while the trend was analyzed using Mann-Kendall trend test and regression analysis. The results showed that both future climate change (precipitation and temperature) and hydrological response predicted by the twenty GCMs were highly uncertain, and the uncertainty increased significantly over time. For example, the change of mean annual precipitation increased from 1.4% in 2021-2050 to 6.5% in 2071-2100 for RCP4.5 in terms of the median value of multi-models, but the projected uncertainty reached 21.7% in 2021-2050 and 25.1% in 2071-2100 for RCP4.5. The uncertainty under a high emission scenario (RCP8.5) was much larger than that under a relatively low emission scenario (RCP4.5). Almost all climatic and hydrological regimes and their uncertainty did not show significant periodicity at the P = .05 significance level, but their temporal variation could be well modeled by using the fourth-order polynomial. Overall, this study further emphasized the importance of using multiple GCMs for studying climate change impacts on hydrology. Furthermore, the temporal variation of uncertainty sourced from GCMs should be given more attention.
NASA Astrophysics Data System (ADS)
Hoshino, N.; Fujiwara, H.; Takagi, M.; Kasaba, Y.; Takahashi, Y.
2009-12-01
The O2-1.27 μm nightglow distribution, which has the peak intensity in the depression region of the day-to-night flow, gives us information of the wind field at about 95 km in Venus. The past nightglow observations [Crisp et al., 1996] showed that the intensity of the nightglow in the brightness region changed by 20 % in about one hour, and the brightness region disappeared in less than one day. The observation results obtained by Venus Express (VEX) also showed the temporal variations of the nightglow emission. Some simulation studies suggested contributions of gravity waves generated in the cloud deck (50-70 km) to the temporal variations. However, the causes of the temporal variations are still unknown. In recent years, the importance of planetary-scale waves for the dynamics of the Venusian atmosphere has been recognized. For example, Takagi and Matsuda [2006] suggested that the atmospheric superrotation was driven by the momentum transport due to the vertical propagation of the thermal tides generated in the Venus cloud deck. In order to estimate effects of the planetary-scale waves on the temporal variations of the nightglow, we have performed numerical simulations with a general circulation model (GCM), which includes the altitude region of 80 - about 200 km. The planetary-scale waves (thermal tides, Kelvin wave and Rosbby wave) are imposed at the lower boundary. The amplitudes and phase velocities of the waves are assumed from the study by Del Genio and Rossow [1990]. The nightglow intensity and its global distribution are calculated from the GCM results assuming the chemical equilibration. In this study, we investigate contributions of the planetary-scale waves on the temporal variations of the nightglow shown by past observations. In addition, we show the characteristics of the wave propagation and the interactions between the waves in the Venusian upper atmosphere. Venus Climate Orbiter (VCO), which will be launched in 2010 as the second Japanese planetary mission, is expected to provide precious information about the atmospheric waves at the cloud top (about 70 km) and the nightglow distributions in the thermosphere. We can understand effects of the atmospheric waves on the Venusian thermosphere quantitatively by performing simulations with new information about the atmospheric waves obtained from the detailed nightglow observations.
Different forms of effective connectivity in primate frontotemporal pathways.
Petkov, Christopher I; Kikuchi, Yukiko; Milne, Alice E; Mishkin, Mortimer; Rauschecker, Josef P; Logothetis, Nikos K
2015-01-23
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex.
Different forms of effective connectivity in primate frontotemporal pathways
Petkov, Christopher I.; Kikuchi, Yukiko; Milne, Alice E.; Mishkin, Mortimer; Rauschecker, Josef P.; Logothetis, Nikos K.
2015-01-01
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. PMID:25613079
The benefit of modeled ozone data for the reconstruction of a 99-year UV radiation time series
NASA Astrophysics Data System (ADS)
Junk, J.; Feister, U.; Helbig, A.; GöRgen, K.; Rozanov, E.; KrzyśCin, J. W.; Hoffmann, L.
2012-08-01
Solar erythemal UV radiation (UVER) is highly relevant for numerous biological processes that affect plants, animals, and human health. Nevertheless, long-term UVER records are scarce. As significant declines in the column ozone concentration were observed in the past and a recovery of the stratospheric ozone layer is anticipated by the middle of the 21st century, there is a strong interest in the temporal variation of UVERtime series. Therefore, we combined ground-based measurements of different meteorological variables with modeled ozone data sets to reconstruct time series of daily totals of UVER at the Meteorological Observatory, Potsdam, Germany. Artificial neural networks were trained with measured UVER, sunshine duration, the day of year, measured and modeled total column ozone, as well as the minimum solar zenith angle. This allows for the reconstruction of daily totals of UVERfor the period from 1901 to 1999. Additionally, analyses of the long-term variations from 1901 until 1999 of the reconstructed, new UVER data set are presented. The time series of monthly and annual totals of UVERprovide a long-term meteorological basis for epidemiological investigations in human health and occupational medicine for the region of Potsdam and Berlin. A strong benefit of our ANN-approach is the fact that it can be easily adapted to different geographical locations, as successfully tested in the framework of the COSTAction 726.
NASA Astrophysics Data System (ADS)
Junk, J.; Feister, U.; Rozanov, E.; Krzyścin, J. W.
2013-05-01
Solar erythemal UV radiation (UVER) is highly relevant for numerous biological processes that affect plants, animals, and human health. Nevertheless, long-term UVER records are scarce. As significant declines in the column ozone concentration were observed in the past and a recovery of the stratospheric ozone layer is anticipated by the middle of the 21st century, there is a strong interest in the temporal variation of UVER time series. Therefore, we combined groundbased measurements of different meteorological variables with modeled ozone data sets to reconstruct time series of daily totals of UVER at the Meteorological Observatory Potsdam, Germany. Artificial neural networks were trained with measured UVER, sunshine duration, the day of year, measured and modeled total column ozone, as well as the minimum solar zenith angle. This allows for the reconstruction of daily totals of UVER for the period from 1901 to 1999. Additionally, analyses of the long-term variations from 1901 until 1999 of the reconstructed, new UVER data set are presented. The time series of monthly and annual totals of UVER provide a long-term meteorological basis for epidemiological investigations in human health and occupational medicine for the region of Potsdam and Berlin. A strong benefit of our ANN-approach is the fact that it can be easily adapted to different geographical locations, as successfully tested in the framework of the COSTAction 726.
Seasonal 7Be and 137Cs activities in surface air before and after the Chernobyl event.
Kulan, A
2006-01-01
Seasonal fluctuations of cosmogenic (7)Be (T(1/2)=53.4 days) and anthropogenic (137)Cs (T(1/2)=30 years) activities in surface air (aerosols) have been extracted from a long data record (1972-2000) at high latitude (56 degrees N-68 degrees N, Sweden). Normalization to weekly average values was used to control long-term trends so that cyclical trends could be investigated. Enhanced (7)Be activity was observed in spring and summer seasons and likely relates to the seasonal thinning of the tropopause. Variations in the (137)Cs activity record seem to reflect how the isotope was injected in the atmosphere (stratospheric from bomb tests and tropospheric from the Chernobyl accident) and subsequent transport mechanisms. Accordingly, until 1986, the surface air (137)Cs activity was strongly related to nuclear weapons test fallout and exhibits temporal fluctuations resembling the (7)Be. Conversely, since 1986 the Chernobyl-produced (137)Cs dominates the long-term record that shows annual cycles that are strongly controlled by atmospheric boundary layer conditions. Additionally, short-term data within the post-Chernobyl period suggest subtle intrusion of air masses rich in (137)Cs that may occur throughout the year, and differences resulting from spatial occurrence at these latitudes. This is an important observation that may have to do with year-to-year variation and calls for caution when interpreting short-term data records.
Emotional cues enhance the attentional effects on spatial and temporal resolution.
Bocanegra, Bruno R; Zeelenberg, René
2011-12-01
In the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i.e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face cues, as compared with neutral face cues, enhanced the attentional benefits in spatial resolution but also enhanced the attentional deficits in temporal resolution. Furthermore, we observed that the overall magnitudes of individuals' attentional effects correlated strongly with the magnitude of the emotion × attention interaction effect. Combined, these findings provide strong support for the idea that emotion enhances the strength of a cue's attentional response.
