Science.gov

Sample records for strongly magnetized plasmas

  1. Strongly magnetized classical plasma models

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Peyraud, J.; Dewitt, C.

    1974-01-01

    Discrete particle processes in the presence of a strong external magnetic field were investigated. These processes include equations of state and other equilibrium thermodynamic relations, thermal relaxation phenomena, transport properties, and microscopic statistical fluctuations in such quantities as the electric field and the charge density. Results from the equilibrium statistical mechanics of two-dimensional plasmas are discussed, along with nonequilibrium statistical mechanics of the electrostatic guiding-center plasma (a two-dimensional plasma model).

  2. Propagation of intense laser pulses in strongly magnetized plasmas

    SciTech Connect

    Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.

    2015-06-01

    Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.

  3. Plasma Rotation Control Experiment in a Strongly Diverging Magnetic Field

    NASA Astrophysics Data System (ADS)

    Terasaka, Kenichiro; Furuta, Kanshi; Yoshimura, Shinji; Aramaki, Mitsutoshi; Tanaka, Masayoshi Y.

    2016-10-01

    It has been recognized that the plasma rotation affects the plasma flow structure along the magnetic field line. However, the effect of plasma rotation on structure formation in a strongly diverging magnetic field with magnetized electrons and unmagnetized ions has not been fully understood, so far. Understanding the flow structure formation in an ion-unmagnetized plasma is essential to control ion streamline detachment from the magnetic field line and also necessary to study the astrophysical phenomena in laboratory. In order to clarify the effect of plasma rotation in a diverging magnetic field, we have performed the plasma rotation control experiment in the HYPER-II device at Kyushu Univ., Japan. A set of cylindrical electrode was utilized to control the radial electric field, and the profile of azimuthal E × B rotation has been changed. We present the experimental results on the electron density pileup and the flow reversal appeared in the rotating plasma. This study was supported by JSPS KAKENHI Grant Number 16K05633.

  4. Interaction of gravitational waves with strongly magnetized plasmas

    SciTech Connect

    Isliker, Heinz; Vlahos, Loukas; Sandberg, Ingmar

    2006-11-15

    We study the interaction of a gravitational wave (GW) with a plasma that is strongly magnetized. The GW is considered a small disturbance, and the plasma is modeled by the general relativistic analogue of the induction equation of ideal MHD and the single fluid equations. The equations are specified to two different cases, first to Cartesian coordinates and a constant background magnetic fields, and second to spherical coordinates together with a background magnetic field that decays with the inverse radial distance. The equations are derived without neglecting any of the nonlinear interaction terms, and the nonlinear equations are integrated numerically. We find that for strong magnetic fields of the order of 10{sup 15} G the GW excites electromagnetic plasma waves very close to the magnetosonic mode. The magnetic and electric field oscillations have very high amplitude, and a large amount of energy is absorbed from the GW by the electromagnetic oscillations, of the order of 10{sup 23} erg/cm{sup 3} in the case presented here, which, when assuming a relatively small volume in a star's magnetosphere as an interaction region, can yield a total energy of at least 10{sup 41} erg and may be up to 10{sup 43} erg. The absorbed energy is proportional to B{sub 0}{sup 2}, with B{sub 0} the background magnetic field. The energizing of the plasma takes place on fast time scales of the order of milliseconds. Our results imply that the GW-plasma interaction is an efficient and important mechanism in magnetar atmospheres, most prominently close to the star, and, under very favorable conditions though, it might even be the primary energizing mechanism behind giant flares.

  5. Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Finazzo, Stefano Ivo; Critelli, Renato; Rougemont, Romulo; Noronha, Jorge

    2016-09-01

    We present a holographic perspective on momentum transport in strongly coupled, anisotropic non-Abelian plasmas in the presence of strong magnetic fields. We compute the anisotropic heavy quark drag forces and Langevin diffusion coefficients and also the anisotropic shear viscosities for two different holographic models, namely, a top-down deformation of strongly coupled N =4 super-Yang-Mills theory triggered by an external Abelian magnetic field, and a bottom-up Einstein-Maxwell-dilaton (EMD) model which is able to provide a quantitative description of lattice QCD thermodynamics with (2 +1 ) flavors at both zero and nonzero magnetic fields. We find that, in general, energy loss and momentum diffusion through strongly coupled anisotropic plasmas are enhanced by a magnetic field being larger in transverse directions than in the direction parallel to the magnetic field. Moreover, the anisotropic shear viscosity coefficient is smaller in the direction of the magnetic field than in the plane perpendicular to the field, which indicates that strongly coupled anisotropic plasmas become closer to the perfect fluid limit along the magnetic field. We also present, in the context of the EMD model, holographic predictions for the entropy density and the crossover critical temperature in a wider region of the (T , B ) phase diagram that has not yet been covered by lattice simulations. Our results for the transport coefficients in the phenomenologically realistic magnetic EMD model could be readily used as inputs in numerical codes for magnetohydrodynamics.

  6. Electron-positron pair equilibrium in strongly magnetized plasmas

    SciTech Connect

    Harding, A.K.

    1984-11-01

    Steady states of thermal electron-positron pair plasmas at mildly relativistic temperatures and in strong magnetic fields are investigated. The pair density in steady-state equilibrium, where pair production balances annihilation, is found as a function of temperature, magnetic field strength and source size, by a numerical calculation which includes pair production attenuation and Compton scattering of the photons. It is found that there is a maximum pair density for each value of temperature and field strength, and also a source size above which optically thin equilibrium states do not exist. (ESA)

  7. A laboratory study of asymmetric magnetic reconnection in strongly-driven plasmas

    SciTech Connect

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R.P. J.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-02-04

    Magnetic reconnection, the annihilation and rearrangement of magnetic fields in a plasma, is a universal phenomenon that frequently occurs when plasmas carrying oppositely-directed field lines collide. In most natural circumstances the collision is asymmetric (the two plasmas having different properties), but laboratory research to date has been limited to symmetric configurations. Additionally, the regime of strongly-driven magnetic reconnection, where the ram pressure of the plasma dominates the magnetic pressure, as in several astrophysical environments, has also received little experimental attention. Thus, we have designed experiments to probe reconnection in asymmetric, strongly-driven, laser-generated plasmas. Here we show that, in this strongly-driven system, the rate of magnetic flux annihilation is dictated by the relative flow velocities of the opposing plasmas and is insensitive to initial asymmetries. Additionally, out-of-plane magnetic fields that arise from asymmetries in the three-dimensional plasma geometry have minimal impact on the reconnection rate, due to the strong flows.

  8. A laboratory study of asymmetric magnetic reconnection in strongly-driven plasmas

    DOE PAGES

    Rosenberg, M. J.; Li, C. K.; Fox, W.; ...

    2015-02-04

    Magnetic reconnection, the annihilation and rearrangement of magnetic fields in a plasma, is a universal phenomenon that frequently occurs when plasmas carrying oppositely-directed field lines collide. In most natural circumstances the collision is asymmetric (the two plasmas having different properties), but laboratory research to date has been limited to symmetric configurations. Additionally, the regime of strongly-driven magnetic reconnection, where the ram pressure of the plasma dominates the magnetic pressure, as in several astrophysical environments, has also received little experimental attention. Thus, we have designed experiments to probe reconnection in asymmetric, strongly-driven, laser-generated plasmas. Here we show that, in this strongly-drivenmore » system, the rate of magnetic flux annihilation is dictated by the relative flow velocities of the opposing plasmas and is insensitive to initial asymmetries. Additionally, out-of-plane magnetic fields that arise from asymmetries in the three-dimensional plasma geometry have minimal impact on the reconnection rate, due to the strong flows.« less

  9. Spontaneous generation of temperature anisotropy in a strongly coupled magnetized plasma

    NASA Astrophysics Data System (ADS)

    Ott, T.; Bonitz, M.; Hartmann, P.; Donkó, Z.

    2017-01-01

    A magnetic field was recently shown to enhance field-parallel heat conduction in a strongly correlated plasma whereas cross-field conduction is reduced. Here we show that in such plasmas, the magnetic field has the additional effect of inhibiting the isotropization process between field-parallel and cross-field temperature components, thus leading to the emergence of strong and long-lived temperature anisotropies when the plasma is locally perturbed. An extended heat equation is shown to describe this process accurately.

  10. Magnetic field induced by strong transverse plasmons in ultra-relativistic electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, X. Q.; Liu, S. Q.

    2012-08-01

    Context. We investigated the generation of localized magnetic fields in an ultra-relativistic non-isothermal electron-positron plasma by strong electromagnetic plasmons. Aims: The results obtained can be used to explain the origin of small-scale magnetic fields in the internal shock region of gamma-ray bursts with ultra-relativistic electron positron plasmas. Methods: The generation of magnetic fields was investigated with kinetic Vlasov Maxwell equations. Results: The self-generated magnetic field will collapse for modulation instability, leading to spatially highly intermittent magnetic fluxes, whose characteristic scale is much larger than relativistic plasma skin depth, which in turn is conducive to the generation of the long-life small-scale magnetic fields in the internal shock region of gamma-ray bursts.

  11. Oscillation spectrum of a magnetized strongly coupled one-component plasma.

    PubMed

    Ott, T; Kählert, H; Reynolds, A; Bonitz, M

    2012-06-22

    A first-principles study of the collective oscillation spectrum of a strongly correlated one-component plasma in a strong magnetic field is presented. The spectrum consists of six fundamental modes that are found to be in good agreement with results from the quasilocalized charge approximation. At high frequencies, additional modes are observed that include Bernstein-type oscillations and their transverse counterparts, which are of importance for the high-frequency optical and transport properties of these plasmas.

  12. On generation of dark solitons by gravitational waves in a strongly magnetized pulsar plasma

    SciTech Connect

    Mofiz, U. A.

    2007-11-15

    In this paper, the propagation of gravitational wave perpendicular to a superstrong magnetic field immersed in an electron-positron pulsar plasma is considered. On the basis of the Einstein-Maxwell system of magnetohydrodynamic equations, both the linear and nonlinear interactions of the wave with plasma are investigated. In near-resonant interaction, a relation between gravitation perturbations to electromagnetic field perturbations shows that the field perturbations are directly proportional to the product of ambient magnetic field and the gravitational wave perturbation. Thus, a weak gravitational wave may resonate an effective field perturbation in the strongly magnetized plasma in an astrophysical context. A coupled system of equations describing the nonlinear interaction between gravitational wave and field perturbations in the magnetized plasma is obtained. The equations are solved in resonant approximation, and it is found that a linearly polarized electric field is generated with a frequency close to the plasma frequency. For nonresonant interaction, the solution shows that both electric and magnetic field perturbations in the plasma are produced. Density perturbation and field intensity variation in the plasma lead to a nonlinear frequency shift and the slowly varying field amplitude obeys the nonlinear Schroedinger equation. The solution of the equation is the dark soliton, the amplitude of which may be very significant in the case of a superstrong magnetic field in the pulsar plasma.

  13. Effect of correlations on heat transport in a magnetized strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Ott, T.; Bonitz, M.; Donkó, Z.

    2015-12-01

    In a classical ideal plasma, a magnetic field is known to reduce the heat conductivity perpendicular to the field, whereas it does not alter the one along the field. Here we show that, in strongly correlated plasmas that are observed at high pressure and/or low temperature, a magnetic field reduces the perpendicular heat transport much less and even enhances the parallel transport. These surprising observations are explained by the competition of kinetic, potential, and collisional contributions to the heat conductivity. Our results are based on first-principle molecular dynamics simulations of a one-component plasma.

  14. Strong terahertz radiation generation by beating of two spatial-triangular beams in collisional magnetized plasma

    NASA Astrophysics Data System (ADS)

    Hematizadeh, Ayoob; Bakhtiari, Farhad; Jazayeri, Seyed Masud; Ghafary, Bijan

    2016-05-01

    A scheme of terahertz (THz) radiation generation is proposed by beating of two spatial-triangular laser beams in plasma with a spatially periodic density when electron-neutral collisions have taken into account. In this process, the laser beams exert a ponderomotive force on the electrons of the plasma and impart the oscillatory velocity at the difference frequency in the presence of a static magnetic field which is applied parallel to the direction of the lasers. We show that higher efficiency and stronger THz radiation are achieved when the parallel magnetic field is used to compare the perpendicular magnetic field. The effects of beam width of lasers, collision frequency, periodicity of density ripples, and magnetic field strength are analyzed for strong THz radiation generation. The THz field of the emitted radiations is found to be highly sensitive to collision frequency and magnetic field strength. In this scheme with the optimization of plasma parameters, the efficiency of order 21% is achieved.

  15. Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly-driven laser-plasma experiments

    SciTech Connect

    Rosenberg, M.  J.; Li, C.  K.; Fox, W.; Zylstra, A.  B.; Stoeckl, C.; Séguin, F.  H.; Frenje, J.  A.; Petrasso, R. D.

    2015-05-20

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly-driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (Vjet~ 20VA) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.

  16. Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly-driven laser-plasma experiments

    DOE PAGES

    Rosenberg, M.  J.; Li, C.  K.; Fox, W.; ...

    2015-05-20

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly-driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (Vjet~ 20VA) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. Themore » absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.« less

  17. Obliquely propagating waves in the magnetized strongly coupled one-component plasma

    SciTech Connect

    Kählert, Hanno; Kalman, Gabor J.; Ott, Torben; Bonitz, Michael; Reynolds, Alexi

    2013-05-15

    The quasi-localized charge approximation is used to calculate the wave spectrum of the magnetized three-dimensional strongly coupled one-component plasma at arbitrary angles θ between the wave vector and the magnetic field axis. Three frequency branches are identified whose interplay is strongly determined by β=ω{sub c}/ω{sub p}, the ratio of the cyclotron frequency ω{sub c}, and the plasma frequency ω{sub p}. The frequency dispersion relations for the three principal modes along the magnetic field cross in the case β<1, which strongly affects the transition from parallel to perpendicular wave propagation. For β>1, the frequencies of the different branches are well separated, and the long-wavelength dispersion in the intermediate and upper branch changes sign as θ is varied from 0 to π/2. In addition to the frequencies, we also investigate the waves' polarization properties.

  18. Magnetized Fast ignition (MFI) and Laser Plasma Interactions in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki; Johzaki, T.; Honrubia, J.; Nagatomo, H.; Taguchi, T.; Sunahara, A.; Sakagami, H.; Fujioka, S.; Logan, G.

    2016-03-01

    In this paper, magnetized fast ignition (MFI) is proposed for improving the coupling efficiency of a heating laser to a core plasma. In the MFI, the external magnetic field is applied to reduce the hot electron energy and focus the dense hot electron flux to the core. The external magnetic field higher than 100T is generated by the laser driven coil and it is amplified by the implosion. The magnetic field at the tip of the cone is expected to reach higher than 10kT and the laser plasma interaction and the hot electron transport are modified. As the results of applying the external magnetic field, hot electron energy is reduced to less than 5MeV for the laser intensity of 1020W/ cm2 and the Weibel instability is suppressed to collimate the hot electron beam to the core.

  19. Observation of weakly and strongly diverging ion beams in a magnetically expanding plasma

    SciTech Connect

    Takahashi, K.; Fujiwara, T.

    2009-02-09

    The spatial distribution of an ion beam created in a magnetically expanding plasma using permanent magnets is experimentally investigated for 0.35 and 1 mTorr, where the magnetic-field strength is about 100 G in the plasma source and is decreasing into a few gauss in the diffusion chamber. The beam profile for 0.35 mTorr is weakly divergent. On the other hand, the strongly diverging beam is detected for 1 mTorr. The results are discussed from the viewpoint of the plasma-potential structures and imply the beam divergence caused by the radial electric fields in the ion acceleration region and the diffusion chamber.

  20. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields

    SciTech Connect

    Albertazzi, B.; Beard, J.; Billette, J.; Portugall, O.; Ciardi, A.; Vinci, T.; Albrecht, J.; Chen, S. N.; Da Silva, D.; Hirardin, B.; Nakatsutsumi, M.; Romagnagni, L.; Simond, S.; Veuillot, E.; Fuchs, J.; Burris-Mog, T.; Dittrich, S.; Herrmannsdoerfer, T.; Kroll, F.; Nitsche, S.; and others

    2013-04-15

    The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given.

  1. Plasma kinetic processes in a strong d.c. magnetic field

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1976-01-01

    Recent results in the kinetic theory of a strongly magnetized plasma are surveyed. Emphasis is on the electrostatic guiding-center plasma in two dimensions, in both the fluid and 'charged rod' descriptions. The basic kinetic description of the plasma is in terms of the statistically-distributed Fourier coefficients associated with the velocity and 'enstrophy' (charge density) fields. It is a universal tendency in such media for enstrophy to flow to shorter wavelengths but for energy to flow to longer wavelengths. A consequence of the energy flow to longer wavelengths is the generation of long-range order in the form of macroscopic vortices. These kinds of structure have been called 'convection cells' and can be extraordinarily efficient in transporting particles transverse to a magnetic field. The tendency to vortex formation can be disrupted by collisions between particles. Modifications of the Fokker-Planck equation for a plasma produced by a strong dc magnetic field are considered in both two and three dimensions.

  2. Magnetohydrodynamics of high-energy-density-plasma in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Matsuo, Kazuki; Nagatomo, Hideo; Sano, Takayoshi; Zhang, Zhe; Sakawa, Youichi; Hara, Yukiko; Shimogawara, Hiroshi; Airikawa, Yasunobu; Sakata, Shouhei; Law, Kingfaifarley; Lee, Seungho; Kojima, Sadaoki; Katou, Hiroki; Shigemori, Keisuke; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-10-01

    The magneto-hydrodynamics (MHD) of a high-energy-density-plasma (HEDP) in a strong external magnetic field contains a lot of fundamental and essential physics related to astro- and solar- physics and B-assisted inertial confinement fusion energy development. Especially, hydrodynamic instability in a strong magnetic field is a key physics for success of B-assisted inertial confinement fusion. Hydrodynamic instability growth is affected by strong magnetic field as a result of non-uniform heat flow. Experiments were conducted with a corrugated plastic target that is set between a pair of capacitor-coil. A pair of capacitor-coil targets was used to generate spatially uniform magnetic field. The plastic targets were irradiated by an intense laser pulse having 1013 W/cm2 of intensity. Temporal evolution of perturbation growth was observed with x-ray backlight technique. Enhancement of the perturbation growth in strong magnetic field was observed experimentally, and the result was consistent with hydrodynamic simulation.

  3. Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma

    SciTech Connect

    Liu, Wei; Hsu, Scott; Li, Hui

    2009-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.

  4. High Power Laser-Plasma Interaction under a Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sano, Takayoshi; Tanaka, Yuki; Yamaguchi, Tomohito; Murakami, Masakatsu; Iwata, Natsumi; Hata, Masayasu; Mima, Kunioki

    2016-10-01

    We investigate laser-plasma interactions under a strong magnetic field by one-dimensional Particle-in-Cell (PIC) simulations. A simple setup is considered in our analysis, in which a thin foil is irradiated by a right-handed circularly polarized laser. A uniform magnetic field is assumed in the direction of the laser propagation. Then the whistler wave can penetrate the overdense plasma when the external field is larger than the critical field strength Bc =meω0 / e . In this situation, key parameters of the system are the plasma density and the size of the external field. We performed various models in the density-field strength diagram, which is actually the so-called CMA diagram, to evaluate the efficiency of the energy conversion from the laser to plasma and the reflectivity and transmittance of the laser. It is found that there are two important processes in the interaction between the whistler wave and overdense plasma, which are the cyclotron resonance of relativistic electrons and the parametric (Brillouin) instability. Because of the high temperature of electrons, ions can be accelerated dramatically by a large sheath field at the target surface.

  5. Viriato: A Fourier-Hermite spectral code for strongly magnetized fluid-kinetic plasma dynamics

    NASA Astrophysics Data System (ADS)

    Loureiro, N. F.; Dorland, W.; Fazendeiro, L.; Kanekar, A.; Mallet, A.; Vilelas, M. S.; Zocco, A.

    2016-09-01

    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations (Zocco and Schekochihin, 2011) (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations (Schekochihin et al., 2009). Two main applications of these equations are magnetized (Alfvénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge-Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag-Tang-type decaying turbulence, both in fluid and kinetic regimes.

  6. Compressible Relativistic Magnetohydrodynamic Turbulence in Magnetically Dominated Plasmas and Implications for a Strong-coupling Regime

    NASA Astrophysics Data System (ADS)

    Takamoto, Makoto; Lazarian, Alexandre

    2016-11-01

    In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using three-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfvén) following the procedure of mode decomposition in Cho & Lazarian, and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfvén mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfvén Mach number, but also with the background magnetization, which indicates a strong coupling between the fast and Alfvén modes. It also signifies the appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfvén modes are strongly coupled and, unlike the non-relativistic MHD regime, cannot be treated separately. This finding will affect particle acceleration efficiency obtained by assuming Alfvénic critical-balance turbulence and can change the resulting photon spectra emitted by non-thermal electrons.

  7. Electrical conductivity of quark-gluon plasma in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Hattori, Koichi; Satow, Daisuke

    2016-12-01

    We compute the electrical conductivity of quark-gluon plasma in a strong magnetic field B with quantum field theory at finite temperature using the lowest Landau level approximation. We provide the one-loop result arising from 1-to-2 scattering processes of which the kinematics are satisfied by the (1 +1 )-dimensional fermion dispersion relation. Because of the chirality conservation, the conductivity diverges in the massless limit and is sensitive to the value of the current quark mass. As a result, we find that the conductivity along the direction of the magnetic field is quite large compared with the value at B =0 , mainly because of the small value of the current quark mass. We show that the resummation of the ladder diagrams for the current-current correlator gives rise to only subleading contributions beyond the leading-log order and thus verify our one-loop result at the leading-log accuracy. We also discuss possible implications for the relativistic heavy-ion collisions.

  8. Generation of strong quasistatic magnetic fields in interactions of ultraintense and short laser pulses with overdense plasma targets

    SciTech Connect

    Cai Hongbo; Zhu Shaoping; Zhou Cangtao; Yu Wei

    2007-09-15

    An analytical fluid model is proposed for the generation of strong quasistatic magnetic fields during normal incidence of a short ultraintense Gaussian laser pulse with a finite spot size on an overdense plasma. The steepening of the electron density profile in the originally homogeneous overdense plasma and the formation of electron cavitation as the electrons are pushed inward by the laser are included self-consistently. It is shown that the appearance of the cavitation plays an important role in the generation of quasistatic magnetic fields: the strong plasma inhomogeneities caused by the formation of the electron cavitation lead to the generation of a strong axial quasistatic magnetic field B{sub z}. In the overdense regime, the generated quasistatic magnetic field increases with increasing laser intensity, while it decreases with increasing plasma density. It is also found that, in a moderately overdense plasma, highly intense laser pulses can generate magnetic fields {approx}100 MG and greater due to the transverse linear mode conversion process.

  9. Parallel-beam correlation technique for measuring density fluctuations in plasmas with strong magnetic shear

    SciTech Connect

    Jacobson, A.R.

    1981-04-01

    A laser diagnostic scheme is described which facilitates localization of density fluctuations along the line of sight. The method exploits both the generally observed anisotropy of density fluctuations in low-beta plasmas, as well as the twisting of the magnetic field which occurs across the minor diameter of reversed-field pinches, spheromaks, etc. Both interferometric and schlieren variations are discussed.

  10. Dynamics of positive probes in underdense, strongly magnetized, E×B drifting plasma: Particle-in-cell simulations

    SciTech Connect

    Heinrich, Jonathon R.; Cooke, David L.

    2013-09-15

    Electron trapping, electron heating, space-charge wings, wake eddies, and current collection by a positive probe in E×B drifting plasma were studied in three-dimensional electromagnetic particle-in-cell simulations. In these simulations, electrons and ions were magnetized with respect to the probe and the plasma was underdense (ω{sub pe}<ω{sub ce}). A large drift velocity (Mach 4.5 with respect to the ion acoustic speed) between the plasma and probe was created with background electric and magnetic fields. Four distinct regions developed in the presences of the positive probe: a quasi-trapped electron region, an electron-depletion wing, an ion-rich wing, and a wake region. We report on the observations of strong electron heating mechanisms, space-charge wings, ion cyclotron charge-density eddies in the wake, electron acceleration due to a magnetic presheath, and the current-voltage relationship.

  11. Collisional relaxation of an isotopic, strongly magnetized pure ion plasma and topics in resonant wave-particle interaction of plasmas

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung

    First in Chapter 2, we discuss the collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses, but both with singly-ionized atoms. In a limit of high cyclotron frequencies O j, the total cyclotron action Ij for the two species are adiabatic invariants. In a few collisions, maximizing entropy yields a modified Gibbs distribution of the form exp[-H/T ∥-alpha1 I 1-alpha2I2]. Here, H is the total Hamiltonian and alphaj's are related to parallel and perpendicular temperatures through T ⊥j=(1/T∥ +alphaj/Oj) -1. On a longer timescale, the two species share action so that alpha 1 and alpha2 relax to a common value alpha. On an even longer timescale, the total action ceases to be a constant of the motion and alpha relaxes to zero. Next, weak transport produces a low density halo of electrons moving radially outward from the pure electron plasma core, and the m = 1 mode begins to damp algebraically when the halo reaches the wall. The damping rate is proportional to the particle flux through the resonant layer at the wall. Chapter 3 explains analytically the new algebraic damping due to both mobility and diffusion transport. Electrons swept around the resonant "cat's eye" orbits form a dipole (m = 1) density distribution, setting up a field that produces ExB-drift of the core back to the axis, that is, damps the mode. Finally, Chapter 4 provides a simple mechanistic interpretation of the resonant wave-particle interaction of Landau. For the simple case of a Vlasov plasma oscillation, the non-resonant electrons are driven resonantly by the bare electric field from the resonant electrons, and this complex driver field is of a phase to reduce the oscillation amplitude. The wave-particle resonant interaction also occurs in 2D ExB-drift waves, such as a diocotron wave. In this case, the bare electric field from the resonant electrons causes ExB-drift motion back in the core plasma, thus damping the wave.

  12. Energy loss of a nonaccelerating quark moving through a strongly coupled N =4 super Yang-Mills vacuum or plasma in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Mamo, Kiminad A.

    2016-08-01

    Using AdS /CFT correspondence, we find that a massless quark moving at the speed of light v =1 , in arbitrary direction, through a strongly coupled N =4 super Yang-Mills (SYM) vacuum at T =0 , in the presence of strong magnetic field B , loses its energy at a rate linearly dependent on B , i.e., d/E d t =-√{λ/} 6 π B . We also show that a heavy quark of mass M ≠0 moving at near the speed of light v2=v*2=1 -4/π2T2 B ≃1 , in arbitrary direction, through a strongly coupled N =4 SYM plasma at finite temperature T ≠0 , in the presence of strong magnetic field B ≫T2, loses its energy at a rate linearly dependent on B , i.e., d/E d t =-√{λ/}6 π B v*2≃-√{λ/}6 π B . Moreover, we argue that, in the strong magnetic field B ≫T2 (IR) regime, N =4 SYM and adjoint QCD theories (when the adjoint QCD theory has four flavors of Weyl fermions and is at its conformal IR fixed point λ =λ*) have the same microscopic degrees of freedom (i.e., gluons and lowest Landau levels of Weyl fermions) even though they have quite different microscopic degrees of freedom in the UV when we consider higher Landau levels. Therefore, in the strong magnetic field B ≫T2 (IR) regime, the thermodynamic and hydrodynamic properties of N =4 SYM and adjoint QCD plasmas, as well as the rates of energy loss of a quark moving through the plasmas, should be the same.

  13. Distribution of plasma and magnetic field in the Venus induced magnetosphere is strongly asymmetrical

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Zhang, T.-L.; Woch, J.; Wei, Y.; Fedorov, A.; Barabash, S.; Lundin, R.

    2013-09-01

    Venus Express spacecraft have provided us a wealth of in-situ observations of characteristics of induced magnetosphere of Venus. One of its important features is a distinct asymmetry in plasma and field characteristics between the hemisphere pointed in the direction of the motional electric field and the opposite hemisphere. Asymmetry starts from formation of the magnetic barrier, then continues to low altitudes where effects of finite conductivity become important and further to the near Venus tail where the magnetic tail and plasma sheet are formed. As a result, the structure and dynamics of the induced magnetosphere in both hemispheres occur different. We present different aspects of such an asymmetry and discuss possible mechanisms of its appearance.

  14. Distribution of plasma and magnetic field in the Venus induced magnetosphere is strongly asymmetrical

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Zhang, T.; Woch, J. G.; Wei, Y.; Fedorov, A.; Barabash, S. V.; Lundin, R. N.

    2013-12-01

    Venus Express spacecraft have provided us a wealth of in-situ observations of characteristics of induced magnetosphere of Venus. One of its important features is a distinct asymmetry in plasma and field characteristics between the hemisphere pointed in the direction of the motional electric field and the opposite hemisphere. Asymmetry starts from formation of the magnetic barrier, then continues to low altitudes where effects of finite conductivity become important and further to the near Venus tail where the magnetic tail and plasma sheet are formed. As a result, the structure and dynamics of the induced magnetosphere in both hemispheres occur different. We present different aspects of such an asymmetry and discuss possible mechanisms of its appearance.

  15. Collisional relaxation of a strongly magnetized two-species pure ion plasma

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.; Dubin, Daniel H.

    2014-04-01

    The collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses is discussed. We have in mind two isotopes of the same singly ionized atom. Parameters are assumed to be ordered as Ω1,Ω2≫|Ω1-Ω2|≫v¯ij/b ¯ and v¯⊥j/Ωj≪b ¯, where Ω1 and Ω2 are two cyclotron frequencies, v¯ij=√T∥/μij is the relative parallel thermal velocity characterizing collisions between particles of species i and j, and b ¯=2 e2/T∥ is the classical distance of closest approach for such collisions, and v ¯⊥j/Ωj=√2T⊥j/mj /Ωj is the characteristic cyclotron radius for particles of species j. Here, μij is the reduced mass for the two particles, and T∥ and T⊥j are temperatures that characterize velocity components parallel and perpendicular to the magnetic field. For this ordering, the total cyclotron action for the two species, I1=∑i ∈1m1v⊥i2/(2Ω1) and I2=∑i∈2m2v⊥i2/(2Ω2) are adiabatic invariants that constrain the collisional dynamics. On the timescale of a few collisions, entropy is maximized subject to the constancy of the total Hamiltonian H and the two actions I1 and I2, yielding a modified Gibbs distribution of the form exp[-H /T∥-α1I1-α2I2]. Here, the αj's are related to T∥ and T⊥j through T⊥j=(1/T∥+αj/Ωj)-1. Collisional relaxation to the usual Gibbs distribution, exp[-H /T∥], takes place on two timescales. On a timescale longer than the collisional timescale by a factor of (b ¯2Ω12/v¯112)exp{5[3π(b¯|Ω1-Ω2|/v ¯12)]2/5/6}, the two species share action so that α1 and α2 relax to a common value α. On an even longer timescale, longer than the collisional timescale by a factor of the order exp {5[3π(v¯11)]2/5/6}, the total action ceases to be a good constant of the motion and α relaxes to zero.

  16. Comprehensive kinetic analysis of the plasma-wall transition layer in a strongly tilted magnetic field

    SciTech Connect

    Tskhakaya, D. D.; Kos, L.

    2014-10-15

    The magnetized plasma-wall transition (MPWT) layer at the presence of the obliquity of the magnetic field to the wall consists of three sub-layers: the Debye sheath (DS), the magnetic pre-sheath (MPS), and the collisional pre-sheath (CPS) with characteristic lengths λ{sub D} (electron Debye length), ρ{sub i} (ion gyro-radius), and ℓ (the smallest relevant collision length), respectively. Tokamak plasmas are usually assumed to have the ordering λ{sub D}≪ρ{sub i}≪ℓ, when the above-mentioned sub-layers can be distinctly distinguished. In the limits of ε{sub Dm}(λ{sub D}/ρ{sub i})→0 and ε{sub mc}(ρ{sub i}/ℓ)→0 (“asymptotic three-scale (A3S) limits”), these sub-layers are precisely defined. Using the smallness of the tilting angle of the magnetic field to the wall, the ion distribution functions are found for three sub-regions in the analytic form. The equations and characteristic length-scales governing the transition (intermediate) regions between the neighboring sub-layers (CPS – MPS and MPS – DS) are derived, allowing to avoid the singularities arising from the ε{sub Dm}→0 and ε{sub mc}→0 approximations. The MPS entrance and the related kinetic form of the Bohm–Chodura condition are successfully defined for the first time. At the DS entrance, the Bohm condition maintains its usual form. The results encourage further study and understanding of physics of the MPWT layers in the modern plasma facilities.

  17. Collisional relaxation of a strongly magnetized two-species pure ion plasma

    SciTech Connect

    Chim, Chi Yung; O’Neil, Thomas M.; Dubin, Daniel H.

    2014-04-15

    The collisional relaxation of a strongly magnetized pure ion plasma that is composed of two species with slightly different masses is discussed. We have in mind two isotopes of the same singly ionized atom. Parameters are assumed to be ordered as Ω{sub 1},Ω{sub 2}≫|Ω{sub 1}−Ω{sub 2}|≫v{sup ¯}{sub ij}/b{sup ¯} and v{sup ¯}{sub ⊥j}/Ω{sub j}≪b{sup ¯}, where Ω{sub 1} and Ω{sub 2} are two cyclotron frequencies, v{sup ¯}{sub ij}=√(T{sub ∥}/μ{sub ij}) is the relative parallel thermal velocity characterizing collisions between particles of species i and j, and b{sup ¯}=2e{sup 2}/T{sub ∥} is the classical distance of closest approach for such collisions, and v{sup ¯}{sub ⊥j}/Ω{sub j}=√(2T{sub ⊥j}/m{sub j})/Ω{sub j} is the characteristic cyclotron radius for particles of species j. Here, μ{sub ij} is the reduced mass for the two particles, and T{sub ∥} and T{sub ⊥j} are temperatures that characterize velocity components parallel and perpendicular to the magnetic field. For this ordering, the total cyclotron action for the two species, I{sub 1}=∑{sub i∈1}m{sub 1}v{sub ⊥i}{sup 2}/(2Ω{sub 1}) and I{sub 2}=∑{sub i∈2}m{sub 2}v{sub ⊥i}{sup 2}/(2Ω{sub 2}) are adiabatic invariants that constrain the collisional dynamics. On the timescale of a few collisions, entropy is maximized subject to the constancy of the total Hamiltonian H and the two actions I{sub 1} and I{sub 2}, yielding a modified Gibbs distribution of the form exp[−H/T{sub ∥}−α{sub 1}I{sub 1}−α{sub 2}I{sub 2}]. Here, the α{sub j}’s are related to T{sub ∥} and T{sub ⊥j} through T{sub ⊥j}=(1/T{sub ∥}+α{sub j}/Ω{sub j}){sup −1}. Collisional relaxation to the usual Gibbs distribution, exp[−H/T{sub ∥}], takes place on two timescales. On a timescale longer than the collisional timescale by a factor of (b{sup ¯2}Ω{sub 1}{sup 2}/v{sup ¯}{sub 11}{sup 2})exp(5[3π(b{sup ¯}|Ω{sub 1}−Ω{sub 2}|/v{sup ¯}{sub 12})]{sup 2/5}/6), the two

  18. Effects of obliqueness and strong electrostatic interaction on linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma

    SciTech Connect

    Shahmansouri, M.; Mamun, A. A.

    2014-03-15

    Linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma is theoretically investigated. The normal mode analysis (reductive perturbation method) is employed to investigate the role of ambient/external magnetic field, obliqueness, and effective electrostatic dust-temperature in modifying the properties of linear (nonlinear) dust-acoustic waves propagating in such a strongly coupled dusty plasma. The effective electrostatic dust-temperature, which arises from strong electrostatic interactions among highly charged dust, is considered as a dynamical variable. The linear dispersion relation (describing the linear propagation characteristics) for the obliquely propagating dust-acoustic waves is derived and analyzed. On the other hand, the Korteweg-de Vries equation describing the nonlinear propagation of the dust-acoustic waves (particularly, propagation of dust-acoustic solitary waves) is derived and solved. It is shown that the combined effects of obliqueness, magnitude of the ambient/external magnetic field, and effective electrostatic dust-temperature significantly modify the basic properties of linear and nonlinear dust-acoustic waves. The results of this work are compared with those observed by some laboratory experiments.

  19. Electromagnetic strong plasma turbulence

    SciTech Connect

    Melatos, A.; Jenet, F. A.; Robinson, P. A.

    2007-02-15

    The first large-scale simulations of continuously driven, two-dimensional electromagnetic strong plasma turbulence are performed, for electron thermal speeds 0.01c{<=}v{<=}0.57c, by integrating the Zakharov equations for coupled Langmuir and transverse (T) waves near the plasma frequency. Turbulence scalings and wave number spectra are calculated, a transition is found from a mix of trapped and free T eigenstates for v{>=}0.1c to just free eigenstates for v{<=}0.1c, and wave energy densities are observed to undergo slow quasiperiodic oscillations.

  20. Strong Little Magnets

    ERIC Educational Resources Information Center

    Moloney, Michael J.

    2007-01-01

    Did you know that some strong little cylindrical magnets available in local hardware stores can have an effective circumferential current of 2500 A? This intriguing information can be obtained by hanging a pair of magnets at the center of a coil, as shown in Fig. 1, and measuring the oscillation frequency as a function of coil current.

  1. Quasilongitudinal soliton in a two-dimensional strongly coupled complex dusty plasma in the presence of an external magnetic field.

    PubMed

    Ghosh, Samiran

    2014-09-01

    The propagation of a nonlinear low-frequency mode in two-dimensional (2D) monolayer hexagonal dusty plasma crystal in presence of external magnetic field and dust-neutral collision is investigated. The standard perturbative approach leads to a 2D Korteweg-de Vries (KdV) soliton for the well-known dust-lattice mode. However, the Coriolis force due to crystal rotation and Lorentz force due to magnetic field on dust particles introduce a linear forcing term, whereas dust-neutral drag introduce the usual damping term in the 2D KdV equation. This new nonlinear equation is solved both analytically and numerically to show the competition between the linear forcing and damping in the formation of quasilongitudinal soliton in a 2D strongly coupled complex (dusty) plasma. Numerical simulation on the basis of the typical experimental plasma parameters and the analytical solution reveal that the neutral drag force is responsible for the usual exponential decay of the soliton, whereas Coriolis and/or Lorentz force is responsible for the algebraic decay as well as the oscillating tail formation of the soliton. The results are discussed in the context of the plasma crystal experiment.

  2. Quasilongitudinal soliton in a two-dimensional strongly coupled complex dusty plasma in the presence of an external magnetic field

    NASA Astrophysics Data System (ADS)

    Ghosh, Samiran

    2014-09-01

    The propagation of a nonlinear low-frequency mode in two-dimensional (2D) monolayer hexagonal dusty plasma crystal in presence of external magnetic field and dust-neutral collision is investigated. The standard perturbative approach leads to a 2D Korteweg-de Vries (KdV) soliton for the well-known dust-lattice mode. However, the Coriolis force due to crystal rotation and Lorentz force due to magnetic field on dust particles introduce a linear forcing term, whereas dust-neutral drag introduce the usual damping term in the 2D KdV equation. This new nonlinear equation is solved both analytically and numerically to show the competition between the linear forcing and damping in the formation of quasilongitudinal soliton in a 2D strongly coupled complex (dusty) plasma. Numerical simulation on the basis of the typical experimental plasma parameters and the analytical solution reveal that the neutral drag force is responsible for the usual exponential decay of the soliton, whereas Coriolis and/or Lorentz force is responsible for the algebraic decay as well as the oscillating tail formation of the soliton. The results are discussed in the context of the plasma crystal experiment.

  3. Effect of strongly coupled plasma on the magnetic dipolar and quadrupolar transitions of two-electron ions

    SciTech Connect

    Saha, Jayanta K.; Mukherjee, T. K.; Mukherjee, P. K.; Fricke, B.

    2013-04-15

    Effect of strongly coupled plasma on the excitation energies and transition probabilities for the respective transitions 1s{sup 2}:{sup 1}S{sup e}{yields} 1sns:{sup 3}S{sup e} (n = 2, 3, 4) and 1s{sup 2}:{sup 1}S{sup e}{yields} 1snp:{sup 3}P{sup o} (n = 2, 3, 4) allowed by magnetic dipolar and quadrupolar excitations have been analyzed for the first time for the two-electron ions C{sup 4+}, O{sup 6+}, Ne{sup 8+}, Mg{sup 10+}, Si{sup 12+}, and S{sup 14+}. Time dependent Hatree-Fock theory within variational approach has been adopted for such a study. The effect of surrounding plasma has been treated through the standard Ion-Sphere (IS) model of the plasma where the plasma density is varied systematically from a low value to a pretty high value such that the respective excited states go over to continuum due to such a confinement. The effect of external pressure generated due to plasma confinement on the estimated spectral properties has been analyzed systematically.

  4. Cooking strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Clérouin, Jean

    2015-09-01

    We present the orbital-free method for dense plasmas which allows for efficient variable ionisation molecular dynamics. This approach is a literal application of density functional theory where the use of orbitals is bypassed by a semi-classical estimation of the electron kinetic energy through the Thomas-Fermi theory. Thanks to a coherent definition of ionisation, we evidence a particular regime in which the static structure no longer depends on the temperature: the Γ-plateau. With the help of the well-known Thomas-Fermi scaling laws, we derive the conditions required to obtain a plasma at a given value of the coupling parameter and deduce useful fits. Static and dynamical properties are predicted as well as a a simple equation of state valid on the Γ-plateau. We show that the one component plasma model can be helpful to describe the correlations in real systems.

  5. Wave spectra of a strongly coupled magnetized one-component plasma: quasilocalized charge approximation versus harmonic lattice theory and molecular dynamics.

    PubMed

    Ott, T; Baiko, D A; Kählert, H; Bonitz, M

    2013-04-01

    Two different approaches to the calculation of the wave spectra of magnetized strongly coupled liquid one-component plasmas are analzyed: the semianalytical quasilocalized charge approximation (QLCA) and the angle-averaged harmonic lattice (AAHL) theory. Both theories are benchmarked against the numerical evidence obtained from molecular dynamics simulations. It is found that not too far from the melting transition (Γ≳100), the AAHL theory is superior to the QLCA, while further away from the transition, the QLCA performs comparably to or better than the AAHL theory.

  6. Jet quenching parameter of the quark-gluon plasma in a strong magnetic field: Perturbative QCD and AdS /CFT correspondence

    NASA Astrophysics Data System (ADS)

    Li, Shiyong; Mamo, Kiminad A.; Yee, Ho-Ung

    2016-10-01

    We compute the jet quenching parameter q ^ of a quark-gluon plasma in the presence of a strong magnetic field using perturbative QCD (pQCD) in the weakly coupled regime, and AdS /CFT correspondence in the strongly coupled regime of N =4 super Yang-Mills. In the weakly coupled regime, we compute q ^ in pQCD at complete leading order (that is, leading log as well as the constant under the log) in the QCD coupling constant αs, assuming the hierarchy of scales αse B ≪T2≪e B . We consider two cases of jet orientations with respect to the magnetic field: 1) the case of a jet moving parallel to the magnetic field; 2) the case of a jet moving perpendicular to the magnetic field. In the former case, we find q ^ ˜αs2(e B )T log (1 /αs) , while in the latter we have q ^ ˜αs2(e B )T log (T2/αse B ) . In both cases, this leading-order result arises from the scatterings with thermally populated lowest-Landau-level quarks. In the strongly coupled regime described by the AdS /CFT correspondence, we find q ^ ˜√{λ }(e B )T or q ^ ˜√{λ }√{e B }T2 in the same hierarchy of T2≪e B depending on whether the jet is moving parallel or perpendicular to the magnetic field, respectively, which indicates a universal dependence of q ^ on (e B )T in both regimes for the parallel case, the origin of which should be the transverse density of lowest-Landau-level states proportional to e B . Finally, the asymmetric transverse momentum diffusion in the case of a jet moving perpendicular to the magnetic field may give an interesting azimuthal asymmetry of the gluon bremsstrahlung spectrum in the Baier-Dokshitzer-Mueller-Peigne-Schiff and Zakharov (BDMPS-Z) formalism.

  7. Electromagnetic waves in a strong Schwarzschild plasma

    SciTech Connect

    Daniel, J.; Tajima, T.

    1996-11-01

    The physics of high frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild metric is studied. Based on the 3 + 1 formalism, we conformalize Maxwell`s equations. The derived dispersion relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma frequency and cyclotron frequency, but otherwise look {open_quotes}flat.{close_quotes} Because of this property this formulation is ideal for nonlinear self-consistent particle (PIC) simulation. Some of the physical consequences arising from the general relativistic lapse function as well as from the effects specific to the plasma background distribution (such as density and magnetic field) give rise to nonuniform wave equations and their associated phenomena, such as wave resonance, cutoff, and mode-conversion. These phenomena are expected to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation results of electron-positron plasma are also presented.

  8. Highly ionized plasma plume generation by long-pulse CO/sub 2/ laser irradiation of solid targets in strong axial magnetic fields

    SciTech Connect

    Hoffman, A L; Crawford, E A

    1982-01-01

    The present work utilizes high f number optics and is directed primarily at controlling the conditions in the magnetically confined plume. Typically, fully ionized carbon plasmas have been produced with 10/sup 18/ cm/sup -3/ electron densities and 100 to 150 eV electron temperatures. These carbon plasmas have been doped with high Z atoms in order to study ionization and emission rates at the above conditions.

  9. Strongly Magnetized Accretion Disks Around Black Holes

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2017-01-01

    Recent observations are suggestive of strongly magnetized accretion disks around black holes. Performing local (shearing box) simulations of accretion disks, we investigate how a strong magnetization state can develop and persist. We demonstrate that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion disks. We also show that black hole spin measurements can become unconstrained if magnetic fields provide a significant contribution to the vertical pressure support of the accretion disk atmosphere.

  10. Development of a strong field helicon plasma source

    SciTech Connect

    Shinohara, Shunjiro; Mizokoshi, Hiroshi

    2006-03-15

    We developed a high-density helicon plasma source with a very strong field of up to 10 kG. Using a double-loop antenna wound around a quartz tube, 9.5 cm in inner diameter and 90 cm in axial length, initial plasmas with a high density more than 10{sup 13} cm{sup -3} were successfully produced with a radio frequency power less than a few kilowatts, and with changing magnetic fields, fill pressures, and gas species.

  11. Spontaneous Electromagnetic Emission from a Strongly Localized Plasma Flow

    NASA Astrophysics Data System (ADS)

    Tejero, Erik; Amatucci, William; Ganguli, Gurudas; Cothran, Christopher; Thomas, Edward, Jr.

    2010-11-01

    Laboratory observations of electromagnetic ion cyclotron waves generated by a localized transverse dc electric field are reported. Experiments indicate that these waves result from a strong ExB flow inhomogeneity in a mildly collisional plasma with sub-critical magnetic field-aligned current. The wave amplitude scales with the magnitude of the applied radial dc electric field. The electromagnetic signatures become stronger with increasing plasma β, and the radial extent of the power is larger than that of the electrostatic counterpart.

  12. Diffusive Mixing in Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Diaw, Abdourahmane; Murillo, Michael

    2016-10-01

    A multispecies hydrodynamic model based on moments of the Born-Bogolyubov-Green-Kirkwood-Yvon (BBGKY) hierarchy is developed for physical conditions relevant to astrophysical plasmas. The modified transport equations incorporate strong correlations through a density functional theory closure, while fluctuations enters through a mixture BGK operator. This model extends the usual Burgers equations for a dilute gas to strongly coupled and isothermal plasmas mixtures. The diffusive currents for these strongly coupled plasmas is self-consistently derived. The settling of impurities and its impact on cooling of white dwarfs and neutron stars can be greatly affected by strong Coulomb coupling, which we show can be quantified using the direct-correlation function. This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344).

  13. Nanosized graphene crystallite induced strong magnetism in pure carbon films.

    PubMed

    Wang, Chao; Zhang, Xi; Diao, Dongfeng

    2015-03-14

    We report strong magnetism in pure carbon films grown by electron irradiation assisted physical vapor deposition in electron cyclotron resonance plasma. The development of graphene nanocrystallites in the amorphous film matrix, and the dependence of the magnetic behavior on amorphous, nanocrystallite and graphite-like structures were investigated. Results were that the amorphous structure shows weak paramagnetism, graphene nanocrystallites lead to strong magnetization, and graphite-like structures corresponded with a lower magnetization. At a room temperature of 300 K, the highest saturation magnetization of 0.37 emu g(-1) was found in the nanosized graphene nanocrystallite structure. The origin of strong magnetism in nanocrystallites was ascribed to the spin magnetic moment at the graphene layer edges.

  14. Dust trajectories and diagnostic applications beyond strongly coupled dusty plasmas

    SciTech Connect

    Wang Zhehui; Ticos, Catalin M.; Wurden, Glen A.

    2007-10-15

    Plasma interaction with dust is of growing interest for a number of reasons. On the one hand, dusty plasma research has become one of the most vibrant branches of plasma science. On the other hand, substantially less is known about dust dynamics outside the laboratory strongly coupled dusty-plasma regime, which typically corresponds to 10{sup 15} m{sup -3} electron density with ions at room temperature. Dust dynamics is also important to magnetic fusion because of concerns about safety and potential dust contamination of the fusion core. Dust trajectories are measured under two plasma conditions, both of which have larger densities and hotter ions than in typical dusty plasmas. Plasma-flow drag force, dominating over other forces in flowing plasmas, can explain the dust motion. In addition, quantitative understanding of dust trajectories is the basis for diagnostic applications using dust. Observation of hypervelocity dust in laboratory enables dust as diagnostic tool (hypervelocity dust injection) in magnetic fusion. In colder plasmas ({approx}10 eV or less), dust with known physical and chemical properties can be used as microparticle tracers to measure both the magnitude and directions of flows in plasmas with good spatial resolution as the microparticle tracer velocimetry.

