40 CFR 721.10423 - Complex strontium aluminate, rare earth doped (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... earth doped (generic). 721.10423 Section 721.10423 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10423 Complex strontium aluminate, rare earth doped... substances identified generically as complex strontium aluminate, rare earth doped (PMNs P-12-22, P-12-23, P...
Physicochemical Properties and Cellular Responses of Strontium-Doped Gypsum Biomaterials
Pouria, Amir; Bandegani, Hadis; Pourbaghi-Masouleh, Milad; Hesaraki, Saeed; Alizadeh, Masoud
2012-01-01
This paper describes some physical, structural, and biological properties of gypsum bioceramics doped with various amounts of strontium ions (0.19–2.23 wt%) and compares these properties with those of a pure gypsum as control. Strontium-doped gypsum (gypsum:Sr) was obtained by mixing calcium sulfate hemihydrate powder and solutions of strontium nitrate followed by washing the specimens with distilled water to remove residual salts. Gypsum was the only phase found in the composition of both pure and gypsum:Sr, meanwhile a shift into lower diffraction angles was observed in the X-ray diffraction patterns of doped specimens. Microstructure of all gypsum specimens consisted of many rod-like small crystals entangled to each other with more elongation and higher thickness in the case of gypsum:Sr. The Sr-doped sample exhibited higher compressive strength and lower solubility than pure gypsum. A continuous release of strontium ions was observed from the gypsum:Sr during soaking it in simulated body fluid for 14 days. Compared to pure gypsum, the osteoblasts cultured on strontium-doped samples showed better proliferation rate and higher alkaline phosphatase activity, depending on Sr concentration. These observations can predict better in vivo behavior of strontium-doped gypsum compared to pure one. PMID:22719270
Liang, Yongqiang; Li, Haoyan; Xu, Jiang; Li, Xin; Qi, Mengchun; Hu, Min
2014-01-01
Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials. PMID:24901526
Lanthanide doped strontium-barium cesium halide scintillators
Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew
2015-06-09
The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.
Li, Ling; Lu, Xia; Meng, Yizhi; Weyant, Christopher M
2012-10-01
In this study, strontium-doped calcium phosphate coatings were deposited by electrochemical deposition and plasma spray under different process parameters to achieve various coating morphologies. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy while the cytocompatibility and bioactivity of the strontium-doped calcium phosphate coatings were evaluated using bone cell culture using MC3T3-E1 osteoblast-like cells. The addition of strontium leads to enhanced proliferation suggesting the possible benefits of strontium incorporation in calcium phosphate coatings. The morphology and composition of deposited coatings showed a strong influence on the growth of cells.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... substances identified generically as complex strontium aluminum, rare earth doped, which were the subject of... chemical substances identified generically as complex strontium aluminum, rare earth doped, which were the...
Macro- and microscopic properties of strontium doped indium oxide
NASA Astrophysics Data System (ADS)
Nikolaenko, Y. M.; Kuzovlev, Y. E.; Medvedev, Y. V.; Mezin, N. I.; Fasel, C.; Gurlo, A.; Schlicker, L.; Bayer, T. J. M.; Genenko, Y. A.
2014-07-01
Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In2O3:(SrO)x were investigated for materials with different doping levels at different temperatures (T = 20-300 °C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x = 10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn2O4. An unusual property of high level (x = 10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100-200 °C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3 × 10-13 cm2/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.
Huang, Miaojun; Li, Tianjie; Pan, Ting; Zhao, Naru; Yao, Yongchang; Zhai, Zhichen; Zhou, Jiaan; Du, Chang; Wang, Yingjun
2016-10-01
Yeast cells have controllable biosorption on metallic ions during metabolism. However, few studies were dedicated to using yeast-regulated biomimetic mineralization process to control the strontium-doped positions in calcium phosphate microcapsules. In this study, the yeast cells were allowed to pre-adsorb strontium ions metabolically and then served as sacrificing template for the precipitation and calcination of mineral shell. The pre-adsorption enabled the microorganism to enrich of strontium ions into the inner part of the microcapsules, which ensured a slow-release profile of the trace element from the microcapsule. The co-culture with human marrow stromal cells showed that gene expressions of alkaline phosphatase and Collagen-I were promoted. The promotion of osteogenic differentiation was further confirmed in the 3D culture of cell-material complexes. The strategy using living microorganism as 'smart doping apparatus' to control incorporation of trace element into calcium phosphate paved a pathway to new functional materials for hard tissue regeneration.
NASA Astrophysics Data System (ADS)
Wu, Shao-Hang; Zhang, Nan; Hu, Yong-Sheng; Chen, Hong; Jiang, Da-Peng; Liu, Xing-Yuan
2015-10-01
Strontium-zinc-oxide (SrZnO) films forming the semiconductor layers of thin-film transistors (TFTs) are deposited by using ion-assisted electron beam evaporation. Using strontium-oxide-doped semiconductors, the off-state current can be dramatically reduced by three orders of magnitude. This dramatic improvement is attributed to the incorporation of strontium, which suppresses carrier generation, thereby improving the TFT. Additionally, the presence of strontium inhibits the formation of zinc oxide (ZnO) with the hexagonal wurtzite phase and permits the formation of an unusual phase of ZnO, thus significantly changing the surface morphology of ZnO and effectively reducing the trap density of the channel. Project supported by the National Natural Science Foundation of China (Grant No. 6140031454) and the Innovation Program of Chinese Academy of Sciences and State Key Laboratory of Luminescence and Applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9511 Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new...
NASA Astrophysics Data System (ADS)
Ning, Huanpo
2017-10-01
Different levels of isovalent dopant vanadium were doped on the B site of Sr2Nb2O7 to explore the doping effect on its dielectric and ferroelectric properties. A second phase could be detected with above 1 mol% V2O5 doping. The grains after doping remained anisotropic and plate-like. The samples are not dense, as there are pores present at the grain boundaries. The corrected dielectric constant for 0.1 mol%, 0.2 mol%, and 0.3 mol% V doped SNO at 1 MHz is around 46, 48 and 49, respectively, which indicates the effect of V doping on the increase of dielectric constant of SNO (ɛr is about 40 at 1 MHz). The Curie point Tc increased with the increase in the V doping level. The relatively high d33 (2.3 pC/N) measured from the non-dense and untextured samples indicates the potential effect of V2O5 doping on the improvement of piezoelectricity of SNO.
NASA Astrophysics Data System (ADS)
Hamzah, S. A.; Saeed, M. A.; Wagiran, H.; Hashim, I. H.
2017-10-01
This article reports TL response for different glass modifier and doping concentration. Alkali oxides (Na2O and Li2O) and alkali earth oxide (CaO) will be used as a glass modifier for strontium borate based glass. The samples were prepared by melt quenching technique. Dy2O3 concentrations ranging from 0.00 to 0.70 mol% and exposure doses of 1 to 9 Gy will be varied. All glass samples exhibit the prominent peak temperature positioned at 186 oC to 232 oC. From all the samples, one of the samples shows an excellent linearity dose response, higher TL and show good reproducibility after 5 cycles exposure which is sodium strontium borate doped with 0.1 mol% Dy2O3 (optimum concentration).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7) magnesium...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7) magnesium...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7) magnesium...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7) magnesium...
Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA
2010-03-02
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.
Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA
2010-11-23
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.
The purification process on scintillator material (SrI{sub 2}: Eu) by zone-refinement technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Raja; Daniel, D. Joseph; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in
The thermal properties of Europium doped strontium iodide was analyzed through Thermogravimetric (TG) and differential thermal analyses (DTA). The melting point of europium doped strontium iodide is around 531°C. The hydrated and oxyhalide impurities were found before melting temperature. In order to remove these impurities we have done purification process by Zone-refinement technique. The effective output of purification of zone refining was also observed through the segregation of impurities.
Bridgman-Stockbarger growth of SrI2:Eu2+ single crystal
NASA Astrophysics Data System (ADS)
Raja, A.; Daniel, D. Joseph; Ramasamy, P.; Singh, S. G.; Sen, S.; Gadkari, S. C.
2018-05-01
Strontium Iodide (SrI2): Europium Iodide (EuI2) was purified by Zone-refinement process. Europium doped strontium iodide (SrI2:Eu2+) single crystal was grown by modified vertical Bridgman - Stockbarger technique. Photoluminescence (PL) excitation and emission (PLE) spectra were measured for Eu2+ doped SrI2 crystal. The sharp emission was recorded at 432 nm. Scintillation properties of the SrI2:Eu2+ crystal were checked by the gamma ray spectrometer using 137Cs gamma source.
NASA Astrophysics Data System (ADS)
Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang
2018-01-01
Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.
Kanchana, Ponnusamy; Sekar, Chinnathambi
2010-01-01
Biphasic calcium phosphate (BCP) ceramics are suitable for synthetic bone applications. The strontium substituted calcium phosphate ceramics have potential for use in orthopedic surgeries. Aim of the present work is to introduce strontium into BCP (composed of hydroxyapatite and tricalcium phosphate) ceramics and to study their bioactivity and mechanical properties. BCP ceramics have been synthesized at room temperature under the physiological pH of 7.4 by gel method in the presence of strontium (5, 10 M %). The appropriate choice of anhydrous CaCl₂ as precursor solution has promoted the formation of BCP instead of pure HA for CaCl₂.2H₂O. Powder X-ray diffraction analysis confirmed the formation of BCP with different HA and ß -TCP ratios depending upon the Sr content. The presence of Sr has reduced the nucleation and growth rate of BCP when compared to pure system. The SEM micrographs showed that the microstructural morphology of BCP changes from fibrous to platelet. Nanoindentation studies indicate a significant decrease in the hardness and elastic modulus values of BCP ceramics due to Sr doping. In vitro bioactivity study has revealed the formation of apatite layer on the Sr doped BCP samples and the doping enhanced its bioactivity.
Tuned sensitivity towards H{sub 2}S and NH{sub 3} with Cu doped barium strontium titanate materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simion, C. E., E-mail: simion@infim.ro; Teodorescu, V. S.; Stănoiu, A.
2014-11-05
The different amount of Cu-doped Barium Strontium Titanate (BST) thick film materials have been tested for their gas-sensing performances towards NH{sub 3} and H{sub 2}S under dry and 50% relative humidity (RH) background conditions. The optimum NH{sub 3} sensitivity was attained with 0.1mol% Cu-doped BST whereas the selective detection of H{sub 2}S was highlighted using 5mol% Cu-doped BST material. No cross-sensitivity effects to CO, NO{sub 2}, CH{sub 4} and SO{sub 2} were observed for all tested materials operated at their optimum temperature (200°C) under humid conditions (50% RH). The presence of humidity clearly enhances the gas sensitivity to NH{sub 3}more » and H{sub 2}S detection.« less
Modified cermet fuel electrodes for solid oxide electrochemical cells
Ruka, Roswell J.; Spengler, Charles J.
1991-01-01
An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raj, S. Gokul; Mathivanan, V.; Mohan, R.
2016-05-06
Tungsten bronze type cerium doped strontium barium niobate (Ce:SBN - Sr{sub 0.6}B{sub 0.4}Nb{sub 2}O{sub 6}) ceramics were synthesized by solid state process. Cerium was used as dopant to improve its electrical properties. Influence of Ce{sup +} ions on the photoluminescence properties was investigated in detail. The grain size topographical behavior of SBN powders and their associated abnormal grain growth (AGG) were completely analyzed through SEM studies. Finally dielectric, measurement discusses about the broad phase transition observed due to cerium dopant The results were discussed in detail.
NASA Astrophysics Data System (ADS)
Ottini, Riccardo; Tealdi, Cristina; Tomasi, Corrado; Tredici, Ilenia G.; Soffientini, Alessandro; Burriel, Ramón; Palacios, Elías; Castro, Miguel; Anselmi-Tamburini, Umberto; Ghigna, Paolo; Spinolo, Giorgio
2018-02-01
Undoped as well as K-doped (40%), Y-doped (40%), Zr-doped (10%), and Mo-doped (12.5%) strontium barium niobate Sr0.5Ba0.5Nb2O6 (SBN50) materials have been investigated to explore the effect of heavy doping on the structural and functional properties (thermo-power, thermal and electrical conductivities) both in the as prepared (oxidized) and reduced states. For all materials, the EXAFS spectra at the Nb - K edge can be consistently analyzed with the same model of six shells around the Nb sites. Doping mostly gives a simple size effect on the structural parameters, but doping on the Nb sites weakens the Nb-O bond regardless of dopant size and charge. Shell sizes and Debye-Waller factors are almost unaffected by temperature and oxidation state, and the disorder is of static nature. The functional effects of heavy doping do not agree with a simple model of hole or electron injection by aliovalent substitutions on a large band gap semiconductor. With respect to the undoped samples, doping with Mo depresses the thermal conductivity by 30%, Y doping enhances the electrical conductivity by an order of magnitude, while Zr doping increases the Seebeck coefficient by a factor of 2-3. Globally, the ZT efficiency factor of the K-, Y-, and Zr-doped samples is enhanced at least by one order of magnitude with respect to the undoped or Mo-doped materials.
Composite solid oxide fuel cell anode based on ceria and strontium titanate
Marina, Olga A.; Pederson, Larry R.
2008-12-23
An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.
Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells.
Isaac, J; Nohra, J; Lao, J; Jallot, E; Nedelec, J M; Berdal, A; Sautier, J M
2011-02-08
There is accumulating evidence that strontium-containing biomaterials have positive effects on bone tissue repair. We investigated the in vitro effect of a new Sr-doped bioactive glass manufactured by the sol-gel method on osteoblast viability and differentiation. Osteoblasts isolated from foetal mouse calvaria were cultured in the presence of bioactive glass particles; particles were undoped (B75) or Sr-doped with 1 wt.% (B75-Sr1) and 5 wt.% (B75-Sr5). Morphological analysis was carried out by contrast-phase microscopy and scanning electron microscopy (SEM). Cell viability was evaluated by the MTS assay at 24 h, 48 h and 72 h. At 24 h, day 6 and day 12, osteoblast differentiation was evaluated by assaying alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion and gene expression of various bone markers, using Real-Time-PCR. Alizarin Red staining and ALP histoenzymatic localisation were performed on day 12. Microscopic observations and MTS showed an absence of cytotoxicity in the three investigated bioactive glasses. B75-Sr5 particles in cell cultures, in comparison with those of B75 and B75-Sr1, resulted in a significant up-regulation of Runx2, Osterix, Dlx5, collagen I, ALP, bone sialoprotein (BSP) and OC mRNA levels on day 12, which was associated with an increase of ALP activity on day 6 and OC secretion on day 12. In conclusion, osteoblast differentiation of foetal mouse calvarial cells was enhanced in the presence of bioactive glass particles containing 5 wt.% strontium. Thus, B75-Sr5 may represent a promising bone-grafting material for bone regeneration procedures.
Strontium-doped calcium silicate bioceramic with enhanced in vitro osteogenic properties.
No, Young Jung; Roohaniesfahani, Seyediman; Lu, Zufu; Shi, Jeffrey; Zreiqat, Hala
2017-06-05
Gehlenite (GLN, Ca 2 SiAl 2 O 7 ) is a bioceramic that has been recently shown to possess excellent mechanical strength and in vitro osteogenic properties for bone regeneration. Substitutional incorporation of strontium in place of calcium is an effective way to further enhance biological properties of calcium-based bioceramics and glasses. However, such strategy has the potential to affect other important physicochemical parameters such as strength and degradation due to differences in the ionic radius of strontium and calcium. This study is the first to investigate the effect of a range of concentrations of strontium substitution of calcium at 1, 2, 5, 10 mol% (S1-GLN, S2-GLN, S5-GLN and S10-GLN) on the physicochemical and biological properties of GLN. We showed that up to 2 mol% strontium ion substitution retains the monophasic GLN structure when sintered at 1450 °C, whereas higher concentrations resulted in presence of calcium silicate impurities. Increased strontium incorporation resulted in changes in grain morphology and reduced densification when the ceramics were sintered at 1450 °C. Porous GLN, S1-GLN and S2-GLN scaffolds (∼80% porosity) showed compressive strengths of 2.05 ± 0.46 MPa, 1.76 ± 0.79 MPa and 1.57 ± 0.52 MPa respectively. S1-GLN and S2-GLN immersed in simulated body fluid showed increased strontium ion release but reduced calcium and silicon ion release compared to GLN without affecting overall weight loss and pH over a 21 d period. The bioactivity of the S2-GLN ceramics was significantly improved as reflected in the significant upregulation of HOB proliferation and differentiation compared to GLN. Overall, these results suggest that increased incorporation of strontium presents a trade-off between bioactivity and mechanical strength for GLN bioceramics. This is an important consideration in the development of strontium-doped bioceramics.
NASA Astrophysics Data System (ADS)
Zhang, Boyu; Wang, Jun; Yaer, Xinba; Huo, Zhenzhen; Wu, Yin; Li, Yan; Miao, Lei; Liu, Chengyan; Zou, Tao; Ma, Wen
2015-07-01
Effect of crystal size distribution on thermoelectric performance of Lanthanum-doped strontium titanate (La-SrTiO3) ceramics are investigated in this study. Thermoelectric performance measurement, coupled with microstructure studies, shows that the electrical conductivity strongly depends on the crystal size, potential barrier on the grain boundary and porosity. Meantime, because the average potential barriers height are increased along with the reduction of crystal size, the Seebeck coefficients are increased by energy filtering effect at the large number of grain boundaries. As a result, by controlling of crystal size distribution, ZT value of La-SrTiO3 is improved.
Fabrication of barium titanate doped strontium using co-precipitation method
NASA Astrophysics Data System (ADS)
Iriani, Y.; Yasin, M. A.; Suryana, R.
2018-03-01
Fabrication of barium titanate (BaTiO3/BT) doped strontium (Sr) using co-precipitation method has been successfully conducted. The research aim is to get the best of mole variation of Sr doping to ferroelectric material properties. Doping Sr was varied at 1%, 2%, 3%, 4% and 5% in BaTiO3. Each sample was sintered at temperature of 1100°C with holding time for 6 h and temperature rate at 10°C/min. They were then characterized by XRD instrument to investigate the crystal structure, LCR meter to measure the dielectric constant, and Sawyer Tower circuit to reveal the hysteresis curve. The peaks of XRD shift towards larger angle when mole doping Sr increase. The crystallinity of all samples is above 90% and the crystallite size is in the range of 27 nm to 34 nm. Hysteresis curve from Sawyer Tower testing confirms that all samples are ferroelectric material. The RLC measurement results reveal that the less frequency leads to the higher dielectric constant while the highest dielectric constant belongs to the BT doped 3% of Sr. Therefore, it is the best variation obtained in this research.
Influence of electron doping on the ground state of (Sr 1-xLa x) 2IrO 4
Chen, Xiang; Hogan, Tom; Walkup, D.; ...
2015-08-17
The evolution of the electronic properties of electron-doped (Sr 1-xLa x) 2IrO 4 is experimentally explored as the doping limit of La is approached. As electrons are introduced, the electronic ground state transitions from a spin-orbit Mott phase into an electronically phase separated state, where long-range magnetic order vanishes beyond x = 0:02 and charge transport remains percolative up to the limit of La substitution (x =0:06). In particular, the electronic ground state remains inhomogeneous even beyond the collapse of the parent state's long-range antiferromagnetic order, while persistent short-range magnetism survives up to the highest La-substitution levels. Furthermore, as electronsmore » are doped into Sr 2IrO 4, we observe the appearance of a low temperature magnetic glass-like state intermediate to the complete suppression of antiferromagnetic order. Universalities and di erences in the electron-doped phase diagrams of single layer and bilayer Ruddlesden-Popper strontium iridates are discussed.« less
NASA Astrophysics Data System (ADS)
Strobel, L. A.; Hild, N.; Mohn, D.; Stark, W. J.; Hoppe, A.; Gbureck, U.; Horch, R. E.; Kneser, U.; Boccaccini, A. R.
2013-07-01
The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30-35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 μg/cm² (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 μg/cm², Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taufeeq, Saba, E-mail: sabataufeeq23@gmail.com; Parveen, Azra; Agrawal, Shraddha
2016-05-23
Nanoparticles (NPs) of Pure BaFe{sub 12}O{sub 19} and Strontium doped Barium Ferrite (Ba{sub 0.9}Sr{sub 0.1}Fe{sub 12}O{sub 19}) have been successfully synthesized by Auto combustion method using citric acid as a chelating agent and calcined at 450°C for 3 hrs and 850°C for 4 hrs. Microstructural studies were carried by XRD and SEM techniques. Structural studies suggest that the crystal system remains hexagonal even with the doping of Strontium. The XRD analysis confirms the formation of the structures in the nanometer regime and the peaks are the evidence of the crystalline phase. The SEM images shows the morphology of surface ofmore » the samples. The thermal property studied by TGA shows the weight loss which is with varying the temperature and weight loss also varies with Sr doping. The TGA analysis exhibits the loss of weight at different temperatures.« less
Barium iodide and strontium iodide crystals andd scintillators implementing the same
Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold
2013-11-12
In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A J; van Buuren, T; Bostedt, C
X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure was used to evaluate the density of occupied states of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N{sub 4,5}-edge), Sr 3d (M{sub 4,5}-edge), P 2p (L{sub 2,3}-edge), F 1s and O 1s (K-edges) absorption edges. These results provide the first measurements of the electronic structure and surface chemistry of this material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A
2013-01-01
Single-crystal strontium iodide (SrI2) doped with relatively high levels (e.g., 3 - 6 %) of Eu2+ exhibits characteristics that make this material superior, in a number of respects, to other scintillators that are currently used for radiation detection. Specifically, SrI2:Eu2+ has a light yield that is significantly higher than LaBr3:Ce3+ -a currently employed commercial high-performance scintillator. Additionally, SrI2:Eu2+ is characterized by an energy resolution as high as 2.6% at the 137Cs gamma-ray energy of 662 keV, and there is no radioactive component in SrI2:Eu2+ - unlike LaBr3:Ce3+ that contains 138La. The Ce3+-doped LaBr3 decay time is, however, faster (30 nsec)more » than the 1.2 sec decay time of SrI2:Eu2+. Due to the relatively low melting point of strontium iodide (~515 oC), crystal growth can be carried out in quartz crucibles by the vertical Bridgman technique. Materials-processing and crystal-growth techniques that are specific to the Bridgman growth of europium-doped strontium iodide scintillators are described here. These techniques include the use of a porous quartz frit to physically filter the molten salt from a quartz antechamber into the Bridgman growth crucible and the use of a bent or bulb grain selector design to suppress multiple grain growth. Single crystals of SrI2:Eu2+ scintillators with good optical quality and scintillation characteristics have been grown in sizes up to 5.0 cm in diameter by applying these techniques. Other aspects of the SrI2:Eu2+ crystal-growth methods and of the still unresolved crystal-growth issues are described here.« less
Quantum-splitting oxide-based phosphors, method of producing, and rules for designing the same
Setlur, Anant Achyut; Comanzo, Holly Ann; Srivastava, Alok Mani
2003-09-16
Strontium and strontium calcium aluminates and lanthanum and lanthanum magnesium borates activated with Pr.sup.3+ and Mn.sup.2+ exhibit characteristics of quantum-splitting phosphors. Improved quantum efficiency may be obtained by further doping with Gd.sup.3+. Refined rules for designing quantum-splitting phosphors include the requirement of incorporation of Gd.sup.3+ and Mn.sup.2+ in the host lattice for facilitation of energy migration.
NASA Astrophysics Data System (ADS)
Kuo, Yenting; Klabunde, Kenneth J.
2012-07-01
Nanostructured strontium titanate visible-light-driven photocatalysts containing rhodium and ruthenium were synthesized by a modified aerogel synthesis using ruthenium chloride and rhodium nitrate as dopant precursors, and titanium isopropoxide and strontium metal as the metal sources. The well-defined crystalline SrTiO3 structure was confirmed by means of x-ray diffraction. After calcination at 500 °C, diffuse reflectance spectroscopy shows an increase in light absorption at 370 nm due to the presence of Rh3 + ; however an increase of the calcination temperature to 600 °C led to a decrease in intensity, probably due to a loss of surface area. An increase in the rhodium doping level also led to an increase in absorption at 370 nm however, the higher amounts of dopant lowered the photocatalytic activity. The modified aerogel synthesis allows greatly enhanced H2 production performance from an aqueous methanol solution under visible light irradiation compared with lower surface area conventional materials. We believe that this enhanced activity is due to the higher surface areas while high quality nanocrystalline materials are still obtained. Furthermore, the surface properties of these nanocrystalline aerogel materials are different, as exhibited by the higher activities in alkaline solutions, while conventional materials (obtained via high temperature solid-state synthesis methods) only exhibit reasonable hydrogen production in acidic solutions. Moreover, an aerogel synthesis approach gives the possibility of thin-film formation and ease of incorporation into practical solar devices.
Foley, Brian M.; Brown-Shaklee, Harlan J.; Campion, Michael J.; ...
2014-11-08
We have measured the cross-plane thermal conductivity (κ) of (010)-textured, undoped, and lanthanum-doped strontium niobate (Sr 2-xLa xNb 2O 7-δ) thin films via time-domain thermoreflectance. Then the thin films were deposited on (001)-oriented SrTiO 3 substrates via the highly-scalable technique of chemical solution deposition. We find that both film thickness and lanthanum doping have little effect on κ, suggesting that there is a more dominant phonon scattering mechanism present in the system; namely the weak interlayer-bonding along the b-axis in the Sr 2Nb 2O 7 parent structure. We also compare our experimental results with two variations of the minimum-limit modelmore » for κ and discuss the nature of transport in material systems with weakly-bonded layers. The low cross-plane κ of these scalably-fabricated films is comparable to that of similarly layered niobate structures grown epitaxially.« less
Banger, Kulbinder K; Peterson, Rebecca L; Mori, Kiyotaka; Yamashita, Yoshihisa; Leedham, Timothy; Sirringhaus, Henning
2014-01-28
Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm 2 V -1 s -1 . We show that it is possible to solution-process these materials at low process temperature (225-200 °C yielding mobilities up to 4.4 cm 2 V -1 s -1 ) and demonstrate a facile "ink-on-demand" process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium.
2013-01-01
Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm2 V–1 s–1. We show that it is possible to solution-process these materials at low process temperature (225–200 °C yielding mobilities up to 4.4 cm2 V–1 s–1) and demonstrate a facile “ink-on-demand” process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184
NASA Astrophysics Data System (ADS)
Miruszewski, T.; Gdaniec, P.; Karczewski, J.; Bochentyn, B.; Szaniawska, K.; Kupracz, P.; Prześniak-Welenc, M.; Kusz, B.
2016-09-01
The yttrium, iron and niobium doped-SrTiO3 powders have been successfully fabricated by a modified low-temperature synthesis method from a polymer complex. The usage of strontium hydroxide precursor instead of conventional strontium nitrate or strontium carbonate provides to the possibility of significant decrease of annealing temperature. It allows to prepare a material with sphere-shape grains of nanometric size (15-70 nm). The results of thermal analysis indicate that the crystallization of precursor takes place at different stages. The product after heat treatment at 600 °C for 3 h in air was also characterized by X-Ray diffraction method (XRD) and Fourier transform - infrared spectroscopy (FT-IR). After the crystallization and the impurity removal process, a single-phase material was obtained in case of all analyzed samples. The morphology of obtained nano-powders was also studied by a scanning electron microscopy (SEM). It can be concluded, that this method allows obtaining a perovskite phase of a metal doped SrTiO3 with nanometric particles.
Roy, Mangal; Bose, Susmita
2012-01-01
Bone substitute materials are required to support the remodeling process, which consists of osteoclastic resorption and osteoblastic synthesis. Osteoclasts, the bone resorbing cells, generate from differentiation of hemopoietic mononuclear cells. In the present study we have evaluated the effects of 1.0 wt% strontium (Sr) and 1.0 wt% magnesium (Mg) doping in beta-tricalcium phosphate (β-TCP) on the differentiation of mononuclear cells into osteoclast-like cells and its resorptive activity. In vitro osteoclast-like cell formation, adhesion, and resorption were studied using osteoclast precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast-like cell formation was noticed on pure and Sr doped β-TCP samples at day 8 which was absent on Mg doped β-TCP samples indicating decrease in initial osteoclast differentiation due to Mg doping. After 21 days of culture, osteoclast-like cell formation was evident on all samples with osteoclastic markers such as actin ring, multiple nuclei, and presence of vitronectin receptor αvβ3 integrin. After osteoclast differentiation, all substrates showed osteoclast-like cell mediated degradation, however; significantly restricted for Mg doped β-TCP samples. Our present results indicated substrate chemistry controlled osteoclast differentiation and resorptive activity which can be used in designing TCP based resorbable bone substitutes with controlled degradation properties. PMID:22566212
NASA Astrophysics Data System (ADS)
Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra
2016-09-01
Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering.
Roy, Mangal; Bose, Susmita
2012-09-01
Bone substitute materials are required to support the remodeling process, which consists of osteoclastic resorption and osteoblastic synthesis. Osteoclasts, the bone-resorbing cells, generate from differentiation of hemopoietic mononuclear cells. In the present study, we have evaluated the effects of 1.0 wt % strontium (Sr) and 1.0 wt % magnesium (Mg) doping in beta-tricalcium phosphate (β-TCP) on the differentiation of mononuclear cells into osteoclast-like cells and its resorptive activity. In vitro osteoclast-like cell formation, adhesion, and resorption were studied using osteoclast precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast-like cell formation was noticed on pure and Sr-doped β-TCP samples at day 8, which was absent on Mg-doped β-TCP samples indicating decrease in initial osteoclast differentiation due to Mg doping. After 21 days of culture, osteoclast-like cell formation was evident on all samples with osteoclastic markers such as actin ring, multiple nuclei, and presence of vitronectin receptor α(v)β(3) integrin. After osteoclast differentiation, all substrates showed osteoclast-like cell-mediated degradation, however, significantly restricted for Mg-doped β-TCP samples. Our present results indicated that substrate chemistry controlled osteoclast differentiation and resorptive activity, which can be used in designing TCP-based resorbable bone substitutes with controlled degradation properties. Copyright © 2012 Wiley Periodicals, Inc.
Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra
2016-01-01
Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering. PMID:27604654
NASA Astrophysics Data System (ADS)
Mulyadi; Wahyuni, Rika; Hardhienata, Hendradi; Irzaman
2018-05-01
Electrical properties of barium strontium titanate thin films were investigated. Three layers of barium strontium titanate thin films have been prepared by chemical solution deposition method and spin coating technique at 8000 rpm rotational speed for 30 seconds and temperature of annealing at 850°C for eight hours with temperature increment of 1.67°C/minute. Materials produced by the process of lanthanum dopant with doping variations of 2%, 4% and 6% above type-p silicon (100) substrates. Film obtained was then carried out the characterization using USB 2000 VIS-NIR and tauc plot method. As a result, the barium strontium titanate thin film has the value of band gap energy of 1.58 eV, 1.92 eV and 2.24 eV respectively. The characterization of electrical properties shows that the band gap value of barium strontium titanate thin film with lanthanum dopant was in the range of semiconductor value. Barium strontium titanate thin films with lanthanum dopant are sensitive to temperature changes, so it potentially to be applied to temperature monitoring on satellite technology.
NASA Astrophysics Data System (ADS)
Sunendar, Bambang; Fathina, Afiya; Harmaji, Andrie; Mardhian, Deby Fajar; Asri, Lia; Widodo, Haris Budi
2017-09-01
The prospective material for implant plate required sufficient mechanical properties to maintain fracture fixation and resist physiological stress until bone healing process finished. Various problem implant plate based on metal and polymer materials when used as fixation for bone defect case induced developmental of bioceramic for implant plate materials. Materials that now has been attract a lot of attention is carbonate apatite and strontium as doping which known to have good biocompability along with biointegrity and mechanical charateristics. Other materials that have been known to have good mechanical properties are metakaolin and use of chitosan as coupling agent. Metakaolin and carbonate apatite can be produced by sol-gel methode which simpler, economical and energy-saving procedure furthermore use of chitosan which is widely found in the nature of Indonesia can be used to encourage the utilization of natural resources. The aim fo this paper is to investigated effect of CHA-doped Sr 5 (%) mol addition to the mechanical strength of metakaolin dental implant geoploymer composite. In this paper metakaolin is used as geopolymerization precursors. The test results have shown that addition of filler of apatite carbonate doped 5% mol strontium can be said to increase the value of mechnical properties but high concentration of calcium in the nanocomposite also can complicate the equilibrium of the geopolymerization process and induce alkali aggregate reactivity (AAR). The sample group of nanocomposite of metakaolin and carbonate apatite-doped 5% mol strontium (2: 1% wt) with 2% chitosan as a coupling agent based on geopolymerization for implant plate application has the best mechanical properties among all sample groups but does not qualify as an implant plate on cortical bone but can be used for the application of the implant plate on the trabecular bone specifically and potentially as a bone initiator.
Electrical characterization of doped strontium titanate thin films for semiconductor memories
NASA Astrophysics Data System (ADS)
Han, Jeong Hee
2002-08-01
Doped strontium titanate (ST) thin films were investigated for high-density memory applications. ST has become a promising candidate to replace conventional silicon oxide due to its high inherent dielectric constant, superior leakage characteristics, and good chemical stability. However, oxygen vacancies and the problems that arise as a result are one of the main drawbacks against this material. Resistance degradation is a serious reliability issue in perovskite titanate films and may be a result of oxygen vacancies. In this dissertation, an attempt to reduce the resistance degradation was made by doping the ST films with both niobium and lanthanum. Niobium is a B-site donor in the perovskite, whereas lanthanum is an A-site donor. Both have an extra valence charge than the atom which it replaces in the crystal structure. With a higher valence charge, the number of oxygen vacancies is hoped to be reduced and result in better electrical performance. Experimental results showed that the degradation rate is reduced by doping with either niobium or lanthanum. A bi-layer study was also performed to optimize the dielectric with the strengths of both doped and undoped strontium titanate and to distinguish the source of the oxygen vacancies. A study on the conduction mechanisms and dielectric dispersion was also performed. An additional study was made on the effect of iridium as a possible gate electrode for a MOS capacitor. Hafnium oxide was used as the high-permittivity oxide. The results observed showed that the capacitance was higher for iridium electrodes than those for platinum electrodes. However, both electrodes showed unacceptable frequency dispersion which may be caused by crude patterning techniques. A hysteresis review was also done for hafnium and zirconium oxides. It was observed that the hysteresis measured in the high-permittivity oxides are dependent on the accumulation sweep voltage due to the trapping and de-trapping of charge at the dielectric-silicon interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com; Farooq, Saima
2011-05-15
Research highlights: {yields} Strontium-barium hexaferrites (Sr{sub 0.5}Ba{sub 0.5}Fe{sub 12}O{sub 19}) in single magnetoplumbite phase solid structure are synthesized by the co-precipitation method. {yields} Structural and electrical properties of Nd-Ni substituted ferrites are investigated. {yields} These ferrite materials possess high electrical resistivity (108 {Omega} cm) that is essential to curb the eddy current loss, which is pre-requisite for surface mount devices. -- Abstract: Cationic substitution in M-type hexaferrites is considered to be an important tool for modification of their electrical properties. This work is part of our comprehensive study on the synthesis and characterization of Nd-Ni doped strontium-barium hexaferrite nanomaterials ofmore » nominal composition Sr{sub 0.5}Ba{sub 0.5-x}Nd{sub x}Fe{sub 12-y}Ni{sub y}O{sub 19} (x = 0.00-0.10; y = 0.00-1.00). Doping with this binary mixture modulates the physical and electrical properties of strontium-barium hexaferrite nanoparticles. Structural and electrical properties of the co-precipitated ferrites are investigated using state-of-the-art techniques. The results of X-ray diffraction analysis reveal that the lattice parameters and cell volume are inversely related to the dopant content. Temperature dependent DC-electrical resistivity measurements infer that resistivity of strontium-barium hexaferrites decreases from 1.8 x 10{sup 10} to 2.0 x 10{sup 8} {Omega} cm whereas the drift mobility, dielectric constant and dielectric loss tangent are directly related to the Nd-Ni content. The results of the study demonstrate a relationship between the modulation of electrical properties of substituted ferrites and nature of cations and their lattice site occupancy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Shiguang; Mao, Chaoliang, E-mail: maochaoliang@mail.sic.ac.cn, E-mail: xldong@mail.sic.ac.cn; Wang, Genshui
2014-10-14
Relaxation like dielectric anomaly is observed in Y³⁺ and Mn²⁺ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysismore » reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.« less
Strontium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation
Aid-Launais, R.; Sagardoy, T.; Siadous, R.; Bareille, R.; Rey, S.; Pechev, S.; Etienne, L.; Kalisky, J.; de Mones, E.; Letourneur, D.; Amedee Vilamitjana, J.
2017-01-01
Previous studies performed using polysaccharide-based matrices supplemented with hydroxyapatite (HA) particles showed their ability to form in subcutaneous and intramuscular sites a mineralized and osteoid tissue. Our objectives are to optimize the HA content in the matrix and to test the combination of HA with strontium (Sr-HA) to increase the matrix bioactivity. First, non-doped Sr-HA powders were combined to the matrix at three different ratios and were implanted subcutaneously for 2 and 4 weeks. Interestingly, matrices showed radiolucent properties before implantation. Quantitative analysis of micro-CT data evidenced a significant increase of mineralized tissue formed ectopically with time of implantation and allowed us to select the best ratio of HA to polysaccharides of 30% (w/w). Then, two Sr-substitution of 8% and 50% were incorporated in the HA powders (8Sr-HA and 50Sr-HA). Both Sr-HA were chemically characterized and dispersed in matrices. In vitro studies performed with human mesenchymal stem cells (MSCs) demonstrated the absence of cytotoxicity of the Sr-doped matrices whatever the amount of incorporated Sr. They also supported osteoblastic differentiation and activated the expression of one late osteoblastic marker involved in the mineralization process i.e. osteopontin. In vivo, subcutaneous implantation of these Sr-doped matrices induced osteoid tissue and blood vessels formation. PMID:28910401
XANES study of Fe-implanted strontium titanate
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Goncharova, L. V.; Chavarha, M.; Sham, T. K.
2014-03-01
Properties of strontium titanate SrTiO3 (STO) depend to a great extent on the substitutional dopants and defects of crystal structure. The ion beam implantation method was used for doping STO (001) crystals with Fe at different doses. Implanted samples were then annealed at 350°C in oxygen to induce recrystallization and remove oxygen vacancies produced during ion implantation process. The effect of Fe doping and post-implantation annealing was studied by X-ray Absorption Near Edge Spectroscopy (XANES) method and Superconducting Quantum Interference Device (SQUID). XANES allowed to monitor the change in structure of STO crystals and in the local environment of Fe following the implantation and annealing steps. SQUID measurements revealed correlation between magnetic moment and Fe implantation dose. Ferromagnetic hysteresis was observed on selected Fe-implanted STO at 5 K. The observed magnetic properties can be correlated with the several Fe oxide phases in addition to the presence of O/Ti vacancies.
History and current status of strontium iodide scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, Nerine J.; Beck, Patrick R.; Payne, Stephen A.
Eu-doped strontium iodide single crystal growth has reached maturity and prototype SrI 2(Eu)-based gamma ray spectrometers provide detection performance advantages over standard detectors. SrI 2(Eu) offers a high, proportional light yield of >80,000 photons/MeV. Energy resolution of <3% at 662 keV with 1.5” x 1.5” SrI2(Eu) crystals is routinely achieved, by employing either a small taper at the top of the crystal or a digital readout technique. These methods overcome light-trapping, in which scintillation light is re-absorbed and re-emitted in Eu 2+-doped crystals. As a result, its excellent energy resolution, lack of intrinsic radioactivity or toxicity, and commercial availability makemore » SrI 2(Eu) the ideal scintillator for use in handheld radioisotope identification devices. A 6-lb SrI 2(Eu) radioisotope identifier is described.« less
History and current status of strontium iodide scintillators
Cherepy, Nerine J.; Beck, Patrick R.; Payne, Stephen A.; ...
2017-09-15
Eu-doped strontium iodide single crystal growth has reached maturity and prototype SrI 2(Eu)-based gamma ray spectrometers provide detection performance advantages over standard detectors. SrI 2(Eu) offers a high, proportional light yield of >80,000 photons/MeV. Energy resolution of <3% at 662 keV with 1.5” x 1.5” SrI2(Eu) crystals is routinely achieved, by employing either a small taper at the top of the crystal or a digital readout technique. These methods overcome light-trapping, in which scintillation light is re-absorbed and re-emitted in Eu 2+-doped crystals. As a result, its excellent energy resolution, lack of intrinsic radioactivity or toxicity, and commercial availability makemore » SrI 2(Eu) the ideal scintillator for use in handheld radioisotope identification devices. A 6-lb SrI 2(Eu) radioisotope identifier is described.« less
Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo
2013-01-01
The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800–1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil. PMID:24025555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Art J.; Van Buuren, Tony W.; Bostedt, C
X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium-doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure and Sr 3d, P 2p and 2s, Yb 4d and 4p, F 1s and O 1s core lines were used to evaluate the surface and near surface chemistry of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N4,5-edge), Sr 3d (M4,5-edge), P 2p (L2,3-edge), F 1s and O 1s (K-edges) absorption edges. These results provide themore » first measurements of the electronic structure and surface chemistry of this material.« less
Curran, Declan J; Fleming, Thomas J; Towler, Mark R; Hampshire, Stuart
2011-11-01
The effects of ion substitution in hydroxyapatite (HA) on crystal structure and lattice stability is investigated in the green state and post sintering. The effects of ion incorporation on the biaxial flexural strength and hardness are also investigated. Sintering is carried out at 1200 °C using comparative conventional and microwave regimes. Post sintering, the effects of ion incorporation manifest as an increase in the lattice d-spacings and a reduction of the crystallite size. Some HA decomposition occurs with β-TCP stabilisation in conventional sintering (CS), but this phase is destabilised during microwave sintering (MS), generating α-TCP. Conventional sintering (CS) allows higher densification in the undoped samples. Overall, for the Sr-doped compositions, the MS samples retain higher amounts of HA and experience higher density levels compared to the CS samples. Published by Elsevier Ltd.