Klemme, I; Hanski, I
2009-09-01
We estimated broad-sense heritabilities (H(2)) of 13 female and seven male life-history traits of the Glanville fritillary butterfly (Melitaea cinxia) under semi-natural conditions in a large outdoor population cage. The analysis was based on full-sib families collected as young larvae in the field and reared under common garden conditions. We found significant genetic variance in female lifespan, fecundity, number of matings and host-plant preference as well as in male body mass and mobility. Apart from host-plant preference, female traits that were more strongly correlated with lifetime reproductive success (LRS; measured as total number of eggs laid) had higher H(2). LRS itself exhibited significant heritability. Host-plant preference had very high H(2), consistent with a previously reported genetically determined geographical cline in host-plant preference in the study area. Lifespan and egg hatching rate were significantly associated with a SNP in the coding region of the Pgi gene, for which there is previous evidence for balancing selection. Selection on Pgi, which furthermore shows spatial and temporal variation, may maintain genetic variance in fitness-related life-history traits. In contrast, we found no strong evidence for life-history trade-offs.
Ozgul, Arpat; Armitage, Kenneth B; Blumstein, Daniel T; Oli, Madan K
2006-04-01
Spatiotemporal variation in age-specific survival rates can profoundly influence population dynamics, but few studies of vertebrates have thoroughly investigated both spatial and temporal variability in age-specific survival rates. We used 28 years (1976-2003) of capture-mark-recapture (CMR) data from 17 locations to parameterize an age-structured Cormack-Jolly-Seber model, and investigated spatial and temporal variation in age-specific annual survival rates of yellow-bellied marmots (Marmota flaviventris). Survival rates varied both spatially and temporally, with survival of younger animals exhibiting the highest degree of variation. Juvenile survival rates varied from 0.52 +/- 0.05 to 0.78 +/- 0.10 among sites and from 0.15 +/- 0.14 to 0.89 +/- 0.06 over time. Adult survival rates varied from 0.62 +/- 0.09 to 0.80 +/- 0.03 among sites, but did not vary significantly over time. We used reverse-time CMR models to estimate the realized population growth rate (lamda), and to investigate the influence of the observed variation in age-specific survival rates on lamda. The realized growth rate of the population closely covaried with, and was significantly influenced by, spatiotemporal variation in juvenile survival rate. High variability in juvenile survival rates over space and time clearly influenced the dynamics of our study population and is also likely to be an important determinant of the spatiotemporal variation in the population dynamics of other mammals with similar life history characteristics.
TEC Longitude Difference Using GIMS and the IRI Model
NASA Astrophysics Data System (ADS)
Natali, Maria Paula; Meza, Amalia Margarita; Mendoza, Gastón
2016-07-01
The main geomagnetic field declination has a global distribution with positive and negative values showing maximum east-west differences over North America and Oceania and minimum differences over America and Asia. Several authors study one or more of these regions using TEC data derived from GNSS observations to describe variations in TEC. They reported a pronounced longitudinal variation respect to zero magnetic declination. One of the important factors that cause the longitude difference at mid-latitude is a combined effect of the longitude variations of magnetic declination and the variations of the zonal thermospheric winds with local time. We propose to study this effect using Global Ionospheric Maps (GIMs) and the respective TEC values generated from the International Reference Ionospheric (IRI) model, during a solar cycle, applying Principal Component Analysis (PCA). Our works is focused over different local times and regions at mid-latitude. PCA involves a mathematical procedure that transforms a number of correlated variables into a number of uncorrelated variables using the data itself. The spatial structure of the ionosphere variability and its temporal evolution, together are called modes, and there are ordered according to their percentage of the variability of data from highest to lowest. In this analysis the first mode has more than the 90 % of the variability, representing the nominal behavior of the ionosphere, and the second and third modes are the more important for our analysis, because they show the strong longitudinal variation in the different regions using either GIMs or the IRI model.
Seasonal variations in the diversity and abundance of diazotrophic communities across soils.
Pereira e Silva, Michele C; Semenov, Alexander V; van Elsas, Jan Dirk; Salles, Joana Falcão
2011-07-01
The nitrogen (N)-fixing community is a key functional community in soil, as it replenishes the pool of biologically available N that is lost to the atmosphere via anaerobic ammonium oxidation and denitrification. We characterized the structure and dynamic changes in diazotrophic communities, based on the nifH gene, across eight different representative Dutch soils during one complete growing season, to evaluate the amplitude of the natural variation in abundance and diversity, and identify possible relationships with abiotic factors. Overall, our results indicate that soil type is the main factor influencing the N-fixing communities, which were more abundant and diverse in the clay soils (n=4) than in the sandy soils (n=4). On average, the amplitude of variation in community size as well as the range-weighted richness were also found to be higher in the clay soils. These results indicate that N-fixing communities associated with sandy and clay soil show a distinct amplitude of variation under field conditions, and suggest that the diazotrophic communities associated with clay soil might be more sensitive to fluctuations associated with the season and agricultural practices. Moreover, soil characteristics such as ammonium content, pH and texture most strongly correlated with the variations observed in the diversity, size and structure of N-fixing communities, whose relative importance was determined across a temporal and spatial scale. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Implications of recurrent disturbance for genetic diversity.
Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C
2016-02-01
Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes.
Recent variations in seasonality of temperature and precipitation in Canada, 1976-95
NASA Astrophysics Data System (ADS)
Whitfield, Paul H.; Bodtker, Karin; Cannon, Alex J.
2002-11-01
A previously reported analysis of rehabilitated monthly temperature and precipitation time series for several hundred stations across Canada showed generally spatially coherent patterns of variation between two decades (1976-85 and 1986-95). The present work expands that analysis to finer time scales and a greater number of stations. We demonstrate how the finer temporal resolution, at 5 day or 11 day intervals, increases the separation between clusters of recent variations in seasonal patterns of temperature and precipitation. We also expand the analysis by increasing the number of stations from only rehabilitated monthly data sets to rehabilitated daily sets, then to approximately 1500 daily observation stations. This increases the spatial density of data and allows a finer spatial resolution of patterns between the two decades. We also examine the success of clustering partial records, i.e. sites where the data record is incomplete. The intent of this study was to be consistent with previous work and explore how greater temporal and spatial detail in the climate data affects the resolution of patterns of recent climate variations. The variations we report for temperature and precipitation are taking place at different temporal and spatial scales. Further, the spatial patterns are much broader than local climate regions and ecozones, indicating that the differences observed may be the result of variations in atmospheric circulation.
NASA Astrophysics Data System (ADS)
Nanouris, N.; Kalimeris, A.; Antonopoulou, E.; Rovithis-Livaniou, H.
2015-03-01
Context. The credibility of an eclipse timing variation (ETV) diagram analysis is investigated for various manifestations of the mass transfer and gravitational radiation processes in binary systems. The monotonicity of the period variations and the morphology of the respective ETV diagrams are thoroughly explored in both the direct impact and the accretion disk mode of mass transfer, accompanied by different types of mass and angular momentum losses (through a hot-spot emission from the gainer and via the L2/L3 points). Aims: Our primary objective concerns the traceability of each physical mechanism by means of an ETV diagram analysis. Also, possible critical mass ratio values are sought for those transfer modes that involve orbital angular momentum losses strong enough to dictate the secular period changes even when highly competitive mechanisms with the opposite direction act simultaneously. Methods: The dot{J-dot{P}} relation that governs the orbital evolution of a binary system is set to provide the exact solution for the period and the function expected to represent the subsequent eclipse timing variations. The angular momentum transport is parameterized through appropriate empirical relations, which are inferred from semi-analytical ballistic models. Then, we numerically determine the minimum temporal range over which a particular mechanism is rendered measurable, as well as the critical mass ratio values that signify monotonicity inversion in the period modulations. Results: Mass transfer rates comparable to or greater than 10-8 M⊙ yr-1 are measurable for typical noise levels of the ETV diagrams, regardless of whether the process is conservative. However, the presence of a transient disk around the more massive component defines a critical mass ratio (qcr ≈ 0.83) above which the period turns out to decrease when still in the conservative regime, rendering the measurability of the anticipated variations a much more complicated task. The effects of gravitational radiation proved to be rather undetectable, except for systems with physical characteristics that only refer to cataclysmic variables. Conclusions: The monotonicity of the period variations and the curvature of the respective ETV diagrams depend strongly on the accretion mode and the degree of conservatism of the transfer process. Unlike the hot-spot effects, the Lagrangian points L2 and L3 support very efficient routes of strong angular momentum loss. It is further shown that escape of mass via the L3 point - when the donor is the less massive component - safely provides critical mass ratios above which the period is expected to decrease, no matter how intense the process is.