  15. BOOK REVIEW: Physics of Strongly Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Kraeft, Wolf-Dietrich

    2007-07-01

    Strongly coupled plasmas (or non-ideal plasmas) are multi-component charged many-particle systems, in which the mean value of the potential energy of the system is of the same order as or even higher than the mean value of the kinetic energy. The constituents are electrons, ions, atoms and molecules. Dusty (or complex) plasmas contain still mesoscopic (multiply charged) particles. In such systems, the effects of strong coupling (non-ideality) lead to considerable deviations of physical properties from the corresponding properties of ideal plasmas, i.e., of plasmas in which the mean kinetic energy is essentially larger than the mean potential energy. For instance, bound state energies become density dependent and vanish at higher densities (Mott effect) due to the interaction of the pair with the surrounding particles. Non-ideal plasmas are of interest both for general scientific reasons (including, for example, astrophysical questions), and for technical applications such as inertially confined fusion. In spite of great efforts both experimentally and theoretically, satisfactory information on the physical properties of strongly coupled plasmas is not at hand for any temperature and density. For example, the theoretical description of non-ideal plasmas is possible only at low densities/high temperatures and at extremely high densities (high degeneracy). For intermediate degeneracy, however, numerical experiments have to fill the gap. Experiments are difficult in the region of `warm dense matter'. The monograph tries to present the state of the art concerning both theoretical and experimental attempts. It mainly includes results of the work perfomed in famous Russian laboratories in recent decades. After outlining basic concepts (chapter 1), the generation of plasmas is considered (chapter 2, chapter 3). Questions of partial (chapter 4) and full ionization (chapter 5) are discussed including Mott transition and Wigner crystallization. Electrical and optical

  16. Strongly magnetized accretion discs require poloidal flux

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg; Armitage, Philip J.; Simon, Jacob B.; Begelman, Mitchell C.

    2016-08-01

    Motivated by indirect observational evidence for strongly magnetized accretion discs around black holes, and the novel theoretical properties of such solutions, we investigate how a strong magnetization state can develop and persist. To this end, we perform local simulations of accretion discs with an initially purely toroidal magnetic field of equipartition strength. We demonstrate that discs with zero net vertical magnetic flux and realistic boundary conditions cannot sustain a strong toroidal field. However, a magnetic pressure-dominated disc can form from an initial configuration with a sufficient amount of net vertical flux and realistic boundary conditions. Our results suggest that poloidal flux is a necessary prerequisite for the sustainability of strongly magnetized accretion discs.

  17. Ionization Potential Depression in Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Wark, Justin; Ciricosta, Orlando; Vinko, Sam; Crowley, Basil

    2013-10-01

    The focusing of the output of 4th generation femtosecond X-ray sources to ultra-high intensities has enabled the creation of hot (close to 200-eV) aluminum plasmas at exactly solid density. Tuning of the X-ray FEL energy that produces the plasma, and observation of the subsequent K- α fluorescence from the highly charged ions allows direct measurements of the K-edges, and hence ionization potential depression (IPD). The results of these experiments show far higher depressions than those predicted by the frequently-used Stewart-Pyatt model, but appear to be in contradiction with laser-plasma experimental data at similar densities, but with hotter, less strongly-coupled plasmas. We present here new calculations of the IPD, both ab initio and analytic, and discuss the relevance of the coupling parameter to the IPD. We further explore what constitutes our understanding of the physics of IPD, and how it should be modelled.

  18. Of the consequences of the inferred constitutive nature of state of matter possibly characteristic of a class of strongly magnetized plasma in astrophysics

    NASA Astrophysics Data System (ADS)

    Berdichevsky, Daniel Benjamin

    2015-04-01

    We conjecture that the structure of a class of solar transients (magnetic cloud, MC) is constituted by matter coalescent to a super strong magnetic field, which high temperature manifests itself through the presence of a hot electron gas, possibly constituted by the halo-part of the e-distribution. We identify the presence of this state of matter in strongly magnetized transients in the solar wind beyond a few solar radii from the Sun and extending well beyond 1 AUa. We present a few constitutive properties resulting of a recent thermodynamic study identifying this state of matter. These main outcomes are evaluated for a case study, the June 2, 1998 MC observed with SC Wind. In our view the most relevant outcome is the estimation of its magnetic permeability, two orders of magnitude smaller than that of the vacuum. This implies a highly diamagnetic material. Other properties to be discussed are the anomalous adiabatic behavior of this conjectured e-gas. In addition, and with the help of a simple MHD 3-D evolutionary model of the structureb, we present estimate values to its: (a) acoustic speed, (b) free current density, (c) and low limit to the electrical permittivity.aBerdichevsky, D. B., and K. Schefers, under review (ApJ, 2014).bBerdichevsky, D. B., Sol Phys, 284, 245-259, 2013.

  19. Dynamics of strongly correlated and strongly inhomogeneous plasmas.

    PubMed

    Kählert, Hanno; Kalman, Gabor J; Bonitz, Michael

    2014-07-01

    Kinetic and fluid equations are derived for the dynamics of classical inhomogeneous trapped plasmas in the strong coupling regime. The starting point is an extended Singwi-Tosi-Land-Sjölander (STLS) ansatz for the dynamic correlation function, which is allowed to depend on time and both particle coordinates separately. The time evolution of the correlation function is determined from the second equation of the Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy. We study the equations in the linear limit and derive a nonlocal equation for the fluid displacement field. Comparisons to first-principles molecular dynamics simulations reveal an excellent quality of our approach thereby overcoming the limitations of the broadly used STLS scheme.

  20. MRS photodiode in strong magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Tartaglia, M.A.; Zutshi, v.; /Northern Illinois U.

    2004-12-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported.

  1. Spontaneous Electromagnetic Emission from a Strongly Localized Plasma Flow

    NASA Astrophysics Data System (ADS)

    Tejero, E. M.; Amatucci, W. E.; Ganguli, G.; Cothran, C. D.; Crabtree, C.; Thomas, E., Jr.

    2011-05-01

    Laboratory observations of electromagnetic ion-cyclotron waves generated by a localized transverse dc electric field are reported. Experiments indicate that these waves result from a strong E×B flow inhomogeneity in a mildly collisional plasma with subcritical magnetic field-aligned current. The wave amplitude scales with the magnitude of the applied radial dc electric field. The electromagnetic signatures become stronger with increasing plasma β, and the radial extent of the power is larger than that of the electrostatic counterpart. Near-Earth space weather implications of the results are discussed.

  2. Magnetic insulation for plasma propulsion

    NASA Technical Reports Server (NTRS)

    Gonzalez, Dora E.

    1990-01-01

    The design parameters of effective magnetic insulation for plasma engines are discussed. An experimental model used to demonstrate the process of plasma acceleration and magnetic insulation is considered which consists of a copper strap that is wound around a glass tube and connected to a capacitor. In order to adequately model the magnetic insulation mechanisms, a computer algorithm is developed. Plasma engines, with their efficient utilization of the propellant mass, are expected to provide the next-generation advanced propulsion systems.

  3. Strong intrinsic mixing in vortex magnetic fields.

    PubMed

    Martin, James E; Shea-Rohwer, Lauren; Solis, Kyle J

    2009-07-01

    We report a method of magnetic mixing wherein a "vortex" magnetic field applied to a suspension of magnetic particles creates strong homogeneous mixing throughout the fluid volume. Experiments designed to elucidate the microscopic mechanism of mixing show that the torque is quadratic in the field, decreases with field frequency, and is optimized at a vortex field angle of approximately 55 degrees . Theory and simulations indicate that the field-induced formation of volatile particle chains is responsible for these phenomena. This technique has applications in microfluidic devices and is ideally suited to applications such as accelerating the binding of target biomolecules to biofunctionalized magnetic microbeads.

  4. Simulating strongly coupled plasmas at low temperatures

    NASA Astrophysics Data System (ADS)

    Bussmann, M.; Schramm, U.; Habs, D.

    2006-10-01

    Realistic molecular dynamics (MD) simulations of the particle dynamics in strongly coupled plasmas require the computation of the mutual Coulomb-force for each pair of charged particles if a correct treatment of long range correlations is required. For plasmas with N > 104 particles this requires a tremendous number of computational steps which can only be addressed using efficient parallel algorithms adopted to modern super-computers. We present a new versatile MD simulation code which can simulate the non-relativistic mutual Coulomb-interaction of a large number of charged particles in arbitrary external field configurations. A demanding application is the simulation of the complete dynamics of in-trap stopping of highly charged ions in a laser cooled plasma of N = 105 24Mg+ ions. We demonstrate that the simulation is capable of delivering results on stopping times and plasma dynamics under realistic conditions. The results suggest that this stopping scheme can compete with in-trap electron cooling and might be an alternative approach for delivering ultra cold highly charged ions for future trap-based experiments aiming for precision mass measurements of stable and radioactive nuclei.

  5. Magnetic Field Effects on Plasma Plumes

    NASA Technical Reports Server (NTRS)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  6. Hypervelocity Plasmas with Strong MHD (Magnetohydrodynamic) Interactions.

    DTIC Science & Technology

    1984-12-01

    ARD-Ai5S 867 HYPERVELOCITY PLASMAS WITH STRONG NHD j/j (MAGNETOHYDRODYNANIC) INTERRCTIONS(U) STD RESEARCH CORP ARCADIA CA S T DEMETRIADES FT AL DEC...MIRCP RSLTO-TS HR NAINLBUEUO SADRS-16- -ArO’ mi -T7- (7 % STD RESEARCH CORPORATION POST OFFICE OX ’C’ ARC ADIA, CALIFORNIA 91006 LTf.LEPHONE! (213...Covered: 1 June 1983 -31 May 1984 December 1984 STD Research Corporation P.O. Box "’C" Arcadia, California 91006 Appi-u ’, 2 I~t or1 ’Pub I rege

  7. Decay of Resonaces in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2015-08-01

    We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of K±*, K0* vector mesons as well as Λ* (1520) and Ξ0* baryonic states is considered in static fields 1013-1015 T. In particular, n = 0 Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from ρ0(770) mesons may occur if strong decay channel ρ0 → π+π- is significantly suppressed. CP - violating π+π- decays of pseudoscalar ηc and η(547) mesons in the magnetic field are discussed, and superpositions of quarkonium states ηc,b and χc,b(nP) with Ψ(nS), ϒ(nS) mesons in the external field are considered.

  8. Free oscillations of magnetic fluid in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  9. ISS Plasma Contactor Units Operations During Strong Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Alred, J.; Mikatarian, R.; Barsamian, H.; Minow, J.; Koontz, S.

    2003-12-01

    The large structure and high voltage arrays of the ISS represent a complex system that interacts with the Earth's ionosphere. To mitigate spacecraft charging problems on the ISS, two Plasma Contactor Units discharge ionized xenon gas to "clamp" the potential of the ISS with respect to the low Earth orbit plasma. The Plasma Interaction Model, a model of ISS plasma interaction developed from the basic physics of the interaction phenomena, includes magnetic induction effects, plasma temperature and density effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. To augment this model, the PCU discharge current has been monitored for the ISS in a variety of flight attitudes as well as during the annual seasons. A review of the PCU discharge currents shows a correlation to the geomagnetic activity. The variation in the PCU discharge current during strong geomagnetic activity will be presented. Also, the PCU discharge currents during periods of low geomagnetic activity will be discussed. The presentation will conclude with a comparison of satellite plasma measurements during different stages of geomagnetic activity.

  10. Firefly flashing under strong static magnetic field.

    PubMed

    Barua, Anurup Gohain; Iwasaka, Masakazu; Miyashita, Yuito; Kurita, Satoru; Owada, Norio

    2012-02-01

    Firefly flashing has been the subject of numerous scientific investigations. Here we present in vivo flashes from male specimens of three species of fireflies-two Japanese species Luciola cruciata, Luciola lateralis and one Indian species Luciola praeusta-positioned under a superconducting magnet. When the OFF state of the firefly becomes long after flashing in an immobile state under the strong static magnetic field of strength 10 Tesla for a long time, which varies widely from species to species as well as from specimen to specimen, the effect of the field becomes noticeable. The flashes in general are more rapid, and occasionally overlap to produce broad compound flashes. We present the broadest flashes recorded to date, and propose that the strong static magnetic field affects the neural activities of fireflies, especially those in the spent up or 'exhausted' condition.

  11. Molecular systems in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Turbiner, Alexander V.

    2007-04-01

    Brief overview of one-two electron molecular systems made out of protons and/or α-particles in a strong magnetic field B≤4.414×1013 G is presented. A particular emphasis is given to the one-electron exotic ions H 3 ++ (pppe), He 2 3+ (α α e) and to two-electron ionsH 3 + (pppee), He 2 ++ (α α ee). Quantitative studies in a strong magnetic field are very complicated technically. Novel approach to the few-electron Coulomb systems in magnetic field, which provides accurate results, based on variational calculus with physically relevant trial functions is briefly described.

  12. Quantum processes in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1975-01-01

    Quantum-mechanical processes that occur in a piece of matter embedded in a magnetic field with a strength of the order of 10 to the 13th power G are described which either are entirely due to the presence of the field or become modified because of it. The conversion of rotational energy into electromagnetic energy in pulsars is analyzed as a mechanism for producing such a field, and it is shown that a strong magnetic field is not sufficient for quantum effects to play a significant role; in addition, the density must be adjusted to be as low as possible. The pressure and energy density of a free electron gas in a uniform magnetic field are evaluated, neutron beta-decay in the presence of a strong field is examined, and the effect of such a field on neutrino reactions is discussed. The thermal history of a neutron star is studied, and it is concluded that a strong magnetic field helps to increase the cooling rate of the star by producing new channels through which neutrinos can carry away energy.

  13. Assembly of magnetic spheres in strong homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Messina, René; Stanković, Igor

    2017-01-01

    The assembly in two dimensions of spherical magnets in strong magnetic field is addressed theoretically. It is shown that the attraction and assembly of parallel magnetic chains is the result of a delicate interplay of dipole-dipole interactions and short ranged excluded volume correlations. Minimal energy structures are obtained by numerical optimization procedure as well as analytical considerations. For a small number of constitutive magnets Ntot ≤ 26, a straight chain is found to be the ground state. In the regime of larger Ntot ≥ 27, the magnets form two touching chains with equally long tails at both ends. We succeed to identify the transition from two to three touching chains at Ntot = 129. Overall, this study sheds light on the mechanisms of the recently experimentally observed ribbon formation of superparamagnetic colloids via lateral aggregation of magnetic chains in magnetic field (Darras et al., 2016).

  14. Understanding strongly coupling magnetism from holographic duality

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Yang, Run-Qiu

    2016-07-01

    The unusual magnetic materials are significant in both science and technology. However, because of the strongly correlated effects, it is difficult to understand their novel properties from theoretical aspects. Holographic duality offers a new approach to understanding such systems from gravity side. This paper will give a brief review of our recent works on the applications of holographic duality in understanding unusual magnetic materials. Some quantitative comparision between holographic results and experimental data will be shown and some predictions from holographic duality models will be discussed.

  15. Magnetic field amplification in turbulent astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph

    2016-12-01

    Magnetic fields play an important role in astrophysical accretion discs and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here, I start by reviewing recent advances in the numerical and theoretical modelling of the turbulent dynamo, which may explain the origin of galactic and intergalactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simulations from which I determine the growth of the turbulent (un-ordered) magnetic field component ( turb$ ) in the presence of weak and strong guide fields ( 0$ ). I vary 0$ over five orders of magnitude and find that the dependence of turb$ on 0$ is relatively weak, and can be explained with a simple theoretical model in which the turbulence provides the energy to amplify turb$ . Finally, I discuss some important implications of magnetic fields for the structure of accretion discs, the launching of jets and the star-formation rate of interstellar clouds.

  16. Heat flux viscosity in collisional magnetized plasmas

    SciTech Connect

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  17. Oscillations of Magnetic Fluid Column in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Storozhenko, A. M.; Platonov, V. B.; Lobova, O. V.; Ryapolov, P. A.

    2017-01-01

    The paper considers the results of measuring the elastic parameters (ponderomotive elasticity coefficient, oscillation frequency, attenuation coefficient) of the oscillatory system with an inertial element that is a magnetic fluid column retained in a tube due to magnetic levitation in a strong magnetic field. Elasticity is provided by the ponderomotive force which affects the upper and lower thin layers of the fluid column. Measurement results of vibration parameters of the oscillatory system can be useful for the investigations of magnetophoresis and aggregation of nanoparticles in magnetic fluids.

  18. Topology, Magnetic Field, and Strongly Interacting Matter

    DOE PAGES

    Kharzeev, Dmitri E.

    2015-06-05

    Gauge theories with compact symmetry groups possess topologically nontrivial configurations of gauge field. This characteristic has dramatic implications for the vacuum structure of quantum chromodynamics (QCD) and for the behavior of QCD plasma, as well as for condensed matter systems with chiral quasi-particles. Here, I review the current status of this problem with an emphasis both on the interplay between chirality and a background magnetic field and on the observable manifestations of topology in heavy-ion collisions, Dirac semimetals, neutron stars, and the early Universe.

  19. Bound states in a strong magnetic field

    SciTech Connect

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G.; Ferreira Filho, L. G.

    2013-03-25

    We expect a strong magnetic field to be produced in the perpendicular direction to the reaction plane, in a noncentral heavy-ion collision . The strength of the magnetic field is estimated to be eB{approx}m{sup 2}{sub {pi}}{approx} 0.02 GeV{sup 2} at the RHIC and eB{approx} 15m{sup 2}{sub {pi}}{approx} 0.3 GeV{sup 2} at the LHC. We investigate the effects of the magnetic field on B{sup 0} and D{sup 0} mesons, focusing on the changes of the energy levels and of the mass of the bound states.

  20. Axisymmetric plasma equilibrium in gravitational and magnetic fields

    SciTech Connect

    Krasheninnikov, S. I.; Catto, P. J.

    2015-12-15

    Plasma equilibria in gravitational and open-ended magnetic fields are considered for the case of topologically disconnected regions of the magnetic flux surfaces where plasma occupies just one of these regions. Special dependences of the plasma temperature and density on the magnetic flux are used which allow the solution of the Grad–Shafranov equation in a separable form permitting analytic treatment. It is found that plasma pressure tends to play the dominant role in the setting the shape of magnetic field equilibrium, while a strong gravitational force localizes the plasma density to a thin disc centered at the equatorial plane.

  1. Axisymmetric plasma equilibrium in gravitational and magnetic fields

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Catto, P. J.

    2015-12-01

    Plasma equilibria in gravitational and open-ended magnetic fields are considered for the case of topologically disconnected regions of the magnetic flux surfaces where plasma occupies just one of these regions. Special dependences of the plasma temperature and density on the magnetic flux are used which allow the solution of the Grad-Shafranov equation in a separable form permitting analytic treatment. It is found that plasma pressure tends to play the dominant role in the setting the shape of magnetic field equilibrium, while a strong gravitational force localizes the plasma density to a thin disc centered at the equatorial plane.

  2. A metafluid exhibiting strong optical magnetism.

    PubMed

    Sheikholeslami, Sassan N; Alaeian, Hadiseh; Koh, Ai Leen; Dionne, Jennifer A

    2013-09-11

    Advances in the field of metamaterials have enabled unprecedented control of light-matter interactions. Metamaterial constituents support high-frequency electric and magnetic dipoles, which can be used as building blocks for new materials capable of negative refraction, electromagnetic cloaking, strong visible-frequency circular dichroism, and enhancing magnetic or chiral transitions in ions and molecules. While all metamaterials to date have existed in the solid-state, considerable interest has emerged in designing a colloidal metamaterial or "metafluid". Such metafluids would combine the advantages of solution-based processing with facile integration into conventional optical components. Here we demonstrate the colloidal synthesis of an isotropic metafluid that exhibits a strong magnetic response at visible frequencies. Protein-antibody interactions are used to direct the solution-phase self-assembly of discrete metamolecules comprised of silver nanoparticles tightly packed around a single dielectric core. The electric and magnetic response of individual metamolecules and the bulk metamaterial solution are directly probed with optical scattering and spectroscopy. Effective medium calculations indicate that the bulk metamaterial exhibits a negative effective permeability and a negative refractive index at modest fill factors. This metafluid can be synthesized in large-quantity and high-quality and may accelerate development of advanced nanophotonic and metamaterial devices.

  3. Atoms and Molecules in Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Schmelcher, P.; Cederbaum, L. S.

    Selected topics on atoms and molecules in strong magnetic fields are reviewed. The enormous progress made for the hydrogen atom in a magnetic field and its impact on different areas like, for example, modern semi-classics and dynamics of non-integrable systems as well as laser spectroscopy are outlined. Due to the non-separability of the centre of mass and electronic motion of atoms/molecules in magnetic fields a variety of two-body phenomena can be observed in highly excited systems. Examples are the classical diffusion of the centre of mass and the giant dipole states for crossed fields. For ions energy transfer processes lead to the so-called self-ionisation process. Magnetically induced crossovers for the ground states of atoms are investigated. The increasing complexity of the ground state behaviour of magnetically dressed multi-electron atoms due to changes of the spin polarisation as well as spatial orbitals is demonstrated. For molecules, both fundamental aspects as well as the electronic structure of few-electron diatomics are reviewed.

  4. Photoneutrino energy losses in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Previously computed rates of energy losses (Petrosian et al., 1967) ignored the presence of strong magnetic fields, hence the change brought in when such a field (about 10 to the 12th to 10 to the 13th power G) is included is studied. The results indicate that for T about 10 to the 8th power K and densities rho of about 10,000 g/cu cm, the presence of a strong H field decreases the energy losses by at the most a factor between 10 and 100 in the region up to rho = 1,000,000 g/cu cm. At higher densities the neutrino emissivities are almost identical.

  5. Strongly-coupled plasmas formed from laser-heated solids

    PubMed Central

    Lyon, M.; Bergeson, S. D.; Hart, G.; Murillo, M. S.

    2015-01-01

    We present an analysis of ion temperatures in laser-produced plasmas formed from solids with different initial lattice structures. We show that the equilibrium ion temperature is limited by a mismatch between the initial crystallographic configuration and the close-packed configuration of a strongly-coupled plasma, similar to experiments in ultracold neutral plasmas. We propose experiments to demonstrate and exploit this crystallographic heating in order to produce a strongly coupled plasma with a coupling parameter of several hundred. PMID:26503293

  6. Local fields in strongly coupled plasmas

    SciTech Connect

    Pollock, E.L.; Weisheit, J.C.

    1984-06-01

    Computer simulation techniques and important static properties of plasma microfields are discussed. The relevant timescales are introduced for dynamical atomic problems, and some time-dependent properties of microfields are discussed. In the last two sections of the paper these results are applied to two problems relevant to the spectroscopy of dense plasmas: (1) broadening of spectral lines, and (2) screening in inelastic electron-ion collisions.

  7. Scaling laws in magnetized plasma turbulence

    SciTech Connect

    Boldyrev, Stanislav

    2015-06-28

    Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar

  8. Emission of strong Terahertz pulses from laser wakefields in weakly coupled plasma

    NASA Astrophysics Data System (ADS)

    Singh, Divya; Malik, Hitendra K.

    2016-09-01

    The present paper discusses the laser plasma interaction for the wakefield excitation and the role of external magnetic field for the emission of Terahertz radiation in a collisional plasma. Flat top lasers are shown to be more appropriate than the conventional Gaussian lasers for the effective excitation of wakefields and hence, the generation of strong Terahertz radiation through the transverse component of wakefield.

  9. Magnetic Flux Compression in Plasmas

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.

    2012-10-01

    Magnetic flux compression (MFC) as a method for producing ultra-high pulsed magnetic fields had been originated in the 1950s by Sakharov et al. at Arzamas in the USSR (now VNIIEF, Russia) and by Fowler et al. at Los Alamos in the US. The highest magnetic field produced by explosively driven MFC generator, 28 MG, was reported by Boyko et al. of VNIIEF. The idea of using MFC to increase the magnetic field in a magnetically confined plasma to 3-10 MG, relaxing the strict requirements on the plasma density and Lawson time, gave rise to the research area known as MTF in the US and MAGO in Russia. To make a difference in ICF, a magnetic field of ˜100 MG should be generated via MFC by a plasma liner as a part of the capsule compression scenario on a laser or pulsed power facility. This approach was first suggested in mid-1980s by Liberman and Velikovich in the USSR and Felber in the US. It has not been obvious from the start that it could work at all, given that so many mechanisms exist for anomalously fast penetration of magnetic field through plasma. And yet, many experiments stimulated by this proposal since 1986, mostly using pulsed-power drivers, demonstrated reasonably good flux compression up to ˜42 MG, although diagnostics of magnetic fields of such magnitude in HED plasmas is still problematic. The new interest of MFC in plasmas emerged with the advancement of new drivers, diagnostic methods and simulation tools. Experiments on MFC in a deuterium plasma filling a cylindrical plastic liner imploded by OMEGA laser beam led by Knauer, Betti et al. at LLE produced peak fields of 36 MG. The novel MagLIF approach to low-cost, high-efficiency ICF pursued by Herrmann, Slutz, Vesey et al. at Sandia involves pulsed-power-driven MFC to a peak field of ˜130 MG in a DT plasma. A review of the progress, current status and future prospects of MFC in plasmas is presented.

  10. Exact solutions to magnetized plasma flow

    SciTech Connect

    Wang, Zhehui; Barnes, Cris W.

    2001-03-01

    Exact analytic solutions for steady-state magnetized plasma flow (MPF) using ideal magnetohydrodynamics formalism are presented. Several cases are considered. When plasma flow is included, a finite plasma pressure gradient {nabla}p can be maintained in a force-free state JxB=0 by the velocity gradient. Both incompressible and compressible MPF examples are discussed for a Taylor-state spheromak B field. A new magnetized nozzle solution is given for compressible plasma when U{parallel}B. Transition from a magnetized nozzle to a magnetic nozzle is possible when the B field is strong enough. No physical nozzle would be needed in the magnetic nozzle case. Diverging-, drum- and nozzle-shaped MPF solutions when U{perpendicular}B are also given. The electric field is needed to balance the UxB term in Ohm's law. The electric field can be generated in the laboratory with the proposed conducting electrodes. If such electric fields also exist in stars and galaxies, such as through a dynamo process, then these solutions can be candidates to explain single and double jets.

  11. Charge shielding in magnetized plasmas

    SciTech Connect

    Wang Shaojie; Stroth, Ulrich; Van Oost, Guido

    2010-11-15

    The shielding of a charge sheet in a magnetized plasma is investigated by taking account of the diamagnetic drift start-up current in addition to the polarization current. For a charge sheet with an infinitesimal width, the shielding is the same as the conventional Debye shielding if the charge sheet is perpendicular to the magnetic field; the shielding length is {radical}(2) times larger than the conventional one if the charge sheet is parallel to the magnetic field. When the scale length of the charge sheet is comparable or smaller than the ion Larmor radius, the electric field is significantly enhanced within the charge sheet, while far away from the charge sheet, the electric field is shielded to the usual 1/{epsilon}{sub r} level (where {epsilon}{sub r} is the diamagnetic coefficient of the magnetized plasma).

  12. Strongly magnetized rotating dipole in general relativity

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2016-10-01

    Context. Electromagnetic waves arise in many areas of physics. Solutions are difficult to find in the general case. Aims: We numerically integrate Maxwell equations in a 3D spherical polar coordinate system. Methods: Straightforward finite difference methods would lead to a coordinate singularity along the polar axis. Spectral methods are better suited for such artificial singularities that are related to the choice of a coordinate system. When the radiating object rotates like a star, for example, special classes of solutions to Maxwell equations are worthwhile to study, such as quasi-stationary regimes. Moreover, in high-energy astrophysics, strong gravitational and magnetic fields are present especially around rotating neutron stars. Results: To study such systems, we designed an algorithm to solve the time-dependent Maxwell equations in spherical polar coordinates including general relativity and quantum electrodynamical corrections to leading order. As a diagnostic, we computed the spin-down luminosity expected for these stars and compared it to the classical or non-relativistic and non-quantum mechanical results. Conclusions: Quantum electrodynamics leads to an irrelevant change in the spin-down luminosity even for a magnetic field of about the critical value of 4.4 × 109 T. Therefore the braking index remains close to its value for a point dipole in vacuum, namely n = 3. The same conclusion holds for a general-relativistic quantum electrodynamically corrected force-free magnetosphere.

  13. Analysis of magnetic field plasma interactions using microparticles as probes

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin S.; Hyde, Truell W.

    2015-08-01

    The interaction between a magnetic field and plasma close to a nonconductive surface is of interest for both science and technology. In space, crustal magnetic fields on celestial bodies without atmosphere can interact with the solar wind. In advanced technologies such as those used in fusion or spaceflight, magnetic fields can be used to either control a plasma or protect surfaces exposed to the high heat loads produced by plasma. In this paper, a method will be discussed for investigating magnetic field plasma interactions close to a nonconductive surface inside a Gaseous Electronics Conference reference cell employing dust particles as probes. To accomplish this, a magnet covered by a glass plate was exposed to a low power argon plasma. The magnetic field was strong enough to magnetize the electrons, while not directly impacting the dynamics of the ions or the dust particles used for diagnostics. In order to investigate the interaction of the plasma with the magnetic field and the nonconductive surface, micron-sized dust particles were introduced into the plasma and their trajectories were recorded with a high-speed camera. Based on the resulting particle trajectories, the accelerations of the dust particles were determined and acceleration maps over the field of view were generated which are representative of the forces acting on the particles. The results show that the magnetic field is responsible for the development of strong electric fields in the plasma, in both horizontal and vertical directions, leading to complex motion of the dust particles.

  14. Plasma transport theory spanning weak to strong coupling

    SciTech Connect

    Daligault, Jérôme; Baalrud, Scott D.

    2015-06-29

    We describe some of the most striking characteristics of particle transport in strongly coupled plasmas across a wide range of Coulomb coupling strength. We then discuss the effective potential theory, which is an approximation that was recently developed to extend conventional weakly coupled plasma transport theory into the strongly coupled regime in a manner that is practical to evaluate efficiently.

  15. Localized electron heating by strong guide-field magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Inomoto, Michiaki; Sugawara, Takumichi; Yamasaki, Kotaro; Ushiki, Tomohiko; Ono, Yasushi

    2015-10-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field using two merging spherical tokamak plasmas in the University of Tokyo Spherical Tokamak experiment. Our new slide-type two-dimensional Thomson scattering system is documented for the first time the electron heating localized around the X-point. Shape of the high electron temperature area does not agree with that of energy dissipation term Et.jt . If we include a guide-field effect term Bt/(Bp+αBt) for Et.jt , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point.

  16. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  17. Axisymmetric global gravitational equilibrium for magnetized, rotating hot plasma

    NASA Astrophysics Data System (ADS)

    Catto, Peter J.; Pusztai, Istvan; Krasheninnikov, Sergei I.

    2015-12-01

    > We present analytic solutions for three-dimensional magnetized axisymmetric equilibria confining rotating hot plasma in a gravitational field. Our up-down symmetric solution to the full Grad-Shafranov equation can exhibit equatorial plane localization of the plasma density and current, resulting in disk equilibria for the plasma density. For very weak magnetic fields and high plasma pressure, we find strongly rotating thin plasma disk gravitational equilibria that satisfy strict Keplerian motion provided the gravitational energy is much larger than the plasma pressure, which must be large compared to the magnetic energy of the poloidal magnetic field. When the rotational energy exceeds the gravitational energy and it is larger than the plasma pressure, diffuse disk equilibrium solutions continue to exist provided the poloidal magnetic energy remains small. For stronger magnetic fields and lower plasma pressure and rotation, we can also find gravitational equilibria with strong localization to the equatorial plane. However, a toroidal magnetic field is almost always necessary to numerically verify these equilibria are valid solutions in the presence of gravity for the cases considered in Catto & Krasheninnikov (J. Plasma Phys., vol. 81, 2015, 105810301). In all cases both analytic and numerical results are presented.

  18. Confinement of Plasma along Shaped Open Magnetic Fields from the Centrifugal Force of Supersonic Plasma Rotation

    SciTech Connect

    Teodorescu, C.; Young, W. C.; Swan, G. W. S.; Ellis, R. F.; Hassam, A. B.; Romero-Talamas, C. A.

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic ExB rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  19. Poisson-Vlasov in a strong magnetic field: A stochastic solution approach

    SciTech Connect

    Vilela Mendes, R.

    2010-04-15

    Stochastic solutions are obtained for the Maxwell-Vlasov equation in the approximation where magnetic field fluctuations are neglected and the electrostatic potential is used to compute the electric field. This is a reasonable approximation for plasmas in a strong external magnetic field. Both Fourier and configuration space solutions are constructed.

  20. Visco-elastic effects in strongly coupled dusty plasmas

    SciTech Connect

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2008-09-07

    We report on experimental evidence of visco-elastic effects in a strongly coupled dusty plasma through investigations of the propagation characteristics of low frequency dust acoustic waves and by excitations of transverse shear waves in a DC discharge Argon plasma.

  1. Fully magnetized plasma flow in a magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Ahedo, Eduardo

    2016-02-01

    A model of the expansion of a plasma in a magnetic nozzle in the full magnetization limit is presented. The fully magnetized and the unmagnetized-ions limits are compared, recovering the whole range of variability in plasma properties, thrust, and plume efficiency, and revealing the differences in the physics of the two cases. The fully magnetized model is the natural limit of the general, 2D, two-fluid model of Ahedo and Merino [Phys. Plasmas 17, 073501 (2010)], and it is proposed as an analytical, conservative estimator of the propulsive figures of merit of partially magnetized plasma expansions in the near region of the magnetic nozzle.

  2. Ideal plasma response to vacuum magnetic fields with resonant magnetic perturbations in non-axisymmetric tokamaks

    SciTech Connect

    Kim, Kimin; Ahn, J. -W.; Scotti, F.; Park, J. -K.; Menard, J. E.

    2015-09-03

    Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n = 3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifies the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n = 3. Furthermore, amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n = 1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.

  3. Strong Magnetic Anomalies on the Lunar Near Side

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Mitchell, D. L.; Lin, R. P.; Frey, S.; Acuna, M. H.; Hood, L. L.; Binder, A.

    2000-01-01

    The near side magnetic field is dominated by the demagnetized Imbrium basin and Oceanus Procellarum regions. However, surrounding this area are a number of strong magnetic anomalies, including Rima Sirsalis and Reiner Gamma.

  4. Physics in Strong Magnetic Fields Near Neutron Stars.

    ERIC Educational Resources Information Center

    Harding, Alice K.

    1991-01-01

    Discussed are the behaviors of particles and energies in the magnetic fields of neutron stars. Different types of possible research using neutron stars as a laboratory for the study of strong magnetic fields are proposed. (CW)

  5. Ultracold atoms in strong synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    2015-03-01

    The Harper Hofstadter Hamiltonian describes charged particles in the lowest band of a lattice at high magnetic fields. This Hamiltonian can be realized with ultracold atoms using laser assisted tunneling which imprints the same phase into the wavefunction of neutral atoms as a magnetic field dose for electrons. I will describe our observation of a bosonic superfluid in a magnetic field with half a flux quantum per lattice unit cell, and discuss new possibilities for implementing spin-orbit coupling. Work done in collaboration with C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton, and Woo Chang Chung.

  6. Magnetic multipole redirector of moving plasmas

    DOEpatents

    Crow, James T.; Mowrer, Gary R.

    1999-01-01

    A method and apparatus for redirecting moving plasma streams using a multiple array of magnetic field generators (e.g., permanent magnets or current bearing wires). Alternate rows of the array have opposite magnetic field directions. A fine wire mesh may be employed to focus as well as redirect the plasma.

  7. Two-Dimensional Turbulence in Magnetized Plasmas

    ERIC Educational Resources Information Center

    Kendl, A.

    2008-01-01

    In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…

  8. Magnetic Detachment and Plume Control in Escaping Magnetized Plasma

    SciTech Connect

    P. F. Schmit and N. J. Fisch

    2008-11-05

    The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment.

  9. Suppression of Rayleigh Taylor instability in strongly coupled plasmas

    SciTech Connect

    Das, Amita; Kaw, Predhiman

    2014-06-15

    The Rayleigh Taylor instability in a strongly coupled plasma medium has been investigated using the equations of generalized hydrodynamics. It is demonstrated that the visco-elasticity of the strongly coupled medium due to strong inter particle correlations leads to a suppression of the Rayleigh Taylor instability unless certain threshold conditions are met. The relevance of these results to experiments on laser compression of matter to high densities including those related to inertial confinement fusion using lasers has also been shown.

  10. Heavy meson spectroscopy under strong magnetic field

    NASA Astrophysics Data System (ADS)

    Yoshida, Tetsuya; Suzuki, Kei

    2016-10-01

    Spectra of the neutral heavy mesons, ηc(1 S ,2 S ), J /ψ , ψ (2 S ), ηb(1 S ,2 S ,3 S ), ϒ (1 S ,2 S ,3 S ) , D , D*, B , B*, Bs and Bs*, in a homogeneous magnetic field are analyzed by using a potential model with constituent quarks. To obtain anisotropic wave functions and the corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the wave functions for transverse and longitudinal directions in the cylindrical coordinate are expanded by the Gaussian bases separately. Energy level structures in the wide range of magnetic fields are obtained and the deformation of the wave functions is shown, which reflects effects of the spin mixing, the Zeeman splitting and quark Landau levels. The contribution from the magnetic catalysis in heavy-light mesons is discussed as a change of the light constituent quark mass.

  11. Runaway tails in magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Vlahos, L.; Rowland, H. L.; Papadopoulos, K.

    1985-01-01

    The evolution of a runaway tail driven by a dc electric field in a magnetized plasma is analyzed. Depending on the strength of the electric field and the ratio of plasma to gyrofrequency, there are three different regimes in the evolution of the tail. The tail can be (1) stable with electrons accelerated to large parallel velocities, (2) unstable to Cerenkov resonance because of the depletion of the bulk and the formation of a positive slope, (3) unstable to the anomalous Doppler resonance instability driven by the large velocity anisotropy in the tail. Once an instability is triggered (Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution. The role of a convection type loss term is also discussed.

  12. Collective dynamics and transport in extremely magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter

    2016-09-01

    We have built an experimental setup to realize and observe rotating dusty plasmas in a co-rotating frame. Based on the Larmor theorem, the ``RotoDust'' setup is able to create effective magnetizations, mimicked by the Coriolis inertial force, in strongly coupled dusty plasmas that are impossible to approach with superconducting magnets. At the highest rotation speed, we have achieved effective magnetic fields of 3200 T. The effective magnetization β =ωc /ωp (ratio of cyclotron to plasma frequency) reaches 0.76 which is typical for many strongly magnetized and strongly correlated plasmas in compact astrophysical objects. The analysis of the wave spectra as observed in the rotating frame clearly shows the equivalence of the rotating dust cloud and a magnetized plasma. Further, the analysis of the mean square displacement (MSD) and the velocity autocorrelation function (VAC) revealed the transport parameters diffusion and viscosity, which are in reasonable agreement with numerical predictions for magnetized 2D Yukawa systems. Small degree of super-diffusion is observed. This research was supported by grant NKFIH K-115805 and the Janos Bolyai Research Scholarship of the HAS.

  13. Effect of strongly coupled plasma on photoionization cross section

    SciTech Connect

    Das, Madhusmita

    2014-01-15

    The effect of strongly coupled plasma on the ground state photoionization cross section is studied. In the non relativistic dipole approximation, cross section is evaluated from bound-free transition matrix element. The bound and free state wave functions are obtained by solving the radial Schrodinger equation with appropriate plasma potential. We have used ion sphere potential (ISP) to incorporate the plasma effects in atomic structure calculation. This potential includes the effect of static plasma screening on nuclear charge as well as the effect of confinement due to the neighbouring ions. With ISP, the radial equation is solved using Shooting method approach for hydrogen like ions (Li{sup +2}, C{sup +5}, Al{sup +12}) and lithium like ions (C{sup +3}, O{sup +5}). The effect of strong screening and confinement is manifested as confinement resonances near the ionization threshold for both kinds of ions. The confinement resonances are very much dependent on the edge of the confining potential and die out as the plasma density is increased. Plasma effect also results in appearance of Cooper minimum in lithium like ions, which was not present in case of free lithium like ions. With increasing density the position of Cooper minimum shifts towards higher photoelectron energy. The same behaviour is also true for weakly coupled plasma where plasma effect is modelled by Debye-Huckel potential.

  14. Accumulative coupling between magnetized tenuous plasma and gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    2017-01-01

    This talk presents solutions to the plasma waves induced by a plane gravitational wave (GW) train travelling through a region of strongly magnetized plasma. The computations constitute a very preliminary feasibility study for a possible ultra-high frequency gravitational wave detector, meant to take advantage of the observation that the plasma current is proportional to the GW amplitude, and not its square. This work is supported in part by NSFC Grant Number 11503003.

  15. Strongly Emitting Surfaces Unable to Float below Plasma Potential

    DOE PAGES

    Campanell, M. D.; Umansky, M. V.

    2016-02-25

    One important unresolved question in plasma physics concerns the effect of strong electron emission on plasma-surface interactions. Previous papers reported solutions with negative and positive floating potentials relative to the plasma edge. For these two models a very different predictions for particle and energy balance is given. Here we show that the positive potential state is the only possible equilibrium in general. Even if a negative floating potential existed at t=0, the ionization collisions near the surface will force a transition to the positive floating potential state. Moreover, this transition is demonstrated with a new simulation code.

  16. Energy exchange in strongly coupled plasmas with electron drift

    SciTech Connect

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-11-15

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  17. Shear viscosities of photons in strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Yang, Di-Lun; Müller, Berndt

    2016-09-01

    We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP) at weak coupling and N = 4 super Yang-Mills plasma (SYMP) at both strong and weak couplings. We find that the shear viscosity due to the photon-parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  18. Magnetic Reconnection with Strong Synchrotron Cooling in Pulsar Magnetospheres

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri; Spitkovsky, Anatoly

    2012-10-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet beyond the light cylinder (LC). Magnetic reconnection in this current sheet inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. In this presentation, a basic physical picture of reconnection in this environment is developed. It is shown that reconnection proceeds in the plasmoid-dominated regime, via an hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. The basic parameters of these current layers --- temperature, density, and layer thickness --- are estimated in terms of the upstream magnetic field. It is argued that, after accounting for the bulk Doppler boosting, the synchrotron and inverse-Compton emission mechanisms can explain the observed pulsed high-energy (GeV) and VHE (˜ 100 GeV) radiation, respectively. The motions of the secondary plasmoids may contribute to the pulsar's radio emission.

  19. Simulating Coulomb collisions in a magnetized plasma

    SciTech Connect

    Hinton, Fred L.

    2008-04-15

    The problem of simulating ion-ion Coulomb collisions in a plasma in a strong magnetic field is considered. No assumption is made about the ion distribution function except that it is independent of the gyrophase angle, consistent with the assumption that the ion gyrofrequency is much larger than the ion-ion collision frequency. A Langevin method is presented which time-advances the components of a particle's velocity parallel and perpendicular to the magnetic field, without following the rapidly changing gyrophase. Although the standard Monte Carlo procedure, which uses random sampling, can be used, it is also possible to use a deterministic sampling procedure, where the samples are determined by the points which would be used in a numerical quadrature formula for moments of the Fokker-Planck Green's function. This should reduce the sampling noise compared with the Monte Carlo collision method.

  20. Strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  1. Meson spectrum in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Andreichikov, M. A.; Kerbikov, B. O.; Orlovsky, V. D.; Simonov, Yu. A.

    2013-05-01

    We study the relativistic quark-antiquark system embedded in a magnetic field (MF). The Hamiltonian containing confinement, one gluon exchange, and spin-spin interaction is derived. We analytically follow the evolution of the lowest meson states as a function of MF strength. Calculating the one gluon exchange interaction energy ⟨VOGE⟩ and spin-spin contribution ⟨aSS⟩ we have observed that these corrections remain finite at large MF, preventing the vanishing of the total ρ meson mass at some Bcrit, as previously thought. We display the ρ masses as functions of the MF in comparison with recent lattice data.

  2. Quark matter under strong magnetic fields in chiral models

    SciTech Connect

    Rabhi, Aziz; Providencia, Constanca

    2011-05-15

    The chiral model is used to describe quark matter under strong magnetic fields and is compared to other models, the MIT bag model and the two-flavor Nambu-Jona-Lasinio model. The effect of vacuum corrections due to the magnetic field is discussed. It is shown that if the magnetic-field vacuum corrections are not taken into account explicitly, the parameters of the models should be fitted to low-density meson properties in the presence of the magnetic field.

  3. Magnetized plasma jets in experiment and simulation

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce

    2013-10-01

    This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.

  4. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    SciTech Connect

    Johnson, Jeffrey N.

    2009-01-01

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  5. Nonlinear Generalized Hydrodynamic Wave Equations in Strongly Coupled Dusty Plasmas

    SciTech Connect

    Veeresha, B. M.; Sen, A.; Kaw, P. K.

    2008-09-07

    A set of nonlinear equations for the study of low frequency waves in a strongly coupled dusty plasma medium is derived using the phenomenological generalized hydrodynamic (GH) model and is used to study the modulational stability of dust acoustic waves to parallel perturbations. Dust compressibility contributions arising from strong Coulomb coupling effects are found to introduce significant modifications in the threshold and range of the instability domain.

  6. Magnetization of laser-produced plasma in a chiral hollow target

    NASA Astrophysics Data System (ADS)

    Korneev, Ph; Tikhonchuk, V.; d’Humières, E.

    2017-03-01

    It is demonstrated that targets with a broken rotational symmetry may facilitate the generation of a strong axial (poloidal) magnetic field. An intense laser beam irradiating such a target creates strong electron currents carrying vorticity and producing strong spontaneous magnetic fields. Combined with laser-based acceleration schemes, such targets may be used for generation and guiding of magnetized, collimated particle or plasma beams.

  7. Strong plasma screening in thermonuclear reactions: Electron drop model

    NASA Astrophysics Data System (ADS)

    Kravchuk, P. A.; Yakovlev, D. G.

    2014-01-01

    We analyze enhancement of thermonuclear fusion reactions due to strong plasma screening in dense matter using a simple electron drop model. In the model we assume fusion in a potential that is screened by an effective electron cloud around colliding nuclei (extended Salpeter ion-sphere model). We calculate the mean-field screened Coulomb potentials for atomic nuclei with equal and nonequal charges, appropriate astrophysical S factors, and enhancement factors of reaction rates. As a byproduct, we study the analytic behavior of the screening potential at small separations between the reactants. In this model, astrophysical S factors depend not only on nuclear physics but on plasma screening as well. The enhancement factors are in good agreement with calculations by other methods. This allows us to formulate a combined, pure analytic model of strong plasma screening in thermonuclear reactions. The results can be useful for simulating nuclear burning in white dwarfs and neutron stars.

  8. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  9. Intense Magnetized Plasma-Wall Interaction

    SciTech Connect

    Bauer, Bruno S.; Fuelling, Stephan

    2013-11-30

    This research project studied wall-plasma interactions relevant to fusion science. Such interactions are a critical aspect of Magneto-Inertial Fusion (MIF) because flux compression by a pusher material, in particular the metal for the liner approach to MIF, involves strong eddy current heating on the surface of the pusher, and probably interactions and mixing of the pusher with the interior fuel during the time when fusion fuel is being burned. When the pusher material is a metal liner, high-energy-density conditions result in fascinating behavior. For example, "warm dense matter" is produced, for which material properties such as resistivity and opacity are not well known. In this project, the transformation into plasma of metal walls subjected to pulsed megagauss magnetic fields was studied with an experiment driven by the UNR 1 MA Zebra generator. The experiment was numerically simulated with using the MHRDR code. This simple, fundamental high-energy-density physics experiment, in a regime appropriate to MIF, has stimulated an important and fascinating comparison of numerical modeling codes and tables with experiment. In addition, we participated in developing the FRCHX experiment to compress a field-reversed-configuration (FRC) plasma with a liner, in collaboration with researchers from Air Force Research Laboratory and Los Alamos National Lab, and we helped develop diagnostics for the Plasma Liner Experiment (PLX) at LANL. Last, but not least, this project served to train students in high-energy-density physics.

  10. Understanding of Edge Plasmas in Magnetic Fusion Energy Devices

    SciTech Connect

    Rognlien, T

    2004-11-01

    A limited overview is given of the theoretical understanding of edge plasmas in fusion devices. This plasma occupies the thin region between the hot core plasma and material walls in magnetically confinement configurations. The region is often formed by a change in magnetic topology from close magnetic field lines (i.e., the core region) and open field lines that contact material surfaces (i.e., the scrape-off layer [SOL]), with the most common example being magnetically diverted tokamaks. The physics of this region is determined by the interaction of plasma with neutral gas in the presence of plasma turbulence, with impurity radiation being an important component. Recent advances in modeling strong, intermittent micro-turbulent edge-plasma transport is given, and the closely coupled self-consistent evolution of the edge-plasma profiles in tokamaks. In addition, selected new results are given for the characterization of edge-plasmas behavior in the areas of edge-pedestal relaxation and SOL transport via Edge-Localize Modes (ELMs), impurity formation including dust, and magnetic field-line stochasticity in tokamaks.

  11. Macroscopic magnetic islands and plasma energy transport

    SciTech Connect

    Cima, G; Porcelli, F; Rossi, E; Wootton, A J

    1998-12-03

    A model is presented, based on the combined effects of m=n=l magnetic island dynamics, localized heat sources, large heat diffusivity along magnetic field lines and plasma rotation, which may explain the multipeaked temperature profiles and transport barriers observed in tokamak plasmas heated by electron cyclotron resonant waves.

  12. Observability of atomic line features in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Wunner, G.; Ruder, H.; Herold, H.; Truemper, J.

    1981-01-01

    The physical properties of atoms in superstrong magnetic fields, characteristic of neutron stars, and the possibility of detecting magnetically strongly shifted atomic lines in the spectra of magnetized X-ray pulsars are discussed. It is suggested that it is recommendable to look for magnetically strongly shifted Fe 26 Lyman lines in rotating neutron stars of not too high luminosity using spectrometers working in the energy range 10 - 20 keV, with sensitivities to minus 4 power photons per sq cm and second, and resolution E/delta E approx. 10-100.