Thermoluminescent properties of rare earth doped lithium strontium borate phosphors
NASA Astrophysics Data System (ADS)
Jakathamani, S.; Annalakshmi, O.; Jose, M. T.
2018-04-01
Thermoluminescence (TL) of borates is remarkable in the field of radiation dosimetry because they can detect both neutron and gamma radiations. Usually, the TL efficiency of pure borates is low and hence dopants have to be added to increase their TL output. Their sensitivity and thermal stability vary widely and depend strongly on the preparation method. In this study polycrystalline powders of different rare earth doped thermoluminescent phosphors of Lithium Strontium borate (LSB) were synthesized by solid state sintering technique. Among the different rare earth dopants, the phosphor doped with cerium was found to have a simple glow curve structure with a dosimetric peak at around 265°C for a heating rate of 5°C/s. In order to study the effect of dopant on the TL characteristics, LSB phosphor with different concentrations of Ce dopant was synthesized and the TL intensity was found to be maximum for a dopant concentration of 0.7 mol%. All other important dosimetric characteristics like dose response and fading were carried out for the LSB:Ce (0.7 mol%) phosphor. Kinetic parameters like trap depth and frequency factor were determined using Peak shape method from Chen's equation.
NASA Astrophysics Data System (ADS)
Ha, Sang Bu; Cho, Yoon Ho; Ji, Ho-Il; Lee, Jong-Ho; Kang, Yun Chan; Lee, Jong-Heun
2011-03-01
The effects of a V2O5 additive on the low-temperature sintering and ionic conductivity of strontium- and magnesium-doped lanthanum gallate (LSGM: La0.8Sr0.2Ga0.8Mg0.2O2.8) are studied. The LSGM powders prepared by the glycine nitrate method are mixed with 0.5-2 at.% of VO5/2 and then sintered at 1100-1400 °C in air for 4 h. The apparent density and phase purity of the LSGM specimens are increased with increasing sintering temperature and VO5/2 concentration due to the enhanced sintering and mass transfer via the intergranular liquid phase. The 1 at.% VO5/2-doped LSGM specimen sintered at 1300 °C exhibits a high oxide ion conductivity of ∼0.027 S cm-1 at 700 °C over a wide range of oxygen partial pressure (PO2 =10-27 - 1 atm), thereby demonstrating its potential as a useful electrolyte for anode-supported solid oxide fuel cells (SOFCs) without the requirement for any buffer layer between the electrolyte and anode.
Presynaptic strontium dynamics and synaptic transmission.
Xu-Friedman, M A; Regehr, W G
1999-01-01
Strontium can replace calcium in triggering neurotransmitter release, although peak release is reduced and the duration of release is prolonged. Strontium has therefore become useful in probing release, but its mechanism of action is not well understood. Here we study the action of strontium at the granule cell to Purkinje cell synapse in mouse cerebellar slices. Presynaptic residual strontium levels were monitored with fluorescent indicators, which all responded to strontium (fura-2, calcium orange, fura-2FF, magnesium green, and mag-fura-5). When calcium was replaced by equimolar concentrations of strontium in the external bath, strontium and calcium both entered presynaptic terminals. Contaminating calcium was eliminated by including EGTA in the extracellular bath, or by loading parallel fibers with EGTA, enabling the actions of strontium to be studied in isolation. After a single stimulus, strontium reached higher peak free levels than did calcium (approximately 1.7 times greater), and decayed more slowly (half-decay time 189 ms for strontium and 32 ms for calcium). These differences in calcium and strontium dynamics are likely a consequence of greater strontium permeability through calcium channels, lower affinity of the endogenous buffer for strontium, and less efficient extrusion of strontium. Measurements of presynaptic divalent levels help to explain properties of release evoked by strontium. Parallel fiber synaptic currents triggered by strontium are smaller in amplitude and longer in duration than those triggered by calcium. In both calcium and strontium, release consists of two components, one more steeply dependent on divalent levels than the other. Strontium drives both components less effectively than does calcium, suggesting that the affinities of the sensors involved in both phases of release are lower for strontium than for calcium. Thus, the larger and slower strontium transients account for the prominent slow component of release triggered by strontium. PMID:10096899
Oxygen Tracer Diffusion in LA(z-x) SR(X) CUO(4-y) Single Crystals
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Tuller, Harry L.; Wuensch, Berhardt J.; Maier, Joachim
1993-01-01
The tracer diffusion of O-18 in La(2-x)Sr(x)CuO(4-y) single crystals (x = 0 to 0.12) has been measured from 400 to 700 C in 1 atm of oxygen using SIMS analysis. Evidence for diffusion by a vacancy mechanism was found at low strontium contents. Oxygen diffusivities for x greater than or = 0.07 were depressed by several orders of magnitude below the diffusivity for undoped La2CuO(4+/-y). The observed effects of strontium doping on oxygen diffusivity are discussed in terms of defect chemical models. The decreasing oxygen diffusivity with increasing strontium was attributed to the ordering of oxygen vacancies at large defect concentrations. A diffusion anisotropy D(sub ab)/D(sub c) of nearly 600 was also found at 500 C.
Krishnan, Vinod; Bhatia, Ankit; Varma, Harikrishna
2016-05-01
Enamel damage resulting or arising from/associated with orthodontic treatment such as white spot lesions and surface deterioration after debonding brackets along with incipient carious lesions are considered problems not amenable for routine restorations due to its invasive nature. The present study was aimed at synthesizing and characterizing nHAp and 25 and 50 mol% strontium nHAp as a surface application modality for dental enamel remineralization/repair. 25 and 50 mol% Sr nHAp was synthesized and characterized in comparison with custom made pure nHAp initially with the help of transmission and scanning electron microscopy as well as toxicological assessment. Further, comparative evaluation of these novel synthesized strontium substituted particles was assessed for its efficacy in repairing damaged enamel with the help of atomic force microscopy, scanning electron microscopy and micro indentation testing. There is increase in crystallinity and reduced particle size favoring dissolution and re-precipitation through small incipient carious lesions and soft white spot areas with 25% Sr-nHAp. Sr doped specimens showed more cell viability in comparison with pure nHAP make it less cytotoxic and hence a biologically friendly material which can be safely applied in patient's mouth. AFM images obtained from 25% and 50% Sr nHAp treated specimens clearly indicated increased roughness in surface topography and performed well with micro indentation test. The novel synthesized Sr doped nHAp forms an improved treatment modality to tackle the long standing quest for solving the problem of enamel loss with incipient carious lesions and WSL from orthodontic procedures. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Effect of certain alkaline metals on Pr doped glasses to investigate spectroscopic studies
NASA Astrophysics Data System (ADS)
Lenkennavar Susheela, K.; Madhu, A.; Eraiah, B.; Kokila, M. K.
2018-02-01
Incorporation of different Alkaline earth metal like Barium, Calcium and strontium in sodium lead borate glass doped with Pr3+ is studied. Physical parameters such as density, molar volume, molar refractivity etc have been evaluated. Effect of different atomic size of alkaline metal using optical and physical parameters is analysed. XRD and FTIR were carried out to know the structural behaviour of the glasses. Absorption and Emission spectra are recorded at room temperature and the results were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Kyunghan, E-mail: kyunghan.ahn@samsung.com; Ryu, Byungki; Korolev, Dmitry
2013-12-09
The effect of d{sup 1} impurity doping in Sr-hexaferrite (SrM) on the magnetic anisotropy is investigated. First-principles calculations revealed that group-V elements (V, Nb) are stabilized with co-doping of alkali elements. Na{sup 1+}/K{sup 1+} doping at Sr{sup 2+}-site is found to be critical to form the d{sup 1} impurities at Fe-site. Experimentally, Na–V doped SrM shows the intrinsic coercivity of ∼5.4 kOe, which is ∼300% enhancement compared to undoped SrM and comparable value to La–Co co-doped SrM. Finally, the spin-orbit coupling from non-vanishing angular momentum of d{sup 1} impurity in SrM should be a main factor for such a substantialmore » improvement of intrinsic coercivity.« less
Spectral engineering of optical fiber through active nanoparticle doping
NASA Astrophysics Data System (ADS)
Lindstrom-James, Tiffany
The spectral engineering of optical fiber is a method of intentional doping of the core region in order to absorb/emit specific wavelengths of light therby providing enhanced performance over current fibers. Efforts here focused on developing an understanding of optically active nanoparticles based on alkaline earth fluorides that could be easily and homogeneously incorporated into the core of a silica based optical fiber preform and result in efficient and tailorable spectral emissions. Doped and undoped calcium, strontium and barium fluoride nanoparticles were successfully synthesized and characterized for their physical, chemical, and optical behavior. Distinct spectroscopic differences as a result of different host materials, varying rare earth doping levels and processing conditions, indicated the ability to influence the spectral behavior of the doped nanoparticle. By using photoluminescence to predict diffusion behavior, the application of a simple one dimensional model for diffusion provided a method for predicting the diffusion coefficient of europium ions in alkaline earth fluorides with order of magnitude accuracy. Modified chemical vapor deposition derived silica preforms were individually solution doped with europium doped alkaline earth fluoride nanoparticles. By using the rare earth doped alkaline earth fluoride nanoparticles as the dopant materials in the core of optical fiber preforms, the resultant optical properties of the glass were significantly influenced by their presence in the core. The incorporation of these rare earth doped alkaline earth fluoride nanoparticles was found to significantly influence the local chemical and structural environment about the rare earth ion, demonstrated homogeneity and uniform distribution of the rare earth dopant and resulted in specifically unique spectral behavior when compared to conventional doping methods. A more detailed structural model of the doped core glass region has been developed based on the spectral behavior of these active fiber preforms. It has been shown that rare earth doping of alkaline earth fluoride nanoparticles provides a material which can be 'tuned' to specific applications through the use of different host materials, processing conditions and doping levels of the rare earth and when used as dopant materials for active optical fibers, provides a means to tailor the optical behavior.
Structure and properties of strontium-doped phosphate-based glasses
Abou Neel, Ensanya A.; Chrzanowski, Wojciech; Pickup, David M.; O'Dell, Luke A.; Mordan, Nicola J.; Newport, Robert J.; Smith, Mark E.; Knowles, Jonathan C.
2008-01-01
Owing to similarity in both ionic size and polarity, strontium (Sr2+) is known to behave in a comparable way to calcium (Ca2+), and its role in bone metabolism has been well documented as both anti-resorptive and bone forming. In this study, novel quaternary strontium-doped phosphate-based glasses, containing 1, 3 and 5 mol% SrO, were synthesized and characterized. 31P magic angle spinning (MAS) nuclear magnetic resonance results showed that, as the Sr2+ content is increased in the glasses, there is a slight increase in disproportionation of Q2 phosphorus environments into Q1 and Q3 environments. Moreover, shortening and strengthening of the phosphorus to bridging oxygen distance occurred as obtained from FTIR. The general broadening of the spectral features with Sr2+ content is most probably due to the increased variation of the phosphate–cation bonding interactions caused by the introduction of the third cation. This increased disorder may be the cause of the increased degradation of the Sr-containing glasses relative to the Sr-free glass. As confirmed from elemental analysis, all Sr-containing glasses showed higher Na2O than expected and this also could be accounted for by the higher degradation of these glasses compared with Sr-free glasses. Measurements of surface free energy (SFE) showed that incorporation of strontium had no effect on SFE, and samples had relatively higher fractional polarity, which is not expected to promote high cell activity. From viability studies, however, the incorporation of Sr2+ showed better cellular response than Sr2+-free glasses, but still lower than the positive control. This unfavourable cellular response could be due to the high degradation nature of these glasses and not due to the presence of Sr2+. PMID:18826914
Effects of oral supplementation with stable strontium
Skoryna, Stanley C.
1981-01-01
The biologic effects of stable strontium, a naturally occurring trace element in the diet and the body, have been little investigated. This paper discusses the effects of oral supplementation with stable strontium in laboratory studies and clinical investigations. The extent of intestinal absorption of various doses of orally administered strontium was estimated by determining serum and tissue levels with atomic absorption spectrophotometry. The central observation is that increased oral intake produces a direct increase in serum levels and intracellular uptake of strontium. The results of these studies, as well as those of other investigators, demonstrate that a moderate dosage of stable strontium does not adversely affect the level of calcium either in the serum or in soft tissues. In studies of patients receiving 1 to 1.5 g/d of strontium gluconate, a sustained increase in the serum level of strontium produced a 100-fold increase in the strontium:calcium ratio. In rats, studies indicate that an increase in intracellular strontium content following supplementation may exert a protective effect on mitochondrial structure, probably by means of a stabilizing effect of strontium on membranes. The strontium:calcium ratio in animals receiving a standard diet is higher in the cell than in the extracellular fluid; this may be of physiologic significance. An increase in density that corresponded to the deposition of stable strontium was observed in areas of bone lesions due to metastatic cancer in patients receiving stable strontium supplementation. This suggests the possibility of using strontium to mineralize osteophenic areas and to relieve bone pain. Also, because of reports of an inverse relation between the incidence of dental caries and a high strontium content in drinking water, the use of natural water containing relatively high levels of stable strontium should be considered. In each of these instances it is important to maintain a normal dietary intake of calcium. ImagesFIG. 1FIG. 3FIG. 4FIG. 5 PMID:6120036
Recovery of strontium activity from a strontium-82/rubidium-82 generator
Taylor, Wayne A.; Phillips, Dennis R.; Sosnowski, Kenneth M.
1999-10-12
Strontium-82 is recovered from spent strontium-82/rubidium-82 generators to provide a source of strontium-82 for additional strontium-82/rubidium-82 generators. The process involves stripping of the strontium-82 from used strontium-82/rubidium-82 generators followed by purification of the strontium-82 material to remove additional metal contaminants to desired levels.
Barium iodide and strontium iodide crystals and scintillators implementing the same
Payne, Stephen A.; Cherepy, Nerine J.; Hull, Giulia E.; Drobshoff, Alexander D.; Burger, Arnold
2016-11-29
In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV, where the strontium iodide material is characterized by a volume not less than 1 cm.sup.3. In another embodiment, a scintillator optic includes europium-doped strontium iodide providing at least 50,000 photons per MeV, where the europium in the crystal is primarily Eu.sup.2+, and the europium is present in an amount greater than about 1.6%. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, where a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 and 1.0, the scintillator optic is a crystal that provides at least 50,000 scintillation photons per MeV and energy resolution of less than about 5% at 662 keV, and the crystal has a volume of 1 cm.sup.3 or more; the scintillator optic contains more than about 2% europium.
Spectroscopic investigations on Pr³+ and Nd³+ doped strontium-lithium-bismuth borate glasses.
Rajesh, D; Balakrishna, A; Seshadri, M; Ratnakaram, Y C
2012-11-01
Spectroscopic investigations on different concentrations (0.1, 0.5, 1.0, 1.5 and 2.0mol%) of Pr(3+) and Nd(3+) doped strontium lithium bismuth borate glasses have been done. X-ray diffraction, SEM with EDS, absorption and luminescence spectra were recorded for all the glass matrices and analyzed. X-ray diffraction profiles and SEM images conformed amorphous nature of investigated glass samples. EDS spectra of host glass and Pr(3+)doped glass matrices gave information about the chemical composition of glass samples. From the absorption spectra of Pr(3+) and Nd(3+) ions, Judd-Ofelt (J-O) intensity parameters (Ω(λ),λ=2, 4 and 6) have been calculated and compared with other glass matrices. The emission characteristics such as radiative lifetimes (τ(R)), measured and calculated branching ratios (β) and stimulated emission cross-sections (σ(P)) have been obtained for the observed emission transitions of Pr(3+) and Nd(3+) ions in the above glass matrix for all the concentrations. From the emission spectra of Pr(3+) and Nd(3+) doped glass matrices, the effect of concentration on the quenching of intensity of (1)D(2)→(3)H(4) transition of Pr(3+) ion and (4)F(3/2)→(4)I(9/2), (4)I(11/2) and (4)I(13/2) transitions of Nd(3+) have been studied and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Noad, Hilary; Spanton, Eric M.; Nowack, Katja C.; ...
2016-11-28
Strontium titanate is a low-temperature, non–Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO 3 embedded in undoped SrTiO 3. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconductingmore » transition temperature T c ≳ 10% higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Some regions are too wide to originate on twin boundaries; therefore, we propose that the orientation of the tetragonal unit cell with respect to the doped plane affects T c. Finally, our results suggest that the anisotropic dielectric properties of SrTiO 3 are important for its superconductivity and need to be considered in any theory of the mechanism of the superconductivity.« less
Transport Properties of La- doped SrTiO3 Ceramics Prepared Using Spark Plasma Sintering
NASA Astrophysics Data System (ADS)
Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Tritt, Terry M.; Alshareef, Husam N.
2012-02-01
In this work, thermoelectric transport properties of La-doped SrTiO3 ceramics prepared using conventional solid state reaction and spark plasma sintering have been investigated. Room temperature power factor of single crystal strontium titanate (SrTiO3), comparable to that of Bi2Te3, has brought new attention to this perovskite-type transition metal-oxide as a potential n-type thermoelectric for high temperature applications. Electronic properties of this model complex oxide, SrTiO3 (ABO3), can be tuned in a wide range through different doping mechanisms. In addition to A site (La-doped) or B site (Nb-doped) substitutional doping, introducing oxygen vacancies plays an important role in electrical and thermal properties of these structures. Having multiple doping mechanisms makes the transport properties of these perovskites more dependent on preparation parameters. The effect of these synthesis parameters and consolidation conditions on the transport properties of these materials has been studied.
NASA Astrophysics Data System (ADS)
Gong, Wenquan
2005-07-01
The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization resistances. Ni-LDC (50 v% NO was selected to be the anode for the LSGM electrolyte with a thin LDC barrier layer. Finally, the performance of complete LSGM electrolyte-supported IT-SOFCs with the selected cathode (LSCF-LSGM) and anode (Ni-LDC) materials coupled with the LDC barrier layer was evaluated at 600--800°C. The simulated cell performance of the anode-supported cell based on LSGM electrolyte was promising.
New Insights into Sensitization Mechanism of the Doped Ce (IV) into Strontium Titanate
Wang, Yuan; Liu, Chenglun; Xu, Longjun
2018-01-01
SrTiO3 and Ce4+ doped SrTiO3 were synthesized by a modified sol–gel process. The optimization synthesis parameters were obtained by a series of single factor experiments. Interesting phenomena are observable in Ce4+ doped SrTiO3 systems. Sr2+ in SrTiO3 system was replaced by Ce4+, which reduced the surface segregation of Ti4+, ameliorated agglomeration, increased specific surface area more than four times compared with pure SrTiO3, and enhanced quantum efficiency for SrTiO3. Results showed that Ce4+ doping increased the physical adsorption of H2O and adsorbed oxygen on the surface of SrTiO3, which produced additional catalytic active centers. Electrons on the 4f energy level for Ce4+ produced new energy states in the band gap of SrTiO3, which not only realized the use of visible light but also led to an easier separation between the photogenerated electrons and holes. Ce4+ repeatedly captured photoelectrons to produce Ce3+, which inhibited the recombination between photogenerated electrons and holes as well as prolonged their lifetime; it also enhanced quantum efficiency for SrTiO3. The methylene blue (MB) degradation efficiency reached 98.7% using 3 mol % Ce4+ doped SrTiO3 as a photocatalyst, indicating highly photocatalytic activity. PMID:29690605
Strontium-89 and Strontium-90 Levels in Breast Milk and in Mineral-Supplement Preparations
Jarvis, Anita A.; Brown, John R.; Tiefenbach, Bella
1963-01-01
Strontium-90, strontium-89 and S.U. values were determined in human milk before and after the resumption of atmospheric nuclear testings in 1961, and the levels were compared to cows' milk values reported during the same time. S.U.90 levels in human milk were approximately one-fifth of those found in cows' milk. Assuming an average dietary intake of 11-13 S.U.90 during the period tested, the mean strontium/calcium ratio of 1.78 found in human milk represents an Observed Ratio milk-diet of approximately 0.14-0.16. Although strontium-89 was present in cows' milk already in September 1961, it did not appear in human milk until November 1961. It seems, therefore, that there was a two-month lag period between the appearance of fresh fallout in cows' milk and human milk. Calcium-supplement mineral preparations used by pregnant and lactating women were tested to find their strontium-89, strontium-90 and S.U. levels, because strontium isotopes, if present in these products, will be transferred to the fetus and to breast-fed infants. The compounds tested had S.U.90 levels of 0.13-2.62; in none of the preparations was Sr89 present. PMID:14041888
Strontium-89 and strontium-90 levels in breast milk and in mineral-suplement preparations.
JARVIS, A A; BROWN, J R; TIEFENBACH, B
1963-01-19
Strontium-90, strontium-89 and S.U. values were determined in human milk before and after the resumption of atmospheric nuclear testings in 1961, and the levels were compared to cows' milk values reported during the same time. S.U.(90) levels in human milk were approximately one-fifth of those found in cows' milk. Assuming an average dietary intake of 11-13 S.U.(90) during the period tested, the mean strontium/calcium ratio of 1.78 found in human milk represents an Observed Ratio milk-diet of approximately 0.14-0.16. Although strontium-89 was present in cows' milk already in September 1961, it did not appear in human milk until November 1961. It seems, therefore, that there was a two-month lag period between the appearance of fresh fallout in cows' milk and human milk. Calcium-supplement mineral preparations used by pregnant and lactating women were tested to find their strontium-89, strontium-90 and S.U. levels, because strontium isotopes, if present in these products, will be transferred to the fetus and to breast-fed infants. The compounds tested had S.U.(90) levels of 0.13-2.62; in none of the preparations was Sr(89) present.
Electrical properties of Ba doped LSGM for electrolyte material of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Raghvendra, Singh, Prabhakar; Singh, Rajesh Kumar
2013-02-01
We report our investigations on Lanthanum Strontium Magnesium Gallate, LSGM, La0.8Sr0.2Ga0.8Mg0.2O3-δ doped with Barium at Strontium site having composition La0.8(Sr0.1Ba0.1)Ga0.8Mg0.2O3-δ (LSBGM). The pure cubic phase along with some additional phase was confirmed by XRD pattern. Electrical properties of the Composition LSBGM [La0.8(Sr0.1Ba0.1)Ga0.8Mg0.2O3-δ] prepared by solid state route, was studied employing impedance spectroscopy in the temperature range 573 K-993 K and frequency range 20 Hz-1MHz. The total ionic conductivity of the composition was found to be 0.072 S.cm-1 at 953 K and the activation energy from Arrhenius plot was found to be 1.16 eV in the measured temperature range. This confirms oxygen ion conductivity in the system. SEM micrograph shows the uniform densed particle morphology with gains of average size 200 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.
2013-02-05
Strontium lithium bismuth borate glasses (SLBiB) doped with various concentrations of Er{sup 3+} were prepared using conventional melt quench technique and investigated their optical properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra at room temperature. Judd-Ofelt (J-O) theory has been applied for the f.f transitions of Er{sup 3+} ions to evaluate J-O intensity parameters, {Omega}{lambda} ({lambda} = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (A{sub R}), branching ratios ({beta})more » and radiative lifetimes ({tau}) are estimated for certain transitions. From the emission spectra, peak emission-cross sections ({sigma}{sub p}) and products of stimulated emission cross-section and full width at half maximum ({sigma}{sub p} Multiplication-Sign FWHM) were calculated for the observed emission transition, {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}.« less
NASA Astrophysics Data System (ADS)
Collignon, Clément; Fauqué, Benoît; Cavanna, Antonella; Gennser, Ulf; Mailly, Dominique; Behnia, Kamran
2017-12-01
We present a study of the lower critical field, Hc 1, of SrTi1 -xNbxO3 as a function of carrier concentration with the aim of quantifying the superfluid density. At low carrier concentration (i.e., the underdoped side), superfluid density and the carrier concentration in the normal state are equal within experimental margin. A significant deviation between the two numbers starts at optimal doping and gradually increases with doping. The inverse of the penetration depth and the critical temperature follow parallel evolutions as in the case of cuprate superconductors. In the overdoped regime, the zero-temperature superfluid density becomes much lower than the normal-state carrier density before vanishing all together. We show that the density mismatch and the clean-to-dirty crossover are concomitant. Our results imply that the discrepancy between normal and superconducting densities is expected whenever the superconducting gap becomes small enough to put the system in the dirty limit. A quantitative test of the dirty BCS theory is not straightforward, due to the multiplicity of the bands in superconducting strontium titanate.
Abd Aziz, Azrina; Yong, Kok Soon; Ibrahim, Shaliza; Pichiah, Saravanan
2012-01-15
An enhanced ferromagnetic property, visible light active TiO(2) photocatalyst was successfully synthesized by supporting strontium ferrite (SrFe(12)O(19)) onto TiO(2) doped with nitrogen (N) and compared with N-doped TiO(2). The synthesized catalysts were further characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), BET surface area analysis, vibrating sample magnetometer (VSM), X-ray photon spectroscopy (XPS) and visible light spectroscopy analysis for their respective properties. The XRD and EDS revealed the structural and inorganic composition of N-TiO(2) supported on SrFe(12)O(19). The supported N-TiO(2) exhibited a strong ferromagnetic property with tremendous stability against magnetic property losses. It also resulted in reduced band gap (2.8 eV) and better visible light absorption between 400 and 800 nm compared to N-doped TiO(2). The photocatalytic activity was investigated with a recalcitrant phenolic compound namely 2,4-dichlorophenol (2,4-DCP) as a model pollutant under direct bright and diffuse sunlight exposure. A complete degradation of 2,4-DCP was achieved with an initial concentration of 50mg/L for both photocatalysts in 180 min and 270 min respectively under bright sunlight. Similarly the diffuse sunlight study resulted in complete degradation for supported N-TiO(2) and >85% degradation N-TiO(2), respectively. Finally the supported photocatalyst was separated under permanent magnetic field with a mass recovery ≈ 98% for further reuse. Copyright © 2011 Elsevier B.V. All rights reserved.
Dielectric properties of calicum and barium-doped strontium titanate
NASA Astrophysics Data System (ADS)
Tung, Li-Chun
Dielectric properties of high quality polycrystalline Ca- and Ba-doped SrTiO3 perovskites are studied by means of dielectric constant, dielectric loss and ferroelectric hysteresis measurements. Low frequency dispersion of the dielectric constant is found to be very small and a simple relaxor model may not be able to explain its dielectric behavior. Relaxation modes are found in these samples, and they are all interpreted as thermally activated Bipolar re-orientation across energy barriers. In Sr1- xCaxTiO3 (x = 0--0.3), two modes are found associated with different relaxation processes, and the concentration dependence implies a competition between these processes. In Sr1-xBa xTiO3 (x = 0--0.25), relaxation modes are found to be related to the structural transitions, and the relaxation modes persist at low doping levels (x < 0.1), where structural ordering is not observed by previous neutron scattering studies. The validity of well-accepted Barret formula is discussed and two of the well-accepted models, anharmonic oscillator model and transverse Ising model, are found to be equivalent. Both of the Ca and Ba systems can be understood qualitatively within the concept of transverse Ising model.
Hedman, Kristin M.; Curry, B. Brandon; Johnson, Thomas M.; Fullagar, Paul D.; Emerson, Thomas E.
2009-01-01
Strontium isotope values (87Sr/86Sr) in bone and tooth enamel have been used increasingly to identify non-local individuals within prehistoric human populations worldwide. Archaeological research in the Midwestern United States has increasingly highlighted the role of population movement in affecting interregional cultural change. However, the comparatively low level of geologic variation in the Midwestern United States might suggest a corresponding low level of strontium variation, and calls into question the sensitivity of strontium isotopes to identify non-local individuals in this region. Using strontium isotopes of archaeological fauna, we explore the degree of variability in strontium ratios across this region. Our results demonstrate measurable variation in strontium ratios and indicate the potential of strontium analysis for addressing questions of origin and population movement in the Midwestern United States.
Browning, Linda C; Cowieson, Aaron J
2015-03-30
Strontium is currently prescribed for patients with osteoporosis to increase bone density and reduce bone fractures but its relevance in animal nutrition is obscure. In order to investigate the effect of supplemental strontium and vitamin D3 on performance, egg quality and skeletal integrity in poultry a total of 108 laying hens, 99 weeks of age, were fed three levels of strontium (0, 500, 1000 mg kg(-1) ) and two levels of vitamin D3 (2500, 5,000 iu kg(-1)) over a 12-week period. There was an improvement (P < 0.05) in egg production and feed conversion efficiency with strontium at 500 mg kg(-1) and a significant increase in egg weight in those hens fed additional vitamin D3 . Supplemental strontium increased phosphorus, sodium and strontium retention in birds fed 2500 iu D3 kg(-1) but reduced phosphorus, sodium and strontium retention in birds fed 5000 iu D3 kg(-1), resulting in an interaction (P < 0.01) between strontium and vitamin D3 . Addition of 5000 iu D3 kg(-1) increased egg weight (P < 0.05); predominantly by increased albumen content (P < 0.05), whereas strontium supplementation reduced egg weight (P < 0.001). Similarly, 5000 iu kg(-1) D3 increased apparent metabolizable energy (P < 0.05); in contrast, strontium supplementation reduced (P < 0.05) apparent metabolizable energy. The addition of 500 mg kg(-1) strontium significantly improved egg production and feed efficiency; however, further investigation needs to be undertaken to refine the optimum level of strontium required to maximize hen performance. The interrelationship between strontium and vitamin D3 requires further exploratory study. © 2014 Society of Chemical Industry.
Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.
2015-01-01
The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field. PMID:26481902
NASA Astrophysics Data System (ADS)
Vij, Ankush; Gautam, Sanjeev; Kumar, Vinay; Brajpuriya, R.; Kumar, Ravi; Singh, Nafa; Chae, Keun Hwa
2013-01-01
We present here the electronic structure and photoluminescence properties of Sm (0.1-1.0 mol%) doped SrS phosphors. The doping in SrS was probed by near-edge X-ray absorption fine structure (NEXAFS) at M5,4-edges of Sm in total electron yield mode. The simulated absorption edges using atomic multiplet calculations were correlated with experimental results, which clearly reveal the presence of trivalent state of Sm in SrS matrix. However, for Sm (1 mol%), very minor traces of Sm2+ were also observed, which have been explained by comparing the NEXAFS spectra in total electron and florescence yield mode. The PL emission of SrS:Sm comprises of three sharp bands at 567, 602 and 650 nm owing to the well-known intra 4f transitions from 4G5/2 to 6HJ (J = 5/2, 7/2, 9/2) levels of Sm3+ ions in SrS host. The effect of Ce co-doping on SrS:Sm phosphors was also investigated, which exhibits characteristic PL emission of independent ions at their respective excitation wavelengths. However, at an excitation wavelength of 393 nm, SrS:Ce,Sm exhibits the simultaneous characteristic PL emission of both ions spanning into blue-green-red region. The CIE chromaticity coordinates also clearly show the influence of excitation wavelengths on the emission colour of SrS:Ce,Sm.
Strontium and barium iodide high light yield scintillators
NASA Astrophysics Data System (ADS)
Cherepy, Nerine J.; Hull, Giulia; Drobshoff, Alexander D.; Payne, Stephen A.; van Loef, Edgar; Wilson, Cody M.; Shah, Kanai S.; Roy, Utpal N.; Burger, Arnold; Boatner, Lynn A.; Choong, Woon-Seng; Moses, William W.
2008-02-01
Europium-doped strontium and barium iodide are found to be readily growable by the Bridgman method and to produce high scintillation light yields. SrI2(Eu ) emits into the Eu2+ band, centered at 435nm, with a decay time of 1.2μs and a light yield of ˜90000photons/MeV. It offers energy resolution better than 4% full width at half maximum at 662keV, and exhibits excellent light yield proportionality. BaI2(Eu ) produces >30000photons/MeV into the Eu2+ band at 420nm (<1μs decay). An additional broad impurity-mediated recombination band is present at 550nm (>3μs decay), unless high-purity feedstock is used.
NASA Astrophysics Data System (ADS)
Uba, Samuel
High performance detectors used in the detection of ionizing radiation is critical to nuclear nonproliferation applications and other radiation detectors applications. In this research we grew and tested Europium doped Lithium Strontium Iodide compound. A mixture of lithium iodide, strontium iodide and europium iodide was used as the starting materials for this research. Congruent melting and freezing temperature of the synthesized compound was determined by differential scanning calorimetry (DSC) using a Setaram Labsys Evo DSC-DTA instrument. The melting temperatures were recorded at 390.35°C, 407.59°C and freezing temperature was recorded at 322.84°C from a graph of heat flow plotted against temperature. The synthesized material was used as the charge for the vertical Bridgeman growth, and a 6.5 cm and 7.7cm length boule were grown in a multi-zone transparent Mullen furnace. A scintillating detector of thickness 2.53mm was fabricated by mechanical lapping in mineral oil, and scintillating response and timing were obtained to a cesium source using CS-137 isotope. An energy resolution (FWHM over peak position) of 12.1% was observed for the 662keV full absorption peak. Optical absorption in the UV-Vis wavelength range was recorded for the grown crystal using a U-2900 UV/VIS Spectrophotometer. Absorption peaks were recorded at 194nm, 273nm, and 344nm from the absorbance spectrum, various optical parameters such as absorption coefficient, extinction coefficient, refractive index, and optical loss were derived. The optical band gap energy was calculated using Tauc relation expression at 1.79eV.
NASA Astrophysics Data System (ADS)
Mitzi, David Brian
1990-01-01
A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.
NASA Astrophysics Data System (ADS)
Peng, Cheng-Jien
The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could significantly improve the time -dependent dielectric breakdown (TDDB) behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping.
Doping effect in layer structured SrBi2Nb2O9 ferroelectrics
NASA Astrophysics Data System (ADS)
Wu, Yun; Forbess, Mike J.; Seraji, Seana; Limmer, Steven J.; Chou, Tammy P.; Nguyen, Carolyn; Cao, Guozhong
2001-11-01
This article reports a systematic study of doping effects on the crystal structure, microstructure, dielectric, and electrical properties of layer-structured strontium bismuth niobate, SrBi2Nb2O9 (SBN), ferroelectrics. Substitution in both the A site (Sr2+ by Ca2+ and Ba2+) and B site (Nb5+ by V5+) up to 30 at % were studied. It was found that crystal lattice constant, dielectric, and electrical properties of SBN ferroelectrics varied appreciably with the type and amount of dopants. The relationships among the ionic radii, structural constraint imposed by [Bi2O2]2+ interlayers, and properties were discussed.
The mechanism of Cordyceps sinensis and strontium in prevention of osteoporosis in rats.
Qi, Wei; Wang, Pu-jie; Guo, Wen-jun; Yan, Ya-bo; Zhang, Yang; Lei, Wei
2011-10-01
The effects of Cordyceps sinensis (Caterpillar fungus) and strontium ranelate on ovariectomized osteopenic rats was studied in this paper. After the rats were treated orally with C. sinensis, strontium, and C. sinensis rich in strontium ranelate (CSS) respectively, serum alkaline phosphatase (ALP), tartarate-resistant acid phosphatase (TRAP), serum osteocalcin (OC), homocysteine, C-terminal crosslinked telopeptides of collagen type I (CTX), estradiol, and interferon-gamma (IFN-γ) level were examined. The beneficial effects of CSS on improvement of osteoporosis in rats were attributable mainly to decrease ALP activity, TRAP activity, CTX level, and IFN-γ level. At the same time, CSS also increase the OC and estradiol level in ovariectomized osteopenic rats. This study demonstrates the value of C. sinensis rich in strontium ranelate in the management of postmenopausal osteoporosis in humans.
Naraginti, Saraschandra; Thejaswini, T V L; Prabhakaran, D; Sivakumar, A; Satyanarayana, V S V; Arun Prasad, A S
2015-10-05
This work is focused on sol-gel synthesis of silver and strontium co-doped TiO2 nanoparticles and their utilization as photo-catalysts in degradation of two textile dyes. Effect of pH, intensity of light, amount of photo-catalyst, concentration of dye, sensitizers, etc., were studied to optimize conditions for obtaining enhanced photo-catalytic activity of synthesized nanoparticles. XRD, BET, HR-TEM, EDAX and UV-Vis (diffused reflectance mode) techniques were used to characterize the nanoparticles. Interestingly, band gap of Sr and Ag co-doped TiO2 nanoparticles showed considerable narrowing (2.6 eV) when compared to Ag doped TiO2 (2.7 eV) and undoped TiO2 (3.17 eV) nanoparticles. Incorporation of Ag and Sr in the lattice of TiO2 could bring isolated energy levels near conduction and valence bands thus narrowing band gap. The XRD analysis shows that both Ag and Sr nanoparticles are finely dispersed on the surface of titania framework, without disturbing its crystalline structure. TEM images indicate that representative grain sizes of Ag-doped TiO2 & Sr and Ag co-doped TiO2 nanoparticles are in the range of 8-20 nm and 11-25 nm, respectively. Effective degradation of Direct Green-6 (DG-6) and Reactive Blue-160 (RB-160) under UV and visible light has been achieved using the photo-catalysts. Sr and Ag co-doped TiO2 photo-catalysts showed higher catalytic activity during degradation process in visible region when compared to Ag-doped and undoped TiO2 nanoparticles which could be attributed to the interactive effect caused by band gap narrowing and enhancement in charge separation. For confirming degradation of the dyes, total organic carbon (TOC) content was monitored periodically. Copyright © 2015 Elsevier B.V. All rights reserved.
Photo-Luminescent Targets in Space
NASA Technical Reports Server (NTRS)
Maida, James; Kolomenski, Andrei
2017-01-01
Photo-luminescent ("glow in the dark") products have seen a dramatic increase in performance is the last 15 years with the use of a strontium aluminate formulation. Because of this, ISS uses photo-luminescent markers for interior emergency egress guidance. The marker is COTS material composed of strontium aluminate doped with europium, imbedded in PVC and achieves a light emission performance rated at 600/90 (600 mcd at 10 minutes and 90 mcd at 1 hour, 2 mcd is minimum required for human visibility). The ICA goal is to determine this material's effectiveness for use externally on ISS and/or on visiting vehicles, when packaged in Lexan for UV protection. A thermal test was conducted by EC to characterize the luminance emission profile of the material at extreme cold and hot temperatures, such as experienced on ISS.
Tungsten-doped thin film materials
Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.
2003-12-09
A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.
NASA Astrophysics Data System (ADS)
Guo, Weimin; Liu, Jiang
Anode-supported solid oxide fuel cells (SOFCs) with a trilayered yttria-doped bismuth oxide (YDB), strontium- and magnesium-doped lanthanum gallate (LSGM) and lanthanum-doped ceria (LDC) composite electrolyte film are developed. The cell with a YDB (18 μm)/LSGM (19 μm)/LDC (13 μm) composite electrolyte film (designated as cell-A) shows the open-circuit voltages (OCVs) slightly higher than that of a cell with an LSGM (31 μm)/LDC (17 μm) electrolyte film (designated as cell-B) in the operating temperature range of 500-700 °C. The cell-A using Ag-YDB composition as cathode exhibits lower polarization resistance and ohmic resistance than those of a cell-B at 700 °C. The results show that the introduction of YDB to an anode-supported SOFC with a LSGM/LDC composite electrolyte film can effectively block electronic transport through the cell and thus increased the OCVs, and can help the cell to achieve higher power output.
Strontium-90 in newborns and childhood disease.
Mangano, J J; Sternglass, E J; Gould, J M; Sherman, J D; Brown, J; McDonnell, W
2000-01-01
Radioactive strontium-90 concentrations in baby teeth obtained from Suffolk County, New York, rose steadily during the 1980s. Recent levels of strontium-90 are similar to those reported for babies born in the late 1950s-at the height of atmospheric nuclear weapons testing in Nevada. Strontium-90 concentrations increased concomitantly with increases in cancer incidence among Suffolk children under the age of 5 y, a result that mimicked parallel trends observed in the 1950s and early 1960s. Given that effects of strontium-90 on developing cells are most pronounced during the fetal and infant periods, escalating levels should be viewed as a factor in the recent decline in various child health status measures.
Hanlon, R T; Bidwell, J P; Tait, R
1989-01-01
When cephalopod eggs were incubated in artificial sea water it was found that they sometimes resulted in hatchlings with defects of the statocyst suprastructure, leading to the severe behavioural defect of uncontrolled swimming. Experiments in defined media (seven basic salts mixed in deionized water) with seven species of cephalopods demonstrated clearly that there is 100% normal development of the aragonite statoliths when strontium levels were 8 mg l-1. Conversely, statoliths did not develop when strontium was absent. In cuttlefish, the growth of the cuttlebone was also affected adversely when strontium was absent. In mariculture production tanks, supplementing commercial artificial sea water with strontium to normal levels of 8 mg l-1 almost eliminated the occurrence of abnormal hatchlings. Circumstantial evidence indicates that there is a critical window in development during which strontium is required for normal development. The role of strontium in biomineralization during embryogenesis is unknown, but it appears to be important in the Mollusca.
Color centers inside crystallic active media
NASA Astrophysics Data System (ADS)
Mierczyk, Zygmunt; Kaczmarek, Slawomir M.; Kopczynski, Krzysztof
1995-03-01
This paper presents research results on color centers induced by radiation of a xenon lamp in non doped crystals of yttrium aluminum garnet Y3Al5O12 (YAG), strontium- lanthanum aluminate SrLaAlO4 (SLAO), strontium-lanthanum gallate SrLaGa3O7 (SLGO), and in doped crystals: Nd:YAG, Cr, Tm, Ho:YAG (CTH:YAG), Nd:SLAO and Nd:SLGO. In all these investigated crystals under the influence of intensive exposure by xenon lamp radiation additional bands connected with centers O-2, O2 and centers F came up near the short-wave absorption edge. In the case of doped crystals the observed processes are much more complicated. In crystals CTH:YAG the greatest perturbations in relation to basic state are present at the short-wave absorption edge, as well as on areas of absorption bands of ions Cr+3 and Tm+3 conditioning the sensibilization process of ions Ho+3. These spectral structure disturbances essentially influence the efficiency of this process, as proven during generating investigations. In the case of SrLaGa3O7:Nd+3 under the influence of exposure substantial changes of absorption spectrum occurred on spectral areas 346 divided by 368 nm, 429 divided by 441 nm and 450 divided by 490 nm. Those changes have an irreversible character. They disappear not before the plate is being held at oxidizing atmosphere. Investigations of laser rods Nd:SLGO, CTH:YAG, and Nd:YAG in a free generation demonstrated that the color centers of these crystals are induced by pomp radiation from the spectral area up to 450 nm.