Temporal patterns in adult salmon migration timing across southeast Alaska
Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David
2015-01-01
Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon migration timing. Although salmon phenological diversity will complicate future predictions of migration timing, this variation likely acts as a major contributor to population and ecosystem resiliency in southeast Alaska.
Otárola, Mauricio Fernández; Avalos, Gerardo
2014-06-01
• Premise of the study: Environmental heterogeneity is a strong selective force shaping adaptation and population dynamics across temporal and spatial scales. Natural and anthropogenic gradients influence the variation of environmental and biotic factors, which determine population demography and dynamics. Successional gradients are expected to influence demographic parameters, but the relationship between these gradients and the species life history, habitat requirements, and degree of variation in demographic traits remains elusive.• Methods: We used the palm Euterpe precatoria to test the effect of successional stage on plant demography within a continuous population. We calculated demographic parameters for size stages and performed matrix analyses to investigate the demographic variation within primary and secondary forests of La Selva, Costa Rica.• Key results: We observed differences in mortality and recruitment of small juveniles between primary and secondary forests. Matrix models described satisfactorily the chronosequence of population changes, which were characterized by high population growth rate in disturbed areas, and decreased growth rate in old successional forests until reaching stability.• Conclusions: Different demographic parameters can be expressed in contiguous subpopulations along a gradient of successional stages with important consequences for population dynamics. Demographic variation superimposed on these gradients contributes to generate subpopulations with different demographic composition, density, and ecological properties. Therefore, the effects of spatial variation must be reconsidered in the design of demographic analyses of tropical palms, which are prime examples of subtle local adaptation. These considerations are crucial in the implementation of management plans for palm species within spatially complex and heterogeneous tropical landscapes. © 2014 Botanical Society of America, Inc.
Saavedra, Serguei; Rohr, Rudolf P; Fortuna, Miguel A; Selva, Nuria; Bascompte, Jordi
2016-04-01
Many of the observed species interactions embedded in ecological communities are not permanent, but are characterized by temporal changes that are observed along with abiotic and biotic variations. While work has been done describing and quantifying these changes, little is known about their consequences for species coexistence. Here, we investigate the extent to which changes of species composition impact the likelihood of persistence of the predator-prey community in the highly seasonal Białowieza Primeval Forest (northeast Poland), and the extent to which seasonal changes of species interactions (predator diet) modulate the expected impact. This likelihood is estimated extending recent developments on the study of structural stability in ecological communities. We find that the observed species turnover strongly varies the likelihood of community persistence between summer and winter. Importantly, we demonstrate that the observed seasonal interaction changes minimize the variation in the likelihood of persistence associated with species turnover across the year. We find that these community dynamics can be explained as the coupling of individual species to their environment by minimizing both the variation in persistence conditions and the interaction changes between seasons. Our results provide a homeostatic explanation for seasonal species interactions and suggest that monitoring the association of interactions changes with the level of variation in community dynamics can provide a good indicator of the response of species to environmental pressures.
Current temporal asymmetry and the role of tides: Nan-Wan Bay vs. the Gulf of Elat
NASA Astrophysics Data System (ADS)
Ashkenazy, Yosef; Fredj, Erick; Gildor, Hezi; Gong, Gwo-Ching; Lee, Hung-Jen
2016-05-01
Nan-Wan Bay in Taiwan and the Gulf of Elat in Israel are two different coastal environments, and as such, their currents are expected to have different statistical properties. While Nan-Wan Bay is shallow, has three open boundaries, and is directly connected to the open ocean, the Gulf of Elat is deep, semi-enclosed, and connected to the Red Sea via the Straits of Tiran. Surface currents have been continuously measured with fine temporal (less than or equal to 1 h) and spatial resolution (less than or equal to 1 km) for more than a year in both environments using coastal radars (CODARs) that cover a domain of roughly 10 × 10 km. These measurements show that the currents in Nan-Wan Bay are much stronger than those in the Gulf of Elat and that the mean current field in Nan-Wan Bay exhibits cyclonic circulation, which is stronger in the summer; in the Gulf of Elat, the mean current field is directed southward and is also stronger during the summer. We have compared the statistical properties of the current speeds in both environments and found that both exhibit large spatial and seasonal variations in the shape parameter of the Weibull distribution. However, we have found fundamental and significant differences when comparing the temporal asymmetry of the current speed (i.e., the ratio between the time during which the current speed increases and the total time). While the Nan-Wan Bay currents are significantly asymmetric, those of the Gulf of Elat are not. We then extracted the tidal component of the Nan-Wan Bay currents and found that it is strongly asymmetric, while the asymmetry of tidally filtered currents is much weaker. We thus conclude that the temporal asymmetry of the Nan-Wan Bay currents reported here is due to the strong tides in the region. We show that the asymmetry ratio in Nan-Wan Bay varies spatially and seasonally: (i) the currents increase rapidly and decay slowly in the northern part of the domain and vice versa in the southern part, and (ii) the asymmetry is stronger during summer.
Current temporal asymmetry and the role of tides: Nan-Wan Bay vs. the Gulf of Elat
NASA Astrophysics Data System (ADS)
Ashkenazy, Y.; Fredj, E.; Gildor, H.; Gong, G. C.; Lee, H. J.; Wu, C. R.
2016-02-01
Nan-Wan Bay in Taiwan and the Gulf of Elat in Israel are two different coastal environments and as such are expected to have different statistical properties of their currents. While the Nan-Wan Bay is shallow, has three open boundaries, and directly connected to the open ocean, the Gulf of Elat is deep, semi-enclosed, and connected to the Red Sea via the Straits of Tiran. High temporal (less or equal one hour) and spatial (less or equal one km) surface currents have been measured continuously for more than a year in both environments using Coastal Radars (CODARs) that cover a domain of roughly 10×10 kms. These measurements show that the currents in Nan-Wan Bay are much stronger than those in the Gulf of Elat and that the mean current field in Nan-Wan Bay exhibits cyclonic circulation, which is stronger in the summer; in the Gulf of Elat the mean current field is directed to south and is stronger during the summer. We have compared the statistical properties of the CODAR current speeds in both environments and found that both exhibit large spatial and seasonal variations in the shape parameter of the Weibull distribution. However, we have found fundamental and significant differences when comparing the temporal asymmetry of the current speed (i.e., the ratio between the time during which the current speed is increasing to the total time). While the Nan-Wan Bay currents are significantly asymmetric, those of the Gulf of Elat are not significantly asymmetric. We then extracted the tidal component of the Nan-Wan Bay currents and found that it is strongly asymmetric while the asymmetry of tidally-filtered currents is much weaker. We thus conclude that the temporal asymmetry of the Nan-Wan Bay currents reported here is due to the strong tides in the region. We show that the asymmetry ratio in the Nan-Wan Bay is varied spatially and seasonally: (i) currents increase rapidly and decay slowly in the northern part of the domain and vice versa in the southern part, and that (ii) the asymmetry is stronger during summer.
Natural variations in the geomagnetically trapped electron population
NASA Technical Reports Server (NTRS)
Vampola, A. L.
1972-01-01
Temporal variations in the trapped natural electron flux intensities and energy spectra are discussed and demonstrated using recent satellite data. These data are intended to acquaint the space systems engineer with the types of natural variations that may be encountered during a mission and to augment the models of the electron environment currently being used in space system design and orbit selection. An understanding of the temporal variations which may be encountered should prove helpful. Some of the variations demonstrated here which are not widely known include: (1) addition of very energetic electrons to the outer zone during moderate magnetic storms: (2) addition of energetic electrons to the inner zone during major magnetic storms; (3) inversions in the outer zone electron energy spectrum during the decay phase of a storm injection event and (4) occasional formation of multiple maxima in the flux vs altitude profile of moderately energetic electrons.
Wavelet Analyses of Oil Prices, USD Variations and Impact on Logistics
NASA Astrophysics Data System (ADS)
Melek, M.; Tokgozlu, A.; Aslan, Z.