  13. Magnetic Turbulence in colliding laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Collette, Andrew

    2006-10-01

    We describe a series of experiments, which involve the collision of two dense (initially, δnlpp/n0>>1) laser-produced plasmas (llp) within an ambient, highly magnetized (Rciplasma) capable of supporting Alfvén waves. Colliding plasmas can be used to study generation of magnetic turbulence and spontaneous generation of magnetic fields. The plasma column (He, Ne, 1-4 X10^12 cm^3) is 18 m long and 60 cm in diameter, 15 ms duration and pulsed at 1 Hz. Two carbon targets are struck by 1.5 J (10 ns,10 μ, 1 Hz) laser beams. The lpp's form diamagnetic bubbles in which a large percentage of the background magnetic field (600G magnetic field and collide. Fast camera (3 ns) photographs show the bubble surfaces become corrugated after the collision. Small magnetic field probes are used to study the magnetic turbulence. One probe is fixed and the second moved in a small volume close to the targets. An ensemble each location within the volume is used to determine correlations and cross-spectral functions of the magnetic turbulence. The current systems of the waves are fully three-dimensional and are reported in the adjacent poster by Collette et al. [1] M. Van Zeeland, W. Gekelman, Laser Plasma Diamagnetism in the presence of an ambient magnetized plasma, Phys. Plasmas, 11, 320 (2004)

  14. Modified Debye screening potential in a magnetized quantum plasma

    NASA Astrophysics Data System (ADS)

    Salimullah, M.; Hussain, A.; Sara, I.; Murtaza, G.; Shah, H. A.

    2009-07-01

    The effects of quantum mechanical influence and uniform static magnetic field on the Shukla-Nambu-Salimullah potential in an ultracold homogeneous electron-ion Fermi plasma have been examined in detail. It is noticed that the strong quantum effect arising through the Bohm potential and the ion polarization effect can give rise to a new oscillatory behavior of the screening potential beyond the shielding cloud which could explain a new type of possible robust ordered structure formation in the quantum magnetoplasma. However, the magnetic field enhances the Debye length perpendicular to the magnetic field in the weak quantum limit of the quantum plasma.

  15. Dust acoustic waves in strongly coupled dissipative plasmas

    NASA Astrophysics Data System (ADS)

    Xie, B. S.; Yu, M. Y.

    2000-12-01

    The theory of dust acoustic waves is revisited in the frame of the generalized viscoelastic hydrodynamic theory for highly correlated dusts. Physical processes relevant to many experiments on dusts in plasmas, such as ionization and recombination, dust-charge variation, elastic electron and ion collisions with neutral and charged dust particles, as well as relaxation due to strong dust coupling, are taken into account. These processes can be on similar time scales and are thus important for the conservation of particles and momenta in a self-consistent description of the system. It is shown that the dispersion properties of the dust acoustic waves are determined by a sensitive balance of the effects of strong dust coupling and collisional relaxation. The predictions of the present theory applicable to typical parameters in laboratory strongly coupled dusty plasmas are given and compared with the experiment results. Some possible implications and discrepanies between theory and experiment are also discussed.

  16. Plasma confinement. [Physics for magnetic geometries

    SciTech Connect

    Boozer, A.H.

    1985-03-01

    The physics of plasma confinement by a magnetic field is developed from the basic properties of plasmas through the theory of equilibrium, stability, and transport in toroidal and open-ended configurations. The close relationship between the theory of plasma confinement and Hamiltonian mechanics is emphasized, and the modern view of macroscopic instabilities as three-dimensional equilibria is given.

  17. Magnetized laboratory plasma jets: experiment and simulation.

    PubMed

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 MA, 100 ns current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μm Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ∼1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μs current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  18. Plasma Compression in Magnetic Reconnection Regions in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Provornikova, E.; Laming, J. M.; Lukin, V. S.

    2016-07-01

    It has been proposed that particles bouncing between magnetized flows converging in a reconnection region can be accelerated by the first-order Fermi mechanism. Analytical considerations of this mechanism have shown that the spectral index of accelerated particles is related to the total plasma compression within the reconnection region, similarly to the case of the diffusive shock acceleration mechanism. As a first step to investigate the efficiency of Fermi acceleration in reconnection regions in producing hard energy spectra of particles in the solar corona, we explore the degree of plasma compression that can be achieved at reconnection sites. In particular, we aim to determine the conditions for the strong compressions to form. Using a two-dimensional resistive MHD numerical model, we consider a set of magnetic field configurations where magnetic reconnection can occur, including a Harris current sheet, a force-free current sheet, and two merging flux ropes. Plasma parameters are taken to be characteristic of the solar corona. Numerical simulations show that strong plasma compressions (≥4) in the reconnection regions can form when the plasma heating due to reconnection is efficiently removed by fast thermal conduction or the radiative cooling process. The radiative cooling process that is negligible in the typical 1 MK corona can play an important role in the low corona/transition region. It is found that plasma compression is expected to be strongest in low-beta plasma β ˜ 0.01-0.07 at reconnection magnetic nulls.

  19. Magnetic field penetration of erosion switch plasmas

    NASA Astrophysics Data System (ADS)

    Mason, Rodney J.; Jones, Michael E.; Grossmann, John M.; Ottinger, Paul F.

    1988-10-01

    Computer simulations demonstrate that the entrainment (or advection) of magnetic field with the flow of cathode-emitted electrons can constitute a dominant mechanism for the magnetic field penetration of erosion switch plasmas. Cross-field drift in the accelerating electric field near the cathode starts the penetration process. Plasma erosion propagates the point for emission and magnetic field injection along the cathode toward the load-for the possibility of rapid switch opening.

  20. Warm and dense stellar matter under strong magnetic fields

    SciTech Connect

    Rabhi, A.; Panda, P. K.; Providencia, C.

    2011-09-15

    We investigate the effects of strong magnetic fields on the equation of state of warm stellar matter as it may occur in a protoneutron star. Both neutrino-free and neutrino-trapped matter at a fixed entropy per baryon are analyzed. A relativistic mean-field nuclear model, including the possibility of hyperon formation, is considered. A density-dependent magnetic field with a magnitude of 10{sup 15} G at the surface and not more than 3x10{sup 18} G at the center is considered. The magnetic field gives rise to a neutrino suppression, mainly at low densities, in matter with trapped neutrinos. It is shown that a hybrid protoneutron star will not evolve into a low-mass black hole if the magnetic field is strong enough and the magnetic field does not decay. However, the decay of the magnetic field after cooling may give rise to the formation of a low-mass black hole.

  1. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  2. Thermoelectric effects in organic conductors in a strong magnetic field

    SciTech Connect

    Kirichenko, O. V.; Peschanskii, V. G. Hasan, R. A.

    2007-07-15

    The linear response of the electron system of a layered conductor to the temperature gradient in this system in a strong magnetic field is investigated theoretically. Thermoelectric emf is studied as a function of the magnitude and orientation of a strong external magnetic field; the experimental investigation of this function, combined with the study of the electric and thermal resistance, allows one to completely determine the structure of the energy spectrum of charge carriers.

  3. Pion Production from Proton Synchrotron Radiation in Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field. In this study we find that the decay width satisfies a robust scaling relation. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ˜ 1012-1013, from the results for ni,f ˜ 104-105. Then, we present the resultant pion intensity and angular distributions for realistic magnetic field strengths.

  4. Strongly nonlinear evolution of low-frequency wave packets in a dispersive plasma

    NASA Technical Reports Server (NTRS)

    Vasquez, Bernard J.

    1993-01-01

    The evolution of strongly nonlinear, strongly modulated wave packets is investigated in a dispersive plasma using a hybrid numerical code. These wave packets have amplitudes exceeding the strength of the external magnetic field, along which they propagate. Alfven (left helicity) wave packets show strong steepening for p < 1, while fast (fight heIicity) wave packets hardly steepen for any beta. Substantial regions of opposite helicity form on the leading side of steepened Alfven wave packets. This behavior differs qualitatively from that exhibited by the solutions to the derivative nonlinear Schrodinger (DNLS) equation.

  5. Numerical modeling of strongly-coupled dusty plasma systems

    NASA Astrophysics Data System (ADS)

    Vasut, John Anthony

    2001-09-01

    Plasma systems occur in a variety of astrophysical and laboratory environments. Often these systems contain a dust component in addition to the plasma particles. Plasmas are generally regarded as a highly disordered state of matter and dust is often seen as a contaminant to the plasma. However, in ``strongly coupled'' dusty plasmas where the electrical potential energy between the dust particles is higher than the average kinetic energy of the particles, it is possible for the system to exist in a ``liquid'' or ``crystalline'' state. The first such crystalline states were observed experimentally in 1994 and are not yet fully understood. The spacing between the particles is typically around 100 microns, allowing the individual particles to be visually observed and tracked. Several computer models have suggested that the amount of ordering present in the system should depend only upon two dimensionless parameters: the ratio of the electrical energy to the kinetic energy and the ratio of the interparticle separation to the Debye length of the plasma. These models suggest that the method in which these two parameters are reached should have no impact upon the amount of order within the system. The results of computer modeling using a tree code known as Box_Tree, which, unlike most other computer simulations, includes all interparticle interactions, shows that the method by which these parameters are reached does have an affect on the final state of the system. Box_Tree has also been used to study Mach cones caused by particles traveling through or near a dust crystal. In addition, preliminary results on the study of finite dusty plasma systems have been obtained. These results show that particles confined in a finite plasma oscillate with a frequency that depends upon particle mass and charge.

  6. Mobility in a strongly coupled dusty plasma with gas

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, J.

    2014-04-01

    The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force F, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity up. The mobility μp=up/F of the projectile's motion is obtained. Two regimes depending on F are identified. In the high-force regime, μp∝F0.23, and the scattering cross section σs diminishes as up-6/5. Results for σs are compared with those for a weakly coupled plasma and for two-body collisions in a Yukawa potential. The simulation parameters are based on microgravity plasma experiments.

  7. Mobility in a strongly coupled dusty plasma with gas.

    PubMed

    Liu, Bin; Goree, J

    2014-04-01

    The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force F, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity up. The mobility μp=up/F of the projectile's motion is obtained. Two regimes depending on F are identified. In the high-force regime, μp∝F0.23, and the scattering cross section σs diminishes as up-6/5. Results for σs are compared with those for a weakly coupled plasma and for two-body collisions in a Yukawa potential. The simulation parameters are based on microgravity plasma experiments.

  8. Effective potential kinetic theory for strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  9. Strongly turbulent stabilization of electron beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Haber, I.; Palmadesso, P.; Papadopoulos, K.

    1980-01-01

    The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is described in which the effects of electron and ion Landau damping and linear growth due to the energetic electron beam are included in a phenomenological manner. Stabilization of the instability is found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows that soliton-like structures are formed by this process. Phenomenological models of both the initial stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good agreement with the results of the simulation.

  10. Electrical Conductivity Measurements in Strongly Coupled Metal Plasmas

    NASA Astrophysics Data System (ADS)

    Desilva, Alan

    1998-11-01

    The coupling parameter Γ=e^2/akT, where a is the mean ion-ion separation, expresses the ratio of the mean potential energy of ions in a plasma to their mean kinetic energy. Plasma is said to be strongly coupled when Γ is greater than unity. Transport properties of strongly coupled plasmas are of interest in the study of the structure of dense astrophysical objects and gaseous planetary interiors, as well as in arcs and laser-produced plasmas. We are attempting to measure the electrical conductivity of strongly coupled metal plasmas (copper, tungsten and aluminum) in the temperature range 8-30 kK, in a density range from about 1/2 solid density down to about 10-3 times solid density. They may have coupling parameters Γ ranging from as high as 100 down to unity Plasmas are created by rapid vaporization of metal wire in a glass capillary or in a water bath which act as a tamper, slowing the expansion rate. The effect of the tamper is to force the interior pressure of the plasma to be fairly uniform. Streak photography serves to determine the growth of the plasma radius in time, allowing determination of mean density. Temperature is deduced from the measured energy input in conjunction with an equation of state from the LANL sesame database(SESAME: The Los Alamos National Laboratory Equation of State Database, Report No. LA-UR-92-3407, Ed. S. P. Lyon and J. D. Johnson, Group T-1 (unpublished)), and a brightness temperature may be obtained from radiation measurements. The column resistance is simply determined from time-resolved voltage and current measurements. For temperatures less than about 14,000K, as density decreases from the highest values measured, the conductivity falls roughly as the cube of density, reaches a minimum, and subsequently rises to approach the Spitzer prediction at low density. The rate of change of conductivity with density becomes less rapid as temperature increases, and the minimum becomes less pronounced, disappearing altogether above

  11. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  12. Modified Enskog kinetic theory for strongly coupled plasmas.

    PubMed

    Baalrud, Scott D; Daligault, Jérôme

    2015-06-01

    Concepts underlying the Enskog kinetic theory of hard-spheres are applied to include short-range correlation effects in a model for transport coefficients of strongly coupled plasmas. The approach is based on an extension of the effective potential transport theory [S. D. Baalrud and J. Daligault, Phys. Rev. Lett. 110, 235001 (2013)] to include an exclusion radius surrounding individual charged particles that is associated with Coulomb repulsion. This is obtained by analogy with the finite size of hard spheres in Enskog's theory. Predictions for the self-diffusion and shear viscosity coefficients of the one-component plasma are tested against molecular dynamics simulations. The theory is found to accurately capture the kinetic contributions to the transport coefficients, but not the potential contributions that arise at very strong coupling (Γ≳30). Considerations related to a first-principles generalization of Enskog's kinetic equation to continuous potentials are also discussed.

  13. Numerical Experiments In Strongly Coupled Complex (Dusty) Plasmas

    NASA Astrophysics Data System (ADS)

    Hou, L. J.; Ivlev A.; Hubertus M. T.; Morfill, G. E.

    2010-07-01

    Complex (dusty) plasma is a suspension of micron-sized charged dust particles in a weakly ionized plasma with electrons, ions, and neutral atoms or molecules. Therein, dust particles acquire a few thousand electron charges by absorbing surrounding electrons and ions, and consequently interact with each other via a dynamically screened Coulomb potential while undergoing Brownian motion due primarily to frequent collisions with the neutral molecules. When the interaction potential energy between charged dust particles significantly exceeds their kinetic energy, they become strongly coupled and can form ordered structures comprising liquid and solid states. Since the motion of charged dust particles in complex (dusty) plasmas can be directly observed in real time by using a video camera, such systems have been generally regarded as a promising model system to study many phenomena occurring in solids, liquids and other strongly-coupled systems at the kinetic level, such as phase transitions, transport processes, and collective dynamics. Complex plasma physics has now grown into a mature research field with a very broad range of interdisciplinary facets. In addition to usual experimental and theoretical study, computer simulation in complex plasma plays an important role in bridging experimental observations and theories and in understanding many interesting phenomena observed in laboratory. The present talk will focus on a class of computer simulations that are usually non-equilibrium ones with external perturbation and that mimic the real complex plasma experiments (i. e., numerical experiment). The simulation method, i. e., the so-called Brownian Dynamics methods, will be firstly reviewed and then examples, such as simulations of heat transfer and shock wave propagation, will be present.

  14. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  15. Observations of strong ion-ion correlations in dense plasmas

    SciTech Connect

    Ma, T. Pak, A.; Landen, O. L.; Le Pape, S.; Turnbull, D.; Döppner, T.; Fletcher, L.; Galtier, E.; Hastings, J.; Lee, H. J.; Nagler, B.; Glenzer, S. H.; Chapman, D. A.; Falcone, R. W.; Fortmann, C.; Gericke, D. O.; Gregori, G.; White, T. G.; Neumayer, P.; Vorberger, J.; and others

    2014-05-15

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å{sup −1}. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  16. Magnetic circuit for hall effect plasma accelerator

    NASA Technical Reports Server (NTRS)

    Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Jankovsky, Robert S. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor)

    2009-01-01

    A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.

  17. Viscosity and mutual diffusion in strongly asymmetric plasma mixtures

    SciTech Connect

    Bastea, S

    2004-09-07

    The authors present molecular dynamics simulation results for the viscosity and mutual diffusion constant of a strongly asymmetric two-component plasma (TCP). They compare the results with available theoretical models previously tested for much smaller asymmetries. for the case of viscosity they propose a new predictive framework based on the linear mixing rule, while for mutual diffusion they point out some consistency problems of widely used Boltzmann equation based models.

  18. Plasma wave turbulence in the strong coupling region at comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Kennel, C. F.; Scarf, F. L.; Smith, E. J.; Tsurutani, B. T.; Bame, S. J.; Thomsen, M. F.; Hynds, R.; Wenzel, K. P.

    1986-01-01

    Within 100,000 km of comet Giacobini-Zinner's nucleus, strong plasma wave turbulence was detected by the ICE electric and magnetic field wave instruments. The spatial profiles of the wave amplitudes are compared with measurements of the heavy ion fluxes of cometary origin, the plasma electron density, and the magnetic field strength. The general similarity of the wave and heavy ion profiles suggest that the waves might be generated by free energy in the pick-up ion distribution function. However, the expected parallel streaming instability of electrostatic modes generates waves with frequencies that are too low to explain the observations. The observed low frequency magnetic turbulence is plausibly explained by the lower hybrid loss-cone instability of heavy ions.

  19. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  20. Amplification of Collective Magnetic Fluctuations in Magnetized Bi-Maxwellian Plasmas for Parallel Wave Vectors. I. Electron-Proton Plasma

    NASA Astrophysics Data System (ADS)

    Vafin, S.; Schlickeiser, R.; Yoon, P. H.

    2016-09-01

    The general electromagnetic fluctuation theory is a powerful tool to analyze the magnetic fluctuation spectrum of a plasma. Recent works utilizing this theory for a magnetized non-relativistic isotropic Maxwellian electron-proton plasma have demonstrated that the equilibrium ratio of | δ B| /{B}0 can be as high as 10-12. This value results from the balance between spontaneous emission of fluctuations and their damping, and it is considerably smaller than the observed value | δ B| /{B}0 in the solar wind at 1 au, where {10}-3≲ | δ B| /{B}0≲ {10}-1. In the present manuscript, we consider an anisotropic bi-Maxwellian distribution function to investigate the effect of plasma instabilities on the magnetic field fluctuations. We demonstrate that these instabilities strongly amplify the magnetic field fluctuations and provide a sufficient mechanism to explain the observed value of | δ B| /{B}0 in the solar wind at 1 au.

  1. Forced Magnetic Reconnection In A Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.

    2015-11-01

    The theory of forced magnetic field reconnection induced by an externally imposed resonant magnetic perturbation usually uses a sheared slab or cylindrical magnetic field model and often focuses on the potential time-asymptotic induced magnetic island state. However, tokamak plasmas have significant magnetic geometry and dynamical plasma toroidal rotation screening effects. Also, finite ion Larmor radius (FLR) and banana width (FBW) effects can damp and thus limit the width of a nascent magnetic island. A theory that is more applicable for tokamak plasmas is being developed. This new model of the dynamics of forced magnetic reconnection considers a single helicity magnetic perturbation in the tokamak magnetic field geometry, uses a kinetically-derived collisional parallel electron flow response, and employs a comprehensive dynamical equation for the plasma toroidal rotation frequency. It is being used to explore the dynamics of bifurcation into a magnetically reconnected state in the thin singular layer around the rational surface, evolution into a generalized Rutherford regime where the island width exceeds the singular layer width, and assess the island width limiting effects of FLR and FBW polarization currents. Support by DoE grants DE-FG02-86ER53218, DE-FG02-92ER54139.

  2. Target Plasma Formation for Magnetic Compression/Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Lindemuth, I. R.; Reinovsky, R. E.; Chrien, R. E.; Christian, J. M.; Ekdahl, C. A.; Goforth, J. H.; Haight, R. C.; Idzorek, G.; King, N. S.; Kirkpatrick, R. C.; Larson, R. E.; Morgan, G. L.; Olinger, B. W.; Oona, H.; Sheehey, P. T.; Shlachter, J. S.; Smith, R. C.; Veeser, L. R.; Warthen, B. J.; Younger, S. M.; Chernyshev, V. K.; Mokhov, V. N.; Demin, A. N.; Dolin, Y. N.; Garanin, S. F.; Ivanov, V. A.; Korchagin, V. P.; Mikhailov, O. D.; Morozov, I. V.; Pak, S. V.; Pavlovskii, E. S.; Seleznev, N. Y.; Skobelev, A. N.; Volkov, G. I.; Yakubov, V. A.

    1995-09-01

    Experimental observations of plasma behavior in a novel plasma formation chamber are reported. Experimental results are in reasonable agreement with two-dimensional magnetohydrodynamic computations suggesting that the plasma could subsequently be adiabatically compressed by a magnetically driven pusher to yield 1 GJ of fusion energy. An explosively driven helical flux compression generator mated with a unique closing switch/opening switch combination delivered a 2.7 MA, 347 μs magnetization current and an additional 5 MA, 2.5 μs electrical pulse to the chamber. A hot plasma was produced and 1013 D-T fusion reactions were observed.

  3. Analytical modeling of equilibrium of strongly anisotropic plasma in tokamaks and stellarators

    SciTech Connect

    Lepikhin, N. D.; Pustovitov, V. D.

    2013-08-15

    Theoretical analysis of equilibrium of anisotropic plasma in tokamaks and stellarators is presented. The anisotropy is assumed strong, which includes the cases with essentially nonuniform distributions of plasma pressure on magnetic surfaces. Such distributions can arise at neutral beam injection or at ion cyclotron resonance heating. Then the known generalizations of the standard theory of plasma equilibrium that treat p{sub ‖} and p{sub ⊥} (parallel and perpendicular plasma pressures) as almost constant on magnetic surfaces are not applicable anymore. Explicit analytical prescriptions of the profiles of p{sub ‖} and p{sub ⊥} are proposed that allow modeling of the anisotropic plasma equilibrium even with large ratios of p{sub ‖}/p{sub ⊥} or p{sub ⊥}/p{sub ‖}. A method for deriving the equation for the Shafranov shift is proposed that does not require introduction of the flux coordinates and calculation of the metric tensor. It is shown that for p{sub ⊥} with nonuniformity described by a single poloidal harmonic, the equation for the Shafranov shift coincides with a known one derived earlier for almost constant p{sub ⊥} on a magnetic surface. This does not happen in the other more complex case.

  4. Simulation of Magnetic Field Guided Plasma Expansion

    NASA Astrophysics Data System (ADS)

    Ebersohn, Frans; Sheehan, J. P.; Gallimore, Alec; Shebalin, John

    2015-09-01

    Magnetic field guided expansion of a radio-frequency plasma was simulated with a quasi-one-dimensional particle-in-cell code. Two-dimensional effects were included in a one-dimensional particle-in-cell code by varying the cross-sectional area of the one dimensional domain and including forces due to the magnetic field. Acceleration of electrons by the magnetic field forces leads to the formation of potential structures which then accelerate the ions into a beam. Density changes due to the plasma expansion only weakly affect the ion acceleration. Rapidly diverging magnetic fields lead to more rapid acceleration and the electrons cool as they expand.

  5. Extraction characteristics of ? ions in a magnetized sheet plasma

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose Karl Charles D.; Ramos, Henry J.

    1996-08-01

    A sheet plasma of thickness several millimetres was produced by a combination of a pair of strong dipole magnets with opposing fields and a pair of Helmholtz coils producing a magnetic mirror field. A ferrite magnet and a coreless magnetic coil encased within the limiters add to the mirror field, enhancing quiescence in the plasma. The negative hydrogen ions produced in the peripheral region of the sheet plasma were extracted with a 0963-0252/5/3/009/img2 deflection mass spectrometer. Maximum negative ion current of about 0.9 0963-0252/5/3/009/img3A for an initial gas filling pressure of 3 mTorr was observed when the plasma electrode was negatively biased near the value of the plasma potential and when the mass spectrometer coil current generated a B field intensity equal to 691 G. The ratio of the negative ion density and the electron density near the extraction electrode was relatively high at 0.276. The measured electron temperature showed the existence of high-energy electrons in the sheet plasma. The extracted negative hydrogen current density of 0963-0252/5/3/009/img4 is higher than what has been obtained from similar sources. The bulk electron temperature and density at the centre of the sheet plasma were measured to be 11.06 eV and 0963-0252/5/3/009/img5, respectively.

  6. Spatial Transport of Magnetic Flux Surfaces in Strongly Anisotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Servidio, S.; Wan, M.; Ruffolo, D. J.; Rappazzo, A. F.; Oughton, S.

    2013-12-01

    Magnetic flux surfaces afford familiar descriptions of spatial structure, dynamics, and connectivity of magnetic fields, with particular relevance in contexts such as solar coronal flux tubes, magnetic field connectivity in the interplanetary and interstellar medium, as well as in laboratory plasmas and dynamo problems [1-4]. Typical models assume that field-lines are orderly, and flux tubes remain identifiable over macroscopic distances; however, a previous study has shown that flux tubes shred in the presence of fluctuations, typically losing identity after several correlation scales [5]. Here, the structure of magnetic flux surfaces is numerically investigated in a reduced magnetohydrodynamic (RMHD) model of homogeneous turbulence. Short and long-wavelength behavior is studied statistically by propagating magnetic surfaces along the mean field. At small scales magnetic surfaces become complex, experiencing an exponential thinning. At large scales, instead, the magnetic flux undergoes a diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established by means of a multiple scale analysis. Both large and small scales limits are controlled by the Kubo number. These results have consequences for understanding and interpreting processes such as magnetic reconnection and field-line diffusion in plasmas [6]. [1] E. N. Parker, Cosmical Magnetic Fields (Oxford Univ. Press, New York, 1979). [2] J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968). [3] R. Bruno et al., Planet. Space Sci. 49, 1201 (2001). [4] M. N. Rosenbluth et al., Nuclear Fusion 6, 297 (1966). [5] W. H. Matthaeus et al., Phys. Rev. Lett. 75, 2136 (1995). [6] S. Servidio et al., submitted (2013).

  7. Polyakov loop and heavy quark entropy in strong magnetic fields from holographic black hole engineering

    NASA Astrophysics Data System (ADS)

    Critelli, Renato; Rougemont, Romulo; Finazzo, Stefano I.; Noronha, Jorge

    2016-12-01

    We investigate the temperature and magnetic field dependence of the Polyakov loop and heavy quark entropy in a bottom-up Einstein-Maxwell-dilaton (EMD) holographic model for the strongly coupled quark-gluon plasma that quantitatively matches lattice data for the (2 +1 )-flavor QCD equation of state at finite magnetic field and physical quark masses. We compare the holographic EMD model results for the Polyakov loop at zero and nonzero magnetic fields and the heavy quark entropy at vanishing magnetic field with the latest lattice data available for these observables and find good agreement for temperatures T ≳150 MeV and magnetic fields e B ≲1 GeV2 . Predictions for the behavior of the heavy quark entropy at nonzero magnetic fields are made that could be readily tested on the lattice.

  8. Plasma-Wall Interaction with Strong Electron Emission Revisited

    NASA Astrophysics Data System (ADS)

    Campanell, Michael

    2016-10-01

    Half a century ago, Hobbs and Wesson derived a solution for the plasma sheath at a planar surface with emission coefficient γ. They predicted that the floating sheath potential remains negative when γ >1. Variations of their ``space-charge limited'' (SCL) sheath model have long been used to estimate the particle and energy fluxes at strongly emitting surfaces. Recent theory, simulation and experimental studies show that another plasma-wall equilibrium is possible when γ >1. In the ``inverse regime'', the sheath potential is positive, repelling ions from the wall. The quasineutral density gradient and force balance in the ``inverted presheath'' are much different from the Bohm presheaths contained in the SCL models. It turns out that a SCL plasma-wall equilibrium is only stable under the assumption of zero ionization inside the sheath. Otherwise, the cumulative trapping of new ions in the SCL's potential ``dip'' will force a transition to the inverse regime. It follows that only an inverse equilibrium should be possible in practice at floating surfaces with strong secondary, thermionic or photoelectron emissions. Applications will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  9. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    SciTech Connect

    Nanda, Vikas; Kant, Niti

    2014-07-15

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect.

  10. Plasma density features associated with strong convection in the winter high-latitude F region

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Raitt, W. J.; Schunk, R. W.

    1981-01-01

    A single plasma convection model was combined with an ionospheric-atmospheric composition model to study plasma density features associated with string convection in the winter high-latitude F region. Time dependent, three-dimensional, ion density distributions for NO(+), O2(+), N2(+), O(+) and He(+) were produced, and the ionosphere above 42 deg N magnetic latitude was covered for 24 hours. The study found that for strong and weak convection, electron density exhibited a variation with altitude, latitude, longitude and universal time. Ionospheric features were evident for strong convection, but modified in comparison with those found for slow convection. Also found for strong convection was a more pronounced tongue of ionization, the appearance of a new polar hole in the polar cap, and a midlatitude electron density trough that was not as deep as found for a weak convection. In addition, good agreement was found between predictions and Atmosphere Explorer measurements of ion composition variation with latitude and local time.

  11. Quark Gluon Plasma: Surprises from strongly coupled QCD matter

    NASA Astrophysics Data System (ADS)

    Jacak, Barbara

    2017-01-01

    Quantum Chromodynamics has long predicted a transition from normal hadronic matter to a phase where the quarks and gluons are no longer bound together and can move freely. Quark gluon plasma is now produced regularly in collisions of heavy nuclei at very high energy at both the Relativistic Heavy Ion Collider (RHIC) in the U.S. and at the LHC in Europe. Quark gluon plasma exhibits remarkable properties. Its vanishingly small shear viscosity to entropy density ratio means that it flows essentially without internal friction, making it one of the most ``perfect'' liquids known. It is also very opaque to transiting particles including heavy charm quarks, though the exact mechanism for this is not yet understood. Recent data suggest that even very small colliding systems may produce a droplet of plasma. The similarities to strongly coupled or correlated systems in ultra-cold atoms and condensed matter are striking, and have inspired novel theoretical descriptions growing out of string theory. It remains a mystery how this plasma emerges from cold, dense gluonic matter deep inside nuclei. I will discuss how a future electron-ion collider can help address this question.

  12. Tiling analysis of melting in strongly-coupled dusty plasma*

    NASA Astrophysics Data System (ADS)

    Suranga Ruhunusiri, W. D.; Feng, Yan; Liu, Bin; Goree, John

    2010-11-01

    A dusty plasma is an ionized gas containing micron-size particles of solid matter, which collect electrons and ions and become negatively charged. Due to large Coulomb interparticle potential energies, the microparticles represent a strongly-coupled plasma. In the absence of an external disturbance, the microparticles self-organize, arranging themselves in a crystalline lattice, due to their Coulomb interaction. If kinetic energy is added, the arrangement of microparticles becomes disordered, like atoms in a liquid. This melting process can be characterized by a proliferation of defects, which previous experimenters measured using Voronoi analysis. Here we use another method, tiling [1] to quantify defects. We demonstrate this method, which until now has been used only in simulations, in a dusty plasma experiment. A single layer of 4.83 μm polymer microparticles was electrically levitated in a glow discharge argon plasma. The lattice was melted by applying random kicks to the micoparticles from rastered laser beams. We imaged the particle positions and computed the corresponding tiling for both the crystalline lattice and liquid states. [1] Matthew A. Glaser, Phys. Rev A 41, 4585 (1990) ^*Work supported by NSF and NASA.

  13. Electrical Conductivity Measurements in Strongly Coupled Metal Plasmas

    NASA Astrophysics Data System (ADS)

    Desilva, Alan; Katsouros, Joseph

    1999-11-01

    We measure the electrical conductivity of strongly coupled plasmas of various metals, including aluminum, iron, copper, and tungsten, in the temperature range 6-30 kK, in a density range from about 1/2 solid density down to about 10-3 times solid density. These plasmas may have coupling parameters (ratio of mean interparticle Coulomb energy to mean kinetic energy) ranging from as high as 50 down to unity. Plasmas are created by rapid vaporization of metal wire in a water bath which act as a tamper. Streak photography serves to determine the growth of the plasma radius in time, allowing determination of mean density. Temperature is deduced from the measured energy input in conjunction with an equation of state from the LANL SESAME database [1], and a brightness temperature may be obtained from radiation measurements. The column resistance is determined from time-resolved voltage and current measurements. Results of conductivity measurements will be shown and compared with the predictions of conductivity theories. 1.SESAME: The Los Alamos National Laboratory Equation of State Database, Report LA-UR-92-3407, ed. S. P. Lyon and J. D. Johnson, Group T-1.

  14. Strong-coupling effects in a plasma of confining gluons

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Ryblewski, Radoslaw; Su, Nan; Tywoniuk, Konrad

    2016-12-01

    The plasma consisting of confining gluons resulting from the Gribov quantization of the SU(3) Yang-Mills theory is studied using non-equilibrium fluid dynamical framework. Exploiting the Bjorken symmetry and using linear response theory a general analytic expressions for the bulk, ζ, and shear, η, viscosity coefficients are derived. It is found that the considered system exhibits a number of properties similar to the strongly-coupled theories, where the conformality is explicitly broken. In particular, it is shown that, in the large temperature limit, ζ / η ratio, scales linearly with the difference 1 / 3 - cs2, where cs is the speed of sound. Results obtained from the analysis are in line with the interpretation of the quark-gluon plasma as an almost perfect fluid.

  15. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    SciTech Connect

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  16. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    SciTech Connect

    Rosenberg, M. J. Li, C. K.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D.; Fox, W.; Igumenshchev, I.; Stoeckl, C.; Glebov, V.; Town, R. P. J.

    2015-04-15

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β ∼ 10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  17. Magnetic Nozzle and Plasma Detachment Experiment

    NASA Technical Reports Server (NTRS)

    Chavers, Gregory; Dobson, Chris; Jones, Jonathan; Martin, Adam; Bengtson, Roger D.; Briezman, Boris; Arefiev, Alexey; Cassibry, Jason; Shuttpelz, Branwen; Deline, Christopher

    2006-01-01

    High power plasma propulsion can move large payloads for orbit transfer (such as the ISS), lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue of the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment was performed to test the theory regarding the Magneto-hydrodynamic (MHD) detachment scenario. Data from this experiment will be presented. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) being developed by the Ad Astra Rocket Company uses a magnetic nozzle as described above. The VASIMR is also a leading candidate for exploiting an electric propulsion test platform being considered for the ISS.

  18. Magnetically driven flows in arched plasma structures.

    PubMed

    Stenson, E V; Bellan, P M

    2012-08-17

    Laboratory experiments demonstrate high-speed plasma flows from both footpoints of arched magnetic flux tubes, resulting in bulk plasma transport into the flux tube and persistent axial collimation even as the flux tube lengthens and kinks. The measured flows are in agreement with the predictions of hoop force and collimation models involving fundamental MHD forces. These forces are expected to drive plasma acceleration in other open flux configurations with arched geometries, such as those found on the solar surface.

  19. Modeling Plasmas with Strong Anisotropy, Neutral Fluid Effects, and Open Boundaries

    NASA Astrophysics Data System (ADS)

    Meier, Eric T.

    Three computational plasma science topics are addressed in this research: the challenge of modeling strongly anisotropic thermal conduction, capturing neutral fluid effects in collisional plasmas, and modeling open boundaries in dissipative plasmas. The research efforts on these three topics contribute to a common objective: the improvement and extension of existing magnetohydrodynamic modeling capability. Modeling magnetically confined fusion-related plasmas is the focus of the research, but broader relevance is recognized and discussed. Code development is central to this work, and has been carried out within the flexible physics framework of the highly parallel HiFi implicit spectral element code. In magnetic plasma confinement, heat conduction perpendicular to the magnetic field is extremely slow compared to conduction parallel to the field. The anisotropy in heat conduction can be many orders of magnitude, and the inaccuracy of low-order representations can allow parallel heat transport to "leak" into the perpendicular direction, resulting in numerical perpendicular transport. If the computational grid is aligned to the magnetic field, this numerical error can be eliminated, even for low-order representations. However, grid alignment is possible only in idealized problems. In realistic applications, magnetic topology is chaotic. A general approach for accurately modeling the extreme anisotropy of fusion plasmas is to use high-order representations which do not require grid alignment for sufficient resolution. This research provides a comprehensive assessment of spectral element representation of anisotropy, in terms of dependence of accuracy on grid alignment, polynomial degree, and grid cell size, and gives results for two- and three-dimensional cases. Truncating large physical domains to concentrate computational resources is often necessary or desirable in simulating natural and man-made plasmas. A novel open boundary condition (BC) treatment for such

  20. Effect of Magnetic Field Gradient on Plasma Detachment Induced by Breaking of Adiabatic Plasma Expansion

    NASA Astrophysics Data System (ADS)

    Chung, K. S.; Kim, June Young; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-10-01

    A magnetic field gradient that is a variation in the magnetic field around the ion flow has been investigated as a primary parameter for ion detachment in the magnetic nozzle geometries. Some scale lengths of magnetic field are controlled by two solenoid coils outside the diffusion chamber of a ECR-driven linear plasma device. The axial and radial profiles of the plasma potential and electron temperature are measured by a Langmuir probe array for the various magnetic field configurations in the downstream. The local adiabaticity, strong constant magnetic moment, is satisfied with a linear relationship between the change in effective electron temperature and the change in plasma potential in the low magnetic field gradient. Whereas, with an increasing non-homogeneity of the magnetic field in the direction of the flow, the breaking of adiabatic plasma expansion is identified to measure the nonlinear process which is the variation for an adiabatic exponent. Such the loss of adiabaticity is also explained in terms of non-adiabaticity parameter i.e. degree of demagnetization. This research was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Nos. 2014M1A7A1A02030165 and 2014M1A7A1A03045367).

  1. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    SciTech Connect

    Murphy, Nicholas A.; Lukin, Vyacheslav S.

    2015-06-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase.

  2. Hydrogen molecule in a strong parallel magnetic field

    NASA Astrophysics Data System (ADS)

    Kravchenko, Yu. P.; Liberman, M. A.

    1998-05-01

    We investigate the hydrogen molecule in a strong parallel magnetic field using a fully numerical Hartree-Fock approach. We find that for magnetic fields below 4.2×104 T the ground state of H2 is the strongly bound singlet state 1Σg, for magnetic fields stronger than 3×106 T the ground state of the molecule is the strongly bound triplet 3Πu, and for magnetic fields between 4.2×104 T and 3×106 T the symmetry of the ground state is the triplet state 3Σu, which is characterized by repulsion at intermediate internuclear distances and by a weak quadrupole-quadrupole interaction between atoms at large internuclear separation. In this region of magnetic field strength the hydrogen molecule is bound weakly, if at all; the hydrogen atoms behave like a weakly nonideal gas of Bose particles and can form a superfluid phase predicted in earlier works [Korolev and Liberman, Phys. Rev. Lett. 72, 270 (1994)]. For magnetic fields between ~3×105 T and 3×106 T the triplet state 3Πu is found to be metastable. This state may be responsible for an unknown excitonic line observed experimentally [Timofeev and Chernenko, JETP Lett. 61, 617 (1995)].

  3. Damping of hard excitations in strongly coupled N = 4 plasma

    NASA Astrophysics Data System (ADS)

    Fuini, John F.; Uhlemann, Christoph F.; Yaffe, Laurence G.

    2016-12-01

    The damping of high momentum excitations in strongly coupled maximally supersymmetric Yang-Mills plasma is studied. Previous calculations of the asymptotic behavior of the quasinormal mode spectrum are extended and clarified. We confirm that subleading corrections to the lightlike dispersion relation ω( q) = | q| have a universal | q|-1/3 form. Sufficiently narrow, weak planar shocks may be viewed as coherent superpositions of short wavelength quasinormal modes. The attenuation and evolution in profile of narrow planar shocks are examined as an application of our results.

  4. Wave propagation in strongly dispersive superthermal dusty plasma

    NASA Astrophysics Data System (ADS)

    El-Labany, S. K.; El-Shewy, E. K.; Abd El-Razek, H. N.; El-Rahman, A. A.

    2017-04-01

    The attributes of acoustic envelope waves in a collisionless dust ion unmagnetized plasmas model composed of cold ions, superthermal electrons and positive-negative dust grains have been studied. Using the derivative expansion technique in a strong dispersive medium, the system model is reduced to a nonlinearly form of Schrodinger equation (NLSE). Rational solution of NLSE in unstable region is responsible for the creation of large shape waves; namely rogue waves. The subjection of instability regions upon electron superthermality (via κ), carrier wave number and dusty grains charge is discussed.

  5. Magnetic Flux Compression Experiments Using Plasma Armatures

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2003-01-01

    Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (R(sub m), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires R(sub m) less than 1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

  6. Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms

    NASA Astrophysics Data System (ADS)

    Frisch, A.; Mark, M.; Aikawa, K.; Baier, S.; Grimm, R.; Petrov, A.; Kotochigova, S.; Quéméner, G.; Lepers, M.; Dulieu, O.; Ferlaino, F.

    2015-11-01

    In a combined experimental and theoretical effort, we demonstrate a novel type of dipolar system made of ultracold bosonic dipolar molecules with large magnetic dipole moments. Our dipolar molecules are formed in weakly bound Feshbach molecular states from a sample of strongly magnetic bosonic erbium atoms. We show that the ultracold magnetic molecules can carry very large dipole moments and we demonstrate how to create and characterize them, and how to change their orientation. Finally, we confirm that the relaxation rates of molecules in a quasi-two-dimensional geometry can be reduced by using the anisotropy of the dipole-dipole interaction and that this reduction follows a universal dipolar behavior.

  7. Plasma Hole -- a Singular Vortex in a Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Tanaka, M. Y.

    2008-12-01

    A vortex with a density cavity in its core has been observed in a magnetized cylindrical plasma. It is called "plasma hole" from the visual impression when viewed along the axis of the vortex. The flow velocity measurements revealed that the plasma hole accompanies with supersonic azimuthal flow and radial flow toward the center, on a plane perpendicular to the magnetic field. The vorticity distribution evaluated from the flow velocity field is localized near the vortex center axis. This vorticity localization is identified as a Burgers vortex, which is the first observation of Burgers vortex in a plasma. The plasma hole is divided into two regions; in the peripheral regions the Lorentz force is balanced with the electric force (ExB drift), and in the core regions the Lorentz force is balanced with the centrifugal force. Rotation driven by centrifugal force is called fast rotation, and is realized only in non-neutral plasmas so far. It is found that charge neutrality condition in the core region breaks down by three order of magnitude compared with the case without plasma hole (10-6). The effective viscosity in the core region exhibits an anomaly as well. The detailed experimental results on the plasma hole and the implication from the viewpoint of basic plasma physics will be presented. Note from Publisher: This article contains the abstract only.

  8. Miniature Magnetized Shocks from Plasma Collision with Minimagnetospheres

    NASA Astrophysics Data System (ADS)

    Alves, E. P.; Cruz, F.; Bamford, R.; Bingham, R.; Fonseca, R.; Silva, L. O.

    2014-12-01

    Minimagnetospheres have been found to exist above the lunar surface, resulting from the solar wind plasma interaction with localized magnetic patches on the Moon's crust. The size of these objects are on the order of the plasma kinetic scales, lying beyond the validity of magnetohydrodynamics, and therefore constitute unique "laboratories" to investigate the role of kinetic effects in magnetosphere formation/dynamics. In this work we investigate the conditions under which collisionless magnetized shocks are formed due to plasma interaction with such small-scale (order of the plasma kinetic scales) magnetic obstacles. We have performed multidimensional particle-in-cell (PIC) simulations, that capture both electron and ion kinetics from first principles, in order to accurately describe the important microphysical processes associated with these scenarios. We observe the clear formation of a magnetized shock when the typical size of the magnetic obstacle is greater than ~ 2 ion-Larmor-radii. This condition may be fulfilled in lunar minimagnetospheres, whose dimensions are on the order of the ion inertial length, only for low Mach number shocks (<2). The effective size of the magnetic obstacle, however, is strongly dependent on the relative orientation of its own field to that of the plasma; antiparallel field configurations increase the effective size of the magnetic obstacle, allowing the clear formation of a shock, whereas in parallel field configurations the effective size of the magnetic obstacle is decreased, inhibiting shock formation in some cases. PIC simulations further capture electron-scale surface instabilities that modulate the magnetopause boundary and other streaming instabilities resulting from the interaction between the upstream and reflected plasma.

  9. Strongly Interacting Matter in Magnetic Fields: A Guide to This Volume

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.; Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    This is an introduction to the volume of Lecture Notes in Physics on "Strongly interacting matter in magnetic fields". The volume combines contributions written by a number of experts on different aspects of the problem. The response of QCD matter to intense magnetic fields has attracted a lot of interest recently. On the theoretical side, this interest stems from the possibility to explore the plethora of novel phenomena arising from the interplay of magnetic field with QCD dynamics. On the experimental side, the interest is motivated by the recent results on the behavior of quark-gluon plasma in a strong magnetic field created in relativistic heavy ion collisions at RHIC and LHC. The purpose of this introduction is to provide a brief overview and a guide to the individual contributions where these topics are covered in detail.

  10. On the theory of magnetic field generation by relativistically strong laser radiation

    SciTech Connect

    Berezhiani, V.I.; Shatashvili, N.L.; Mahajan, S.M. |

    1996-07-01

    The authors consider the interaction of subpicosecond relativistically strong short laser pulses with an underdense cold unmagnetized electron plasma. It is shown that the strong plasma inhomogeneity caused by laser pulses results in the generation of a low frequency (quasistatic) magnetic field. Since the electron density distribution is determined completely by the pump wave intensity, the generated magnetic field is negligibly small for nonrelativistic laser pulses but increases rapidly in the ultrarelativistic case. Due to the possibility of electron cavitation (complete expulsion of electrons from the central region) for narrow and intense beams, the increase in the generated magnetic field slows down as the beam intensity is increased. The structure of the magnetic field closely resembles that of the field produced by a solenoid; the field is maximum and uniform in the cavitation region, then it falls, changes polarity and vanishes. In extremely dense plasmas, highly intense laser pulses in the self-channeling regime can generate magnetic fields {approximately} 100 Mg and greater.

  11. Collisionless Coupling between Explosive Debris Plasma and Magnetized Ambient Plasma

    NASA Astrophysics Data System (ADS)

    Bondarenko, Anton

    2016-10-01

    The explosive expansion of a dense debris plasma cloud into relatively tenuous, magnetized, ambient plasma characterizes a wide variety of astrophysical and space phenomena, including supernova remnants, interplanetary coronal mass ejections, and ionospheric explosions. In these rarified environments, collective electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the debris plasma to the ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms in a reproducible laboratory setting, the present research jointly utilizes the Large Plasma Device (LAPD) and the Phoenix laser facility at UCLA to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and magnetic field induction probes. Large Doppler shifts detected in a He II ion spectral line directly indicate initial ambient ion acceleration transverse to both the debris plasma flow and the background magnetic field, indicative of a fundamental process known as Larmor coupling. Characterization of the laser-produced debris plasma via a radiation-hydrodynamics code permits an explicit calculation of the laminar electric field in the framework of a ``hybrid'' model (kinetic ions, charge-neutralizing massless fluid electrons), thus allowing for a simulation of the initial response of a distribution of He II test ions. A synthetic Doppler-shifted spectrum constructed from the simulated velocity distribution of the accelerated test ions excellently reproduces the spectroscopic measurements, confirming the role of Larmor coupling in the debris-ambient interaction.

  12. Local thermodynamics of a magnetized, anisotropic plasma

    SciTech Connect

    Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.

    2013-02-15

    An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.

  13. Electron Cooling in a Magnetically Expanding Plasma.

    PubMed

    Little, J M; Choueiri, E Y

    2016-11-25

    Electron cooling in a magnetically expanding plasma, which is a fundamental process for plasma flow and detachment in magnetic nozzles, is experimentally investigated using a radio frequency plasma source and magnetic nozzle (MN). Probe measurements of the plasma density, potential, and electron temperature along the center line of the MN indicate that the expansion follows a polytropic law with exponent γ_{e}=1.15±0.03. This value contradicts isothermal electron expansion, γ_{e}=1, which is commonly assumed in MN models. The axial variation of the measured quantities can be described by a simple quasi-1D fluid model with classical electron thermal conduction, for which it has been previously shown that a value of γ_{e}≈1.19 is expected in the weakly collisional limit. A new criterion, derived from the model, ensures efficient ion acceleration when a critical value for the ratio of convected to conducted power is exceeded.

  14. The Weibel instability in a strongly coupled plasma

    SciTech Connect

    Mahdavi, M. Khanzadeh, H.

    2014-06-15

    In this paper, the growth rate of the Weibel instability is calculated for an energetic relativistic electron beam penetrated into a strongly coupled plasma, where the collision effects of background electron-ion scattering play an important role in equations. In order to calculate the growth rate of the Weibel instability, two different models of anisotropic distribution function are used. First, the distribution of the plasma and beam electrons considered as similar forms of bi-Maxwellian distribution. Second, the distribution functions of the plasma electrons and the beam electrons follows bi-Maxwellian and delta-like distributions, respectively. The obtained results show that the collision effect decreases the growth rate in two models. When the distribution function of electrons beam is in bi-Maxwellian form, the instability growth rate is greater than where the distribution function of beam electrons is in delta-like form, because, the anisotropic temperature for bi-Maxwellian distribution function in velocity space is greater than the delta-like distribution function.

  15. Simulation study of the magnetized sheath of a dusty plasma

    SciTech Connect

    Foroutan, G.; Mehdipour, H.; Zahed, H.

    2009-10-15

    Numerical solutions of stationary multifluid equations are used to study the formation and properties of the magnetized sheath near the boundary of a dusty plasma. The impacts of the strength of the magnetic field, the dust and plasma number densities, and the electron temperature on the sheath structure and spatial distributions of various quantities are investigated. It is shown that for a given angle of incidence of the magnetic field, there is a threshold magnetic field intensity above which some kind of large regular inhomogeneities develop on the spatial profile of the dust particles. The sheath thickness, the electron and ion number densities, and the absolute dust charge are strongly affected by the variation in the dust number density. The sheath demonstrates a nonlinear dependence on the electron temperature; as the electron temperature rises, the sheath first is broadened and the absolute wall potential decreases but then at higher temperatures the sheath becomes narrower and the absolute wall potential increases.