Energy levels and optical properties of neodymium-doped barium fluorapatite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefanos, Sennay M.; Bonner, Carl E. Jr.; Meegoda, Chandana
Energy levels of the 4f{sup 3} electronic configuration of Nd{sup 3+} in barium fluorapatite, Ba{sub 5}(PO{sub 4}){sub 3}F(B-FAP) have been determined from polarized absorption and fluorescence spectra using crystals at 8 K. Experimental energy-level assignments were made initially by comparing the crystal spectra energy levels with those obtained from those previously reported for Nd{sup 3+} in strontium fluorapatite and fluorapatite. The initial crystal-field parameters were calculated by using lattice summation techniques. The crystal-field parameters were varied to obtain a best fit between experimental and theoretical energies and the final values give a root-mean-square deviation of 7.1 cm-1. The odd-fold crystal-fieldmore » components are used to calculate the emission intensities and lifetimes of the Nd{sup 3+} ions in B-FAP. These calculations yield results in good agreement with the experimental measurements of the absorption and emission cross sections and lifetimes. (c) 2000 American Institute of Physics.« less
Knobel, L.L.; DeWayne, Cecil L.; Wegner, S.J.; Moore, L.L.
1992-01-01
From 1952 to 1988, about 140 curies of strontium-90 were discharged in liquid waste to disposal ponds and wells at the INEL (Idaho National Engineering Laboratory). Water from four wells was sampled as part of the U.S. Geological Survey's quality-assurance program to evaluate the effects of filtration and preservation methods on strontium-90 concentrations in ground water at the INEL. Water from each well was filtered through eithera 0.45- or a 0.1-micrometer membrane filter; unfiltered samples also were collected. Two sets of filtered and two sets of unfiltered water samples were collected at each well. One of the two sets of water samples was field acidified. Strontium-90 concentrations ranged from below the reporting level to 52 ?? 4 picocuries per liter. Descriptive statistics were used to determine reproducibility of the analytical results for strontium-90 concentrations in water from each well. Comparisons were made with unfiltered, acidified samples at each well. Analytical results for strontium-90 concentrations in water from well 88 were not in statistical agreement between the unfiltered, acidified sample and the filtered (0.45 micrometer), acidified sample. The strontium-90 concentration for water from well 88 was less than the reporting level. For water from wells with strontium-90 concentrations at or above the reporting level, 94 percent or more of the strontium-90 is in true solution or in colloidal particles smaller than 0.1 micrometer. These results suggest that changes in filtration and preservation methods used for sample collection do not significantly affect reproducibility of strontium-90 analyses in ground water at the INEL.
Knobel, L L; Cecil, L D; Wegner, S J; Moore, L L
1992-01-01
From 1952 to 1988, about 140 curies of strontium-90 were discharged in liquid waste to disposal ponds and wells at the INEL (Idaho National Engineering Laboratory). Water from four wells was sampled as part of the U.S. Geological Survey's quality-assurance program to evaluate the effects of filtration and preservation methods on strontium-90 concentrations in ground water at the INEL. Water from each well was filtered through either a 0.45- or a 0.1-micrometer membrane filter; unfiltered samples also were collected. Two sets of filtered and two sets of unfiltered water samples were collected at each well. One of the two sets of water samples was field acidified.Strontium-90 concentrations ranged from below the reporting level to 52±4 picocuries per liter. Descriptive statistics were used to determine reproducibility of the analytical results for strontium-90 concentrations in water from each well. Comparisons were made with unfiltered, acidified samples at each well. Analytical results for strontium-90 concentrations in water from well 88 were not in statistical agreement between the unfiltered, acidified sample and the filtered (0.45 micrometer), acidified sample. The strontium-90 concentration for water from well 88 was less than the reporting level.For water from wells with strontium-90 concentrations at or above the reporting level, 94 percent or more of the strontium-90 is in true solution or in colloidal particles smaller than 0.1 micrometer. These results suggest that changes in filtration and preservation methods used for sample collection do not significantly affect reproducibility of strontium-90 analyses in ground water at the INEL.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.
Quantitative bioanalysis of strontium in human serum by inductively coupled plasma-mass spectrometry
Somarouthu, Srikanth; Ohh, Jayoung; Shaked, Jonathan; Cunico, Robert L; Yakatan, Gerald; Corritori, Suzana; Tami, Joe; Foehr, Erik D
2015-01-01
Aim: A bioanalytical method using inductively-coupled plasma-mass spectrometry to measure endogenous levels of strontium in human serum was developed and validated. Results & methodology: This article details the experimental procedures used for the method development and validation thus demonstrating the application of the inductively-coupled plasma-mass spectrometry method for quantification of strontium in human serum samples. The assay was validated for specificity, linearity, accuracy, precision, recovery and stability. Significant endogenous levels of strontium are present in human serum samples ranging from 19 to 96 ng/ml with a mean of 34.6 ± 15.2 ng/ml (SD). Discussion & conclusion: Calibration procedures and sample pretreatment were simplified for high throughput analysis. The validation demonstrates that the method was sensitive, selective for quantification of strontium (88Sr) and is suitable for routine clinical testing of strontium in human serum samples. PMID:28031925
Crystal growth and scintillation properties of potassium strontium bromide
NASA Astrophysics Data System (ADS)
Stand, L.; Zhuravleva, M.; Wei, H.; Melcher, C. L.
2015-08-01
In this work, potassium strontium bromide activated with divalent europium, (KSr2Br5:Eu) has been studied. It has a monoclinic crystal structure and a density of 3.98 g/cm3. Two single crystals of KSr2Br5 doped with 5% Eu2+, with diameters of 13 mm and 22 mm, were grown in a two zone transparent furnace via the Bridgman technique. The X-ray excited emission spectrum consisted of a single peak at ∼427 nm due to the 5d-4f transition in Eu2+. The measured light yield and energy resolution at 662 keV was 75,000 ph/MeV and 3.5%. At low energies KSr2Br5:Eu 5% also displays good energy resolution, 6.7% at 122 keV and 7.9% at 59.5 keV.
NASA Astrophysics Data System (ADS)
Yang, B.; Townsend, P. D.; Fromknecht, R.
2004-11-01
Cathodoluminescence is an effective tool for investigating phase changes and relaxation processes in insulators and data are presented for strontium titanate. The results demonstrate considerable sensitivity to the origin of the samples as the detailed spectra and intensity changes with temperature are strongly dependent on the growth conditions, trace impurities and radiation induced defects. It is of particular note that in the defective surface layer the normal second-order phase transition cited near 105 K transforms into a sharply defined first-order transition because of the relaxation of the near surface layer in doped crystals. Detection of the other main relaxation stages is also straightforward via intensity and spectral changes. Secondary effects of phase changes incorporated within the surface layers are clearly evident, particularly for the 197 K sublimation of CO2 nanoparticle inclusions.
Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harde, G. B.; Department of Physics, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India-444602; Muley, G. G., E-mail: gajananggm@yahoo.co.in
2016-05-06
Borate glasses of the system xNd{sub 2}O{sub 3}-(1-x) La{sub 2}O{sub 3}-SrCO{sub 3}-10H{sub 3}BO{sub 3} (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition {sup 4}I{sub 9/2} → {sup 4}G{sub 5/2} + {sup 2}G{sub 7/2} has found more prominent than the other transitions. Optical band gap energies of glasses havemore » been determined and found less for Nd doped glass.« less
Multicomponent doped barium strontium titanate thin films for tunable microwave applications
NASA Astrophysics Data System (ADS)
Alema, Fikadu Legesse
In recent years there has been enormous progress in the development of barium strontium titanate (BST) films for tunable microwave applications. However, the properties of BST films still remain inferior compared to bulk materials, limiting their use for microwave technology. Understanding the film/substrate mismatch, microstructure, and stoichiometry of BST films and finding the necessary remedies are vital. In this work, BST films were deposited via radio frequency magnetron sputtering method and characterized both analytically and electrically with the aim of optimizing their properties. The stoichiometry, crystal structure, and phase purity of the films were studied by varying the oxygen partial pressure (OPP) and total gas pressure (TGP) in the chamber. A better stoichiometric match between film and target was achieved when the TGP is high (> 30 mTorr). However, the O2/Ar ratio should be adjusted as exceeding a threshold of 2 mTorr in OPP facilitates the formation of secondary phases. The growth of crystalline film on platinized substrates was achieved only with a lower temperature grown buffer layer, which acts as a seed layer by crystallizing when the temperature increases. Concurrent Mg/Nb doping has significantly improved the properties of BST thin films. The doped film has shown an average tunability of 53%, which is only ˜8 % lower than the value for the undoped film. This drop is associated with the Mg ions whose detrimental effects are partially compensated by Nb ions. Conversely, the doping has reduced the dielectric loss by ˜40 % leading to a higher figure of merit. Moreover, the two dopants ensure a charge neutrality condition which resulted in significant leakage current reduction. The presence of large amounts of empty shallow traps related to Nb Ti localize the free carriers injected from the contacts; thus increase the device control voltage substantially (>10 V). A combinatorial thin film synthesis method based on co-sputtering of two BST sources doped with Mg/Nb and Ce, respectively, was applied. The composition and the dielectric properties of the deposited film were correlated and the optimal concentration of dopants corresponding to high tunability and low dielectric loss was determined in a timely fashion.
NASA Astrophysics Data System (ADS)
Roohani, Ebrahim; Arabi, Hadi; Sarhaddi, Reza
2018-01-01
In this research, SrFe12-xNixO19 (x = 0 - 1) hexagonal ferrites were prepared by sol-gel auto-combustion method. Effect of Ni substitution on structural, morphological and magnetic properties of nanoparticles was investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM), respectively. The XRD results confirmed that all samples with x ≤ 0.5 have single phase M-type strontium ferrite structure, whereas for the SrFe12-xNixO19 samples with x > 0.5, the spinel NiFe2O4 phase has also appeared. The lattice parameters and crystallite sizes of the powders were concluded from the XRD data and Williamson-Hall method. Magnetic analyses showed that the coercivity of powders decreased from 5672 Oe to 639 Oe while the saturation magnetization increased from 74 emu/g to 81 emu/g with nickel substitution. The results of this study suggest that the strontium hexaferrites doped with Ni are suitable for applications in high density magnetic recording media as well as microwave devices because of their promising magnetic properties.
Photorefractive steady state solitons up to telecommunication wavelengths in planar SBN waveguides
NASA Astrophysics Data System (ADS)
Wesner, M.; Herden, C.; Kip, D.; Krätzig, E.; Moretti, P.
2001-02-01
We experimentally demonstrate strong photorefractive self-focusing and soliton formation in Rh-doped strontium-barium niobate waveguides at telecommunication wavelengths up to λ=1.5 μm. A comparison of soliton formation at different wavelengths in the visible and infrared region is carried out. We measure the electrooptic coefficient r33, analyze the soliton width, the accessible intensity range, and the wavelength dependence of the so-called `dark intensity'.
STRONTIUM-90 IN THE TOTAL DIET
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Food, milk, and drinking water representative of the total diet of a hungry teen-ager were collected in 24 cities throughout the United States and one in Canada. The diets were analyzed for strontium-90 content. Results are compared with the strontium-90 levels in milk samples collected in the same cities. Results indicate that milk furnished only slightly more than half of the strontium-90 consumed in the total diet. (C.H.)
Li, Jingwei; Wei, Bo; Cao, Zhiqun; Yue, Xing; Zhang, Yaxin; Lü, Zhe
2018-01-10
The Nb-doped lanthanum strontium ferrite perovskite oxide La 0.8 Sr 0.2 Fe 0.9 Nb 0.1 O 3-δ (LSFNb) is evaluated as an anode material in a solid oxide fuel cell (SOFC). The effects of Nb partial substitution in the crystal structure, the electrical conductivity, and the valence of Fe ions are studied. LSFNb exhibits good structural stability in a severe reducing atmosphere at 800 °C, suggesting that high-valent Nb can effectively promote the stability of the lattice structure. The concentration of Fe 2+ increases after Nb doping, as confirmed by X-ray photoelectron spectroscopy. The maximum power density of a thick Sc-stabilized zirconia (ScSZ) electrolyte-supported single cell reached 241.6 mW cm -2 at 800 °C with H 2 as fuel. The cell exhibited excellent stability for 100 h continuous operation without detectable degeneration. Scanning electron microscopy clearly revealed exsolution on the LSFNb surface after operation. Meanwhile, LSFNb particles agglomerated significantly during long-term stability testing. Impedance spectra suggested that both the LSFNb anode and the (La 0.75 Sr 0.25 ) 0.95 MnO 3-δ /ScSZ cathode underwent an activation process during long-term testing, through which the charge transfer ability increased significantly. Meanwhile, low-frequency resistance (R L ) mainly attributed to the anode (80 %) significantly increased, probably due to the agglomeration of LSFNb particles. The LSFNb anode exhibits excellent anti-sulfuring poisoning ability and redox stability. These results demonstrate that LSFNb is a promising anode material for SOFCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alkaline and alkaline earth metal phosphate halides and phosphors
Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John
2012-11-13
Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.
Zhang, Xinran; Li, Haotian; Lin, Chucheng; Ning, Congqin; Lin, Kaili
2018-01-30
Both the topographic surface and chemical composition modification can enhance rapid osteogenic differentiation and bone formation. Till now, the synergetic effects of topography and chemistry cues guiding biological responses have been rarely reported. Herein, the ordered micro-patterned topography and classically essential trace element of strontium (Sr) ion doping were selected to imitate topography and chemistry cues, respectively. The ordered micro-patterned topography on Sr ion-doped bioceramics was successfully duplicated using the nylon sieve as the template. Biological response results revealed that the micro-patterned topography design or Sr doping could promote cell attachment, ALP activity, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Most importantly, the samples both with micro-patterned topography and Sr doping showed the highest promotion effects, and could synergistically activate the ERK1/2 and p38 MAPK signaling pathways. The results suggested that the grafts with both specific topography and chemistry cues have synergetic effects on osteogenic activity of BMSCs and provide an effective approach to design functional bone grafts and cell culture substrates.
Strontium-90 content of deciduous human incisors.
ROSENTHAL, H L; GILSTER, J E; BIRD, J T
1963-04-12
The concentrations of strontium-90 in deciduous incisor teeth of children born in St. Louis between 1949 to 1957 are in accord with estimated bone levels, suggesting that human deciduous teeth are useful as an index of strontium-90 accumulation during the time the teeth are formed.
Cathode side hardware for carbonate fuel cells
Xu, Gengfu [Danbury, CT; Yuh, Chao-Yi [New Milford, CT
2011-04-05
Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of Perovskite AMeO.sub.3, wherein A is at least one of lanthanum and a combination of lanthanum and strontium and Me is one or more of transition metals, lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1) and X-doped LiMeO.sub.2, wherein X is one of Mg, Ca, and Co.
Huang, Baolin; Tian, Yu; Zhang, Wenjing; Ma, Yifan; Yuan, Yuan; Liu, Changsheng
2017-11-01
Preserving and improving osteogenic activity of bone morphogenetic protein-2 (BMP-2) upon implants remains one of the key limitations in bone regeneration. With calcium phosphate cement (CPC) as model, we have developed a series of strontium (Sr)-doped CPC (SCPC) to address this issue. The effects of fixed Sr on the bioactivity of recombinant human BMP-2 (rhBMP-2) as well as the underlying mechanism were investigated. The results suggested that the rhBMP-2-induced osteogenic activity was significantly promoted upon SCPCs, especially with a low amount of fixed Sr (SrCO 3 content <10wt%). Further studies demonstrated that the Sr-induced enhancement of bioactivity of rhBMP-2 was related to an elevated recognition of bone morphogenetic protein receptor-IA (BMPR-IA) to rhBMP-2 and an increased expression of BMPR-IA in C2C12 model cells. As a result, the activations of BMP-induced signaling pathways were different in C2C12 cells incubated upon CPC/rhBMP-2 and SCPCs/rhBMP-2. These findings explicitly decipher the mechanism of SCPCs promoting osteogenic bioactivity of rhBMP-2 and signify the promising application of the SCPCs/rhBMP-2 matrix in bone regeneration implants. Copyright © 2017 Elsevier B.V. All rights reserved.
Sriram, S; Bhaskaran, M; du Plessis, J; Short, K T; Sivan, V P; Holland, A S
2009-01-01
The influence of oxygen partial pressure during the deposition of piezoelectric strontium-doped lead zirconate titanate thin films is reported. The thin films have been deposited by RF magnetron sputtering in an atmosphere of high purity argon and oxygen (in the ratio of 9:1), on platinum-coated silicon substrates (heated to 650 degrees C). The influence of oxygen partial pressure is studied to understand the manner in which the stoichiometry of the thin films is modified, and to understand the influence of stoichiometry on the perovskite orientation. This article reports on the results obtained from films deposited at oxygen partial pressures of 1-5 mTorr. The thin films have been studied using a combination of X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GA-XRD), and atomic force microscopy (AFM). XPS analysis highlights the marked influence of variations in oxygen pressure during sputtering, observed by variations in oxygen concentration in the thin films, and in some cases by the undesirable decrease in lead concentration in the thin films. GA-XRD is used to study the relative variations in perovskite peak intensities, and has been used to determine the deposition conditions to attain the optimal combination of stoichiometry and orientation. AFM scans show the marked influence of the oxygen partial pressure on the film morphology.
Ho3+-doped strontium-aluminium-bismuth-borate glasses for green light emission.
Rajesh, D; Dhamodhara Naidu, M; Ratnakaram, Y C; Balakrishna, A
2014-11-01
Strontium-aluminium-bismuth-borate glasses (SAlBiB) doped with different concentrations of Ho(3+) were prepared using conventional melt quenching technique and their structural and optical properties investigated. X-ray diffraction and scanning electron microscopy analysis were used to study the structural properties. Optical properties were studied by measuring the optical absorption and visible luminescence spectra. The Judd-Ofelt (J-O) theory was applied to evaluate J-O intensity parameters, Ω(λ) (λ = 2, 4 and 6). Using J-O intensity parameters, radiative properties such as spontaneous transition probabilities (A(R)), branching ratios (β(R)) and radiative lifetimes (τ(R)) were determined. From the emission spectra, a strong green emission nearly at 549 nm corresponding to the transition, (5)S2 ((5)F4)→(5)I(8) was observed. Emission peak positions (λ(P)), effective bandwidths (Δλ(eff)) and stimulated emission cross-sections (σ(p)) were calculated for the observed emission transitions, (5)F3 →(5)I(8), (5)S2((5)F4)→(5)I(8) and (5)F5 →(5)I(8) of Ho(3+) in all the glass matrices. Chromaticity color coordinates were calculated using the emission spectra. The experimental results suggest that SAlBiB glass matrix with 1.5 mol% of Ho(3+) has better emission properties. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Jelínek, Michal; Kubecek, Vàclav
2012-06-01
We report on quasi-continuously pumped oscillator-amplifier laser system. The laser oscillator was based on highly 2.4 at.% doped crystalline Nd:YAG in a bounce geometry and passively mode locked by a semiconductor saturable absorber mirror. Using the cavity dumping technique, 19 ps pulses with the energy of 20 μJ and Gaussian spatial beam profile were generated directly from the oscillator at the repetition rate up to 50 Hz. For applications requiring more energetic pulses the amplification was studied using either an identical highly doped Nd:YAG module in bounce geometry or flashlamp pumped Nd:YAG laser rod. Using compact all diode pumped oscillator-amplifier system, 130 μJ pulses were generated. The flashlamp pumped amplifier with 100 mm long Nd:YAG enabled to obtain higher energy. In the single pass configuration the pulse was amplified to 4.5 mJ, using the double pass configuration the pulse energy was further increased up to 20 mJ with the duration of 25 ps at 10 Hz. The developed laser system was used for investigation of stimulated Raman scattering in Strontium Barium Niobate and optical parametric generation in CdSiP2.
Colour centres and nanostructures on the surface of laser crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulagin, N A
2012-11-30
This paper presents a study of structural and radiationinduced colour centres in the bulk and ordered nanostructures on the surface of doped laser crystals: sapphire, yttrium aluminium garnet and strontium titanate. The influence of thermal annealing, ionising radiation and plasma exposure on the spectroscopic properties of high-purity materials and crystals containing Ti, V and Cr impurities is examined. Colour centres resulting from changes in the electronic state of impurities and plasma-induced surface modification of the crystals are studied by optical, EPR and X-ray spectroscopies, scanning electron microscopy and atomic force microscopy. X-ray line valence shift measurements are used to assessmore » changes in the electronic state of some impurity and host ions in the bulk and on the surface of oxide crystals. Conditions are examined for the formation of one- and two-level arrays of ordered crystallites 10{sup -10} to 10{sup -7} m in size on the surface of crystals doped with irongroup and lanthanoid ions. The spectroscopic properties of the crystals are analysed using ab initio self-consistent field calculations for Me{sup n+} : [O{sup 2-}]{sub k} clusters. (interaction of laser radiation with matter. laser plasma)« less
Kumar, S R Sarath; Barasheed, Abeer Z; Alshareef, H N
2013-08-14
We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m(-1) K(-1), and the estimated figure of merit is 0.29 at 1000 K.
GIANT DIELECTRIC TUNABLE BEHAVIOR OF Pr-DOPED SrTiO3 AT LOW TEMPERATURE
NASA Astrophysics Data System (ADS)
Wei, T.; Song, Q. G.; Zhou, Q. J.; Li, Z. P.; Chen, Y. F.; Qi, X. L.; Guo, S. Q.; Liu, J.-M.
2012-03-01
Contrast with conventional dielectric tunable materials such as barium strontium titanate (BST), here, we report one new dielectric tunable behavior for Sr1-xPrxTiO3 system at low temperature. Giant dielectric tunability is confirmed in this system. More importantly, the efficient dielectric tunability can be realized just using small bias field. In addition, critical threshold electric field is also confirmed. This phenomenon may be related with the competition interaction of polar state with quantum fluctuations.
Growth and Structure of Strontium Doped LaGaO3
2001-01-01
Sandstrom, E.A. Giess, W.J. Gallagher, A. Segmifler, E.I. Cooper, M.F. Chisholm, A. Gupta, S. Shinole, R.B. Laibowitz," Lanthanum gallate substrates...that a structural phase transition occurs at -150 °C 5. The phase transition is the most serious drawback of many lanthanide gallates and aluminates5 for...and C.D. Brandle, "Thermal analysis of rare earth gallates and aluminates", J Mater. Res. 5, p. 183, 1990. 6. S. Miyazawa," Surface roughening
Microwave absorption studies of magnetic sublattices in microwave sintered Cr3+ doped SrFe12O19
NASA Astrophysics Data System (ADS)
Praveena, K.; Sadhana, K.; Liu, Hsiang-Lin; Bououdina, M.
2017-03-01
The partial substitution of Fe3+ by Cr3+ in strontium hexaferrite has shown to be an effective method to tailor anisotropy for many novel microwave applications. Some basic studies have revealed that this substitution leads to unusual interactions among the magnetic sublattices of the hexaferrite. In order to investigate these interactions, Cr3+ doped SrCrxFe12-xO19 (x=0.0, 0.1, 0.3, 0.5, 0.7 and 0.9) (m-type) hexaferrites were prepared by microwave-hydrothermal (m-H) method and subsequently sintered at 950 °C/90 min using microwave furnace. The magnetic hysteresis (m-H) loops revealed the ferromagnetic nature of nanoparticles (NPs). The coercive field was increasing from 3291 Oe to 7335 Oe with increasing chromium content. This resulting compacts exhibited high squareness ratio (Mr/Ms-80%). The intrinsic coercivity (Hci) above 1,20,000 Oe and high values of magnetocrystalline anisotropy revealed that all samples are magnetically hard materials. A material with high loss as well as high dielectric constant may be desired in applications such as electromagnetic (EM) wave absorbing coatings. The room temperature complex dielectric and magnetic properties (ε‧, ε‧‧, μ‧ and μ‧‧) of Cr3+ doped SrFe12O19 were measured in X-band region. The frequency dependent dielectric and magnetic losses were increasing to large extent. The reflection coefficient varied from -16 to -33 dB at 10.1 GHz as Cr3+ concentration increased from x=0.0 to x=0.9. Ferromagnetic resonance spectra (FMR) were measured in the X-band (9.4 GHz), linewidth decreases with chromium concentration from 1368 to 752 Oe from x=0.0 to x=0.9, which is quite low compared to commercial samples. We also have detailed origins of the FMR linewidth broadenings in terms of some important theoretical models. These results show that chromium doped strontium hexaferrites are useful for microwave absorption in the X-band frequency and also have potential for use in low frequency self-biased microwave/millimeter devices such as circulators and isolators.
Influence of La doping on structural and dielectric properties of SrBi2Nb2O9 ceramics
NASA Astrophysics Data System (ADS)
Verma, Maya; Sreenivas, K.; Gupta, Vinay
2009-01-01
Lanthanum doped SrBi2Nb2O9 ceramics with the chemical formula SrBi2-xLaxNb2O9 (SBLN) (x =0-0.5) have been prepared through conventional solid state route. X-ray diffraction reveals the shrinkage of unit cell of strontium bismuth niobate with incorporation of La3+ dopant, having no lone pair electrons. Shifting of Raman phonon modes indicates the reduced rattling space of NbO6 octahedra with increase in La doping concentration. Further, the softening of lowest frequency phonon mode with increasing x in SBLN shows the transition from ferroelectric to paraelectric at room temperature. The dielectric properties for all the compositions are studied as a function of temperature (25 to 500 °C) over the frequency range of 10 kHz-1 MHz. With increase in lanthanum doping concentration the phase transition becomes diffused and transition temperature gets shifted toward lower temperature. A phase transition from normal ferroelectric to paraelectric has been observed via relaxor-type ferroelectrics with increase in x. The frequency dependence of transition temperature was studied in terms of Vogel-Fulcher relation for SBLN (x =0.4).
Padgett-Vasquez, Steve; Garris, Heath W.; Nagy, Tim R.; D'Abramo, Louis R.; Watts, Stephen A.
2010-01-01
Abstract Zebrafish (Danio rerio) skeletal bone possesses properties similar to human bone, which suggests that they may be used as a model to study mineralization characteristics of the human Haversian system, as well as human bone diseases. One prerequisite for the use of zebrafish as an alternative osteoporotic bone model is to determine whether their bone displays functional plasticity similar to that observed in other bone models. Strontium citrate was supplemented into a laboratory-prepared diet (45% crude protein) to produce dietary strontium levels of 0%, 0.63%, 1.26%, 1.89%, and 2.43% and fed ad libitum twice daily for 12 weeks to 28-day-old intact zebrafish. Length was determined at 4-week intervals, and both weight and length were recorded at 12 weeks. At 12 weeks, seven zebrafish from each dietary level were analyzed for total bone mineral density by microcomputed tomography. Dietary strontium citrate supplementation significantly (p < 0.05) increased zebrafish whole-body and spinal column bone mineral density. In addition, trace amounts of strontium were incorporated into the scale matrix in those zebrafish that consumed strontium-supplemented diets. These findings suggest that zebrafish bone displays plasticity similar to that reported for other bone models (i.e., rat, mouse, and monkey) that received supplements of strontium compounds and zebrafish should be viewed as an increasingly valuable bone model. PMID:20874492
Wang, Xu; Gu, Zhipeng; Jiang, Bo; Li, Li; Yu, Xixun
2016-04-01
For bioceramic scaffolds employed in clinical applications, excellent bioactivity and tenacity were of great importance. Modifying inorganic SCPP scaffolds with biological macromolecules could obviously improve its bioactivity and eliminate its palpable brittleness. However, it was hard to execute directly due to extremely bad interfacial compatibility between them. In this research, dopamine (DOPA) was introduced onto strontium-doped calcium polyphosphate (SCPP) scaffolds, subsequently the preliminary material was successfully further modified by silk fibroin (SF). SCPP/D/SF possessed suitable biomechanical properties, ability to stimulate angiogenic factor secretion and excellent biocompatibility. Biomechanical examination demonstrated that SCPP/D/SF scaffolds yielded better compressive strength because of improved interfacial compatibility. MTT assay and CLSM observation showed that SCPP/D/SF scaffolds had good cytocompatibility and presented better inducing-cell-migration potential than pure SCPP scaffolds. Meanwhile, its ability to stimulate angiogenic factor secretion was measured through the ELISA assay and immunohistological analysis in vitro and in vivo respectively. The results revealed, superior to SCPP, SCPP/D/SF could effectively promote VEGF and bFGF expression, possibly leading to enhancing angiogenesis and osteogenesis. In a word, SCPP/D/SF could serve as a potential bone tissue engineering scaffold for comparable biomechanical properties and excellent bioactivity. It provided a novel idea for modification of inorganic materials to prepare promising bone tissue engineering scaffolds with the ability to accelerate bone regeneration and vascularization.
Spatially inhomogeneous electron state deep in the extreme quantum limit of strontium titanate
Bhattacharya, Anand; Skinner, Brian; Khalsa, Guru; ...
2016-09-29
When an electronic system is subjected to a sufficiently strong magnetic field that the cyclotron energy is much larger than the Fermi energy, the system enters the extreme quantum limit (EQL) and becomes susceptible to a number of instabilities. Bringing a three-dimensional electronic system deeply into the EQL can be difficult however, since it requires a small Fermi energy, large magnetic field, and low disorder. Here we present an experimental study of the EQL in lightly-doped single crystals of strontium titanate. Our experiments probe deeply into the regime where theory has long predicted an interaction-driven charge density wave or Wignermore » crystal state. A number of interesting features arise in the transport in this regime, including a striking re-entrant nonlinearity in the current-voltage characteristics. As a result, we discuss these features in the context of possible correlated electron states, and present an alternative picture based on magnetic-field induced puddling of electrons.« less
Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Yang, Zhenguo; Xia, Guanguang; Singh, Prabhakar; Stevenson, Jeffry W.
In this work, simulated cathode/interconnect structures were used to investigate the effects of different contact materials on the contact resistance between a strontium doped lanthanum ferrite cathode and a Crofer22 APU interconnect. Among the materials studied, Pt, which has a prohibitive cost for the application, demonstrated the best performance as a contact paste. For the relatively cost-effective perovskites, the contact ASR was found to depend on their electrical conductivity, scale growth on the metallic interconnect, and interactions between the contact material and the metallic interconnect or particularly the scale grown on the interconnect. Manganites appeared to promote manganese-containing spinel interlayer formation that helped minimize the increase of contact ASR. Chromium from the interconnects reacted with strontium in the perovskites to form SrCrO 4. An improved performance was achieved by application of a thermally grown (Mn,Co) 3O 4 spinel protection layer on Crofer22 APU that dramatically minimized the contact resistance between the cathodes and interconnects.
Strontium-90: effects of chronic ingestion on farrowing performance of miniature swine.
Clarke, W J; Palmer, R F; Howard, E B; Hackett, P L; Thomas, J M
1970-08-07
In experiments involving the ingestion of strontium-90 by nearly 800 female miniature swine and extending over three generations, no significant differences in litter size, percentage of stillborn, or birth weight were observed between controls and animals ingesting up to 625 microcuries of strontium-90 per day. At 625 microcuries per day, these animals were ingesting more than a million times the peak value of strontium-90 ever reported in the American diet. Animals on 3100 microcuries per day did not survive the gestation period. From these studies, it is evident that feeding levels of strontium-90 high enough to affect fetal or neonatal mortality in this species will not permit maternal survival long enough for the bearing of young.
Curie-Weiss behavior of Y1-xSrxMnO3 (x = 0 and 0.03)
NASA Astrophysics Data System (ADS)
Thakur, Rajesh K.; Thakur, Rasna; Gaur, N. K.; Bharathi, A.; Kaurav, N.; Okram, G. S.
2015-06-01
The effect of bivalent cation Sr-doping on magnetic properties in multiferroic YMnO3 manganites was systemically studied by DC magnetic measurements. Both of the reported samples were prepared by solid-state reaction method with composition Y1-xSrxMnO3 (x = 0.00 and 0.03). The X-ray diffraction (XRD) results show that the compounds are synthesized in hexagonal crystal structure with space group P63cm (JCPDS: 25-1079) and slight increase in the lattice parameter is observed with strontium doping. The magnetisation versus temperature curve shows no clear anomaly near the antiferromagnetic transition temperature (TN), however from the magnetic measurements at 1000Oe a slight increase in the magnetisation is clearly witnessed with increasing Stront ium content to the Y-site.
NASA Astrophysics Data System (ADS)
Harter, John Wallace
Among the multitude of known cuprate material families and associated structures, the archetype is "infinite-layer" ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of magnetic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate superstructures, ordered vacancies, and other complications that abound among the other material families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1-chiLa chiCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band develops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap. For chi = 0.10, our results reveal a strong coupling between electrons and (pi,pi) anti-ferromagnetism, inducing a Fermi surface reconstruction that pushes the nodal states below the Fermi level and realizing nodeless superconductivity. Electron diffraction measurements indicate the presence of a surface reconstruction that is consistent with the polar nature of Sr1-chiLachiCuO2. Most knowledge about the electron-doped side of the cuprate phase diagram has been deduced by generalizing from a single material family, Re2-chi CechiCuO4, where robust antiferromagnetism has been observed past chi ≈ 0.14. In contrast, in all hole-doped cuprates, Neel order is rapidly suppressed by chi ≈ 0.03, with superconductivity following at higher doping levels. Studies of cuprates, however, often yield material-specific features that are idiosyncratic to particular compounds. By studying a completely different electron-doped cuprate, we can for the first time independently confirm that the cuprate phase diagram is fundamentally asymmetric and provide a coherent framework for understanding the generic properties of all electron-doped cuprates.
NASA Astrophysics Data System (ADS)
Alema, Fikadu; Reinholz, Aaron; Pokhodnya, Konstantin
2013-03-01
We report on the tunable dielectric properties of Mg and Nb co-doped Ba0.45Sr0.55TiO3 (BST) thin film prepared by the magnetron sputtering using BST target (pure and doped with BaMg0.33Nb0.67O3 (BMN)) on Pt/TiO2/SiO2/Al2O3 4'' wafers at 700 °C under oxygen atmosphere. The electrical measurements are conducted on 2432 metal-ferroelectric-metal capacitors using Pt as the top and bottom electrode. The crystalline structure, microstructure, and surface morphology of the films are analyzed and correlated to the films dielectric properties. The BMN doped and undoped BST films have shown tunabilities of 48% and 52%; and leakage current densities of 2.2x10-6 A/cm2 and 3.7x10-5 A/cm2, respectively at 0.5 MV/cm bias field. The results indicate that the BMN doped film exhibits a lower leakage current with no significant decrease in tunability. Due to similar electronegativity and ionic radii, it was suggested that both Mg2+ (accepter-type) and Nb5+ (donor-type) dopants substitutTi4+ ion in BST. The improvement in the film dielectric losses and leakage current with insignificant loss of tunability is attributed to the adversary effects of Mg2+ and Nb5+ in BST.
NASA Astrophysics Data System (ADS)
Ghimire, M.; Yoon, S.; Wang, L.; Neupane, D.; Alam, J.; Mishra, S. R.
2018-05-01
The present study investigates the influence of Cu2+ and La3+-Cu2+ doping on the magnetic properties of Sr1-xLaxFe12-xCuxO19 (x = 0.0-0.5) hexaferrite (SrM) compounds. The samples were prepared via facile autocombustion technique followed by sintering. X-ray powder diffraction patterns show the formation of the pure phase of M-type hexaferrite for all x. Invariance in lattice parameters was observed with only Cu2+ substitution while lattice contraction along c-axis was observed with co-doping La3+-Cu2+ in SrM. The magnetic property of these compounds is explained based on Cu2+ occupancy in the absence and presence of La3+ in SrM magnetoplumbite structure. The Cu2+ doped SrFe12-xCuxO19 sample showed a monotonic decrease in Ms value while La3+-Cu2+ showed a noticeable increase in Ms value with x. Furthermore, while coercivity of Cu2+ doped SrM reduced with x, the coercivity of La3+-Cu2+ doped SrM showed a marked 12% increase in coercivity at x = 0.1 (Hc = 4391 Oe) from that of x = 0.0 (3918 Oe). Interestingly, Cu2+ doped SrM displayed invariance in Tc ∼ 458.6 °C with x, while La3+-Cu2+ doping reduced Tc by 5% from its x = 0 (Tc = 451.9 °C) to 429.6 °C. The room temperature Mossbauer spectral analysis confirmed a Cu2+ preference for the 12k site and its occupancy is observed to be influenced by the presence of La3+ ion at the Sr2+ site.
Energetics of magnesium, strontium, and barium doped lanthanum gallate perovskites
NASA Astrophysics Data System (ADS)
Cheng, Jihong; Navrotsky, Alexandra
2004-01-01
LaGaO 3 perovskites doped with Sr or Ba at the La site and Mg at the Ga site were prepared by solid-state reaction or sol-gel method and characterized. Enthalpies of formation from constituent oxides at 298 K were determined by high-temperature oxide melt solution calorimetry. Energetic trends are discussed in terms of defect chemistry. As oxygen deficiency increases, formation enthalpies define three trends, LaGa 1- yMg yO 3- δ (LGM), La 1- xSr xGa 1- yMg yO 3- δ (LSGM), and La 1- xBa xGa 1- yMg yO 3- δ (LBGM). They become less exothermic with increasing doping, suggesting a dominant destabilization effect from oxygen vacancies. The endothermic enthalpy of vacancy formation is 275±37, 166±18 and 138±12 kJ/mol of VO·· for LGM, LBGM and LSGM, respectively. Tolerance factor and ion size mismatch also affect enthalpies. In terms of energetics, Sr is the best dopant for the La site and Mg for the Ga site, supporting earlier studies, including oxygen ion conductivity and computer modeling.
Curie-Weiss behavior of Y{sub 1-x}Sr{sub x}MnO{sub 3} (x = 0 and 0.03)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Rajesh K., E-mail: thakur.rajesh2009@gmail.com; Thakur, Rasna; Gaur, N. K.
2015-06-24
The effect of bivalent cation Sr-doping on magnetic properties in multiferroic YMnO{sub 3} manganites was systemically studied by DC magnetic measurements. Both of the reported samples were prepared by solid-state reaction method with composition Y{sub 1−x}Sr{sub x}MnO{sub 3} (x = 0.00 and 0.03). The X-ray diffraction (XRD) results show that the compounds are synthesized in hexagonal crystal structure with space group P6{sub 3}cm (JCPDS: 25-1079) and slight increase in the lattice parameter is observed with strontium doping. The magnetisation versus temperature curve shows no clear anomaly near the antiferromagnetic transition temperature (T{sub N}), however from the magnetic measurements at 1000Oemore » a slight increase in the magnetisation is clearly witnessed with increasing Stront ium content to the Y-site.« less
Catalytic bipolar interconnection plate for use in a fuel cell
Lessing, Paul A.
1996-01-01
A bipolar interconnection plate for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni.sub.3 Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000-30,000 psi, and heated to about 600.degree.-1000.degree. C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques.
Enhanced magnetic Purcell effect in room-temperature masers
Breeze, Jonathan; Tan, Ke-Jie; Richards, Benjamin; Sathian, Juna; Oxborrow, Mark; Alford, Neil McN
2015-01-01
Recently, the world’s first room-temperature maser was demonstrated. The maser consisted of a sapphire ring housing a crystal of pentacene-doped p-terphenyl, pumped by a pulsed rhodamine-dye laser. Stimulated emission of microwaves was aided by the high quality factor and small magnetic mode volume of the maser cavity yet the peak optical pumping power was 1.4 kW. Here we report dramatic miniaturization and 2 orders of magnitude reduction in optical pumping power for a room-temperature maser by coupling a strontium titanate resonator with the spin-polarized population inversion provided by triplet states in an optically excited pentacene-doped p-terphenyl crystal. We observe maser emission in a thimble-sized resonator using a xenon flash lamp as an optical pump source with peak optical power of 70 W. This is a significant step towards the goal of continuous maser operation. PMID:25698634
Catalytic bipolar interconnection plate for use in a fuel cell
Lessing, P.A.
1996-03-05
A bipolar interconnection plate is described for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni{sub 3}Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000--30,000 psi, and heated to about 600--1000 C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques. 6 figs.
Phase stability and processing of strontium and magnesium doped lanthanum gallate
NASA Astrophysics Data System (ADS)
Zheng, Feng
Fuel Cells are one of the most promising energy transformers with respect to ecological and environmental issues. Solid Oxide Fuel Cells (SOFC) are all solid-state devices. One of the challenges to improve a SOFC is to lower the operating temperature while maintaining or increasing its output voltage. Undoped LaGaO3 is an insulator, doping transforms it into an oxygen-ionic conductor. Sr and Mg doped LaGaO3 (LSGM) perovskite is a new oxygen-ionic conductor with higher conductivity than yttria-stabilized zirconia (YSZ). This material is a candidate for a wide variety of electrochemical devices. In order to realize this potential, the phase stability and processing of this material needs to be investigated in detail. In this study, a systematic investigation of the LSGM materials in terms of phase stability, phase transition, sintering, microstructure and electrical conductivity as functions of temperature, doping content and A/B cation ratio has been carried out. The generalized formula of the materials investigated is (La1--xSrx)A(Ga1--yMg y)BO3--delta. Optimized processing parameters have been obtained by investigating their impact on density change and microstructure. Consequently, a suitable compositional window of the LSGM perovskite has been identified for SOFC electrolyte applications. Based on detailed diffraction analysis, it is found that the undoped LaGaO3 takes on the orthorhombic (Pbnm) symmetry at room temperature. This structure changes to rhombohedral (R3c) at 147 +/- 2°C or changes to monoclinic (I2/a) when the doping level increases from 0.1 to 0.2 moles. We have optimized the compositional window to make the single perovskite phase with high oxygen ionic conductivity (x = 0.10 to 0.20 with A/B ratio between 0.98 to 1.02). The best processing condition, starting from glycine nitrate process (GNP) combustion synthesized ultra-fine LSGM powder, is sintering in air at 1500°C for 2 hours. The doped material has higher oxygen ionic conductivity than YSZ at all temperatures. In addition, based on the structure and phase relations, a high temperature phase diagram for this system has been proposed. Finally, a model has been proposed to account for the high ionic conductivity of this material and to explain the effect of the doping content and the stoichiometry on the ionic conductivity. (Abstract shortened by UMI.)