2009-07-01
This paper is related with temporal variations of historical oil prices and Dollar and Euro in Turkey. Daily data based on OECD and Central Bank of Turkey records beginning from 1946 has been considered. 1D-continuous wavelets and wavelet packets analysis techniques have been applied on data. Wavelet techniques help to detect abrupt changing's, increasing and decreasing trends of data. Estimation of variables has been presented by using linear regression estimation techniques. The results of this study have been compared with the small and large scale effects. Transportation costs of track show a similar variation with fuel prices. The second part of the paper is related with estimation of imports, exports, costs, total number of vehicles and annual variations by considering temporal variation of oil prices and Dollar currency in Turkey. Wavelet techniques offer a user friendly methodology to interpret some local effects on increasing trend of imports and exports data.
Temporal Variability of Interstellar Na I Absorption toward the Monoceros Loop
NASA Astrophysics Data System (ADS)
Dirks, Cody; Meyer, David M.
2016-03-01
We report the first evidence of temporal variability in the interstellar Na I absorption toward HD 47240, which lies behind the Monoceros Loop supernova remnant (SNR). Analysis of multi-epoch Kitt Peak coudé feed spectra from this sight line taken over an eight-year period reveals significant variation in both the observed column density and the central velocities of the high-velocity gas components in these spectra. Given the ˜1.3 mas yr-1 proper motion of HD 47240 and an SNR distance of 1.6 kpc, this variation would imply ˜10 au fluctuations within the SNR shell. Similar variations have been previously reported in the Vela SNR, suggesting a connection between the expanding SNR gas and the observed variations. We speculate on the potential nature of the observed variations toward HD 47240 in the context of the expanding remnant gas interacting with the ambient interstellar medium.
NASA Astrophysics Data System (ADS)
Diolaiuti, G.; D'Agata, C.; Stella, G.; Apadula, F.; Smiraglia, C.
This paper introduces the preliminary results of a project applied primarily to the compilation of the first general and complete data-base of all Italian glaciers, avail- able to the scientific community, and secondly to the elaboration of the information contained in the data base to supply a strong contribution to the study of the spatial and temporal variabilities of the climatic signal inside the alpine glacier historical series. The project started in the year 2000 as a convention between Università degli Studi di Milano (Italy) and CESI (Italian Electrical Sperimental Center) and gives the first results and the free use by people in the 2002, the International Year of Mountains. Fundamental for the development of the project was the collaboration of the Italian Glaciological Committee (CGI) with its publications (from 1914 to 1977 SBollettino & cedil;del Comitato Glaciologico ItalianoT and from 1978 to 2000 SGeografia Fisica e Di- & cedil;namica Quaternaria). The data-base collects qualitative and quantitative information on glaciers monitored by the Italian Glaciological CommitteeSs operators during the century of their activity for a total of 902 glaciers (901 alpine glaciers and only Ap- pennine one, the Calderone Glacier). For every glacier were inserted in the data-base: 1) data about the glacial terminus elevations, date and method of the measure 2) name and position of the signals used by the operators in order to verify the variations of extension of glacial terminus 3) distance between the signal and the glacier terminus and relative angle of measure 4) operatorSs name 5) bibliographical source of the information 6) qualitative data (on cartographic material, photographies and papers). Currently only a part of the data collected in the data-base is directly available in the web site: www.cesi.it/greeninfo/i ghiacciai Italiani/. Here the users are able to find, for every glacier, a table with all the references of qualitative (as cartography and iconog- raphy) data and diagrams of the frontal variations (both annual and cumulated) and of the glacier terminus elevations. For each diagram it is possible to evidence different temporal range (according to the usersS interest) by means of appropriate interroga- tion. It is possible to use all tha data base (and not only the diagrams and the qualitative table) by compiling appropriate request. The second phase consisted in the data pro- cessing. For all the glaciers collected in the database the data are processed in order to supply time-distance diagrams of the annual and cumulated frontal variations. The 1 comparison of the curves allowed to appreciate the common glacial trend differenti- ated from a glacial body to another in function of the multiple influential factors on frontal dynamics. All the monitored glaciers have in fact a phase of progress in the 20s of XXth century, a hard frontal retreat after the 30s and a new generalized progress be- tween the end of the 60s and the half of the 80s of XXth century and a general retreat from 1985 up to now. This is according to the climatic dynamics of the XX century (a general warming tendence with short periods of thermal reduction in the 20s and in 60s-.80s). For a sample of glacier were available complete data set for over a period of twenty years (without gaps) or not complete data set but with little gap of about 5 years or less that were possible to fulfill. For these data series were possible to cal- culate the correlation with the other glaciers. This type of analysis allowed to prepare correlation matrices for different temporal periods that allow to visualize the space and temporal variations of the climatic signal of the Italian glaciers frontal variations. It was possible to notice that glaciers located in close areas often do not manifest an strong correlation, while sometimes glaciers located far but with morphometric characteristics (dimensions) and geographic ones (aspect) similar were meaningfully correlated. This result is particularly interesting because it was quite different from the result obtained by various authors processing an other important glaciological param- eter, the glacier mass balances data. The large sample of data used in thi study allowed to notice that the regionalism rule is not valid for the frontal variations and that on the space variability of this glaciological parameter are instead influential the similarity of geometric and geographic factors (dimension and aspect), so glaciers far, but in the same physical conditions, answer in a similar way to the climatic variations. 2
NASA Technical Reports Server (NTRS)
Girotto, Manuela; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Rodell, Matthew
2017-01-01
Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0 - 5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.
NASA Astrophysics Data System (ADS)
Girotto, M.; Reichle, R. H.; De Lannoy, G.; Rodell, M.
2017-12-01
Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0-5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.
Wodschow, Kirstine; Hansen, Birgitte; Schullehner, Jörg; Ersbøll, Annette Kjær
2018-06-08
Concentrations and spatial variations of the four cations Na, K, Mg and Ca are known to some extent for groundwater and to a lesser extent for drinking water. Using Denmark as case, the purpose of this study was to analyze the spatial and temporal variations in the major cations in drinking water. The results will contribute to a better exposure estimation in future studies of the association between cations and diseases. Spatial and temporal variations and the association with aquifer types, were analyzed with spatial scan statistics, linear regression and a multilevel mixed-effects linear regression model. About 65,000 water samples of each cation (1980⁻2017) were included in the study. Results of mean concentrations were 31.4 mg/L, 3.5 mg/L, 12.1 mg/L and 84.5 mg/L for 1980⁻2017 for Na, K, Mg and Ca, respectively. An expected west-east trend in concentrations were confirmed, mainly explained by variations in aquifer types. The trend in concentration was stable for about 31⁻45% of the public water supply areas. It is therefore recommended that the exposure estimate in future health related studies not only be based on a single mean value, but that temporal and spatial variations should also be included.
Withered on the stem: is bamboo a seasonally limiting resource for giant pandas?
Li, Youxu; Swaisgood, Ronald R; Wei, Wei; Nie, Yonggang; Hu, Yibo; Yang, Xuyu; Gu, Xiaodong; Zhang, Zejun
2017-04-01
In response to seasonal variation in quality and quantity of available plant biomass, herbivorous foragers may alternate among different plant resources to meet nutritional requirements. Giant pandas (Ailuropoda melanoleuca) are reliant almost exclusively on bamboo which appears omnipresent in most occupied habitat, but subtle temporal variation in bamboo quality may still govern foraging strategies, with population-level effects. In this paper, we investigated the possibility that temporal variation in the quality of this resource is involved in population regulation and examined pandas' adaptive foraging strategies in response to temporal variation in bamboo quality. Giant pandas in late winter and early spring consumed a less optimal diet in Foping Nature Reserve, as the availability of the most nutritious and preferred components and age classes of Bashania fargesii declined, suggesting that bamboo may be a seasonally limiting resource. Most panda mortalities and rescues occurred during the same period of seasonal food limitation. Our findings raised the possibility that while total bamboo biomass may not be a limiting factor, carrying capacity may be influenced by subtle seasonal variation in bamboo quality. We recommend that managers and policy-makers should consider more than just the quantity of bamboo in the understory and that carrying capacity estimates should be revised downward to reflect the fact that all bamboos are not equal.