  16. Optical magnetic plasma in artificial flowers.

    PubMed

    Li, Jingjing; Thylen, Lars; Bratkovsky, Alexander; Wang, Shiy-Yuan; Williams, R Stanley

    2009-06-22

    We report the design of an artificial flower-like structure that supports a magnetic plasma in the optical domain. The structure is composed of alternating "petals" of conventional dielectrics (epsilon > 0) and plasmonic materials (Re(epsilon ) < 0). The induced effective magnetic current on such a structure possesses a phase lag with respect to the incident TE-mode magnetic field, similar to the phase lag between the induced electric current and the incident TM-mode electric field on a metal wire. An analogy is thus drawn with an artificial electric plasma composed of metal wires driven by a radio frequency excitation. The effective medium of an array of flowers has a negative permeability within a certain wavelength range, thus behaving as a magnetic plasma.

  17. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.

  18. Mass-Radius Relation of Strongly Magnetized White Dwarfs

    NASA Astrophysics Data System (ADS)

    Bera, P.; Bhattacharya, D.

    2017-03-01

    We study the strongly magnetized white dwarf configurations in a self-consistent manner as a progenitor of the over-luminous type-Ia supernovae. We compute static equilibria of white dwarf stars containing a strong magnetic field and present the modification of the white dwarf mass-radius relation caused by the magnetic field. From a static equilibrium study, we find that a maximum white dwarf mass of about 1.9 M⊙ may be supported if the interior poloidal field is as strong as approximately 1010 T. On the other hand if the field is purely toroidal the maximum mass can be more than 5 M⊙. All these modifications are mainly from the presence of the Lorenz force. The effects of i) modification of the equation of state due to Landau quantization, ii) electrostatic interaction due to ions, iii) general relativistic calculation on the stellar structure and, iv) field geometry are also considered. These strongly magnetised configurations are sensitive to magnetic instabilities where the perturbations grow at the corresponding Alfven time scales.

  19. Mass-radius relation of strongly magnetized white dwarfs

    NASA Astrophysics Data System (ADS)

    Bera, Prasanta; Bhattacharya, Dipankar

    2016-07-01

    We study the strongly magnetized white dwarf configurations in a self-consistent manner as a progenitor of the over-luminous type-Ia supernovae. We compute static equilibria of white dwarf stars containing a strong magnetic field and present the modification of white dwarf mass-radius relation caused by the magnetic field. From a static equilibrium study, we find that a maximum white dwarf mass of about 1.9 M_{⊙} may be supported if the interior poloidal field is as strong as approximately 10^{10} T. On the other hand, if the field is purely toroidal the maximum mass can be more than 5 M_⊙. All these modifications are mainly from the presence of Lorenz force. The effects of i) modification of equation of state due to Landau quantization ii) electrostatic interaction due to ions, ii) general relativistic calculation on the stellar structure and, iii) field geometry are also considered. These strongly magnetised configurations are sensitive to magnetic instabilities where the perturbations grow at the corresponding Alfven time scales.

  20. Confinining properties of QCD in strong magnetic backgrounds

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; D'Elia, Massimo; Mariti, Marco; Mesiti, Michele; Negro, Francesco; Rucci, Andrea; Sanfilippo, Francesco

    2017-03-01

    Strong magnetic backgrounds are known to modify QCD properties at a nonperturbative level. We discuss recent lattice results, obtained for Nf = 2 + 1 QCD with physical quark masses, concerning in particular the modifications and the anisotropies induced at the level of the static quark-antiquark potential, both at zero and finite temperature.

  1. Momentum transfer to rotating magnetized plasma from gun plasma injection

    SciTech Connect

    Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.

    2006-11-15

    Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented.

  2. Dynamics of exploding plasmas in a large magnetized plasma

    SciTech Connect

    Niemann, C.; Gekelman, W.; Constantin, C. G.; Everson, E. T.; Schaeffer, D. B.; Clark, S. E.; Zylstra, A. B.; Pribyl, P.; Tripathi, S. K. P.; Bondarenko, A. S.; Winske, D.; Larson, D.; Glenzer, S. H.

    2013-01-15

    The dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma was investigated with magnetic flux probes and Langmuir probes. Debris-ions expanding at super-Alfvenic velocity (up to M{sub A}=1.5) expel the ambient magnetic field, creating a large (>20 cm) diamagnetic cavity. We observe a field compression of up to B/B{sub 0}=1.5 as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized by the magnetic piston and swept outside the bubble volume. Nonlinear shear-Alfven waves ({delta}B/B{sub 0}>25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave.

  3. Magnetic Null Points in Kinetic Simulations of Space Plasmas

    NASA Astrophysics Data System (ADS)

    Olshevsky, Vyacheslav; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni

    2016-03-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.

  4. Vacuum in a strong magnetic field as a hyperbolic metamaterial.

    PubMed

    Smolyaninov, Igor I

    2011-12-16

    As demonstrated by Chernodub, vacuum in a strong magnetic field behaves as Abrikosov vortex lattice in a type-II superconductor. We investigate electromagnetic behavior of vacuum in this state and demonstrate that vacuum behaves as a hyperbolic metamaterial. If the magnetic field is constant, low frequency extraordinary photons experience this medium as a (3+1) Minkowski spacetime in which the role of time is played by the spatial z coordinate. Variations of the magnetic field curve this spacetime, and may lead to formation of "electromagnetic black holes." Since hyperbolic metamaterials behave as diffractionless "perfect lenses," and large enough magnetic fields probably existed in the early Universe, the demonstrated hyperbolic behavior of early vacuum may have imprints in the large scale structure of the present-day Universe.

  5. Vacuum in a Strong Magnetic Field as a Hyperbolic Metamaterial

    SciTech Connect

    Smolyaninov, Igor I.

    2011-12-16

    As demonstrated by Chernodub, vacuum in a strong magnetic field behaves as Abrikosov vortex lattice in a type-II superconductor. We investigate electromagnetic behavior of vacuum in this state and demonstrate that vacuum behaves as a hyperbolic metamaterial. If the magnetic field is constant, low frequency extraordinary photons experience this medium as a (3+1) Minkowski spacetime in which the role of time is played by the spatial z coordinate. Variations of the magnetic field curve this spacetime, and may lead to formation of ''electromagnetic black holes''. Since hyperbolic metamaterials behave as diffractionless ''perfect lenses'', and large enough magnetic fields probably existed in the early Universe, the demonstrated hyperbolic behavior of early vacuum may have imprints in the large scale structure of the present-day Universe.

  6. A model for particle confinement in a toroidal plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1977-01-01

    A toroidal plasma is confined and heated by the simultaneous application of strong d.c. magnetic fields and electric fields. Strong radial electric fields (about 1 kilovolt per centimeter) are imposed by biasing the plasma with up to 12 negative electrode rings which surround its minor circumference. The plasma containment is consistent with a balance of two processes: a radial infusion of ions in those sectors not containing electrode rings, resulting from the radially inward electric fields; and ion losses to the electrode rings, each of which acts as a sink and draws ions out the plasma in the manner of a Langmuir probe in the ion saturation regime. The highest density on axis which has been observed so far in this steady-state plasma is 6.2 x 10 to the 12th power particles per cubic centimeter, for which the particle containment time is 2.5 milliseconds. The deuterium ion kinetic temperature for these conditions was in the range of 360 to 520 eV.

  7. A model for particle confinement in a toroidal plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1977-01-01

    The approach adopted in the NASA Lewis Bumpy Torus experiment is to confine and heat a toroidal plasma by the simultaneous application of strong dc magnetic fields and electric fields. Strong radial electric fields (about 1 kV/cm) are imposed by biasing the plasma with up to 12 negative electrode rings which surround its minor circumference. The plasma containment is consistent with a balance of two processes: a radial infusion of ions in those sectors not containing electrode rings, resulting from the radially inward electric fields; and ion losses to the electrode rings, each of which acts as a sink and draws ions out the plasma in the manner of a Langmuir probe in the ion saturation regime. The highest density on axis which has been observed so far in this steady-state plasma is 6.2 trillion particles per cu cm, for which the particle containment time is 2.5 msec. The deuterium ion kinetic temperature for these conditions was in the range of 360 to 520 eV.

  8. Integrity of the Plasma Magnetic Nozzle

    NASA Technical Reports Server (NTRS)

    Gerwin, Richard A.

    2009-01-01

    This report examines the physics governing certain aspects of plasma propellant flow through a magnetic nozzle, specifically the integrity of the interface between the plasma and the nozzle s magnetic field. The injection of 100s of eV plasma into a magnetic flux nozzle that converts thermal energy into directed thrust is fundamental to enabling 10 000s of seconds specific impulse and 10s of kW/kg specific power piloted interplanetary propulsion. An expression for the initial thickness of the interface is derived and found to be approx.10(exp -2) m. An algorithm is reviewed and applied to compare classical resistivity to gradient-driven microturbulent (anomalous) resistivity, in terms of the spatial rate and time integral of resistive interface broadening, which can then be related to the geometry of the nozzle. An algorithm characterizing plasma temperature, density, and velocity dependencies is derived and found to be comparable to classical resistivity at local plasma temperatures of approx. 200 eV. Macroscopic flute-mode instabilities in regions of "adverse magnetic curvature" are discussed; a growth rate formula is derived and found to be one to two e-foldings of the most unstable Rayleigh-Taylor (RT) mode. After establishing the necessity of incorporating the Hall effect into Ohm s law (allowing full Hall current to flow and concomitant plasma rotation), a critical nozzle length expression is derived in which the interface thickness is limited to about 1 ion gyroradius.

  9. The plasma drag and dust motion inside the magnetized sheath

    SciTech Connect

    Pandey, B. P.; Vladimirov, S. V.; Samarian, A.

    2011-05-15

    The motion of micron size dust inside the sheath in the presence of an oblique magnetic field is investigated by self-consistently calculating the charge and various forces acting on the dust. It is shown that the dust trajectory inside the sheath, which is like an Archimedean spiral swinging back and forth between the wall and the plasma-sheath boundary, depends only indirectly on the orientation of the magnetic field. When the Lorentz force is smaller than the collisional momentum exchange, the dust dynamics is insensitive to the obliqueness of the magnetic field. Only when the magnetic field is strong enough, the sheath structure and, thus, the dust dynamics are significantly affected by the field orientation. Balance between the plasma drag, sheath electrostatic field, and gravity plays an important role in determining how far the dust can travel inside the sheath. The dust equilibrium point shifts closer to the wall in the presence of gravity and plasma drag. However, in the absence of plasma drag, dust can sneak back into the plasma if acted only by gravity. The implication of our results to the usability of dust as a sheath probe is discussed.

  10. Magnetic moments induce strong phonon renormalization in FeSi

    PubMed Central

    Krannich, S.; Sidis, Y.; Lamago, D.; Heid, R.; Mignot, J.-M.; Löhneysen, H. v.; Ivanov, A.; Steffens, P.; Keller, T.; Wang, L.; Goering, E.; Weber, F.

    2015-01-01

    The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron–phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron–phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe–Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin–phonon coupling and multiple interaction paths. PMID:26611619

  11. Ideal plasma response to vacuum magnetic fields with resonant magnetic perturbations in non-axisymmetric tokamaks

    DOE PAGES

    Kim, Kimin; Ahn, J. -W.; Scotti, F.; ...

    2015-09-03

    Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n = 3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifiesmore » the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n = 3. Furthermore, amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n = 1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.« less

  12. Continuous spectra of atomic hydrogen in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, L. B.; Zatsarinny, O.; Bartschat, K.

    2016-09-01

    We describe a theoretical method, developed in the coupled-channel formalism, to study photoionization of H atoms in a strong magnetic field of a size that is typical for magnetic white dwarfs. The coupled Schrödinger equations are solved numerically using the renormalized Numerov method proposed by Johnson [B. R. Johnson, J. Chem. Phys. 67, 4086 (1977), 10.1063/1.435384; B. R. Johnson, J. Chem. Phys. 69, 4678 (1978), 10.1063/1.436421]. The distinct advantage of this method is the fact that no overflow problems are encountered in the classically forbidden region, and hence the method exhibits excellent numerical stability. Photoionization cross sections are presented for magnetized H atoms in the ground and 2 p excited states. The calculated results are compared with those obtained by other theories. The present method is particularly useful for explaining the complex features of continuous spectra in a strong magnetic field and hence provides an efficient tool for modeling photoionization spectra observed in the atmosphere of magnetic white dwarfs.

  13. Dynamical quark mass generation in a strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Mueller, Niklas; Bonnet, Jacqueline A.; Fischer, Christian S.

    2014-05-01

    We investigate the effect of a strong magnetic field on dynamical chiral symmetry breaking in quenched and unquenched QCD. To this end we apply the Ritus formalism to the coupled set of (truncated) Dyson-Schwinger equations for the quark and gluon propagator under the presence of an external constant Abelian magnetic field. We work with an approximation that is trustworthy for large fields eH >ΛQCD2 but is not restricted to the lowest Landau level. We confirm the linear rise of the quark condensate with a large external field previously found in other studies and observe the transition to the asymptotic power law at extremely large fields. We furthermore quantify the validity of the lowest Landau level approximation and find substantial quantitative differences to the full calculation even at very large fields. We discuss unquenching effects in the strong field propagators, condensate and the magnetic polarization of the vacuum. We find a significant weakening of magnetic catalysis caused by the backreaction of quarks on the Yang-Mills sector. Our results support explanations of the inverse magnetic catalysis found in recent lattice studies due to unquenching effects.

  14. Magnetic field distribution of strong hybrid magnet in high torque motor

    NASA Astrophysics Data System (ADS)

    Oguri, Kazuya; Mizutani, Akihiro; Ogino, Sanshiroh; Ochiai, Yasuzumi; Kawahata, Masahiro; Nishi, Yoshitake

    2002-11-01

    A variable reluctance hybrid magnet has been developed to apply new type of high torque motors. A permanent magnet, electromagnet and yoke construct the variable reluctance hybrid magnet. From an engineering point of view, it is important to know the magnetic field around a variable reluctance hybrid magnet. Based on the results of magnetic flux density measurement around the hybrid variable reluctance magnet, the high magnetic flux density was found at edges and joints. The high magnetic flux density was also obtained with electrical current of 10 A at optimum setting form. Therefore, we concluded that the strong force of rotor of the hybrid motor was generated by high surface flux density of the hybrid magnet.

  15. Particle dynamics in a strongly-coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Goree, J.; Pieper, J. B.

    1996-11-01

    We have used video imaging to study the dynamics of 9 μ m plastic spheres suspended in low-power Krypton discharges. The spheres, which are highly charged and levitated by the electrode sheath, form a strongly-coupled system. Using a digitized series of images, we tracked individual particles and measured collective and random particle motions.footnote J. B. Pieper and J. Goree, submitted to PRL Dust acoustic waves were excited at <= 10 Hz and their dispersion relation verified. Fitting the measured and theoretical dispersion relations also give a measurement of the particle charge and the "linearized" Debye length. The temperature of random particle motion in the horizontal plane (parallel to the electrode) was measured to be 2-10 times room temperature and about 2 times the temperature in the vertical plane. It is proposed that the particles are heated by low-frequency (kHz) electrostatic plasma fluctuations. Work supported by NSF and NASA

  16. Particle dynamics in a strongly-coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Quinn, R. A.; Goree, J.; Pieper, J. B.

    1996-10-01

    We have used video imaging to study the dynamics of 9 μ m plastic spheres in low-power Krypton discharges. The spheres, which are highly charged and levitated by the electrode sheath, form a strongly-coupled system. Using a digitized series of images, we tracked individual particles and measured collective and random particle motions.footnote Pieper and Goree, submitted to PRL Dust acoustic waves were excited at <= 10 Hz and their dispersion relation verified. The temperature of random particle motion in the horizontal plane (parallel to the electrode) was measured to be 2-10 times room temperature and about 2 times the temperature in the vertical plane. It is proposed that the particles are heated by low-frequency (kHz) electrostatic plasma fluctuations.

  17. Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma

    NASA Astrophysics Data System (ADS)

    Lebedev, Yu A.

    2015-10-01

    Microwave discharges (MD) are widely used as a source of non-equilibrium low pressure plasma for different applications. This paper reviews the methods of microwave plasma generation at pressures from 10-2 approximately to 30 kPa with centimeter-millimeter wavelength microwaves on the basis of scientific publications since 1950 up to the present. The review consists of 16 sections. A general look at MDs and their application is given in the introduction, together with a description of a typical block-schema of the microwave plasma generator, classification of MD, and attractive features of MD. Sections 2-12 describe the different methods of microwave plasma generators on the basis of cavity and waveguide discharges, surface and slow wave discharges, discharges with distributed energy input, initiated and surface discharges, discharges in wave beams, discharges with stochastically jumping phases of microwaves, discharges in an external magnetic field and discharges with a combination of microwave field and dc and RF fields. These methods provide the possibility of producing nonequilibriun high density plasma in small and large chambers for many applications. Plasma chemical activity of nonequilibrium microwave plasma is analyzed in section 13. A short consideration of the history and status of the problem is given. The main areas of microwave plasma application are briefly described in section 14. Non-uniformity is the inherent property of the majority of electrical discharges and MDs are no exception. Peculiarities of physical-chemical processes in strongly non-uniform MDs are demonstrated placing high emphasis on the influence of small noble gas additions to the main plasma gas (section 15). The review is illustrated by 80 figures. The list of references contains 350 scientific publications.

  18. High density plasma etching of magnetic devices

    NASA Astrophysics Data System (ADS)

    Jung, Kee Bum

    Magnetic materials such as NiFe (permalloy) or NiFeCo are widely used in the data storage industry. Techniques for submicron patterning are required to develop next generation magnetic devices. The relative chemical inertness of most magnetic materials means they are hard to etch using conventional RIE (Reactive Ion Etching). Therefore ion milling has generally been used across the industry, but this has limitations for magnetic structures with submicron dimensions. In this dissertation, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma) for the etching of magnetic materials (NiFe, NiFeCo, CoFeB, CoSm, CoZr) and other related materials (TaN, CrSi, FeMn), which are employed for magnetic devices like magnetoresistive random access memories (MRAM), magnetic read/write heads, magnetic sensors and microactuators. This research examined the fundamental etch mechanisms occurring in high density plasma processing of magnetic materials by measuring etch rate, surface morphology and surface stoichiometry. However, one concern with using Cl2-based plasma chemistry is the effect of residual chlorine or chlorinated etch residues remaining on the sidewalls of etched features, leading to a degradation of the magnetic properties. To avoid this problem, we employed two different processing methods. The first one is applying several different cleaning procedures, including de-ionized water rinsing or in-situ exposure to H2, O2 or SF6 plasmas. Very stable magnetic properties were achieved over a period of ˜6 months except O2 plasma treated structures, with no evidence of corrosion, provided chlorinated etch residues were removed by post-etch cleaning. The second method is using non-corrosive gas chemistries such as CO/NH3 or CO2/NH3. There is a small chemical contribution to the etch mechanism (i.e. formation of metal carbonyls) as determined by a comparison with Ar and N2 physical sputtering. The discharge should be NH3

  19. Anisotropic heavy quark potential in strongly-coupled N =4 SYM theory in a magnetic field

    NASA Astrophysics Data System (ADS)

    Rougemont, R.; Critelli, R.; Noronha, J.

    2015-03-01

    In this work we use the gauge/gravity duality to study the anisotropy in the heavy quark potential in strongly coupled N =4 super-Yang Mills (SYM) theory (both at zero and nonzero temperature) induced by a constant and uniform magnetic field B . At zero temperature, the inclusion of the magnetic field decreases the attractive force between heavy quarks with respect to its B =0 value and the force associated with the parallel potential is the least attractive force. We find that the same occurs at nonzero temperature and, thus, at least in the case of strongly coupled N =4 SYM, the presence of a magnetic field generally weakens the interaction between heavy quarks in the plasma.

  20. Saturated symmetric nuclear matter in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Diener, J. P. W.; Scholtz, F. G.

    2013-06-01

    Strongly magnetized symmetric nuclear matter is investigated within the context of effective baryon-meson exchange models. The magnetic field is coupled to the charge as well as the dipole moment of the baryons by including the appropriate terms in the Lagrangian density. The saturation density of magnetized, symmetric nuclear matter ρ0(B) was calculated for magnetic fields of the order of 1017 gauss. For the calculated range of ρ0(B) the binding energy, symmetry energy coefficient a4, and compressibility K of nuclear matter were also calculated. It is found that with an increasing magnetic field ρ0(B) increases, while the system becomes less bound. Furthermore, the depopulation of proton Landau levels leaves a distinct fluctuating imprint on K and a4. The calculations were also performed for increased values of the baryon magnetic dipole moment. By increasing the dipole moment strength ρ0(B) is found to decrease, but the system becomes more tightly bound while the fluctuations in K and a4 persist.

  1. Laboratory study of avalanches in magnetized plasmas.

    PubMed

    Van Compernolle, B; Morales, G J; Maggs, J E; Sydora, R D

    2015-03-01

    It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfvén waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented.

  2. Electromagnetic wave in a relativistic magnetized plasma

    SciTech Connect

    Krasovitskiy, V. B.

    2009-12-15

    Results are presented from a theoretical investigation of the dispersion properties of a relativistic plasma in which an electromagnetic wave propagates along an external magnetic field. The dielectric tensor in integral form is simplified by separating its imaginary and real parts. A dispersion relation for an electromagnetic wave is obtained that makes it possible to analyze the dispersion and collisionless damping of electromagnetic perturbations over a broad parameter range for both nonrelativistic and ultrarelativistic plasmas.

  3. Kolmogorov flow in two dimensional strongly coupled dusty plasma

    SciTech Connect

    Gupta, Akanksha; Ganesh, R. Joy, Ashwin

    2014-07-15

    Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time τ{sub m} [0 < τ{sub m} < 10]. For the system size considered, using a linear stability analysis, similar to Navier Stokes fluid (τ{sub m} = 0), it is found that for Reynolds number beyond a critical R, say R{sub c}, the Kolmogorov flow becomes unstable. Importantly, it is found that R{sub c} is strongly reduced for increasing values of τ{sub m}. A critical τ{sub m}{sup c} is found above which Kolmogorov flow is unconditionally unstable and becomes independent of Reynolds number. For R < R{sub c}, the neutral stability regime found in Navier Stokes fluid (τ{sub m} = 0) is now found to be a damped regime in viscoelastic fluids, thus changing the fundamental nature of transition of Kolmogorov flow as function of Reynolds number R. A new parallelized nonlinear pseudo spectral code has been developed and is benchmarked against eigen values for Kolmogorov flow obtained from linear analysis. Nonlinear states obtained from the pseudo spectral code exhibit cyclicity and pattern formation in vorticity and viscoelastic oscillations in energy.

  4. Antenna impedance measurements in a magnetized plasma. I. Spherical antenna

    SciTech Connect

    Blackwell, David D.; Walker, David N.; Messer, Sarah J.; Amatucci, William E.

    2007-09-15

    The input impedance of a metal sphere immersed in a magnetized plasma is measured with a network analyzer at frequencies up to 1 GHz. The experiments were done in the Space Physics Simulation Chamber at the Naval Research Laboratory. The hot-filament argon plasma was varied between weakly ({omega}{sub ce}<{omega}{sub pe}) and strongly ({omega}{sub ce}>{omega}{sub pe}) magnetized plasma with electron densities in the range 10{sup 7}-10{sup 10} cm{sup -3}. It is observed that the lower-frequency resonance of the impedance characteristic previously associated with series sheath resonance {omega}{sub sh} in the unmagnetized plasma occurs at a hybrid sheath frequency of {omega}{sub r}{sup 2}={omega}{sub sh}{sup 2}+{kappa}{omega}{sub ce}{sup 2}, where {kappa} is a constant 0.5<{kappa}<1. As seen in previous experiments, the higher frequency resonance associated with the electron plasma frequency {omega}{sub pe} in the unmagnetized plasma is relocated to the upper hybrid frequency {omega}{sub uh}{sup 2}={omega}{sub pe}{sup 2}+{omega}{sub ce}{sup 2}. As with the unmagnetized plasma, the maximum power deposition occurs at the lower frequency resonance {omega}{sub r}.

  5. Non-axisymmetric magnetic fields and toroidal plasma confinement

    NASA Astrophysics Data System (ADS)

    Boozer, Allen H.

    2015-02-01

    The physics of non-axisymmetry is a far more important topic in the theory of toroidal fusion plasmas than might be expected. (1) Even a small toroidal asymmetry in the magnetic field strength, δ ≡ ∂ln B/∂φ ˜ 10-4, can cause an unacceptable degradation in performance. (2) Nevertheless, asymmetries—even large asymmetries δ ˜ 1—can give beneficial plasma control and circumvent issues, such as magnetic-configuration maintenance and plasma disruptions, that make axisymmetric fusion devices problematic. Viewed from prospectives that are adequate for designing and studying axisymmetric plasmas, the physics of non-axisymmetric plasmas appears dauntingly difficult. Remarkably, Maxwell's equations provide such strong constraints on the physics of toroidal fusion plasmas that even a black-box model of a plasma answers many important questions. Kinetic theory and non-equilibrium thermodynamics provide further, but more nuanced, constraints. This paper is organized so these constraints can be used as a basis for the innovations and for the extrapolations that are required to go from existing experiments to fusion systems. Outlines are given of a number of calculations that would be of great importance to ITER and to the overall fusion program and that could be carried out now with limited resources.

  6. Kinetic theory of quasi-stationary collisionless axisymmetric plasmas in the presence of strong rotation phenomena

    SciTech Connect

    Cremaschini, Claudio; Stuchlík, Zdeněk; Tessarotto, Massimo

    2013-05-15

    The problem of formulating a kinetic treatment for quasi-stationary collisionless plasmas in axisymmetric systems subject to the possibly independent presence of local strong velocity-shear and supersonic rotation velocities is posed. The theory is developed in the framework of the Vlasov-Maxwell description for multi-species non-relativistic plasmas. Applications to astrophysical accretion discs arising around compact objects and to plasmas in laboratory devices are considered. Explicit solutions for the equilibrium kinetic distribution function (KDF) are constructed based on the identification of the relevant particle adiabatic invariants. These are shown to be expressed in terms of generalized non-isotropic Gaussian distributions. A suitable perturbative theory is then developed which allows for the treatment of non-uniform strong velocity-shear/supersonic plasmas. This yields a series representation for the equilibrium KDF in which the leading-order term depends on both a finite set of fluid fields as well as on the gradients of an appropriate rotational frequency. Constitutive equations for the fluid number density, flow velocity, and pressure tensor are explicitly calculated. As a notable outcome, the discovery of a new mechanism for generating temperature and pressure anisotropies is pointed out, which represents a characteristic feature of plasmas considered here. This is shown to arise as a consequence of the canonical momentum conservation and to contribute to the occurrence of temperature anisotropy in combination with the adiabatic conservation of the particle magnetic moment. The physical relevance of the result and the implications of the kinetic solution for the self-generation of quasi-stationary electrostatic and magnetic fields through a kinetic dynamo are discussed.

  7. Strong localization effect in magnetic two-dimensional hole systems

    NASA Astrophysics Data System (ADS)

    Wurstbauer, U.; Knott, S.; Zolotaryov, A.; Schuh, D.; Hansen, W.; Wegscheider, W.

    2010-01-01

    We report an extensive study of the magnetotransport properties of magnetically doped two-dimensional hole systems. Inverted manganese modulation doped InAs quantum wells with localized manganese ions providing a magnetic moment of S=5/2 were grown by molecular beam epitaxy. Strong localization effect found in low-field magnetotransport measurements on these structures can either be modified by the manganese doping density or by tuning the two-dimensional hole density p via field effect. The data reveal that the ratio between p and manganese ions inside or in close vicinity to the channel enlarges the strong localization effect. Moreover, asymmetric broadening of the doping layer due to manganese segregation is significantly influenced by strain in the heterostructure.

  8. Strong localization effect in magnetic two-dimensional hole systems

    SciTech Connect

    Wurstbauer, U.; Knott, S.; Zolotaryov, A.; Hansen, W.; Schuh, D.; Wegscheider, W.

    2010-01-11

    We report an extensive study of the magnetotransport properties of magnetically doped two-dimensional hole systems. Inverted manganese modulation doped InAs quantum wells with localized manganese ions providing a magnetic moment of S=5/2 were grown by molecular beam epitaxy. Strong localization effect found in low-field magnetotransport measurements on these structures can either be modified by the manganese doping density or by tuning the two-dimensional hole density p via field effect. The data reveal that the ratio between p and manganese ions inside or in close vicinity to the channel enlarges the strong localization effect. Moreover, asymmetric broadening of the doping layer due to manganese segregation is significantly influenced by strain in the heterostructure.

  9. Strongly interacting photons in a synthetic magnetic field

    NASA Astrophysics Data System (ADS)

    Roushan, Pedram; Neill, C.; Megrant, A.; Chen, Y.; Barends, R.; Cambell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J.; O'Malley, P.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Kapit, E.; Martinis, J.

    Interacting electrons in the presence of magnetic fields exhibit some of the most fascinating phases in condensed matter systems. Realizing these phases in an engineered platform could provide deeper insight into their. Using three superconducting qubits, we synthesize artificial magnetic fields by modulating the inter-qubit coupling. In the closed loop formed by the qubits, we observe the directional circulation of a microwave photon as well as chiral groundstate currents, the signatures of broken time-reversal symmetry. The existence of strong interactions in our system is seen via the creation of photon vacancies, or ''holes'', which circulate in the opposite direction from the photons. Our work demonstrates an experimental approach for engineering quantum phases of strongly interacting bosons.

  10. Interface-induced magnetism and strong correlation in oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Stemmer, Susanne

    2015-03-01

    Two-dimensional electron gases (2DEGs) at interfaces between two insulating oxides have attracted significant attention because they can exhibit unique properties, such as strong electron correlations, superconductivity and magnetism. In this presentation, we will discuss the emergent properties of 2DEGs in SrTiO3 quantum wells that are interfaced with Mott insulating rare earth titanates (RTiO3) . We show that the magnetic properties of the 2DEG can be tuned to be either (incipient) ferromagnetic or (incipient) antiferromagnetic, depending on the specific RTiO3 that interfaces it. The thickness of the quantum well is a critical tuning parameter and determines the onset of magnetism, the proximity to a quantum critical point, and the onset of non-Fermi liquid behavior for those quantum wells that are in proximity to an antiferromagnetic transition. We will also discuss the role of symmetry-lowering structural transitions in the quantum well.

  11. Magnetic Doppler Imaging of He-strong star HD 184927

    NASA Astrophysics Data System (ADS)

    Yakunin, I.; Wade, G.; Bohlender, D.; Kochukhov, O.; Tsymbal, V.; Tsymbal

    2014-08-01

    We have employed an extensive new timeseries of Stokes I and V spectra obtained with the ESPaDOnS spectropolarimeter at the 3.6-m Canada-France-Hawaii Telescope to investigate the physical parameters, chemical abundance distributions and magnetic field topology of the slowly-rotating He-strong star HD 184927. We infer a rotation period of 9 d .53071 +/- 0.00120 from Hα, Hβ, LSD magnetic measurements and EWs of helium lines. We used an extensive NLTE TLUSTY grid along with the SYNSPEC code to model the observed spectra and find a new value of luminosity. In this poster we present the derived physical parameters of the star and the results of Magnetic Doppler Imaging analysis of the Stokes I and V profiles. Wide wings of helium lines can be described only under the assumption of the presence of a large, very helium-rich spot.

  12. Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Turner, L.

    1981-01-01

    A strong external dc magnetic field introduces a basic anisotropy in incompressible MHD turbulence. The modifications that this is likely to produce in the properties of the turbulence are investigated for high Reynolds numbers. It is found that the turbulent spectrum splits into two parts: (1) an essentially two-dimensional spectrum with both the velocity field and the magnetic fluctuations perpendicular to the dc magnetic field, and (2) a generally weaker and more nearly isotropic spectrum of Alfven waves. These results are discussed in relation to measurements from the Culham-Harwell Zeta pinch device and the UCLA Macrorotor tokamak, as well as in relation to measurements of MHD turbulence in the solar wind.

  13. Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Turner, L.

    1981-01-01

    A strong external dc magnetic field introduces a basic anisotropy into incompressible magnetohydrodynamic turbulence. The modifications that this is likely to produce in the properties of the turbulence are explored for the high Reynolds number case. The conclusion is reached that the turbulent spectrum splits into two parts: an essentially two dimensional spectrum with both the velocity field and magnetic fluctuations perpendicular to the dc magnetic field, and a generally weaker and more nearly isotropic spectrum of Alfven waves. A minimal characterization of the spectral density tensors is given. Similarities to measurements from the Culham-Harwell Zeta pinch device and the UCLA Macrotor Tokamak are remarked upon, as are certain implications for the Belcher and Davis measurements of magnetohydrodynamic turbulence in the solar wind.

  14. Plasma Equilibrium in a Magnetic Field with Stochastic Regions

    SciTech Connect

    J.A. Krommes and Allan H. Reiman

    2009-04-23

    The nature of plasma equilibrium in a magnetic field with stochastic regions is examined. It is shown that the magnetic differential equation that determines the equilibrium Pfirsch-Schluter currents can be cast in a form similar to various nonlinear equations for a turbulent plasma, allowing application of the mathematical methods of statistical turbulence theory. An analytically tractable model, previously studied in the context of resonance-broadening theory, is applied with particular attention paid to the periodicity constraints required in toroidal configurations. It is shown that even a very weak radial diffusion of the magnetic field lines can have a significant effect on the equilibrium in the neighborhood of the rational surfaces, strongly modifying the near-resonant Pfirsch-Schluter currents. Implications for the numerical calculation of 3D equilibria are discussed

  15. RF breakdown of 805 MHz cavities in strong magnetic fields

    SciTech Connect

    Bowring, D.; Stratakis, D.; Kochemirovskiy, A.; Leonova, M.; Moretti, A.; Palmer, M.; Peterson, D.; Yonehara, K.; Freemire, B.; Lane, P.; Torun, Y.; Haase, A.

    2015-05-03

    Ionization cooling of intense muon beams requires the operation of high-gradient, normal-conducting RF structures in the presence of strong magnetic fields. We have measured the breakdown rate in several RF cavities operating at several frequencies. Cavities operating within solenoidal magnetic fields B > 0.25 T show an increased RF breakdown rate at lower gradients compared with similar operation when B = 0 T. Ultimately, this breakdown behavior limits the maximum safe operating gradient of the cavity. Beyond ionization cooling, this issue affects the design of photoinjectors and klystrons, among other applications. We have built an 805 MHz pillbox-type RF cavity to serve as an experimental testbed for this phenomenon. This cavity is designed to study the problem of RF breakdown in strong magnetic fields using various cavity materials and surface treatments, and with precise control over sources of systematic error. We present results from tests in which the cavity was run with all copper surfaces in a variety of magnetic fields.

  16. Transport processes in magnetically confined plasmas

    SciTech Connect

    Callen, J.D.

    1991-12-01

    Intensified studies of plasma transport in toroidal plasmas over the past three to five years have progressed through increased understanding in some areas and changed perceptions about the most important issues in other areas. Recent developments are reviewed for six selected topics: edge fluctuations and transport; L-H mode transition; core fluctuations; modern plasma turbulence theory; transient transport; and global scaling. Some of the developments that are highlighted include: the role of a strongly sheared poloidal flow in edge plasma turbulence, transport and the L-H transition; change of focus from {kappa}{perpendicular}{rho}s {approximately} 1 to {kappa}{perpendicular}{rho}s {much lt} 1 fluctuations in tokamak plasmas; modern Direct-Interaction-Approximation plasma turbulence and hybrid fluid/kinetic theoretical models; and transient transport experiments that are raising fundamental questions about our conceptions of local transport processes in tokamaks. 104 refs., 6 figs.

  17. Transport processes in magnetically confined plasmas

    SciTech Connect

    Callen, J.D.

    1991-12-01

    Intensified studies of plasma transport in toroidal plasmas over the past three to five years have progressed through increased understanding in some areas and changed perceptions about the most important issues in other areas. Recent developments are reviewed for six selected topics: edge fluctuations and transport; L-H mode transition; core fluctuations; modern plasma turbulence theory; transient transport; and global scaling. Some of the developments that are highlighted include: the role of a strongly sheared poloidal flow in edge plasma turbulence, transport and the L-H transition; change of focus from {kappa}{perpendicular}{rho}s {approximately} 1 to {kappa}{perpendicular}{rho}s {much_lt} 1 fluctuations in tokamak plasmas; modern Direct-Interaction-Approximation plasma turbulence and hybrid fluid/kinetic theoretical models; and transient transport experiments that are raising fundamental questions about our conceptions of local transport processes in tokamaks. 104 refs., 6 figs.

  18. Plasma observations at the earth's magnetic equator

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.; Shawhan, S. D.; Gallagher, D. L.; Chappell, C. R.; Green, J. L.

    1987-01-01

    New observations of particle and wave data from the magnetic equator from the DE 1 spacecraft are reported. The results demonstrate that the equatorial plasma population is predominantly hydrogen and that the enhanced ion fluxes observed at the equator occur without an increase in the total plasma density. Helium is occasionally found heated along with the protons, and forms about 10 percent of the equatorially trapped population at such times. The heated H(+) ions can be characterized by a bi-Maxwellian with kT(parallel) = 0.5-1.0 eV and kT = 5-50 eV, with a density of 10-100/cu cm. The total plasma density is relatively constant with latitude. First measurements of the equatorially trapped plasma and coincident UHR measurements show that the trapped plasma is found in conjunction with equatorial noise.

  19. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason; Eskridge, Richard; Kirkpatrick, Ronald C.; Knapp, Charles E.; Lee, Michael; Martin, Adam; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    For practical applications of magnetized target fusion, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Quasi-spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a quasi-spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). Theoretical analysis and computer modeling of the concept are presented. It is shown that, with the appropriate choice of the flow parameters in the liner and the target, the impact between the liner and the target plasma can be made to be shockless in the liner or to generate at most a very weak shock in the liner. Additional information is contained in the original extended abstract.

  20. Stirring a slightly magnetized column of plasma

    NASA Astrophysics Data System (ADS)

    Désangles, Victor; Bousselin, Guillaume; Poyé, Alexandre; Moulin, Marc; de Poucques, Ludovic; Plihon, Nicolas; Physique statistique, Hydrodynamique, Non-Linéarités Team; Département Chimie et Physique des Solides et des Surfaces Team

    2016-10-01

    The von-Kàrmàn plasma experiment (VKP) is a cylindrical, low pressure, high density plasma experiment which confines the plasma thanks to an axial magnetic field. Currents are radially driven between a hot emissive cathode and an anode which apply a Lorentz force on the plasma together with the magnetic field. We demonstrate that current driven radially sets the plasma into rotation. LIF technique at 668.43 nm as well as Mach probes measurements have been developed and used in different regimes in order to measure the velocity of plasma and relate it to the current driven between the electrodes. The LIF signal shows an important widening which corresponds to doppler shift effect due to the velocity of the ions. This widening can be related to the Mach probes signals. In the long term views, each end of the plasma column will be rotating in an opposite direction, such as to create a large shear-layer, resulting in a von-Kàrmàn-type flow.

  1. Spectroscopic Measurements of Collision-less Coupling Between Explosive Debris Plasmas and Ambient, Magnetized Background Plasmas

    NASA Astrophysics Data System (ADS)

    Bondarenko, Anton; Schaeffer, Derek; Everson, Erik; Vincena, Stephen; van Compernolle, Bart; Constantin, Carmen; Clark, Eric; Niemann, Christoph

    2013-10-01

    Emission spectroscopy is currently being utilized in order to assess collision-less momentum and energy coupling between explosive debris plasmas and ambient, magnetized background plasmas of astrophysical relevance. In recent campaigns on the Large Plasma Device (LAPD) (nelec =1012 -1013 cm-3, Telec ~ 5 eV, B0 = 200 - 400 G) utilizing the new Raptor laser facility (1053 nm, 100 J per pulse, 25 ns FWHM), laser-ablated carbon debris plasmas were generated within ambient, magnetized helium background plasmas and prominent spectral lines of carbon and helium ions were studied in high spectral (0 . 01 nm) and temporal (50 ns) resolution. Time-resolved velocity components extracted from Doppler shift measurements of the C+4 227 . 1 nm spectral line along two perpendicular axes reveal significant deceleration as the ions stream and gyrate within the helium background plasma, indicating collision-less momentum coupling. The He+1 320 . 3 nm and 468 . 6 nm spectral lines of the helium background plasma are observed to broaden and intensify in response to the carbon debris plasma, indicative of strong electric fields (Stark broadening) and energetic electrons. The experimental results are compared to 2D hybrid code simulations.

  2. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  3. Gradient expansion, curvature perturbations, and magnetized plasmas

    SciTech Connect

    Giovannini, Massimo; Rezaei, Zahra

    2011-04-15

    The properties of magnetized plasmas are always investigated under the hypothesis that the relativistic inhomogeneities stemming from the fluid sources and from the geometry itself are sufficiently small to allow for a perturbative description prior to photon decoupling. The latter assumption is hereby relaxed and predecoupling plasmas are described within a suitable expansion where the inhomogeneities are treated to a given order in the spatial gradients. It is argued that the (general relativistic) gradient expansion shares the same features of the drift approximation, customarily employed in the description of cold plasmas, so that the two schemes are physically complementary in the large-scale limit and for the low-frequency branch of the spectrum of plasma modes. The two-fluid description, as well as the magnetohydrodynamical reduction, is derived and studied in the presence of the spatial gradients of the geometry. Various solutions of the coupled system of evolution equations in the anti-Newtonian regime and in the quasi-isotropic approximation are presented. The relation of this analysis to the so-called separate universe paradigm is outlined. The evolution of the magnetized curvature perturbations in the nonlinear regime is addressed for the magnetized adiabatic mode in the plasma frame.

  4. Ion-wake-mediated particle interaction in a magnetized-plasma flow.

    PubMed

    Carstensen, Jan; Greiner, Franko; Piel, Alexander

    2012-09-28

    The interaction forces between dust grains in a flowing plasma are strongly modified by the formation of ion wakes. Here, we study the interparticle forces mediated by ion wakes in the presence of a strong magnetic field parallel to the ion flow. For increasing magnetic flux densities a continuous decay of the interaction force is observed. This transition occurs at parameters, where the ion cyclotron frequency starts to exceed the ion plasma frequency, which is in agreement with theoretical predictions. The modification of the interparticle forces is important for the understanding of the structure and dynamics of magnetized dusty plasmas.

  5. Effective magnetization of the dust particles in a complex plasma

    NASA Astrophysics Data System (ADS)

    Kählert, Hanno

    2012-10-01

    The large mass and size of the dust particles in a complex plasma has several advantages, including low characteristic frequencies on the order of a few Hz and the ability to record their motion with video cameras. However, these properties pose major difficulties for achieving strong magnetization. While the light electrons and ions can be magnetized by (superconducting) magnets, magnetizing the heavy dust component is extremely challenging. Instead of further increasing the magnetic field strengths or decreasing the particle size, we use the analogy between the Lorentz force and the Coriolis force experienced by particles in a rotating reference frame to create ``effective magnetic fields'' which is a well-established technique in the field of trapped quantum gases [1]. To induce rotation in a complex plasma, we take advantage of the neutral drag force, which allows to transmit the motion of a rotating neutral gas to the dust particles [2]. The equations of motion in the rotating frame agree with those in a stationary gas except for the additional centrifugal and Coriolis forces [3]. Due to the slow rotation frequencies (˜ Hz) and contrary to the situation in a strong magnetic field, only the properties of the heavy dust particles are notably affected. Experiments with a rotating electrode realize the desired velocity profile for the neutral gas and allow us to verify the efficiency of the concept [3].[4pt] This work was performed in collaboration with J. Carstensen, M. Bonitz, H. L"owen, F. Greiner, and A. Piel.[4pt] [1] A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009)[0pt] [2] J. Carstensen, F. Greiner, L.-J. Hou, H. Maurer, and A. Piel, Phys. Plasmas 16, 013702 (2009)[0pt] [3] H. K"ahlert, J. Carstensen, M. Bonitz, H. L"owen, F. Greiner, and A. Piel, submitted for publication, arXiv:1206.5073

  6. Motion of particles of magnetically hard powder in a constant magnetic and strongly nonuniform electromagnetic fields

    SciTech Connect

    Bitkina, N.S.; Vernigorov, Yu.M.; Ignatov, B.P.; Lemeshko, G.F.

    1988-04-01

    The breakup process of floccules in the fluid state under the action of a constant magnetic and of strongly nonuniform electromagnetic fields was described and recorded by comparing the magnetic properties of samples pressed from powders, texturized, and prefluidized. Commercial barium ferrite powder was fluidized in a dielectric mold. A vibration magnetometer measured the magnetic properties. To evaluate the role of the resonance response to magnetic properties, a system of magnetic strings was formed and held in an oscillation regime induced by an alternating field with different frequency. It was found from the results of these formations that the magnetic structure of the sample consists of magnetic strings formed predominantly by separate particles and whose magnetic moments are oriented along the direction of the texturizing field. Results are also given for the fluidization of samarium-cobalt and samarium-cobalt-copper alloy powders.

  7. Analysis of Electron Trajectories in Magnetized High Power Plasmas

    NASA Astrophysics Data System (ADS)

    Krueger, Dennis; Gallian, Sara; Trieschmann, Jan; Brinkmann, Ralf Peter

    2015-09-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is an important example of magnetized technological plasmas. With HiPIMS the focus lies on the generation of a high density plasma with a remarkably high degree of ionization. It can be used for the deposition of thin films with superior density and quality. Theoretical approaches to the regime of magnetized low temperature plasmas encounter some fundamental difficulties, for example concerning the details of the magnetic field configuration, the strongly varying degree of magnetization, and the frequent wall interactions. A kinetic single particle model is used for the investigations. Single electron trajectories are analyzed with the widely used Boris algorithm within the magnetized zone above the target (racetrack). We further examine a configuration where symmetry breaking occurs due to a potential bump, which is rotating azimuthally around the racetrack (spoke). Observing the effects of this structure on the single electron motion may allow us to obtain further insight into this phenomenon. This work is supported by the German Research Foundation in the frame of the Collaborative Research Centre TRR 87.

  8. Relativistic laser pulse compression in magnetized plasmas

    SciTech Connect

    Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song

    2015-07-15

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.

  9. ON THE THEORY OF POLARIZATION TRANSFER IN INHOMOGENEOUS MAGNETIZED PLASMAS,

    DTIC Science & Technology

    PLASMA MEDIUM, ELECTROMAGNETIC RADIATION ), (* ELECTROMAGNETIC RADIATION , POLARIZATION), TRANSFER FUNCTIONS, ASTROPHYSICS, WAVE FUNCTIONS, MAGNETIC FIELDS, MAGNETOOPTICS, PHASE SHIFT CIRCUITS, DIFFERENTIAL EQUATIONS

  10. Strong parallel magnetic field effects on the hydrogen molecular ion

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Li, Baiwen; Taylor, K. T.

    2003-09-01

    Equilibrium distances, binding energies and dissociation energies for the ground and low-lying states of the hydrogen molecular ion in a strong magnetic field parallel to the internuclear axis are calculated and refined, by using the two-dimensional pseudospectral method. High-precision results are presented for the binding energies over a wider field regime than already given in the literature (Kravchenko and Liberman 1997 Phys. Rev. A 55 2701). The present work removes a long-standing discrepancy for the Req value in the 1sigmau state at a field strength of 1.0 × 106 T. The dissociation energies of the antibonding 1pig state induced by magnetic fields are determined accurately. We have also observed that the antibonding 1pig potential energy curve develops a minimum if the field is sufficiently strong. Some unreliable results in the literature are pointed out and discussed. A way to efficiently treat vibrational processes and coupling between the nuclear and the electronic motions in magnetic fields is also suggested within a three-dimensional pseudospectral scheme.

  11. Colliding-wind Binaries with Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kissmann, R.; Reitberger, K.; Reimer, O.; Reimer, A.; Grimaldo, E.

    2016-12-01

    The dynamics of colliding-wind binary (CWB) systems and conditions for efficient particle acceleration therein have attracted multiple numerical studies in recent years. These numerical models seek an explanation of the thermal and nonthermal emission of these systems as seen by observations. In the nonthermal regime, radio and X-ray emission is observed for several of these CWBs, while gamma-ray emission has so far only been found in η Carinae and possibly in WR 11. Energetic electrons are deemed responsible for a large fraction of the observed high-energy photons in these systems. Only in the gamma-ray regime might there be, depending on the properties of the stars, a significant contribution of emission from neutral pion decay. Thus, studying the emission from CWBs requires detailed models of the acceleration and propagation of energetic electrons. This in turn requires a detailed understanding of the magnetic field, which will affect not only the energy losses of the electrons but also, in the case of synchrotron emission, the directional dependence of the emissivity. In this study we investigate magnetohydrodynamic simulations of different CWB systems with magnetic fields that are strong enough to have a significant effect on the winds. Such strong fields require a detailed treatment of the near-star wind acceleration zone. We show the implementation of such simulations and discuss results that demonstrate the effect of the magnetic field on the structure of the wind collision region.

  12. Helical modulation of the electrostatic plasma potential due to edge magnetic islands induced by resonant magnetic perturbation fields at TEXTOR

    SciTech Connect

    Ciaccio, G. Spizzo, G.; Schmitz, O. Frerichs, H.; Abdullaev, S. S.; Evans, T. E.; White, R. B.

    2015-10-15

    The electrostatic response of the edge plasma to a magnetic island induced by resonant magnetic perturbations to the plasma edge of the circular limiter tokamak TEXTOR is analyzed. Measurements of plasma potential are interpreted by simulations with the Hamiltonian guiding center code ORBIT. We find a strong correlation between the magnetic field topology and the poloidal modulation of the measured plasma potential. The ion and electron drifts yield a predominantly electron driven radial diffusion when approaching the island X-point while ion diffusivities are generally an order of magnitude smaller. This causes a strong radial electric field structure pointing outward from the island O-point. The good agreement found between measured and modeled plasma potential connected to the enhanced radial particle diffusivities supports that a magnetic island in the edge of a tokamak plasma can act as convective cell. We show in detail that the particular, non-ambipolar drifts of electrons and ions in a 3D magnetic topology account for these effects. An analytical model for the plasma potential is implemented in the code ORBIT, and analyses of ion and electron radial diffusion show that both ion- and electron-dominated transport regimes can exist, which are known as ion and electron root solutions in stellarators. This finding and comparison with reversed field pinch studies and stellarator literature suggest that the role of magnetic islands as convective cells and hence as major radial particle transport drivers could be a generic mechanism in 3D plasma boundary layers.