Synthesis of praseodymium-ion-doped perovskite nanophosphor in supercritical water
NASA Astrophysics Data System (ADS)
Hakuta, Yukiya; Sue, Kiwamu; Takashima, Hiroshi
2018-05-01
We report the synthesis of praseodymium-doped calcium strontium titanate nanoparticles, (Ca0.6Sr0.4)0.997Pr0.002TiO3 (PCSTO), using hydrothermal synthesis under supercritical water conditions and the production of red luminescence. Starting solutions were prepared by dissolving calcium nitrate, strontium nitrate, titanium hydroxide sols, and praseodymium nitrate in distilled water. We investigated the effect of the reaction temperature, concentration, and pH of the starting solution on the luminescence properties. Synthesis was conducted at temperatures of 200 °C–400 °C, a reaction pressure of 30 MPa, and for reaction times of 4–20 s. The Pr concentration was set to 0.2 mol% relative to the (Ca0.6Sr0.4) ions. We also investigated the effect of high temperature annealing on the luminescence properties of the PCSTO nanoparticles. Particle characteristics were evaluated using x-ray diffraction, a scanning transmission electron microscope (STEM) equipped with an energy-dispersive x-ray spectrometer, and a fluorometer. Single-phase perovskite particles were obtained at hydrothermal reaction temperatures of over 300 °C even for a reaction time of several seconds. STEM images showed that the particles had cubic-like shapes with diameters of 8–13 nm and that they were chemically homogeneous. The PCSTO nanoparticles exhibited sharp red luminescence at 612 nm corresponding to the f–f transition of Pr3+ ions. Moreover, annealing at 1000 °C led to particle growth, achieving diameters of 40 nm and an increase in the quantum efficiency to around 12.0%.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Rahul; Chattopadhyaya, Surya
2017-09-01
The effects of doping of Ca atom(s) on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds have been investigated theoretically using DFT based FP-LAPW approach by modeling the rock-salt (B1) ternary alloys CaxSr1-xS, CaxSr1-xSe and CaxSr1-xTe at some specific concentrations 0 ≤ x ≤ 1 and studying their aforesaid properties. The exchange-correlation potentials for their structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) scheme. In addition, we have computed the electronic and optical properties with the traditional BLYP and PBE-GGA schemes for comparison. The atomic and orbital origin of different electronic states in the band structure of each of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.
Shin, Choonshik; Choi, Hoon; Kwon, Hye-Min; Jo, Hye-Jin; Kim, Hye-Jeong; Yoon, Hae-Jung; Kim, Dong-Sul; Kang, Gil-Jin
2017-10-01
The present study was carried out to survey the levels of plutonium isotopes ( 238 , 239 , 240 Pu) and strontium ( 90 Sr) in domestic seafood in Korea. In current, regulatory authorities have analyzed radionuclides, such as 134 Cs, 137 Cs and 131 I, in domestic and imported food. However, people are concerned about contamination of other radionuclides, such as plutonium and strontium, in food. Furthermore, people who live in Korea have much concern about safety of seafood. Accordingly, in this study, we have investigated the activity concentrations of plutonium and strontium in seafood. For the analysis of plutonium isotopes and strontium, a rapid and reliable method developed from previous study was used. Applicability of the test method was verified by examining recovery, minimum detectable activity (MDA), analytical time, etc. Total 40 seafood samples were analyzed in 2014-2015. As a result, plutonium isotopes ( 238 , 239 , 240 Pu) and strontium ( 90 Sr) were not detected or below detection limits in seafood. The detection limits of plutonium isotopes and strontium-90 were 0.01 and 1 Bq/kg, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisenko, G.S.; Kandinskii, P.A.; Gedeonov, L.I.
1987-03-01
Depending on the salinity of the water, two versions of strontium-90 and cesium-137 concentration from water samples are presented. Cesium-137 was concentrated by precipitating sparingly soluble mixed hexacyanoferrates (II), and strontium-90 by precipitating carbonates together with calcium. A scheme has been given for radiochemical analysis of the concentrates. Strontium-90 and cesium-137 contents in the waters of the Pacific Ocean and its neighboring seas have been determined by the radiochemical method described. The levels of radionuclide content in the water and atmospheric precipitations have been shown to be inter-related. Strontium-90 and cesium-137 contents in the surface water of the northwestern Pacificmore » were found to be much lower in 1980 than in the early seventies. The area of technogenic radioactive pollution was found to persist in the region of the Columbia mouth into the Pacific Ocean.« less
All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range
NASA Astrophysics Data System (ADS)
Zhou, Yi; Hu, Xiaoyong; Li, Chong; Yang, Hong; Gong, Qihuang
2018-01-01
Low-power, ultra-fast all-optical tunable dual Fano resonance was realized in a metamaterial coated with a non-linear nanocomposite layer composed of gold nanoparticle-doped polycrystalline barium strontium titanate and multilayer tungsten disulphide microsheets. A high non-linear refractive index of -2.148 × 10-11 m2/W was achieved in the nanocomposite material that originated in the non-linearity enhancement associated with the quantum confinement effect, the local-field enhancement effect, and reinforced interactions between photons and the multilayer tungsten disulphide microsheets. An ultra-low threshold pump intensity of 600 kW/cm2 was obtained. An ultra-fast response time of 25.4 ps was maintained because of the fast relaxation dynamics of the bound electrons in the nanoscale polycrystalline barium strontium titanate grains. The large third-order non-linear responses of the metamaterial were confirmed with a high third harmonic generation conversion efficiency of 5.4 × 10-5. This work may help to pave the way towards realization of ultra-high-speed information processing chips and multifunctional integrated photonic devices based on metamaterials.
Key to enhance thermoelectric performance by controlling crystal size of strontium titanate
NASA Astrophysics Data System (ADS)
Wang, Jun; Ye, Xinxin; Yaer, Xinba; Wu, Yin; Zhang, Boyu; Miao, Lei
2015-09-01
One-step molten salt synthesis process was introduced to fabricate nano to micrometer sized SrTiO3 powders in which effects of synthesis temperature, oxide-to-flux ratios and raw materials on the generation of SrTiO3 powders were examined. 100 nm or above sized pure SrTiO3 particles were obtained at relatively lower temperature of 900∘C. Micro-sized rhombohedral crystals with a maximum size of approximately 12 μm were obtained from SrCO3 or Sr(NO3)2 strontium source with 1:1 O/S ratio. Controlled crystal size and morphology of Nb-doped SrTiO3 particles are prepared by using this method to confirm the performance of thermoelectric properties. The Seebeck coefficient obtained is significantly high when compared with the reported data, and the high ratio of nano particles in the sample has a positive effect on the increase of Seebeck coefficient too, which is likely due to the energy filtering effect at large numbers of grain boundaries resulting from largely distributed structure.
Pillai, Satish K; Chang, Arthur; Murphy, Matthew W; Buzzell, Jennifer; Ansari, Armin; Whitcomb, Robert C; Miller, Charles; Jones, Robert; Saunders, David P; Cavicchia, Philip; Watkins, Sharon M; Blackmore, Carina; Williamson, John A; Stephens, Michael; Morrison, Melissa; McNees, James; Murphree, Rendi; Buchanan, Martha; Hogan, Anthony; Lando, James; Nambiar, Atmaram; Torso, Lauren; Melnic, Joseph M; Yang, Lucie; Lewis, Lauren
2014-01-01
During routine screening in 2011, US Customs and Border Protection (CBP) identified 2 persons with elevated radioactivity. CBP, in collaboration with Los Alamos National Laboratory, informed the Food and Drug Administration (FDA) that these people could have increased radiation exposure as a result of undergoing cardiac Positron Emission Tomography (PET) scans several months earlier with rubidium Rb 82 chloride injection from CardioGen-82. We conducted a multistate investigation to assess the potential extent and magnitude of radioactive strontium overexposure among patients who had undergone Rb 82 PET scans. We selected a convenience sample of clinical sites in 4 states and reviewed records to identify eligible study participants, defined as people who had had an Rb 82 PET scan between February and July 2011. All participants received direct radiation screening using a radioisotope identifier able to detect the gamma energy specific for strontium-85 (514 keV) and urine bioassay for excreted radioactive strontium. We referred a subset of participants with direct radiation screening counts above background readings for whole body counting (WBC) using a rank ordering of direct radiation screening. The rank order list, from highest to lowest, was used to contact and offer voluntary enrollment for WBC. Of 308 participants, 292 (95%) had direct radiation screening results indistinguishable from background radiation measurements; 261 of 265 (98%) participants with sufficient urine for analysis had radioactive strontium results below minimum detectable activity. None of the 23 participants who underwent WBC demonstrated elevated strontium activity above levels associated with routine use of the rubidium Rb 82 generator. Among investigation participants, we did not identify evidence of strontium internal contamination above permissible levels. This investigation might serve as a model for future investigations of radioactive internal contamination incidents.
Divalent fluoride doped cerium fluoride scintillator
Anderson, David F.; Sparrow, Robert W.
1991-01-01
The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).
Superamphiphobic Surfaces Prepared by Coating Multifunctional Nanofluids.
Esmaeilzadeh, Pouriya; Sadeghi, Mohammad Taghi; Bahramian, Alireza; Fakhroueian, Zahra; Zarbakhsh, Ali
2016-11-23
Construction of surfaces with the capability of repelling both water and oil is a challenging issue. We report the superamphiphobic properties of mineral surfaces coated with nanofluids based on synthesized Co-doped and Ce-doped Barium Strontium Titanate (CoBST and CeBST) nanoparticles and fluorochemicals of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOS) and polytetrafluoroethylene (PTFE). Coating surfaces with these nanofluids provides both oil (with surface tensions as low as 23 mN/m) and water repellency. Liquids with high surface tension (such as water and ethylene glycol) roll off the coated surface without tilting. A water drop released from 8 mm above the coated surface undergoes first a lateral displacement from its trajectory and shape deformation, striking the surface after 23 ms, bouncing and rolling off freely. These multifunctional coating nanofluids impart properties of self-cleaning. Applications include coating surfaces where cleanliness is paramount such as in hospitals and domestic environments as well as the maintenance of building facades and protection of public monuments from weathering. These superamphiphobic-doped nanofluids have thermal stability up to 180 °C; novel industrial applications include within fracking and the elimination of condensate blockage in gas reservoirs.
Urinary strontium and the risk of breast cancer: A case-control study in Guangzhou, China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li-Juan; Tang, Lu-Ying; The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630
2012-01-15
Strontium has been widely used in industries like electronic and pharmacy. It has a carcinogenic potential, however, and no study has been conducted to evaluate its effects on cancer risk. The aim of this study was to explore the possible association between strontium and breast cancer risk in a case-control study including 240 incident invasive breast cancer patients and 246 age-matched controls. We measured the urinary concentrations of strontium by inductively coupled plasma mass spectrometry, and conducted face-to-face interviews to obtain information on potential breast cancer risk factors. Multivariable analysis was used to estimate the association. Creatinine-adjusted levels [median (25th,more » 75th) {mu}g/g] of strontium were 155.59 (99.05, 230.70) in the breast cancer patients and 119.62 (81.97, 163.76) in the controls. Women in the highest tertile of strontium showed 124% increased risk of breast cancer, when compared with those in the lowest tertile after adjustment for the potential risk factors [OR (95% CI): 2.24 (1.42-3.81)]. This association was particularly strong for HER2 positive breast cancer [OR (95% CI): 10.92 (3.53-33.77)], and only occurred among premenopausal women. These results suggest a potential role of strontium in the development of breast cancer and urge further studies on the environmental contamination and the physiological and pathological mechanisms of strontium.« less
Precipitation-adsorption process for the decontamination of nuclear waste supernates
Lee, Lien-Mow; Kilpatrick, Lester L.
1984-01-01
High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.
Precipitation-adsorption process for the decontamination of nuclear waste supernates
Lee, L.M.; Kilpatrick, L.L.
1982-05-19
High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.
Xia, Wei; Emanuelsson, Lena; Norlindh, Birgitta; Omar, Omar; Thomsen, Peter
2013-01-01
The healing of bone defects may be hindered by systemic conditions such as osteoporosis. Calcium phosphates, with or without ion substitutions, may provide advantages for bone augmentation. However, the mechanism of bone formation with these materials is unclear. The aim of this study was to evaluate the healing process in bone defects implanted with hydroxyapatite (HA) or strontium-doped calcium phosphate (SCP) granules, in non-ovariectomised (non-OVX) and ovariectomised (OVX) rats. After 0 (baseline), six and 28d, bone samples were harvested for gene expression analysis, histology and histomorphometry. Tumour necrosis factor-α (TNF-α), at six days, was higher in the HA, in non-OVX and OVX, whereas interleukin-6 (IL-6), at six and 28d, was higher in SCP, but only in non-OVX. Both materials produced a similar expression of the receptor activator of nuclear factor kappa-B ligand (RANKL). Higher expression of osteoclastic markers, calcitonin receptor (CR) and cathepsin K (CatK), were detected in the HA group, irrespective of non-OVX or OVX. The overall bone formation was comparable between HA and SCP, but with topological differences. The bone area was higher in the defect centre of the HA group, mainly in the OVX, and in the defect periphery of the SCP group, in both non-OVX and OVX. It is concluded that HA and SCP granules result in comparable bone formation in trabecular bone defects. As judged by gene expression and histological analyses, the two materials induced different inflammatory and bone remodelling responses. The modulatory effects are associated with differences in the spatial distribution of the newly formed bone. PMID:24376855
Fielding, Gary A.; Roy, Mangal; Bandyopadhyay, Amit
2012-01-01
Infection in primary total joint prostheses is estimated to occur in up to 3% of all surgeries. As a measure to improve the antimicrobial properties of implant materials, silver (Ag) was incorporated into plasma sprayed hydroxyapatite (HA) coatings. To offset potential cytotoxic effects of Ag in the coatings, strontium (Sr) was also added as a binary dopant. HA powder were doped with 2.0 wt% Ag2O, 1.0 wt% SrO and the powder was then heat treated at 800° C. Titanium substrates were coated using a 30 kW plasma spray system equipped with a supersonic nozzle. X-ray diffraction (XRD) confirmed the phase purity and high crystallinity of the coatings. Samples were evaluated for mechanical stability by adhesive bond strength testing. Results show that the addition of dopants did not affect the overall bond strength of the coatings. The antibacterial efficacies of the coatings were tested against Pseudomonas aeruginosa. Samples that contained the Ag2O dopant were found to be highly effective against the bacterial colonization. In vitro cell-material interactions using human fetal osteoblast (hFOB) cells were characterized by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for cell viability, field emission scanning electron microscopy (FESEM) for cell morphology and confocal imaging for the important differentiation marker alkaline phosphatase (ALP). Our results showed evidence of cytotoxic effects in the Ag-HA coatings, characterized by poor cellular morphology and cell death and nearly complete impediment of functional ALP activity. The addition of SrO to Ag-HA coatings was able to effectively offset these negative effects and improve the performance when compared to pure HA coated samples. PMID:22487928
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furrer, Albert; Podlesnyak, Andrey A.; Pomjakushina, Ekaterina
Strontium doping transforms manganites of type La 1 - x Sr x Mn O 3 from an insulating antiferromagnet ( x = 0 ) to a metallic ferromagnet ( x > 0.16 ) due to the induced charge carriers (holes). We employed neutron scattering experiments in order to investigate the effect of Sr doping on a tailor-made compound of composition La 0.7 S r 0.3 M n 0.1 Ti 0.3 G a 0.6 O 3 . By the simultaneous doping with S r 2 + and Ti 4 + ions, the compound remains in the insulating state so thatmore » the magnetic interactions for large Sr doping can be studied in the absence of charge carriers. At T C = 215 K , there is a first-order reconstructive phase transition from the trigonal R - 3 c structure to the orthorhombic Pnma structure via an intermediate virtual configuration described by the common monoclinic subgroup P2 1 / c . The magnetic excitations associated with Mn 3 + dimers give evidence for two different nearest-neighbor ferromagnetic exchange interactions, in contrast to the undoped compound LaM n y A 1 - y O 3 where both ferromagnetic and antiferromagnetic interactions are present. Furthemore, the doping-induced changes of the exchange coupling originates from different Mn-O-Mn bond angles determined by neutron diffraction. The large fourth-nearest-neighbor interaction found for metallic manganites is absent in the insulating state. Here, we argue that the Ruderman-Kittel-Kasuya-Yosida interaction reasonably accounts for all the exchange couplings derived from the spin-wave dispersion in metallic manganites.« less
Furrer, Albert; Podlesnyak, Andrey A.; Pomjakushina, Ekaterina; ...
2017-03-14
Strontium doping transforms manganites of type La 1 - x Sr x Mn O 3 from an insulating antiferromagnet ( x = 0 ) to a metallic ferromagnet ( x > 0.16 ) due to the induced charge carriers (holes). We employed neutron scattering experiments in order to investigate the effect of Sr doping on a tailor-made compound of composition La 0.7 S r 0.3 M n 0.1 Ti 0.3 G a 0.6 O 3 . By the simultaneous doping with S r 2 + and Ti 4 + ions, the compound remains in the insulating state so thatmore » the magnetic interactions for large Sr doping can be studied in the absence of charge carriers. At T C = 215 K , there is a first-order reconstructive phase transition from the trigonal R - 3 c structure to the orthorhombic Pnma structure via an intermediate virtual configuration described by the common monoclinic subgroup P2 1 / c . The magnetic excitations associated with Mn 3 + dimers give evidence for two different nearest-neighbor ferromagnetic exchange interactions, in contrast to the undoped compound LaM n y A 1 - y O 3 where both ferromagnetic and antiferromagnetic interactions are present. Furthemore, the doping-induced changes of the exchange coupling originates from different Mn-O-Mn bond angles determined by neutron diffraction. The large fourth-nearest-neighbor interaction found for metallic manganites is absent in the insulating state. Here, we argue that the Ruderman-Kittel-Kasuya-Yosida interaction reasonably accounts for all the exchange couplings derived from the spin-wave dispersion in metallic manganites.« less
NASA Astrophysics Data System (ADS)
Tazoe, H.; Obata, H.; Yamagata, T.; Karube, Z.; Yamada, M.
2015-12-01
Strontium-90 concentrations in seawater exceeding the background level have been observed at the accidents of nuclear facilities, such as Chernobyl and Fukushima. However, analytical procedure for strontium-90 in seawater is still quite complicated and challenging. Here we show a simple and rapid analytical technique for the determination of strontium-90 in seawater samples without time-consuming separation of strontium from calcium. The separation with DGA Resin® is used to determine the abundance of strontium-90, which selectively collects yttrium-90, progeny of strontium-90. Naturally occurring radioactive nuclides (such as potassium, lead, bismuth, uranium, and thorium) and anthropogenic radionuclides (such as cesium, barium, lanthanum, and cerium) were separated from yttrium. Through a sample separation procedure, a high chemical yield of yttrium-90 was achieved at 93.9 % for seawater. The result of IAEA 443 certified seawater analysis was in good agreement with the certified value. At 20 hrs counting a lower detection limit of 1.5 mBq L-1 was obtained from 3 L of seawater. The proposed method can finish analyzing 8 samples per day, which is a reasonably fast throughput in actual seawater monitoring. Reproducibility was found to be 3.4 % according to 10 separate analyses of natural seawater samples from the vicinity of Fukushima Daiichi Nuclear Power Plant in September 2013.
Chien, TeYu; Liu, Jian; Yost, Andrew J.; ...
2016-01-08
The interactions between electric field and the mechanical properties of materials are important for the applications of microelectromechanical and nanoelectromechanical systems, but relatively unexplored for nanoscale materials. Here, we observe an apparent correlation between the change of the fractured topography of Nb-doped SrTiO 3 (Nb:STO) within the presence of a built-in electric field resulting from the Schottky contact at the interface of a metallic LaNiO 3 thin film utilizing cross-sectional scanning tunneling microscopy and spectroscopy. The change of the inter-atomic bond length mechanism is argued to be the most plausible origin. This picture is supported by the strong-electric-field-dependent permittivity inmore » STO and the existence of the dielectric dead layer at the interfaces of STO with metallic films. Finally, these results provided direct evidence and a possible mechanism for the interplay between the electric field and the mechanical properties on the nanoscale for perovskite materials.« less
NASA Astrophysics Data System (ADS)
Lee, Dokyol; Han, Ju-Hyeong; Kim, Eun-Gu; Song, Rak-Hyun; Shin, Dong-Ryul
La 0.8Sr 0.2Ga 0.8Mg 0.2O 2.8 (LSGM8080) powder, showing the highest electrical conductivity among LSGMs of various compositions, is synthesized using the glycine nitrate process (GNP) and used as the electrolyte for an intermediate-temperature solid oxide fuel cell (IT-SOFC). The LDC (Ce 0.55La 0.45O 1.775) powder is synthesized by a solid-state reaction and employed as the material for a buffer layer to prevent the reaction between the anode and electrolyte materials. The LDC also serves as the skeleton material for the anode. An anode-supported single cell with an active area of 1 cm 2 is constructed for performance evaluation. A single-cell test is performed at 750 and 800 °C. The maximum power density of the cell 459 and 664 mW cm -2 at 750 and 800 °C, respectively.
Zhou, Jianhong; Zhao, Lingzhou
2016-01-01
Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited the colonization and growth of both gram-positive and gram-negative bacteria. No cytotoxicity appeared for SCF-TiCP. Furthermore, SCF-TiCP stimulated the expression of key angiogenic factors in rat bone marrow stem cells (MSCs) and dramatically enhanced MSC osteogenic differentiation. The in vivo animal test displayed that SCF-TiCP induced more new bone and tighter implant/bone bonding. In conclusion, multifunction SCF-TiCP of antibacterial, angiogenic and osteogenic activities is a promising orthopedic and dental Ti implant coating for improved clinical performance. PMID:27353337
In vitro dissolution of strontium titanate to estimate clearance rates in human lungs
NASA Astrophysics Data System (ADS)
Anderson, Jeri Lynn
At the In-Tank Precipitation facility (ITP) of the Savannah River Site, strontium and other radionuclides are removed from high-level radioactive waste and sent to the Defense Waste Processing Facility (DWPF). Strontium removal is accomplished by ion-exchange using monosodium titanate slurry which creates a form of strontium titanate with unknown solubility characteristics. In the case of accidental inhalation of a compound containing radioactive strontium, the ICRP, in Publication 66, recommends using default values for rates of absorption into body fluids at the lungs in the absence of reliable human or animal data. The default value depends on whether the absorption is considered to be fast, moderate, or slow (Type F, M, or S). Current dose assessment for an individual upon inadvertent exposure to airborne radioactive strontium assumes that all strontium compounds are Type F (soluble) or Type S (insoluble). Pure high-fired strontium titanate (SrTiOsb3) is considered Type S. The purpose of this project was to determine the solubility of strontium titanate in the form created at the ITP facility. An in vitro dissolution study was done with a precipitate simulant and with several types of strontium titanate and the results were compared. An in vivo study was also performed with high-fired SrTiOsb3 in rats. The data from both studies were used independently to assign the compounds to absorption type based on criteria specified in ICRP 71. Results of the in vitro studies showed that the DWPF simulant should be assigned to Type M and the strontium titanate should be assigned to Type S. It is possible the difference in the DWPF simulant is due to the other chemicals present. Results of the in vivo study verified that SrTiOsb3 should be assigned to Type S. Lung clearance data of SrTiOsb3 from rats showed that 85% cleared within the first 24 hours and the remaining 15% with a half-time of 130 days. The initial rapid clearance is attributed to deposition in airways as compared to the alveolar region.
Strontium-90 at the Hanford Site and its ecological implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
RE Peterson; TM Poston
2000-05-22
Strontium-90, a radioactive contaminant from historical operations at the U.S. Department of Energy (DOE) Hanford Site, enters the Columbia River at several locations associated with former plutonium production reactors at the Site. Strontium-90 is of concern to humans and the environment because of its moderately long half-life (29.1 years), its potential for concentrating in bone tissue, and its relatively high energy of beta decay. Although strontium-90 in the environment is not a new issue for the Hanford Site, recent studies of near-river vegetation along the shoreline near the 100 Areas raised public concern about the possibility of strontium-90-contaminated groundwater reachingmore » the riverbed and fall chinook salmon redds. To address these concerns, DOE asked Pacific Northwest National Laboratory (PNNL) to prepare this report on strontium-90, its distribution in groundwater, how and where it enters the river, and its potential ecological impacts, particularly with respect to fall chinook salmon. The purpose of the report is to characterize groundwater contaminants in the near-shore environment and to assess the potential for ecological impact using salmon embryos, one of the most sensitive ecological indicators for aquatic organisms. Section 2.0 of the report provides background information on strontium-90 at the Hanford Site related to historical operations. Public access to information on strontium-90 also is described. Section 3.0 focuses on key issues associated with strontium-90 contamination in groundwater that discharges in the Hanford Reach. The occurrence and distribution of fall chinook salmon redds in the Hanford Reach and characteristics of salmon spawning are described in Section 4.0. Section 5.0 describes the regulatory standards and criteria used to set action levels for strontium-90. Recommendations for initiating additional monitoring and remedial action associated with strontium-90 contamination at the Hanford Site are presented in Section 6.0. Appendix A describes monitoring methods. Appendix B discusses uncertainties associated with plume characterizations, and Appendix C provides an overview of studies on fish immuno-suppression and exposure to tritium.« less
Performance of planar single cell lanthanum gallate based solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Maffei, N.; Kuriakose, A. K.
A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.
NASA Astrophysics Data System (ADS)
Beevers, J. E.; Love, C. J.; Lazarov, V. K.; Cavill, S. A.; Izadkhah, H.; Vittoria, C.; Fan, R.; van der Laan, G.; Dhesi, S. S.
2018-02-01
The magnetoelectric effect in M-type Ti-Co doped strontium hexaferrite has been studied using a combination of magnetometry and element specific soft X-ray spectroscopies. A large increase (>×30) in the magnetoelectric coefficient is found when Co2+ enters the trigonal bi-pyramidal site. The 5-fold trigonal bi-pyramidal site has been shown to provide an unusual mechanism for electric polarization based on the displacement of magnetic transition metal (TM) ions. For Co entering this site, an off-centre displacement of the cation may induce a large local electric dipole as well as providing an increased magnetostriction enhancing the magnetoelectric effect.
Berksoy Hayta, Sibel; Durmuş, Kasim; Altuntaş, Emine Elif; Yildiz, Esin; Hisarciklıo, Mehmet; Akyol, Melih
2018-03-01
Numerous growth factors, cytokine, mitogen and chemotactic factors are involved in wound healing. Even though inflammation is important for the stimulation of proliferative phase, excessive inflammation also causes impairment in wound healing. Strontium salts suppress keratinocyte-induced TNF-alpha and interleukin-1 and interleukin-6 in in vitro cultures. This study was conducted to determine the effects of administration of topical strontium chloride hexahydrate on wound healing through TNF-alpha and TGF-beta in surgical wound healing model of in-vivo rat skin. Twenty-four rats were used in the study. After approximately 2 cm cutaneous-subcutaneous incision was horizontally carried out on the mid-neckline of the rats, the incision was again closed using 2.0 vicryl. The rats were assigned into three groups including eight rats in each group. Placebo emollient ointment and also the ointments, which were containing 5% and 10% strontium chloride hexahydrate and were prepared at the same base with placebo ointment, were administered to the groups by a blind executor twice a day for a week. At the end of seventh day, the rats were sacrificed and cutaneous and subcutaneous tissue of their wound site was resected for histopathological examination. Scoring of histopathological wound healing and scoring of tissue TNF-alpha and TGF-beta level with immunohistochemical staining were performed. The groups, to which both 5% and 10% strontium chloride hexahydrate was administered, had lower immunohistochemical TNF-alpha levels and histopathological wound scores compared to controls, which was statistically significant (p < 0.05). Strontium chloride hexahydrate can lead to impairment in wound healing by suppressing inflammation through TNF-alpha.
Kolmas, Joanna; Velard, Frédéric; Jaguszewska, Aneta; Lemaire, Flora; Kerdjoudj, Halima; Gangloff, Sophie C; Kaflak, Agnieszka
2017-10-01
Hydroxyapatite (HA) enriched with strontium and boron ions was synthesized using two different methods: the precipitation method (Sr,B-HAw) and the dry method (Sr,B-HAd). Additionally, for the sake of comparison, the "pure" unsubstituted HA was prepared together with HAs substituted only with one type of a foreign ion. The obtained materials were subjected to physicochemical analysis with the use of various analytical methods, such as powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), Fourier transform infrared spectroscopy (FT-IR) and solid-state proton nuclear magnetic resonance ( 1 H ssNMR). All the obtained materials were also biologically tested for their potential cytotoxicity. The obtained materials (Sr,B-HAw and Sr,B-HAd) were homogeneous and respectively showed nano- and microcrystal apatitic structures. The simultaneous introduction of Sr 2+ and BO 3 3- ions turned out to be more effective in respect of the dry method. Of importance, doped materials obtained using both synthesis routes have been demonstrated to be biocompatible, opening the way for medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Baier, Martin; Staudt, Patric; Klein, Roman; Sommer, Ulrike; Wenz, Robert; Grafe, Ingo; Meeder, Peter Jürgen; Nawroth, Peter P; Kasperk, Christian
2013-06-07
Calcium phosphate cements are used frequently in orthopedic and dental surgeries. Strontium-containing drugs serve as systemic osteoblast-activating medication in various clinical settings promoting mechanical stability of the osteoporotic bone. Strontium-containing calcium phosphate cement (SPC) and calcium phosphate cement (CPC) were compared regarding their local and systemic effects on bone tissue in a standard animal model for osteoporotic bone. A bone defect was created in the distal femoral metaphysis of 60 ovariectomized Sprague-Dawley rats. CPC and SPC were used to fill the defects in 30 rats in each group. Local effects were assessed by histomorphometry at the implant site. Systemic effects were assessed by bone mineral density (BMD) measurements at the contralateral femur and the spine. Faster osseointegration and more new bone formation were found for SPC as compared to CPC implant sites. SPC implants exhibited more cracks than CPC implants, allowing more bone formation within the implant. Contralateral femur BMD and spine BMD did not differ significantly between the groups. The addition of strontium to calcium phosphate stimulates bone formation in and around the implant. Systemic release of strontium from the SPC implants did not lead to sufficiently high serum strontium levels to induce significant systemic effects on bone mass in this rat model.
P-doped strontium titanate grown using two target pulsed laser deposition for thin film solar cells
NASA Astrophysics Data System (ADS)
Man, Hamdi
Thin-film solar cells made of Mg-doped SrTiO3 p-type absorbers are promising candidates for clean energy generation. This material shows p-type conductivity and also demonstrates reasonable absorption of light. In addition, p-type SrTiO3 can be deposited as thin films so that the cost can be lower than the competing methods. In this work, Mg-doped SrTiO3 (STO) thin-films were synthesized and analyzed in order to observe their potential to be employed as the base semiconductor in photovoltaic applications. Mg-doped STO thin-films were grown by using pulsed laser deposition (PLD) using a frequency quadrupled Yttrium Aluminum Garnet (YAG) laser and with a substrate that was heated by back surface absorption of infrared (IR) laser light. The samples were characterized using X-ray photoelectron spectroscopy (XPS) and it was observed that Mg atoms were doped successfully in the stoichiometry. Reflection high energy electron diffraction (RHEED) spectroscopy proved that the thin films were polycrystalline. Kelvin Probe work function measurements indicated that the work function of the films were 4.167 eV after annealing. UV/Vis Reflection spectroscopy showed that Mg-doped STO thin-films do not reflect significantly except in the ultraviolet region of the spectrum where the reflection percentage increased up to 80%. Self-doped STO thin-films, Indium Tin Oxide (ITO) thin films and stainless steel foil (SSF) were studied in order to observe their characteristics before employing them in Mg-doped STO based solar cells. Self-doped STO thin films were grown using PLD and the results showed that they are capable of serving as the n-type semiconductor in solar cell applications with oxygen vacancies in their structure and low reflectivity. Indium Tin Oxide thin-films grown by PLD system showed low 25-50 ?/square sheet resistance and very low reflection features. Finally, commercially available stainless steel foil substrates were excellent substrates for the inexpensive growth of these novel solar cells.
Cecil, L.D.; Knobel, L.L.; Wegner, S.J.; Moore, L.L.
1989-01-01
Water from four wells completed in the Snake River Plain aquifer was sampled as part of the U.S. Geological Survey 's quality assurance program to evaluate the effect of filtration and preservation methods on strontium-90 concentrations in groundwater at the Idaho National Engineering Laboratory. Water from each well was filtered through either a 0.45-micrometer membrane or a 0.1-micrometer membrane filter; unfiltered samples also were collected. Two sets of filtered and two sets of unfiltered samples was preserved in the field with reagent-grade hydrochloric acid and the other set of samples was not acidified. For water from wells with strontium-90 concentrations at or above the reporting level, 94% or more of the strontium-90 is in true solution or in colloidal particles smaller than 0.1 micrometer. These results suggest that within-laboratory reproducibility for strontium-90 in groundwater at the INEL is not significantly affected by changes in filtration and preservation methods used for sample collections. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cecil, L.D.; Knobel, L.L.; Wegner, S.J.
1989-01-01
Water from four wells completed in the Snake River Plain aquifer was sampled as part of the US Geological Survey's quality assurance program to evaluate the effect of filtration and preservation methods on strontium-90 concentrations in groundwater at the Idaho National Engineering Laboratory. Water from each well was filtered through either a 0.45-micrometer membrane or a 0.1-micrometer membrane filter; unfiltered samples also were collected. Two sets of filtered and two sets of unfiltered samples was preserved in the field with reagent-grade hydrochloric acid and the other set of samples was not acidified. For water from wells with strontium-90 concentrations atmore » or above the reporting level, 94% or more of the strontium-90 is in true solution or in colloidal particles smaller than 0.1 micrometer. These results suggest that within-laboratory reproducibility for strontium-90 in groundwater at the INEL is not significantly affected by changes in filtration and preservation methods used for sample collections. 13 refs., 2 figs., 6 tabs.« less
The Content of Structural and Trace Elements in the Knee Joint Tissues.
Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena
2017-11-23
Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead.
The Content of Structural and Trace Elements in the Knee Joint Tissues
Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena
2017-01-01
Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead. PMID:29168758
Semiconductor Heterojunctions for Enhanced Visible Light Photocatalytic H 2 Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, Shiba P.; Hood, Zachary D.; Lachgar, Abdou
Semiconductor-based heterojunctions have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from a high rate of electron-hole recombination and narrow photo-response range. In this study, we report on the study of heterojunctions made from visible light active, graphitic carbon nitride, g-C 3N 4), and UV light active, strontium pyroniobate, Sr 2Nb 2O 7. Heterojunctions made from a combination of g-C 3N 4 and nitrogen-doped Sr 2Nb 2O 7 obtained at different temperatures were also studied to determine the effect of N doping. The photocatalytic performance was evaluated by using photocatalytic hydrogenmore » evolution reaction (HER)from water g under visible light irradiation. It was found that the photocatalytic activities of as prepared heterojunctions are significantly higher than that of individual components under similar conditions. Heterojunction formed from g-C 3N 4 and N-doped Sr 2Nb 2O 7 at 700 °C (CN/SNON-700) showed better performance than heterojunction made from g-C 3N 4 and Sr 2Nb 2O 7 (CN/SNO). Finally, a plausible mechanism for the heterojunction enhanced photocatalytic activity is proposed based on, relative band positions, and photoluminescence data.« less
Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants.
Ballo, Ahmed M; Xia, Wei; Palmquist, Anders; Lindahl, Carl; Emanuelsson, Lena; Lausmaa, Jukka; Engqvist, Håkan; Thomsen, Peter
2012-07-07
The aim of this study was to evaluate the bone tissue response to strontium- and silicon-substituted apatite (Sr-HA and Si-HA) modified titanium (Ti) implants. Sr-HA, Si-HA and HA were grown on thermally oxidized Ti implants by a biomimetic process. Oxidized implants were used as controls. Surface properties, i.e. chemical composition, surface thickness, morphology/pore characteristics, crystal structure and roughness, were characterized with various analytical techniques. The implants were inserted in rat tibiae and block biopsies were prepared for histology, histomorphometry and scanning electron microscopy analysis. Histologically, new bone formed on all implant surfaces. The bone was deposited directly onto the Sr-HA and Si-HA implants without any intervening soft tissue. The statistical analysis showed significant higher amount of bone-implant contact (BIC) for the Si-doped HA modification (P = 0.030), whereas significant higher bone area (BA) for the Sr-doped HA modification (P = 0.034), when compared with the non-doped HA modification. The differences were most pronounced at the early time point. The healing time had a significant impact for both BA and BIC (P < 0.001). The present results show that biomimetically prepared Si-HA and Sr-HA on Ti implants provided bioactivity and promoted early bone formation.
Semiconductor Heterojunctions for Enhanced Visible Light Photocatalytic H 2 Production
Adhikari, Shiba P.; Hood, Zachary D.; Lachgar, Abdou
2018-04-17
Semiconductor-based heterojunctions have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from a high rate of electron-hole recombination and narrow photo-response range. In this study, we report on the study of heterojunctions made from visible light active, graphitic carbon nitride, g-C 3N 4), and UV light active, strontium pyroniobate, Sr 2Nb 2O 7. Heterojunctions made from a combination of g-C 3N 4 and nitrogen-doped Sr 2Nb 2O 7 obtained at different temperatures were also studied to determine the effect of N doping. The photocatalytic performance was evaluated by using photocatalytic hydrogenmore » evolution reaction (HER)from water g under visible light irradiation. It was found that the photocatalytic activities of as prepared heterojunctions are significantly higher than that of individual components under similar conditions. Heterojunction formed from g-C 3N 4 and N-doped Sr 2Nb 2O 7 at 700 °C (CN/SNON-700) showed better performance than heterojunction made from g-C 3N 4 and Sr 2Nb 2O 7 (CN/SNO). Finally, a plausible mechanism for the heterojunction enhanced photocatalytic activity is proposed based on, relative band positions, and photoluminescence data.« less
NASA Astrophysics Data System (ADS)
Sauvet, A.-L.; Fouletier, J.
The recent trend in solid oxide fuel cell concerns the use of natural gas as fuel. Steam reforming of methane is a well-established process for producing hydrogen directly at the anode side. In order to develop new anode materials, the catalytic activities of several oxides for the steam reforming of methane were characterized by gas chromatography. We studied the catalytic activity as a function of steam/carbon ratios r. The methane and the steam content were varied between 5 and 30% and between 1.5 and 3.5%, respectively, corresponding to r-values between 0.07 and 0.7. Catalyst (ruthenium and vanadium)-doped lanthanum chromites substituted with strontium, gadolinium-doped ceria (Ce 0.9Gd 0.1O 2) referred as to CeGdO 2, praseodymium oxide, molybdenum oxide and copper oxide were tested. The working temperature was fixed at 850°C, except for 5% ruthenium-doped La 1- xSr xCrO 3 where the temperature was varied between 700 and 850°C. Two types of behavior were observed as a function of the activity of the catalyst. The higher steam reforming efficiency was observed with 5% of ruthenium above 750°C.
EISENBUD, M
1959-07-10
It is estimated that the global deposition of strontium-90 increased from 1.9 to 2.6 megacuries during the period from June 1957 to October 1958. During this time the stratospheric reservoir of strontium-90 increased from 1.4 to 4.3 megacuries. Approximately 90 percent of the deposition of debris now stored in the stratosphere will have occurred by 1970. In 1958, the strontium-90 content of powdered milk in the New York area averaged 5.9 micromicrocuries per gram of calcium in comparison with 3.9 micromicrocuries per gram of calcium for the previous year. For this region of the country, the strontium-90 content of milk appears to be increasing in proportion to the strontium-90 content of the soils from which the cows derive their forage. The upper limit of foreseeable contamination in milk can be estimated by assuming that this proportionality will continue until all of the strontium-90 has been deposited from the upper atmosphere. This procedure should yield estimates which tend to err on the side of safety. In this manner, it is estimated that the maximum foreseeable sustained level of milk contamination in the New York area is 11 micromicrocuries per gram of calcium. A child deriving its calcium from dairy sources may be expected to develop a skeleton having 5.5 micromicrocuries per gram of calcium. This estimate is double that made in June 1957 and reflects the increased stratospheric inventory due to U.S.S.R. detonations in 1958. The radiological dose to the skeleton from natural sources such as cosmic rays, radium, potassium, and so forth, is approximately 125 millirems per year. A skeletal burden of 5.5 micromicrocuries of strontium-90 per gram of calcium will deliver a dose of approximately 5.5 millirems per year to the bone marrow. The maximum foreseeable dose from strontium-90 in the New York area is thereby estimated to be about 5 percent of the dose due to natural radioactivity.
NASA Astrophysics Data System (ADS)
Sansonetti, J. E.
2012-03-01
Energy levels, with designations and uncertainties, have been compiled for the spectra of strontium (Z=38) ions from singly ionized to hydrogen-like. Wavelengths with classifications, intensities, and transition probabilities are also tabulated. In addition, ground states and ionization energies are listed. For many ionization stages experimental data are available; however for those for which only theoretical calculations or fitted values exist, these are reported. There are a few ionization stages for which only a calculated ionization potential is available.