NASA Astrophysics Data System (ADS)
Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Civet, François; Mandea, Mioara; Beucler, Éric
2018-03-01
A detailed description of the main geomagnetic field and of its temporal variations (i.e., the secular variation or SV) is crucial to understanding the geodynamo. Although the SV is known with high accuracy at ground magnetic observatory locations, the globally uneven distribution of the observatories hampers the determination of a detailed global pattern of the SV. Over the past two decades, satellites have provided global surveys of the geomagnetic field which have been used to derive global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. However, discrepancies remain between ground measurements and field predictions by these models; indeed the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose to directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. We follow a Virtual Observatory (VO) approach and define a global mesh of VOs at satellite altitude. For each VO and each given time interval we apply an Equivalent Source Dipole (ESD) technique to reduce all measurements to a unique location. Synthetic data are first used to validate the new VO-ESD approach. Then, we apply our scheme to data from the first two years of the Swarm mission. For the first time, a 2.5° resolution global mesh of VO time series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. Our approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are then used to derive global spherical harmonic models. For a simple SH parametrization the model describes well the secular trend of the magnetic field both at satellite altitude and at the surface. As more data will be made available, longer VO-ESD time series can be derived and consequently used to study sharp temporal variation features, such as geomagnetic jerks.
Motion-aware temporal regularization for improved 4D cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Mory, Cyril; Janssens, Guillaume; Rit, Simon
2016-09-01
Four-dimensional cone-beam computed tomography (4D-CBCT) of the free-breathing thorax is a valuable tool in image-guided radiation therapy of the thorax and the upper abdomen. It allows the determination of the position of a tumor throughout the breathing cycle, while only its mean position can be extracted from three-dimensional CBCT. The classical approaches are not fully satisfactory: respiration-correlated methods allow one to accurately locate high-contrast structures in any frame, but contain strong streak artifacts unless the acquisition is significantly slowed down. Motion-compensated methods can yield streak-free, but static, reconstructions. This work proposes a 4D-CBCT method that can be seen as a trade-off between respiration-correlated and motion-compensated reconstruction. It builds upon the existing reconstruction using spatial and temporal regularization (ROOSTER) and is called motion-aware ROOSTER (MA-ROOSTER). It performs temporal regularization along curved trajectories, following the motion estimated on a prior 4D CT scan. MA-ROOSTER does not involve motion-compensated forward and back projections: the input motion is used only during temporal regularization. MA-ROOSTER is compared to ROOSTER, motion-compensated Feldkamp-Davis-Kress (MC-FDK), and two respiration-correlated methods, on CBCT acquisitions of one physical phantom and two patients. It yields streak-free reconstructions, visually similar to MC-FDK, and robust information on tumor location throughout the breathing cycle. MA-ROOSTER also allows a variation of the lung tissue density during the breathing cycle, similar to that of planning CT, which is required for quantitative post-processing.
NASA Astrophysics Data System (ADS)
Akers, P. D.; Welker, J. M.
2015-12-01
Spatial variations in precipitation isotopes have been the focus of much recent research, but relatively less work has explored changes at various temporal scales. This is partly because most spatially-diverse and long-term isotope databases are offered at a monthly resolution, while daily or event-level records are spatially and temporally limited by cost and logistics. A subset of 25 United States Network for Isotopes in Precipitation (USNIP) sites with weekly-resolution in the east-central United States was analyzed for site-specific relationships between δ18O and δD (the local meteoric water line/LMWL), δ18O and surface temperature, and δ18O and precipitation amount. Weekly data were then aggregated into monthly and seasonal data to examine the effect of aggregation on correlation and slope values for each of the relationships. Generally, increasing aggregation improved correlations (>25% for some sites) due to a reduced effect of extreme values, but estimates on regression variable error increased (>100%) because of reduced sample sizes. Aggregation resulted in small, but significant drops (5-25%) in relationship slope values for some sites. Weekly data were also grouped by month and season to explore changes in relationships throughout the year. Significant subannual variability exists in slope values and correlations even for sites with very strong overall correlations. LMWL slopes are highest in winter and lowest in summer, while the δ18O-surface temperature relationship is strongest in spring. Despite these overall trends, a high level of month-to-month and season-to-season variability is the norm for these sites. Researchers blindly applying overall relationships drawn from monthly-resolved databases to paleoclimate or environmental research risk assuming these relationships apply at all temporal resolutions. When possible, researchers should match the temporal resolution used to calculate an isotopic relationship with the temporal resolution of their applied proxy.
The effects of temporal variability of mixed layer depth on primary productivity around Bermuda
NASA Technical Reports Server (NTRS)
Bissett, W. Paul; Meyers, Mark B.; Walsh, John J.; Mueller-Karger, Frank E.
1994-01-01
Temporal variations in primary production and surface chlorophyll concentrations, as measured by ship and satellite around Bermuda, were simulated with a numerical model. In the upper 450 m of the water column, population dynamics of a size-fractionated phytoplankton community were forced by daily changes of wind, light, grazing stress, and nutrient availability. The temporal variations of production and chlorophyll were driven by changes in nutrient introduction to the euphotic zone due to both high- and low-frequency changes of the mixed layer depth within 32 deg-34 deg N, 62 deg-64 deg W between 1979 and 1984. Results from the model derived from high-frequency (case 1) changes in the mixed layer depth showed variations in primary production and peak chlorophyll concentrations when compared with results from the model derived from low-frequency (case 2) mixed layer depth changes. Incorporation of size-fractionated plankton state variables in the model led to greater seasonal resolution of measured primary production and vertical chlorophyll profiles. The findings of this study highlight the possible inadequacy of estimating primary production in the sea from data of low-frequency temporal resolution and oversimplified biological simulations.
Fox, Jeremy W; Harder, Lawrence D
2015-01-01
Local adaptation occurs when different environments are dominated by different specialist genotypes, each of which is relatively fit in its local conditions and relatively unfit under other conditions. Analogously, ecological species sorting occurs when different environments are dominated by different competing species, each of which is relatively fit in its local conditions. The simplest theory predicts that spatial, but not temporal, environmental variation selects for local adaptation (or generates species sorting), but this prediction is difficult to test. Although organisms can be reciprocally transplanted among sites, doing so among times seems implausible. Here, we describe a reciprocal transplant experiment testing for local adaptation or species sorting of lake bacteria in response to both temporal and spatial variation in water chemistry. The experiment used a -80°C freezer as a "time machine." Bacterial isolates and water samples were frozen for later use, allowing transplantation of older isolates "forward in time" and newer isolates "backward in time." Surprisingly, local maladaptation predominated over local adaptation in both space and time. Such local maladaptation may indicate that adaptation, or the analogous species sorting process, fails to keep pace with temporal fluctuations in water chemistry. This hypothesis could be tested with more finely resolved temporal data. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.
Gooding, R H
1996-01-01
An overview of the genetic variation in arthropods that transmit pathogens to vertebrates is presented, emphasizing the genetics of vector-pathogen relationships and the biochemical genetics of vectors. Vector-pathogen interactions are reviewed briefly as a prelude to a discussion of the genetics of susceptibility and refractoriness in vectors. Susceptibility to pathogens is controlled by maternally inherited factors, sex-linked dominant alleles, and dominant and recessive autosomal genes. There is widespread interpopulation (including intercolony) and temporal variation in susceptibility to pathogens. The amount of biochemical genetic variation in vectors is similar to that found in other invertebrates. However, the amount varies widely among species, among populations within species, and temporally within populations. Biochemical genetic studies show that there is considerable genetic structuring of many vectors at the local, regional, and global levels. It is argued that genetic variation in vectors is critical in understanding vector-pathogen interactions and that genetic variation in vectors creates both obstacles to and opportunities for application of genetic techniques to the control of vectors. PMID:8809462
Tracking contaminants in seabirds of Arctic Canada: temporal and spatial insights.