  13. Effect of random charge fluctuation on strongly coupled dusty Plasma

    SciTech Connect

    Issaad, M.; Rouiguia, L.; Djebli, M.

    2008-09-07

    Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.

  14. Transport and mixing in strongly coupled dusty plasma medium

    NASA Astrophysics Data System (ADS)

    Dharodi, Vikram; Das, Amita; Patel, Bhavesh

    2016-10-01

    The generalized hydrodynamic (GHD) fluid model has been employed to study the transport and mixing properties of Dusty plasma medium in strong coupling limit. The response of lighter electron and ion species to the dust motion is taken to be instantaneous i.e. inertia-less. Thus the electron and ion density are presumed to follow the Boltzman relation. In the incompressible limit (i-GHD) the model supports Transverse Shear wave in contrast to the Hydrodynamic fluids. It has been shown that the presence of these waves leads to a better mixing of fluid in this case. Several cases of flow configuration have been considered for the study. The transport and mixing attributes have been quantified by studying the dynamical evolution of tracer particles in the system. The diffusion and clustering of these test particles are directly linked to the mixing characteristic of a medium. The displacement of these particles provides for a quantitative estimate of the diffusion coefficient of the medium. It is shown that these test particles often organize themselves in spatially inhomogeneous pattern leading to the phenomena of clustering.

  15. Using Strong Magnetic Fields to Control Solutal Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity , we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility

  16. Mesons in strong magnetic fields: (I) General analyses

    DOE PAGES

    Hattori, Koichi; Kojo, Toru; Su, Nan

    2016-03-21

    Here, we study properties of neutral and charged mesons in strong magnetic fields |eB| >> Λ2QCD with ΛQCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger–Dyson and Bethe–Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number ofmore » meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.« less

  17. Mesons in strong magnetic fields: (I) General analyses

    SciTech Connect

    Hattori, Koichi; Kojo, Toru; Su, Nan

    2016-03-21

    Here, we study properties of neutral and charged mesons in strong magnetic fields |eB| >> Λ2QCD with ΛQCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger–Dyson and Bethe–Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number of meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.

  18. Mesons in strong magnetic fields: (I) General analyses

    NASA Astrophysics Data System (ADS)

    Hattori, Koichi; Kojo, Toru; Su, Nan

    2016-07-01

    We study properties of neutral and charged mesons in strong magnetic fields | eB | ≫ΛQCD2 with ΛQCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger-Dyson and Bethe-Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number of meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.

  19. Magnetized Plasma Compression for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Degnan, James; Grabowski, Christopher; Domonkos, Matthew; Amdahl, David

    2013-10-01

    Magnetized Plasma Compression (MPC) uses magnetic inhibition of thermal conduction and enhancement of charge particle product capture to greatly reduce the temporal and spatial compression required relative to un-magnetized inertial fusion (IFE)--to microseconds, centimeters vs nanoseconds, sub-millimeter. MPC greatly reduces the required confinement time relative to MFE--to microseconds vs minutes. Proof of principle can be demonstrated or refuted using high current pulsed power driven compression of magnetized plasmas using magnetic pressure driven implosions of metal shells, known as imploding liners. This can be done at a cost of a few tens of millions of dollars. If demonstrated, it becomes worthwhile to develop repetitive implosion drivers. One approach is to use arrays of heavy ion beams for energy production, though with much less temporal and spatial compression than that envisioned for un-magnetized IFE, with larger compression targets, and with much less ambitious compression ratios. A less expensive, repetitive pulsed power driver, if feasible, would require engineering development for transient, rapidly replaceable transmission lines such as envisioned by Sandia National Laboratories. Supported by DOE-OFES.

  20. Pair annihilation into neutrinos in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Among the processes that are of primary importance for the thermal history of a neutron star is electron-positron annihilation into neutrinos and photoneutrinos. These processes are computed in the presence of a strong magnetic field typical of neutron stars, and the results are compared with the zero-field case. It is shown that the neutrino luminosity Q(H) is greater than Q(O) for temperatures up to T about equal to 3 x 10 to the 8th power K and densities up to 1,000,000 g/cu cm.

  1. Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas

    SciTech Connect

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-12-15

    Two different experiments involving pressure gradients across the confinement magnetic field in a large plasma column are found to exhibit a broadband turbulence that displays an exponential frequency spectrum for frequencies below the ion cyclotron frequency. The exponential feature has been traced to the presence of solitary pulses having a Lorentzian temporal signature. These pulses arise from nonlinear interactions of drift-Alfven waves driven by the pressure gradients. In both experiments the width of the pulses is narrowly distributed resulting in exponential spectra with a single characteristic time scale. The temporal width of the pulses is measured to be a fraction of a period of the drift-Alfven waves. The experiments are performed in the Large Plasma Device (LAPD-U) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] operated by the Basic Plasma Science Facility at the University of California, Los Angeles. One experiment involves a controlled, pure electron temperature gradient associated with a microscopic (6 mm gradient length) hot electron temperature filament created by the injection a small electron beam embedded in the center of a large, cold magnetized plasma. The other experiment is a macroscopic (3.5 cm gradient length) limiter-edge experiment in which a density gradient is established by inserting a metallic plate at the edge of the nominal plasma column of the LAPD-U. The temperature filament experiment permits a detailed study of the transition from coherent to turbulent behavior and the concomitant change from classical to anomalous transport. In the limiter experiment the turbulence sampled is always fully developed. The similarity of the results in the two experiments strongly suggests a universal feature of pressure-gradient driven turbulence in magnetized plasmas that results in nondiffusive cross-field transport. This may explain previous observations in helical confinement devices, research tokamaks, and arc plasmas.

  2. Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.

    2016-10-01

    The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  3. Plasma acceleration above martian magnetic anomalies.

    PubMed

    Lundin, R; Winningham, D; Barabash, S; Frahm, R; Holmström, M; Sauvaud, J-A; Fedorov, A; Asamura, K; Coates, A J; Soobiah, Y; Hsieh, K C; Grande, M; Koskinen, H; Kallio, E; Kozyra, J; Woch, J; Fraenz, M; Brain, D; Luhmann, J; McKenna-Lawler, S; Orsini, R S; Brandt, P; Wurz, P

    2006-02-17

    Auroras are caused by accelerated charged particles precipitating along magnetic field lines into a planetary atmosphere, the auroral brightness being roughly proportional to the precipitating particle energy flux. The Analyzer of Space Plasma and Energetic Atoms experiment on the Mars Express spacecraft has made a detailed study of acceleration processes on the nightside of Mars. We observed accelerated electrons and ions in the deep nightside high-altitude region of Mars that map geographically to interface/cleft regions associated with martian crustal magnetization regions. By integrating electron and ion acceleration energy down to the upper atmosphere, we saw energy fluxes in the range of 1 to 50 milliwatts per square meter per second. These conditions are similar to those producing bright discrete auroras above Earth. Discrete auroras at Mars are therefore expected to be associated with plasma acceleration in diverging magnetic flux tubes above crustal magnetization regions, the auroras being distributed geographically in a complex pattern by the many multipole magnetic field lines extending into space.

  4. Collisional excitation of electron Landau levels in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Langer, S. H.

    1981-01-01

    The cross sections for the excitation and deexcitation of the quantized transverse energy levels of an electron in a magnetic field are calculated for electron-proton and electron-electron collisions in light of the importance of the cross sections for studies of X-ray pulsar emission. First-order matrix elements are calculated using the Dirac theory of the electron, thus taking into account relativistic effects, which are believed to be important in accreting neutron stars. Results for the collisional excitation of ground state electrons by protons are presented which demonstrate the importance of proton recoil and relativistic effects, and it is shown that electron-electron excitations may contribute 10 to 20% of the excitation rate from electron-proton scattering in a Maxwellian plasma. Finally, calculations of the cross section for electron-proton small-angle scattering are presented which lead to relaxation rates for the electron velocity distribution which are modified by the magnetic field, and to a possible increase in the value of the Coulomb logarithm.

  5. Relativistic wave-induced splitting of the Langmuir mode in a magnetized plasma.

    PubMed

    Robiche, J; Rax, J M

    2008-01-01

    A relativistic effect that occurs in a magnetized plasma irradiated by a circularly polarized wave is identified and analyzed: the usual plasma frequency associated with longitudinal oscillations splits into two new frequencies. We set up a Hamiltonian description of the plasma dynamic in order to identify this effect that results from the coupling between the plasma oscillation and the transverse circular motion driven by both the magnetic and wave fields. Within the small oscillations approximation, we compute for right- and left-handed polarization the two characteristics frequencies of the electron oscillations as functions of the field and wave parameters. We also describe the electron trajectories in the wave, magnetic, and restoring plasma fields. This new class of oscillations is rotational and therefore radiate suggesting a method for the diagnostics of strong static magnetic field in laser-plasma experiments.

  6. Laser plasma in a magnetic field

    SciTech Connect

    Kondo,K.; Kanesue, T.; Tamura, J.; Dabrowski, R.; Okamura, M.

    2009-09-20

    Laser Ion Source (LIS) is a candidate among various heavy ion sources. A high density plasma produced by Nd:YAG laser with drift velocity realizes high current and high charge state ion beams. In order to obtain higher charged particle ions, we had test experiments of LIS with a magnetic field by which a connement effect can make higher charged beams. We measured total current by Faraday Cup (FC) and analyzed charge distribution by Electrostatic Ion Analyzer (EIA). It is shown that the ion beam charge state is higher by a permanent magnet.

  7. MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS

    SciTech Connect

    Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano

    2016-03-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.

  8. Molecular dynamics simulations of magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Reichstein, Torben; Wilms, Jochen

    2012-10-01

    The combination of the electric field that confines a dust cloud with a static magnetic field generally leads to a rotation of the dust cloud. In weak magnetic fields, the Hall component of the ion flow exerts a drag force that sets the dust in rotation. We have performed detailed molecular-dynamics simulations of the dynamics of torus-shaped dust clouds in anodic plasmas. The stationary flow [1] is characterized by a shell structure in the laminar dust flow and by the spontaneous formation of a shear-flow around a stationary vortex. Here we present new results on dynamic phenomena, among them fluctuations due to a Kelvin-Helmholtz instability in the shear-flow. The simulations are compared with experimental results. [4pt] [1] T. Reichstein, A. Piel, Phys. Plasmas 18, 083705 (2011)

  9. A possible influence on standard model of quasars and active galactic nuclei in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Peng, Qiu-He; Liu, Jing-Jing; Chou, Chi-Kang

    2016-12-01

    Recent observational evidence indicates that the center of our Milky Way galaxy harbors a super-massive object with ultra-strong radial magnetic field (Eatough et al. in Nature 591:391, 2013). Here we demonstrate that the radiations observed in the vicinity of the Galactic Center (GC) (Falcke and Marko in arXiv:1311.1841v1, 2013) cannot be emitted by the gas of the accretion disk since the accreting plasma is prevented from approaching to the GC by the abnormally strong radial magnetic field. These fields obstruct the infalling accretion flow from the inner region of the disk and the central massive black hole in the standard model. It is expected that the observed radiations near the GC can not be generated by the central black hole. We also demonstrate that the observed ultra-strong radial magnetic field near the GC (Eatough et al. in Nature 591:391, 2013) can not be generated by the generalized α-turbulence type dynamo mechanism since preliminary qualitative estimate in terms of this mechanism gives a magnetic field strength six orders of magnitude smaller than the observed field strength at r=0.12 pc. However, both these difficulties or the dilemma of the standard model can be overcome if the central black hole in the standard model is replaced by a model of a super-massive star with magnetic monopoles (SMSMM) (Peng and Chou in Astrophys. J. Lett. 551:23, 2001). Five predictions about the GC have been proposed in the SMSMM model. Especially, three of them are quantitatively consistent with the observations. They are: (1) Plenty of positrons are produced, the production rate is 6×10^{42} e+ s^{-1} or so, this prediction is confirmed by the observation (Kn ödlseder et al. 2003); (2) The lower limit of the observed ultra-strong radial magnetic field near the GC (Eatough et al. in Nature 591:391, 2013), is just good agreement with the predicted estimated radial magnetic field from the SMSMM model, which really is an exclusive and a key prediction; (3) The

  10. Plasma networking in magnetically confined plasmas and diagnostics of nonlocal heat transport in tokamak filamentary plasmas

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    1999-02-01

    The method of multilevel dynamical contrasting is applied to analyzing available data from tokamak plasmas. The results illustrate a possibility of extending the concept of the plasma percolating networks in dense Z pinches (and other inertially confined plasmas) to the case of magnetically confined plasmas. This extension suggests a necessity to append the conventional picture of the nonfilamentary plasma (which is nearly a fluid described by conventional magnetohydrodynamics) with a "network" component which is formed by the strongest long-living filaments of electric current and penetrate the "fluid" component. Signs of networking are found in visible light and soft x-ray images, and magnetic probing data. A diagnostic algorithm is formulated for identifying the role of plasma networking in observed phenomena of nonlocal (non-diffusive) heat transport in a tokamak.

  11. Plasma Detachment Mechanisms in Propulsive Magnetic Nozzles

    DTIC Science & Technology

    2013-03-07

    a marginal fraction of the beam flows back and the divergence angle of the 95%-mass tube measures the effectiveness of detachment, allowing...propellants1,15; and high throttlability, based on the capability of actuating, at constant power, on both the gas flow and the magnetic nozzle16. However...unlimited. Thus, central to our model will be to include the 2D depletion of the injected gas flow , which is governed by the competition between plasma

  12. Magnetic surface topology in decaying plasma knots

    NASA Astrophysics Data System (ADS)

    Smiet, C. B.; Thompson, A.; Bouwmeester, P.; Bouwmeester, D.

    2017-02-01

    Torus-knot solitons have recently been formulated as solutions to the ideal incompressible magnetohydrodynamics (MHD) equations. We investigate numerically how these fields evolve in resistive, compressible, and viscous MHD. We find that certain decaying plasma torus knots exhibit magnetic surfaces that are topologically distinct from a torus. The evolution is predominantly determined by a persistent zero line in the field present when the poloidal winding number {n}{{p}}\

  13. Magnetic reconnection in a weakly ionized plasma

    SciTech Connect

    Leake, James E.; Lukin, Vyacheslav S.; Linton, Mark G.

    2013-06-15

    Magnetic reconnection in partially ionized plasmas is a ubiquitous phenomenon spanning the range from laboratory to intergalactic scales, yet it remains poorly understood and relatively little studied. Here, we present results from a self-consistent multi-fluid simulation of magnetic reconnection in a weakly ionized reacting plasma with a particular focus on the parameter regime of the solar chromosphere. The numerical model includes collisional transport, interaction and reactions between the species, and optically thin radiative losses. This model improves upon our previous work in Leake et al.[“Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” Astrophys. J. 760, 109 (2012)] by considering realistic chromospheric transport coefficients, and by solving a generalized Ohm's law that accounts for finite ion-inertia and electron-neutral drag. We find that during the two dimensional reconnection of a Harris current sheet with an initial width larger than the neutral-ion collisional coupling scale, the current sheet thins until its width becomes less than this coupling scale, and the neutral and ion fluids decouple upstream from the reconnection site. During this process of decoupling, we observe reconnection faster than the single-fluid Sweet-Parker prediction, with recombination and plasma outflow both playing a role in determining the reconnection rate. As the current sheet thins further and elongates, it becomes unstable to the secondary tearing instability, and plasmoids are seen. The reconnection rate, outflows, and plasmoids observed in this simulation provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.

  14. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    SciTech Connect

    Nishimura, Seiya

    2014-12-15

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.

  15. Plasma Braking Due to External Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, Kejo; Brunsell, P. R.; Khan, M. W. M.; Drake, J. R.

    2010-11-01

    The RFP EXTRAP T2R is equipped with a comprehensive active feedback system (128 active saddle coils in the full-coverage array) and active control of both resonant and non-resonant MHD modes has been demonstrated. The feedback algorithms, based on modern control methodology such as reference mode tracking (both amplitude and phase), are a useful tool to improve the ``state of the art'' of the MHD mode control. But this tool can be used also to improve the understanding and the characterization of other phenomena such as the ELM mitigation with a resonant magnetic perturbation or the plasma viscosity. The present work studies plasma and mode braking due to static RMPs. Results show that a static RMP produces a global braking of the flow profile. The study of the effect of RMPs characterized by different helicities will also give information on the plasma viscosity profile. Experimental results are finally compared to theoretical models.

  16. Forced magnetic reconnection in Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Cole, Andrew Joseph

    This dissertation addresses two related problems in the study of forced magnetic reconnection in Tokamak plasmas. First, a recent controversy concerning a model forced magnetic reconnection problem, the Taylor problem, has been resolved. The criticisms of Ishizawa and Tokuda [21] concerning the original analysis of Hahm and Kulsrud [17] are shown to be unwarranted, both analytically and numerically. Second, one possible reason for the discrepancy between recent experimental [29] and previous theoretical [13] scaling of the critical error-field penetration threshold with device parameters is addressed. The theory in question is entirely based on a single-fluid MHD (magnetohydrodynamical) treatment of the plasma. As is well-known, high temperature plasmas are far better modeled using the drift-MHD ordering.[18] Hence we develop a drift-MHD theory of error-field penetration. Although two new drift-MHD plasma response regimes are identified, the overall threshold scaling with device parameters is not altogether different from that predicted by single-fluid MHD.

  17. Toward the Theory of Turbulence in Magnetized Plasmas

    SciTech Connect

    Boldyrev, Stanislav

    2013-07-26

    The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a “condensate”, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.

  18. Deconfinement in the presence of a strong magnetic background: An exercise within the MIT bag model

    NASA Astrophysics Data System (ADS)

    Fraga, Eduardo S.; Palhares, Letícia F.

    2012-07-01

    We study the effect of a very strong homogeneous magnetic field B on the thermal deconfinement transition within the simplest phenomenological approach: the MIT bag pressure for the quark-gluon plasma and a gas of pions for the hadronic sector. Even though the model is known to be crude in numerical precision and misses the correct nature of the (crossover) transition, it provides a simple setup for the discussion of some subtleties of vacuum and thermal contributions in each phase, and should provide a reasonable qualitative description of the critical temperature in the presence of B. We find that the critical temperature decreases, saturating for very large fields.

  19. Theory of the jitter radiation in a magnetized plasma accompanying a temperature gradient

    NASA Astrophysics Data System (ADS)

    Hattori, Makoto; Fujiki, Kazushiro

    2016-04-01

    The linear stability of a magnetized plasma accompanying a temperature gradient is reexamined by using plasma kinetic theory. We propose that the anisotropic velocity distribution function should be decomposed into two components. One is proportional to the temperature gradient parallel to the background magnetic field. The other is proportional to the temperature gradient perpendicular to the background magnetic field. Since the amplitude of the anisotropic velocity distribution function is proportional to the heat conductivity, and the heat conductivity perpendicular to the magnetic field is strongly reduced, the first component of the anisotropic velocity distribution function is predominant. The anisotropic velocity distribution function induced by the temperature gradient along the background magnetic field drives plasma kinetic instability and circular polarized magnetic plasma waves are excited. We show that the instability is almost identical to the Weibel instability in the weakly magnetized plasma. However, in the case of the instability caused by the temperature gradient, whether wave vectors of modes are parallel to or antiparallel to the background magnetic field, the growth rate of one mode is suppressed and the growth rate of the other mode is enhanced due to the background magnetic field. In the strongly magnetized plasma, one mode is stabilized and only one of the modes remains unstable. The formulae for the jitter radiation spectrum emitted by relativistic electrons when they travel through the magnetized plasma with the plasma waves driven by the instability are deduced at the first time. We show that the synchrotron emission and the jitter radiation are simultaneously emitted from the same relativistic electron. The jitter radiation is expected to be circularly polarized but with a very small polarization degree since almost the same amounts of left-handed and right-handed circular polarized magnetic waves are excited by the instability.

  20. Recent advances in spectroscopy of strongly correlated plasmas

    NASA Astrophysics Data System (ADS)

    Leboucher-Dalimier, E.; Sauvan, P.; Gauthier, P.; Angelo, P.; Derfoul, H.; Alexiou, S.; Poquerusse, A.; Ceccotti, T.; Calisti, A.

    1998-09-01

    The Quasimolecular Model using a Two Centre basis to describe the electronic emitting structure gives an alternative treatment of line broadening in dense and hot plasmas. Two codes are developed: IDEFIX for the radiative properties, QMSPECTRA (postprocessed to the first one) for the spectral line shapes. The observability of dense plasma effects (PPS, asymmetries and satellite features) in spectroscopic measurements is analysed within the proposed model and taking care of the eventual integrations over density gradients.

  1. Proton acceleration from magnetized overdense plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-01-01

    Proton acceleration by an ultraintense short pulse circularly polarized laser from an overdense three dimensional (3D) particle-in-cell (PIC) 3D-PIC simulations. The axial magnetic field modifies the dielectric constant of the plasma, which causes a difference in the behaviour of ponderomotive force in case of left and right circularly polarized laser pulse. When the laser is right circularly polarized, the ponderomotive force gets enhanced due to cyclotron effects generating high energetic electrons, which, on reaching the target rear side accelerates the protons via target normal sheath acceleration process. On the other hand, in case of left circular polarization, the effects get reversed causing a suppression of the ponderomotive force at a short distance and lead towards a rise in the radiation pressure, which results in the effective formation of laser piston. Thus, the axial magnetic field enhances the effect of radiation pressure in case of left circularly polarized laser resulting in the generation of high energetic protons at the target front side. The transverse motion of protons get reduced as they gyrate around the axial magnetic field which increases the beam collimation to some extent. The optimum thickness of the overdense plasma target is found to be increased in the presence of an axial magnetic field.

  2. Dust particle dynamics in magnetized plasma sheath

    SciTech Connect

    Davoudabadi, M.; Mashayek, F.

    2005-07-15

    In this paper, the structure of a plasma sheath in the presence of an oblique magnetic field is investigated, and dynamics of a dust particle embedded in the sheath is elaborated. To simulate the sheath, a weakly collisional two-fluid model is implemented. For various magnitudes and directions of the magnetic field and chamber pressures, different plasma parameters including the electron and ion densities, ion flow velocity, and electric potential are calculated. A complete set of forces acting on the dust particle originating from the electric field in the sheath, the static magnetic field, gravity, and ion and neutral drags is taken into account. Through the trapping potential energy, the particle stable and unstable equilibria are studied while the particle is stationary inside the sheath. Other features such as the possibility of the dust levitation and trapping in the sheath, and the effect of the Lorentz force on the charged dust particle motion are also examined. An interesting feature is captured for the variation of the particle charge as a function of the magnetic field magnitude.

  3. NEUTRON SOURCE USING MAGNETIC COMPRESSION OF PLASMA

    DOEpatents

    Quinn, W.E.; Elmore, W.C.; Little, E.M.; Boyer, K.; Tuck, J.L.

    1961-10-31

    A fusion reactor is described that utilizes compression and heating of an ionized thermonuclear fuel by an externally applied magnetic field, thus avoiding reliance on the pinch effect and its associated instability problems. The device consists of a gas-confining ceramic container surrounded by a single circumferential coil having a shape such as to produce a magnetic mirror geometry. A sinusoidally-oscillating, exponentially-damped current is passed circumferentially around the container, through the coil, inducing a circumferential current in the gas. Maximum compression and plasma temperature are obtained at the peak of the current oscillations, coinciding with maximum magnetic field intensity. Enhanced temperatures are obtained in the second and succeeding half cycles because the thermal energy accumulates from one half cycle to the next. (AEC)

  4. Elevator mode convection in flows with strong magnetic fields

    SciTech Connect

    Liu, Li; Zikanov, Oleg

    2015-04-15

    Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  5. Elevator mode convection in flows with strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zikanov, Oleg

    2015-04-01

    Instability modes in the form of axially uniform vertical jets, also called "elevator modes," are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  6. Strong magnetic fields in normal galaxies at high redshift.

    PubMed

    Bernet, Martin L; Miniati, Francesco; Lilly, Simon J; Kronberg, Philipp P; Dessauges-Zavadsky, Miroslava

    2008-07-17

    The origin and growth of magnetic fields in galaxies is still something of an enigma. It is generally assumed that seed fields are amplified over time through the dynamo effect, but there are few constraints on the timescale. It was recently demonstrated that field strengths as traced by rotation measures of distant (and hence ancient) quasars are comparable to those seen today, but it was unclear whether the high fields were in the unusual environments of the quasars themselves or distributed along the lines of sight. Here we report high-resolution spectra that demonstrate that the quasars with strong Mg II absorption lines are unambiguously associated with larger rotation measures. Because Mg ii absorption occurs in the haloes of normal galaxies along the sightlines to the quasars, this association requires that organized fields of surprisingly high strengths are associated with normal galaxies when the Universe was only about one-third of its present age.

  7. Anomalous electrodynamics of neutral pion matter in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Brauner, Tomáš; Kadam, Saurabh V.

    2017-03-01

    The ground state of quantum chromodynamics in sufficiently strong external magnetic fields and at moderate baryon chemical potential is a chiral soliton lattice (CSL) of neutral pions [1]. We investigate the interplay between the CSL structure and dynamical electromagnetic fields. Our main result is that in presence of the CSL background, the two physical photon polarizations and the neutral pion mix, giving rise to two gapped excitations and one gapless mode with a nonrelativistic dispersion relation. The nature of this mode depends on the direction of its propagation, interpolating between a circularly polarized electromagnetic wave [2] and a neutral pion surface wave, which in turn arises from the spontaneously broken translation invariance. Quite remarkably, there is a neutral-pion-like mode that remains gapped even in the chiral limit, in seeming contradiction to the Goldstone theorem. Finally, we have a first look at the effect of thermal fluctuations of the CSL, showing that even the soft nonrelativistic excitation does not lead to the Landau-Peierls instability. However, it leads to an anomalous contribution to pressure that scales with temperature and magnetic field as T 5/2( B/f π )3/2.

  8. The distant magnetotail's response to a strong interplanetary magnetic field By - Twisting, flattening, and field line bending

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Siscoe, G. L.; Slavin, J. A.; Smith, E. J.; Tsurutani, B. T.; Lepping, R. P.

    1985-01-01

    During an interval of strong interplanetary magnetic field (IMF) By, while ISEE 3 was in the distant magnetotail, the north lobe was observed south of the ecliptic plane. Lobe field lines were strongly bent in the direction of the IMF, and a dense boundary layer plasma was observed. During the interval, magnetopause normals pointed in the z direction, although ISEE 3 was near the dawnside ecliptic plane. The observations are interpreted in terms of field line bending within a twisted and flattened magnetotail.

  9. Modulation instability of laser pulse in magnetized plasma

    SciTech Connect

    Jha, Pallavi; Kumar, Punit; Raj, Gaurav; Upadhyaya, Ajay K.

    2005-12-15

    Modulation instability of a laser pulse propagating through transversely magnetized underdense plasma is studied. It is observed that interaction of laser radiation with plasma in the presence of uniform magnetic field results in an additional perturbed transverse plasma current density along with the relativistic and ponderomotive nonlinear current densities, thus affecting the modulational interaction. In the plane wave limit it is observed that modulational interaction is more stable for magnetized plasma as compared to the unmagnetized case. The analysis shows that there is a significant reduction in the growth rate of modulation instability over a given range of unstable wave numbers due to magnetization of plasma.

  10. Optical visualisation of the flow around a cylinder in electrolyte under strong axial magnetic field.

    NASA Astrophysics Data System (ADS)

    Andreev, O.; Kobzev, A.; Kolesnikov, Yu.; Thess, A.

    Flows around obstacles are among the most common problems encountered in the fluid mechanics literature, and cylindrical obstacles definitely received the most extensive attention. The reason for this is that this relatively simple geometry already encompasses most of the important physical effects likely to play a role in flow around more complicated obstacles. This means that understanding the cylinder problem provides relevant insight on a wide variety of problem ranging from aerodynamics, with the flow around a wing or a vehicle, to pollutant dispersion around building, flows in turbines … When the working fluid conducts electricity additional effects are involved. In particular, the presence of a magnetic field tends to homogenise the flow in the direction of the magnetic field lines which leads to strong alterations of the flow patterns known from the classical nonconducting case. This configuration is also a very generic one as Magnetohydrodynamic flows around obstacle also occur in a wide variety of applications: for instance, the space vehicle re-entry problem features the flow of a conducting plasma around an obstacle: [1] and [2] have shown that it could be influenced by a strong magnetic field in order to reduce heat transfer. The cooling blanket of the future nuclear fusion reactor ITER soon to be built in France, features a complex flow of liquid metal in a very high magnetic field (typically 10 T), in which the occurrence of obstacles cannot be avoided.

  11. Collisionless Magnetic Reconnection in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2013-12-01

    Magnetic reconnection, the merging of oppositely directed magnetic fields that leads to field reconfiguration, plasma heating, jetting and acceleration, is one of the most celebrated processes in collisionless plasmas. It requires the violation of the frozen-in condition which ties gyrating charged particles to the magnetic field inhibiting diffusion. Ongoing reconnection has been identified in near-Earth space as being responsible for the excitation of substorms, magnetic storms, generation of field aligned currents and their consequences, the wealth of auroral phenomena. Its theoretical understanding is now on the verge of being completed. Reconnection takes place in thin current sheets. Analytical concepts proceeded gradually down to the microscopic scale, the scale of the electron skin depth or inertial length, recognizing that current layers that thin do preferentially undergo spontaneous reconnection. Thick current layers start reconnecting when being forced by plasma inflow to thin. For almost half a century the physical mechanism of reconnection has remained a mystery. Spacecraft in situ observations in combination with sophisticated numerical simulations in two and three dimensions recently clarified the mist, finding that reconnection produces a specific structure of the current layer inside the electron inertial (also called electron diffusion) region around the reconnection site, the X line. Onset of reconnection is attributed to pseudo-viscous contributions of the electron pressure tensor aided by electron inertia and drag, creating a complicated structured electron current sheet, electric fields, and an electron exhaust extended along the current layer. We review the general background theory and recent developments in numerical simulation on collisionless reconnection. It is impossible to cover the entire field of reconnection in a short space-limited review. The presentation necessarily remains cursory, determined by our taste, preferences, and kn

  12. Neutrino emissivity from electron-positron annihilation in hot matter in a strong magnetic field

    SciTech Connect

    Amsterdamski, P.; Haensel, P. )

    1990-10-15

    The neutrino emissivity due to electron-positron annihilation in a strong magnetic field is computed. A strong magnetic field can significantly increase the neutrino emissivity at {ital T}{similar to}10{sup 9} K.

  13. Electric field enhanced conductivity in strongly coupled dense metal plasma

    SciTech Connect

    Stephens, J.; Neuber, A.

    2012-06-15

    Experimentation with dense metal plasma has shown that non-negligible increases in plasma conductivity are induced when a relatively low electric field ({approx}6 kV/cm) is applied. Existing conductivity models assume that atoms, electrons, and ions all exist in thermal equilibrium. This assumption is invalidated by the application of an appreciable electric field, where electrons are accelerated to energies comparable to the ionization potential of the surrounding atoms. Experimental data obtained from electrically exploded silver wire is compared with a finite difference hydrodynamic model that makes use of the SESAME equation-of-state database. Free electron generation through both thermal and electric field excitations, and their effect on plasma conductivity are applied and discussed.

  14. Electric field enhanced conductivity in strongly coupled dense metal plasma

    NASA Astrophysics Data System (ADS)

    Stephens, J.; Neuber, A.

    2012-06-01

    Experimentation with dense metal plasma has shown that non-negligible increases in plasma conductivity are induced when a relatively low electric field (˜6 kV/cm) is applied. Existing conductivity models assume that atoms, electrons, and ions all exist in thermal equilibrium. This assumption is invalidated by the application of an appreciable electric field, where electrons are accelerated to energies comparable to the ionization potential of the surrounding atoms. Experimental data obtained from electrically exploded silver wire is compared with a finite difference hydrodynamic model that makes use of the SESAME equation-of-state database. Free electron generation through both thermal and electric field excitations, and their effect on plasma conductivity are applied and discussed.

  15. Low-frequency fluctuations in plasma magnetic fields

    NASA Astrophysics Data System (ADS)

    Cable, S.; Tajima, T.

    1992-02-01

    It is shown that even a non-magnetized plasma with temperature T sustains zero-frequency magnetic fluctuations in thermal equilibrium. Fluctuations in electric and magnetic fields, as well as in densities, are computed. Four cases are studied: a cold, gaseous, isotropic, non-magnetized plasma; a cold, gaseous plasma in a uniform magnetic field; a warm, gaseous plasma described by kinetic theory; and a degenerate electron plasma. For the simple gaseous plasma, the fluctuation strength of the magnetic field as a function of frequency and wavenumber is calculated with the aid of the fluctuation-dissipation theorem. This calculation is done for both collisional and collisionless plasmas. The magnetic field fluctuation spectrum of each plasma has a large zero-frequency peak. The peak is a Dirac delta function in the collisionless plasma and is broadened into a Lorentzian curve in the collisional plasma. The plasma causes a low frequency cutoff in the typical black-body radiation spectrum, and the energy under the discovered peak approximates the energy lost in this cutoff. When the imposed magnetic field is weak, the magnetic field wave vector fluctuation spectra of the two lowest modes are independent of the strength of the imposed field. Further, these modes contain finite energy even when the imposed field is zero. It is the energy of these modes which forms the non-magnetized zero-frequency peak of the isotropic plasma. In deriving these results, a simple relationship between the dispersion relation and the fluctuation power spectrum of electromagnetic waves if found. The warm plasma is shown, by kinetic theory, to exhibit a zero-frequency peak in its magnetic field fluctuation spectrum as well. For the degenerate plasma, we find that electric field fluctuations and number density fluctuations vanish at zero frequency; however, the magnetic field power spectrum diverges at zero frequency.

  16. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  17. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    SciTech Connect

    Harada, S.; Baba, T.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yokota, S.; Yamazaki, T.; Shimizu, H.

    2014-11-10

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.

  18. Dust Particle Dynamics in The Presence of Highly Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Lynch, Brian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    Complex plasmas are four component plasmas that contain, in addition to the usual electrons, ions, and neutral atoms, macroscopic electrically charged (nanometer to micrometer) sized ``dust'' particles. These macroscopic particles typically obtain a net negative charge due to the higher mobility of electrons compared to that of ions. Because the electrons, ions, and dust particles are charged, their dynamics may be significantly modified by the presence of electric and magnetic fields. Possible consequences of this modification may be the charging rate and the equilibrium charge. For example, in the presence of a strong horizontal magnetic field (B >1 Tesla), it may be possible to observe dust particle gx B deflection and, from that deflection, determine the dust grain charge. In this poster, we present recent data from performing multiple particle dropping experiments to characterize the g x B deflection in the Magnetized Dusty Plasma Experiment (MDPX). This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  19. Plasma cleaning of ITER First Mirrors in magnetic field

    NASA Astrophysics Data System (ADS)

    Moser, Lucas; Steiner, Roland; Leipold, Frank; Reichle, Roger; Marot, Laurent; Meyer, Ernst

    2015-08-01

    To avoid reflectivity losses in ITER's optical diagnostic systems, plasma sputtering of metallic First Mirrors is foreseen in order to remove deposits coming from the main wall (mainly beryllium and tungsten). Therefore plasma cleaning has to work on large mirrors (up to a size of 200 × 300 mm) and under the influence of strong magnetic fields (several Tesla). This work presents the results of plasma cleaning of aluminium and aluminium oxide (used as beryllium proxy) deposited on molybdenum mirrors. Using radio frequency (13.56 MHz) argon plasma, the removal of a 260 nm mixed aluminium/aluminium oxide film deposited by magnetron sputtering on a mirror (98 mm diameter) was demonstrated. 50 nm of pure aluminium oxide were removed from test mirrors (25 mm diameter) in a magnetic field of 0.35 T for various angles between the field lines and the mirrors surfaces. The cleaning efficiency was evaluated by performing reflectivity measurements, Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy.

  20. Mitigating Laser-Plasma Instabilities in Hohlraum Laser-Plasmas Using Magnetic Insulation

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Simakov, A.; Albright, B. J.; Yin, L.; Davies, J. R.; Fiksel, G.; Froula, D. H.; Betti, R.

    2012-10-01

    Controlling laser-plasma instabilities in hohlraum plasmas is important for achieving high-gain inertial fusion using indirect drive. Experiments at the National Ignition Facility (NIF) suggest that coronal electron temperatures in NIF hohlraums may be cooler than initially thought due to efficient thermal conduction from the under dense low-Z plasma to the dense high-Z hohlraum wall [1]. This leads to weaker Landau damping and stronger growth of parametric instabilities. For NIF laser-plasma conditions, it is shown that a 10-T external magnetic field may substantially reduce cross-field transport and may increase plasma temperatures, thus increasing linear Landau damping and mitigating parametric instabilities. Additional benefits may be realized since the hot electrons will be strongly magnetized and may be prevented from reaching the capsule or hohlraum walls. We will present calculations and simulations supporting this concept, and describe experimental plans to test the concept using gas-filled hohlraums at the Omega Laser Facility.[4pt] [1] M.D. Rosen et al., High Eng. Dens. Phys. 7, 180 (2011).

  1. Generation of quasistationary magnetic fields in a turbulent laser plasma

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Iu.; Gradov, O. M.; Chokparova, G. A.

    1984-07-01

    A theory is derived for the generation of quasi-stationary magnetic fields in a laser plasma with well developed ion-acoustic turbulence. Qualitative changes are caused in the nature of the magnetic-field generation by an anomalous anisotropic transport in the turbulent plasma. The role played by turbulent diffusion and thermodiffusive transport in the magnetic-field saturation is discussed.

  2. Plasma sweeper to control the coupling of RF power to a magnetically confined plasma

    DOEpatents

    Motley, Robert W.; Glanz, James

    1985-01-01

    A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

  3. Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics

    NASA Astrophysics Data System (ADS)

    Loureiro, Nuno; Dorland, William; Fazendeiro, Luis; Kanekar, Anjor; Mallet, Alfred; Zocco, Alessandro

    2015-11-01

    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model equations [Zocco & Schekochihin, 2011] and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., 2009]. Two main applications of these equations are magnetised (Alfvnénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, with focus on 3D decaying kinetic turbulence. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  4. Computational studies for plasma filamentation by magnetic field in atmospheric microwave discharge

    SciTech Connect

    Takahashi, Masayuki; Ohnishi, Naofumi

    2014-12-01

    Plasma filamentation is induced by an external magnetic field in an atmospheric discharge using intense microwaves. A discrete structure is obtained at low ambient pressure if a strong magnetic field of more than 1 T is applied, due to the suppression of electron diffusion, whereas a diffusive pattern is generated with no external field. Applying a magnetic field can slow the discharge front propagation due to magnetic confinement of the electron transport. If the resonance conditions are satisfied for electron cyclotron resonance and its higher harmonics, the propagation speed increases because the heated electrons easily ionize neutral particles. The streamer velocity and the pattern of the microwave plasma are positively controlled by adjusting two parameters—the electron diffusion coefficient and the ionization frequency—through the resonance process and magnetic confinement, and hot, dense filamentary plasma can be concentrated in a compact volume to reduce energy loss in a plasma device like a microwave rocket.

  5. Magnetic domain patterns on strong perpendicular magnetization of Co/Ni multilayers as spintronics materials: II. Numerical simulations.

    PubMed

    Kudo, Kazue; Suzuki, Masahiko; Kojima, Kazuki; Yasue, Tsuneo; Akutsu, Noriko; Diño, Wilson Agerico; Kasai, Hideaki; Bauer, Ernst; Koshikawa, Takanori

    2013-10-02

    Magnetic domains in ultrathin films form domain patterns, which strongly depend on the magnetic anisotropy. The magnetic anisotropy in Co/Ni multilayers changes with the number of layers. We provide a model to simulate the experimentally observed domain patterns. The model assumes a layer-dependent magnetic anisotropy. With the anisotropy parameter estimated from experimental data, we reproduce the magnetic domain patterns.

  6. On the possibility of inducing strong plasma convection in the divertor of MAST

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Helander, P.; Cohen, R. H.

    2001-10-01

    In this paper, a theory is developed to describe scrape-off layer (SOL) broadening by inducing convective cells through divertor plate biasing in a tokamak. The theory is applied to the Mega-Ampere Spherical Tokamak, where such experiments are planned in the near future. Criteria are derived for achieving strong broadening and for exciting shear-flow turbulence in the SOL, and these criteria are shown to be attainable in practice. It is also shown that the magnetic shear present in the vicinity of the X-point is likely to confine the potential perturbations to the divertor region below the X-point, leaving the part of the SOL that is in direct contact with the core plasma intact. The current created in the SOL by the biasing and the associated heating power are also calculated and are found to be modest.

  7. Tracing ultrafast dynamics of strong fields at plasma-vacuum interfaces with longitudinal proton probing

    SciTech Connect

    Abicht, F.; Braenzel, J.; Koschitzki, Ch.; Schnürer, M.; Priebe, G.; Andreev, A. A.; Nickles, P. V.; Sandner, W.

    2014-07-21

    If regions of localized strong fields at plasma-vacuum interfaces are probed longitudinally with laser accelerated proton beams their velocity distribution changes sensitively and very fast. Its measured variations provide indirectly a higher temporal resolution as deduced from deflection geometries which rely on the explicit temporal resolution of the proton beam at the position of the object to probe. With help of reasonable models and comparative measurements changes of proton velocity can trace the field dynamics even at femtosecond time scale. In longitudinal probing, the very low longitudinal emittance together with a broad band kinetic energy distribution of laser accelerated protons is the essential prerequisite of the method. With a combination of energy and one-dimensional spatial resolution, we resolve fast field changes down to 100 fs. The used pump probe setup extends previous schemes and allows discriminating simultaneously between electric and magnetic fields in their temporal evolution.

  8. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.

    PubMed

    Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C

    2015-09-29

    NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  9. Two density peaks in low magnetic field helicon plasma

    SciTech Connect

    Wang, Y.; Zhao, G.; Ouyang, J. T. E-mail: lppmchenqiang@hotmail.com; Liu, Z. W.; Chen, Q. E-mail: lppmchenqiang@hotmail.com

    2015-09-15

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge of the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.

  10. Solitary perturbations in the steep boundary of magnetized toroidal plasma

    NASA Astrophysics Data System (ADS)

    Lee, J. E.; Yun, G. S.; Lee, W.; Kim, M. H.; Choi, M.; Lee, J.; Kim, M.; Park, H. K.; Bak, J. G.; Ko, W. H.; Park, Y. S.

    2017-03-01

    Solitary perturbations (SPs) localized both poloidally and radially are detected within ~100 μs before the partial collapse of the high pressure gradient boundary region (called pedestal) of magnetized toroidal plasma in the KSTAR tokamak device. The SP develops with a low toroidal mode number (typically unity) in the pedestal ingrained with quasi-stable edge-localized mode (QSM) which commonly appears during the inter-collapse period. The SPs have smaller mode pitch and different (often opposite) rotation velocity compared to the QSMs. Similar solitary perturbations are also frequently observed before the onset of complete pedestal collapse, suggesting a strong connection between the SP generation and the pedestal collapse.

  11. Study of strong enhancement of synchrotron radiation via surface plasma waves excitation by particle-in-cell simulations

    SciTech Connect

    Pan, K. Q.; Zheng, C. Y. Cao, L. H.; He, X. T.; Wu, Dong; Liu, Z. J.

    2015-11-02

    Synchrotron radiation is strongly enhanced by the resonant excitation of surface plasma waves (SPWs). Two-dimensional particle-in-cell simulations show that energy conversion efficiency from laser to radiation in the case of SPWs excitation is about 18.7%, which is improved by more than 2 orders of magnitude compared with that of no SPWs excitation. Besides the high energy conversion efficiency, the frequency spectrum and the angular distribution of the radiation are also improved in the case of SPWs excitation because of the quasi-static magnet field induced by surface plasma waves excitation.

  12. Lamellar magnetism in the haematite-ilmenite series as an explanation for strong remanent magnetization.

    PubMed

    Robinson, Peter; Harrison, Richard J; McEnroe, Suzanne A; Hargraves, Robert B

    2002-08-01

    Magnetic anomalies associated with slowly cooled igneous and metamorphic rocks are commonly attributed to the presence of the mineral magnetite. Although the intermediate members of the ilmenite-haematite mineral series can also carry a strong ferrimagnetic remanence, it is preserved only in rapidly cooled volcanic rocks, where formation of intergrowths of weakly magnetic haematite and paramagnetic ilmenite is suppressed. But the occurrence of unusually large and stable magnetic remanence in rocks containing such intergrowths has been known for decades, and has recently been the subject of intense investigation. These unmixed oxide phases have been shown to contain pervasive exsolution lamellae with thickness from 100 microm down to about 1 nm (one unit cell). These rocks, many of which contain only a few per cent of such oxides, show natural remanent magnetizations up to 30 A m(-1) --too strong to be explained even by pure haematite in an unsaturated state. Here we propose a new ferrimagnetic substructure created by ferrous-ferric 'contact layers' that reduce charge imbalance along lamellar contacts between antiferromagnetic haematite and paramagnetic ilmenite. We estimate that such a lamellar magnetic material can have a saturation magnetization up to 55 kA m(-1) --22 times stronger than pure haematite-- while retaining the high coercivity and thermal properties of single-domain haematite.

  13. Theory of density fluctuations in strongly radiative plasmas

    NASA Astrophysics Data System (ADS)

    Cross, J. E.; Mabey, P.; Gericke, D. O.; Gregori, G.

    2016-03-01

    Derivation of the dynamic structure factor, an important parameter linking experimental and theoretical work in dense plasmas, is possible starting from hydrodynamic equations. Here we obtain, by modifying the governing hydrodynamic equations, a new form of the dynamic structure factor which includes radiative terms. The inclusion of such terms has an effect on the structure factor at high temperatures, which suggests that its effect must be taken into consideration in such regimes.

  14. Three-dimensional model of magnetized capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid; Kenney, Jason; Collins, Ken

    2009-05-01

    A three-dimensional plasma model is used to understand the characteristics of magnetized capacitively coupled plasma discharges. The simulations consider plasmas generated using high frequency (13.5 MHz) and very high frequency (162 MHz) sources, electropositive (Ar) and electronegative (O2) gases, and spatially uniform and nonuniform magnetic fields. Application of a magnetic field parallel to the electrodes is found to enhance the plasma density due to improved electron confinement and shift the plasma due to the E ×B drift. The plasma is electrically symmetric at 162 MHz so it drifts in opposite directions adjacent to the two electrodes due to the E ×B drift. On the other hand, the 13.5 MHz plasma is electrically asymmetric and it predominantly moves in one direction under the influence of the E ×B drift. The E ×B drift focuses the plasma into a smaller volume in regions with convex magnetic field lines. Conversely, the E ×B drift spreads out the plasma in regions with concave magnetic field lines. In a magnetized O2 plasma, the overall plasma is found to move in one direction due to the E ×B drift while the plasma interior moves in the opposite direction. This behavior is linked to the propensity of negative ions to reside in regions of peak plasma potential, which moves closer to the chamber center opposite to the E ×B drift direction.

  15. Fast magnetic field penetration into low resistivity plasma

    NASA Astrophysics Data System (ADS)

    Fruchtman, Amnon

    2017-02-01

    Penetration of a magnetic field into plasma that is faster than resistive diffusion can be induced by the Hall electric field in a non-uniform plasma. This mechanism explained successfully the measured velocity of the magnetic field penetration into pulsed plasmas. Major related issues have not yet been resolved. Such is the theoretically predicted, but so far not verified experimentally, high magnetic energy dissipation, as well as the correlation between the directions of the density gradient and of the field penetration.

  16. Strongly Enhanced Laser Absorption and Electron Acceleration via Resonant Excitation of Surface Plasma Waves

    NASA Astrophysics Data System (ADS)

    Raynaud, M.; Riconda, C.; Adam, J. C.; Heron, A.

    2010-02-01

    The possibility of creating enhanced fast electron bunches via the excitation of surface plasma waves (SPW) in laser overdense plasma interaction has been investigated by mean of relativistic one dimension motion of a test electron in the field of the surface plasma wave study and with two-dimensional (2D) Particle-In-Cell (PIC) numerical simulations. Strong electron acceleration together with a dramatic increase, up to 70%, of light absorption by the plasma is observed.

  17. Turbulent particle transport in magnetized fusion plasma

    NASA Astrophysics Data System (ADS)

    Bourdelle, C.

    2005-05-01

    Understanding the mechanisms responsible for particle transport is of the utmost importance for magnetized fusion plasmas. A peaked density profile is attractive to improve the fusion rate, which is proportional to the square of the density, and to self-generate a large fraction of non-inductive current required for continuous operation. Experiments in various tokamak devices (ASDEX Upgrade, DIII-D, JET, TCV, TEXT, TFTR) indicate the existence of a turbulent particle pinch. Recently, such a turbulent pinch has been unambiguously identified in Tore Supra very long discharges, in the absence of both collisional particle pinch and central particle source, for more than 4 min (Hoang et al 2003 Phys. Rev. Lett. 90 155002). This turbulent pinch is predicted by a quasilinear theory of particle transport (Weiland J et al 1989 Nucl. Fusion 29 1810), and confirmed by non-linear turbulence simulations (Garbet et al 2003 Phys. Rev. Lett. 91 035001) and general considerations based on the conservation of motion invariants (Baker et al 2004 Phys. Plasmas 11 992). Experimentally, the particle pinch is found to be sensitive to the magnetic field gradient in many cases (Hoang et al 2004 Phys. Rev. Lett. 93 135003, Zabolotsky et al 2003 Plasma Phys. Control. Fusion 45 735, Weisen et al 2004 Plasma Phys. Control. Fusion 46 751, Baker et al 2000 Nucl. Fusion 40 1003), to the temperature profile (Hoang et al 2004 Phys. Rev. Lett. 93 135003, Angioni et al 2004 Nucl. Fusion 44 827) and also to the collisionality that changes the nature of the microturbulence (Angioni et al 2003 Phys. Rev. Lett. 90 205003, Garzotti et al 2003 Nucl. Fusion 43 1829, Weisen et al 2004 31st EPS Conf. on Plasma Phys. (London) vol 28G (ECA) P-1.146, Lopes Cardozo N J 1995 Plasma Phys. Control. Fusion 37 799). The consistency of some of the observed dependences with the theoretical predictions gives us a clearer understanding of the particle pinch in tokamaks, allowing us to predict more accurately the density

  18. METHOD FOR EXCHANGING ENERGY WITH A PLASMA BY MAGNETIC PUMPING

    DOEpatents

    Hall, L.S.