Structural, electrical and magnetic study of Nd-Ni substituted W-type Hexaferrite
NASA Astrophysics Data System (ADS)
Khan, Imran; Sadiq, Imran; Ali, Irshad; Rana, Mazhar-Ud-Din; Najam-Ul-Haq, Muhammad; Shah, Afzal; Shakir, Imran; Naeem Ashiq, Muhammad
2016-01-01
A series of Nd-Ni substituted W-type hexaferrites with composition Sr1-xNdxCo2NiyFe16-yO27 (where x=0.0, 0.025, 0.050, 0.075, 0.1 and y=0.0, 0.25, 0.50, 0.75, 1) has been prepared by the chemical co-precipitation method. The effect of rare earth Nd substitution at strontium site while Ni at iron site on microstructure, electrical and magnetic properties has been investigated. All the XRD patterns of the synthesized materials show single W-type hexagonal phase without any other intermediate phases. SEM images show that the particles are homogeneous and hexagonal platelet-like shape. DC electrical resistivity measurements were carried out in temperature range of 298-673 K showing metal-to-semiconductor transition when doped with Nd-Ni. The magnetic properties such as saturation magnetization, remanence, squareness ratio and coercivity were calculated from hysteresis loops and were observed to increase with the increase in Nd-Ni concentration up to a certain substitution level which is beneficial for high density recording media.
Zhu, Yi; Ouyang, Yuanming; Chang, Yi; Luo, Congfeng; Xu, Jun; Zhang, Changqing; Huang, Wenhai
2013-04-01
The objective of this study was to examine the proliferation and differentiation behaviors of different compositions of strontium-containing (from 0-12 mol%) borate glasses with mesenchymal stem cells (MSCs). The Cell Counting Kit-8 (CCK-8) assay revealed that after three days of culturing, the 6Sr group had the highest cell growth rate. Analysis of cell morphology revealed that cells proliferated well near the particles of the samples in all the groups on day 3. On day 7, cells in the 6Sr group demonstrated a higher proliferation rate than other 4 groups under the microscope. When performing the Live-Dead staining experiment, the 6Sr group had the least number of dead cells. Total DNA qualification indicated that the 6Sr group had a statistically higher concentration compared with the remaining groups. It was found that on day 7, compared with the 0Sr group, the core binding factor α1 (Cbfa1) mRNA expression level was significantly higher in the 6Sr, 9Sr and 12Sr groups. On day 14, compared with the 0Sr group, the bone sialoprotein (BSP) mRNA level was significantly higher in the 6Sr group. Additionally, on day 21, the 6Sr and 9Sr groups demonstrated higher osteocalcin (OCN) mRNA expression levels compared with the 0Sr group. In the alkaline phosphatase (ALP) activity test, on day 21, the 6Sr group presented a higher activity than the 0Sr group. Further, the number of mineralized nodules per unit in MSCs was measured by Alizarin Red S staining. The results showed that the 6Sr and 9Sr groups had the greatest number of mineralized nodules. Therefore, it could be concluded that borate glasses containing strontium oxide of 0, 3, 6, 9 and 12 mol% demonstrate a significant level of proliferation when interacting with MSCs. The borate glass containing 6 mol% strontium oxide had the greatest level of proliferation when cultured with MSCs. The borate glass containing 6 and 9 mol% strontium oxide facilitated an improved bone formation ability compared with the remaining two compositions.
Developmental status and system studies of the monolithic solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Myles, K. M.
The monolithic solid oxide fuel cell (MSOFC) was invented at the Argonne National Laboratory in 1983 and is currently being developed by a team consisting of Argonne National Laboratory and Allied-Signal Aerospace/AiResearch. The MSOFC is an oxide ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. The electrolyte, which conducts oxygens ions from the air side to the fuel side, is yttria-stabilized zirconia (YSZ). All the other materials, that is, the nickel-YSZ anode, the strontium-doped lanthanum manganite cathode, and the doped lanthanum chromite interconnect (bipolar plate), are electronic conductors. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/l at fuel efficiencies over 50 percent, because of small cell size and low resistive losses in the materials. These performances have been approached in laboratory test fuel cell stacks of nominal 125-W capacities.
Near-infrared quantum cutting in Yb3+ ion doped strontium vanadate
NASA Astrophysics Data System (ADS)
Sawala, N. S.; Bajaj, N. S.; Omanwar, S. K.
2016-05-01
The materials Sr3-x(VO4)2:xYb were successfully synthesized by co-precipitation method varying the concentration of Yb3+ ions from 0 to 0.06 mol. It was characterize by powder X-ray powder diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied by spectrophotometers in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Yb3+ ion doped tristrontium vanadate (Sr3(VO4)2) phosphors that can convert a photon of UV region (349 nm) into photons of NIR region (978, 996 and 1026 nm). Hence this phosphor could be used as a quantum cutting (QC) luminescent convertor in front of crystalline silicon solar cell (c-Si) panels to reduce thermalization loss due to spectral mismatch of the solar cells. The theoretical value of quantum efficiency (QE) was calculated from steady time decay measurement and the maximum efficiency approached up to 144.43%. The Sr(3-x) (VO4)2:xYb can be potentiality used for betterment of photovoltaic (PV) technology.
Studies on Inhibition of Intestinal Absorption of Radioactive Strontium
Paul, T. M.; Edward, Deirdre Waldron; Skoryna, Stanley C.
1964-01-01
A method is reported that enables selective suppression of absorption of radioactive strontium from ingested food material, permitting calcium to remain available to the body. Studies were carried out by measuring blood levels and bone uptake of Sr89 and Ca45 at different time intervals after orogastric intubation of rats. The addition of sodium alginate, derived from brown marine algae, to the radioactive isotopes increased the overall physiological discrimination against strontium by amounts up to 60% after 24 hours. This discrimination was further increased by feeding sodium alginate mixed with standard diet in the proportions of 20:80 and 30:70. The observed ratio was reduced by administration of sodium alginate from 0.25 to 0.09. Determination of the limiting dosage in rats is restricted to the amounts which rats will consume. In the event of an inadvertent release of radioactive strontium, human subjects probably could increase their intake of alginate at will, permitting a greater effectiveness of sodium alginate than could be obtained in experimental animals. PMID:14176062
Biodistribution of strontium and barium in the developing and mature skeleton of rats.
Panahifar, Arash; Chapman, L Dean; Weber, Lynn; Samadi, Nazanin; Cooper, David M L
2018-06-19
Bone acts as a reservoir for many trace elements. Understanding the extent and pattern of elemental accumulation in the skeleton is important from diagnostic, therapeutic, and toxicological perspectives. Some elements are simply adsorbed to bone surfaces by electric force and are buried under bone mineral, while others can replace calcium atoms in the hydroxyapatite structure. In this article, we investigated the extent and pattern of skeletal uptake of barium and strontium in two different age groups, growing, and skeletally mature, in healthy rats. Animals were dosed orally for 4 weeks with either strontium chloride or barium chloride or combined. The distribution of trace elements was imaged in 3D using synchrotron K-edge subtraction micro-CT at 13.5 µm resolution and 2D electron probe microanalysis (EPMA). Bulk concentration of the elements in serum and bone (tibiae) was also measured by mass spectrometry to study the extent of uptake. Toxicological evaluation did not show any cardiotoxicity or nephrotoxicity. Both elements were primarily deposited in the areas of active bone turnover such as growth plates and trabecular bone. Barium and strontium concentration in the bones of juvenile rats was 2.3 times higher, while serum levels were 1.4 and 1.5 times lower than adults. In all treatment and age groups, strontium was preferred to barium even though equal molar concentrations were dosed. This study displayed spatial co-localization of barium and strontium in bone for the first time. Barium and strontium can be used as surrogates for calcium to study the pathological changes in animal models of bone disease and to study the effects of pharmaceutical compounds on bone micro-architecture and bone remodeling in high spatial sensitivity and precision.
Ober, J.A.
1996-01-01
Part of the Annual Commodities Review 1995. In 1995, U.S. strontium imports and consumption increased nearly 30 percent due to increased domestic production of color television picture tube glass. However, strontium compound exports fell during 1995. Strontium is also used in the production of permanent ceramic ferrite magnets. Strontium nitrate, strontium chromate, and strontium chloride are also commonly used materials. Although the development of an affordable flatscreen display could eliminate the need for strontium in television production, this technology is not expected to be perfected in the immediate future.
Strontium ranelate for preventing and treating postmenopausal osteoporosis.
O'Donnell, S; Cranney, A; Wells, G A; Adachi, J D; Reginster, J Y
2006-10-18
Strontium ranelate is a new treatment for osteoporosis therefore, its benefits and harms need to be known. To determine the efficacy and safety of strontium ranelate for the treatment and prevention of postmenopausal osteoporosis. We searched MEDLINE (1996 to March 2005), EMBASE (1996 to week 9 2005), the Cochrane Library (1996 to Issue 1 2005), reference lists of relevant articles and conference proceedings from the last two years. Additional data was sought from authors. We included randomized controlled trials (RCTs) of at least one year duration comparing strontium ranelate versus placebo reporting fracture incidence, bone mineral density (BMD), health related quality of life or safety in postmenopausal women. Treatment (versus prevention) population was defined as women with prevalent vertebral fractures and/or lumbar spine BMD T score < -2.5 SD. Two reviewers independently determined study eligibility, assessed trial quality and extracted the relevant data. Disagreements were resolved by consensus. RCTs were grouped by dose of strontium ranelate and treatment duration. Where possible, meta-analysis was conducted using the random effects model. Four trials met the inclusion criteria. Three included a treatment population (0.5 to 2 g of strontium ranelate daily) and one a prevention population (0.125 g, 0.5 g and 1 g daily). A 37% reduction in vertebral fractures (RR 0.63, 95% CI 0.56, 0.71) and a 14% reduction in non-vertebral fractures (RR 0.86, 95% CI 0.75, 0.98) were demonstrated over three years with 2 g of strontium ranelate daily in a treatment population. An increase in BMD was shown at all BMD sites after two to three years in both populations. Lower doses of strontium ranelate were superior to placebo and the highest dose demonstrated the greatest reduction in vertebral fractures and increase in BMD. An increased risk of diarrhea with 2 g of strontium ranelate was found; however, adverse events did not affect the risk of discontinuing treatment nor did it increase the risk of serious side effects, gastritis or death. Additional data suggests that the risk of vascular and nervous system side-effects is slightly increased with taking 2 g of strontium ranelate daily over three to four years. There is silver level evidence (www.cochranemsk.org) to support the efficacy of strontium ranelate for the reduction of fractures (vertebral and to a lesser extent non-vertebral) in postmenopausal osteoporotic women and an increase in BMD in postmenopausal women with/without osteoporosis. Diarrhea may occur however, adverse events leading to study withdrawal were not significantly increased with taking 2 g of strontium ranelate daily. Potential vascular and neurological side-effects need to be further explored.
NASA Astrophysics Data System (ADS)
Carter, J. J.; Bayer, T. J. M.; Randall, C. A.
2017-04-01
Understanding resistance degradation during the application of DC bias and recovery after removing the DC bias provides insight into failure mechanisms and defects in dielectric materials. In this experiment, modulus spectroscopy and thermally stimulated depolarization current (TSDC) techniques were used to characterize the degradation and recovery of iron-doped barium titanate single crystals. Modulus spectroscopy is a very powerful analytical tool applied during degradation and recovery to observe changes in the local conductivity distribution. During degradation, oxygen vacancies migrate to the cathode region, and a counter flow of oxygen anions migrates towards the anode. With increasing time during degradation, the distribution of conductivity broadens only slightly exhibiting crucial differences to iron doped strontium titanate. After removing the DC bias, the recovery shows that a second previously unobserved and distinct conductivity maximum arises in the modulus data. This characteristic with two maxima related to different conductivities in the anode and cathode region is what can be expected from the published defect chemistry. It will be concluded that only the absence of an external electric field during recovery measurements permits the observation of local conductivity measurements without the presence of non-equilibrium conditions such as charge injection. Equilibrium conductivity as a function of oxygen vacancy concentration is described schematically. Oxygen vacancy migration during degradation and recovery is verified by TSDC analysis. We establish a self-consistent rationale of the transient changes in the modulus and TSDC for the iron doped barium titanate single crystal system including electron, hole and oxygen vacancy conductivity. During degradation, the sample fractured.
Provenance of whitefish in the Gulf of Bothnia determined by elemental analysis of otolith cores
NASA Astrophysics Data System (ADS)
Lill, J.-O.; Finnäs, V.; Slotte, J. M. K.; Jokikokko, E.; Heimbrand, Y.; Hägerstrand, H.
2018-02-01
The strontium concentration in the core of otoliths was used to determine the provenance of whitefish found in the Gulf of Bothnia, Baltic Sea. To that end, a database of strontium concentration in fish otoliths representing different habitats (sea, river and fresh water) had to be built. Otoliths from juvenile whitefish were therefore collected from freshwater ponds at 5 hatcheries, from adult whitefish from 6 spawning sites at sea along the Finnish west coast, and from adult whitefish ascending to spawn in the Torne River, in total 67 otoliths. PIXE was applied to determine the elemental concentrations in these otoliths. While otoliths from the juveniles raised in the freshwater ponds showed low but varying strontium concentrations (194-1664 μg/g,), otoliths from sea-spawning fish showed high uniform strontium levels (3720-4333 μg/g). The otolith core analysis of whitefish from Torne River showed large variations in the strontium concentrations (1525-3650 μg/g). These otolith data form a database to be used for provenance studies of wild adult whitefish caught at sea. The applicability of the database was evaluated by analyzing the core of polished otoliths from 11 whitefish from a test site at sea in the Larsmo archipelago. Our results show that by analyzing strontium in the otolith core, we can differentiate between hatchery-origin and wild-origin whitefish, but not always between river and sea spawning whitefish.
Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites
NASA Astrophysics Data System (ADS)
Ateia, Ebtesam E.; Takla, E.; Mohamed, Amira T.
2017-10-01
In the presented paper, strontium (Sr) and barium (Ba) nano ferrites were synthesized by citrate auto combustion method. The investigated samples are characterized by X-ray diffraction technique (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The structural properties of the obtained samples were examined by XRD analysis showing that the synthesized nanoparticles are in cubic spinel structure. The average crystallite sizes are in the range of 22.66 and 21.95 nm for Mg0.7Ba0.3Fe2O4 and Mg0.7 Sr0.3Fe2O4 respectively. The VSM analysis confirms the existence of ferromagnetic nature of Sr2+/Ba2+ substituted magnesium nano particles. Exchange interaction between hard (Sr/Ba) and soft (Mg) magnetic phases improves the structural and magnetic properties of nano ferrite particles. Rigidity modulus, longitudinal and shear wave velocities are predicted theoretically from Raman spectroscopy and structural data of the investigated spinel ferrite. The magnetic and structural properties of magnesium are enhanced by doping with barium and strontium nano particles. The saturation magnetization, remanent magnetization and coercivity reported on vibrating sample magnetometer curve illustrate the promising industrial and magnetic recording applications of the prepared samples.
Magnetic study of M-type Ru–Ti doped strontium hexaferrite nanocrystalline particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsmadi, A. M.; Bsoul, I.; Mahmood, S. H.
2015-11-01
We carried out a systematic study on the effect of the substitution of Ti2+ and Ru4+ ions for Fe3+ ions on the structural and magnetic properties of the strontium ferrite SrFe12-2xRuxTixO19 nanoparticles with (0 <= x <= 0: 3), using x-ray diffraction, Quantum Design PPMS-9 magnetometry, and electrical resistivity. A clear irreversibility between the zero-field-cooled and field-cooled curves was observed below room temperature and the zero-field-cooled magnetization curves displayed a broad peak at a temperature TM. These results were discussed within the framework of random particle assembly model and associated with the magnetic domain wall motion. The resistivity data showedmore » some kind of a transition from insulator to perfect insulator around TM. The high-temperature magnetization measurements exhibited sharp peaks just below T-c indicating a superparamagnetic behavior. With Ru-Ti substitution, the saturation magnetization at 5 K showed small variations were it slightly increased with increasing x up to 0.2, and then decrease for x = 0.3, while the coercivity decreased monotonically, recording a reduction of about 78% at x = 0.3. These results were discussed in light of the cationic distributions based on the results of the structural refinements.« less
Investigation of strontium accumulation on ovariectomized Sprague-Dawley rat tibia by micro-PIXE
NASA Astrophysics Data System (ADS)
Li, X.; Li, Y.; Jin, W.; Zheng, Y.; Rong, C.; Lyu, H.; Shen, H.
2014-08-01
Strontium ranelate is a newly developed drug effective in osteoporosis treatment by depressing bone resorption and maintaining bone formation. Strontium accumulation and distribution are determined in bones of rat after strontium ranelate administration by using micro-PIXE. The investigated rats are divided into four groups: (A) control, (B) ovariectomized, (C) ovariectomized followed with strontium chloride, (D) ovariectomized followed with strontium ranelate. It was found that strontium ranelate would result in increasing trabecular volume and decreasing bone resorption to treat osteoporosis. There are similar contours of calcium and strontium in two-dimensional images, while the strontium is not evenly distributed in the bone. It supports the conclusion that strontium has an affinity for bone and it is capable of replacing calcium atoms as a part of the strontium mechanism in the osteoporosis treatment. The results related to biochemistry are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Koyel; Mukhopadhyay, Jayanta, E-mail: jayanta_mu@cgcri.res.in; Barman, Madhurima
2015-12-15
Highlights: • La{sub 1−x}Sr{sub x}Co{sub y}Fe{sub 1−y}O{sub 3−δ}, x = 0.4; y = 0.2 system varying La-site (0.6–0.54) are studied. • Combustion synthesis technique is used to prepare the powder samples. • Highest electrical conductivity observed with largest A-site deficit composition. • Lowest cathode polarization is found with the same composition (0.02 Ω cm{sup 2}). • Composition with largest A-site deficiency exhibits best performance (2.84 A cm{sup −2}). - Abstract: Effect of A-site non-stoichiometry in strontium doped lanthanum cobalt ferrite (La{sub 1−x}Sr{sub x}Co{sub y}Fe{sub 1−y}O{sub 3−δ}, x = 0.4; y = 0.2) is studied in a systematic manner with variationmore » of ‘A’ site stoichiometry from 1 to 0.94. The perovskite based cathode compositions are synthesized by combustion synthesis. Powder characterizations reveal rhombohedral crystal structure with crystallite size ranging from 29 to 34 nm with minimum lattice spacing of 0.271 nm. Detailed sintering studies along with total DC electrical conductivities are evaluated in the bulk form with variation of sintering temperatures. The electrode polarizations are measured in the symmetric cell configuration by impedance spectroscopy which is found to be the lowest (0.02 Ω cm{sup 2} at 800 °C) for cathode having highest degree of ‘A’-site deficiency. The same cathode composition exhibits a current density of 2.84 A cm{sup −2} (at 0.7 V, 800 °C) in anode-supported single cell. An attempt has been made to correlate the trend of electrical behaviour with increasing ‘A’-site deficiency for such cathode compositions.« less
Wang, Xu; Chen, Can; Wang, Jianlong
2017-03-01
Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench was investigated, and the soil microbial community-level physiological profiles (CLPPs) were examined. The growth and the stable strontium ( 88 Sr) accumulations of the energy crop S. bicolor grown on the Sr-spiked soil at the level of 0, 50, 100, 200, and 400 mg/kg soil were characterized through pot soil system after the entire growth period (140 days). Correspondingly, the available content of strontium in soil extracted by Mehlich III extraction solution reached 42.0, 71.9, 151.8, and 242.2 mg/kg, respectively. The Sr-polluted soil microbial community was assessed by a Biolog Eco-plate method. The results showed that the spiked Sr significantly increased the height and the stem biomass weight of the plant. Sr contents in roots, stems, and leaves of the sorghum increased linearly (R 2 > 0.95) with the elevation of the Sr-spiked level in soil. The average Sr concentration in roots, stems, and leaves reached 68.9, 61.3, and 132.6 mg/kg dry weight (DW) under Sr-spiked 400 mg/kg soil, respectively. Sr content in tissues decreased in the order of leaves > roots > stems. The bioconcentration factor (BCF; Sr contents in shoots to soil) values of S. bicolor in soil system was lower than 1 (0.21∼0.39) whether based on the spiked Sr level or on the available Sr level in soil. The transfer factor (TF; Sr contents in shoots to roots) values of S. bicolor in soil system usually is higher than 1 or near to 1 (0.92∼1.29). TF values increased while BCF values decreased as the soil Sr increased. The Biolog Eco-plate assay showed that Sr at the spiked level of 400 mg/kg soil enhanced the soil microbial diversity and activity.
Studies of Inhibition of Intestinal Absorption of Radioactive Strontium
Skoryna, Stanley C.; Paul, T. M.; Waldron-Edward, Deirdre
1965-01-01
A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, allowing calcium to be available to the body. Studies were carried out on the inhibitory effect of various amounts of sodium alginate and the dose-response relationship of Sr89 and bone uptake. The results obtained indicated that under laboratory conditions sodium alginate effectively reduces Sr89 uptake in a constant proportion. This effect was observed at the three levels of administration of 1.4%, 12% and 24% of sodium alginate. The linear relationship between the dosage of the radioisotope and the bone uptake in the presence of sodium alginate suggests that the same proportion is maintained at the lower levels of intake of radioactive strontium. Previous studies with small constant doses of sodium alginate were extended in rats to a period corresponding approximately to three years of human life span. Low doses were sufficient to reduce appreciably bone uptake of radiostrontium. PMID:14341649
The effect of carrier strontium on the absorption of oral doses of radioactive strontium in rats
Harrison, G. E.; Jones, H. G.; Sutton, A.
1957-01-01
Carrier strontium had relatively little effect on the retention of an oral dose of radioactive strontium by the rat when it was administered immediately after the radioactive dose. The proportion of the radioactive dose which was excreted in the urine, on the other hand, increased progressively with the carrier dose. There was a decreased uptake of radioactive strontium in rats fed on a special low strontium diet. The effects of dietary strontium are discussed. Evidence was found of a discrimination by the rat against strontium in favour of calcium which was accounted for, at least in part, by a preferential urinary excretion of strontium. PMID:13460240
Pelletier, Jean-Pierre; Kapoor, Mohit; Fahmi, Hassan; Lajeunesse, Daniel; Blesius, Alexia; Maillet, Juliette; Martel-Pelletier, Johanne
2013-02-01
To explore the disease-modifying effect, under therapeutic conditions, of strontium ranelate (SrRan) on the progression of joint structural changes and on the major pathophysiological pathways in an experimental osteoarthritis dog model. Dogs underwent sectioning of the anterior cruciate ligament, and 4 weeks after surgery received oral treatment of SrRan 25, 50 or 75 mg/kg per day, or placebo for 12 weeks. Methods included macroscopy, picrosirius red staining, histology, subchondral bone histomorphometry, quantitative PCR, and ELISA for CTX-II level in serum. Strontium plasma and synovial fluid levels were also measured. At steady state, strontium blood exposures were within the clinical therapeutic range of osteoarthritis patients and correlated with strontium concentrations in synovial fluid. SrRan treatment significantly reduced the osteoarthritis cartilage lesions at all doses tested (p≤0.05). Significantly better preservation of the collagen network was also found in SrRan-treated dogs at 50 and 75 mg/kg per day (p=0.03). The osteoarthritis subchondral bone thickening observed in osteoarthritis-placebo dogs was significantly reduced by SrRan at 50 mg/kg per day (p=0.02). The increased gene expression levels of MMP-1, MMP-13 and cathepsin K in osteoarthritis cartilage were all significantly reduced by SrRan at 75 mg/kg per day (p≤0.03) as were, in osteoarthritis synovium, IL-1β at 50 and 75 mg/kg per day (p=0.05) and MMP-3 at all doses tested (p≤0.02). The serum level of CTX-II was reduced (p≤0.04) by SrRan at 16 weeks in dogs treated with 50 and 75 mg/kg per day. This study is the first to demonstrate in vivo in an animal model that SrRan reduced the progression of osteoarthritis structural changes. The inhibition of several key proteases as well as IL-1β may have contributed to the beneficial effect of SrRan.
Shippentower, Gene E.; Schreck, Carl B.; Heppell, Scott A.
2011-01-01
We sought to determine whether a strontium chloride injection could be used to create a transgenerational otolith mark in steelhead Oncorhynchus mykiss. Two strontium injection trials and a survey of strontium: calcium (Sr:Ca) ratios in juvenile steelhead from various steelhead hatcheries were conducted to test the feasibility of the technique. In both trials, progeny of fish injected with strontium had significantly higher Sr:Ca ratios in the primordial region of their otoliths, as measured by an electron wavelength dispersive microprobe. In trial 1, the 5,000-mg/L treatment level showed that 56.8% of the otoliths were correctly classified, 12.2% being misclassified as belonging to the 0-mg/L treatment. In trial 2, the 20,000-mg/L treatment level showed that 30.8% of the otoliths were correctly classified, 13.5% being misclassified as belonging to the 0-mg/L treatment. There were no differences in the fertilization rates of eggs or survival rates of fry between the treatment and control groups. The Sr:Ca ratios in otoliths collected from various hatchery populations of steelhead varied and were greater than those found in otoliths from control fish in both of our injection trials. This study suggests that the marking technique led to recognizable increases in Sr:Ca ratios in some otoliths collected from fry produced by injected females. Not all progeny showed such increases, however, suggesting that the method holds promise but requires further refinement to reduce variation. Overall, there was a correct classification of about 40% across all treatments and trials; the variation in Sr:Ca ratios found among experimental trials and hatcheries indicates that care must be taken if the technique is employed where fish from more than one hatchery could be involved.
Liu, Hui; Héroux, Paul; Zhang, Qunwei; Jiang, Zhao-Yan; Gu, Aihua
2015-01-01
Background Little is known regarding the effects of environmental exposure of chemicals on androgenic system in the general population. We studied 5,107 subjects included in the National Health and Nutrition Examination Survey (2011–2012). Methods Urinary, serum, and blood levels of 15 subclasses comprising 110 individual chemicals were analyzed for their association with serum testosterone levels. The subjects were divided into high and low testosterone groups according to the median testosterone concentration (374.51 ng/dL). Odds ratios (ORs) of individual chemicals in association with testosterone were estimated using logistic regression after adjusting for age, ethnicity, cotinine, body mass index, creatinine, alcohol, and the poverty income ratio. Results Adjusted ORs for the highest versus lowest quartiles of exposure were 2.12 (95% CI: 1.07, 4.21; Ptrend = 0.044), 1.84 (95% CI: 1.02, 3.34; Ptrend = 0.018) for the association between urinary mandelic acid, and strontium quartiles with low testosterone concentrations in adult men, respectively. However, no association was observed for the remaining chemicals with testosterone. Conclusions The National Health and Nutrition Examination Survey data suggest that elevations in urinary mandelic acid, and strontium levels are negatively related to low serum testosterone levels in adult men. PMID:25996772
NASA Astrophysics Data System (ADS)
Cherepy, N. J.; Payne, S. A.; Sturm, B. W.; O'Neal, S. P.; Seeley, Z. M.; Drury, O. B.; Haselhorst, L. K.; Rupert, B. L.; Sanner, R. D.; Thelin, P. A.; Fisher, S. E.; Hawrami, R.; Shah, K. S.; Burger, A.; Ramey, J. O.; Boatner, L. A.
2011-09-01
Recently discovered scintillators for gamma ray spectroscopy - single-crystal SrI2(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics - offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI2(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu), offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single-crystal SrI2(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, N J; Payne, S A; Sturm, B W
2011-08-30
Recently discovered scintillators for gamma ray spectroscopy, single crystal SrI{sub 2}(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics, offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI{sub 2}(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu) offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single crystal SrI{sub 2}(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.
Barium iodide and strontium iodide crystals and scintillators implementing the same
Payne, Stephen A.; Cherepy, Nerine; Pedrini, Christian; Burger, Arnold
2016-09-13
In one embodiment, a crystal includes at least one metal halide; and an activator dopant comprising ytterbium. In another general embodiment, a scintillator optic includes: at least one metal halide doped with a plurality of activators, the plurality of activators comprising: a first activator comprising europium, and a second activator comprising ytterbium. In yet another general embodiment, a method for manufacturing a crystal suitable for use in a scintillator includes mixing one or more salts with a source of at least one dopant activator comprising ytterbium; heating the mixture above a melting point of the salt(s); and cooling the heated mixture to a temperature below the melting point of the salts. Additional materials, systems, and methods are presented.
Epoxy-based broadband antireflection coating for millimeter-wave optics.
Rosen, Darin; Suzuki, Aritoki; Keating, Brian; Krantz, William; Lee, Adrian T; Quealy, Erin; Richards, Paul L; Siritanasak, Praween; Walker, William
2013-11-20
We have developed epoxy-based, broadband antireflection coatings for millimeter-wave astrophysics experiments with cryogenic optics. By using multiple-layer coatings where each layer steps in dielectric constant, we achieved low reflection over a wide bandwidth. We suppressed the reflection from an alumina disk to 10% over fractional bandwidths of 92% and 104% using two-layer and three-layer coatings, respectively. The dielectric constants of epoxies were tuned between 2.06 and 7.44 by mixing three types of epoxy and doping with strontium titanate powder required for the high dielectric mixtures. At 140 K, the band-integrated absorption loss in the coatings was suppressed to less than 1% for the two-layer coating, and below 10% for the three-layer coating.
High-resolution stratigraphy with strontium isotopes.
Depaolo, D J; Ingram, B L
1985-02-22
The isotopic ratio of strontium-87 to strontium-86 shows no detectable variation in present-day ocean water but changes slowly over millions of years. The strontium contained in carbonate shells of marine organisms records the ratio of strontium-87 to strontium-86 of the oceans at the time that the shells form. Sedimentary rocks composed of accumulated fossil carbonate shells can be dated and correlated with the use of high precision measurements of the ratio of strontium-87 to strontium-86 with a resolution that is similar to that of other techniques used in age correlation. This method may prove valuable for many geological, paleontological, paleooceanographic, and geochemical problems.
Measurements of Strontium Levels in Human Bone In Vivo Using Portable X-ray Fluorescence (XRF).
Specht, Aaron J; Mostafaei, Farshad; Lin, Yanfen; Xu, Jian; Nie, Linda H
2017-08-01
Measurement of bone strontium (Sr) is vital to determining the effectiveness of Sr supplementation, which is commonly used for the treatment of osteoporosis. Previous technology uses radioisotope sources and bulky equipment to measure bone Sr. This study demonstrates the effectiveness of portable X-ray fluorescence (XRF) for bone Sr measurement and validates it using data from a population of 238 children. We identified correlations between bone Sr and age in our participants.
Lazarus, Maja; Orct, Tatjana; Reljić, Slaven; Sedak, Marija; Bilandžić, Nina; Jurasović, Jasna; Huber, Đuro
2018-05-21
We explored the long-term accumulation of aluminium, strontium, cadmium and lead in the compact and trabecular bone of the femoral epiphysis, metaphysis and diaphysis in 41 brown bears (Ursus arctos) from Croatia. Also, we assessed their influence on macro and trace elements (sodium, magnesium, phosphorus, potassium, calcium, manganese, iron, cobalt, copper, zinc and barium) in bears' bone. There were no sex differences in element levels in general, while age was associated with bone length and levels of all elements, except for cadmium. Elements had different levels depending on the part of the bone sampled. More pronounced differences were observed between the compact and trabecular regions, with higher levels of majority of elements found in compact bone. Moderate to high associations (Spearman coefficient, r S = 0.59-0.97) were confirmed between calcium and potassium, magnesium, phosphorus, manganese, cobalt, zinc, strontium and lead. Lead levels in the bone were below those known to cause adverse health effects, but in 4 of 41 animals they exceeded baseline levels for domestic animals. The femoral bone of the brown bear reflected the accumulative nature of lead and strontium well, as it did the impairment of bone-forming essential element levels associated with these two elements. However, the distribution pattern of elements along the bone was not uniform, so additional care should be taken when choosing on the part of the bone sampled.
Simulating the Transfer of Strontium-90 from Soil to Leafy Vegetables by Using Strontium-88.
Kuke, Ding; Shujuan, Liu; Yingxue, He; Dong, Yan; Fengshou, Zhang; Shuifeng, Wang; Jinghua, Guo; Wei, Zhang; Xin, Wang; Xiaoyan, Jiang
The transfer, from soil to Chinese cabbage and spinach, of radioactive strontium-90 released as a result of accidents in nuclear power stations was studied using a stable isotope of strontium, namely nuclide strontium-88 ( 88 Sr). The study led to an experimental model for assessing the hazard of radionuclide strontium-90 ( 90 Sr) entering the food chain and for predicting the risk to food safety. Chinese cabbage and spinach were grown in pots in a greenhouse and irrigated with deionized water containing known quantities of strontium. Based on the strontium content of that water, the plants were divided into five groups (treatments) and strontium content of the soil, and 30-day-old plants were determined by inductively coupled plasma atomic emission spectroscopy instrument (ICP-AES). Data on the strontium content of soil and plants enabled the development of a model using MATLAB, a mathematical software package, which included curve fitting and problem solving using regression equations and differential equations. Although strontium curves for leaves, stems, and roots of Chinese cabbage were not exactly the same, all showed a non-linear increase when compared with the increase in the content of strontium in soil. Strontium curves for leaves, stems, and roots of spinach were very similar and showed an initial increase followed by a decrease. Strontium concentrations in both Chinese cabbage and spinach were initially related to the concentrations of sodium and sulfur, the next two relevant nuclides being calcium and magnesium. The relationship between calcium and strontium in Chinese cabbage was different from that in spinach. By using 88 Sr to simulate the transfer of radionuclide 90 Sr from soil to a crop, the relevant data required to deal with accidental release of strontium can be obtained using a fitting curve and regression equations, thereby providing some experimental basis for evaluating the potential hazards posed by such accidents to the food chain.
Ober, J.A.
1994-01-01
Production figures are not published for stronium carbonate because there is only one company producing strontium carbonate domestically. Strontium carbonate is produced in the U.S. from imported celestite. Consumption can be estimated from trade data published by the U.S. Bureau of the Census. Consumption is estimated at approximately 24.5 kt of strontium. The largest end-use of strontium carbonate is in the production of faceplate glass for color television picturetubes. Other applications and markets for strontium are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimmagadda, M.; Yu, C.
1993-04-01
Residual radioactive material guidelines for strontium-90 and cesium-137 were derived for the Laboratory for Energy-Related Health Research (LEHR) site in Davis, California. The guideline derivation was based on a dose limit of 100 mrem/yr. The US Department of Energy (DOE) residual radioactive material guideline computer code, RESRAD, was used in this evaluation; this code implements the methodology described in the DOE manual for implementing residual radioactive material guidelines. Three potential site utilization scenarios were considered with the assumption that, for a period of 1,000 years following remedial action, the site will be utilized without radiological restrictions. The defined scenarios varymore » with regard to use of the site, time spent at the site, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded within 1,000 years for either strontium-90 or cesium-137, provided that the soil concentrations of these radionuclides at the LEHR site do not exceed the following levels: 71,000 pCi/g for strontium-90 and 91 pCi/g for cesium-137 for Scenario A (researcher: the expected scenario); 160,000 pCi/g for strontium-90 and 220 pCi/g for cesium-137 for Scenario B (recreationist: a plausible scenario); and 37 pCi/g for strontium-90 and 32 pCi/g for cesium-137 for Scenario C (resident farmer ingesting food produced in the contaminated area: a plausible scenario). The derived guidelines are single-radionuclide guidelines and are linearly proportional to the dose limit used in the calculations. In setting the actual strontium-90 and cesium-137 guidelines for the LEHR site, DOE will apply the as low as reasonably achievable (ALARA) policy to the decision-making process, along with other factors such as whether a particular scenario is reasonable and appropriate.« less
Photoluminescence properties of non-stoichiometric strontium zirconate powder phosphor
NASA Astrophysics Data System (ADS)
Jarý, V.; Boháček, P.; Mihóková, E.; Havlák, L.; Trunda, B.; Nikl, M.
2013-03-01
Excitation and emission spectra and decay kinetics of non-stoichiometric strontium zirconate powder phosphor were measured in the 8-500 K temperature interval. Phenomenological model was applied to extract quantitative parameters of the excited state levels and nonradiative quenching pathways related to the luminescence centre. Delayed recombination integrals measurement was employed to investigate the occurrence of thermally induced ionization of the excited state of the emission centre. The nature of the emission centre itself is suggested. Suitability for phosphor and scintillation application is discussed.
González-Weller, Dailos; Rubio, Carmen; Gutiérrez, Ángel José; González, Gara Luis; Caballero Mesa, José María; Revert Gironés, Consuelo; Burgos Ojeda, Antonio; Hardisson, Arturo
2013-12-01
The aim of this study was to analyze barium, bismuth, chromium, lithium, and strontium contents in food and beverages consumed by the population of the Canary Islands (Spain) as well as determine dietary intake of these metals in the archipelago as a whole and in its individual islands. To this end, 440 samples were analyzed by ICP-OES and GFAAS. Barium concentrations ranged from 5.210 ± 2.117 mg/kg in nuts to 0.035 ± 0.043 mg/L in water. Viscera exhibited the highest levels of bismuth (38.07 ± 36.80 mg/kg). The cold meat and sausages group stood out for its high chromium concentrations (0.494 ± 0.257 mg/kg). The highest concentration of lithium and strontium came out in nuts (8.761 ± 5.368 mg/kg and 9.759 ± 5.181 mg/kg, respectively). The total intakes of barium, bismuth, chromium, lithium, and strontium were 0.685, 1.274, 0.087, 3.674, and 1.923 mg/day, respectively. Cereals turned out to contribute most to the dietary intake of barium, bismuth, chromium, and lithium in the Canary Islands, while fruit contributes most to the strontium intake. We also performed a metal intake study by age and sex of the population and compared the outcome with data from other regions, both national and international.
High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs
NASA Astrophysics Data System (ADS)
Fernández-Ropero, A. J.; Porras-Vázquez, J. M.; Cabeza, A.; Slater, P. R.; Marrero-López, D.; Losilla, E. R.
2014-03-01
In this paper we report the successful incorporation of high valence transition metals, i.e. Cr, Mo, W, V, Nb, Ti, Zr into SrFeO3-δ perovskite materials, for potential applications as symmetric electrode materials for Solid Oxide Fuel Cells. It is observed that the doping leads to a change from an orthorhombic structure (with partial ordering of oxygen vacancies) to a cubic one (with the oxygen vacancies disordered). These electrodes are chemically compatibles with Ce0.9Gd0.1O1.95 (CGO) and La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolytes at least up to 1100 °C. Thermal annealing experiments in 5% H2-Ar at 800 °C also show the stability of the doped samples in reducing conditions, suggesting that they may be suitable for both cathode and anode applications. In contrast, reduction of undoped SrFeO3-δ leads to the observation of extra peaks indicating the formation of the brownmillerite structure with the associated oxygen vacancy ordering. The performance of these electrodes was examined on dense electrolyte pellets of CGO and LSGM in air and 5% H2-Ar. In both atmospheres an improvement in the area specific resistances (ASR) values is observed for the doped samples with respect to the parent compound. Thus, the results show that high valence transition metals can be incorporated into SrFeO3-δ-based materials and can have a beneficial effect on the electrochemical performance, making them potentially suitable for use as cathode and anode materials in symmetrical SOFC.
Strontium ranelate for preventing and treating postmenopausal osteoporosis.
O'Donnell, S; Cranney, A; Wells, G A; Adachi, J D; Reginster, J Y
2006-07-19
Strontium ranelate is a new anti-osteoporosis therapy therefore, its benefits and harms need to be known. To determine the efficacy and safety of strontium ranelate for the treatment and prevention of postmenopausal osteoporosis. We searched MEDLINE (1996 to March 2005), EMBASE (1996 to week 9 2005), the Cochrane Library (1996 to Issue 1 2005), reference lists of relevant articles and conference proceedings from the last two years. Additional data was sought from authors and industry sponsors. We included randomized controlled trials (RCTs) of at least one year duration comparing strontium ranelate versus placebo reporting fracture incidence, bone mineral density (BMD), health related quality of life and/or safety outcomes in postmenopausal women. Treatment (versus prevention) population was defined as women with prevalent vertebral fractures and/or lumbar spine BMD T score < -2.5 SD. Two reviewers independently determined study eligibility, assessed trial quality and extracted the relevant data. Disagreements were resolved by consensus. RCTs were grouped by dose of strontium ranelate and treatment duration. Where possible, meta-analysis was conducted using the random effects model. A total of four trials met our inclusion criteria, three of which investigated the effects of strontium ranelate compared to placebo in a treatment population (doses ranged from 0.5 to 2 g daily) and one, in a prevention population (doses 0.125, 0.5 and 1 g daily). In osteoporotic, postmenopausal women a 37% reduction in vertebral fractures (two trials, n = 5082, RR 0.63, 95% CI 0.56 to 0.71) and a 14% reduction in non-vertebral fractures (two trials, n = 6572, RR 0.86, 95% CI 0.75 to 0.98) was demonstrated over a three year period with 2 g of strontium ranelate daily. An increase in BMD at all sites was shown with the same dose: lumbar spine BMD (two trials, n = 1614, WMD adjusted for strontium content 5.44, 95% CI 3.41 to 7.46 and WMD not adjusted 11.29, 95% CI 10.22 to 12.37 over two years), femoral neck and total hip (two trials, n = 4230, WMD 8.25, 95% CI 7.84 to 8.66 and WMD 9.83, 95% CI 9.39 to 10.26 respectively over three years). One gram of strontium ranelate daily in postmenopausal women without osteoporosis increased BMD at all sites over a two year period: lumbar spine (one trial, n = 59, WMD adjusted for strontium content 2.39, 95% CI 0.15 to 4.63 and WMD not adjusted 6.68, 95% CI 5.16 to 8.20), femoral neck (one trial, n= 60, WMD 2.52, 95%CI 0.96 to 4.09) and total hip (one trial, n = 60, WMD 1.02, 95% CI 0.48 to 1.56). In both the treatment and prevention populations, lower doses of strontium ranelate were superior to placebo with the highest dose of strontium ranelate demonstrating the greatest reduction in vertebral fractures and increase in BMD. There is some evidence to suggest that 2 g of strontium ranelate daily compared to placebo may have a beneficial effect on health related quality of life in postmenopausal women after three years of treatment. Two grams of strontium ranelate daily increased the risk of diarrhea (RR 1.38%, 95% CI 1.02 to 1.87); however, adverse events did not affect the risk of discontinuing strontium ranelate nor did it increase the risk of serious side effects, gastritis or death. Additional data obtained suggests that the risk of vascular system disorders including venous thromboembolism (two trials, n = 6669, 2.2% versus 1.5%, OR 1.5, 95% CI 1.1 to 2.1) and pulmonary embolism (two trials, n = 6669, 0.8% versus 0.4%, OR 1.7, 95% CI 1.0 to 3.1) as well as nervous system disorders such as headaches (3.9% versus 2.9%), seizures (0.3% versus 0.1%), memory loss (2.4% versus 1.9%) and disturbance in consciousness (2.5% versus 2.0%) is slightly increased with taking 2 g of strontium ranelate daily over a 3 to 4 year period. There is silver level evidence to support the efficacy of strontium ranelate for the reduction of vertebral fractures (and to a lesser extent non-vertebral fractures) in postmenopausal osteoporotic women and an increase in BMD (all sites) in postmenopausal women with and without osteoporosis. Diarrhea may occur however, adverse events leading to study withdrawal were not significantly increased in the strontium ranelate group. Potential risks to the vascular and neurological system associated with taking 2 g of strontium ranelate daily need to be further explored and quantified.