Mallory, Mark L; Braune, Birgit M
2012-07-01
Levels and trends of persistent organic pollutants and trace elements in seabirds breeding in the vast Canadian Arctic have been monitored since 1975. Data from this monitoring have indicated both spatial and temporal variation across the region, attributable in part to differences in species' diets, differences in regional deposition patterns, and unidirectional trends in contaminants reaching this area from emissions in temperate and tropical areas to the south. Seabird tissues have served as effective biomonitors to examine this variation, and national and international collaboration in this monitoring effort has promoted valuable synthetic assessments of spatial and temporal patterns in Arctic contaminants. Here we review the history of the monitoring program, the critical role played by Environment Canada's National Wildlife Specimen Bank, and we summarize important spatial and temporal trends in various contaminants in Canadian Arctic seabirds. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Minaudo, Camille; Dupas, Rémi; Moatar, Florentina; Gascuel-Odoux, Chantal
2016-04-01
Phosphorus fluxes in streams are subjected to high temporal variations, questioning the relevance of the monitoring strategies (generally monthly sampling) chosen to assist EU Directives to capture phosphorus fluxes and their variations over time. The objective of this study was to estimate the annual and seasonal P flux uncertainties depending on several monitoring strategies, with varying sampling frequencies, but also taking into account simultaneous and continuous time-series of parameters such as turbidity, conductivity, groundwater level and precipitation. Total Phosphorus (TP), Soluble Reactive Phosphorus (SRP) and Total Suspended Solids (TSS) concentrations were surveyed at a fine temporal frequency between 2007 and 2015 at the outlet of a small agricultural catchment in Brittany (Naizin, 5 km2). Sampling occurred every 3 to 6 days between 2007 and 2012 and daily between 2013 and 2015. Additionally, 61 storms were intensively surveyed (1 sample every 30 minutes) since 2007. Besides, water discharge, turbidity, conductivity, groundwater level and precipitation were monitored on a sub-hourly basis. A strong temporal decoupling between SRP and particulate P (PP) was found (Dupas et al., 2015). The phosphorus-discharge relationships displayed two types of hysteretic patterns (clockwise and counterclockwise). For both cases, time-series of PP and SRP were estimated continuously for the whole period using an empirical model linking P concentrations with the hydrological and physic-chemical variables. The associated errors of the estimated P concentrations were also assessed. These « synthetic » PP and SRP time-series allowed us to discuss the most efficient monitoring strategies, first taking into account different sampling strategies based on Monte Carlo random simulations, and then adding the information from continuous data such as turbidity, conductivity and groundwater depth based on empirical modelling. Dupas et al., (2015, Distinct export dynamics for dissolved and particulate phosphorus reveal independent transport mechanisms in an arable headwater catchment, Hydrological Processes, 29(14), 3162-3178
NASA Astrophysics Data System (ADS)
Leirião, Sílvia; He, Xin; Christiansen, Lars; Andersen, Ole B.; Bauer-Gottwein, Peter
2009-02-01
SummaryTotal water storage change in the subsurface is a key component of the global, regional and local water balances. It is partly responsible for temporal variations of the earth's gravity field in the micro-Gal (1 μGal = 10 -8 m s -2) range. Measurements of temporal gravity variations can thus be used to determine the water storage change in the hydrological system. A numerical method for the calculation of temporal gravity changes from the output of hydrological models is developed. Gravity changes due to incremental prismatic mass storage in the hydrological model cells are determined to give an accurate 3D gravity effect. The method is implemented in MATLAB and can be used jointly with any hydrological simulation tool. The method is composed of three components: the prism formula, the MacMillan formula and the point-mass approximation. With increasing normalized distance between the storage prism and the measurement location the algorithm switches first from the prism equation to the MacMillan formula and finally to the simple point-mass approximation. The method was used to calculate the gravity signal produced by an aquifer pump test. Results are in excellent agreement with the direct numerical integration of the Theis well solution and the semi-analytical results presented in [Damiata, B.N., and Lee, T.-C., 2006. Simulated gravitational response to hydraulic testing of unconfined aquifers. Journal of Hydrology 318, 348-359]. However, the presented method can be used to forward calculate hydrology-induced temporal variations in gravity from any hydrological model, provided earth curvature effects can be neglected. The method allows for the routine assimilation of ground-based gravity data into hydrological models.
Huang, Jian-Xiong; Zhang, Jian; Shen, Yong; Lian, Ju-yu; Cao, Hong-lin; Ye, Wan-hui; Wu, Lin-fang; Bin, Yue
2014-01-01
Ecologists have been monitoring community dynamics with the purpose of understanding the rates and causes of community change. However, there is a lack of monitoring of community dynamics from the perspective of phylogeny. We attempted to understand temporal phylogenetic turnover in a 50 ha tropical forest (Barro Colorado Island, BCI) and a 20 ha subtropical forest (Dinghushan in southern China, DHS). To obtain temporal phylogenetic turnover under random conditions, two null models were used. The first shuffled names of species that are widely used in community phylogenetic analyses. The second simulated demographic processes with careful consideration on the variation in dispersal ability among species and the variations in mortality both among species and among size classes. With the two models, we tested the relationships between temporal phylogenetic turnover and phylogenetic similarity at different spatial scales in the two forests. Results were more consistent with previous findings using the second null model suggesting that the second null model is more appropriate for our purposes. With the second null model, a significantly positive relationship was detected between phylogenetic turnover and phylogenetic similarity in BCI at a 10 m×10 m scale, potentially indicating phylogenetic density dependence. This relationship in DHS was significantly negative at three of five spatial scales. This could indicate abiotic filtering processes for community assembly. Using variation partitioning, we found phylogenetic similarity contributed to variation in temporal phylogenetic turnover in the DHS plot but not in BCI plot. The mechanisms for community assembly in BCI and DHS vary from phylogenetic perspective. Only the second null model detected this difference indicating the importance of choosing a proper null model.
Determinants of fish assemblage structure in Northwestern Great Plains streams
Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.
2011-01-01
Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American Fisheries Society 2011.
Ives, Anthony R; Paull, Cate; Hulthen, Andrew; Downes, Sharon; Andow, David A; Haygood, Ralph; Zalucki, Myron P; Schellhorn, Nancy A
2017-01-01
Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt) are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies.
Temporal coherence of two alpine lake basins of the Colorado Front Range, USA
Baron, Jill S.; Caine, N.
2000-01-01
1. Knowledge of synchrony in trends is important to determining regional responses of lakes to disturbances such as atmospheric deposition and climate change. We explored the temporal coherence of physical and chemical characteristics of two series of mostly alpine lakes in nearby basins of the Colorado Rocky Mountains. Using year-to-year variation over a 10-year period, we asked whether lakes more similar in exposure to the atmosphere be-haved more similarly than those with greater influence of catchment or in-lake processes.2. The Green Lakes Valley and Loch Vale Watershed are steeply incised basins with strong altitudinal gradients. There are glaciers at the heads of each catchment. The eight lakes studied are small, shallow and typically ice-covered for more than half the year. Snowmelt is the dominant hydrological event each year, flushing about 70% of the annual discharge from each lake between April and mid-July. The lakes do not thermally stratify during the period of open water. Data from these lakes included surface water temper-ature, sulphate, nitrate, calcium, silica, bicarbonate alkalinity and conductivity.3. Coherence was estimated by Pearson's correlation coefficient between lake pairs for each of the different variables. Despite close geographical proximity, there was not a strong direct signal from climatic or atmospheric conditions across all lakes in the study. Individual lake characteristics overwhelmed regional responses. Temporal coherence was higher for lakes within each basin than between basins and was highest for nearest neighbours.4. Among the Green Lakes, conductivity, alkalinity and temperature were temporally coherent, suggesting that these lakes were sensitive to climate fluctuations. Water tem-perature is indicative of air temperature, and conductivity and alkalinity concentrations are indicative of dilution from the amount of precipitation flushed through by snowmelt.5. In Loch Vale, calcium, conductivity, nitrate, sulphate and alkalinity were temporally coherent, while silica and temperature were not. This suggests that external influences are attenuated by internal catchment and lake processes in Loch Vale lakes. Calcium and sulphate are primarily weathering products, but sulphate derives both from deposition and from mineral weathering. Different proportions of snowmelt versus groundwater in different years could influence summer lake concentrations. Nitrate is elevated in lake waters from atmospheric deposition, but the internal dynamics of nitrate and silica may be controlled by lake food webs. Temperature is attenuated by inconsistently different climates across altitude and glacial meltwaters.6. It appears that, while the lakes in the two basins are topographically close, geologically and morphologically similar, and often connected by streams, only some attributes are temporally coherent. Catchment and in-lake processes influenced temporal patterns, especially for temperature, alkalinity and silica. Montane lakes with high altitudinal gradients may be particularly prone to local controls compared to systems where coherence is more obvious.
Sobrero, Raúl; Quirici, Verónica; Castro, Rodrigo A.; Tolhuysen, Liliana Ortiz; Vargas, Francisco; Burger, Joseph Robert; Quispe, René; Villavicencio, Camila P.; Vásquez, Rodrigo A.; Hayes, Loren D.