    1963-12-31

    A method of heating a plasma confined by a static magnetic field is presented. A time-varying magnetic field having a rise time to a predetermined value substantially less than its fall time is applied to a portion of the plasma. Because of the much shorter rise time, the plasma is reversibly heated. This cycle is repeated until the desired plasma temperature is reached. (AEC)

  19. Penetration of conductive plasma flows across a magnetic field

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher Ryan

    2008-02-01

    Plasma interacts with magnetic fields in a variety of natural and laboratory settings. While a magnetic field "traps" isolated charged particles, plasma penetration across magnetic field is observed in many situations where a plasma-magnetic interface exists. For example, in the realm of pulsed power technology, this behavior is important for magnetically insulated transmission lines and for plasma opening switches. In the realm of astrophysics, the nature of the interaction between the solar wind plasma and the Earth's magnetic field affects the reliability of telecommunication devices and satellites. Experiments were performed at the Nevada Terawatt Facility to investigate how a conductive plasma penetrates an externally applied magnetic field. In experiment, a plasma flow was produced by laser ablation. This plasma was observed to penetrate an externally applied magnetic field produced by a 0.6 MA pulsed power generator. In experiment, the duration of the laser pulse was changed by three orders of magnitude, from ns (GW pulse power) to ps (TW) . This resulted in a significant variation of the plasma parameters, which in turn led to the actuation of different magnetic field penetration mechanisms.

  20. Mechanism for strong magnetoelectric coupling in dilute magnetic ferroelectrics

    NASA Astrophysics Data System (ADS)

    Weston, L.; Cui, X. Y.; Ringer, S. P.; Stampfl, C.

    2016-11-01

    The manipulation of atomic-scale magnetization is important from both a fundamental and a practical perspective. Using first-principles density-functional-theory calculations within the hybrid functional approach, we systematically study spin-lattice coupling effects for isolated 3 d4-3 d7 transition-metal dopants in a nonmagnetic, ferroelectric PbTiO3 host material. When present at the B-site, a low-spin (or intermediate-spin) to high-spin crossover induces marked ferroelectric-like distortions in the local geometry, characterized by a shift of the dopant ion with respect to the surrounding O6 octahedral cage. The origins of this microscopic multiferroic effect are discussed in terms of the pseudo-Jahn-Teller theory for ferroelectricity. The possibility to exploit this phenomenon to achieve strong magnetoelectric coupling, including controlled spin switching, is also investigated. These results provide a further understanding of ferroelectricity and multiferroicity in perovskite oxides, and they suggest a possible pathway to manipulate single atomic spins in semiconductor solid solutions.

  1. Computer study of convection of weakly ionized plasma in a nonuniform magnetic field.

    NASA Technical Reports Server (NTRS)

    Shiau, J. N.

    1972-01-01

    A weakly ionized plasma in a strong and nonuniform magnetic field exhibits an instability analogous to the flute instability in a fully ionized plasma. The instability sets in at a critical magnetic field. To study the final state of the plasma after the onset of the instability, the plasma equations are integrated numerically assuming a certain initial spectrum of small disturbances. In the regime studied, numerical results indicate a final steadily oscillating state consisting of a single finite amplitude mode together with a time-independent modification of the original equilibrium. These results agree with the analytic results obtained by Simon in the slightly supercritical regime. As the magnetic field is increased further, the wavelength of the final oscillation becomes nonunique. There exists a subinterval in the unstable wave band. Final stable oscillation with a wavelength in this subinterval can be established if the initial disturbance has a sufficiently strong component at the particular wavelength.

  2. Generation of strong pulsed magnetic fields using a compact, short pulse generator

    NASA Astrophysics Data System (ADS)

    Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.

    2016-04-01

    The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.

  3. Strongly driven ion acoustic waves in laser produced plasmas

    SciTech Connect

    Baldis, H.A.; Labaune, C.; Renard, N.

    1994-09-20

    This paper present an experimental study of ion acoustic waves with wavenumbers corresponding to stimulated Brillouin scattering. Time resolved Thomson scattering in frequency and wavenumber space, has permitted to observe the dispersion relation of the waves as a function of the laser intensity. Apart from observing ion acoustic waves associated with a strong second component is observed at laser intensities above 10{sup 13}Wcm{sup {minus}2}.

  4. Status of Magnetic Nozzle and Plasma Detachment Experiment

    SciTech Connect

    Chavers, D. Gregory; Dobson, Chris; Jones, Jonathan; Lee, Michael; Martin, Adam; Gregory, Judith; Cecil, Jim; Bengtson, Roger D.; Breizman, Boris; Arefiev, Alexey; Chang-Diaz, Franklin; Squire, Jared; Glover, Tim; McCaskill, Greg; Cassibry, Jason; Li Zhongmin

    2006-01-20

    High power plasma propulsion can move large payloads for orbit transfer, lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue if the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment is being performed to test the theory regarding the MHD detachment scenario. The status of that experiment will be discussed in this paper.

  5. Pair production rates in mildly relativistic, magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Burns, M. L.; Harding, A. K.

    1984-01-01

    Electron-positron pairs may be produced by either one or two photons in the presence of a strong magnetic field. In magnetized plasmas with temperatures kT approximately sq mc, both of these processes may be important and could be competitive. The rates of one-photon and two-photon pair production by photons with Maxwellian, thermal bremsstrahlung, thermal synchrotron and power law spectra are calculated as a function of temperature or power law index and field strength. This allows a comparison of the two rates and a determination of the conditions under which each process may be a significant source of pairs in astrophysical plasmas. It is found that for photon densities n(gamma) or = 10 to the 25th power/cu cm and magnetic field strengths B or = 10 to the 12th power G, one-photon pair production dominates at kT approximately sq mc for a Maxwellian, at kT approximately 2 sq mc for a thermal bremsstrahlung spectrum, at all temperatures for a thermal synchrotron spectrum, and for power law spectra with indices s approximately 4.

  6. The Lagrangian formulation of strong-field quantum electrodynamics in a plasma

    SciTech Connect

    Raicher, Erez; Eliezer, Shalom; Zigler, Arie

    2014-05-15

    The Lagrangian formulation of the scalar and spinor quantum electrodynamics in the presence of strong laser fields in a plasma medium is considered. We include the plasma influence in the free Lagrangian analogously to the “Furry picture” and obtain coupled equations of motion for the plasma particles and for the laser propagation. We demonstrate that the strong-field wave (i.e., the laser) satisfies a massive dispersion relation and obtain self-consistently the effective mass of the laser photons. The Lagrangian formulation derived in this paper is the basis for the cross sections calculation of quantum processes taking place in the presence of a plasma.

  7. Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem

    NASA Technical Reports Server (NTRS)

    Ceccobello, C.; Farinelli, R.; Titarchuk, L.

    2014-01-01

    We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the

  8. Magnetic Cusp Configuration of the SPL Plasma Generator

    SciTech Connect

    Kronberger, Matthias; Chaudet, Elodie; Favre, Gilles; Lettry, Jacques; Kuechler, Detlef; Moyret, Pierre; Paoluzzi, Mauro; Prever-Loiri, Laurent; Schmitzer, Claus; Scrivens, Richard; Steyaert, Didier

    2011-09-26

    The Superconducting Proton Linac (SPL) is a novel linear accelerator concept currently studied at CERN. As part of this study, a new Cs-free, RF-driven external antenna H{sup -} plasma generator has been developed to withstand an average thermal load of 6 kW. The magnetic configuration of the new plasma generator includes a dodecapole cusp field and a filter field separating the plasma heating and H{sup -} production regions. Ferrites surrounding the RF antenna serve in enhancing the coupling of the RF to the plasma. Due to the space requirements of the plasma chamber cooling circuit, the cusp magnets are pushed outwards compared to Linac4 and the cusp field strength in the plasma region is reduced by 40% when N-S magnetized magnets are used. The cusp field strength and plasma confinement can be improved by replacing the N-S magnets with offset Halbach elements of which each consists of three magnetic sub-elements with different magnetization direction. A design challenge is the dissipation of RF power induced by eddy currents in the cusp and filter magnets which may lead to overheating and demagnetization. In view of this, a copper magnet cage has been developed that shields the cusp magnets from the radiation of the RF antenna.

  9. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE PAGES

    Rosenberg, M. J.; Li, C. K.; Fox, W.; ...

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore » and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less

  10. Density profile of strongly correlated spherical Yukawa plasmas

    NASA Astrophysics Data System (ADS)

    Bonitz, M.; Henning, C.; Ludwig, P.; Golubnychiy, V.; Baumgartner, H.; Piel, A.; Block, D.

    2006-10-01

    Recently the discovery of 3D-dust crystals [1] excited intensive experimental and theoretical activities [2-4]. Details of the shell structure of these crystals has been very well explained theoretically by a simple model involving an isotropic Yukawa-type pair repulsion and an external harmonic confinement potential [4]. On the other hand, it has remained an open question how the average radial density profile, looks like. We show that screening has a dramatic effect on the density profile, which we derive analytically for the ground state. Interestingly, the result applies not only to a continuous plasma distribution but also to simulation data for the Coulomb crystals exhibiting the above mentioned shell structure. Furthermore, excellent agreement between the continuum model and shell models is found [5]. [1] O. Arp, D. Block, A. Piel, and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005) [3] P. Ludwig, S. Kosse, and M. Bonitz, Phys. Rev. E 71, 046403 (2005) [4] M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006) [5] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E

  11. Plasma Transport in a Magnetic Multicusp Negative Hydrogen Ion Source

    DTIC Science & Technology

    1991-12-01

    the Extraction Electrode ............................ 4-4 Analysis of the Effect of Temperature Gradients on the Flux...Measured vs Predicted Ion Species Percentages ......... 5-31 x Abstract An analysis of plasma transport through the magnetic filter in mag- netic...diffusion through the magnetic filter field into the extraction chamber. The goal was not, however, simply to calculate the plasma potential. Analysis of

  12. Strong and moldable cellulose magnets with high ferrite nanoparticle content.

    PubMed

    Galland, Sylvain; Andersson, Richard L; Ström, Valter; Olsson, Richard T; Berglund, Lars A

    2014-11-26

    A major limitation in the development of highly functional hybrid nanocomposites is brittleness and low tensile strength at high inorganic nanoparticle content. Herein, cellulose nanofibers were extracted from wood and individually decorated with cobalt-ferrite nanoparticles and then for the first time molded at low temperature (<120 °C) into magnetic nanocomposites with up to 93 wt % inorganic content. The material structure was characterized by TEM and FE-SEM and mechanically tested as compression molded samples. The obtained porous magnetic sheets were further impregnated with a thermosetting epoxy resin, which improved the load-bearing functions of ferrite and cellulose material. A nanocomposite with 70 wt % ferrite, 20 wt % cellulose nanofibers, and 10 wt % epoxy showed a modulus of 12.6 GPa, a tensile strength of 97 MPa, and a strain at failure of ca. 4%. Magnetic characterization was performed in a vibrating sample magnetometer, which showed that the coercivity was unaffected and that the saturation magnetization was in proportion with the ferrite content. The used ferrite, CoFe2O4, is a magnetically hard material, demonstrated by that the composite material behaved as a traditional permanent magnet. The presented processing route is easily adaptable to prepare millimeter-thick and moldable magnetic objects. This suggests that the processing method has the potential to be scaled-up for industrial use for the preparation of a new subcategory of magnetic, low-cost, and moldable objects based on cellulose nanofibers.

  13. On the generation of magnetic field enhanced microwave plasma line

    NASA Astrophysics Data System (ADS)

    Chen, Longwei; Zhao, Ying; Wu, Kenan; Wang, Qi; Meng, Yuedong; Ren, Zhaoxing

    2016-12-01

    Microwave linear plasmas sustained by surface waves have attracted much attention due to the potential abilities to generate large-scale and uniform non-equilibrium plasmas. An external magnetic field was generally applied to enhance and stabilize plasma sources because the magnetic field decreased the electron losses on the wall. The effects of magnetic field on the generation and propagation mechanisms of the microwave plasma were tentatively investigated based on a 2-D numerical model combining a coupled system of Maxwell's equations and continuity equations. The mobility of electrons and effective electric conductivity of the plasma were considered as a full tensor in the presence of magnetic field. Numerical results indicate that both cases of magnetic field in the axial-direction and radial-direction benefit the generation of a high-density plasma; the former one allows the microwave to propagate longer in the axis direction compared to the latter one. The time-averaged power flow density and the amplitude of the electric field on the inner rod of coaxial waveguide attenuate with the propagation of the microwave for both cases of with and without external magnetic field. The attenuation becomes smaller in the presence of appropriately higher axial-direction magnetic field, which allows more microwave energies to transmit along the axial direction. Meanwhile, the anisotropic properties of the plasma, like electron mobility, in the presence of the magnetic field confine more charged particles in the direction of the magnetic field line.

  14. Chiral spiral induced by a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Abuki, Hiroaki

    2016-11-01

    We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a "continent" of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  15. Pressure control of magnetic clusters in strongly inhomogeneous ferromagnetic chalcopyrites

    PubMed Central

    Arslanov, Temirlan R.; Mollaev, Akhmedbek Yu.; Kamilov, Ibragimkhan K.; Arslanov, Rasul K.; Kilanski, Lukasz; Minikaev, Roman; Reszka, Anna; López-Moreno, Sinhué; Romero, Aldo H.; Ramzan, Muhammad; Panigrahi, Puspamitra; Ahuja, Rajeev; Trukhan, Vladimir M.; Chatterji, Tapan; Marenkin, Sergey F.; Shoukavaya, Tatyana V.

    2015-01-01

    Room-temperature ferromagnetism in Mn-doped chalcopyrites is a desire aspect when applying those materials to spin electronics. However, dominance of high Curie-temperatures due to cluster formation or inhomogeneities limited their consideration. Here we report how an external perturbation such as applied hydrostatic pressure in CdGeP2:Mn induces a two serial magnetic transitions from ferromagnet to non-magnet state at room temperature. This effect is related to the unconventional properties of created MnP magnetic clusters within the host material. Such behavior is also discussed in connection with ab initio density functional calculations, where the structural properties of MnP indicate magnetic transitions as function of pressure as observed experimentally. Our results point out new ways to obtain controlled response of embedded magnetic clusters. PMID:25579120

  16. The Physics of Ion Decoupling in Magnetized Plasma Explosions

    SciTech Connect

    Hewett, D; Larson, D; Brecht, S

    2011-02-08

    When a finite pulse of plasma expands into a magnetized background plasma, MHD predicts the pulse expel background plasma and its B-field - i.e. cause a magnetic 'bubble'. The expanding plasma is confined within the bubble, later to escape down the B-field lines. MHD suggests that the debris energy goes to expelling the B-field from the bubble volume and kinetic energy of the displaced background. For HANEs, this is far from the complete story. For many realistic HANE regimes, the long mean-free-path for collisions necessitates a Kinetic Ion Simulation Model (KISM). The most obvious effect is that the debris plasma can decouple and slip through the background plasma. The implications are: (1) the magnetic bubble is not as large as expected and (2) the debris is no longer confined within the magnetic bubble.

  17. Drift theory of strong diamagnetism and superconductivity of electron plasmas in conductors

    NASA Astrophysics Data System (ADS)

    Abramov, O. V.; Gradov, O. M.; Kyrie, A. Yu

    1993-11-01

    A degenerated electron plasma in the field of a superlattice is shown to possess strong diamagnetism due to the quantum gradient drift current, and superconductivity due to the quantum "centrifugal" drift current.

  18. Plasma acceleration and cooling by strong laser field due to the action of radiation reaction force.

    PubMed

    Berezhiani, V I; Mahajan, S M; Yoshida, Z

    2008-12-01

    It is shown that for super intense laser pulses propagating in a hot plasma, the action of the radiation reaction force (appropriately incorporated into the equations of motion) causes strong bulk plasma motion with the kinetic energy raised even to relativistic values; the increase in bulk energy is accompanied by a corresponding cooling (intense cooling) of the plasma. The effects are demonstrated through explicit analytical calculations.

  19. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    SciTech Connect

    Navarro, Roberto E. Muñoz, Víctor; Araneda, Jaime; Moya, Pablo S.; Viñas, Adolfo F.; Valdivia, Juan A.

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  20. Dual-function magnetic structure for toroidal plasma devices

    DOEpatents

    Brown, Robert L.

    1978-01-01

    This invention relates to a support system wherein the iron core and yoke of the plasma current system of a tokamak plasma containment device is redesigned to support the forces of the magnet coils. The containment rings, which occupy very valuable space around the magnet coils, are utilized to serve as yokes for the core such that the conventional yoke is eliminated. The overall result is an improved aspect ratio, reduction in structure, smaller overall size, and improved access to the plasma ring.

  1. Liner-on-plasma system near stagnation: Stabilizing effect of a magnetic cushion

    SciTech Connect

    Ryutov, D. D.

    2011-06-15

    This brief communication is concerned with the adiabatic compression of a high-beta plasma by a heavy liner. Elongated cylindrical and quasi-cylindrical geometries are considered. The magnetic field in a plasma is parallel to the axis, whereas the drive field has azimuthal direction. During the liner acceleration, the most dangerous modes are axisymmetric (m = 0) modes. Near stagnation, these modes are further amplified at the inner surface, as the liner is decelerated by the isotropic pressure of a high-beta plasma. This picture, however, is not complete: due to a heat loss from the plasma core to the relatively cold liner, a zone of a strong axial magnetic field may appear between a hot, high-beta plasma and a cold liner. This magnetic cushion is backed from inside by a very high-beta plasma. The stability of such a system with respect to m = 0 modes is studied and the conclusion is drawn that the stabilizing effect of the magnetic cushion remains strong even for relatively thin cushions and moderate magnetic fields in them.

  2. Photonic Weyl degeneracies in magnetized plasma

    PubMed Central

    Gao, Wenlong; Yang, Biao; Lawrence, Mark; Fang, Fengzhou; Béri, Benjamin; Zhang, Shuang

    2016-01-01

    Weyl particles are elusive relativistic fermionic particles with vanishing mass. While not having been found as an elementary particle, they are found to emerge in solid-state materials where three-dimensional bands develop a topologically protected point-like crossing, a so-called Weyl point. Photonic Weyl points have been recently realised in three-dimensional photonic crystals with complex structures. Here we report the presence of a novel type of plasmonic Weyl points in a naturally existing medium—magnetized plasma, in which Weyl points arise as crossings between purely longitudinal plasma modes and transverse helical propagating modes. These photonic Weyl points are right at the critical transition between a Weyl point with the traditional closed finite equifrequency surfaces and the newly proposed ‘type II' Weyl points with open equifrequency surfaces. Striking observable features of plasmon Weyl points include a half k-plane chirality manifested in electromagnetic reflection. Our study introduces Weyl physics into homogeneous photonic media, which could pave way for realizing new topological photonic devices. PMID:27506514

  3. Dynamics of runaway electrons in magnetized plasmas

    SciTech Connect

    Moghaddam-Taaheri, E.

    1986-01-01

    The evolution of a runaway electron tail driven by a subcritical dc electric field in a magnetized plasma is studied numerically using a quasi-linear numerical code (2-D in v- and k-space) based on the Ritz-Galerkin method and finite elements. Three different regimes in the evolution of the runaway tail depending on the strength of the dc electric field and the ratio of plasma to gyrofrequency, were found. The tail can be (a) stable and the electrons are accelerated to large parallel velocities, (b) unstable to the Cerenkov resonance due to the formation of a positive slope on the runaway tail, (c) unstable to the anomalous Doppler resonance instability driven by the large velocity anisotropy in the tail. Once an instability is triggered (Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution resulting in less acceleration. The synchrotron emission of the runaway electrons shows large enhancement in the radiation level at the high-frequency end of the spectrum during the pitch-angle scattering of the fast particles. The results are relevant to recent experimental data from the Princeton Large Torus (PLT) during current-drive experiments and to the microwave bursts observed during solar flares.

  4. Spectral manifestations of extremely strong magnetic fields in the sunspot umbra

    NASA Astrophysics Data System (ADS)

    Lozitsky, V. G.

    2017-03-01

    Fine peculiarities of the Zeeman effect in two big sunspots of October 29, 2003, and October 25, 2014, are analyzed. In order to search spectral evidences of very strong spatially unresolved magnetic fields, the Stokes I ± V and V profiles of the Fe I 6301.5 and 6302.5 Å lines are studied in detail. Confirmed are two effects discovered earlier by Lozitsky (2016): (a) non-parallelism of bisectors in the Fe I 6301.5 line at a distance of about ±250 mÅ from the line center and (b) the existence of weak secondary peaks in Stokes V of the Fe I 6302.5 line placed at a distance of, on the average, ±375 mÅ from the line center. Close correlation (r = 0.77 ± 0.06) was found between (a) and (b) effects indicating the reality of very strong (≈8 kG) unresolved magnetic fields. For the first sunspot, the presence of the abovementioned 8-kG fields is traced along 12 Mm of the sunspot umbra. The filling factor is 0.2-0.3 here, and the relative Doppler velocities (without Evershed's effect) are from -1.7 to -3.1 km/s (plasma lifting). Similar parameters were also obtained for the second sunspot.

  5. Radical electronic transformation of strongly coupled plasma at megabar pressure ionization, dielectrization and phase transitions

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir

    2007-06-01

    The work presents new results of investigation of pressure and temperature ionization of coupled nonideal plasmas generated as a result of multiple shock compression of metals, H2, He, noble gases, S, I, fullerene C60, H2O in the megabar pressure range. The highly time-resolved diagnostics permit us to measure thermodynamical, radiative and mechanical properties of high pressure condensed matter in a broad region of the phase diagram. This data in combination with exploding wire conductivity measurements demonstrate an ionization rate increase up to ten orders of magnitude as a result of compression of degenerate plasmas at p 104-107 bars. Shock compression of H2, Ar, He, Kr, Ne, Xe in initially gaseous and cryogenic liquid state allows measuring the electrical conductivity, Hall effect parameters, equation of state, and emission spectra of strongly nonideal plasma. Thermal and pressure ionization of strongly coupled states of matter is the most prominent effects under the experimental conditions. It was shown that plasma compression strongly deforms the ionization potentials, emission spectra and scattering cross-sections of the neutrals and ions in the strongly coupled plasmas. In contrast to the plasma compression the multiple shock compression of solid Li, Na, Ca shows ``dielectrization'' of the elements. Phase transitions in strongly nonideal plasmas are discussed.

  6. Collective modes in strongly correlated yukawa liquids: waves in dusty plasmas.

    PubMed

    Kalman, G; Rosenberg, M; DeWitt, H E

    2000-06-26

    We determine the collective mode structure of a strongly correlated Yukawa fluid, with the purpose of analyzing wave propagation in a strongly coupled dusty plasma. We identify a longitudinal plasmon and a transverse shear mode. The dispersion is characterized by a low- k acoustic behavior, a frequency maximum well below the plasma frequency, and a high- k merging of the two modes around the Einstein frequency of localized oscillations. The damping effect of collisions between neutrals and dust grains is estimated.

  7. Effect of electron reflection on magnetized plasma sheath in an oblique magnetic field

    SciTech Connect

    Wang, Ting-Ting; Ma, J. X. Wei, Zi-An

    2015-09-15

    Magnetized plasma sheaths in an oblique magnetic field were extensively investigated by conventionally assuming Boltzmann relation for electron density. This article presents the study of the magnetized sheath without using the Boltzmann relation but by considering the electron reflection along the magnetic field lines caused by the negative sheath potential. A generalized Bohm criterion is analytically derived, and sheath profiles are numerically obtained, which are compared with the results of the conventional model. The results show that the ion Mach number at the sheath edge normal to the wall has a strong dependence on the wall potential, which differs significantly from the conventional model in which the Mach number is independent of the wall potential. The floating wall potential is lower in the present model than that in the conventional model. Furthermore, the sheath profiles are appreciably narrower in the present model when the wall bias is low, but approach the result of the conventional model when the wall bias is high. The sheath thickness decreases with the increase of ion-to-electron temperature ratio and magnetic field strength but has a complex relationship with the angle of the magnetic field.

  8. Plasma Heating During Magnetic Reconnection: Implications for Turbulent Dissipation

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Parashar, T.; Matthaeus, W. H.; Haggerty, C. C.

    2015-12-01

    Current sheets and associated intermittency are known to be prevalent in many turbulent plasmas and have been shown to be correlated with heating in observations of solar wind turbulence [1] and dissipation in kinetic particle-in-cell simulations [5]. Most intriguing, recent PIC simulations have found that the relative ion to electron heating ratio is strongly dependent on the turbulence amplitude [3]. An important question is whether magnetic reconnection is an important mechanism responsible for this heating. Studies focused on laminar reconnection have made significant progress recently on the magnitude and physics responsible for heating during magnetic reconnection [2,4]. The ambient Alfven speed of plasma flowing into the reconnection region plays a critical role, with heating initially taking the form of counterstreaming beams generated by non-local acceleration mechanism. However, there are significant uncertainties with how to link this basic reconnection heating with generic heating in a turbulent plasma. In this presentation, our current understanding of heating due to reconnection will be reviewed, and the factors determining the applicability of this heating to turbulent dissipation and heating will be discussed. These ideas will be explored through the comparison of kinetic PIC simulations of turbulence with reconnection heating models. Key aspects that will be examined are the effect of differing turbulent conditions on the magnitude and anisotropy of the heating, as well as the ion to electron heating ratio. [1] Osman et al., ApJ Letters, 727, L11, 2011. [2] Phan, et al., GRL, 40, 50917, 2013. [3] Wu et al., ApJ Letters, 763, L30, 2013. [4] Shay et al., Phys. Plasmas, 21, 122902, 2014. [5] Wan et al., PRL, 114, 175002, 2015.

  9. Interaction of laser radiation with plasma under the MG external magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; Sawada, H.; Sentoku, Y.

    2016-10-01

    Strong magnetic fields play an important role in many physical processes relevant to astrophysical events and fusion research. Laser produced plasma in the MG external magnetic field was studied at the 1 MA pulsed power generator coupled with the laser operated in ns and ps regimes. Rod loads and coils under 1 MA current were used to produce a magnetic field of 2-3 MG. In one type of experiments, a 0.8 ns laser pulse was focused on the load surface with intensity of 3x1015 W/cm2. Laser diagnostics showed that the laser produced plasma expands in the transversal magnetic field and forms a thin plasma disc with a typical diameter of 3-7 mm and thickness of 0.2-0.4 mm. A magnetosonic-type wave was observed in the plasma disc and on the surface of the rod load. The plasma disc expands radially across the magnetic field with a velocity of the order of the magnetosonic velocity. Physical mechanisms involved in the formation of the plasma disc may be relevant to the generation of plasma loops in sun flares. Other experiments, with a 0.4 ps laser pulse were carried for investigation of the isochoric heating of plasma with fast electrons confined by the strong magnetic field. The laser beam was focused by the parabola mirror on a solid target in the magnetic field of the coil. Work was supported by the DOE Grant DE-SC0008824 and DOE/NNSA UNR Grant DE-FC52-06NA27616.

  10. A plasma generator utilizing the high intensity ASTROMAG magnets

    NASA Technical Reports Server (NTRS)

    Sullivan, James D.; Post, R. S.; Lane, B. G.; Tarrh, J. M.

    1986-01-01

    The magnet configuration for the proposed particle astrophysics magnet facility (ASTROMAG) on the space station includes a cusp magnetic field with an intensity of a few tesla. With these large magnets (or others) located in the outer ionosphere, many quite interesting and unique plasma physics experiments become possible. First there are studies utilizing the magnet alone to examine the supersonic, sub-Alfvenic interaction with the ambient medium; the scale length for the magnet perturbation is approx. 20 m. The magnetic field geometry when combined with the Earth's and their relative motion will give rise to a host of plasma phenomena: ring nulls, x-points, ion-acoustic and lower-hybrid shocks, electron heating (possible shuttle glow without a surface) launching of Alfvenwaves, etc. Second, active experiments are possible for a controlled study of fundamental plasma phenomena. A controlled variable species plasma can be made by using an RF ion source; use of two soft iron rings placed about the line cusp would give an adequate resonance zone (ECH or ICH) and a confining volume suitable for gas efficiency. The emanating plasma can be used to study free expansion of plasma along and across field lines (polar wind), plasma flows around the space platform, turbulent mixing in the wake region, long wavelength spectrum of convecting modes, plasma-dust interactions, etc.

  11. Magnetic tearing of plasma discharges due to nonuniform resistivity

    NASA Technical Reports Server (NTRS)

    Hassam, A. B.

    1988-01-01

    The rearrangement of current in a plasma discharge in response to resistivity nonuniformities within a magnetic surface is studied. It is shown that macroscopic magnetic islands develop about those surfaces where the nonuniformity is aligned with the magnetic field. If the nonuniformity and the field are not aligned anywhere, there is no current rearrangement; instead, relatively large plasma flows are set up. Such resistivity inhomogeneities can obtain in solar coronal loops and, in some circumstances, in tokamak discharges.

  12. Entanglement fidelity for elastic electron-electron scattering in a strongly coupled semiclassical plasmas under the influence of electric field

    NASA Astrophysics Data System (ADS)

    Falaye, Babatunde

    This study presents the effects of electric field, AB-flux field and uniform magnetic field directed along z-axis on electron-electron scattering encircled by a strongly coupled semiclassical plasmas. The all-inclusive effects result into a strongly repulsive system while the localizations of quantum levels change and the eigenvalues increase. We have employ perturbation formalism in our calculations. The condition | Enm(0) | > > | Enm(1) | > | Enm(2) | > | Enm(3) | > . . . . > | Enm(n) | holds. We find that, the combined effect of the fields is stronger than solitary effect and consequently, there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy elastic electron-electron scattering in a strongly semiclassical plasmas, a strong electric field and a weak magnetic field are required where AB-flux field can be used as a regulator. The entanglement fidelity in the scattering process is also examined. We have used partial wave analysis to derive the entanglement fidelity. We find that for a low electric field intensity, the entanglement fidelity varies with projectile energy.

  13. On The Constitutive Properties Of Strongly Magnetized Matter Observed In A Class Of Solar Ejecta

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D. B.

    2013-12-01

    Several studies of the transient events known as magnetic clouds at 1 AU suggest that they possess the ';1/2' anomalous value for its adiabatic, polytropic index, i.e., γ= 1/2, which implies that the temperature of the plasma decreases with increased density[1-3]. Coronal mass ejections commonly observed by missions like The Solar Terrestrial Relations Observatory (STEREO) have been successfully modeled previously by Berdichevsky Stenborg and Vourlidas[4] as magnetic flux-ropes which propagate from the Sun with uniform velocity. Building on this existing analytical three-dimensional magnetohydrodynamic (MHD) model of a magnetic flux-rope, we present an interpretation of the anomalous and somewhat counterintuitive dynamic property mentioned above. Using plasma and magnetic field observations by the Wind spacecraft for the magnetic cloud of June 2, 1998, we argue that this anomalous polytropic index is indeed a consequence of thermodynamic processes in this strongly magnetized matter. We show that the derived models of Berdichevsky et al.[5, 6] easily accommodate a familiar thermodynamic explanation of this property. Such an explanation may shed light also on the evolution of other astrophysical observations such as remnants in nebulae of past super-novae, as well other transient interstellar events. This MHD solution may be a good way to go beyond gas-dynamics in the development of a coherent picture of shock and its driver, as they are becoming a current interpretation. 1Osherovich, V.A., 1997, Proc. 31st, ESLAB Symp. Correlated Phenomena at the Sun, in the Heliosphere and in Geospace. 2Sittler, E.C., and L.F., Burlaga, 1998, J. Geophys. Res., 103, 17447. 3Nieves-Chinchilla T., and A., Figueroa-Viñas, 2008, J. Geophys. Res., 113, DOI: 10.1029/2007JA012703 4Berdichevsky, Stenborg, and Vourlidas, 2011, ApJ, 741, 47. 5Berdichevsky, D.B., R.L., Lepping, C.J., Farrugia, 2003, Phys.Rev. E, 67, DOI: 10.1103/PhysRevE036405. 6Berdichevsky, D.B. , 2012, Sol. Phys., 284

  14. Women are more strongly affected by dizziness in static magnetic fields of magnetic resonance imaging scanners.

    PubMed

    Heinrich, Angela; Szostek, Anne; Meyer, Patric; Reinhard, Iris; Gilles, Maria; Paslakis, Georgios; Rauschenberg, Jaane; Gröbner, Jens; Semmler, Wolfhard; Deuschle, Michael; Meyer-Lindenberg, Andreas; Flor, Herta; Nees, Frauke

    2014-10-01

    Increasing field strengths in MRI necessitate the examination of potential side effects. Previously reported results have been contradictory, possibly caused by imbalanced samples. We aimed to examine whether special groups of people are more prone to develop side effects that might have led to contradictory results in previous studies. We examined the occurrence of sensory side effects in static magnetic fields of MRI scanners of 1.5, 3, and 7 T and a mock scanner in 41 healthy participants. The contribution of field strength, sex, age, and attention to bodily processes, and stress hormone levels to the sensation of dizziness was examined in separate univariate analyses and in a joint analysis that included all variables. Field strength and sex were significant factors in the joint analysis (P=0.001), with women being more strongly affected than men by dizziness in higher static magnetic fields. This effect was not mediated by the other variables such as attention to bodily symptoms or stress hormones. Further research needs to elucidate the underlying factors of increased dizziness in women in static magnetic fields in MRI. We hypothesize that imbalanced samples of earlier studies might be one reason for previous contradictory results on the side effects of static magnetic fields.

  15. Properties of mesons in a strong magnetic field.

    PubMed

    Zhang, Rui; Fu, Wei-Jie; Liu, Yu-Xin

    By extending the [Formula: see text]-derivable approach in the Nambu-Jona-Lasinio model to a finite magnetic field we calculate the properties of pion, [Formula: see text], and [Formula: see text] mesons in a magnetic field at finite temperature not only in the quark-antiquark bound state scheme but also in the pion-pion scattering resonant state scenario. Our calculation as a result makes manifest that the masses of [Formula: see text] and [Formula: see text] meson can be nearly degenerate at the pseudo-critical temperature which increases with increasing magnetic field strength, and the [Formula: see text] mass ascends suddenly at almost the same critical temperature. Meanwhile the [Formula: see text] mesons' masses decrease with the temperature but increase with the magnetic field strength. We also check the Gell-Mann-Oakes-Renner relation and find that the relation can be violated clearly with increasing temperature, and the effect of the magnetic field becomes pronounced around the critical temperature. With different criteria, we analyze the effect of the magnetic field on the chiral phase transition and find that the pseudo-critical temperature of the chiral phase cross, [Formula: see text], is always enhanced by the magnetic field. Moreover, our calculations indicate that the [Formula: see text] mesons will get melted as the chiral symmetry has not yet been restored, but the [Formula: see text] meson does not disassociate even at very high temperature. Particularly, it is the first to show that there does not exist a vector meson condensate in the QCD vacuum in the pion-pion scattering scheme.

  16. Solitary and shock waves in magnetized electron-positron plasma

    SciTech Connect

    Lu, Ding; Li, Zi-Liang; Abdukerim, Nuriman; Xie, Bai-Song

    2014-02-15

    An Ohm's law for electron-positron (EP) plasma is obtained. In the framework of EP magnetohydrodynamics, we investigate nonrelativistic nonlinear waves' solutions in a magnetized EP plasma. In the collisionless limit, quasistationary propagating solitary wave structures for the magnetic field and the plasma density are obtained. It is found that the wave amplitude increases with the Mach number and the Alfvén speed. However, the dependence on the plasma temperature is just the opposite. Moreover, for a cold EP plasma, the existence range of the solitary waves depends only on the Alfvén speed. For a hot EP plasma, the existence range depends on the Alfvén speed as well as the plasma temperature. In the presence of collision, the electromagnetic fields and the plasma density can appear as oscillatory shock structures because of the dissipation caused by the collisions. As the collision frequency increases, the oscillatory shock structure becomes more and more monotonic.

  17. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    PubMed

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  18. The embryonic development of frogs under strong DC magnetic fields

    SciTech Connect

    Ueno, S.; Harada, K.; Shiodawa, K.

    1984-09-01

    Possible influence of d.c. magnetic fields in the early embryonic development of frogs was studied. Embryos of African clawed toads, Xenopus laevis, were exposed to 1.0 T magnetic fields with different gradients of a range from 10 T/m to 10/sup 3/ T/m either during cleavage to neurula stage, blastula to neurula stage, or neurula to tail bud stage. The developmental processes of embryos during and after magnetic field exposures were followed to examine a possibility of teratogenic effects. The results suggest that the magnetic field exerts no harmful or modifying effects on the important morphogenetic movements such as gastrulation and neurulation. However, it was observed that embryos which were exposed to the gradient magnetic fields during cleavage to neurula stage occasionally developed into tadpoles with reduced pigmentation or some axial anomalies such as the formation of curled tail. Tadpoles with edema or microcephaly were also observed. Compared with the control, the rate of malformation was higher by about 35 %. The influence of oxygen concentration in Ringer's solution on the embryonic development was also studied, and toxicity of oxygen with high concentration is discussed.

  19. Skin temperature changes induced by strong static magnetic field exposure.

    PubMed

    Ichioka, Shigeru; Minegishi, Masayuki; Iwasaka, Masakazu; Shibata, Masahiro; Nakatsuka, Takashi; Ando, Joji; Ueno, Shoogo

    2003-09-01

    High intensity static magnetic fields, when applied to the whole body of the anesthetized rat, have previously been reported to decrease skin temperature. The hypothesis of the present study was that in diamagnetic water, molecules in the air play significant roles in the mechanism of skin temperature decrease. We used a horizontal cylindrical superconducting magnet. The magnet produced 8 T at its center. A thermistor probe was inserted in a subcutaneous pocket of the anesthetized rats to measure skin temperature. Animals (n=10) were placed in an open plastic holder in which the ambient air was free to move in any direction (group I). Animals (n=10) were placed in a closed holder in which the air circulation toward the direction of weak magnetic field was restricted (group II). Each holder was connected to a hydrometer to measure humidity around the animal in the holder. The data acquisition phase consisted of a 5 min baseline interval, followed by inserting the animal together with the holder into the center of the magnet bore for a 5 min exposure and a 5 min postexposure period outside the bore. In group I, skin temperature and humidity around the animal significantly decreased during exposure, followed by recovery after exposure. In group II, skin temperature and humidity did not decrease during the measurement. The skin temperature decrease was closely related to the decrease in humidity around the body of the animal in the holder, and the changes were completely blocked by restricting the air circulation in the direction of the bore entrance. Possible mechanisms responsible for the decrease in skin temperature may be associated with magnetically induced movement of water vapor at the skin surface, leading to skin temperature decrease.

  20. The magnetic pumping of plasmas with sawtooth waveforms

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.; Hansen, Paul J.

    1990-01-01

    The pumping of plasmas by sawtooth-waveform magnetic induction variations is studied theoretically and by means of computer simulations. A sawtooth is a cycle waveform that is characterized by a slow increase in the magnetic induction followed by a rapid drop in the induction. Two types of sawtooth pumping are analyzed, and the types classified as to whether or not the first adiabatic invariants of the plasma particles are conserved during the rapid drops in the magnetic induction. When the invariants are conserved, the sawtooth waveforms are found to be less efficient than square waves for pumping plasmas. When the adiabatic invariations are not conserved, the pumping efficiency is found to be a slight improvement over square waves. Both types of pumping are applied to a hypothetical tokamak plasma and it is concluded that neither type of sawtooth pumping is practical for heating magnetically confined fusion plasmas.

  1. Inhomogeneous Magnetic Field Geometry Light Ion Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Mori, Yoshitaka; Nakashima, Hideki; Goulding, R. H.; Carter Baity, M. D., Jr.; Sparks, D. O.; Barber, G. C.; White, K. F.; Jaeger, E. F.; Chang-Díaz, F. R.; Squire, J. P.

    2002-11-01

    Helicon plasma source is a well-known high-density plasma source for many applications including plasma processing and fusion. However, most helicon research has been focused on a uniform static magnetic field and relatively heavy ions. Light ion helicon operation is more sensitive to magnetic field strength and geometry than heavy ions. The axially inhomogeneous Mini-Radio Frequency Test Facility (Mini-RFTF) has a capability for controlling static magnetic fields then is applicative for light ion source plasma operation. Inhomogeneous static magnetic field geometry also can procedure a high velocity to plasma exhaust when combined with ICRF heating enabling the possibility of use in plasma propulsion. In this poster, we will show how the source has been optimized for a hydrogen operation and a specific plasma propulsion concept: The Variable Specific Impulse Magnetoplasma Rocket (VASIMR). Measurements of the rf magnetic fields and profile of plasma parameters for several magnetic field strengths and geometries will be discussed. Comparisons with a RF modeling code EMIR3 also will be reported here.

  2. Progress In Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  3. Multi-Scale Investigation of Sheared Flows In Magnetized Plasmas

    SciTech Connect

    Edward, Jr., Thomas

    2014-09-19

    Flows parallel and perpendicular to magnetic fields in a plasma are important phenomena in many areas of plasma science research. The presence of these spatially inhomogeneous flows is often associated with the stability of the plasma. In fusion plasmas, these sheared flows can be stabilizing while in space plasmas, these sheared flows can be destabilizing. Because of this, there is broad interest in understanding the coupling between plasma stability and plasma flows. This research project has engaged in a study of the plasma response to spatially inhomogeneous plasma flows using three different experimental devices: the Auburn Linear Experiment for Instability Studies (ALEXIS) and the Compact Toroidal Hybrid (CTH) stellarator devices at Auburn University, and the Space Plasma Simulation Chamber (SPSC) at the Naval Research Laboratory. This work has shown that there is a commonality of the plasma response to sheared flows across a wide range of plasma parameters and magnetic field geometries. The goal of this multi-device, multi-scale project is to understand how sheared flows established by the same underlying physical mechanisms lead to different plasma responses in fusion, laboratory, and space plasmas.

  4. Combining the Strong Drive Regime with Evaporative Cooling to Control Plasma Parameters in the ALPHA Experiment

    NASA Astrophysics Data System (ADS)

    Carruth, Celeste; Fajans, Joel; Alpha Collaboration

    2016-10-01

    To make antihydrogen at the ALPHA experiment at CERN, we need to produce antiproton and positron plasmas with consistent plasma parameters. We developed a technique that allows us to eliminate initial variations in the density and the number of particles by combining evaporative cooling and the strong drive regime. The strong drive regime is a non-neutral plasma regime driven by a rotating electric field, where the drive frequency synchronizes with the plasma rotation frequency; this controls the density. Evaporative cooling is a space-charge dominated effect where a potential well is completely filled with the space charge of a plasma and one side is lowered, which sets the on-axis potential. For cold non-neutral plasmas, the density and on-axis potential give a unique solution to the plasma parameters, so we want to simultaneously combine these two techniques. Experimental results using electron plasmas show this combination of techniques does an excellent job at producing plasmas with the same number of particles and densities from a wide range of initial conditions. Special thanks to the United States Department of Energy and to the ALPHA collaboration for supporting this research.

  5. Nonlinear dust-acoustic waves in a strongly coupled dusty plasma with vortexlike ion distribution

    SciTech Connect

    Anowar, M. G. M.; Rahman, M. S.; Mamun, A. A.

    2009-05-15

    The nonlinear features of dust-acoustic (DA) waves in a strongly coupled unmagnetized dusty plasma (containing electrons following Boltzmann distribution, ions obeying vortexlike distribution, and negatively charged mobile dust) are investigated by using reductive perturbation method. It is observed that the nonlinear propagation of the DA waves gives rise to solitary structures when the strong correlation is absent and gives rise to shock structures when the strong correlation among the dust grains is present. The condition for the formation of oscillatory and monotonic shock structures is also found. The implications of our result in space and laboratory dusty plasmas are discussed.

  6. Magnetic interactions in strongly correlated systems: Spin and orbital contributions

    SciTech Connect

    Secchi, A.; Lichtenstein, A.I.; Katsnelson, M.I.

    2015-09-15

    We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.

  7. Nanomagnets with high shape anisotropy and strong crystalline anisotropy: perspectives on magnetic force microscopy.

    PubMed

    Campanella, H; Jaafar, M; Llobet, J; Esteve, J; Vázquez, M; Asenjo, A; del Real, R P; Plaza, J A

    2011-12-16

    We report on a new approach for magnetic imaging, highly sensitive even in the presence of external, strong magnetic fields. Based on FIB-assisted fabricated high-aspect-ratio rare-earth nanomagnets, we produce groundbreaking magnetic force tips with hard magnetic character where we combine a high aspect ratio (shape anisotropy) together with strong crystalline anisotropy (rare-earth-based alloys). Rare-earth hard nanomagnets are then FIB-integrated to silicon microcantilevers as highly sharpened tips for high-field magnetic imaging applications. Force resolution and domain reversing and recovery capabilities are at least one order of magnitude better than for conventional magnetic tips. This work opens new, pioneering research fields on the surface magnetization process of nanostructures based either on relatively hard magnetic materials-used in magnetic storage media-or on materials like superparamagnetic particles, ferro/antiferromagnetic structures or paramagnetic materials.

  8. Relativistic nonlinear plasma waves in a magnetic field

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Pellat, R.

    1975-01-01

    Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.

  9. On the parametric transparency of a magnetized plasma slab

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.

    1981-06-01

    A mechanism is proposed for the nonlinear transparency of a dense magnetized plasma slab to electromagnetic radiation. The mechanism is based on the parametric excitation of surface waves in a cold magnetized plasma slab. It is shown that a significant proportion of incident radiation will be able to penetrate the slab due to saturation caused by the nonlinear resonant absorption of the surface waves generated. The mechanism also predicts the presence of transmitted radiation at a frequency less than that of the incident radiation in a direction parallel to the incident pump-wave electric field, the external constant magnetic field and the plasma layer.

  10. Effect of quantum corrections on Rayleigh-Taylor instability and internal waves in strongly coupled magnetized viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Prajapati, Ramprasad

    2016-07-01

    The Rayleigh-Taylor (R-T) instability is recently investigated is strongly coupled plasma looking to its importance in dense stellar systems and Inertial Confinement Fusion [1-3]. In the present work, the effect of quantum corrections are studied on Rayleigh-Taylor (R-T) instability and internal wave propagation in a strongly coupled, magnetized, viscoelastic fluid. The modified generalized hydrodynamic model is used to derive the analytical dispersion relation. The internal wave mode and dispersion relation are modified due to the presence of quantum corrections and viscoelastic effects. We observe that strong coupling effects and quantum corrections significantly modifies the dispersion characteristics. The dispersion relation is also discussed in weakly coupled (hydrodynamic) and strongly coupled (kinetic) limits. The explicit expression of R-T instability criterion is derived which is influenced by shear velocity and quantum corrections. Numerical calculations are performed in astrophysical and experimental relevance and it is examined that both the shear and quantum effects suppresses the growth rate of R-T instability. The possible application of the work is discussed in Inertial Confinement Fusion (ICF) to discuss the suppression of R-T instability under considered situation. References: [1] R. P. Prajapati, Phys. Plasmas 23, 022106 (2016). [2] K. Avinash and A. Sen, Phys. Plasmas 22, 083707 (2015). [3] A. Das and P. Kaw, Phys. Plasmas 21 (2014) 062102.

  11. Rayleigh-Taylor instability in quantum magnetized viscous plasma

    SciTech Connect

    Hoshoudy, G. A.

    2011-09-15

    Quantum effects on Rayleigh-Taylor instability of stratified viscous plasmas layer under the influence of vertical magnetic field are investigated. By linearly solving the viscous QMHD equations into normal mode, a forth-order ordinary differential equation is obtained to describe the velocity perturbation. Then the growth rate is derived for the case where a plasma with exponential density distribution is confined between two rigid planes. The results show that, the presence of vertical magnetic field beside the quantum effect will bring about more stability on the growth rate of unstable configuration for viscous plasma, which is greater than that of inviscous plasma.

  12. High Magnetic field generation for laser-plasma experiments

    SciTech Connect

    Pollock, B B; Froula, D H; Davis, P F; Ross, J S; Fulkerson, S; Bower, J; Satariano, J; Price, D; Glenzer, S H

    2006-05-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system suppling 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented.

  13. Improved Magnetic Field Generation Efficiency and Higher Temperature Spheromak Plasmas

    SciTech Connect

    Wood, R D; Hill, D N; McLean, H S; Hooper, E B; Hudson, B F; Moller, J M; Romero-Talamas, C A

    2008-09-15

    New understanding of the mechanisms governing the observed magnetic field generation limits on the sustained spheromak physics experiment has been obtained. Extending the duration of magnetic helicity injection during the formation of a spheromak and optimizing the ratio of injected current to bias flux produce higher magnetic field plasmas with record spheromak electron temperatures. To explore magnetic field buildup efficiency limits, the confinement region geometry was varied resulting in improved field buildup efficiencies.

  14. Magnetic Field and Plasma Diagnostics from Coordinated Prominence Observations

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Levens, P.; Dalmasse, K.; Mein, N.; Mein, P.; Lopez-Ariste, A.; Labrosse, N.; Heinzel, P.

    2016-04-01

    We study the magnetic field in prominences from a statistical point of view, by using THEMIS in the MTR mode, performing spectropolarimetry of the He I D3 line. Combining these measurements with spectroscopic data from IRIS, Hinode/EIS as well as ground-based telescopes, such as the Meudon Solar Tower, we infer the temperature, density, and flow velocities of the plasma. There are a number of open questions that we aim to answer: - What is the general direction of the magnetic field in prominences? Is the model using a single orientation of magnetic field always valid for atypical prominences? %- Does this depend on the location of the filament on the disk (visible in Hα, in He II 304 Å) over an inversion line between weak or strong network ? - Are prominences in a weak environment field dominated by gas pressure? - Measuring the Doppler shifts in Mg II lines (with IRIS) and in Hα can tell us if there are substantial velocities to maintain vertical rotating structures, as has been suggested for tornado-like prominences. We present here some results obtained with different ground-based and space-based instruments in this framework.