Bird, P. M.
1966-01-01
Levels of strontium-90 and cesium-137 in Canadian milk during the period 1960-64 were consistently higher than those in the United States or the United Kingdom, but levels in humans, while also higher, did not reflect the differences observed in milk. Annual dose rates of 27 millirads to bone and 4 millirads to the whole body correspond to the highest average concentrations of strontium-90 and cesium-137 so far observed. Levels of cesium-137 in the urine of residents of the Canadian North were found to increase with the increasing consumption of caribou or reindeer. Whole body counting of a few northern residents showed cesium-137 levels as high as 1000 nanocuries. It is concluded that protective actions are not needed but that studies in the North should be emphasized to provide a better basis for evaluating that particular situation. PMID:5948368
Tazoe, Hirofumi; Obata, Hajime; Yamagata, Takeyasu; Karube, Zin'ichi; Nagai, Hisao; Yamada, Masatoshi
2016-05-15
It is important for public safety to monitor strontium-90 in aquatic environments in the vicinity of nuclear related facilities. Strontium-90 concentrations in seawater exceeding the background level have been observed in accidents of nuclear facilities. However, the analytical procedure for measuring strontium-90 in seawater is highly demanding. Here we show a simple and high throughput analytical technique for the determination of strontium-90 in seawater samples using a direct yttrium-90 separation. The DGA Resin is used to determine the abundance of strontium-90 by detecting yttrium-90 decay (beta-emission) in secular equilibrium. The DGA Resin can selectively collect yttrium-90 and remove naturally occurring radionuclides such as (40)K, (210)Pb, (214)Bi, (238)U, and (232)Th and anthropogenic radionuclides such as (140)Ba, and (140)La. Through a sample separation procedure, a high chemical yield of yttrium-90 was achieved at 95.5±2.3%. The result of IAEA-443 certified seawater analysis (107.7±3.4 mBq kg(-1)) was in good agreement with the certified value (110±5 mBq kg(-1)). By developed method, we can finish analyzing 8 samples per day after achieving secular equilibrium, which is a reasonably fast throughput in actual seawater monitoring. By processing 3 L of seawater sample and applying a counting time of 20 h, minimum detectable activity can be as low as 1.5 mBq kg(-1), which could be applied to monitoring for the contaminated marine environment. Reproducibility was found to be 3.4% according to 10 independent analyses of natural seawater samples from the vicinity of the Fukushima Daiichi Nuclear Power Plant in September 2013. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of calcium and magnesium on strontium distribution coefficients
Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.; Hemming, C.H.; Welhan, J.
1997-01-01
The effects of calcium and magnesium on the distribution of strontium between a surficial sediment and simulated wastewater solutions were measured as part of an investigation to determine strontium transport properties of surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experimental techniques were used to determine strontium linear sorption isotherms and distribution coefficients (K(d)'s) using simulated wastewater solutions prepared at pH 8.0??0.1 with variable concentrations of calcium and magnesium. Strontium linear sorption isotherm K(d)'s ranged from 12??1 to 85??3 ml/g, increasing as the concentration of calcium and magnesium decreased. The concentration of sorbed strontium and the percentage of strontium retained by the sediment were correlated to aqueous concentrations of strontium, calcium, and magnesium. The effect of these cation concentrations on strontium sorption was quantified using multivariate least-squares regression techniques. Analysis of data from these experiments indicates that increased concentrations of calcium and magnesium in wastewater discharged to waste disposal ponds at the INEL increases the availability of strontium for transport beneath the ponds by decreasing strontium sorption to the surficial sediment.
NASA Astrophysics Data System (ADS)
Lee, Min-Jin; Shin, Jae-Hwa; Ji, Mi-Jung; Hwang, Hae-Jin
2018-01-01
In this work, nickel and gadolinium-doped ceria (GDC)-infiltrated lanthanum strontium titanate (LST) anodes are fabricated, and their electrode performances under a hydrogen atmosphere is investigated in terms of the Ni:GDC ratios and cell operating temperature. The Ni/GDC-infiltrated LST anode exhibits excellent electrode performance in comparison with the Ni- or GDC-infiltrated anodes, which is attributed to the synergistic effect of an extended triple-phase boundary length by GDC and good catalytic activity for hydrogen oxidation because of the Ni particles. The polarization resistances (Rp) of Ni/GDC-infiltrated LST are 0.07, 0.08, and 0.12 Ω cm2 at 800, 750, and 700 °C, respectively, which are approximately three orders of magnitude lower than that of the LST anode (68.5 Ω cm2 at 700 °C). The effect of Ni and GDC on the electrochemical performance of LST was also investigated by using electrochemical impedance spectroscopy (EIS). The anode polarization resistance (Rp) is confirmed to be dependent on the content and dispersion state (microstructure) of the Ni and GDC nanoparticles.
Aina, Valentina; Lusvardi, Gigliola; Annaz, Basil; Gibson, Iain R; Imrie, Flora E; Malavasi, Gianluca; Menabue, Ledi; Cerrato, Giuseppina; Martra, Gianmario
2012-12-01
The present study is aimed at investigating the contribution of two biologically important cations, Mg(2+) and Sr(2+), when substituted into the structure of hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2),HA). The substituted samples were synthesized by an aqueous precipitation method that involved the addition of Mg(2+)- and Sr(2+)-containing precursors to partially replace Ca(2+) ions in the apatite structure. Eight substituted HA samples with different concentrations of single (only Mg(2+)) or combined (Mg(2+) and Sr(2+)) substitution of cations have been investigated and the results compared with those of pure HA. The obtained materials were characterized by X-ray powder diffraction, specific surface area and porosity measurements (N(2) adsorption at 77 K), FT-IR and Raman spectroscopies and scanning electron microscopy. The results indicate that the co-substitution gives rise to the formation of HA and β-TCP structure types, with a variation of their cell parameters and of the crystallinity degree of HA with varying levels of substitution. An evaluation of the amount of substituents allows us to design and prepare BCP composite materials with a desired HA/β-TCP ratio.
Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel
2013-05-01
The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.
Influence of SrO substitution for CaO on the properties of bioactive glass S53P4.
Massera, Jonathan; Hupa, Leena
2014-03-01
Commercial melt-quenched bioactive glasses consist of the oxides of silicon, phosphorus, calcium and sodium. Doping of the glasses with oxides of some other elements is known to affect their capability to support hydroxyapatite formation and thus bone tissue healing but also to modify their high temperature processing parameters. In the present study, the influence of gradual substitution of SrO for CaO on the properties of the bioactive glass S53P4 was studied. Thermal analysis and hot stage microscopy were utilized to measure the thermal properties of the glasses. The in vitro bioactivity and solubility was measured by immersing the glasses in simulated body fluid for 6 h to 1 week. The formation of silica rich and hydroxyapatite layers was assessed from FTIR spectra analysis and SEM images of the glass surface. Increasing substitution of SrO for CaO decreased all characteristic temperatures and led to a slightly stronger glass network. The initial glass dissolution rate increased with SrO content. Hydroxyapatite layer was formed on all glasses but on the SrO containing glasses the layer was thinner and contained also strontium. The results suggest that substituting SrO for CaO in S53P4 glass retards the bioactivity. However, substitution greater than 10 mol% allow for precipitation of a strontium substituted hydroxyapatite layer.
NASA Astrophysics Data System (ADS)
Ahmed, Mohamed Raheem; Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md
2018-03-01
The glass samples were prepared in accordance with the formula: (30-x)SrO-xAl2O3-69.8B2O3-0.2Cr2O3 (0 ≤x ≤ 15 mol %) by melt quenching method. The absence of Bragg’s peaks confirmed the amorphous nature of the prepared glass samples. It was observed that the molar volume was increasing while the density is decreasing with increasing of Al2O3 content. Optical absorption study was performed to evaluate the optical bandgap, oxygen packing density, ionic packing density and Urbach energies. The Racah parameters (B and C) and Dq/B ratio have been calculated. Fourier transform infrared (FTIR) spectra recorded in the region from 400-1600 cm-1 at room-temperature (RT) confirmed the formation of BO3, BO4 and AlO4 groups upon the addition of strontium oxide as modifier. The Raman spectra of all the glasses recorded over continuous spectral range 200-1600 cm-1 exhibited different spectral bands. The EPR spectra recorded at 9.7 GHz (X-band frequency) have four resonance signals. The signal at g ≈ 5.33 is due to Cr3+ ion sites of rhombic symmetry and signal at g ≈ 1.97 is due to contribution from Cr3+ and Cr5+ ion pairs.
Ober, J.A.
2000-01-01
Mexico is the leading producer of celestite, the most common strontium ore. Chemical Products is the only major US maker of strontium compounds. It produces all of its strontium carbonate from imported Mexican celestite. Mexico is also a large producer of strontium carbonate, as are China, Germany, Japan and the Republic of Korea. There has been no celestite production in the United States since 1959.
Anomaly diffuse and dielectric relaxation in strontium doped lanthanum molybdate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiao; Fan, Huiqing, E-mail: hqfan3@163.com; Shi, Jing
2011-12-15
Highlights: Black-Right-Pointing-Pointer The anomaly diffuse and dielectric relaxation behaviors are fitted by the Cole-Cole approach. Black-Right-Pointing-Pointer The peak in the LSMO is corresponding to different oxygen ion diffusion process. Black-Right-Pointing-Pointer We first give better explanation about the strange conductivity change caused by doping. Black-Right-Pointing-Pointer The oxygen ion diffusion is due to a combination of the dipolar relaxation and the motion of ions. -- Abstract: The dielectric properties of the La{sub 2-x}Sr{sub x}Mo{sub 2}O{sub 9-{delta}} (x = 0-0.2) ceramics were investigated in the temperature range of 300-800 K. Dielectric measurement reveals that two dielectric anomalies, associated with the oxygen ion diffusion,more » exist in frequency spectrum with x = 0.5. The broad dielectric peaks in tan {delta}({omega}) can be well fitted by a modified Cole-Cole approach. When x = 0.1, only one dielectric relaxation peak is observed, corresponding to different oxygen ion diffusion processes, as distinct from the only relaxation peak in the pure La{sub 2}Mo{sub 2}O{sub 9}. The relaxation parameters {tau}{sub 0}, the dielectric relaxation strength {Delta}, and the activation energy E{sub a} were obtained. The result of this work shows that, the conductivity change caused by doping between the two phases is due to the combination of the dipolar effects and motion of ions.« less
NASA Astrophysics Data System (ADS)
Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu
2014-10-01
La-doped strontium titanate (LST) is a promising, redox-stable perovskite material for direct hydrocarbon oxidation anodes in intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this study, nano-sized LST and Sm-doped ceria (SDC) powders are produced by the sol-gel and glycine-nitrate processes, respectively. The chemical compatibility between LST and electrolyte materials is studied. A LST-SDC composite anode is prepared by suspension plasma spraying (SPS). The effects of annealing conditions on the phase structure, microstructure, and chemical stability of the LST-SDC composite anode are investigated. The results indicate that the suspension plasma-sprayed LST-SDC anode has the same phase structure as the original powders. LST exhibits a good chemical compatibility with SDC and Mg/Sr-doped lanthanum gallate (LSGM). The anode has a porosity of ∼40% with a finely porous structure that provides high gas permeability and a long three-phase boundary for the anode reaction. Single cells assembled with the LST-SDC anode, La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte, and La0.8Sr0.2CoO3-SDC cathode show a good performance at 650-800 °C. The annealing reduces the impedances due to the enhancement in the bonding between the particles in the anode and interface of anode and LSGM electrolyte, thus improving the output performance of the cell.
Rahman, Qazi Inamur; Ahmad, Musheer; Misra, Sunil Kumar; Lohani, Minaxi
2012-09-01
Visible light induced photocatalysts of Cu doped SrTiO3 (Cu/SrTiO3) nanoparticles with the size -60-75 nm were prepared via facile sol-gel method. The morphological, optical, crystalline properties and compositions of synthesized Cu/SrTiO3 nanoparticles were thoroughly characterized by field emission scanning electron microscopy (FE-SEM), powder X-ray diffraction (XRD), ultra violet-visible spectroscopy (UV-Vis) and energy dispersive X-ray (EDX). A significant red shift in the UV-diffused reflectance spectrum was observed and the absorption edge shifted to visible region by the Cu doping. Surprisingly, the band gap of SrTiO3 was changed from 3.2 eV drop to 2.96 eV. The photocatalytic activity of the synthesized Cu/SrTiO3 nanoparticles was demonstrated for the degradation of Methylene Blue dye under visible light irradiation. The formation of new acceptor region in Cu/SrTiO3 was responsible for high photocatalytic activity of Cu/SrTiO3 nanoparticles. The results showed that the Methylene Blue dye was degraded by -66% within time span of 2 h over the Cu/SrTiO3 nanoparticles. This dye degradation reaction followed the Langmuir-Hinshelwood kinetics and also exhibited first order reaction rate. The calculated rate constant for the degradation reaction following first order kinetics was k = 0.0016 min(-1).
Removal of Strontium from Drinking Water by Conventional ...
The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. There is very little data available on strontium removal from drinking water. As a result, there is an immediate need to perform treatment studies. The objective of this work is to evaluate the effectiveness of conventional and lime-soda ash softening treatments to remove strontium from surface and ground waters. Conventional drinking water treatment with aluminum and iron coagulants were able to achieve 12% and 5.9% strontium removal at best, while lime softening removed as much as 78% from natural strontium-containing ground water. Systematic fundamental experiments showed that strontium removal during the lime-soda ash softening was related to pH, calcium concentration and dissolved inorganic carbon concentration. Final strontium concentration was also directly associated with initial strontium concentration. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium likely replaced calcium inside the crystal lattice and was likely mainly responsible for removal during lime softening. To inform the public.
Luminescence study and CIE diagram of certain alkaline sodium lead borate glass for LED applications
NASA Astrophysics Data System (ADS)
Lenkennavar, S. K.; Madhu, A.; Eraiah, B.; Kokila, M. K.
2018-04-01
In the present work, the glass composition 20Na2O -10PbO-10MO -60B2O3 doped with Praseodymium ions have been synthesised using muffle furnace by the conventional melt quenching technique and the effect of Pr3+ ions on optical properties of present glasses have been examined. The emission spectra were recorded in the wavelength range of 450-750nm upon excitation at 450 and 550nm. The Commission International deI'Eclairage (CIE) chromaticity coordinates are determined to estimate the emission colour of the Pr3+ incorporated barium/calcium/strontium sodium lead borate glasses. It is observed that blue LED and red LED applications can be expected by tuning the excitation wavelength applied to the same glass matrices.
Changes in local surface structure and Sr depletion in Fe-implanted SrTiO3 (001)
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Yiu, Y. M.; Chen, N.; Sham, T. K.; Goncharova, L. V.
2017-01-01
Local surface structure of single crystal strontium titanate SrTiO3 (001) samples implanted with Fe in the range of concentrations between 2 × 1014 to 2 × 1016 Fe/cm2 at 30 keV has been investigated. In order to facilitate Fe substitution (doping), implanted samples were annealed in oxygen at 350 °C. Sr depletion was observed from the near-surface layers impacted by the ion-implantation process, as revealed by Rutherford Backscattering Spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray Absorption Near Edge Spectroscopy (XANES), and Atomic Force Microscopy (AFM). Hydrocarbon contaminations on the surface may contribute to the mechanisms of Sr depletion, which have important implications for Sr(Ti1-xFex)O3-δ materials in gas sensing applications.
Trace element doping in calcium phosphate ceramics to Understand osteogenesis and angiogenesis
Bose, Susmita; Fielding, Gary; Tarafder, Solaiman; Bandyopadhyay, Amit
2013-01-01
The general trends in synthetic bone grafting materials are shifting towards approaches that can illicit osteoinductive properties. Pharmacologics and biologics have been used in combination with calcium phosphate (CaP) ceramics, however, recently have become the target of scrutiny over the safety. The importance of trace elements in natural bone health is well documented. Ions, e.g. lithium, zinc, magnesium, manganese, silicon, strontium etc. have shown to increase osteogenesis and neovascularization. Incorporation of dopants into CaPs can provide a platform for safe and efficient delivery in clinical applications where increased bone healing is favorable. This review highlights use of trace elements in CaP biomaterials, and offers an insight into the mechanisms of how metal ions can enhance both osteogenesis and angiogenesis. PMID:24012308
Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.
1998-01-01
The rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium sorption were measured as part of an investigation to determine strontium chemical transport properties of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine the rate of strontium sorption and strontium distribution coefficients (K(d)s) between aqueous and solid phases. Rate experiments indicate that strontium in solution reached an apparent equilibrium with the sediment in 26 h. K(d)s were derived using the linear isotherm model at initial sodium concentrations from 100 to 5,000 mg/l and initial potassium concentrations from 2 to 150 mg/l. K(d)s ranged from 56 ?? 2 to 62 ?? 3 ml/g at initial aqueous concentrations of sodium and potassium equal to or less than 300 and 150 mg/l, respectively. K(d)s hinged from 4.7 ?? 0.2 to 19 ?? 1 ml/g with initial aqueous concentrations of sodium between 1,000 and 5,000 mg/l. These data indicate that sodium concentrations greater than 300 mg/l in wastewater increase the availability of strontium for transport beneath waste disposal ponds at the INEL by decreasing strontium sorption on the surficial sediment. Wastewater concentrations of sodium and potassium less than 300 and 150 mg/l, respectively, have little effect on the availability of strontium for transport.The rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium sorption were measured as part of an investigation to determine strontium chemical transport properties of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine the rate of strontium sorption and strontium distribution coefficients (Kds) between aqueous and solid phases. Rate experiments indicate that strontium in solution reached an apparent equilibrium with the sediment in 26 h. Kds were derived using the linear isotherm model at initial sodium concentrations from 100 to 5,000 mg/l and initial potassium concentrations from 2 to 150 mg/l. Kds ranged from 56??2 to 62??3 ml/g at initial aqueous concentrations of sodium and potassium equal to or less than 300 and 150 mg/l, respectively. Kds ranged from 4.7??0.2 to 19??1 ml/g with initial aqueous concentrations of sodium between 1,000 and 5,000 mg/l. These data indicate that sodium concentrations greater than 300 mg/l in wastewater increase the availability of strontium for transport beneath waste disposal ponds at the INEL by decreasing strontium sorption on the surficial sediment. Wastewater concentrations of sodium and potassium less than 300 and 150 mg/l, respectively, have little effect on the availability of strontium for transport.
O'Donnell, Alissa J; Lytle, Darren A; Harmon, Stephen; Vu, Kevin; Chait, Hannah; Dionysiou, Dionysios D
2016-10-15
The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. Very limited data is available on strontium removal from drinking water and as a result, there is an immediate need for treatment information. The objective of this work is to evaluate the effectiveness of coagulation/filtration and lime-soda ash softening treatment methods to remove strontium from surface and ground waters. Coagulation/filtration jar test results on natural waters showed that conventional treatment with aluminum and iron coagulants were able to achieve only 12% and 5.9% strontium removal, while lime softening removed as high as 78% from natural strontium-containing ground water. Controlled batch experiments on synthetic water showed that strontium removal during the lime-soda ash softening was affected by pH, calcium concentration and dissolved inorganic carbon concentration. In all softening jar tests, the final strontium concentration was directly related to the initial strontium concentration and the removal of strontium was directly associated with calcium removal. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium was likely incorporated in the calcium carbonate crystal lattice and was likely responsible for removal during lime softening. Copyright © 2016. Published by Elsevier Ltd.
Uo, Motohiro; Wada, Takahiro; Asakura, Kiyotaka
2017-03-31
The bioactive effects of strontium released from surface pre-reacted glass-ionomer (S-PRG) fillers may aid in caries prevention. In this study, the local structure of strontium taken up by teeth was estimated by extended X-ray absorption fine structure analysis. Immersing teeth into S-PRG filler eluate increased the strontium content in enamel and dentin by more than 100 times. The local structure of strontium in enamel and dentin stored in distilled water was the same as that in synthetic strontium-containing hydroxyapatite (SrHAP). Moreover, the local structure of strontium in enamel and dentin after immersion in the S-PRG filler eluate was also similar to that of SrHAP. After immersion in the S-PRG filler eluate, strontium was suggested to be incorporated into the hydroxyapatite (HAP) of enamel and dentin at the calcium site in HAP.
NASA Astrophysics Data System (ADS)
Monz, L.; Hohmann, R.; Kluge, H.-J.; Kunze, S.; Lantzsch, J.; Otten, E. W.; Passler, G.; Senne, P.; Stenner, J.; Stratmann, K.; Swendt, K.; Zimmer, K.; Herrmann, G.; Trautmann, N.; Walter, K.
1993-12-01
Environmental assessment in the wake of a nuclear accident requires the rapid determination of the radiotoxic isotopes 89Sr and 90Sr. Useful measurements must be able to detect 10 8 atoms in the presence of about 10 18 atoms of the stable, naturally occurring isotopes. This paper describes a new approach to this problem using resonance ionization spectroscopy in collinear geometry, combined with classical mass separation. After collection and chemical separation, the strontium from a sample is surface-ionized and the ions are accelerated to an energy of about 30 keV. Initially, a magnetic mass separator provides an isotopic selectivity of about 10 6. The ions are then neutralized by charge exchange and the resulting fast strontium atoms are selectively excited into high-lying atomic Rydberg states by narrow-band cw laser light in collinear geometry. The Rydberg atoms are then field-ionized and detected. Thus far, a total isotopic selectivity of S > 10 10 and an overall efficiency of ξ = 5 × 10 -6 have been achieved. The desired detection limit of 10 8 atoms 90Sr has been demonstrated with synthetic samples.
Buffer layer for thin film structures
Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan
2006-10-31
A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.
Buffer layer for thin film structures
Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan
2010-06-15
A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.
[Strontium and calcium metabolism. Interaction of strontium and vitamin D].
Rousselet, F; El Solh, N; Maurat, J P; Gruson, M; Girard, M L
1975-01-01
Oral administration of strontium to calcium wellfed rats blocks the intestinal absorption of calcium. When high doses of vitamine D are given over long period, the inhibition of calcium intestinal absorption disapears. Under these conditions the absorption of strontium is increased. It is suggested that there is only one absorption mechanism for these two cations. An overdose of the vitamine D increases the renal elimination of strontium but under these conditions the plasma concentration of the strontium is unchanged. Vitamine D brings about the some action on the bone fixation of the strontium as it does on the bone fixation of calcium. The bone fixation is increased with low dosages. The bone fixation is decreased with high dosages.
NASA Astrophysics Data System (ADS)
Cook, Eryn C.
Casimir and Casimir-Polder effects are forces between electrically neutral bodies and particles in vacuum, arising entirely from quantum fluctuations. The modification to the vacuum electromagnetic-field modes imposed by the presence of any particle or surface can result in these mechanical forces, which are often the dominant interaction at small separations. These effects play an increasingly critical role in the operation of micro- and nano-mechanical systems as well as miniaturized atomic traps for precision sensors and quantum-information devices. Despite their fundamental importance, calculations present theoretical and numeric challenges, and precise atom-surface potential measurements are lacking in many geometric and distance regimes. The spectroscopic measurement of Casimir-Polder-induced energy level shifts in optical-lattice trapped atoms offers a new experimental method to probe atom-surface interactions. Strontium, the current front-runner among optical frequency metrology systems, has demonstrated characteristics ideal for such precision measurements. An alkaline earth atom possessing ultra-narrow intercombination transitions, strontium can be loaded into an optical lattice at the "magic" wavelength where the probe transition is unperturbed by the trap light. Translation of the lattice will permit controlled transport of tightly-confined atomic samples to well-calibrated atom-surface separations, while optical transition shifts serve as a direct probe of the Casimir-Polder potential. We have constructed a strontium magneto-optical trap (MOT) for future Casimir-Polder experiments. This thesis will describe the strontium apparatus, initial trap performance, and some details of the proposed measurement procedure.
The use of synthesized aqueous solutions for determining strontium sorption isotherms
Liszewski, M.J.; Bunde, R.L.; Hemming, C.; Rosentreter, J.; Welhan, J.
1998-01-01
The use of synthesized aqueous solutions for determining experimentally derived strontium sorption isotherms of sediment was investigated as part of a study accessing strontium chemical transport properties. Batch experimental techniques were used to determine strontium sorption isotherms using synthesized aqueous solutions designed to chemically represent water from a natural aquifer with respect to major ionic character and pH. A strontium sorption isotherm for a sediment derived using a synthesized aqueous solution was found to be most comparable to an isotherm derived using natural water when the synthesized aqueous solution contained similar concentrations of calcium and magnesium. However, it is difficult to match compositions exactly due to the effects of disequilibrium between the solution and the sediment. Strong linear relations between sorbed strontium and solution concentrations of calcium and magnesium confirm that these cations are important co-constituents in these synthesized aqueous solutions. Conversely, weak linear relations between sorbed strontium and solution concentrations of sodium and potassium indicate that these constituents do not affect sorption of strontium. The addition of silica to the synthesized aqueous solution does not appreciably affect the resulting strontium sorption isotherm.
Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold
NASA Astrophysics Data System (ADS)
Kumar, Sachin; Chatterjee, Kaushik
2015-01-01
The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05060f
NASA Astrophysics Data System (ADS)
Bi, Xiaoguo; Dong, Yingnan; Li, Yingjie; Niu, Wei; Tang, Jian; Ding, Shuang; Li, Meiyang
2017-09-01
Oxalate coprecipitation is applied in this paper, high purity titanium tetrachloride, and after the purification of strontium chloride, match with a certain concentration of solution, oxalate and strontium chloride and titanium tetrachloride in 1.005:1.000 make strontium titanium mixture ratio, slowly under 60°C to join in oxalic acid solution, aging around 4 h, get oxygen titanium strontium oxalate (SrTiO(C2O4)2 • 4H2 ) precipitation, after washing, drying and other process made oxygen titanium strontium oxalate powder.
A strontium-90 sequestrant for first-aid treatment of radiation emergency.
Haratake, Mamoru; Hatanaka, Eisuke; Fuchigami, Takeshi; Akashi, Makoto; Nakayama, Morio
2012-01-01
In this study, hydrophilic porous polymer beads with phosphonic acid groups (PGMA-EGDMA-TTA-MP) were synthesized, and assessed as a radioactive strontium-90 sequestrant for the treatment of the radiation emergency. Strontium ions were rapidly absorbed into the blood from the gastrointestinal (GI) tract after oral administration to rats, and distributed to the target organ, i.e., bones. Over 40% of the administered strontium was absorbed into the blood, while the remainder was discharged in the feces within 48 h after the administration. When the PGMA-EGDMA-TTA-MP beads were administered to rats subsequent to the strontium solution, the strontium had accumulated less in the femur. Consequently, the oral administration of the PGMA-EGDMA-TTA-MP beads was effective in suppressing the absorption of strontium from the GI tract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reif, A.E.; Triest, W.E.
1981-01-01
Three hundred six C57BL/6J female mice were subdivided into a control group left untreated and an experimental group treated intraperitoneally with 1.0 ..mu..Ci strontium-90/g of body weight at an age of 66 days. Treatments for the groups were as follows: none, 6 injections of formalin-inactivated FBJ viral preparation, 6 injections of active FBJ viral preparation, and 2 injections of 10,000 rad irradiated transplantable osteosarcoma previously induced in C57BL/6J mice by strontium-90. In addition to the above groups, two other groups were treated with respectively 0.032 and 0.10 ..mu..Ci strontium-90/g body weight in order to obtain information on the dose-response relationshipmore » between the injection of strontium-90 and the yield of bone tumors. In the groups not treated with strontium-90, only 1 bone tumor developed; this occurred in the group injected with FBJ virus. The incidence of bone tumors in the groups treated with 1.0 ..mu..Ci strontium-90 was significantly lower (18.5% or 18.2%) in the two groups that had received injections of inactivated FBJ virus or irradiated isogenic osteosarcoma when compared to the group left uninjected, which developed 43.5% tumors. In contrast, the strontium-90-treated group that also received injections of active FBJ virus developed 63.0% tumors. Only a single bone tumor developed in the groups treated solely with intermediate doses of strontium-90. The results indicate that immunization with inactivated FBJ virus or with irradiated syngeneic strontium-90-induced tumor cells can significantly decrease the development of strontium-90-induced tumors.« less
NASA Astrophysics Data System (ADS)
Zuo, Fanfan; Heimhofer, Ulrich; Huck, Stefan; Erbacher, Jochen; Bodin, Stephane
2017-04-01
Stratigraphic uncertainties due to the lack of open marine marker fossils (e.g. ammonites) hamper the precise age assignment and stratigraphic correlation of Kimmeridgian strata found in the Lower Saxony Basin of Northern Germany. Correlation of these deposits with the Jurassic standard ammonite zonation is still difficult, since the existing ostracod biostratigraphy is facies-controlled and of only limited stratigraphic precision. In this study, a chemostratigraphic approach has been chosen and biogenic shell material produced by brachiopods, oysters and lithiotids is evaluated for its reliability to act as proxy of the original Jurassic seawater strontium isotope composition. Low-Mg calcite shells have been collected from three stratigraphic sections accessible in open-cast quarries located in the Lower Saxony Basin of Northern Germany. In order to identify diagenetically altered shell calcite, trace element and stable isotope analysis of 227 calcite samples (oysters=101; brachiopods=60; Trichites=52) has been carried out. The geochemical results reveal that (1) concentration of different trace elements varies between the different groups of shell-forming organisms, which may be related to vital effects and (2) high strontium contents, low Mn and Fe contents and the lack of correlation between these elements indicate near-pristine calcite shells, and therefore shells are supposed to record the ambient sea water composition during the Late Jurassic. Strontium-isotope (87Sr/86Sr) analysis of diagenetically screened samples indicates an Early Kimmeridgian age of the studied deposits, which is in accordance with ostracod biostratigraphic data. An increasing trend in 87Sr/86Sr with stratigraphic height fits well with the global strontium-isotope curve. Besides, similar 87Sr/86Sr ratios derived from different organisms from a single stratigraphic level highlight the suitability of the shells for strontium-isotope stratigraphy. Despite the shallow-marine character of the studied deposits, no evidence for significant riverine influence on the strontium-isotope signature is observed. The new chemostratigraphic data will provide a more precise age assignment for Kimmeridgian strata in the Lower Saxony Basin and thus enable the establishment of a solid integrated stratigraphic scheme that can be used for correlation on both regional and global scale.
Energy Level Alignment of N-Doping Fullerenes and Fullerene Derivatives Using Air-Stable Dopant.
Bao, Qinye; Liu, Xianjie; Braun, Slawomir; Li, Yanqing; Tang, Jianxin; Duan, Chungang; Fahlman, Mats
2017-10-11
Doping has been proved to be one of the powerful technologies to achieve significant improvement in the performance of organic electronic devices. Herein, we systematically map out the interface properties of solution-processed air-stable n-type (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) doping fullerenes and fullerene derivatives and establish a universal energy level alignment scheme for this class of n-doped system. At low doping levels at which the charge-transfer doping induces mainly bound charges, the energy level alignment of the n-doping organic semiconductor can be described by combining integer charger transfer-induced shifts with a so-called double-dipole step. At high doping levels, significant densities of free charges are generated and the charge flows between the organic film and the conducting electrodes equilibrating the Fermi level in a classic "depletion layer" scheme. Moreover, we demonstrate that the model holds for both n- and p-doping of π-backbone molecules and polymers. With the results, we provide wide guidance for identifying the application of the current organic n-type doping technology in organic electronics.
Iveson, J. B.; Mackay-Scollay, E. M.
1972-01-01
Strontium chloride enrichment broth was found to be comparable to Rappaport broth for the recovery of a wide range of Salmonella serotypes from man, animals, meat products and effluents. With the exception of cloacal samples from reptiles, both procedures were superior to selenite F. The performance of strontium chloride Mand selenite F enrichment was improved when effluent samples were incubated at 43° C. Strontium chloride M and Rappaport enrichment were superior to selenite F for the isolation of Arizona species from reptiles. Strontium chloride B, strontium selenite and Rappaport broths were found suitable for the isolation of multiple Salmonella serotypes from sea water contaminated with abattoir effluents. The strontium chloride B and strontium selenite enrichment media were superior to Rappaport broth when samples were incubated at 43° C. Modified bismuth sulphite agar was found superior to Salmonella—Shigella agar as a solid subculture medium. The investigation of a food poisoning outbreak due to Salmonella typhimurium phage type 21 is reported. The significance of the choice of sampling and isolation techniques in salmonellosis in man and animals is discussed. PMID:4503874
Studies on the Inhibition of Intestinal Absorption of Radioactive Strontium
Waldron-Edward, Deirdre; Paul, T. M.; Skoryna, Stanley C.
1964-01-01
A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting calcium to be available to the body. Studies were carried out by measuring bone uptake of Sr89 and Ca45 when various amounts of sodium alginate were fed with the diet. Long-term studies were made in which two different levels of radioactivity were used, to determine the pattern of Sr89 deposition with continuous intake of binding agent. It was found that administration of sodium alginate as a jelly overcomes the problem of constipation and effectively reduces Sr89 uptake, up to 83%. This fact represents a significant finding with respect to the use of the compound in human subjects. Addition of sodium alginate to drinking water is effective with low levels of Sr89 intake. This naturally occurring water-soluble macromolecular substance possesses several advantages in use for the suppression of absorption of radioactive strontium when compared with synthetic ion exchange resins: there is no disturbance of electrolyte balance; efficiency is not reduced by treatment over a prolonged period of time; and finally, the product is palatable. PMID:14222668
40 CFR 721.10598 - Lead strontium titanium zirconium oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...
40 CFR 721.10598 - Lead strontium titanium zirconium oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lead strontium titanium zirconium... Specific Chemical Substances § 721.10598 Lead strontium titanium zirconium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lead strontium...
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOHL, T.; PLACE, D.; WITTMAN, R.
2004-08-05
A new correlation was developed to estimate the concentration of strontium-90 in a waste solution based on total organic carbon. This correlation replaces the strontium-90 wash factors, and when applied in the Hanford Tank Waste Operations Simulator, significantly reduced the estimated quantity of strontium-90 in the delivered low-activity waste feed. This is thought to be a more realistic estimate of strontium-90 than using the wash-factor method.
Dissolved strontium and calcium levels in the tropical Indian Ocean
NASA Astrophysics Data System (ADS)
Steiner, Zvi; Sarkar, Amit; Turchyn, Alexandra
2017-04-01
Measurements of seawater alkalinity and dissolved calcium concentrations along oceanic transects are often used to calculate calcium carbonate precipitation and dissolution rates. Given that the distribution coefficient of strontium in CaCO3 varies greatly between different groups of organisms, adding precise measurements of dissolved strontium concentrations provides opportunities to also track relative contributions of these different groups to the regional CaCO3 cycle. However, there are several obstacles to this approach. These obstacles include unresolved systematic discrepancies between seawater calcium and alkalinity data, very large analytical noise around the calcium concentration measurements and the unconstrained role of acantharia (radiolarian precipitating SrSO4 skeletons) in the marine strontium cycle. During the first cruise of the second International Indian Ocean Expedition (IIOE-2) water samples were collected along 67°E from 9°N to 5°S to explore the dissolution rate of calcium carbonate in the water. The dissolution rate can be calculated by combining measurements of water column potential alkalinity with calcium and strontium concentrations measured by ICP-OES and calcium concentration measurements using isotope dilution thermal ionization mass spectrometry (ID-TIMS). CaCO3 mineral saturation state calculated using pH and total alkalinity suggests that along 67°E, the aragonite saturation horizon lays at depth of 500 m on both sides of the equator. Across the cruise transect, dissolved strontium concentrations increase by 2-3% along the thermocline suggesting rapid recycling of strontium rich phases. This is particularly evident just below the thermocline at 8-9°N and below 1000 m water depth, south of the equator. The deep, southern enrichment in strontium does not involve a change in the Sr/Ca ratio, suggesting that this strontium enrichment is related to CaCO3 dissolution. In contrast, in the intermediate waters of the northern part of the section Sr/Ca ratios increase significantly. This finding is opposite to expectations based on plankton net tows collected during the cruise, where we found high abundance of acantharia in the southern parts of the section, while the preferential enrichment in strontium is in the northern part of the section. When potential alkalinity is calculated by correcting the normalized total alkalinity for the effects of nutrient accumulation below the thermocline, we observe that the increase in alkalinity begins at 100 m, well above the aragonite saturation horizon. The total change in dissolved calcium concentrations between 0 and 2000 m is similar to the total change in potential alkalinity yet their profiles do not overlap; calcium concentrations increase faster than total alkalinity between 100-1000 m and the gap is closed between 1000-1500 m. This suggests an additional, unaccounted process that is likely occurring in the Red Sea and Persian Gulf, the intermediate water sources of this region.
Llinas, Paola; Masella, Michel; Stigbrand, Torgny; Ménez, André; Stura, Enrico A.; Le Du, Marie Hélène
2006-01-01
Strontium is used in the treatment of osteoporosis as a ranelate compound, and in the treatment of painful scattered bone metastases as isotope. At very high doses and in certain conditions, it can lead to osteomalacia characterized by impairment of bone mineralization. The osteomalacia symptoms resemble those of hypophosphatasia, a rare inherited disorder associated with mutations in the gene encoding for tissue-nonspecific alkaline phosphatase (TNAP). Human alkaline phosphatases have four metal binding sites—two for zinc, one for magnesium, and one for calcium ion—that can be substituted by strontium. Here we present the crystal structure of strontium-substituted human placental alkaline phosphatase (PLAP), a related isozyme of TNAP, in which such replacement can have important physiological implications. The structure shows that strontium substitutes the calcium ion with concomitant modification of the metal coordination. The use of the flexible and polarizable force-field TCPEp (topological and classical polarization effects for proteins) predicts that calcium or strontium has similar interaction energies at the calcium-binding site of PLAP. Since calcium helps stabilize a large area that includes loops 210–228 and 250–297, its substitution by strontium could affect the stability of this region. Energy calculations suggest that only at high doses of strontium, comparable to those found for calcium, can strontium substitute for calcium. Since osteomalacia is observed after ingestion of high doses of strontium, alkaline phosphatase is likely to be one of the targets of strontium, and thus this enzyme might be involved in this disease. PMID:16815919
40 CFR 721.10011 - Barium calcium manganese strontium oxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this section... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance...
40 CFR 721.10011 - Barium calcium manganese strontium oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this section... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance...
40 CFR 721.10011 - Barium calcium manganese strontium oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this section... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance...
HOPKINS, B J; TUTTLE, L W; PORIES, W J; STRAIN, W H
1963-03-15
The hair of rats injected with strontium-90 retains a significant amount of the radionuclide. Although the strontium-90 content of hair is variable in these rats and appears to be subject to a variety of influences, determination of the radionuclide content of hair may offer a nondestructive method of estimating strontium-90 in bone.
NASA Astrophysics Data System (ADS)
Sahin, Bünyamin; Kaya, Tolga
2016-01-01
In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current-voltage (I-V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.
Ober, J.A.
2006-01-01
China, Mexico, Spain and Turkey are the world's leading producers of celestite (strontium sulphate). These countries accounted for 98% of the total world production in 2005. For the same period, US apparent consumption of strontium decreased to 12.3 kt. Imports were 21.2 kt, of which 84% came from Mexico. Imports of celestite and strontium carbonate decreased 71% and 24% respectively.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 75) Silicon 31 (Si 31) Silver 105 (Ag 105) Silver 110m (Ag 110m) Silver 111 (Ag 111) Sodium 22 (Na 22) Sodium 24 (Na 24) Strontium 85 (Sr 85) Strontium 89 (Sr 89) Strontium 90 (Sr 90) Strontium 91 (Sr 91...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Ice detection devices containing strontium-90... Generally Licensed Items § 32.61 Ice detection devices containing strontium-90; requirements for license to... ice detection devices containing strontium-90 for distribution to persons generally licensed under...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Ice detection devices containing strontium-90... Generally Licensed Items § 32.61 Ice detection devices containing strontium-90; requirements for license to... ice detection devices containing strontium-90 for distribution to persons generally licensed under...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Ice detection devices containing strontium-90... Generally Licensed Items § 32.61 Ice detection devices containing strontium-90; requirements for license to... ice detection devices containing strontium-90 for distribution to persons generally licensed under...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Ice detection devices containing strontium-90... Generally Licensed Items § 32.61 Ice detection devices containing strontium-90; requirements for license to... ice detection devices containing strontium-90 for distribution to persons generally licensed under...
40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...
40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...
40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...
40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...
40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...
40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...
40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium oxide...