2012-01-01
Intraspecific variation in sociality is thought to reflect a trade-off between current fitness benefits and costs that emerge from individuals' decision to join or leave groups. Since those benefits and costs may be influenced by ecological conditions, ecological variation remains a major, ultimate cause of intraspecific variation in sociality. Intraspecific comparisons of mammalian sociality across populations facing different environmental conditions have not provided a consistent relationship between ecological variation and group-living. Thus, we studied two populations of the communally rearing rodent Octodon degus to determine how co-variation between sociality and ecology supports alternative ecological causes of group living. In particular, we examined how variables linked to predation risk, thermal conditions, burrowing costs, and food availability predicted temporal and population variation in sociality. Our study revealed population and temporal variation in total group size and group composition that covaried with population and yearly differences in ecology. In particular, predation risk and burrowing costs are supported as drivers of this social variation in degus. Thermal differences, food quantity and quality were not significant predictors of social group size. In contrast to between populations, social variation within populations was largely uncoupled from ecological differences. PMID:22344477
Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool During TOGA COARE
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah
1998-01-01
The daily mean heat and momentum fluxes at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the sea surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface fluxes compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface heat and momentum fluxes are very different between the southern and northern warm pool. In the southern warm pool, the net surface heat flux is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the sea surface temperature during the IOP does not follow the net surface heat flux. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface heat flux is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface heat flux. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the sea surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net heat flux at the surface.
NASA Astrophysics Data System (ADS)
Li, X.
2017-12-01
Interactions between lakes and the atmosphere at high-altitudes are still poorly understood due to difficulty in accessibility of direct measurements. This is particularly true for the Qinghai-Tibet Plateau (QTP), where approximately 50% of the lakes in China are located. Continuous direct measurements of the water flux and surface energy budget were made over the largest high-altitude saline lake in China, Qinghai Lake on the northeastern QTP, using the eddy covariance (EC) method from 11 May, 2013 through 10 May, 2015. Results indicated that net radiation and heat storage showed consistent diurnal variation with positive values in the daytime and negative values at night, while latent and sensible heat flux showed little diurnal variation. Nocturnal λE and H contributed to 47.7% and 29.0% of the total heat loss, during the two- year study period. Annual evaporation of Qinghai Lake was 832.5 mm for 2013/2014 and 823.6 mm for 2014/2015, respectively. The surface energy budget and evaporation showed a strong seasonal pattern, with peaks in the latent and sensible heat flux observed in autumn and early winter. There was a 2-3 month delay between the maximum net radiation and maximum latent and sensible heat fluxes. Intraseasonal and seasonal variations in latent and sensible heat flux were strongly affected by different air masses. Westerly cold and dry air masses increased evaporation while southeast moist air mass suppressed evaporation, suggesting that the lakes might serve as an 'air-conditioner' to modify the temporal heat and water flux in QTP. Latent heat flux (λE) during the ice-covered period was less than that during the ice-free period, and lake ice sublimation is perhaps a main possible source for λE during the freeze-up period.
NASA Astrophysics Data System (ADS)
Sheel, Varun; Sahu, L. K.; Kajino, M.; Deushi, M.; Stein, O.; Nedelec, P.
2014-07-01
The spatial and temporal variations of carbon monoxide (CO) are analyzed over a tropical urban site, Hyderabad (17°27'N, 78°28'E) in central India. We have used vertical profiles from the Measurement of ozone and water vapor by Airbus in-service aircraft (MOZAIC) aircraft observations, Monitoring Atmospheric Composition and Climate (MACC) reanalysis, and two chemical transport model simulations (Model for Ozone And Related Tracers (MOZART) and MRI global Chemistry Climate Model (MRI-CCM2)) for the years 2006-2008. In the lower troposphere, the CO mixing ratio showed strong seasonality, with higher levels (>300 ppbv) during the winter and premonsoon seasons associated with a stable anticyclonic circulation, while lower CO values (up to 100 ppbv) were observed in the monsoon season. In the planetary boundary layer (PBL), the seasonal distribution of CO shows the impact of both local meteorology and emissions. While the PBL CO is predominantly influenced by strong winds, bringing regional background air from marine and biomass burning regions, under calm conditions CO levels are elevated by local emissions. On the other hand, in the free troposphere, seasonal variation reflects the impact of long-range transport associated with the Intertropical Convergence Zone and biomass burning. The interannual variations were mainly due to transition from El Niño to La Niña conditions. The overall modified normalized mean biases (normalization based on the observed and model mean values) with respect to the observed CO profiles were lower for the MACC reanalysis than the MOZART and MRI-CCM2 models. The CO in the PBL region was consistently underestimated by MACC reanalysis during all the seasons, while MOZART and MRI-CCM2 show both positive and negative biases depending on the season.
Spatial, Temporal, and Density-Dependent Components of Habitat Quality for a Desert Owl
Flesch, Aaron D.; Hutto, Richard L.; van Leeuwen, Willem J. D.; Hartfield, Kyle; Jacobs, Sky
2015-01-01
Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum) in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70) than weather (0.17) or conspecifics (0.13), evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways, integrated approaches that consider habitat resources, stochastic factors, and conspecifics are necessary to accurately assess habitat quality. PMID:25786257
NASA Astrophysics Data System (ADS)
Kushwaha, Pankaj; Gupta, Alok C.; Wiita, Paul J.; Pal, Main; Gaur, Haritma; de Gouveia Dal Pino, E. M.; Kurtanidze, O. M.; Semkov, E.; Damljanovic, G.; Hu, S. M.; Uemura, M.; Vince, O.; Darriba, A.; Gu, M. F.; Bachev, R.; Chen, Xu; Itoh, R.; Kawabata, M.; Kurtanidze, S. O.; Nakaoka, T.; Nikolashvili, M. G.; Sigua, L. A.; Strigachev, A.; Zhang, Z.
2018-06-01
We present a multi-wavelength spectral and temporal investigation of OJ 287 emission during its strong optical-to-X-ray activity between July 2016 - July 2017. The daily γ-ray fluxes from Fermi-LAT are consistent with no variability. The strong optical-to-X-ray variability is accompanied by a change in power-law spectral index of the X-ray spectrum from <2 to >2, with variations often associated with changes in optical polarization properties. Cross-correlations between optical-to-X-ray emission during four continuous segments show simultaneous optical-ultraviolet (UV) variations while the X-ray and UV/optical are simultaneous only during the middle two segments. In the first segment, the results suggest X-rays lag the optical/UV, while in the last segment X-rays lead by ˜ 5-6 days. The last segment also shows a systematic trend with variations appearing first at higher energies followed by lower energy ones. The LAT spectrum before the VHE activity is similar to preceding quiescent state spectrum while it hardens during VHE activity period and is consistent with the extrapolated VHE spectrum during the latter. Overall, the broadband spectral energy distributions (SEDs) during high activity periods are a combination of a typical OJ 287 SED and an HBL SED, and can be explained in a two-zone leptonic model, with the second zone located at parsec scales, beyond the broad line region, being responsible for the HBL-like spectrum. The change of polarization properties from systematic to chaotic and back to systematic, before, during and after the VHE activity, suggest dynamic roles for magnetic fields and turbulence.
Spatial, temporal, and density-dependent components of habitat quality for a desert owl.
Flesch, Aaron D; Hutto, Richard L; van Leeuwen, Willem J D; Hartfield, Kyle; Jacobs, Sky
2015-01-01
Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum) in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70) than weather (0.17) or conspecifics (0.13), evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways, integrated approaches that consider habitat resources, stochastic factors, and conspecifics are necessary to accurately assess habitat quality.
NASA Astrophysics Data System (ADS)
Nico, Giovanni; Mateus, Pedro; Catalão, João.