  15. Photonic band gaps in one-dimensional magnetized plasma photonic crystals with arbitrary magnetic declination

    SciTech Connect

    Zhang Haifeng; Liu Shaobin; Kong Xiangkun

    2012-12-15

    In this paper, the properties of photonic band gaps and dispersion relations of one-dimensional magnetized plasma photonic crystals composed of dielectric and magnetized plasma layers with arbitrary magnetic declination are theoretically investigated for TM polarized wave based on transfer matrix method. As TM wave propagates in one-dimensional magnetized plasma photonic crystals, the electromagnetic wave can be divided into two modes due to the influence of Lorentz force. The equations for effective dielectric functions of such two modes are theoretically deduced, and the transfer matrix equation and dispersion relations for TM wave are calculated. The influences of relative dielectric constant, plasma collision frequency, incidence angle, plasma filling factor, the angle between external magnetic field and +z axis, external magnetic field and plasma frequency on transmission, and dispersion relation are investigated, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that plasma collision frequency cannot change the locations of photonic band gaps for both modes, and also does not affect the reflection and transmission magnitudes. The characteristics of photonic band gaps for both modes can be obviously tuned by relative dielectric constant, incidence angle, plasma filling factor, the angle between external magnetic field and +z axis, external magnetic field and plasma frequency, respectively. These results would provide theoretical instructions for designing filters, microcavities, and fibers, etc.

  16. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  17. Solitary perturbations in the steep boundary of magnetized toroidal plasma

    PubMed Central

    Lee, J. E.; Yun, G. S.; Lee, W.; Kim, M. H.; Choi, M.; Lee, J.; Kim, M.; Park, H. K.; Bak, J. G.; Ko, W. H.; Park, Y. S.

    2017-01-01

    Solitary perturbations (SPs) localized both poloidally and radially are detected within ~100 μs before the partial collapse of the high pressure gradient boundary region (called pedestal) of magnetized toroidal plasma in the KSTAR tokamak device. The SP develops with a low toroidal mode number (typically unity) in the pedestal ingrained with quasi-stable edge-localized mode (QSM) which commonly appears during the inter-collapse period. The SPs have smaller mode pitch and different (often opposite) rotation velocity compared to the QSMs. Similar solitary perturbations are also frequently observed before the onset of complete pedestal collapse, suggesting a strong connection between the SP generation and the pedestal collapse. PMID:28338046

  18. Magnetic field instability of a plasma in a beam of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.

    1980-04-01

    A beam of electromagnetic radiation can generate magnetic fields in plasmas. It is shown that those fields grow significantly when the incident radiation is sufficiently strong. We obtain expressions for the characteristic time of the growth of the fields as well as for their spatial distribution and point out a possible mechanism, which can lead to the formation of a quasi-stationary state. The maximum value of the magnetic field strength is estimated.

  19. Back Compton Scattering in Strong Uniform Magnetic Field

    SciTech Connect

    Xu, W.; Huang Wei; Yan Mulin

    2006-11-02

    In this paper, we show that there is a Non-Commutative Plane (NCP) in the perpendicular magnetic fields in the accelerator, and the QED with NCP (QED-NCP) has been formulated. Being similar to the theory of quantum Hall effects, an effective filling factor f(B) is introduced, which characters the possibility occupied the LLL state by the electrons living on NCP. The back Compton scattering amplitudes of QED-NCP are derived, and the differential cross sections for the process with fixed initial polarizing electrons and photons are calculated. We propose to precisely measure the polarization dependent differential cross sections of the back Compton scattering in the perpendicular magnetic fields experimentally, which may lead to reveal the effects of QED with NCP. This should be interesting and remarkable. The existing Spring-8's data have been analyzed primitively, and some hints for QED-NCP effects are seen.

  20. Nonrelativistic structure calculations of two-electron ions in a strongly coupled plasma environment

    SciTech Connect

    Bhattacharyya, S.; Saha, J. K.; Mukherjee, T. K.

    2015-04-01

    In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with the Linac coherent light source (LCLS) x-ray free electron laser (FEL) and the Orion laser has been addressed. In both kinds of experiments, heliumlike and hydrogenlike spectral lines are used for plasma diagnostics. However, there exist no precise theoretical calculations for He-like ions within a dense plasma environment. The strong need for an accurate theoretical estimate for spectral properties of He-like ions in a strongly coupled plasma environment leads us to perform ab initio calculations in the framework of the Rayleigh-Ritz variation principle in Hylleraas coordinates where an ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with an extended basis inside a finite domain is presented here. The present values of electron densities corresponding to the disappearance of different spectral lines obtained within the framework of an ion-sphere potential show excellent agreement with Orion laser experiments in Al plasma and with recent theories. Moreover, this method is extended to predict the critical plasma densities at which the spectral lines of H-like and He-like carbon and argon ions disappear. Incidental degeneracy and level-crossing phenomena are being reported for two-electron ions embedded in strongly coupled plasma. Thermodynamic pressure experienced by the ions in their respective ground states inside the ion spheres is also reported.

  1. A very strong magnetic field region in NOAA 11035

    NASA Astrophysics Data System (ADS)

    Jaeggli, Sarah Amelia

    2015-04-01

    NOAA 11035 was a fairly typical active region that emerged near the central meridian 13-14 December 2009, early in solar cycle 24. During the active region’s rapid emergence and evolution, a deeply-rooted magnetic bipole emerged into the pre-existing leading polarity with spectacular consequences. Multi-wavelength imaging and spectropolarimetry from FIRS, IBIS, Hinode, TRACE, and SOHO allow for a comprehensive investigation of the physical processes present in this region. Intrusion of the opposite polarity into the leading sunspot’s penumbra resulted in a region of highly concentrated horizontal magnetic field, with a peak field strength larger than 3600 G based on Milne-Eddington inversion of Fe I spectropolarimetry at 6302 and 15650 Å. Photospheric velocity measurements show blueshifts of 4 km/sec along the neutral line, which are coincident with a dark chromospheric structure in He I 10830 and H I 6563 Å. We conclude that these signatures are the result of continuous magnetic reconnection near photospheric heights.

  2. Improvement of uniformity in a weakly magnetized inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Lee, W. H.; Cheong, H. W.; Kim, J. W.; Whang, K. W.

    2015-12-01

    Magnetic fields are applied to inductively coupled plasma (ICP) to achieve high plasma densities using electromagnets. If the magnetic fields are set up such that the magnitude of magnetic flux density on the substrate decreases with both radial and axial distances from the substrate’s center (here after referred to as M-ICP-A), the plasma density increases by 237% compared with that for ICP although the non-uniformity of the plasma density for M-ICP-A (11.1%) is higher than that for ICP (10.9%). As the rate of decrease in the magnitude of magnetic flux density on the substrate increases both radially and axially, the non-uniformity in the plasma density increases further. The increase in the non-uniformity for M-ICP-A was confirmed to arise from the flute instability. To suppress the flute instability, we arranged the magnitude of magnetic flux density on the substrate to increase with increasing distance from the substrate center both radially and axially (here after referred to as M-ICP-V). In this configuration, plasma fluctuations were not observed, hence the plasma density non-uniformity was lowered to 8.1%, although the measured plasma density was higher than that for M-ICP-A. The oxide etch-rate non-uniformity in M-ICP-V (2.5%) was also lower than that for ICP (5.2%) or that for M-ICP-A (21.4%).

  3. Electric and magnetic components of ballooning perturbations in the magnetotail plasma sheet before breakup

    NASA Astrophysics Data System (ADS)

    Kogai, T. G.; Golovchanskaya, I. V.; Kornilov, I. A.; Kornilova, T. A.; Fedorenko, Y. V.

    2016-01-01

    Using data from THEMIS spacecraft we investigated transverse to the magnetic field mutually perpendicular electric and magnetic components of ballooning type perturbations with periods 60-240 s, which are observed in the magnetospheric plasma sheet during the period preceding substorm onset. With applying Hilbert transform, we analyzed the phase relations between them. It is shown that the perturbations are dominated by radial electric and azimuthal magnetic (that is, toroidal) components which are usually in phase or out-of-phase. Along with them, approximately 2.5 times less intense azimuthal electric and radial magnetic components are present, which are more often phase-shifted by π/2. It is concluded that the observed perturbations are not a simple consequence of the development of plasma sheet ballooning instability, leading to the growth of strongly elongated along the magnetotail ballooning structures. It is pointed out that this conclusion is confirmed by simultaneous ground-based observations of magnetically conjugate auroral structures.

  4. Confinement effects of magnetic field on two-dimensional hydrogen atom in plasmas

    SciTech Connect

    Bahar, M. K.; Soylu, A.

    2015-05-15

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence and in the absence of an external magnetic field within two-dimensional formalism using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in the potential. The plasma screening effects in the weak and strong magnetic field regimes as well as the confinement effects of magnetic field on the two-dimensional hydrogen atom in Debye and quantum plasmas are investigated by solving the corresponding equations. It is found that applying a uniform magnetic field on the hydrogen atom embedded in a plasma leads to change in the profile of the total interaction potential. Thus, confinement effects of magnetic field on hydrogen atom embedded in Debye and quantum plasmas modeled by a MGECSC potential lead to shift bound state energies. This effect would be important to isolate the plasma from the external environment in the experimental applications of plasma physics.

  5. Confinement effects of magnetic field on two-dimensional hydrogen atom in plasmas

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2015-05-01

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence and in the absence of an external magnetic field within two-dimensional formalism using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in the potential. The plasma screening effects in the weak and strong magnetic field regimes as well as the confinement effects of magnetic field on the two-dimensional hydrogen atom in Debye and quantum plasmas are investigated by solving the corresponding equations. It is found that applying a uniform magnetic field on the hydrogen atom embedded in a plasma leads to change in the profile of the total interaction potential. Thus, confinement effects of magnetic field on hydrogen atom embedded in Debye and quantum plasmas modeled by a MGECSC potential lead to shift bound state energies. This effect would be important to isolate the plasma from the external environment in the experimental applications of plasma physics.

  6. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y. H.

    1977-01-01

    Digitally implemented spectral analysis techniques were used to investigate the frequency-dependent fluctuation-induced particle transport across a toroidal magnetic field. When the electric field pointed radially inward, the transport was inward and a significant enhancement of the plasma density and confinement time resulted.

  7. Overstability of acoustic waves in strongly magnetized anisotropic magnetohydrodynamic shear flows

    SciTech Connect

    Uchava, E. S.; Shergelashvili, B. M.; Tevzadze, A. G.; Poedts, S.

    2014-08-15

    We present a linear stability analysis of the perturbation modes in anisotropic magnetohydrodynamic (MHD) flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model that takes into account not only the effect of pressure anisotropy but also the effect of anisotropic heat fluxes. In this model, the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower frequency slow thermo-acoustic waves. It is shown that thermo-acoustic waves become unstable and grow exponentially when the heat flux parameter exceeds some critical value. It seems that velocity shear makes thermo-acoustic waves overstable even at subcritical heat flux parameters. Thus, when the effect of heat fluxes is not profound acoustic waves will grow due to the velocity shear, while at supercritical heat fluxes the flow reveals compressible thermal instability. Anisotropic thermal instability should be also important in astrophysical environments, where it will limit the maximal value of magnetic field that a low density ionized anisotropic flow can sustain.

  8. Control of ion density distribution by magnetic traps for plasma electrons

    SciTech Connect

    Baranov, Oleg; Romanov, Maxim; Fang Jinghua; Cvelbar, Uros; Ostrikov, Kostya

    2012-10-01

    The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasma electrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.

  9. Production and study of high-beta plasma confined by a superconducting dipole magnet

    SciTech Connect

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-05-15

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure ({beta}>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large.

  10. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  11. A strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, K.

    1987-01-30

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

  12. Strong Magnetic Field Induced Changes of Gene Expression in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.; Klingenberg, B.; Brooks, J. S.; Morgan, A. N.; Yowtak, J.; Meisel, M. W.

    2005-07-01

    We review our studies of the biological impact of magnetic field strengths of up to 30 T on transgenic arabidopsis plants engineered with a stress response gene consisting of the alcohol dehydrogenase (Adh) gene promoter driving the β-glucuronidase (GUS) gene reporter. Field strengths in excess of 15 T induce expression of the Adh/GUS transgene in the roots and leaves. Microarray analyses indicate that such field strengths have a far reaching effect on the genome. Wide spread induction of stress-related genes and transcription factors, and a depression of genes associated with cell wall metabolism are prominent examples.

  13. Hydrogen in strong magnetic fields in neutron star surfaces

    NASA Astrophysics Data System (ADS)

    Salpeter, Edwin E.

    1998-12-01

    In magnetic fields of very much more than 0953-8984/10/49/017/img1 G, polyatomic hydrogen molecules, in the form of long chains, are stable. In neutron star surfaces, fields of 0953-8984/10/49/017/img2 G are commonplace and 0953-8984/10/49/017/img3 G has been reported. Liquid hydrogen can form at the higher field with a zero-pressure density of about 0953-8984/10/49/017/img4. At these densities, hydrogen can burn to helium by pycnonuclear reactions even at low temperatures - the `real cold fusion'.

  14. Studies of HF-induced Strong Plasma Turbulence at the HAARP Ionospheric Observatory

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Adham, N.; Roe, R. G. E.; Keith, M. R.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.; Selcher, C. A.

    2010-11-01

    High power HF transmitters may induce a number of plasma instabilities in the interaction region of overdense ionospheric plasma. We report results from our recent experiments using over one gigawatt of HF power (ERP) to generate and study strong Langmuir turbulence (SLT) and particle acceleration at the HAARP Observatory, Gakona, Alaska. Among the effects observed and studied in UHF radar backscatter are: SLT spectra including the outshifted plasma line or free-mode, appearance of a short timescale ponderomotive overshoot effect, collapse, cascade and co-existing spectra, control of artificial field-aligned irregularities (AFAI), the aspect angle dependence of the plasma line spectra, and suprathermal electrons. Mapping the intensity of SLT versus pointing angle, we have discovered a number of regions of strong interaction displaced from the primary HF interaction region. Stimulated electromagnetic emission (SEE) measurements complement radar measurements. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  15. Studies of HF-induced Strong Plasma Turbulence at the HAARP Ionospheric Observatory

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Adham, N.; Watanabe, N.; Watkins, B. J.; Bristow, W. A.; Selcher, C. A.; Bernhardt, P. A.

    2011-10-01

    High power HF transmitters may induce a number of plasma instabilities in the interaction region of overdense ionospheric plasma. We report results from our recent experiments using over one gigawatt of HF power (ERP) to generate and study strong Langmuir turbulence (SLT) and particle acceleration at the HAARP Observatory, Gakona, Alaska. Among the effects observed and studied in UHF radar backscatter are: SLT spectra including the outshifted plasma line or free-mode, appearance of a short timescale ponderomotive overshoot effect, collapse, cascade and co-existing spectra, control of artificial field-aligned irregularities (AFAI), the aspect angle dependence of the plasma line spectra, and suprathermal electrons. Mapping the intensity of SLT versus pointing angle, we have discovered a number of regions of strong interaction displaced from the primary HF interaction region. Stimulated electromagnetic emission (SEE) measurements complement radar measurements. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  16. Anomalous skin effects in a weakly magnetized degenerate electron plasma

    NASA Astrophysics Data System (ADS)

    Abbas, G.; Sarfraz, M.; Shah, H. A.

    2014-09-01

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].

  17. Surface electromagnetic wave equations in a warm magnetized quantum plasma

    SciTech Connect

    Li, Chunhua; Yang, Weihong; Wu, Zhengwei; Chu, Paul K.

    2014-07-15

    Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.

  18. Anomalous skin effects in a weakly magnetized degenerate electron plasma

    SciTech Connect

    Abbas, G. Sarfraz, M.; Shah, H. A.

    2014-09-15

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].

  19. Matched dipole probe for magnetized low electron density laboratory plasma diagnostics

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-07-15

    In this paper, a diagnostic method for magnetized and unmagnetized laboratory plasma is proposed, based on impedance measurements of a short matched dipole. The range of the measured electron densities is limited to low density plasmas (10{sup 12}–10{sup 15 }m{sup −3}), where other diagnostic methods have strong limitations on the magnetic field strength and topology, plasma dimensions, and boundary conditions. The method is designed for use in both large- and small-dimension plasma (<10 cm) without or with strong non-homogeneous magnetic field, which can be undefined within the probe size. The design of a matched dipole probe allows to suppress the sheath resonance effects and to reach high sensitivity at relatively small probe dimensions. Validation experiments are conducted in both magnetized (B ∼ 170 G) and unmagnetized (B = 0) low density (7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3}) low pressure (1 mTorr) 10 cm scale plasmas. The experimentally measured data show very good agreement with an analytical theory both for a non-magnetized and a magnetized case. The electron density measured by the matched dipole and Langmuir probes in the range of 7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3} show less than 30% difference. An experimentally measured tolerance/uncertainty of the dipole probe method is estimated to ±1% for plasma densities above 2 × 10{sup 13 }m{sup −3}. A spatial resolution is estimated from the experiments to be about 3d, where d is the dipole diameter. The diagnostic method is also validated by comparing the measured plasma impedance curves with results of analytical modelling.

  20. Suppression of cooling by strong magnetic fields in white dwarf stars

    NASA Astrophysics Data System (ADS)

    Valyavin, G.; Shulyak, D.; Wade, G. A.; Antonyuk, K.; Zharikov, S. V.; Galazutdinov, G. A.; Plachinda, S.; Bagnulo, S.; Fox Machado, L.; Alvarez, M.; Clark, D. M.; Lopez, J. M.; Hiriart, D.; Han, Inwoo; Jeon, Young-Beom; Zurita, C.; Mujica, R.; Burlakova, T.; Szeifert, T.; Burenkov, A.

    2014-11-01

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

  1. Suppression of cooling by strong magnetic fields in white dwarf stars.

    PubMed

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-06

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

  2. Penetration of Magnetosheath Plasma into Dayside Magnetosphere. 2. ; Magnetic Field in Plasma Filaments

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Pollock, Craig; Goldstein, Melvyn L.; Lyatskaya, Sonya Inna; Avanov, Levon Albert

    2016-01-01

    In this paper, we examined plasma structures (filaments), observed in the dayside magnetosphere but containing magnetosheath plasma. These filaments show the stable antisunward motion (while the ambient magnetospheric plasma moved in the opposite direction) and the existence of a strip of magnetospheric plasma, separating these filaments from the magnetosheath. These results, however, contradict both theoretical studies and simulations by Schindler (1979), Ma et al. (1991), Dai and Woodward (1994, 1998), and other researchers, who reported that the motion of such filaments through the magnetosphere is possible only when their magnetic field is directed very close to the ambient magnetic field, which is not the situation that is observed. In this study, we show that this seeming contradiction may be related to different events as the theoretical studies and simulations are related to the case when the filament magnetic field is about aligned with filament orientation, whereas the observations show that the magnetic field in these filaments may be rotating. In this case, the rotating magnetic field, changing incessantly its direction, drastically affects the penetration of plasma filaments into the magnetosphere. In this case, the filaments with rotating magnetic field, even if in each moment it is significantly inclined to the ambient magnetic field, may propagate through the magnetosphere, if their average (for the rotation period) magnetic field is aligned with the ambient magnetic field. This shows that neglecting the rotation of magnetic field in these filaments may lead to wrong results.

  3. Classical strongly coupled quark-gluon plasma. II. Screening and equation of state

    NASA Astrophysics Data System (ADS)

    Gelman, Boris A.; Shuryak, Edward V.; Zahed, Ismail

    2006-10-01

    We analyze the screening and bulk energy of a classical and strongly interacting plasma of color charges, a model we recently introduced for the description of a quark-gluon plasma at T=(1-3)Tc. The partition function is organized around the Debye-Hückel limit. The linear Debye-Hückel limit is corrected by a virial expansion. For the pressure, the expansion is badly convergent even in the dilute limit. The nonlinear Debye-Hückel theory is studied numerically as an alternative for moderately strong plasmas. We use the Debye theory of solid to extend the analysis to the crystal phase at very strong coupling. The analytical results for the bulk energy per particle compare well with the numerical results from molecular dynamics simulations for all couplings.

  4. Stable explicit coupling of the Yee scheme with a linear current model in fluctuating magnetized plasmas

    SciTech Connect

    Silva, Filipe da; Pinto, Martin Campos; Després, Bruno; Heuraux, Stéphane

    2015-08-15

    This work analyzes the stability of the Yee scheme for non-stationary Maxwell's equations coupled with a linear current model with density fluctuations. We show that the usual procedure may yield unstable scheme for physical situations that correspond to strongly magnetized plasmas in X-mode (TE) polarization. We propose to use first order clustered discretization of the vectorial product that gives back a stable coupling. We validate the schemes on some test cases representative of direct numerical simulations of X-mode in a magnetic fusion plasma including turbulence.

  5. Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements

    PubMed Central

    Ganeev, R. A.

    2013-01-01

    New findings in plasma harmonics studies using strong laser fields are reviewed. We discuss recent achievements in the growth of the efficiency of coherent extreme ultraviolet (XUV) radiation sources based on frequency conversion of the ultrashort pulses in the laser-produced plasmas, which allowed for the spectral and structural studies of matter through the high-order harmonic generation (HHG) spectroscopy. These studies showed that plasma HHG can open new opportunities in many unexpected areas of laser-matter interaction. Besides being considered as an alternative method for generation of coherent XUV radiation, it can be used as a powerful tool for various spectroscopic and analytical applications. PMID:23864818

  6. Magnetic Turbulence in Colliding Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Collette, A.; Gekelman, W.; Vincena, S.

    2007-05-01

    The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes, among them coronal mass ejections and the many examples of plasma jets from astrophotography. Turbulence is expected to be present in many such configurations. We describe a series of experiments which involve the collision of two dense (initially, n > 1015cm-3) laser-produced plasmas within an ambient, highly magnetized background plasma. The laser-produced plasmas form diamagnetic cavities in which a large percentage of the background magnetic field (600G) has been expelled. First-stage observations of these structures have been completed using a fast (3ns exposure) camera. The photographs indicate complicated structure at late times, in addition to coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. The second stage of observation will consist of direct investigation of the magnetic field using probes. A novel diagnostic system composed of small (300-500 micron) 3-axis differential magnetic field probes in conjunction with a ceramic motor system capable of extremely fine (sub-micron) positioning accuracy is currently under development. An ensemble of magnetic field data from fixed and movable probes makes possible the calculation of the cross-spectral function. Initial data from photography and a prototype probe will be presented.

  7. MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES

    DOEpatents

    Post, R.F.

    1963-08-20

    More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)

  8. Shercliff layers in strongly magnetic cylindrical Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Hollerbach, Rainer; Hulot, Deborah

    2016-07-01

    We numerically compute the axisymmetric Taylor-Couette flow in the presence of axially periodic magnetic fields, with Hartmann numbers up to Ha2 =107. The geometry of the field singles out special field lines on which Shercliff layers form. These are simple shear layers for insulating boundaries, versus super-rotating or counter-rotating layers for conducting boundaries. Some field configurations have previously studied spherical analogs, but fundamentally new configurations also exist, having no spherical analogs. Finally, we explore the influence of azimuthal fields Bϕ ∼r-1eˆϕ on these layers, and show that the flow is suppressed for conducting boundaries, but enhanced for insulating boundaries. xml:lang="fr"

  9. Thin accretion discs are stabilized by a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander

    2016-07-01

    By studying three-dimensional, radiative, global simulations of sub-Eddington, geometrically thin (H/R ≈ 0.15) black hole accretion flows we show that thin discs which are dominated by magnetic pressure are stable against thermal instability. Such discs are thicker than predicted by the standard model and show significant amount of dissipation inside the marginally stable orbit. Radiation released in this region, however, does not escape to infinity but is advected into the black hole. We find that the resulting accretion efficiency (5.5 ± 0.5 per cent for the simulated 0.8dot{M}_Edd disc) is very close to the predicted by the standard model (5.7 per cent).

  10. Effect of bias application to plasma density in weakly magnetized inductively coupled plasma

    SciTech Connect

    Kim, Hyuk; Lee, Woohyun; Park, Wanjae; Whang, Ki-Woong

    2013-07-15

    Independent control of the ion flux and energy can be achieved in a dual frequency inductively coupled plasma (ICP) system. Typically, the plasma density is controlled by the high-frequency antenna radio-frequency (RF) power and the ion energy is controlled by the low-frequency bias RF power. Increasing the bias power has been known to cause a decrease in the plasma density in capacitively coupled discharge systems as well as in ICP systems. However, an applied axial magnetic field was found to sustain or increase the plasma density as bias power is increased. Measurements show higher electron temperatures but lower plasma densities are obtained in ordinary ICP systems than in magnetized ICP systems under the same neutral gas pressure and RF power levels. Explanations for the difference in the behavior of plasma density with increasing bias power are given in terms of the difference in the heating mechanism in ordinary unmagnetized and magnetized ICP systems.

  11. Constructing the Coronal Magnetic Field by Correlating Parameterized Magnetic Field Lines with Observed Coronal Plasma Structures

    NASA Technical Reports Server (NTRS)

    Allen, Gary G.; Alexander, David

    1999-01-01

    A method is presented for constructing the coronal magnetic field from photospheric magnetograms and observed coronal loops. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal flux tubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures that (1) the normal component of the photospheric field remains unchanged, (2) the field is given in the entire corona over an active region, (3) the field remains divergence-free, and 4electric currents are introduced into the field. It is demonstrated that a parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 November 26. The result is a non-force-free magnetic field with the Lorentz force being of the order of 10(exp -5.5) g per s(exp 2) resulting from an electric current density of 0.79 micro A per m(exp 2). Calculations show that the plasma beta becomes larger than unity at a strong non-radial currents requires low height of about 0.25 solar radii supporting the non-force-free conclusion. The presence of such strong non-radial currents requires large transverse pressure gradients fo maintain a magnetostatic atmosphere, required by the relatively persistent nature of the coronal structures observed in AR 7999. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.

  12. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime

    DOE PAGES

    Guo, Fan; Liu, Yi -Hsin; Daughton, William; ...

    2015-06-17

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron–positron plasmas starting with a magnetically dominated, force-free current sheet (σ ≡ B2 / (4πnemec2) >> 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature driftmore » of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f α (γ - 1)-p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This paper suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.« less

  13. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime

    SciTech Connect

    Guo, Fan; Liu, Yi -Hsin; Daughton, William; Li, Hui

    2015-06-17

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron–positron plasmas starting with a magnetically dominated, force-free current sheet (σ ≡ B2 / (4πnemec2) >> 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature drift of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f α (γ - 1)-p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This paper suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.

  14. Anomalous temperature relaxation and particle transport in a strongly non-unifrom, fully in ionized Plasma in a stromg mangnetic field

    NASA Astrophysics Data System (ADS)

    Øien, Alf H.

    1995-02-01

    In classical kinetic and transport theory for a fully ionized plasma in a magnetic field, collision integrals from a uniform theory without fields are used. When the magnetic field is so strong that electrons may gyrate during electron—electron and electron—ion interactions, the form of the collision integrals will be modified. Another modification will stem from strong non-uniformities transverse to the magnetic field B. Using collision terms that explicitly incorporate these effects, we derive in particular the temperature relaxation between electrons and ions and the particle transport transverse to the magnetic field. In both cases collisions between gyrating electrons, which move along the magnetic field, and non-gyrating ions, which move in arbitrary directions at a distance transverse to B from the electrons larger than the electron Larmor radius but smaller than the Debye length, give rise to enhancement factors in the corresponding classical expressions of order In (mion/mel).

  15. Plasma expansion in the presence of a dipole magnetic field

    SciTech Connect

    Winske, D.; Omidi, N.

    2005-07-15

    Simulations of the initial expansion of a plasma injected into a stationary magnetized background plasma in the presence of a dipole magnetic field are carried out in two dimensions with a kinetic ion, massless fluid electron (hybrid) electromagnetic code. For small values of the magnetic dipole, the injected ions have large gyroradii compared to the scale length of the dipole field and are essentially unmagnetized. As a result, these ions expand, excluding the ambient magnetic field and plasma to form a diamagnetic cavity. However, for stronger magnetic dipoles, the ratio of the gyroradii of the injected ions to the dipole field scale length is small so that they remain magnetized, and hence trapped in the dipole field, as they expand. The trapping and expansion then lead to additional plasma currents and resulting magnetic fields that not only exclude the background field but also interact with the dipole field in a more complex manner that stretches the closed dipole field lines. A criterion to distinguish between the two regimes is derived and is then briefly discussed in the context of applying the results to the plasma sail scheme for the propulsion of small spacecraft in the solar wind.

  16. Hot electromagnetic outflows. III. Displaced fireball in a strong magnetic field

    SciTech Connect

    Thompson, Christopher; Gill, Ramandeep

    2014-08-10

    The evolution of a dilute electron-positron fireball is calculated in the regime of strong magnetization and high compactness (ℓ ∼ 10{sup 3}-10{sup 8}). Heating is applied at a low effective temperature (<25 keV), appropriate to breakout from a confining medium, so that relaxation to a blackbody is inhibited by pair annihilation. The diffusion equation for Compton scattering by thermal pairs is coupled to a trans-relativistic cyclo-synchrotron source. We find that the photon spectrum develops a quasi-thermal peak at energy ∼0.1 m{sub e}c {sup 2} in the comoving frame, with a power-law slope below it that is characteristic of gamma-ray bursts (GRBs; F{sub ω} ∼ const). The formation of a thermal high-energy spectrum is checked using the full kinetic equations. Calculations for a baryon-dominated photosphere reveal a lower spectral peak energy, and a harder low-energy spectrum, unless ion rest mass carries ≲ 10{sup –5} of the energy flux. We infer that (1) the GRB spectrum is inconsistent with the neutron-rich wind emitted by a young magnetar or neutron torus, and points to an event horizon in the engine; (2) neutrons play a negligible role in prompt gamma-ray emission; (3) the relation between observed peak frequency and burst energy is bounded below by the observed Amati relation if the Lorentz factor ∼(opening angle){sup –1} at breakout, and the jet is surrounded by a broader sheath that interacts with a collapsing stellar core; (4) X-ray flashes are consistent with magnetized jets with ion-dominated photospheres; (5) high-frequency Alfvén waves may become charge starved in the dilute pair gas; (6) limitations on magnetic reconnection from plasma collisionality have been overestimated.

  17. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Huang, Y. L.; Wang, Y.; Hou, Y. H.; Wang, Y. L.; Wu, Y.; Ma, S. C.; Liu, Z. W.; Zeng, D. C.; Tian, Y.; Xia, W. X.; Zhong, Z. C.

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m3 are obtained for an isotropic magnet.

  18. Enhancement mechanism of H- production and suitable configurations for materials processing in a magnetized sheet plasma

    NASA Astrophysics Data System (ADS)

    Ramos, Henry J.; Villamayor, Michelle Marie S.; Mella, Aubrey Faith M.; Salamania, Janella Mae R.; Villanueva, Matthew Bryan P.; Viloan, Rommel Paulo B.

    2014-08-01

    A magnetized sheet plasma ion source was developed for steady state high density plasma with strong density and high temperature gradients. This feature provides efficient formation of negative hydrogen (H-) ions over a wide beam extraction area through the electron volume process. A hexapole confinement at the cathode, addition of argon and magnesium seeding led to the increase of H- yield. The device configuration is suitable for plasma based materials processing namely, synthesis of TiN, SiH, SnO2, and the formation of advanced MAX phase materials Ti2AlC, Ti2CdC and NbAlC.

  19. Observation of magnetic fluctuations and rapid density decay of magnetospheric plasma in Ring Trap 1

    SciTech Connect

    Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Mikami, H.; Kasaoka, N.; Sakamoto, W.

    2012-06-15

    The Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet, has created high-{beta} (local {beta} {approx} 70%) plasma by using electron cyclotron resonance heating (ECH). When a large population of energetic electrons is generated at low neutral gas pressure operation, high frequency magnetic fluctuations are observed. When the fluctuations are strongly excited, rapid loss of plasma was simultaneously observed especially in a quiet decay phase after the ECH microwave power is turned off. Although the plasma is confined in a strongly inhomogeneous dipole field configuration, the frequency spectra of the fluctuations have sharp frequency peaks, implying spatially localized sources of the fluctuations. The fluctuations are stabilized by decreasing the hot electron component below approximately 40%, realizing stable high-{beta} confinement.

  20. Dust-Plasma Sheath in an Oblique Magnetic Field

    SciTech Connect

    Foroutan, G.; Mehdipour, H.

    2008-09-07

    Using numerical simulations of the multi fluid equations the structure of the magnetized sheath near a plasma boundary is studied in the presence of charged dust particles. The dependence of the electron, ion, and dust densities as well as the electrostatic potential, dust charge, and ion normal velocity, on the magnetic field strength and the edge dust number density is investigated.

  1. Nonlinear dynamics of large amplitude modes in a magnetized plasma

    SciTech Connect

    Brodin, G.; Stenflo, L.

    2014-12-15

    We derive two equations describing the coupling between electromagnetic and electrostatic oscillations in one-dimensional geometry in a magnetized cold and non-relativistic plasma. The nonlinear interaction between the wave modes is studied numerically. The effects of the external magnetic field strength and the initial electromagnetic polarization are of particular interest here. New results can, thus, be identified.

  2. Simultaneous Excitation and Analysis of Three Instabilities in Magnetized Plasma

    SciTech Connect

    Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2008-03-19

    Experimental results are presented on the simultaneous excitation of three low-frequency instabilities in the magnetized plasma column of a Q-machine, namely the potential relaxation instability, the electrostatic ion-cyclotron instability and the Kelvin-Helmholtz instability. The influence of the magnetic field intensity on the appearance of these instabilities was investigated.

  3. Solitary surface waves on a magnetized plasma cylinder

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.; Sünder, D.

    1985-02-01

    We analyse high-frequency electrostatic solitary surface waves that propagate along a plasma cylinder in the presence of a constant axial magnetic field. The width of such a solitary wave, which is found to be inversely proportional to its amplitude, is expressed as a function of the magnitude of the external magnetic field.

  4. On the ion acoustic obliquely propagation in magnetized inhomogeneous plasmas

    NASA Astrophysics Data System (ADS)

    Mowafy, A. E.; El-Shewy, E. K.; Abdelwahed, H. G.

    2017-02-01

    Inhomogeneous multi-component magnetized plasmas containing inertial ions, nonthermal electrons, and Boltzmannian positrons have been investigated theoretically. Variable coefficients Zakharov Kuznetsov (VZK) equation has been derived in a small amplitude limit. It is found that the propagation directions, positron parameters and magnetic field affected the properties of propagation of positive-negative solitary waves.

  5. Discovery of a Centrifugal Magnetosphere around the He-Strong Magnetic B1 Star ALS 3694

    NASA Astrophysics Data System (ADS)

    Shultz, M.; Wade, G.; Rivinius, T.; Sikora, J.; MiMeS Collaboration

    2016-11-01

    We report the results of 6 nights of Canada-France-Hawaii Telescope spectropolarimetric ESPaDOnS observations of the He-strong, magnetic B1 type star ALS 3694. The longitudinal magnetic field is approximately 2 kG in all 6 observations, showing essentially no variation between nights. The Hα line displays variable emission on all nights, peaking at high velocities (˜3 v sin i). Given the presence of a strong (Bd>6 kG) magnetic field, and the similarity of the emission profile to that of other magnetic B-type stars, we interpret the emission as a consequence of a centrifugal magnetosphere.

  6. Evaluation of diamagnetic nanofluid ability to heat transfer in the strong magnetic field

    NASA Astrophysics Data System (ADS)

    Roszko, A.; Fornalik-Wajs, E.

    2016-09-01

    The main goal of this paper was to analyze the strong magnetic field influence on the diamagnetic fluids. The experimental analysis of thermo-magnetic convection of silver nanofluid and distilled water were presented. The effect of various magnetic induction values and various temperature differences on the transport processes were checked. Estimation of the heat transfer was able due to the thermoelement signal analysis. The results revealed changes in the convection due to the nanoparticles addition in some ranges stronger, in other weaker, under applied conditions. It was proven, that heat transfer of diamagnetic fluid (single and two- phase) could be influenced by the strong magnetic field application.

  7. Chirality-induced negative refraction in magnetized plasma

    SciTech Connect

    Guo, B.

    2013-09-15

    Characteristic equations in magnetized plasma with chirality are derived in simple formulations and the dispersion relations for propagation parallel and perpendicular to the external magnetic field are studied in detail. With the help of the dispersion relations of each eigenwave, the author explores chirality-induced negative refraction in magnetized plasma and investigates the effects of parameters (i.e., chirality degree, external magnetic field, etc.) on the negative refraction. The results show that the chirality is the necessary and only one factor which leads to negative refraction without manipulating electrical permittivity and magnetic permeability. Both increasing the degree of chirality and reducing the external magnetic field can result in greater range negative refraction. Parameter dependence of the effects is calculated and discussed.

  8. Numerical simulation of cathode plasma dynamics in magnetically insulated vacuum transmission lines

    SciTech Connect

    Thoma, C.; Genoni, T. C.; Welch, D. R.; Rose, D. V.; Clark, R. E.; Miller, C. L.; Stygar, W. A.; Kiefer, M. L.

    2015-03-15

    A novel algorithm for the simulation of cathode plasmas in particle-in-cell codes is described and applied to investigate cathode plasma evolution in magnetically insulated transmission lines (MITLs). The MITL electron sheath is modeled by a fully kinetic electron species. Electron and ion macroparticles, both modeled as fluid species, form a dense plasma which is initially localized at the cathode surface. Energetic plasma electron particles can be converted to kinetic electrons to resupply the electron flux at the plasma edge (the “effective” cathode). Using this model, we compare results for the time evolution of the cathode plasma and MITL electron flow with a simplified (isothermal) diffusion model. Simulations in 1D show a slow diffusive expansion of the plasma from the cathode surface. But in multiple dimensions, the plasma can expand much more rapidly due to anomalous diffusion caused by an instability due to the strong coupling of a transverse magnetic mode in the electron sheath with the expanding resistive plasma layer.

  9. Plasma plume dynamics in magnetically assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Haverkamp, J. D.; Bourham, M. A.; Du, S.; Narayan, J.

    2009-01-01

    The expansion of a laser produced plasma perpendicular to a magnetic field is studied with a quadruple Langmuir probe and a B-dot probe. In regions where the kinetic beta is less than one, we find plume deceleration and weak displacement of the magnetic field. As the plume expands into regions of weak magnetic field, plume deceleration stops and the displacement of the magnetic field is large. The diffusion time of the magnetic field lines was consistent with anomalously large resistivity driven by the presence of an instability. Electron temperatures are larger than in the field-free case due to Ohmic heating mediated by the anomalously large resistivity.

  10. Plasma physics. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave.

    PubMed

    Matsumoto, Y; Amano, T; Kato, T N; Hoshino, M

    2015-02-27

    Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.

  11. Enhancing cold atmospheric plasma treatment of cancer cells by static magnetic field.

    PubMed

    Cheng, Xiaoqian; Rajjoub, Kenan; Shashurin, Alexey; Yan, Dayun; Sherman, Jonathan H; Bian, Ka; Murad, Ferid; Keidar, Michael

    2017-01-01

    It has been reported since late 1970 that magnetic field interacts strongly with biological systems. Cold atmospheric plasma (CAP) has also been widely studied over the past few decades in physics, biology, and medicine. In this study, we propose a novel idea to combine static magnetic field (SMF) with CAP as a tool for cancer therapy. Breast cancer cells and wild type fibroblasts were cultured in 96-well plates and treated by CAP with or without SMF. Breast cancer cells MDA-MB-231 showed a significant decrease in viability after direct plasma treatment with SMF (compared to only plasma treatment). In addition, cancer cells treated by the CAP-SMF-activated medium (indirect treatment) also showed viability decrease but was slightly weaker than the direct plasma-SMF treatment. By integrating the use of SMF and CAP, we were able to discover their advantages that have yet to be utilized. Bioelectromagnetics. 38:53-62, 2017. © 2016 Wiley Periodicals, Inc.

  12. Charge Buildup in Magnetized Process Plasma

    NASA Astrophysics Data System (ADS)

    Namura, Takashi; Okada, Hiroyuki; Naitoh, Yasushi; Todokoro, Yoshihiro; Inoue, Morio

    1991-07-01

    The charge buildup in a magnetron etcher has been studied experimentally for two different magnet arrangements and theoretically on the basis of an equivalent circuit model. Wafer charging measured with a metal-Si3N4-SiO2-Si (MNOS) capacitor is negative along the centerline of the magnet poles and positive between the magnets in both cases. Wafer charging is explained either by curtent crowding at the center of the magnet poles or by the nonambipolar diffusion effect.

  13. A table top experiment to study plasma confined by a dipole magnet

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Baitha, Anuj Ram

    2016-10-01

    There has been a long quest to understand charged particle generation, confinement and underlying complex processes in a plasma confined by a dipole magnet. Our earth's magnetosphere is an example of such a naturally occurring system. A few laboratory experiments have been designed for such investigations, such as the Levitated Dipole Experiment (LDX) at MIT, the Terella experiment at Columbia university, and the Ring Trap-1 (RT-1) experiment at the University of Tokyo. However, these are large scale experiments, where the dipole magnetic field is created with superconducting coils, thereby, necessitating power supplies and stringent cryogenic requirements. We report a table top experiment to investigate important physical processes in a dipole plasma. A strong cylindrical permanent magnet, is employed to create the dipole field inside a vacuum chamber. The magnet is suspended and cooled by circulating chilled water. The plasma is heated by electromagnetic waves of 2.45 GHz and a second frequency in the range 6 - 11 GHz. Some of the initial results of measurements and numerical simulation of magnetic field, visual observations of the first plasma, and spatial measurements of plasma parameters will be presented.

  14. Observations of Magnetic Reconnection and Plasma Dynamics in Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    DiBraccio, Gina A.

    Mercury's magnetosphere is formed as a result of the supersonic solar wind interacting with the planet's intrinsic magnetic field. The combination of the weak planetary dipole moment and intense solar wind forcing of the inner heliosphere creates a unique space environment, which can teach us about planetary magnetospheres. In this work, we analyze the first in situ orbital observations at Mercury, provided by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Magnetic reconnection and the transport of plasma and magnetic flux are investigated using MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer measurements. Here, we report our results on the effect of magnetic reconnection and plasma dynamics on Mercury's space environment: (1) Mercury's magnetosphere is driven by frequent, intense magnetic reconnection observed in the form of magnetic field components normal to the magnetopause, BN, and as helical bundles of flux, called magnetic flux ropes, in the cross-tail current sheet. The high reconnection rates are determined to be a direct consequence of the low plasma beta, the ratio of plasma to magnetic pressure, in the inner heliosphere. (2) As upstream solar wind conditions vary, we find that reconnection occurs at Mercury's magnetopause for all orientations of the interplanetary magnetic field, independent of shear angle. During the most extreme solar wind forcing events, the influence of induction fields generated within Mercury's highly conducting core are negated by erosion due to persistent magnetopause reconnection. (3) We present the first observations of Mercury's plasma mantle, which forms as a result of magnetopause reconnection and allows solar wind plasma to enter into the high-latitude magnetotail through the dayside cusps. The energy dispersion observed in the plasma mantle protons is used to infer the cross-magnetosphere electric field, providing a direct measurement of solar wind momentum

  15. Nonlinear Amplification of the Whistler Wave in a Magnetized Relativistic Beam-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Taguchi, Toshihiro; Antonsen, Thomas; Mima, Kunioki

    2015-11-01

    We have been investigating a relativistic electron beam-plasma interaction under a strong magnetic field using a hybrid simulation code. In an initial stage, the electron beam drives a return current in a background plasma and such a two beam state causes a longitudinal two stream instability and a transverse Weibel instability. The application of a strong magnetic field is proposed for the suppression of the beam instabilities. When a sufficiently strong magnetic field is applied along the beam propagation, the Weibel instability is well suppressed and electrons flow laminarly. When the magnetic field strength is not large enough, however, electrons stagnate and the total number of beam electrons is largely reduced. Our detailed analyses show that a strong whistler wave is excited during the interaction and the wave stops the beam electrons. Since the whistler wave is composed of transverse electromagnetic fields, there should be a mechanism to convert the transverse field to a longitudinal one. In order to investigate this problem, we have performed a lot of simulation runs for a simple geometry. Then we found the amplified transverse modulation of the background plasma due to the Weibel instability plays an important role for the amplification of the whistler wave. This work was supported by a Grant-in-Aid for Scientific Research (B), 15H03758.

  16. Laser-Plasma Interaction in Presence of an Obliquely External Magnetic Field: Application to Laser Fusion without Radioactivity

    NASA Astrophysics Data System (ADS)

    Mobaraki, M.; Jafari, S.

    2016-08-01

    In this paper, the nonlinear interaction of ultra-high power laser beam with fusion plasma at relativistic regime in the presence of obliquely external magnetic Geld has been studied. Imposing an external magnetic Geld on plasma can modify the density profile of the plasma so that the thermal conductivity of electrons reduces which is considered to be the decrease of the threshold energy for ignition. To achieve the fusion of Hydrogen-Boron (HB) fuel, the block acceleration model of plasma is employed. Energy production by HB isotopes can be of interest, since its reaction does not generate radioactive tritium. By using the inhibit factor in the block model acceleration of plasma and Maxwell's as well as the momentum transfer equations, the electron density distribution and dielectric permittivity of the plasma medium are obtained. Numerical results indicate that with increasing the intensity of the external magnetic field, the oscillation of the laser magnetic field decreases, while the dielectric permittivity increases. Moreover, the amplitude of the electron density becomes highly peaked and the plasma electrons are strongly bunched with increasing the intensity of external magnetic field. Therefore, the magnetized plasma can act as a positive focusing lens to enhance the fusion process. Besides, we find that with increasing θ-angle (from oblique external magnetic field) between 0 and 90°, the dielectric permittivity increases, while for θ between 90° and 180°, the dielectric permittivity decreases with increasing θ.

  17. A soliton gas model for astrophysical magnetized plasma turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.; Sheerin, J. P.

    1982-06-01

    Plasma turbulence is considered as an ensemble of solitons. The derivation of the Alfven soliton by Spangler and Sheering (1981) is reviewed, and expressions are derived for the magnetic irregularity spectrum and the relationship between the magnetic and density irregularity power spectra. A derived expression also provides the answer to the question of the correlation between magnetic field and density enhancements. The properties of the turbulence model are compared with observations of plasma turbulence in the solar wind, and are found to reasonably account for them.

  18. Magnetic control of particle injection in plasma based accelerators.

    PubMed

    Vieira, J; Martins, S F; Pathak, V B; Fonseca, R A; Mori, W B; Silva, L O

    2011-06-03

    The use of an external transverse magnetic field to trigger and to control electron self-injection in laser- and particle-beam driven wakefield accelerators is examined analytically and through full-scale particle-in-cell simulations. A magnetic field can relax the injection threshold and can be used to control main output beam features such as charge, energy, and transverse dynamics in the ion channel associated with the plasma blowout. It is shown that this mechanism could be studied using state-of-the-art magnetic fields in next generation plasma accelerator experiments.

  19. On the Magnetic Flux Conservation in the Partially Ionzied Plasma

    NASA Astrophysics Data System (ADS)

    Tsap, Yu.; Kopylova, Yu.

    2014-12-01

    The Ohm, Hall, and ambipolar diffusions in the partially ionized plasma are considered. It has been shown that the statement of Pandey and Wardle that only the Ohm diffusion is capable to decrease the magnetic flux is not sufficiently correct due to the formal dependence of the magnetic diffusion on a selected frame of reference. Thes ignificance of understanding of the physical nature for the dissipation and diffusion of the magnetic field in the partially ionized plasma as well as consequences of obtained results are discussed.

  20. MHD Simulations of the Plasma Flow in the Magnetic Nozzle

    NASA Technical Reports Server (NTRS)

    Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.

    2013-01-01

    The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the

  1. Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas

    SciTech Connect

    Jardin, S C

    2010-09-28

    Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.

  2. Plasma (Accretion) Disks with High Magnetic Energy Densities

    NASA Astrophysics Data System (ADS)

    Rousseau, F.; Coppi, B.

    2006-04-01

    ``Corrugated'' plasma disks can form in the dominant gravity of a central object when the peak plasma pressure in the disk is of the same order as that of the pressure of the ``external'' magnetic field, while the magnetic field resulting from internal plasma currents is of the same order as the external field. The corrugation refers to a periodic variation of the plasma density in a region around the equatorial plane. The considered structure represents a transition between a ``classical'' accretion disk and a ``rings sequence'' configuration^2. The common feature of the ``corrugated'' and the ``rings sequence'' configurations is the ``crystal'' structure of the magnetic surfaces that consist of a sequence of pairs of oppositely directed toroidal current density filaments. The connection between the characteristics of these configurations and those of the marginally stable ballooning modes that can be found in a model accretion disk is pointed out and analyzed.

  3. Collimation of laser-produced plasmas using axial magnetic field

    SciTech Connect

    Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.; Endo, Akira; Mocek, Tomas; Hassanein, A.

    2015-06-01

    We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presence of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.

  4. Magnetic Piston Propagation in a 100-ns Plasma Opening Switch

    NASA Astrophysics Data System (ADS)

    Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtman, A.

    1998-11-01

    The propagation of a magnetic piston through the plasma of a 90-ns, 170-kA POS is observed by studying the electron density, magnetic field, and ion velocity evolution. For the prefilled plasma n_e=(2.2± 0.5)× 10^14 cm-3, and T_e=5.5± 1 eV. The plasma composition is studied from absolute line intensities and collisional-radiative calculations. Most of the plasma ions are protons (90% near the cathode) with the rest being mainly CIV. The Hall-MHD conditions are not fulfilled for our experiment and ion motion is significant. The 3D-resolved ne evolution during the current pulse is studied from the line intensities of ions doped in the plasma using laser evaporation, and the magnetic field from Zeeman splitting. A diagonal magnetic piston propagates from the generator towards the load at about half the proton Alfven velocity. The protons are specularly reflected by the piston, while the heavy ions cross the potential hill in the piston, acquiring a lower velocity. The proton reflection causes an increase of ne ahead of the piston, followed by a sharp (10-20 ns) and substantial drop in ne (to 10-50% from the initial value). The magnetic field distribution studied using chordal observation, and theoretical analysis of ne and the magnetic field evolution are presented.