Sekulic, Damir; Tahiraj, Enver; Zvan, Milan; Zenic, Natasa; Uljevic, Ognjen; Lesnik, Blaz
2016-12-01
Team sports are rarely studied with regard to doping behaviour and doping-related factors regardless of their global popularity. This study aimed to investigate doping factors and covariates of potential doping behaviour in high-level team-sport athletes. The subjects were 457 high-performing, national- and international-level athletes (21.9 ± 3.4 years of age; 179 females) involved in volleyball (n = 77), soccer (n = 163), basketball (n = 114) and handball (n = 103). Previously validated self-administered questionnaires aimed at evidencing sport factors, doping-related factors, knowledge on sport nutrition and doping, and attitudes to performance enhancement were used. The results indicated a higher doping likelihood in male athletes, with a significant gender difference for basketball and handball. In males, a higher doping likelihood is found for athletes who had achieved better results at junior-age level, those who regularly consume dietary supplements, and who perceive their sport as being contaminated by doping. A higher sport achievement at senior-age level is protective against potential doping behaviour in males. In females, a higher likelihood of doping is evidenced in those athletes involved in binge drinking, while a lower tendency for doping is evidenced in female athletes who possess better knowledge on sport nutrition. Knowledge about doping is very low and thus education about doping is urgently needed. An improvement of knowledge on sport nutrition might be a potentially effective method for reducing the tendency for doping in females. Future studies should consider other approaches and theories, such as theory of planned behaviour and/or social-cognitive theory, in studying the problem of doping behaviour in team-sports.
Age and gender specific biokinetic model for strontium in humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.
A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitation for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on 90Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic modelmore » for strontium (Sr-AGe model). The Sr-AGe model has similar structure as the ICRP model for the alkaline earth elements. The following parameters were mainly reevaluated: gastro-intestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0–80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general population exposed to ingested strontium radioisotopes.« less
SIPS, A. J. A. M.; van der VIJGH, W. J. F.; BARTO, R.; NETELENBOS, J. C.
1996-01-01
1The absorption kinetics of orally administered strontium chloride and its reproducibility were investigated in healthy volunteers after administering strontium either under fasting conditions (study I, n=8) or in combination with a standardized meal (study II, n=8). Each subject received strontium orally at day 0, 14, and 28 and intravenously at day 42. The study was performed as part of a project in which a simple clinical test for measuring intestinal calcium absorption is being developed, based on the use of stable strontium as a marker. 2Plasma strontium concentration–time curves were analysed by noncompartment analysis and a four compartment disposition model. Within a volunteer each oral curve was fitted simultaneously with the intravenous curve, by which means a two segment model for absorption was revealed. 3Mean absolute bioavailability of strontium was 25% without a meal and 19% with a meal, whereas the intraindividual variation was 24% and 20%, respectively. 4Various limited sampling absorption parameters were determined in order to select a potential test parameter for measuring intestinal calcium absorption using strontium as a marker. Fractional absorption at 4 h (Fc240), obtained after co-ingestion of strontium with a meal, appeared to be the best test parameter, because it represented bioavailability well (r=0.90). PMID:8799520
Liu, Mingxue; Dong, Faqin; Zhang, Wei; Nie, Xiaoqin; Sun, Shiyong; Wei, Hongfu; Luo, Lang; Xiang, Sha; Zhang, Gege
2016-08-15
One of the waste disposal principles is decrement. The programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae regarding bioremoval and ashing process for decrement were studied in present research. The results indicated that S. cerevisiae cells showed valid biosorption for strontium ions with greater than 90% bioremoval efficiency for high concentration strontium ions under batch culture conditions. The S. cerevisiae cells bioaccumulated approximately 10% of strontium ions in the cytoplasm besides adsorbing 90% strontium ions on cell wall. The programmed gradient descent biosorption presented good performance with a nearly 100% bioremoval ratio for low concentration strontium ions after 3 cycles. The ashing process resulted in a huge volume and weight reduction ratio as well as enrichment for strontium in the ash. XRD results showed that SrSO4 existed in ash. Simulated experiments proved that sulfate could adjust the precipitation of strontium ions. Finally, we proposed a technological flow process that combined the programmed gradient descent biosorption and ashing, which could yield great decrement and allow the supernatant to meet discharge standard. This technological flow process may be beneficial for nuclides and heavy metal disposal treatment in many fields. Copyright © 2016 Elsevier B.V. All rights reserved.
Pace, M.N.; Rosentreter, J.J.; Bartholomay, R.C.
2001-01-01
Idaho State University and the US Geological Survey, in cooperation with the US Department of Energy, conducted a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The Kds were determined to aid in assessing the variability of strontium Kds and their effects on chemical transport of strontium-90 in the Snake River Plain aquifer system. Data from batch experiments done to determine strontium Kds of five sediment-infill samples and six standard reference material samples were analyzed by using multiple linear regression analysis and the stepwise variable-selection method in the statistical program, Statistical Product and Service Solutions, to derive an equation of variables that can be used to predict strontium Kds of sediment-infill samples. The sediment-infill samples were from basalt vesicles and fractures from a selected core at the INEEL; strontium Kds ranged from ???201 to 356 ml g-1. The standard material samples consisted of clay minerals and calcite. The statistical analyses of the batch-experiment results showed that the amount of strontium in the initial solution, the amount of manganese oxide in the sample material, and the amount of potassium in the initial solution are the most important variables in predicting strontium Kds of sediment-infill samples.
Doping optimization of polypyrrole with toluenesulfonic acid using Box-Behnken design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syed Draman, Sarifah Fauziah; Daik, Rusli; El-Sheikh, Said M.
A three-level Box-Behnken design was employed in doping optimization of polypyrrole with toluenesulfonic acid (TSA-doped PPy). The material was synthesized via chemical oxidative polymerization using pyrrole, toluenesulfonic acid (TSA) and ammonium persulfate (APS) as monomer, dopant and oxidant, respectively. The critical factors selected for this study were concentration of dopant, molar ratio between dopant to monomer (pyrrole) and concentration of oxidant. Obtaining adequate doping level of TSA-doped PPy is crucial because it affects the charge carriers for doped PPy and usually be responsible for electronic mobility along polymeric chain. Furthermore, the doping level also affects other properties such as electricalmore » and thermal conductivity. Doping level was calculated using elemental analysis. SEM images shows that the prepared TSA-doped PPy particles are spherical in shape with the diameters of about. The range of nanoparticles size is around 80-100 nm. The statistical analysis based on a Box–Behnken design showed that 0.01 mol of TSA, 1:1 mole ratio TSA to pyrrole and 0.25 M APS were the optimum conditions for sufficient doping level.« less
Diode-laser-based RIMS measurements of strontium-90
NASA Astrophysics Data System (ADS)
Bushaw, B. A.; Cannon, B. D.
1998-12-01
Double- and triple-resonance excitation schemes for the ionization of strontium are presented. Use of single-mode diode lasers for the resonance excitations provides a high degree of optical isotopic selectivity: with double-resonance, selectivity of >104 for 90Sr against the stable Sr isotopes has been demonstrated. Measurement of lineshapes and stable isotope shifts in the triple-resonance process indicate that optical selectivity should increase to ˜109. When combined with mass spectrometer selectivity this is sufficient for measurement of 90Sr at background environmental levels. Additionally, autoionizing resonances have been investigated for improving ionization efficiency with lower power lasers.
Zhang, Yadong; Cui, Xu; Zhao, Shichang; Wang, Hui; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing
2015-02-04
The development of a new generation of injectable bone cements that are bioactive and have enhanced osteogenic capacity for rapid osseointegration is receiving considerable interest. In this study, a novel injectable cement (designated Sr-BBG) composed of strontium-doped borate bioactive glass particles and a chitosan-based bonding phase was prepared and evaluated in vitro and in vivo. The bioactive glass provided the benefits of bioactivity, conversion to hydroxyapatite, and the ability to stimulate osteogenesis, while the chitosan provided a cohesive biocompatible and biodegradable bonding phase. The Sr-BBG cement showed the ability to set in situ (initial setting time = 11.6 ± 1.2 min) and a compressive strength of 19 ± 1 MPa. The Sr-BBG cement enhanced the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro when compared to a similar cement (BBG) composed of chitosan-bonded borate bioactive glass particles without Sr. Microcomputed tomography and histology of critical-sized rabbit femoral condyle defects implanted with the cements showed the osteogenic capacity of the Sr-BBG cement. New bone was observed at different distances from the Sr-BBG implants within eight weeks. The bone-implant contact index was significantly higher for the Sr-BBG implant than it was for the BBG implant. Together, the results indicate that this Sr-BBG cement is a promising implant for healing irregularly shaped bone defects using minimally invasive surgery.
10 CFR 31.10 - General license for strontium 90 in ice detection devices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...
10 CFR 31.10 - General license for strontium 90 in ice detection devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...
10 CFR 31.10 - General license for strontium 90 in ice detection devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...
10 CFR 31.10 - General license for strontium 90 in ice detection devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...
10 CFR 31.10 - General license for strontium 90 in ice detection devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...
10 CFR 35.433 - Decay of strontium-90 sources for ophthalmic treatments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Decay of strontium-90 sources for ophthalmic treatments... Brachytherapy § 35.433 Decay of strontium-90 sources for ophthalmic treatments. (a) Only an authorized medical physicist shall calculate the activity of each strontium-90 source that is used to determine the treatment...
40 CFR 721.5253 - 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-, strontium salt.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-, strontium salt (PMN P-99-1341; CAS No. 235083-90-6) is subject to reporting under this section for the...-methylenebis [3-hydroxy-, strontium salt. 721.5253 Section 721.5253 Protection of Environment ENVIRONMENTAL...′-methylenebis [3-hydroxy-, strontium salt. (a) Chemical substance and significant new uses subject to reporting...
10 CFR 35.433 - Decay of strontium-90 sources for ophthalmic treatments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Decay of strontium-90 sources for ophthalmic treatments... Brachytherapy § 35.433 Decay of strontium-90 sources for ophthalmic treatments. (a) Only an authorized medical physicist shall calculate the activity of each strontium-90 source that is used to determine the treatment...
40 CFR 721.5253 - 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-, strontium salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-, strontium salt (PMN P-99-1341; CAS No. 235083-90-6) is subject to reporting under this section for the...-methylenebis [3-hydroxy-, strontium salt. 721.5253 Section 721.5253 Protection of Environment ENVIRONMENTAL...′-methylenebis [3-hydroxy-, strontium salt. (a) Chemical substance and significant new uses subject to reporting...
40 CFR 721.5253 - 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-, strontium salt.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-, strontium salt (PMN P-99-1341; CAS No. 235083-90-6) is subject to reporting under this section for the...-methylenebis [3-hydroxy-, strontium salt. 721.5253 Section 721.5253 Protection of Environment ENVIRONMENTAL...′-methylenebis [3-hydroxy-, strontium salt. (a) Chemical substance and significant new uses subject to reporting...
40 CFR 721.5253 - 2-Naphthalenecarboxylic acid, 4,4′-methylenebis [3-hydroxy-, strontium salt.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-, strontium salt (PMN P-99-1341; CAS No. 235083-90-6) is subject to reporting under this section for the...-methylenebis [3-hydroxy-, strontium salt. 721.5253 Section 721.5253 Protection of Environment ENVIRONMENTAL...′-methylenebis [3-hydroxy-, strontium salt. (a) Chemical substance and significant new uses subject to reporting...
10 CFR 35.433 - Decay of strontium-90 sources for ophthalmic treatments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Decay of strontium-90 sources for ophthalmic treatments... Brachytherapy § 35.433 Decay of strontium-90 sources for ophthalmic treatments. (a) Only an authorized medical physicist shall calculate the activity of each strontium-90 source that is used to determine the treatment...
10 CFR 35.433 - Decay of strontium-90 sources for ophthalmic treatments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Decay of strontium-90 sources for ophthalmic treatments... Brachytherapy § 35.433 Decay of strontium-90 sources for ophthalmic treatments. (a) Only an authorized medical physicist shall calculate the activity of each strontium-90 source that is used to determine the treatment...
10 CFR 35.433 - Decay of strontium-90 sources for ophthalmic treatments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Decay of strontium-90 sources for ophthalmic treatments... Brachytherapy § 35.433 Decay of strontium-90 sources for ophthalmic treatments. (a) Only an authorized medical physicist shall calculate the activity of each strontium-90 source that is used to determine the treatment...
Separation of strontium from fecal matter
Kester, D.K.
1995-01-03
A method is presented of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.
Separation of strontium from fecal matter
Kester, Dianne K.
1995-01-01
A method of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.
Seawater strontium isotopes, acid rain, and the Cretaceous-Tertiary boundary
NASA Technical Reports Server (NTRS)
Macdougall, J. D.
1988-01-01
A large bolide impact at the end of the Cretaceous would have produced significant amounts of nitrogen oxides by shock heating of the atmosphere. The resulting acid precipitation would have increased continental weathering greatly and could be an explanation for the observed high ratio of strontium-87 to strontium-86 in seawater at about this time, due to the dissolution of large amounts of strontium from the continental crust. Spikes to high values in the seawater strontium isotope record at other times may reflect similar episodes.
Brosha, Eric Lanich; Romero, Christopher Jesse; Poppe, Daniel; ...
2017-10-27
Hydrogen safety sensors must meet specific performance requirements, mandated by the U.S. Department of Energy, for hydrogen fueling station monitoring. Here, we describe the long-term performance of two zirconia-based mixed potential electrochemical hydrogen gas sensors, developed specifically with a high sensitivity to hydrogen, low cross-sensitivity, and fast response time. Over a two-year period, sensors with tin-doped indium oxide and strontium doped lanthanum chromite electrodes were deployed at two stations in four field trials tests conducted in Los Angeles. The sensors documented the existence of hydrogen plumes ranging in concentration from 100 to as high as 2700 ppm in the areamore » surrounding the dispenser, consistent with depressurization from 700 bar following vehicle refueling. As expected, the hydrogen concentration reported by the mixed potential sensors was influenced by wind direction. Baseline stability testing at a Chino, CA station showed no measureable baseline drift throughout 206 days of uninterrupted data acquisition. The high baseline stability, excellent correlation with logged fueling/depressurization events, and absence of false alarms suggest that the zirconia-based mixed potential sensor platform is a good candidate for protecting hydrogen infrastructure where frequent calibrations or sensor replacement to reduce the false alarm frequency have been shown to be cost prohibitive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brosha, Eric Lanich; Romero, Christopher Jesse; Poppe, Daniel
Hydrogen safety sensors must meet specific performance requirements, mandated by the U.S. Department of Energy, for hydrogen fueling station monitoring. Here, we describe the long-term performance of two zirconia-based mixed potential electrochemical hydrogen gas sensors, developed specifically with a high sensitivity to hydrogen, low cross-sensitivity, and fast response time. Over a two-year period, sensors with tin-doped indium oxide and strontium doped lanthanum chromite electrodes were deployed at two stations in four field trials tests conducted in Los Angeles. The sensors documented the existence of hydrogen plumes ranging in concentration from 100 to as high as 2700 ppm in the areamore » surrounding the dispenser, consistent with depressurization from 700 bar following vehicle refueling. As expected, the hydrogen concentration reported by the mixed potential sensors was influenced by wind direction. Baseline stability testing at a Chino, CA station showed no measureable baseline drift throughout 206 days of uninterrupted data acquisition. The high baseline stability, excellent correlation with logged fueling/depressurization events, and absence of false alarms suggest that the zirconia-based mixed potential sensor platform is a good candidate for protecting hydrogen infrastructure where frequent calibrations or sensor replacement to reduce the false alarm frequency have been shown to be cost prohibitive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L.; Martin, K.; Hobbs, D.
2012-01-03
Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membranemore » cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.« less
NASA Astrophysics Data System (ADS)
Chang, Seo Hyoung; Danilovic, Nemanja; Chang, Kee-Chul; Subbaraman, Ram; Paulikas, Arvydas P.; Fong, Dillon D.; Highland, Matthew J.; Baldo, Peter M.; Stamenkovic, Vojislav R.; Freeland, John W.; Eastman, Jeffrey A.; Markovic, Nenad M.
2014-06-01
In developing cost-effective complex oxide materials for the oxygen evolution reaction, it is critical to establish the missing links between structure and function at the atomic level. The fundamental and practical implications of the relationship on any oxide surface are prerequisite to the design of new stable and active materials. Here we report an intimate relationship between the stability and reactivity of oxide catalysts in exploring the reaction on strontium ruthenate single-crystal thin films in alkaline environments. We determine that for strontium ruthenate films with the same conductance, the degree of stability, decreasing in the order (001)>(110)>(111), is inversely proportional to the activity. Both stability and reactivity are governed by the potential-induced transformation of stable Ru4+ to unstable Run>4+. This ordered(Ru4+)-to-disordered(Run>4+) transition and the development of active sites for the reaction are determined by a synergy between electronic and morphological effects.
Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadgu, Teklu; Stein, Emily; Hardin, Ernest
2015-11-01
Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predictmore » that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.« less
Greenwood, K B; Ko, D; Vander Griend, D A; Sarjeant, G M; Milgram, J W; Garrity, E S; DeLoach, D I; Poeppelmeier, K R; Salvador, P A; Mason, T O
2000-07-24
Substitution of calcium for strontium in LnSr2-xCaxCu2GaO7 (Ln = La, Pr, Nd, Gd, Ho, Er, Tm, and Yb) materials at ambient pressure and 975 degrees C results in complete substitution of calcium for strontium in the lanthanum and praseodymium systems and partial substitution in the other lanthanide systems. The calcium saturation level depends on the size of the Ln cation, and in all cases, a decrease in the lattice parameters with calcium concentration was observed until a common, lower bound, average A-cation size is reached. Site occupancies from X-ray and neutron diffraction experiments for LnSr2-xCaxCu2GaO7 (x = 0 and x = 2) confirm that the A-cations distribute between the two blocking-layer sites and the active-layer site based on size. A quantitative link between cation distribution and relative site-specific cation enthalpy for calcium, strontium, and lanthanum within the gallate structure is derived. The cation distribution in other similar materials can potentially be modeled.
Rapid Radiochemical Method for Total Radiostrontium (Sr-90) ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Beta counting Method Developed for: Strontium-89 and strontium-90 in building materials Method Selected for: SAM lists this method for qualitative analysis of strontium-89 and strontium-90 in concrete or brick building materials Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Intravenous strontium gluconate as a kinetic marker for calcium in healthy volunteers.
Moraes, M E; Aronson, J K; Grahame-Smith, D G
1991-01-01
1. We have studied the pharmacokinetics of stable strontium in 10 healthy male volunteers. We gave each volunteer 5 mmol strontium gluconate by intravenous infusion over 1 h and measured strontium concentrations in plasma and urine samples for 20 days. The plasma strontium concentration vs time data for each volunteer were fitted by a triexponential function using NONLIN. Compartmental model-dependent and model-independent pharmacokinetic variables were then calculated. 2. The mean half-life we report (5.4 days) is longer than that previously reported (about 2 days), since we continued sampling for 20 days. However, the rates of clearance (CL 9.4 ml min-1. CLR 5.4 ml min-1, and CLNR 4.0 ml min-1) are similar to those previously reported, and the apparent volume of distribution at steady state (64 l) is similar to the values previously reported for the size of the exchangeable pool of both strontium and calcium. 3. The similarities in the pharmacokinetic behavior of strontium and calcium suggest that the in vivo disposition of strontium may be used as a marker of calcium disposition and for studying the effects of drugs such as the calcium antagonists. PMID:2049251
Szostek, Krzysztof; Głab, Henryk; Pudło, Aleksandra
2009-01-01
Barium and strontium analyses yield an important perspective on temporal shifts in diet in relation to social and environmental circumstances. This research focuses on reconstructing dietary strategies of individuals in the early medieval (12-13th century) population of Gdańsk on the coast of the Baltic Sea. To describe these strategies where seafood rich in minerals was included in the diet, levels of strontium, barium, calcium and phosphorus were measured in first permanent molars of adult men and women whose remains were excavated from the churchyard in the city centre. Faunal remains from the excavation were analysed as an environmental background with respect to the content of the above-mentioned elements. The impact of diagenesis on the odontological material under study was also determined by an analysis of the soil derived from the grave and non-grave surroundings. For verification of diagenetic processes, the calcium/phosphorus index was used. Strontium, calcium, phosphorus and barium levels were determined with the spectrophotometric method using the latest generation plasma spectrophotometer Elan 6100 ICP-MS. From the results of the analysis of taphonomic parameters such as the soil pH, potential ion exchange in the grave surroundings and the Ca/P ratio, it can be inferred that diagenetic factors had little impact on the studied material. From this pilot study we can conclude that in the early Middle Ages in the Baltic Sea basin, seafood was included in the diet from early childhood and at the same time the diet contained calcium-rich milk products (also rich in minerals). The lack of sex differences may indicate the absence of a sex-specific nutritional strategy in childhood and early adolescence.
Jacobs, Ian E.; Aasen, Erik W.; Oliveira, Julia L.; ...
2016-03-23
Doping polymeric semiconductors often drastically reduces the solubility of the polymer, leading to difficulties in processing doped films. Here, we compare optical, electrical, and morphological properties of P3HT films doped with F4TCNQ, both from mixed solutions and using sequential solution processing with orthogonal solvents. We demonstrate that sequential doping occurs rapidly (<1 s), and that the film doping level can be precisely controlled by varying the concentration of the doping solution. Furthermore, the choice of sequential doping solvent controls whether dopant anions are included or excluded from polymer crystallites. Atomic force microscopy (AFM) reveals that sequential doping produces significantly moremore » uniform films on the nanoscale than the mixed-solution method. In addition, we show that mixed-solution doping induces the formation of aggregates even at low doping levels, resulting in drastic changes to film morphology. Sequentially coated films show 3–15 times higher conductivities at a given doping level than solution-doped films, with sequentially doped films processed to exclude dopant anions from polymer crystallites showing the highest conductivities. In conclusion, we propose a mechanism for doping induced aggregation in which the shift of the polymer HOMO level upon aggregation couples ionization and solvation energies. To show that the methodology is widely applicable, we demonstrate that several different polymer:dopant systems can be prepared by sequential doping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Ian E.; Aasen, Erik W.; Oliveira, Julia L.
Doping polymeric semiconductors often drastically reduces the solubility of the polymer, leading to difficulties in processing doped films. Here, we compare optical, electrical, and morphological properties of P3HT films doped with F4TCNQ, both from mixed solutions and using sequential solution processing with orthogonal solvents. We demonstrate that sequential doping occurs rapidly (<1 s), and that the film doping level can be precisely controlled by varying the concentration of the doping solution. Furthermore, the choice of sequential doping solvent controls whether dopant anions are included or excluded from polymer crystallites. Atomic force microscopy (AFM) reveals that sequential doping produces significantly moremore » uniform films on the nanoscale than the mixed-solution method. In addition, we show that mixed-solution doping induces the formation of aggregates even at low doping levels, resulting in drastic changes to film morphology. Sequentially coated films show 3–15 times higher conductivities at a given doping level than solution-doped films, with sequentially doped films processed to exclude dopant anions from polymer crystallites showing the highest conductivities. In conclusion, we propose a mechanism for doping induced aggregation in which the shift of the polymer HOMO level upon aggregation couples ionization and solvation energies. To show that the methodology is widely applicable, we demonstrate that several different polymer:dopant systems can be prepared by sequential doping.« less
The local structure and ferromagnetism in Fe-implanted SrTiO3 single crystals
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Chavarha, M.; Yiu, Y. M.; Sham, T. K.; Goncharova, L. V.
2014-07-01
We report a connection between the local structure of low-level Fe impurities and vacancies as the cause of ferromagnetic behavior observed in strontium titanate single crystals (STO), which were implanted with Fe and Si ions at different doses then annealed in oxygen. The effects of Fe doping and post-implantation annealing of STO were studied by X-ray Absorption Near Edge Structure (XANES) spectroscopy and Superconducting Quantum Interference Device magnetometry. XANES spectra for Fe and Ti K- and L-edge reveal the changes in the local environment of Fe and Ti following the implantation and annealing steps. The annealing in oxygen atmosphere partially healed implantation damages and changed the oxidation state of the implanted iron from metallic Fe0 to Fe2+/Fe3+ oxide. The STO single crystals were weak ferromagnets prior to implantation. The maximum saturation moment was obtained after our highest implantation dose of 2 × 1016 Fe atom/cm2, which could be correlated with the metallic Fe0 phases in addition to the presence of O/Ti vacancies. After recrystallization annealing, the ferromagnetic response disappears. Iron oxide phases with Fe2+ and Fe3+ corresponding to this regime were identified and confirmed by calculations using Real Space Multiple Scattering program (FEFF9).
Role of magnesium on the biomimetic deposition of calcium phosphate
NASA Astrophysics Data System (ADS)
Sarma, Bimal K.; Sarma, Bikash
2016-10-01
Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.
NASA Astrophysics Data System (ADS)
Nielsen, Jimmi; Persson, Åsa H.; Sudireddy, Bhaskar R.; Irvine, John T. S.; Thydén, Karl
2017-12-01
For improved robustness, durability and to avoid severe processing challenges alternatives to the Ni:YSZ composite electrode is highly desirable. The Ni:YSZ composite electrode is conventionally used for solid oxide fuel cell and solid oxide electrolysis cell. In the present study we report on high performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated. The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm-2 with a fuel utilization of 31% was achieved. Taking the temperature into account the performances of the studied anodes are among the best reported for redox stable and corrosion resistant alternatives to the conventional Ni:YSZ composite solid oxide cell electrode.
Strontium-90 in antlers of red deer: an indicator of environmental contamination by strontium-90.
Schönhofer, F; Tataruch, F; Friedrich, M
1994-12-11
The sampling procedures in connection with a very sensitive analytical method are described. Results from different areas in Austria are presented and an interpretion of the results is attempted. Some findings are in accordance with measurements from other substances, some are not. The differences most probably depend on several factors like soil type, precipitation, migration of strontium-90, concentration of stable strontium and calcium. No significant rise in the concentration could be found after 1986 thus in accordance with other measurements of strontium-90 contamination after the Chernobyl accident.
Combined transuranic-strontium extraction process
Horwitz, E.P.; Dietz, M.L.
1992-12-08
The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal. 3 figs.
10 CFR 35.2433 - Records of decay of strontium-90 sources for ophthalmic treatments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Records of decay of strontium-90 sources for ophthalmic... Records § 35.2433 Records of decay of strontium-90 sources for ophthalmic treatments. (a) A licensee shall maintain a record of the activity of a strontium-90 source required by § 35.433 for the life of the source...
10 CFR 35.2433 - Records of decay of strontium-90 sources for ophthalmic treatments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Records of decay of strontium-90 sources for ophthalmic... Records § 35.2433 Records of decay of strontium-90 sources for ophthalmic treatments. (a) A licensee shall maintain a record of the activity of a strontium-90 source required by § 35.433 for the life of the source...
10 CFR 35.2433 - Records of decay of strontium-90 sources for ophthalmic treatments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Records of decay of strontium-90 sources for ophthalmic... Records § 35.2433 Records of decay of strontium-90 sources for ophthalmic treatments. (a) A licensee shall maintain a record of the activity of a strontium-90 source required by § 35.433 for the life of the source...
10 CFR 35.2433 - Records of decay of strontium-90 sources for ophthalmic treatments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Records of decay of strontium-90 sources for ophthalmic... Records § 35.2433 Records of decay of strontium-90 sources for ophthalmic treatments. (a) A licensee shall maintain a record of the activity of a strontium-90 source required by § 35.433 for the life of the source...
10 CFR 35.2433 - Records of decay of strontium-90 sources for ophthalmic treatments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Records of decay of strontium-90 sources for ophthalmic... Records § 35.2433 Records of decay of strontium-90 sources for ophthalmic treatments. (a) A licensee shall maintain a record of the activity of a strontium-90 source required by § 35.433 for the life of the source...
Combined transuranic-strontium extraction process
Horwitz, E. Philip; Dietz, Mark L.
1992-01-01
The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal.
McKenzie, T.R.
1960-09-13
A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.
Švorc, Ĺubomír; Jambrec, Daliborka; Vojs, Marian; Barwe, Stefan; Clausmeyer, Jan; Michniak, Pavol; Marton, Marián; Schuhmann, Wolfgang
2015-09-02
The impact of different doping levels of boron-doped diamond on the surface functionalization was investigated by means of electrochemical reduction of aryldiazonium salts. The grafting efficiency of 4-nitrophenyl groups increased with the boron levels (B/C ratio from 0 to 20,000 ppm). Controlled grafting of nitrophenyldiazonium was used to adjust the amount of immobilized single-stranded DNA strands at the surface and further on the hybridization yield in dependence on the boron doping level. The grafted nitro functions were electrochemically reduced to the amine moieties. Subsequent functionalization with a succinic acid introduced carboxyl groups for subsequent binding of an amino-terminated DNA probe. DNA hybridization significantly depends on the probe density which is in turn dependent on the boron doping level. The proposed approach opens new insights for the design and control of doped diamond surface functionalization for the construction of DNA hybridization assays.
Sekulic, Damir; Tahiraj, Enver; Zvan, Milan; Zenic, Natasa; Uljevic, Ognjen; Lesnik, Blaz
2016-01-01
Team sports are rarely studied with regard to doping behaviour and doping-related factors regardless of their global popularity. This study aimed to investigate doping factors and covariates of potential doping behaviour in high-level team-sport athletes. The subjects were 457 high-performing, national- and international-level athletes (21.9 ± 3.4 years of age; 179 females) involved in volleyball (n = 77), soccer (n = 163), basketball (n = 114) and handball (n = 103). Previously validated self-administered questionnaires aimed at evidencing sport factors, doping-related factors, knowledge on sport nutrition and doping, and attitudes to performance enhancement were used. The results indicated a higher doping likelihood in male athletes, with a significant gender difference for basketball and handball. In males, a higher doping likelihood is found for athletes who had achieved better results at junior-age level, those who regularly consume dietary supplements, and who perceive their sport as being contaminated by doping. A higher sport achievement at senior-age level is protective against potential doping behaviour in males. In females, a higher likelihood of doping is evidenced in those athletes involved in binge drinking, while a lower tendency for doping is evidenced in female athletes who possess better knowledge on sport nutrition. Knowledge about doping is very low and thus education about doping is urgently needed. An improvement of knowledge on sport nutrition might be a potentially effective method for reducing the tendency for doping in females. Future studies should consider other approaches and theories, such as theory of planned behaviour and/or social-cognitive theory, in studying the problem of doping behaviour in team-sports. Key points The doping knowledge among Kosovar team-sport athletes is very low and systematic anti-doping education is urgently needed. The highest risk of doping behaviour in males is found for those athletes who had been successful in their junior age and those who consume dietary supplements. An improvement of knowledge on sport nutrition might be a potentially effective method for reducing the tendency for doping in female team-sport athletes. While the associations between the studied factors and doping behaviour are different between males and females, the gender-specific approach to exploring the covariates of doping behaviour is warranted. PMID:27928206
Zhao, Shuya; Wang, Xuxia; Li, Na; Chen, Yun; Su, Yuran; Zhang, Jun
2015-01-01
Background The aim of this experimental study was to investigate the effects of strontium ranelate on bone regeneration in the mid-palatal suture in response to rapid maxillary expansion (RME). Methods Thirty-six male 6-week-old Wistar rats were randomly divided into three groups, ie, an expansion only (EO) group, an expansion plus strontium ranelate (SE) group, and a control group. An orthodontic appliance was set between the right and left upper molars of rats with an initial expansive force of 0.98 N. Rats in the SE group were administered strontium ranelate (600 mg/kg body weight) and then euthanized in batches on days 4, 7, and 10. Morphological changes in the mid-palatal suture were investigated using micro-computed tomography and hematoxylin and eosin staining after RME. Bone morphogenetic protein-2 expression in the suture was also examined to evaluate bone formation in the mid-palatal suture. Image-Pro Plus software was then used to determine the mean optical density of the immunohistochemical images. Analysis of variance was used for statistical evaluation at the P<0.05 level. Results With expansive force, the mid-palatal suture was expanded, but there was no statistically significant difference (P>0.05) between the SE and EO groups. The bone volume of the suture decreased after RME, but was higher in the SE group than in the EO group on days 7 and 10. Further, expression of bone morphogenetic protein-2 in the SE group was higher than in the other two groups (P<0.05). Conclusion Strontium ranelate may hasten new bone formation in the expanded mid-palatal suture, which may be therapeutically beneficial in prevention of relapse and shortening the retention period after RME. PMID:26056433
Osteogenic efficacy of strontium hydroxyapatite micro-granules in osteoporotic rat model.
Chandran, Sunitha; Babu S, Suresh; Vs, Hari Krishnan; Varma, H K; John, Annie
2016-10-01
Excessive demineralization in osteoporotic bones impairs its self-regeneration potential following a defect/fracture and is of great concern among the aged population. In this context, implants with inherent osteogenic ability loaded with therapeutic ions like Strontium (Sr 2+ ) may bring forth promising outcomes. Micro-granular Strontium incorporated Hydroxyapatite scaffolds have been synthesized and in vivo osteogenic efficacy was evaluated in a long-term osteoporosis-induced aged (LOA) rat model. Micro-granules with improved surface area are anticipated to resorb faster and together with the inherent bioactive properties of Hydroxyapatite with the leaching of Strontium ions from the scaffold, osteoporotic bone healing may be promoted. Long-term osteoporosis-induced aged rat model was chosen to extrapolate the results to clinical osteoporotic condition in the aged. Micro-granular 10% Strontium incorporated Hydroxyapatite synthesized by wet precipitation method exhibited increased in vitro dissolution rate and inductively coupled plasma studies confirmed Strontium ion release of 0.01 mM, proving its therapeutic potential for osteoporotic applications. Wistar rats were induced to long-term osteoporosis-induced aged model by ovariectomy along with a prolonged induction period of 10 months. Thereafter, osteogenic efficacy of Strontium incorporated Hydroxyapatite micro-granules was evaluated in femoral bone defects in the long-term osteoporosis-induced aged model. Post eight weeks of implantation in vivo regeneration efficacy ratio was highest in the Strontium incorporated Hydroxyapatite implanted group (0.92 ± 0.04) compared to sham and Hydroxyapatite implanted group. Micro CT evaluation further substantiated the improved osteointegration of Strontium incorporated Hydroxyapatite implants from the density histograms. Thus, the therapeutical potential of micro-granular Strontium incorporated Hydroxyapatite scaffolds becomes relevant, especially as bone void fillers in osteoporotic cases of tumor resection or trauma. © The Author(s) 2016.
Angulo, M.A.
2010-01-01
In 2009, U.S. apparent consumption of strontium (contained in celestite and manufactured strontium compounds) increased to 16 kt (17,600 st) from 10.6 kt (11,700 st) in 2008, an increase of 52 percent. This increase was attributed primarily to an increase in imported celestite. Gross weight of imports totaled 25.3 kt (27,900 st), of which 91 percent came from Mexico. Imports in 2009 were 18 percent more than in 2008. Exports of strontium compounds in 2009 decreased 15 percent to 9.3 kt (10,250 st) from 10.9 kt (12,000 st) in 2008. In 2009, the U.S. Customs value of imported strontium carbonate was 65 cents/kg (29 cents/lb); for strontium nitrate, the unit value was $ 1/kg (45 cents/lb). The unit value of imported celestite, all of which was from Mexico, was about $47/t ($43/st).
Specific activity and isotope abundances of strontium in purified strontium-82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzsimmons, J. M.; Medvedev, D. G.; Mausner, L. F.
2015-11-12
A linear accelerator was used to irradiate a rubidium chloride target with protons to produce strontium-82 (Sr-82), and the Sr-82 was purified by ion exchange chromatography. The amount of strontium associated with the purified Sr-82 was determined by either: ICP-OES or method B which consisted of a summation of strontium quantified by gamma spectroscopy and ICP-MS. The summation method agreed within 10% to the ICP-OES for the total mass of strontium and the subsequent specific activities were determined to be 0.25–0.52 TBq mg -1. Method B was used to determine the isotope abundances by weight% of the purified Sr-82, andmore » the abundances were: Sr-82 (10–20.7%), Sr-83 (0–0.05%), Sr-84 (35–48.5%), Sr-85 (16–25%), Sr-86 (12.5–23%), Sr-87 (0%), and Sr-88 (0–10%). The purified strontium contained mass amounts of Sr-82, Sr-84, Sr-85, Sr-86, and Sr-88 in abundances not associated with natural abundance, and 90% of the strontium was produced by the proton irradiation. A comparison of ICP-OES and method B for the analysis of Sr-82 indicated analysis by ICP-OES would be easier to determine total mass of strontium and comply with regulatory requirements. An ICP-OES analytical method for Sr-82 analysis was established and validated according to regulatory guidelines.« less
Hemming, C.H.; Bunde, R.L.; Liszewski, M.J.; Rosentreter, J.J.; Welhan, J.
1997-01-01
The effect of experimental technique on strontium distribution coefficients (K(d)'s) was determined as part of an investigation of strontium geochemical transport properties of surficial sediment from the Idaho National Engineering Laboratory, Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experiments were conducted to quantify the effect of different experimental techniques on experimentally derived strontium K(d)'s at a fixed pH of 8.0. Combinations of three variables were investigated: method of sample agitation (rotating-mixer and shaker table), ratio of the mass-of-sediment to the volume-of-reaction-solution (1:2 and 1:20), and method of sediment preparation (crushed and non-crushed). Strontium K(d)'s ranged from 11 to 23 mlg-1 among all three experimental variables examined. Strontium K(d)'s were bimodally grouped around 12 and 21 mlg-1. Among the three experimental variables examined, the mass-to-volume ratio appeared to be the only one that could account for this bimodal distribution. The bimodal distribution of the derived strontium K(d)'s may occur because the two different mass-to-volume ratios represent different natural systems. The high mass-to-volume ratio of 1:2 models a natural system, such as an aquifer, in which there is an abundance of favorable sorption sites relative to the amount of strontium in solution. The low mass-to-volume ratio of 1:20 models a natural system, such as a stream, in which the relative amount of strontium in solution exceeds the favorable surface sorption site concentration. Except for low mass-to-volume ratios of non-crushed sediment using a rotating mixer, the method of agitation and sediment preparation appears to have little influence on derived strontium K(d)'s.The effect of experimental technique on strontium distribution coefficients (Kd's) was determined as part of an investigation of strontium geochemical transport properties of surficial sediment from the Idaho National Engineering Laboratory, Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experiments were conducted to quantify the effect of different experimental techniques on experimentally derived strontium Kd's at a fixed pH of 8.0. Combinations of three variables were investigated: method of sample agitation (rotating-mixer and shaker table), ratio of the mass-of-sediment to the volume-of-reaction-solution (1:2 and 1:20), and method of sediment preparation (crushed and non-crushed). Strontium Kd's ranged from 11 to 23 mlg-1 among all three experimental variables examined. Strontium Kd's were bimodally grouped around 12 and 21 mlg-1. Among the three experimental variables examined, the mass-to-volume ratio appeared to be the only one that could account for this bimodal distribution. The bimodal distribution of the derived strontium Kd's may occur because the two different mass-to-volume ratios represent different natural systems. The high mass-to-volume ratio of 1:2 models a natural system, such as an aquifer, in which there is an abundance of favorable sorption sites relative to the amount of strontium in solution. The low mass-to-volume ratio of 1:20 models a natural system, such as a stream, in which the relative amount of strontium in solution exceeds the favorable surface sorption site concentration. Except for low mass-to-volume ratios of non-crushed sediment using a rotating mixer, the method of agitation and sediment preparation appears to have little influence on derived strontium Kd's.
Organic composite-mediated surface coating of human acellular bone matrix with strontium.
Huang, Yi-Zhou; Wang, Jing-Jing; Huang, Yong-Can; Wu, Cheng-Guang; Zhang, Yi; Zhang, Chao-Liang; Bai, Lin; Xie, Hui-Qi; Li, Zhao-Yang; Deng, Li
2018-03-01
Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza, Donaldo P.; Patton, Gregory W.; Hartman, Mary J.
2007-10-01
Efforts are underway to remediate strontium-laden groundwater to the Columbia River at the 100-N Area of the Hanford Site. Past practices of the 100-N reactor liquid waste disposal sites has left strontium-90 sorbed onto sediments which is a continuing source of contaminant discharge to the river. The Remediation Task of the Science and Technology Project assessed the interaction of groundwater and river water at the hyporheic zone. Limited data have been obtained at this interface of contaminant concentrations, geology, groundwater chemistry, affects of river stage and other variables that may affect strontium-90 release. Efforts were also undertaken to determine themore » extent, both laterally and horizontally, of the strontium-90 plume along the shoreline and to potentially find an alternative constituent to monitor strontium-90 that would be more cost effective and could possibly be done under real time conditions. A baseline of strontium-90 concentrations along the shoreline was developed to help assess remediation technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hingwe, V. S., E-mail: vishwas.hingwe@yahoo.in; Omanwar, S. K.; Bajaj, N. S.
2016-05-06
Eu{sup 2+} doped alkaline earth metals such as strontium aluminate, calcium aluminate and barium aluminate prepared by using modified combustion synthesis method at 600°C with Urea as fuel. Crystal structure is determined by using XRD and the sample confirmation by using the FTIR. The effect of the host material on the photoluminescence (PL) and phosphorescence properties were studied by using the Hitachi F-7000 spectrofluorimeter equipped with a 450W Xenon lamp, in the range 200-650 nm. The emission spectra of Eu{sup 2+} range from 450 to 500 nm in the Blue to aqua region and the transition 4f{sup 7}-4f{sup 6} 5d{sup 1}.more » The observed emission in CaAl{sub 2}O{sub 4} is 440 nm.« less
Microstructure-scaled active sites imaging of a solid oxide fuel cell composite cathode
NASA Astrophysics Data System (ADS)
Nagasawa, Tsuyoshi; Hanamura, Katsunori
2017-11-01
Active sites for oxygen reduction reaction in strontium-doped lanthanum manganite (LSM)/scandia-stabilized zirconia (ScSZ) composite cathode of solid oxide fuel cell (SOFC) is visualized in microstructure scale by oxygen isotope labeling. In order to quench a reaction, a SOFC power generation equipment with a nozzle for direct helium gas impinging jet to the cell is prepared. A typical electrolyte-supported cell is operated by supplying 18O2 at 1073 K and abruptly quenched to room temperature. During the quench, the temperature of the cell is decreased from 1073 K to 673 K in 1 s. The 18O concentration distribution in the cross section of the quenched cathode is obtained by secondary ion mass spectrometry (SIMS) with a spatial resolution of 50 nm. The obtained 18O mapping gives the first visualization of highly distributed active sites in the composite cathode both in macroscopic and particle scales.