2010-05-01
The knowledge of water vapor spatial distribution in the Earth's atmosphere at a given time is an important information for numerical forecasting. In fact this is the most varying atmospheric constituent both in space and in time. The water vapor is basically concentrated in the troposphere, the atmosphere layer where the most important phenomena related to weather occur. This layer is destabilized by radiative heating and vertical wind shear near the surfce. The accuracy of quantitative precipitation forecasting over a given region strongly depends on the knowledge of the temporal and spatial variations in the water vapor spatial distribution. Currently, measurements based on ground-based and upper-air sounding networks furnish water vapor distribution only at a coarse scales. This could not be enough to capture variations of the local concentrations of water vapor. Spaceborne radiometer observations can observe atmospheric layers above 3 km due to absorption by water vapor and in any case maps of vater vapour density are too coarse. Availability of GPS measurements of on a routine basis is improving numerical forecasting. However, the density of meuserements which can be obtained by a GPS network is too low to capture spatial variations of local concentrations of water vapor. Synthetic Aperture Radar (SAR) interferometry provides maps of temporal variations of the vertically integrated water vapor density with a horizontal resolution as fine as 10-20 m depending on the radar wavelength and over a swath typically 100 km wide. In the past, the availability of the tandem ERS-1/2 interferometric SAR data allowed to get maps of the vertically-integrated with a temporal baseline of 1 day. In those maps it was possible to recognize signature of a precipitating cumulonimbus cloud, the effects of a cold front and the phenomenon of horizontal convective rolls. Current interferometric spaceborne missions use SAR sensors working at different frequency bands: L (ALOS-PALSAR), C (ENVISAT-ASAR, RADARSAT) and X (TerraSAR, Cosmo-Sky-Med) and with a repetition cycle ranging from 11 (TerraSAR-X) to 35 days (ENVISAT-ASAR). From each SAR sensor, it can be obtained a map of the temporal changes of the IPW occurred between the two subsequent acquisitions by interferometrically processing the SAR data. The accuracy of these maps depends on the radar wavelength and on spatial filtering. A procedure to properly merge all these maps could give information about the temporal evolution of the IPW spatial distribution with a sampling period shorter than the revisiting times of each of the SAR sensors. The main difficulty of this operation is related to the fact that the integration of temporal changes of IPW is not direct when maps are obtained by different SAR sensors. The aim of this work is to describe a methodologiy to merge IPW maps obtained by the different SAR sensor based on the availbality of GPS time series measuring the IPW over the same area. The Lisbon region, Portugal, was chosen as a study area. This region is monitored by a network of 12 GPS permanent stations covering an area of about squared kilometers. A set of SAR interferograms were processed using data acquired by ENVISAT-ASAR and TerraSAR-X mission over the Lisbon region during the period from 2009 to 2010. A time series with GPS measurement of IPW was processed to cover the time interval between the first and last SAR acquisition. This time series is then used to integrate all maps of temporal changes of IPW obtained by the different interferometric SAR couples. This results in a time series giving with the information about the spatial distribution of the IPW.
NASA Astrophysics Data System (ADS)
Huang, Fuxiang; Ren, suling; Han, Shuangshuang; Zheng, xiangdong; Deng, xuejiao
2017-04-01
Daily total ozone and atmospheric temperature profile data in 2015 from the AIRS are used to investigate the spatial and temporal variation of the correlation between the Arctic atmospheric ozone and temperature. In the study, 11 lays atmospheric temperature profiles from the troposphere to the stratosphere are investigated. These layer heights are 20, 50, 70, 100, 200, 250, 300, 400, 500, 600 and 700 hPa respectively. The results show that a significant seasonal split exists in the correlation between the Arctic ozone and atmospheric temperature. Figure 1 shows the spatial and temporal variation of the coefficient between the atmospheric ozone and temperature at 50hPa. It can be seen from the figure that an obvious spatiotemporal difference exists in the correlation between the Arctic total ozone and atmospheric temperature in the lower stratosphere. First, the seasonal difference is very remarkable, which is shown as a significant positive correlation in most regions during winter and summer, while no correlation in the majority of regions occurs during spring and autumn, with a weak positive or negative correlation in a small number regions. Second, the spatial differences are also very obvious. The summer maximum correlation coefficient occurs in the Barents Sea and other locations at 0.8 and above, while the winter maximum occurs in the Baffin Bay area at 0.6 to 0.8. However, in a small number of regions, such as the land to the west of the Bering Strait in winter and the Arctic Ocean core area in summer, the correlation coefficients were unable to pass the significance test to show no correlation. At the same time, in spring and autumn, a positive correlation only occurs over a few low-latitude land areas, while over other Arctic areas, weak negative correlation exists. The differences in horizontal position are clearly related to the land-sea distribution, underlying surface characteristics, glacial melting, and other factors. In the troposphere, the ozone and temperature have a strong negative correlation in spring and autumn, while presenting a weak negative correlation or no correlation in winter and summer. Figure 2 shows the spatial and temporal variation of the correlation coefficient between the atmospheric ozone and temperature at 500hPa. From figure 2, it can be seen that in the Arctic troposphere, the atmospheric ozone and tropospheric temperature mainly have a negative correlation. In winter and summer, a weak negative correlation is shown overall, but more than a third of the regions show no correlation. In spring, the negative correlation is the strongest between the ozone and temperature. Especially in Greenland - Queen Elizabeth Islands and southern New Siberian Islands, the correlation is the highest, with a correlation coefficient of -0.9 and above, followed by a negative correlation in autumn. Except for a small number of low-latitude scattered regions with weak correlation, the correlation coefficients of most regions are ranged between -0.5 and -0.7. At 300 hPa near the tropopause, the horizontal distribution and seasonal change of the correlation between the Arctic total ozone and atmospheric temperature are as shown in Fig. 3.At the height near the Arctic tropopause, the atmospheric ozone mainly has no correlation to temperature, especially in winter and summer, when no correlation exists in the majority of regions, while weak positive or negative correlation occurs in a small number of areas. In the majority of regions during spring, a weak negative correlation is shown, while no correlation appears in Western Greenland - Queen Elizabeth Islands. In autumn, most regions show no correlation, while weak negative correlation is presented in Eastern Greenland, Norwegian Sea - Barents Sea, and other locations. From figure 1-3, we can see a significant difference exists from the common law of positive correlation in the lower stratosphere and negative correlation in the troposphere at mid-low latitudes. The Arctic atmospheric ozone has a relation with temperature, showing significant spatial and temporal variation characteristics. In the stratosphere, winter and summer atmospheric temperatures mainly have a positive correlation to ozone. The summer maximum occurs in the Barents Sea to achieve 0.8 and above, while the winter maximum is 0.6 to 0.8 in the Baffin Bay area. In the troposphere, the autumn and spring atmospheric temperatures mainly have a negative correlation to the ozone. The spring correlation coefficient in Greenland to the Queen Elizabeth Islands reaches up to -0.9 and above, while the autumn value is -0.5 to -0.7. At about 300 hPa, the tropopause value is reduced to 0, and further decreased in the troposphere, to show a strong negative correlation. Based on the comprehensive analysis of various influence factors, the possible action mechanism of the spatiotemporal variation pattern of the correlation between the Arctic atmospheric ozone and temperature is discussed based on the seasonal differences of various influence factors. The spatial and temporal variation characteristics of the correlation between the Arctic atmospheric ozone and temperature are determined by the seasonal variation of various influencing factors of the Arctic atmospheric ozone and temperature. These factors include the atmospheric heating effect from the ozone matching with the Arctic sunshine conditions, the influence of dynamic delivery on the ozone and heat, the impact of underlying-surface glacial melting on atmospheric radiation and heat budget, and so on. At different heights in each season, the different effects from all kinds of factors on the ozone and temperature determine the spatiotemporal variation of the correlation between the ozone and temperature.
NASA Astrophysics Data System (ADS)
Blecki, J. S.; Parrot, M.; Wronowski, R.; Kosciesza, M.
2011-12-01
The DEMETER French microsatellite satellite was launched in June 2004 and finished its operation in December 2010. During the time of the DEMETER satellite operation some gigantic earthquakes took place. We will report the electromagnetic effects registered by DEMETER prior to the earthquakes with magnitude over 8 or just close to this value. We selected events with good coverage of the measurements in the burst mode when the wave form of the electric field variations were registered. It is because the special attention will be given to study of the characteristics of the spectra of these variations and search of the nonlinear effects. This analysis is possible in the time interval when the waveform has been transmitted. Using wavelet and bispectral analysis as well as the statistical characteristics of the measured parameter, we find that registered variations are associated with developing of the ionospheric plasma turbulence. It is mainly Kolmogorov type of the turbulence. The payload of the DEMETER allows to measure important plasma parameters (ion composition, electron density and temperature, energetic particles) with high temporal resolution in the ionosphere over the seismic regions. The correlation of the observed plasma turbulence with changes of the other parameters will be also given. In the present work analysis of the low frequency fluctuations of the electric and magnetic fields for the selected strong earthquakes will be given. The mechanism of the energy transmission from the earthquake to the ionosphere is not clear, but we can discuss the behavior of the ionospheric plasma and search of the instabilities which could be a source of the electromagnetic field variations. Some attempt of this discussion will be given in the presentation. We will present results obtained prior to the some giant earthquakes (Peru2007, Wechuan China 2008, Haiti 2010, Chile 2010).