  5. Sustenance of inhomogeneous electron temperature in a magnetized plasma column

    SciTech Connect

    Karkari, S. K. Mishra, S. K.; Kaw, P. K.

    2015-09-15

    This paper presents the equilibrium properties of a magnetized plasma column sustained by direct-current (dc) operated hollow cathode discharge in conjunction with a conducting end-plate, acting as the anode. The survey of radial plasma characteristics, performed in argon plasma, shows hotter plasma in the periphery as compared to the central plasma region; whereas the plasma density peaks at the center. The off-centered peak in radial temperature is attributed due to inhomogeneous power deposition in the discharge volume in conjunction with short-circuiting effect by the conducting end plate. A theoretical model based on particle flux and energy balance is given to explain the observed characteristics of the plasma column.

  6. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  7. Nonlinear generation mechanism for the vortical electric field in magnetized plasma media

    SciTech Connect

    Aburjania, G. D.

    2007-10-15

    A physical mechanism and nonlinear mathematical formalism for study of generation and further amplification of the vortical electric field in the magnetized plasma are proposed. A modulation instability process in a plasma medium is considered in a strong constant magnetic field. The plasmon condensate is modulated not by a low-frequency ionic sound as is usually done, but by the beating of two high-frequency transverse electromagnetic waves propagating along the external magnetic field. Conditions in which aperiodic instability occurs are found and its increment is defined. This instability leads to a decrease in the scale of Langmuir turbulence along the external magnetic field and to the generation of electromagnetic fields. Dissipative property of the medium increases an amplitude threshold of the pumping waves. It is shown that for sufficiently large amplitudes of pumping waves the effect described in the paper is the defining nonlinear process.

  8. Generation of strong magnetic fields in dense quark matter driven by the electroweak interaction of quarks

    NASA Astrophysics Data System (ADS)

    Dvornikov, Maxim

    2016-12-01

    We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field 1012G to the strengths (1014 -1015)G. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.

  9. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2016-07-05

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  10. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2006-04-11

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  11. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2006-10-31

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  12. Apparatus for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2013-06-11

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  13. Thermo-galvanometric instabilities in magnetized plasma disks

    NASA Astrophysics Data System (ADS)

    Franco, Alessio; Montani, Giovanni; Carlevaro, Nakia

    2014-11-01

    In this work, we present a linear stability analysis of fully-ionized rotating plasma disks with a temperature gradient and a sub-thermal background magnetic field (oriented towards the axial direction). We describe how the plasma reacts when galvanometric and thermo-magnetic phenomena, such as Hall and Nernst-Ettingshausen effects, are taken into account, and meridian perturbations of the plasma are considered. It is shown how, in the ideal case, this leads to a significant overlap of the Magneto-rotational Instability and the Thermo-magnetic one. Considering dissipative effects, an overall damping of the unstable modes, although not sufficient to fully suppress the instability, appears especially in the thermo-magnetic related branch of the curve.

  14. Nonlinear magnetic field transport in opening switch plasmas

    NASA Astrophysics Data System (ADS)

    Mason, R. J.; Auer, P. L.; Sudan, R. N.; Oliver, B. V.; Seyler, C. E.; Greenly, J. B.

    1993-04-01

    The nonlinear transport of magnetic field in collisionless plasmas, as present in the plasma opening switch (POS), using the implicit multifluid simulation code anthem [J. Comput. Phys. 71, 429 (1987)] is studied. The focus is on early time behavior in the electron-magnetohydrodynamic (EMHD) limit, with the ions fixed, and the electrons streaming as a fluid under the influence of ve×B Hall forces. Through simulation, magnetic penetration and magnetic exclusion waves are characterized, due to the Hall effect in the presence of transverse density gradients, and the interaction of these Hall waves with nonlinear diffusive disturbances from electron velocity advection, (veṡ∇)ve, is studied. It is shown how these mechanisms give rise to the anode magnetic insulation layer, central diffusion, and cathode potential hill structures seen in earlier opening switch plasmas studies.

  15. Espisodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape

    SciTech Connect

    Brain, D A; Baker, A H; Briggs, J; Eastwood, J P; Halekas, J S; Phan, T

    2009-06-02

    We present an analysis of magnetic field and suprathermal electron measurements from the Mars Global Surveyor (MGS) spacecraft that reveals isolated magnetic structures filled with Martian atmospheric plasma located downstream from strong crustal magnetic fields with respect to the flowing solar wind. The structures are characterized by magnetic field enhancements and rotations characteristic of magnetic flux ropes, and characteristic ionospheric electron energy distributions with angular distributions distinct from surrounding regions. These observations indicate that significant amounts of atmosphere are intermittently being carried away from Mars by a bulk removal process: the top portions of crustal field loops are stretched through interaction with the solar wind and detach via magnetic reconnection. This process occurs frequently and may account for as much as 10% of the total present-day ion escape from Mars.

  16. Effect of magnetic and physical nozzles on plasma thruster performance

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2014-08-01

    Plasma cross-field diffusion in a magnetic nozzle is inhibited by increasing the magnetic field strength in a helicon plasma thruster attached to a pendulum thrust balance, while maintaining constant plasma density and electron temperature in the source tube, i.e. a constant plasma injection into the magnetic nozzle, where the field strength near the radio frequency (rf) antenna is less than 210 G and the operating argon pressure in the vacuum chamber is 0.8 mTorr. Inhibition of the cross-field diffusion yields a higher electron pressure in the magnetic nozzle and a resultant larger thrust. The thrust component arising from the magnetic nozzle approaches the theoretical limit derived from an ideal magnetic nozzle approximation where no plasma is lost from the nozzle and there is an azimuthal plasma current originating from the electron diamagnetic drift. It is also shown that the momentum of the plasma lost from the magnetic nozzle is captured by a physical nozzle attached at the source exit resulting in a larger thrust. Two physical nozzles of different sizes (nozzle 1 : 10.5 cm in length with a maximum diameter of 20 cm, nozzle 2 : 26 cm in length with a maximum diameter of 36 cm) are tested. The maximum thrust of 20 ± 1 mN is obtained for 25 sccm argon propellant and 2 kW rf power with a reflection power less than 5 W, which gives a specific impulse of 2750 ± 165 s and a thrust efficiency of 13.5 ± 1.5%.

  17. Effect of solenoidal magnetic field on drifting laser plasma

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  18. Collisionless Interaction of a Magnetized Ambient Plasma and a Field-Parallel Laser Produced Plasma

    NASA Astrophysics Data System (ADS)

    Heuer, P. V.; Bondarenko, A. S.; Schaeffer, D. B.; Constantin, C. G.; Vincena, S.; Tripathi, S.; Gekelman, W.; Weidl, M.; Winske, D.; Niemann, C.

    2016-10-01

    We present measurements of the collisionless coupling between an exploding laser-produced plasma (LPP) and a large, magnetized ambient plasma. The LPP was created by focusing the Raptor laser (400 J, 40 ns) on a planar plastic target embedded in the ambient Large Plasma Device (LAPD) plasma at the University of California, Los Angeles. The resulting ablated material moved parallel to the background magnetic field, interacting with the ambient plasma along the full 17m length of the LAPD. The amplitude and polarization of waves driven by the interaction were measured by an array of 3-axis magnetic flux probes. Emissive doppler spectroscopy and a high temporal resolution monochrometer were used to observe the velocity and charge state distributions of both ambient and debris ions. Measurements are compared to hybrid simulations of quasi-parallel shocks.

  19. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    SciTech Connect

    Tierno, S. P. Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.

    2016-01-15

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.

  20. Self-diffusion, conductivity, and long-wavelength plasma oscillations in strongly coupled two-component plasmas

    NASA Astrophysics Data System (ADS)

    Sjogren, L.; Hansen, J. P.; Pollock, E. L.

    1981-09-01

    The autocorrelation functions of the microscopic electric current J(t) and the electron velocity Z2(t) are calculated for strongly coupled semiclassical two-component plasmas. The corresponding memory functions are expressed in terms of mode-coupling integrals involving density- and energy-correlation functions in the framework of a microscopic kinetic theory which preserves the exact statics. The theory is applied to weakly degenerate hydrogen and carbon plasmas for values of the plasma parameter of order 1. The resulting correlation functions J(t) and Z2(t) and their integrals, the electrical conductivity, and the electron self-diffusion constant, agree reasonably well with the molecular dynamics data of Hansen and McDonald and with additional simulation results presented here.

  1. The polarized Debye sheath effect on Kadomtsev-Petviashvili electrostatic structures in strongly coupled dusty plasma

    SciTech Connect

    Shahmansouri, M.; Alinejad, H.

    2015-04-15

    We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.

  2. Transport equations for partially ionized reactive plasma in magnetic field

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-06-01

    Transport equations for partially ionized reactive plasma in magnetic field taking into account the internal degrees of freedom and electronic excitation of plasma particles are derived. As a starting point of analysis the kinetic equation with a binary collision operator written in the Wang-Chang and Uhlenbeck form and with a reactive collision integral allowing for arbitrary chemical reactions is used. The linearized variant of Grad's moment method is applied to deduce the systems of moment equations for plasma and also full and reduced transport equations for plasma species nonequilibrium parameters.

  3. Low Reynolds number flow's heat transfer influenced by strong magnetic field

    NASA Astrophysics Data System (ADS)

    Pleskacz, L.; Fornalik-Wajs, E.

    2016-09-01

    For the last 20 years research concerning the strong magnetic field influence on the weakly magnetic substances has been dynamically developing. The published papers refer mainly to natural convection problems connected with the impact of strong magnetic field. This paper follows previous Authors’ approach to forced convection modification by the additional magnetic force. Presently, attention was paid to the heat transfer processes and their quality assessment done in the basis of Nusselt number for low Reynolds number flow. The analysis was done for the geometry from Graetz-Brinkman problem with the magnetic coil located at the position of adiabatic-thermal boundary condition change. The numerical analysis was performed with Ansys software and application of the user-defined functions. Presented results revealed the influence of magnetic field on the flow structure and heat transfer.

  4. Deformed neutron stars due to strong magnetic field in terms of relativistic mean field theories

    NASA Astrophysics Data System (ADS)

    Yanase, Kota; Yoshinaga, Naotaka

    2014-09-01

    Some observations suggest that magnetic field intensity of neutron stars that have particularly strong magnetic field, magnetars, reaches values up to 1014-15G. It is expected that there exists more strong magnetic field of several orders of magnitude in the interior of such stars. Neutron star matter is so affected by magnetic fields caused by intrinsic magnetic moments and electric charges of baryons that masses of neutron stars calculated by using Tolman-Oppenheimer-Volkoff equation is therefore modified. We calculate equation of state (EOS) in density-dependent magnetic field by using sigma-omega-rho model that can reproduce properties of stable nuclear matter in laboratory Furthermore we calculate modified masses of deformed neutron stars.

  5. SELF-ASSEMBLY OF SHALLOW MAGNETIC SPOTS THROUGH STRONGLY STRATIFIED TURBULENCE

    SciTech Connect

    Brandenburg, Axel; Kleeorin, Nathan; Rogachevskii, Igor

    2013-10-20

    Recent studies have demonstrated that in fully developed turbulence, the effective magnetic pressure of a large-scale field (non-turbulent plus turbulent contributions) can become negative. In the presence of strongly stratified turbulence, this was shown to lead to a large-scale instability that produces spontaneous magnetic flux concentrations. Furthermore, using a horizontal magnetic field, elongated flux concentrations with a strength of a few percent of the equipartition value were found. Here we show that a uniform vertical magnetic field leads to circular magnetic spots of equipartition field strengths. This could represent a minimalistic model of sunspot formation and highlights the importance of two critical ingredients: turbulence and strong stratification. Radiation, ionization, and supergranulation may be important for realistic simulations, but are not critical at the level of a minimalistic model of magnetic spot formation.

  6. SU-E-T-368: Effect of a Strong Magnetic Field On Select Radiation Dosimeters

    SciTech Connect

    Mathis, M; Wen, Z; Tailor, R; Sawakuchi, G; Flint, D; Beddar, S; Ibbott, G

    2014-06-01

    Purpose: To determine the effect of a strong magnetic field on TLD-100, OSLD (Al{sub 2}O{sub 2}:C), and PRESAGE dosimetry devices. This study will help to determine which types of dosimeters can be used for quality assurance and in-vivo dosimetry measurements in a magnetic resonance imaginglinear accelerator (MRI-linac) system. Methods: The dosimeters were separated into two categories which were either exposed or not exposed to a strong magnetic field. In each category a set of dosimeters was irradiated with 0, 2, or 6 Gy. To expose the dosimeters to a magnetic field the samples in that category were place in a Bruker small animal magnetic resonance scanner at a field strength slightly greater than 2.5 T for at least 1 hour preirradiation and at least 1 hour post-irradiation. Irradiations were performed with a 6 MV x-ray beam from a Varian TrueBeam linac with 10×10 cm{sup 2} field at a 600 MU/min dose rate. The samples that received no radiation dose were used as control detectors. Results: The readouts of the dosimeters which were not exposed to a strong magnetic field were compared with the measurements of the dosimetry devices which were exposed to a magnetic field. No significant differences (less than 2% difference) in the performance of TLD, OSLD, or PRESAGE dosimeters due to exposure to a strong magnetic field were observed. Conclusion: Exposure to a strong magnetic field before and after irradiation does not appear to change the dosimetric properties of TLD, OSLD, or PRESAGE which indicates that these dosimeters have potential for use in quality assurance and in-vivo dosimetry in a MRI-linac. We plan to further test the effect of magnetic fields on these devices by irradiating them in the presence of a magnetic fields similar to those produced by a MRI-linac system. Elekta-MD Anderson Cancer Center Research Agreement.

  7. Turbulent Magnetic Field Amplification behind Strong Shock Waves in GRB and SNR

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi

    2012-09-01

    Using three-dimensional (special relativistic) magnetohydrodynamics simulations, the amplification of magnetic field behind strong shock wave is studied. In supernova remnants and gamma-ray bursts, strong shock waves propagate through an inhomogeneous density field. When the shock wave hit a density bump or density dent, the Richtmyer-Meshkov instability is induced that cause a deformation of the shock front. The deformed shock leaves vorticity behind the shock wave that amplifies the magnetic field due to the stretching of field lines.

  8. Collision-less Coupling between Explosive Debris Plasma and Magnetized Ambient Plasma

    NASA Astrophysics Data System (ADS)

    Bondarenko, Anton Sergeivich

    The explosive expansion of a dense debris plasma cloud into relatively tenuous, magnetized, ambient plasma characterizes a wide variety of astrophysical and space environments, including supernova remnants, interplanetary coronal mass ejections, and ionospheric explosions. In these and other related phenomena, collision-less electro-magnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the debris plasma to the ambient plasma. In an effort to better understand the detailed physics of collision-less coupling mechanisms, compliment in situ measurements, and provide validation of previous computational and theoretical work, the present research utilizes a unique experimental platform at the University of California, Los Angeles (UCLA) to study the interaction of explosive debris plasma with magnetized ambient plasma in a reproducible laboratory setting. Specifically, by jointly employing the Large Plasma Device (LAPD) and the Phoenix laser facility, the super-Alfvenic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma is investigated via a variety of sophisticated diagnostics, including emission spectroscopy, wavelength-filtered imaging, a magnetic flux probe, and a Langmuir probe. The key result is the direct observation of collision-less coupling via large Doppler shifts in a He II ion spectral line, which indicate that the ambient ions accelerate in response to the explosive debris plasma. Specifically, the He II ions accelerate along a trajectory that qualitatively corresponds to the large-scale laminar electric field generated by the debris expansion. A custom computational approach is utilized to simulate the initial He II ion response to the explosive debris plasma, and a synthetic Doppler-shifted wavelength spectrum constructed from the simulated ion velocities excellently reproduces the experimental

  9. The Plasma Instrument for Magnetic Sounding (PIMS): Enabling Required Plasma Measurements for the Exploration of Europa

    NASA Astrophysics Data System (ADS)

    Westlake, J. H.; McNutt, R. L., Jr.; Kasper, J. C.; Case, A. W.; Rymer, A. M.; Khurana, K. K.; Stevens, M. L.; Jia, X.; Slavin, J. A.; Paty, C. S.; Smith, H. T.; Kivelson, M.; Saur, J.; Krupp, N.; Roussos, E.; Korth, H.

    2015-12-01

    Europa exists in a complicated plasma environment where the tilt of Jupiter's magnetic field and rapid rotation rate leads to a dynamic interaction with Europa's ionospheric plasma. While understanding this plasma interaction is interesting in its own right, it is crucial for successfully magnetically sounding Europa's subsurface ocean. . In magnetic sounding, currents induced in Europa by the changing Jovian plasma produce a detectable secondary magnetic field that reflects properties of Europa's subsurface ocean such as depth and conductivity. This technique was successfully employed with Galileo observations of Europa to demonstrate that Europa indeed has a subsurface ocean containing more liquid water than Earth's oceans. While these Galileo observations contributed to the renewed interest in Europa, the results raised major questions that remain unanswered, in part due to the large uncertainties in the ice shell thickness, ocean depth, and ocean salinity due to limitations in the observations. Here we present the scientific goals of the Plasma Instrument for Magnetic Sounding (PIMS), one of the 9 instruments selected for the Europa Multiple Flyby Mission. We specifically address how PIMS plasma measurements will transform the accuracy of magnetic sounding of Europa's subsurface oceans. We also present synergistic science with other Europa instrumentation such as the ultraviolet spectrometer, mass spectrometer, and the radar.

  10. Magnetic Resonance Imaging Distortion and Targeting Errors from Strong Rare Earth Metal Magnetic Dental Implant Requiring Revision.

    PubMed

    Seong-Cheol, Park; Chong Sik, Lee; Seok Min, Kim; Eu Jene, Choi; Do Hee, Lee; Jung Kyo, Lee

    2016-12-22

    Recently, the use of magnetic dental implants has been re-popularized with the introduction of strong rare earth metal, for example, neodymium, magnets. Unrecognized magnetic dental implants can cause critical magnetic resonance image distortions. We report a case involving surgical failure caused by a magnetic dental implant. A 62-year-old man underwent deep brain stimulation for medically insufficiently controlled Parkinson's disease. Stereotactic magnetic resonance imaging performed for the first deep brain stimulation showed that the overdenture was removed. However, a dental implant remained and contained a neodymium magnet, which was unrecognized at the time of imaging; the magnet caused localized non-linear distortions that were the largest around the dental magnets. In the magnetic field, the subthalamic area was distorted by a 4.6 mm right shift and counter clockwise rotation. However, distortions were visually subtle in the operation field and small for distant stereotactic markers, with approximately 1-2 mm distortions. The surgeon considered the distortion to be normal asymmetry or variation. Stereotactic marker distortion was calculated to be in the acceptable range in the surgical planning software. Targeting errors, approximately 5 mm on the right side and 2 mm on the left side, occurred postoperatively. Both leads were revised after the removal of dental magnets. Dental magnets may cause surgical failures and should be checked and removed before stereotactic surgery. Our findings should be considered when reviewing surgical precautions and making distortion-detection algorithm improvements.

  11. STRUCTURE OF PROMINENCE LEGS: PLASMA AND MAGNETIC FIELD

    SciTech Connect

    Levens, P. J.; Labrosse, N.; Schmieder, B.; Ariste, A. López

    2016-02-10

    We investigate the properties of a “solar tornado” observed on 2014 July 15, and aim to link the behavior of the plasma to the internal magnetic field structure of the associated prominence. We made multi-wavelength observations with high spatial resolution and high cadence using SDO/AIA, the Interface Region Imaging Spectrograph (IRIS) spectrograph, and the Hinode/Solar Optical Telescope (SOT) instrument. Along with spectropolarimetry provided by the Télescope Héliographique pour l’Etude du Magnétisme et des Instabilités Solaires telescope we have coverage of both optically thick emission lines and magnetic field information. AIA reveals that the two legs of the prominence are strongly absorbing structures which look like they are rotating, or oscillating in the plane of the sky. The two prominence legs, which are both very bright in Ca ii (SOT), are not visible in the IRIS Mg ii slit-jaw images. This is explained by the large optical thickness of the structures in Mg ii, which leads to reversed profiles, and hence to lower integrated intensities at these locations than in the surroundings. Using lines formed at temperatures lower than 1 MK, we measure relatively low Doppler shifts on the order of ±10 km s{sup −1} in the tornado-like structure. Between the two legs we see loops in Mg ii, with material flowing from one leg to the other, as well as counterstreaming. It is difficult to interpret our data as showing two rotating, vertical structures that are unrelated to the loops. This kind of “tornado” scenario does not fit with our observations. The magnetic field in the two legs of the prominence is found to be preferentially horizontal.

  12. Structure of Prominence Legs: Plasma and Magnetic Field

    NASA Astrophysics Data System (ADS)

    Levens, P. J.; Schmieder, B.; Labrosse, N.; López Ariste, A.

    2016-02-01

    We investigate the properties of a “solar tornado” observed on 2014 July 15, and aim to link the behavior of the plasma to the internal magnetic field structure of the associated prominence. We made multi-wavelength observations with high spatial resolution and high cadence using SDO/AIA, the Interface Region Imaging Spectrograph (IRIS) spectrograph, and the Hinode/Solar Optical Telescope (SOT) instrument. Along with spectropolarimetry provided by the Télescope Héliographique pour l’Etude du Magnétisme et des Instabilités Solaires telescope we have coverage of both optically thick emission lines and magnetic field information. AIA reveals that the two legs of the prominence are strongly absorbing structures which look like they are rotating, or oscillating in the plane of the sky. The two prominence legs, which are both very bright in Ca ii (SOT), are not visible in the IRIS Mg ii slit-jaw images. This is explained by the large optical thickness of the structures in Mg ii, which leads to reversed profiles, and hence to lower integrated intensities at these locations than in the surroundings. Using lines formed at temperatures lower than 1 MK, we measure relatively low Doppler shifts on the order of ±10 km s-1 in the tornado-like structure. Between the two legs we see loops in Mg ii, with material flowing from one leg to the other, as well as counterstreaming. It is difficult to interpret our data as showing two rotating, vertical structures that are unrelated to the loops. This kind of “tornado” scenario does not fit with our observations. The magnetic field in the two legs of the prominence is found to be preferentially horizontal.

  13. Magnetic topology of a candidate NCSX plasma boundary configuration

    NASA Astrophysics Data System (ADS)

    Koniges, A. E.; Grossman, A.; Fenstermacher, M.; Kisslinger, J.; Mioduszewski, P.; Rognlien, T.; Strumberger, E.; Umansky, M.

    2003-02-01

    A candidate magnetic topology of the plasma boundary of the proposed compact stellarator national compact stellarator experiment (NCSX) is investigated using field-line tracing with diffusion. The required magnetic fields are obtained from a free-boundary equilibrium using the magnetic fields from external coils and bootstrap plasma currents inside the last closed magnetic surface (LCMS). These results are used to calculate the magnetic fields of the finite beta equilibria inside and outside the LCMS in a form suitable for field-line tracing. Poincaré plots of field lines that diffuse outwards from starting points just inside the LCMS indicate an ergodic divertor region. Intersections of field lines with a simple limiting surface show contained patches suitable for divertor control. Undesirable regions of sharply inclined angle of intersection with the limiting surface are localized, indicating the suitability of the configuration for optimized divertor design techniques. We also discuss physics implications of field-line lengths in the divertor region.

  14. Magnetic Dissipation in Asymmetric Strong Guide 3D Simulations: Examples of Magnetic Diffusion and Reconnection

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Karimabadi, H.; Daughton, W. S.

    2013-12-01

    Interpretations of 2D simulations of magnetic reconnection are greatly simplified by using the flux function, usually the out of plane component of the vector potential. This theoretical device is no longer available when simulations are analyzed in 3-D. We illustrate the results of determining the locale rates of flux slippage in simulations by a technique based on Maxwell's equations. The technique recovers the usual results obtained for the flux function in 2D simulations, but remains viable in 3D simulations where there is no flux function. The method has also been successfully tested for full PIC simulations where reconnection is geometrically forbiddden. While such layers possess measurable flux slippages (diffusion) their level is not as strong as recorded in known 2D PIC reconnection sites using the same methodology. This approach will be used to explore the spatial incidence and strength of flux slippages across a 3D, asymmetric, strong guide field run discussed previously in the literature. Regions of diffusive behavior are illustrated where LHDI has been previously identified out on the separatrices, while much stronger flux slippages, typical of the X-regions of 2D simulations, are shown to occur elsewhere throughout the simulation. These results suggest that reconnection requires sufficiently vigorous flux slippage to be self sustaining, while non-zero flux slippage can and does occur without being at the reconnection site. A cross check of this approach is provided by the mixing ratio of tagged simulation particles of known spatial origin discussed by Daughton et al., 2013 (this meeting); they provide an integral measure of flux slippage up to the present point in the simulation. We will discuss the correlations between our Maxwell based flux slippage rates and the inferred rates of change of this mixing ratio (as recorded in the local fluid frame).

  15. On Floating Potential of Emissive Probes in a Partially-Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Kraus, Brian

    2016-10-01

    We compare measurements of plasma potential in a cross-field Penning discharge from two probes: swept biased Langmuir probe and floating emissive probe. The plasma potential was deduced from the first derivative of the Langmuir probe characteristic. In previous studies, the emissive and swept biased probes were placed at the channel exit of a Hall thruster (HT). Measurements showed that the emissive probe floats below the plasma potential, in agreement with conventional theories. However, recent measurements in the Penning discharge indicate a floating potential of a strongly-emitting hot probe above the plasma potential. In both probe applications, xenon plasmas have magnetized electrons and non-magnetized ions with similar plasma densities (1010 - 1011 cm-3) . Though their electron temperatures differ by an order of magnitude (Penning 5 eV, HT 50 eV), this difference cannot explain the difference in measurement values of the hot floating potential because both temperatures are much higher than the emitting wire. In this work, we investigate how the ion velocity and other plasma parameters affect this discrepancy between probe measurements of the plasma potential. This work was supported by DOE contract DE-AC02-09CH11466.

  16. Influence of a strong longitudinal magnetic field on laser wakefield acceleration

    SciTech Connect

    Rassou, S.; Bourdier, A.; Drouin, M.

    2015-07-15

    Optimization of the beam quality and electronic trapped charge in the cavity are key issues of laser wake field acceleration. The effect of an initially applied uniform magnetic field, parallel to the direction of propagation of the pump pulse, on the laser wakefield is explored. First, an analytic model for the laser wakefield is built up in the case when such an external magnetic field is applied. Then, simulations are performed with a 3D quasi-cylindrical particle in cell code in the blowout (or bubble) regime. Transverse currents are generated at the rear of the bubble which amplify the longitudinal magnetic field. For several plasma and laser parameters, the wake shape is altered and trapping can be reduced or cancelled by the magnetic field. When considering optical injection, and when two counterpropagating waves interact with a rather high plasma density, trapping is not affected by the magnetic field. In this range of plasma and laser parameters, it is shown that the longitudinal magnetic field can reduce or even prevent self-injection and enhance beam quality.

  17. ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics: an executive summary

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.; Mank, G.; Markowicz, A.; Miklaszewski, R.; Tuniz, C.; Crespo, M. L.

    2011-12-01

    The Workshop on Dense Magnetized Plasma and Plasma Diagnostics was held from 15 to 26 November 2010 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. It was attended by 60 participants, including 15 lecturers, 2 tutors and 37 trainees, representing 25 countries.

  18. Atomic and Molecular Collisional Radiative Modeling for Spectroscopy of Low Temperature and Magnetic Fusion Plasmas

    SciTech Connect

    Fantz, U.; Wuenderlich, D.

    2011-05-11

    The quantitative analysis of spectroscopic data from low temperature plasmas is strongly supported from collisional radiative (CR) modeling. Low pressure plasmas for basic research in the lab and for industrial use have several aspects in common with the cold edge of magnetic fusion plasmas. On the basis of applications of CR modeling for atomic and molecular hydrogen, molecular nitrogen, and diatomic radicals such as CH and C{sub 2}, the relevance of individual processes for data interpretation is demonstrated for ionizing and recombining plasmas. Examples of such processes are opacity, dissociative excitation, dissociative recombination, mutual neutralization, and energy pooling. It is shown that the benchmark of CR modeling with experimental data can be used to identify problems in the ingoing data set of cross sections and rate coefficients. Using the flexible solver Yacora, the capability of CR modeling of low temperature plasmas is highlighted.

  19. Equilibrium and magnetic properties of a rotating plasma annulus

    SciTech Connect

    Wang Zhehui; Si Jiahe; Liu Wei; Li Hui

    2008-10-15

    Local linear analysis shows that magneto-rotational instability can be excited in laboratory rotating plasmas with a density of 10{sup 19} m{sup -3}, a temperature on the order of 10 eV, and a magnetic field on the order of 100 G. A laboratory plasma annulus experiment with a dimension of {approx}1 m, and rotation at {approx}0.5 sound speed is described. Correspondingly, magnetic Reynolds number of these plasmas is {approx}1000, and magnetic Prandtl number ranges from about one to a few hundred. A radial equilibrium, {rho}U{sub {theta}}{sup 2}/r=d(p+B{sub z}{sup 2}/2{mu}{sub 0})/dr=K{sub 0}, with K{sub 0} being a nonzero constant, is proposed for the experimental data. Plasma rotation is observed to drive a quasisteady diamagnetic electrical current (rotational current drive) in a high-{beta} plasma annulus. The rotational energy depends on the direction and the magnitude of the externally applied magnetic field. Radial current (J{sub r}) is produced through biasing the center rod at a negative electric potential relative to the outer wall. J{sub r}xB{sub z} torque generates and sustains the plasma rotation. Rotational current drive can reverse the direction of vacuum magnetic field, satisfying a necessary condition for self-generated closed magnetic flux surfaces inside plasmas. The Hall term is found to be substantial and therefore needs to be included in the Ohm's law for the plasmas. Azimuthal magnetic field (B{sub {theta}}) is found to be comparable with the externally applied vacuum magnetic field B{sub z}, and mainly caused by the electric current flowing in the center cylinder; thus, B{sub {theta}}{proportional_to}r{sup -1}. Magnetic fluctuations are anisotropic, radial-dependent, and contain many Fourier modes below the ion cyclotron frequency. Further theoretical analysis reflecting these observations is needed to interpret the magnetic fluctuations.

  20. Linear and nonlinear heavy ion-acoustic waves in a strongly coupled plasma

    SciTech Connect

    Ema, S. A. Mamun, A. A.; Hossen, M. R.

    2015-09-15

    A theoretical study on the propagation of linear and nonlinear heavy ion-acoustic (HIA) waves in an unmagnetized, collisionless, strongly coupled plasma system has been carried out. The plasma system is assumed to contain adiabatic positively charged inertial heavy ion fluids, nonextensive distributed electrons, and Maxwellian light ions. The normal mode analysis is used to study the linear behaviour. On the other hand, the well-known reductive perturbation technique is used to derive the nonlinear dynamical equations, namely, Burgers equation and Korteweg-de Vries (K-dV) equation. They are also numerically analyzed in order to investigate the basic features of shock and solitary waves. The adiabatic effects on the HIA shock and solitary waves propagating in such a strongly coupled plasma are taken into account. It has been observed that the roles of the adiabatic positively charged heavy ions, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features (viz., polarity, amplitude, width, etc.) of the HIA solitary/shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the linear as well as nonlinear phenomena associated with the HIA waves both in space and laboratory plasmas.

  1. Study of the Ionization Dynamics and Equation of State of a Strongly Coupled Plasma

    SciTech Connect

    Shepherd, R; Audebert, P; Geindre, J P; Iglesias, C; Foord, M; Rogers, F; Gauthier, J C; Springer, P

    2003-02-06

    Preliminary experiments to study the ionization dynamics and equation of state of a strongly coupled plasma have been performed at the LLNL COMET laser facility. In these experiment, a 1.0 J, 500 fs, 532 nm laser was used to create a uniform, warm dense plasma.The primary diagnostic, Fourier Domain Interferometry (FDI), was used to provide information about the position of the critical density of the target and thus the expansion hydrodynamics, laying the ground work for the plasma characterization. The plasmas were determined to be strongly coupled. In addition work was performed characterizing the back-lighter. A von Hamos spectrograph coupled to a 500 fs X-ray streak camera (TREX-VHS) developed at LLNL was used for these measurements. This diagnostic combines high collection efficiency ({approx} 10{sup -4} steradians) with fast temporal response ({approx} 500 fs), allowing resolution of extremely transient spectral variations. The TREX-VHS will be used to determine the time history, intensity, and spectral content of the back-lighter resulting in absorption measurements that provide insight into bound states in strongly coupled conditions.

  2. The Effects of Magnetic Nozzle Configurations on Plasma Thrusters

    NASA Technical Reports Server (NTRS)

    Turchi, P. J.

    1997-01-01

    Over the course of eight years, the Ohio State University has performed research in support of electric propulsion development efforts at the NASA Lewis Research Center, Cleveland, OH. This research has been largely devoted to plasma propulsion systems including MagnetoPlasmaDynamic (MPD) thrusters with externally-applied, solenoidal magnetic fields, hollow cathodes, and Pulsed Plasma Microthrusters (PPT's). Both experimental and theoretical work has been performed, as documented in four master's theses, two doctoral dissertations, and numerous technical papers. The present document is the final report for the grant period 5 December 1987 to 31 December 1995, and summarizes all activities. Detailed discussions of each area of activity are provided in appendices: Appendix 1 - Experimental studies of magnetic nozzle effects on plasma thrusters; Appendix 2 - Numerical modeling of applied-field MPD thrusters; Appendix 3 - Theoretical and experimental studies of hollow cathodes; and Appendix 4 -Theoretical, numerical and experimental studies of pulsed plasma thrusters. Especially notable results include the efficacy of using a solenoidal magnetic field downstream of a plasma thruster to collimate the exhaust flow, the development of a new understanding of applied-field MPD thrusters (based on experimentally-validated results from state-of-the art, numerical simulation) leading to predictions of improved performance, an experimentally-validated, first-principles model for orificed, hollow-cathode behavior, and the first time-dependent, two-dimensional calculations of ablation-fed, pulsed plasma thrusters.

  3. Magnetic flux pileup and plasma depletion in Mercury's subsolar magnetosheath

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Slavin, James A.; Raines, Jim M.; Zurbuchen, Thomas H.; Anderson, Brian J.; Korth, Haje; Baker, Daniel N.; Solomon, Sean C.

    2013-11-01

    from the Fast Imaging Plasma Spectrometer (FIPS) and Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft during 40 orbits about Mercury are used to characterize the plasma depletion layer just exterior to the planet's dayside magnetopause. A plasma depletion layer forms at Mercury as a result of piled-up magnetic flux that is draped around the magnetosphere. The low average upstream Alfvénic Mach number (MA ~3-5) in the solar wind at Mercury often results in large-scale plasma depletion in the magnetosheath between the subsolar magnetopause and the bow shock. Flux pileup is observed to occur downstream under both quasi-perpendicular and quasi-parallel shock geometries for all orientations of the interplanetary magnetic field (IMF). Furthermore, little to no plasma depletion is seen during some periods with stable northward IMF. The consistently low value of plasma β, the ratio of plasma pressure to magnetic pressure, at the magnetopause associated with the low average upstream MA is believed to be the cause for the high average reconnection rate at Mercury, reported to be nearly 3 times that observed at Earth. Finally, a characteristic depletion length outward from the subsolar magnetopause of ~300 km is found for Mercury. This value scales among planetary bodies as the average standoff distance of the magnetopause.

  4. Instabilities during the expansion of a plasma in a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Delzanno, G.; Camporeale, E.; Borovsky, J. E.; MacDonald, E.; Thomsen, M.; Markidis, S.

    2013-12-01

    We study the expansion of a high density ion-electron plasma in vacuum. The plasma is injected from a source and propagates across a constant background magnetic field. For cases where the plasma cloud width is smaller than the ion gyro-radius, charge polarization is induced on the edges of the beam and generates the self-consistent electric field that allows the beam to stream across the magnetic field by E x B drift. However, the density and velocity gradients on the flank of the cloud are a possible source of instabilities, such as Kelvin-Helmholtz, while the whole plasma column can become kink-unstable. We investigate the expansion of the plasma cloud numerically, by using a 2D electrostatic, curvilinea PIC code, called CPIC [1]. The expansion presents different features and an interplay of different instabilities whose growth rate and saturation level strongly depend on the ion to electron mass ratio. We also present a linear theory study in the framework of a fluid plasma model in order to understand and characterize the onset and linear development of these instabilities. This study is relevant to plasma contactor technology, where a plasma plume is used to neutralize a beam-emitting spacecraft. In particular, the background magnetospheric plasma can be too tenuous to provide enough electrons to quickly neutralize a spacecraft which emits a high intensity charged beam. Hence, it is crucial to characterize the geometry and the spatial extension of the contactor plasma in order to have a reliable estimate on the upper limit of beam charge that can be emitted. [1] G.L. Delzanno, E. Camporeale, et al., ``CPIC: a curvilinear Particle-In-Cell code for plasma-material interaction studies,'' IEEE Transactions on Plasma Science, submitted (2012)

  5. Fundamental emission via wave advection from a collapsing wave packet in electromagnetic strong plasma turbulence

    SciTech Connect

    Jenet, F. A.; Melatos, A.; Robinson, P. A.

    2007-10-15

    Zakharov simulations of nonlinear wave collapse in continuously driven two-dimensional, electromagnetic strong plasma turbulence with electron thermal speeds v{>=}0.01c show that for v < or approx. 0.1c, dipole radiation occurs near the plasma frequency, mainly near arrest, but for v > or approx. 0.1c, a new mechanism applies in which energy oscillates between trapped Langmuir and transverse modes until collapse is arrested, after which trapped transverse waves are advected into incoherent interpacket turbulence by an expanding annular density well, where they detrap. The multipole structure, Poynting flux, source current, and radiation angular momentum are computed.

  6. Ion acoustic turbulence and transport in a plasma in a strong electric field

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Iu.; Gradov, O. M.; Silin, V. P.

    1984-01-01

    A theory is derived for the nonlinear state which is established in a plasma when the ion acoustic instability is suppressed by nonlinear induced wave scattering by ions, and there is a quasi-linear relaxation of electrons among turbulent fluctuations. The behavior of the ion acoustic noise spectrum and of transport processes in strong fields, where the anomalous plasma resistance is a square-root function of the field intensity, is found. In this region of electric fields there is a universal distribution of the ion acoustic fluctuations in the magnitude of the wave vector and in angle for the turbulence spectrum.

  7. Interaction of relativistically strong electromagnetic waves with a layer of overdense plasma

    SciTech Connect

    Korzhimanov, A. V.; Eremin, V. I. Kim, A. V.; Tushentsov, M. R.

    2007-10-15

    Plasma-field structures that arise under the interaction between a relativistically strong electromagnetic wave and a layer of overdense plasma are considered within a quasistationary approximation. It is shown that, together with known solutions, which are nonlinear generalizations of skin-layer solutions, multilayer structures containing cavitation regions with completely removed electrons (ion layers) can be excited when the amplitude of the incident field exceeds a certain threshold value. Under symmetric irradiation, these cavitation regions, which play the role of self-consistent resonators, may amplify the field and accumulate electromagnetic energy.

  8. Solid Superheating Observed in Two-Dimensional Strongly Coupled Dusty Plasma

    SciTech Connect

    Feng Yan; Goree, J.; Liu Bin

    2008-05-23

    It is demonstrated experimentally that strongly coupled plasma exhibits solid superheating. A 2D suspension of microspheres in dusty plasma, initially self-organized in a solid lattice, was heated and then cooled rapidly by turning laser heating on and off. Particles were tracked using video microscopy, allowing atomistic-scale observation during melting and solidification. During rapid heating, the suspension remained in a solid structure at temperatures above the melting point, demonstrating solid superheating. Hysteresis diagrams did not indicate liquid supercooling in this 2D system.

  9. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

    NASA Astrophysics Data System (ADS)

    Huntington, C. M.; Fiuza, F.; Ross, J. S.; Zylstra, A. B.; Drake, R. P.; Froula, D. H.; Gregori, G.; Kugland, N. L.; Kuranz, C. C.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R.; Plechaty, C.; Remington, B. A.; Ryutov, D. D.; Sakawa, Y.; Spitkovsky, A.; Takabe, H.; Park, H.-S.

    2015-02-01

    Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of sufficiently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fields, we present evidence of Weibel-generated magnetic fields that grow in opposing, initially unmagnetized plasma flows from laser-driven laboratory experiments. Three-dimensional particle-in-cell simulations reveal that the instability efficiently extracts energy from the plasma flows, and that the self-generated magnetic energy reaches a few percent of the total energy in the system. This result demonstrates an experimental platform suitable for the investigation of a wide range of astrophysical phenomena, including collisionless shock formation in supernova remnants, large-scale magnetic field amplification, and the radiation signature from gamma-ray bursts.

  10. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

    SciTech Connect

    Huntington, C. M.; Fiuza, F.; Ross, J. S.; Zylstra, A. B.; Drake, R. P.; Froula, D. H.; Gregori, G.; Kugland, N. L.; Kuranz, C. C.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R.; Plechaty, C.; Remington, B. A.; Ryutov, D. D.; Sakawa, Y.; Spitkovsky, A.; Takabe, H.; Park, H.-S.

    2015-01-19

    Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of su fficiently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fields, we present evidence of Weibel-generated magnetic fields that grow in opposing, initially unmagnetized plasma flows from laser-driven laboratory experiments. Three-dimensional particle-in-cell simulations reveal that the instability effi ciently extracts energy from the plasma flows, and that the self-generated magnetic energy reaches a few percent of the total energy in the system. Furthermore, this result demonstrates an experimental platform suitable for the investigation of a wide range of astrophysical phenomena, including collisionless shock formation in supernova remnants, large-scale magnetic field amplification, and the radiation signature from gamma-ray bursts.

  11. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10{sup 4} T (100 Megagauss) over small volumes (∼10{sup −10}m{sup 3}) at high plasma densities (∼10{sup 28}m{sup −3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  12. Quasi-TEM electromagnetic modes of a plasma waveguide with a nonsimply connected cross section in an external magnetic field

    SciTech Connect

    Kartashov, I. N. Kuzelev, M. V.

    2014-12-15

    Electromagnetic modes of a plasma waveguide with a nonsimply connected cross section in an external magnetic field are investigated. The existence of quasi-TEM modes in a finite-strength magnetic field is demonstrated. It is shown that, in the limits of infinitely strong and zero magnetic fields, this mode transforms into a true TEM mode. The possibility of excitation of such modes by an electron beam in the regime of the anomalous Doppler effect is analyzed.

  13. Magnetic properties of Sm5Fe17/Fe composite magnets produced by spark plasma sintering method

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuji; Miyoshi, Hiroya

    2012-04-01

    Mixtures of powdered Sm5Fe17 melt-spun ribbon and Fe powder were consolidated into bulk magnets by the spark plasma sintering (SPS) method. Although these bulk magnets consisted of the hard magnetic Sm5Fe17 and soft magnetic α-Fe phases, they had a smooth hysteresis loop and exhibited coercivity. Among the magnets studied, the Sm5Fe17/Fe composite magnet with 30%Fe showed a remanence of 94 emu/g with a coercivity of 2.9 kOe.

  14. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    NASA Astrophysics Data System (ADS)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  15. Magnetic domain patterns on strong perpendicular magnetization of Co/Ni multilayers as spintronics materials: I. Dynamic observations.

    PubMed

    Suzuki, Masahiko; Kudo, Kazue; Kojima, Kazuki; Yasue, Tsuneo; Akutsu, Noriko; Diño, Wilson Agerico; Kasai, Hideaki; Bauer, Ernst; Koshikawa, Takanori

    2013-10-09

    Materials with perpendicular magnetic anisotropy can reduce the threshold current density of the current-induced domain wall motion. Co/Ni multilayers show strong perpendicular magnetic anisotropy and therefore it has become a highly potential candidate of current-induced domain wall motion memories. However, the details of the mechanism which stabilizes the strong perpendicular magnetization in Co/Ni multilayers have not yet been understood. In the present work, the evolution of the magnetic domain structure of multilayers consisting of pairs of 2 or 3 monolayers (ML) of Ni and 1 ML of Co on W(110) was investigated during growth with spin-polarized low-energy electron microscopy. An interesting phenomenon, that the magnetic domain structure changed drastically during growth, was revealed. In the early stages of the growth the magnetization alternated between in-plane upon Co deposition and out-of-plane upon Ni deposition. The change of the magnetization direction occurred within a range of less than 0.2 ML during Ni or Co deposition, with break-up of the existing domains followed by growth of new domains. The Ni and Co thickness at which the magnetization direction switched shifted gradually with the number of Co/Ni pairs. Above 3-4 Co/Ni pairs it stayed out-of-plane. The results indicate clearly that the Co-Ni interfaces play the important role of enhancing the perpendicular magnetic anisotropy.

  16. Experimental Measurements and Density Functional Theory Calculations of Continuum Lowering in Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Vinko, Sam

    2014-10-01

    An accurate description of the ionization potential depression (IPD) of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here I present the first experimental investigation of the IPD as a function of ionic charge state in a range of dense Mg, Al and Si plasmas, using the Linac Coherent Light Source X-ray free-electron laser. The measurements show significantly larger IPDs than are predicted by the most commonly used models, such as that of Stewart-Pyatt, or the ion-sphere model of Zimmerman-More. Instead, plasma simulations using finite-temperature density functional theory with excited-state projector augmented-wave potentials show excellent agreement with the experimental results and explain the stronger-than-expected continuum lowering through the electronic structure of the valence states in these strong-coupling conditions, which retain much of their atomic characteristics close to the ion core regions. These results have a profound impact on the understanding and modelling of plasmas over a wide range of warm- and hot-dense matter conditions.

  17. Generation of strong magnetic field using 60 mm∅ superconducting bulk magnet and its application to magnetron sputtering device

    NASA Astrophysics Data System (ADS)

    Yanagi, Y.; Matsuda, T.; Hazama, H.; Yokouchi, K.; Yoshikawa, M.; Itoh, Y.; Oka, T.; Ikuta, H.; Mizutani, U.

    2005-10-01

    To make a practical application of a superconducting bulk magnet (SBM), it is necessary that the SBM generates a strong and stable magnetic field in a working space and the magnet can be handled without any special care that would be needed because of the use of a superconductor. To satisfy these requirements, we have designed a portable and user-friendly magnet system consisting of a small air-cooled type refrigerator and a bulk superconductor. By using the stress-controlling magnetization technique, we could achieve a magnetic flux density of 8.0 T on the bulk surface and 6.5 T over the vacuum chamber surface of the refrigerator, when a 60 mm∅ Gd-Ba-Cu-O bulk superconductor reinforced with a 5 mm thick stainless steel ring was magnetized by field cooling in 8.5 T to 27 K. We have confirmed that the bulk magnet system coupled with a battery is quite portable and can be delivered to any location by using a car with an electric power outlet in the cabin. We have constructed a magnetron sputtering device that employs a bulk magnet system delivered from the place of magnetization by this method. This sputtering device exhibits several unique features such as deposition at a very low Ar gas pressure because the magnetic field is 20 times stronger than that obtained by a conventional device in the working space.

  18. Spectroscopic measurement of high-frequency electric fields in the interaction of explosive debris plasma with magnetized background plasma

    SciTech Connect

    Bondarenko, A. S. Schaeffer, D. B.; Everson, E. T.; Clark, S. E.; Constantin, C. G.; Niemann, C.

    2014-12-15

    The collision-less transfer of momentum and energy from explosive debris plasma to magnetized background plasma is a salient feature of various astrophysical and space environments. While much theoretical and computational work has investigated collision-less coupling mechanisms and relevant parameters, an experimental validation of the results demands the measurement of the complex, collective electric fields associated with debris-background plasma interaction. Emission spectroscopy offers a non-interfering diagnostic of electric fields via the Stark effect. A unique experiment at the University of California, Los Angeles, that combines the Large Plasma Device (LAPD) and the Phoenix laser facility has investigated the marginally super-Alfvénic, quasi-perpendicular expansion of a laser-produced carbon (C) debris plasma through a preformed, magnetized helium (He) background plasma via emission spectroscopy. Spectral profiles of the He II 468.6 nm line measured at the maximum extent of the diamagnetic cavity are observed to intensify, broaden, and develop equally spaced modulations in response to the explosive C debris, indicative of an energetic electron population and strong oscillatory electric fields. The profiles are analyzed via time-dependent Stark effect models corresponding to single-mode and multi-mode monochromatic (single frequency) electric fields, yielding temporally resolved magnitudes and frequencies. The proximity of the measured frequencies to the expected electron plasma frequency suggests the development of the electron beam-plasma instability, and a simple saturation model demonstrates that the measured magnitudes are feasible provided that a sufficiently fast electron population is generated during C debris–He background interaction. Potential sources of the fast electrons, which likely correspond to collision-less coupling mechanisms, are briefly considered.

  19. Chaotic dynamics of coupled transverse-longitudinal plasma oscillations in magnetized plasmas.

    PubMed

    Teychenné, D; Bésuelle, E; Oloumi, A; Salomaa, R R

    2000-12-25

    The propagation of intense electromagnetic waves in cold magnetized plasma is tackled through a relativistic hydrodynamic approach. The analysis of coupled transverse-longitudinal plasma oscillations is performed for traveling plane waves. When these waves propagate perpendicularly to a static magnetic field, the model is describable in terms of a nonlinear dynamical system with 2 degrees of freedom. A constant of motion is obtained and the powerful classical mechanics methods can be used. A new class of solutions, i.e., the chaotic solutions, is discovered by the Poincaré surface of sections. As a result, coupled transverse-longitudinal plasma oscillations become aperiodically modulated.

  20. Parametric distortion of the optical absorption edge of a magnetic semiconductor by a strong laser field

    SciTech Connect

    Nunes, O.A.C.

    1985-09-15

    The influence of a strong laser field on the optical absorption edge of a direct-gap magnetic semiconductor is considered. It is shown that as the strong laser intensity increases the absorption coefficient is modified so as to give rise to an absorption tail below the free-field forbidden gap. An application is made for the case of the EuO.