NASA Astrophysics Data System (ADS)
Xiang, Wenfeng; Hu, Minghao; Liu, Yi
2017-12-01
The influence of forming-gas annealing (FGA) on the resistance switching effect of epitaxial Nb:SrTiO3 [Nb-doped strontium titanates (NbSTO)] films on Si substrate has been investigated. The resistance values at low and high resistance states for NbSTO films after FGA are about two orders of magnitude lower than those of the as-deposited sample, which may effectively decrease the power dissipation of devices. Hysteretic I-V characteristic curves show that the stability of FGA sample was improved. The resistance ratio of NbSTO films measured via pulse voltage increased from 1.0-1.2 to 3.2-3.6 after FGA. Moreover, the resistance ratio of the FGA sample gradually increased with increasing number of cycles. These results indicate that FGA improves the resistance switching characteristics of NbSTO films. In addition, the underlying mechanism was discussed.
NASA Technical Reports Server (NTRS)
Lowell, C. E.; Deadmore, D. J.; Santoro, G. J.; Kohl, F. J.
1981-01-01
The effects of trace metal impurities in coal-derived liquids on deposition, high temperature corrosion and fouling were examined. Alloys were burner rig tested from 800 to 1100 C and corrosion was evaluated as a function of potential impurities. Actual and doped fuel test were used to define an empirical life prediction equation. An evaluation of inhibitors to reduce or eliminate accelerated corrosion was made. Barium and strontium were found to limit attack. Intermittent application of the inhibitors or silicon additions were found to be effective techniques for controlling deposition without losing the inhibitor benefits. A computer program was used to predict the dew points and compositions of deposits. These predictions were confirmed in deposition test. The potential for such deposits to plug cooling holes of turbine airfoils was evaluated. Tests indicated that, while a potential problem exists, it strongly depended on minor impurity variations.
Xiong, Xiaobo; Yuan, Ximing; Song, Jiangqi; Yin, Guoxiang
2016-06-01
Eu(2+), Dy(3+) co-doped strontium-magnesium silicate phosphors, Sr2MgSi2O7:Eu(2+), Dy(3+) (SMSEDs), have shown great potential in optoelectronic device due to their unique luminescent property. However, their potential applications in forensic science, latent fingermark detection in particular, are still being investigated. In this contribution, SMSEDs were successfully employed to latent fingermarks on a variety of non-porous and semi-porous surfaces, including aluminum foil, porcelain, glass, painted wood, colored paper, and leather. All the results illustrated that this luminescent powder, as a long-lasting phosphorescence material (LLP), was an ideal time-resolved detection reagent of fingermark for elimination of background interferences from various difficult substrates, and offered a good contrast to allow their identification without the need to enhance the results compared to nanosized organic fluorescent powder. © The Author(s) 2016.
Magnetic phase composition of strontium titanate implanted with iron ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dulov, E.N., E-mail: evgeny.dulov@ksu.ru; Ivoilov, N.G.; Strebkov, O.A.
2011-12-15
Highlights: Black-Right-Pointing-Pointer The origin of RT-ferromagnetism in iron implanted strontium titanate. Black-Right-Pointing-Pointer Metallic iron nanoclusters form during implantation and define magnetic behaviour. Black-Right-Pointing-Pointer Paramagnetic at room temperature iron-substituted strontium titanate identified. -- Abstract: Thin magnetic films were synthesized by means of implantation of iron ions into single-crystalline (1 0 0) substrates of strontium titanate. Depth-selective conversion electron Moessbauer spectroscopy (DCEMS) indicates that origin of the samples magnetism is {alpha}-Fe nanoparticles. Iron-substituted strontium titanate was also identified but with paramagnetic behaviour at room temperature. Surface magneto-optical Kerr effect (SMOKE) confirms that the films reveal superparamagnetism (the low-fluence sample) or ferromagnetism (themore » high-fluence sample), and demonstrate absence of magnetic in-plane anisotropy. These findings highlight iron implanted strontium titanate as a promising candidate for composite multiferroic material and also for gas sensing applications.« less
Docking 90Sr radionuclide in cement: An atomistic modeling study
NASA Astrophysics Data System (ADS)
Youssef, Mostafa; Pellenq, Roland J.-M.; Yildiz, Bilge
Cementitious materials are considered to be a waste form for the ultimate disposal of radioactive materials in geological repositories. We investigated by means of atomistic simulations the encapsulation of strontium-90, an important radionuclide, in calcium-silicate-hydrate (C-S-H) and its crystalline analog, the 9 Å-tobermorite. C-S-H is the major binding phase of cement. Strontium was shown to energetically favor substituting calcium in the interlayer sites in C-S-H and 9 Å-tobermorite with the trend more pronounced in the latter. The integrity of the silicate chains in both cementitious waste forms were not affected by strontium substitution within the time span of molecular dynamics simulation. Finally, we observed a limited degradation of the mechanical properties in the strontium-containing cementitious waste form with the increasing strontium concentration. These results suggest the cement hydrate as a good candidate for immobilizing radioactive strontium.
Strontianite in coral skeletal aragonite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greegor, R.B.; Pingitore, N.E. Jr.; Lytle, F.W.
1997-03-07
An x-ray spectroscopic study of scleractinian coral skeletons indicated that, although some strontium substitutes for calcium in the aragonite structure, at concentrations of about 7500 parts per million, as much as 40 percent of the strontium resides in strontianite (SrCO{sub 3}). A doublet peak in the Fourier transform of the extended x-ray absorption fine structure of the coral correspond to six metal and 13 oxygen neighbors surrounding strontium at about 4.05 angstroms in strontium-substituted aragonite and at about 4.21 angstroms in strontianite. Thus, the mechanism of the temperature-sensitive partitioning of strontium between seawater and coral skeleton used for paleothermometry ismore » unexpectedly complex. 11 refs., 5 figs., 1 tab.« less
STRONTIUM 90: ESTIMATION OF WORLDWIDE DEPOSITION.
VOLCHOK, H L
1964-09-25
The relation between the worldwide deposition of strontium-90, as calculated by many investigators over the last decade, and that observed in rainfall in New York City has been relatively constant. On the average, for each millicurie of strontium-90 per square mile deposited in New York City, 0.055 megacurie has been deposited on the earth's total surface. Cumulative deposits of strontium-90 on the earth's surface at various intervals over the last 10 years have been computed from this ratio. From the mean quarterly fraction of the annual strontium-90 fallout in New York City for the last 9 years, the worldwide deposition of this nuclide, equal to 2.48 megacuries, is predicted for 1964.
SrZnO nanostructures grown on templated <0001> Al2O3 substrates by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Labis, Joselito P.; Alanazi, Anwar Q.; Albrithen, Hamad A.; El-Toni, Ahmed Mohamed; Hezam, Mahmoud; Elafifi, Hussein Elsayed; Abaza, Osama M.
2017-09-01
The parameters of pulsed laser deposition (PLD) have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO). In this work, SrZnO nanostructures are grown on <0001>Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ˜300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL), while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002) preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.
Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr
Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R.
2015-01-01
In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431
Srivastava, D; Azough, F; Freer, R; Combe, E; Funahashi, R; Kepaptsoglou, D M; Ramasse, Q M; Molinari, M; Yeandel, S R; Baran, J D; Parker, S C
2015-12-21
A combination of experimental and computational techniques has been employed to study doping effects in perovskite CaMnO 3 . High quality Sr-Mo co-substituted CaMnO 3 ceramics were prepared by the conventional mixed oxide route. Crystallographic data from X-ray and electron diffraction showed an orthorhombic to tetragonal symmetry change on increasing the Sr content, suggesting that Sr widens the transition temperature in CaMnO 3 preventing phase transformation-cracking on cooling after sintering, enabling the fabrication of high density ceramics. Atomically resolved imaging and analysis showed a random distribution of Sr in the A-site of the perovskite structure and revealed a boundary structure of 90° rotational twin boundaries across {101} orthorhombic ; the latter are predominant phonon scattering sources to lower the thermal conductivity as suggested by molecular dynamics calculations. The effect of doping on the thermoelectric properties was evaluated. Increasing Sr substitution reduces the Seebeck coefficient but the power factor remains high due to improved densification by Sr substitution. Mo doping generates additional charge carriers due to the presence of Mn 3+ in the Mn 4+ matrix, reducing electrical resistivity. The major impact of Sr on thermoelectric behaviour is the reduction of the thermal conductivity as shown experimentally and by modelling. Strontium containing ceramics showed thermoelectric figure of merit ( ZT ) values higher than 0.1 at temperatures above 850 K. Ca 0.7 Sr 0.3 Mn 0.96 Mo 0.04 O 3 ceramics exhibit enhanced properties with S 1000K = -180 μV K -1 , ρ 1000K = 5 × 10 -5 Ωm, k 1000K = 1.8 W m -1 K -1 and ZT ≈ 0.11 at 1000 K.
NASA Astrophysics Data System (ADS)
Chen, Kongfa; He, Shuai; Li, Na; Cheng, Yi; Ai, Na; Chen, Minle; Rickard, William D. A.; Zhang, Teng; Jiang, San Ping
2018-02-01
La0.6Sr0.2Co0.2Fe0.8O3-δ (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ, LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm-2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm-2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs.
10 CFR 35.491 - Training for ophthalmic use of strontium-90.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (iii) Mathematics pertaining to the use and measurement of radioactivity; and (iv) Radiation biology... the requirements in paragraph (b) of this section and has achieved a level of competency sufficient to...
Simple test of intestinal calcium absorption measured by stable strontium.
Milsom, S; Ibbertson, K; Hannan, S; Shaw, D; Pybus, J
1987-01-01
A clinical test of intestinal calcium absorption has been developed using non-radioactive stable strontium as a calcium tracer. In nine elderly subjects there was a close correlation between the fractional absorption of strontium and radioactive calcium (45Ca) during a five hour period after the simultaneous oral administration of the two tracers. Comparable precision was achieved with each tracer in six subjects in whom the test was repeated after two weeks. The effect of food on strontium absorption was examined in a further 33 normal subjects (age 21-60 years), and the administration of the strontium with a standard breakfast was shown to reduce the variance at individual time points. A simplified test in which serum strontium concentration was measured four hours after the oral dose given with a standard breakfast was adopted as the routine procedure. The normal range (mean (2 SD], established over 97 tests in 53 patients, was 7.0-18.0% of the dose in the extracellular fluid. A further 30 patients with possible disorders of calcium absorption (10 with primary hyperparathyroidism and 20 with coeliac disease) were studied by this standard test. In both groups of patients the mean four hour strontium values were significantly different from normal. This standard strontium absorption test allows assessment of calcium absorption with sufficient sensitivity and precision to have a wide application in clinical practice. PMID:3115389
Aimaiti, Abudousaimi; Maimaitiyiming, Asihaerjiang; Boyong, Xu; Aji, Kaisaier; Li, Cao; Cui, Lei
2017-12-19
Strontium is a widely used anti-osteoporotic agent due to its dual effects on inhibiting bone resorption and stimulating bone formation. Thus, we studied the dose response of strontium on osteo-inductive efficiency in human adipose-derived stem cells (hASCs). Qualitative alkaline phosphatase (ALP) staining, quantitative ALP activity, Alizarin Red staining, real-time polymerase chain reaction and Western blot were used to investigate the in vitro effects of a range of strontium concentrations on hASC osteogenesis and associated signaling pathways. In vitro work revealed that strontium (25-500 μM) promoted osteogenic differentiation of hASCs according to ALP activity, extracellular calcium deposition, and expression of osteogenic genes such as runt-related transcription factor 2, ALP, collagen-1, and osteocalcin. However, osteogenic differentiation of hASCs was significantly inhibited with higher doses of strontium (1000-3000 μM). These latter doses of strontium promoted apoptosis, and phosphorylation of ERK1/2 signaling was increased and accompanied by the downregulation of Bcl-2 and increased phosphorylation of BAX. The inhibition of ERK1/2 decreased apoptosis in hASCs. Lower concentrations of strontium facilitate osteogenic differentiation of hASCs up to a point; higher doses cause apoptosis of hASCs, with activation of the ERK1/2 signaling pathway contributing to this process.
Pore-Scale Transport of Strontium During Dynamic Water Content Changes in the Unsaturated Zone
NASA Astrophysics Data System (ADS)
Weaver, W.; Kibbey, T. C. G.; Papelis, C.
2016-12-01
Dynamic water content changes in the unsaturated zone caused by natural and manmade processes, such as evaporation, rainfall, and irrigation, have an effect on contaminant mobility. In general, in the unsaturated zone, evaporation causes an increase in contaminant concentrations, potentially leading to sorption of contaminants on aquifer materials or precipitation of crystalline or amorphous phases. On the other hand, increase of water content may result in dissolution of precipitated phases and increased mobility of contaminants. The objective of this study was to develop a quantitative model for the transport of strontium through sand under dynamic water content conditions, as a function of strontium concentration, pH, and ionic strength. Strontium was selected as a surrogate for strontium-90, a by-product of nuclear reactions. The dynamic water content was determined using an automated device for rapidly measuring the hysteretic capillary pressure—saturation relationship, followed by ambient air evaporation, and gravimetric water content measurement. Strontium concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). Flow interruption experiments were conducted to determine whether equilibrium conditions existed for a given flowrate. Scanning electron microscopy (SEM) was used to visualize the treated quartz sand particles and the distribution of strontium on sand grains was determined using elemental maps created by energy-dispersive x-ray spectroscopy (EDX). Strontium behavior appears to be pH dependent as well as ionic strength dependent under these conditions.
Groundwater transport of strontium 90 in a glacial outwash environment
Kipp, Kenneth L.; Stollenwerk, Kenneth G.; Grove, David B.
1986-01-01
As part of the investigation of groundwater contamination at a uranium-scrap recovery plant at Wood River Junction, Rhode Island, laboratory experiments led to the development of a model for predicting the transport of strontium 90 in glacial outwash sediments based on an approximate mechanism for ion exchange. The multicomponent system was simplified to two components by regarding all exchangeable cations other than strontium 90 as a single component. The binary ion-exchange parameter was a function of the variable, total ion concentration. A one-dimensional solute transport model was formulated to evaluate the time necessary for natural groundwater flow to remove the strontium 90 contamination plume from the groundwater system to the Pawcatuck River. The finite difference transport equations were solved sequentially for total ion concentrations, then strontium 90 concentrations. Clay-free quartz and feldspar sands at the study site have little potential for strontium 90 sorption, and high calcium, magnesium, and sodium concentrations compete for the few ion exchange sites. As the total ion concentration plume moves out of the system, ion exchange of strontium 90 increases, reducing the strontium 90 concentration in the groundwater. Cleanout times predicted using the binary ion exchange mechanism were about two thirds of those predicted using a constant distribution coefficient. It is suggested that this type of model can simulate solute transport more realistically in many groundwater systems where the total ion concentration is not constant.
Observation of an electron band above the Fermi level in FeTe₀.₅₅Se₀.₄₅ from in-situ surface doping
Zhang, P.; Richard, P.; Xu, N.; ...
2014-10-27
We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe₀.₅₅Se₀.₄₅. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily-electron-doped KFe₂₋ xSe₂ compound.
Bolland, Mark J; Grey, Andrew
2014-01-01
Objective Recently, the European Medicines Agency reported that strontium ranelate increases myocardial infarction risk in postmenopausal women, 8.5 years after it was registered for use in osteoporosis. Unreported serious adverse events in clinical trials for other pharmaceuticals have been described in recent years. We assessed reporting of adverse events and fracture efficacy of strontium. Methods We compared data on adverse effects (myocardial infarction, venous thromboembolism and pulmonary embolism) and fracture efficacy of strontium in publicly available regulatory documents with data in publications retrieved from searching PubMed. Results We identified 5 regulatory documents and 9 primary publications of 7 randomised, placebo-controlled trials of strontium that reported relevant data. We identified several areas of concern in these reports: the increased risk of myocardial infarction with strontium was not identified in a pivotal phase 3 clinical trial despite specific regulatory review of cardiovascular events; data on myocardial infarction were not included in any primary publication; increased risks of venous thromboembolism and pulmonary embolism with strontium were not reported in either of the phase 3 clinical trials; data on venous thromboembolism were reported in only 5 of 9 primary publications, data on pulmonary embolism in only 2 of 9 primary publications, and either was discussed in <50% of subsequent review articles. There were differences in participant numbers, fracture cases and venous thromboembolism cases between regulatory documents and primary publications. Based on all available data from primary publications and regulatory documents, the number of fractures prevented by strontium use is similar to the number of extra cases of venous thromboembolism, pulmonary embolism and myocardial infarction caused by strontium use. Conclusions The risks of strontium use are similar to the benefits. Full disclosure of the clinical trial data and regulatory documents would allow clinicians and their patients to decide whether use of the drug is worthwhile. PMID:25293384
Cooper, C; Fox, K M; Borer, J S
2014-02-01
We explored the cardiac safety of the osteoporosis treatment strontium ranelate in the UK Clinical Practice Research Datalink. While known cardiovascular risk factors like obesity and smoking were associated with increased cardiac risk, use of strontium ranelate was not associated with any increase in myocardial infarction or cardiovascular death. It has been suggested that strontium ranelate may increase risk for cardiac events in postmenopausal osteoporosis. We set out to explore the cardiac safety of strontium ranelate in the Clinical Practice Research Datalink (CPRD) and linked datasets. We performed a nested case-control study. Primary outcomes were first definite myocardial infarction, hospitalisation with myocardial infarction, and cardiovascular death. Cases and matched controls were nested in a cohort of women treated for osteoporosis. The association with exposure to strontium ranelate was analysed by multivariate conditional logistic regression. Of the 112,445 women with treated postmenopausal osteoporosis, 6,487 received strontium ranelate. Annual incidence rates for first definite myocardial infarction (1,352 cases), myocardial infarction with hospitalisation (1,465 cases), and cardiovascular death (3,619 cases) were 3.24, 6.13, and 14.66 per 1,000 patient-years, respectively. Obesity, smoking, and cardiovascular treatments were associated with significant increases in risk for cardiac events. Current or past use of strontium ranelate was not associated with increased risk for first definite myocardial infarction (odds ratio [OR] 1.05, 95 % confidence interval [CI] 0.68-1.61 and OR 1.12, 95 % CI 0.79-1.58, respectively), hospitalisation with myocardial infarction (OR 0.84, 95 % CI 0.54-1.30 and OR 1.17, 95 % CI 0.83-1.66), or cardiovascular death (OR 0.96, 95 % CI 0.76-1.21 and OR 1.16, 95 % CI 0.94-1.43) versus patients who had never used strontium ranelate. Analysis in the CPRD did not find evidence for a higher risk for cardiac events associated with the use of strontium ranelate in postmenopausal osteoporosis.
Reginster, Jean-Yves; Badurski, Janusz; Bellamy, Nicholas; Bensen, William; Chapurlat, Roland; Chevalier, Xavier; Christiansen, Claus; Genant, Harry; Navarro, Federico; Nasonov, Evgeny; Sambrook, Philip N; Spector, Timothy D; Cooper, Cyrus
2013-01-01
Background Strontium ranelate is currently used for osteoporosis. The international, double-blind, randomised, placebo-controlled Strontium ranelate Efficacy in Knee OsteoarthrItis triAl evaluated its effect on radiological progression of knee osteoarthritis. Methods Patients with knee osteoarthritis (Kellgren and Lawrence grade 2 or 3, and joint space width (JSW) 2.5–5 mm) were randomly allocated to strontium ranelate 1 g/day (n=558), 2 g/day (n=566) or placebo (n=559). The primary endpoint was radiographical change in JSW (medial tibiofemoral compartment) over 3 years versus placebo. Secondary endpoints included radiological progression, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, and knee pain. The trial is registered (ISRCTN41323372). Results The intention-to-treat population included 1371 patients. Treatment with strontium ranelate was associated with smaller degradations in JSW than placebo (1 g/day: −0.23 (SD 0.56) mm; 2 g/day: −0.27 (SD 0.63) mm; placebo: −0.37 (SD 0.59) mm); treatment-placebo differences were 0.14 (SE 0.04), 95% CI 0.05 to 0.23, p<0.001 for 1 g/day and 0.10 (SE 0.04), 95% CI 0.02 to 0.19, p=0.018 for 2 g/day. Fewer radiological progressors were observed with strontium ranelate (p<0.001 and p=0.012 for 1 and 2 g/day). There were greater reductions in total WOMAC score (p=0.045), pain subscore (p=0.028), physical function subscore (p=0.099) and knee pain (p=0.065) with strontium ranelate 2 g/day. Strontium ranelate was well tolerated. Conclusions Treatment with strontium ranelate 1 and 2 g/day is associated with a significant effect on structure in patients with knee osteoarthritis, and a beneficial effect on symptoms for strontium ranelate 2 g/day. PMID:23117245
Powder XRD, TEM, FTIR and thermal studies of strontium tartrate nano particles
NASA Astrophysics Data System (ADS)
Lathiya, U. M.; Jethva, H. O.; Joshi, M. J.; Vyas, P. M.
2017-05-01
Strontium tartrate finds several applications, e.g., as non-linear optical and dielectric material, in tracer composition and ammunition unit, in treating structural integrity of bone. The growth of single crystals of strontium tartrate in silica gel has been widely reported. In the present study, strontium tartrate nano particles were synthesized by wet chemical method using strontium chloride, tartaric acid and sodium meta-silicate solutions in the presence of Triton X -100 surfactant. It was found that the presence of sodium meta-silicate facilitated the reaction for strontium tartrate product. The powder XRD study of strontium tartrate nano-particles suggested monoclinic crystal system and the average crystallite size was found to be 40 nm determined by applying Scherrer's formula. The TEM analysis indicated that the nano particles were spherical in nature. The FTIR spectrum confirmed the presence of various functional groups such as O-H,C-H, and C=O stretching mode. The thermal analysis was carried out by using TGA and DTA studies. The nano-particles were found to be stable up to 175°C and then decomposed through various stages. The results are compared with the bulk crystalline material available in the literature.
Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia.
Sasikala, Suchithra Padmajan; Huang, Kai; Giroire, Baptiste; Prabhakaran, Prem; Henry, Lucile; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril
2016-11-16
We report the exfoliation of graphite and simultaneous N doping of graphene by two methods: supercritical ammonia treatment and liquid-phase exfoliation with NH 4 OH. While the supercritical ammonia allowed N doping at a level of 6.4 atom % in 2 h, the liquid-phase exfoliation with NH 4 OH allowed N doping at a level of 2.7 atom % in 6 h. The N doped graphene obtained via the supercritical ammonia route had few layers (<5) and showed large lateral flake size (∼8 μm) and low defect density (I D /I G < 0.6) in spite of their high level of N doping. This work is the first demonstration of supercritical ammonia as an exfoliation agent and N doping precursor for graphene. Notably, the N doped graphene showed electrocatalytic activity toward oxygen reduction reaction with high durability and good methanol tolerance compared to those of commercial Pt/C catalyst.
Ober, J.A.
2013-01-01
In 2012, U.S. apparent consumption of strontium (contained in celestite and manufactured strontium compounds) decreased to 16.7 kt (18,400 st) from 17.3 kt (19,100 st) in 2011. Gross weight of imports was 34.3 kt (37,800 st), 86 percent of which originated in Mexico.
Distribution of strontium-90 in a 1959 wheat sample.
RIVERA, J
1961-03-17
At least 22 percent of the strontium-90 found in a sample of wheat harvested in 1959 was due to direct deposition. Twenty-seven percent of the total strontium-90 content of this wheat sample was contained in the outermost bran layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheffer, F.; Ludwieg, F.
The development of dirty atom bombs (hydrogen bombs with a uranium mantle) and the resultant high radioactive fall-out have made the strontium-90 contamination of foodstuffs a serious problem for humanity. The literature of recent years is used to survey the behavior of strontium-90 in plants and soil, and to discuss agricultural measures which could be taken to lessen the contamination of foodstuffs in case of atomic warfare. (auth)
Strontium-90 deposition in New York City.
Volchok, H L
1967-06-16
Measurements of strontium-90 deposited in New York City over the past 12 years make for broader understanding of the fallout phenomenon. The data indicate a stratospheric half-residence time of 8 to 10 months. The seasonal oscillation of strontium-90 fallout is very symmetrical and consistent from year to year and completely independent of the timing and magnitude of nuclear tests. The predicted fallout of strontium-90 in 1970 is less than 1 percent of that during the peak year 1963.
Studies on Inhibition of Intestinal Absorption of Radioactive Strontium
Skoryna, Stanley C.; Paul, T. M.; Edward, Deirdre Waldron
1964-01-01
A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting the calcium to be available to the body. Studies were carried out in vivo by injection of Sr89 and Ca45 in the presence of inert carrier into ligated intestinal segments in rats, and the amount of absorption was measured by standard monitoring techniques. The pattern of absorption of both ions is very similar but the rate of absorption is different. It was found that the polyelectrolyte, sodium alginate, obtained from brown algae (Phaeophyceae), injected simultaneously with radiostrontium effectively reduces the absortion of Sr89 from all segments of the intestine by as much as 50-80% of the control values. No significant reduction in absorption of Ca45 was observed in equivalent concentrations. The reduction in blood levels of Sr89 and in bone uptake corresponded to the absorption pattern. The difference in the effect on strontium and calcium absorption may be due to differences in the binding capacity of sodium alginate from the two metal ions under the conditions present in vivo. PMID:14180534
Flockhart, D T Tyler; Kyser, T Kurt; Chipley, Don; Miller, Nathan G; Norris, D Ryan
2015-01-01
Strontium isotopes ((87)Sr/(86)Sr) can be useful biological markers for a wide range of forensic science applications, including wildlife tracking. However, one of the main advantages of using (87)Sr/(86)Sr values, that there is no fractionation from geological bedrock sources through the food web, also happens to be a critical assumption that has never been tested experimentally. We test this assumption by measuring (87)Sr/(86)Sr values across three trophic levels in a controlled greenhouse experiment. Adult monarch butterflies were raised on obligate larval host milkweed plants that were, in turn, grown on seven different soil types collected across Canada. We found no significant differences between (87)Sr/(86)Sr values in leachable Sr from soil minerals, organic soil, milkweed leaves, and monarch butterfly wings. Our results suggest that strontium isoscapes developed from (87)Sr/(86)Sr values in bedrock or soil may serve as a reliable biological marker in forensic science for a range of taxa and across large geographic areas.
Biomaterials for the Decorporation of Sr-85 in the Rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitskaia, Tatiana G.; Creim, Jeffrey A.; Curry, Terry L.
2010-09-01
Although four stable isotopes of strontium occur naturally, strontium-90 is produced by nuclear fission and is present in surface soil around the world as a result of fallout from atmospheric nuclear weapons tests. It can easily transfer to man in the event of a nuclear/radiological emergency or through the plant-animal-human food chain causing long-term exposures. Strontium is chemically and biologically similar to calcium, and is incorporated primarily into bone following internal deposition. Alginic acid (alginate) obtained from seaweed (kelp) extract selectively binds ingested strontium in the GI tract blocking its systemic uptake and reducing distribution to bone in rats, whilemore » other natural polysaccharides including chitosan and hyaluronic acid had little in vivo affinity for strontium. Alginate exhibits the unique ability to discriminate between strontium and calcium and has been previously shown to reduce intestinal absorption and skeletal retention of strontium without changing calcium metabolism. In our studies, the effect of commercially available alginate on strontium intestinal absorption was examined. One problem associated with alginate treatment is its limited solubility and gel formation in water. The aqueous solubility of sodium alginate was improved in a sodium chloride/sodium bicarbonate electrolyte solution containing low molecular weight polyethylene glycol (PEG). Furthermore, oral administration of the combined alginate/electrolyte//PEG solution synergistically accelerated removal of internal strontium in rats when compared to treatment with individual sodium alginate/electrolyte or electrolyte/PEG solutions. Importantly, both alginate and PEG are nontoxic, readily available materials that can be easily administered orally in case of a national emergency when potentially large numbers of the population may require medical treatment for internal depositions. Our results suggest further studies to optimize in vivo decorporation performance of engineered alginate material via modification of its chemical and physicochemical properties is warranted.« less
,
2012-01-01
In 2011, U.S. apparent consumption of strontium (contained in celestite and manufactured strontium compounds) increased markedly to 18.4 kt (20,300 st) from 10.4 kt (11,500 st) in 2010. Gross weight of imports was 34.4 kt (38,000 st), of which 76 percent originated from Mexico.
A process for the development of strontium hydroxyapatite
NASA Astrophysics Data System (ADS)
Zahra, N.; Fayyaz, M.; Iqbal, W.; Irfan, M.; Alam, S.
2014-06-01
A procedure for the preparation of Strontium Hydroxyapatite is adapted to produce high purity and better homogeneity ceramic with good Crystallinity. The strontium substituted bone cement has potential for use in orthopedic surgeries. Ionic Strontium (Sr) in humans shares the same physiological pathway as calcium and can be deposited in the mineral structure of the bone. In the present study, a novel concept of preparing Sr-contained Hydroxyapatite bone cement by using a precipitation method is proposed to get an ideal biomaterial that possesses potential degradability and more excellent pharmacological effect. Chemical analysis, Fourier Transform Infra Red analysis and Thermogravimetric/ Differential Scanning Calorimetric studies were conducted on prepared Strontium Hydroxyapatite sample to characterize the incorporation of 15% Sr2+ into the crystal lattice of Hydroxyapatite. Strontium was quantitatively incorporated into Hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. Thus, the formation of Sr-HAp was confirmed by Chemical Analysis, FT-IR and TGA/DSC results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, Ted M.; Traub, Richard J.; Antonio, Ernest J.
2011-07-20
The 100-NR-2 site is the location of elevated releases of strontium-90 to the Columbia River via contaminated groundwater. The resulting dose to aquatic and riparian receptors was evaluated in 2005 (DOE 2009) and compared to U.S. Department of Energy (DOE) dose guidance values. We have conducted additional dose assessments for a broader spectrum of aquatic and riparian organisms using RESRAD Biota and specific exposure scenarios. Because strontium-90 accumulates in bone, we have also modeled the dose to the anterior kidney, a blood-forming and immune system organ that lies close to the spinal column of fish. The resulting dose is primarilymore » attributable to the yttrium-90 progeny of strontium-90 and very little of the dose is associated with the beta emission from strontium-90. All dose modeling results were calculated with an assumption of secular equilibrium between strontium-90 and yttrum-90.« less
Decomposition pathways of polytetrafluoroethylene by co-grinding with strontium/calcium oxides.
Qu, Jun; He, Xiaoman; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio
2017-06-01
Waste polytetrafluoroethylene (PTFE) could be easily decomposed by co-grinding with inorganic additive such as strontium oxide (SrO), strontium peroxide (SrO 2 ) and calcium oxide (CaO) by using a planetary ball mill, in which the fluorine was transformed into nontoxic inorganic fluoride salts such as strontium fluoride (SrF 2 ) or calcium fluoride (CaF 2 ). Depending on the kind of additive as well as the added molar ratio, however, the reaction mechanism of the decomposition was found to change, with different compositions of carbon compounds formed. CO gas, the mixture of strontium carbonate (SrCO 3 ) and carbon, only SrCO 3 were obtained as reaction products respectively with equimolar SrO, excess SrO and excess SrO 2 to the monomer unit CF 2 of PTFE were used. Excess amount of CaO was needed to effectively decompose PTFE because of its lower reactivity compared with strontium oxide, but it promised practical applications due to its low cost.
Yang, Jihui [Lakeshore, CA; Shi, Xun [Troy, MI; Bai, Shengqiang [Shanghai, CN; Zhang, Wenqing [Shanghai, CN; Chen, Lidong [Shanghai, CN; Yang, Jiong [Shanghai, CN
2012-01-17
A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.
NASA Astrophysics Data System (ADS)
Narang, Sukhleen Bindra; Kaur, Pawandeep; Bahel, Shalini; Pubby, Kunal
2018-01-01
The present study reports on the microwave absorption characterization of Mn2+-Zr4+ substituted lanthanum strontium ferrites, Sr0.85La0.15(MnZr) x Fe12-2 x O19, where x = 0.0, 0.25, 0.50, 0.75 and 1.0 in the X- and Ku-band. The synthesized ferrites are characterized with regard to their electromagnetic properties such as complex permittivity ( {ɛ^' - jɛ^'' ) and complex permeability ( {μ^' - jμ^'' ) using vector network analysis in the 8.2-18 GHz frequency range. Real and imaginary parts of permittivity decrease with the increase in Mn-Zr concentration due to a reduction in electron hopping conduction and eddy current losses, respectively. Microwave permeability spectra are also affected by the doping. The amplitude of magnetic loss peak increases with the increase in doping except for the x = 1.0 composition. Two commonly used approaches, open-circuit and short-circuit, have been employed for the absorption analysis. The difference in the results of these two techniques is justified on the basis of the reflection mechanism. The presented experimental findings underline the potential of the synthesized compositions with Mn-Zr concentrations x = 0.25, 0.5 and 0.75 in the suppression of electromagnetic reflections and radar signatures.
Biosorption of the strontium ion by irradiated Saccharomyces cerevisiae under culture conditions.
Qiu, Liang; Feng, Jundong; Dai, Yaodong; Chang, Shuquan
2017-06-01
As a new-emerging method for strontium disposal, biosorption has shown advantages such as high sorption capacity; low cost. In this study, we investigated the potential of Saccharomyces cerevisiae (S. cerevisiae) in strontium disposal under culture conditions and the effects of irradiation on their biosorption capabilities. We found that S. cerevisiae can survive irradiation and grow. Pre-exposure to irradiation rendered S. cerevisiae resistant to further irradiation. Surprisingly, the pre-exposure to irradiation can increase the biosorption capability of S. cerevisiae. We further investigated the factors that influenced the biosorption efficiency, which were (strongest to weakest): pH > strontium concentration > time > temperature. In our orthogonal experiment, the optimal conditions for strontium biosorption by irradiated S. cerevisiae were: pH 7, 150 mg L -1 strontium at the temperature of 32 °C with 30 h. The equilibrium of strontium biosorption was analyzed by Langmuir and Freundlich models, from which the formal model is found to provide a better fit for the experimental results. The kinetics of strontium biosorption by living irradiated S. cerevisiae was found to be comprised of three phases: dramatically increased during 0-9 h, decreased during 12-24 h, and increased during 30-50 h. These results provide a systematic understanding of the biosorption capabilities of irradiated S. cerevisiae, which can contribute to the development of remediating nuclear waste water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of trivalent ytterbium doped fluorapatites for diode-pumped laser applications
NASA Astrophysics Data System (ADS)
Bayramian, Andrew James
2000-11-01
A major motivator of this work is the Mercury Project, a one kilowatt diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL), which incorporates ytterbium doped strontium fluorapatite, Sr5(PO4)3F (S-FAP), as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material, which is necessary for proper design and modeling of the system. Ytterbium-doped fluorapatites were investigated at LLNL prior to this work and found to be ideal candidate materials for high-power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals was grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb 3+:Srs5-xBax(PO4) 3F where x < 1 showed homogeneous lines offering 8.4 nm (1.8X enhancement) of absorption bandwidth and 6.9 nm (1.4X enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm 2 with homogeneous extraction using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The crystal quality of Czochralski grown Yb:S-FAP boules, which is effected by defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. Stimulated Raman Scattering (SRS) losses were evaluated by first measuring the SRS gain coefficient to be 1.3 cm/GW, then modeling the losses in the Mercury amplifier system. Countermeasures including the addition of bandwidth to the extraction beam and wedging of amplifier surfaces are shown to reduce the SRS losses allowing efficient laser gain extraction at higher intensities. Finally, an efficient Q-switched Yb:S-FAP oscillator was developed which operates three-level at 985 nm with a 21% slope efficiency. Frequency conversion of the 985 nm light to the 2nd harmonic at 492.5 nm was achieved with a 31% conversion efficiency. A diode pumped, doubled Yb:S-FAP laser at 492.5 nm would make possible a compact, efficient, high-power blue laser source.
Angulo, M.A.
2011-01-01
In 2010, U.S. apparent consumption of strontium (contained in celestite and manufactured strontium compounds) decreased by 11 percent to 10.4 kt (11,460 st) from 11.8 kt (13,000 st) in 2009. Gross weight of imports totaled 20.9 kt (23,000 st), of which 65 percent originated from Mexico.
40 CFR 721.10011 - Barium calcium manganese strontium oxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium calcium...
40 CFR 721.10011 - Barium calcium manganese strontium oxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium calcium...
NASA Astrophysics Data System (ADS)
Grate, J. W.; O'Hara, M. J.; Egorov, O. B.; Burge, S. R.
2009-12-01
We have developed automated sensor and analyzer devices for detection and monitoring of trace radionuclides in water, using preconcentrating columns and radiometric detection. The preconcentrating minicolumn sensor concept combines selective capture and detection in a single functional unit, where the column contains tens to hundreds of milligrams of selectively sorbent material, and the entire column content is monitored with a radiometric detector. Compared to thin film sensors with a few microgram of sorbent, this approach achieves tremendous preconcentration with efficient mass transport via pumping. Furthermore, in an equilibration-based mode of operation, the preconcentration by the sensor is maximized while eliminating the need for consumable reagents to regenerate the column; it can simply be re-equilibrated. We have demonstrated quantification of radionuclides such as technetium-99 to levels below drinking water standards in an equilibration-based process that produces steady state signals, signal proportional to concentration, and easy re-equilibration to new concentration levels. Alternatively, analyzers can be developed with separate separation and detection units that are fluidically linked. We have demonstrated detection of strontium-90 to levels below drinking water standards by this approach. We are developing autonomous systems for at-site monitoring on the Hanford Site in Washington State, using the fluidic sensor and analyzer methods, with the aim of monitoring natural and accelerated attenuation processes, remediation and barrier performance, and contaminant fluxes in the environment. Figure 1. The strontium-90 monitoring method deployed as part of the Burge Environmental Universal Sensor Platform, shown on the shores of the Columbia River on the Hanford site in Washington State.
Full-Scale and Bench-Scale Studies on the Removal of Strontium from Water (abstract)
Strontium (Sr) is a natural and commonly occurring alkaline earth metal which has an oxidation state of +2 under normal environmental conditions. Stable strontium is suspended in water and is dissolved after water runs through rocks and soil. It behaves very similar to calcium. G...
The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. There is very little data available on strontium removal from drinking water. As a result, there is an immedia...
Strontium-90 Accumulation on Plant Foliage During Rainfall.
Menzel, R G; Roberts, H; Stewart, E H; Mackenzie, A J
1963-11-01
Accumulation of strontium-90 in field-grown crops was measured during the spring of 1962. Each rainfall markedly increased the strontium-90 content of the crops, except when the plants were very small. Accumulation between rains was comparatively small, about equal to the expected uptake from the soil.
Federal and State Water Quality Standards/Guidelines for Selected Parameters.
1979-02-01
isopropyl methylphosphonate) Dioctyl adipate Dioctyl azelate Diphenyl sulfoxide 1,4-Dithiane DNT (Dinitrotoluene) DNT (All isomers) Endr in Fluoride...dye (1-Methylaminoanthraquinone) Silver Sodium Sodium styphnate Strontium nitrate Strontium oxalate Strontium peroxide Sulfate Tetrachlorobenzene...Cyclohexanol Cyclohexanone Cyclopentanone Diethyl amine Diphenyl sulfoxide 1,4-Dithiane DNT (Dinitrotoluene) Fluoride Hardness, total
Quantum-splitting oxide-based phosphors and method of producing the same
Setlur, Anant Achyut; Srivastava, Alok Mani
2003-09-02
Strontium, calcium, strontium calcium, strontium calcium magnesium, calcium magnesium aluminates, and strontium borates activated with Pr.sup.3+ exhibit characteristics of quantum-splitting phosphors under VUV excitation. A large emission peak at about 405 nm under VUV excitation is used conveniently to identify quantum-splitting phosphors. Improvements may be achieved with addition of fluorides or boric acid as a flux during the preparation of the phosphors. It is also possible to predict improvement in quantum efficiency by observing the ratio of emission intensities at about 480 nm and about 610 nm.
Phase Equilibria of the Brine Systems Containing Strontium and Calcium Ions
NASA Astrophysics Data System (ADS)
Wang, Xia; Zhao, Kaiyu; Li, Long; Guo, Yafei; Meng, Lingzong; Deng, Tianlong
2017-12-01
It is well known that the comprehensive utilization of the Salt Lake resources successfully must be guided corresponding to the aqueous phase equilibria and phase diagrams. Researches on the phase relationships of brine systems containing calcium and strontium ions are essential to promote the development for the relative resources discovered in China at recent years. In this paper, the phase equilibria of calcium-containing systems, strontium-containing systems and calcium-strontium coexisted brine systems around the world were reviewed. The problems existed recently and new trends in future were point out.
Dubtsov, G G; Novikova, Zh V; Komleva, V A
2007-01-01
The research work was devoted to accumulation of strontium-90 (Sr-90) in bone tissue of animals (white rats) and its dependence on the diet, enriched with Fluorine (F). Totally each rat received 18,5 MBk of strontium-90. Insertion of rusks, fortified with sodium fluoride to the rats dietary intake, reduces accumulation of strontium-90 in bone tissue for 26% comparatively to control group of animals. Stimulation action of fluorine on hematopoietic function of irradiated animals were also determined.
Strontium-90 in deciduous teeth in Finland. A follow-up study.
Kolehmainen, L; Rytömaa, I
1975-01-01
Deciduous teeth of Finnish children born in 1958-1967 were analysed for strontium-90 by means of Cerenkov radiation. The strontium-90 content was about 9 pCi/gCa in children born in 1963--1964; the values decreased strongly in the subsequent cohorts of children. The strontium-90 content of the deciduous teeth varied in perfect unison with that of cow's milk (r=+0.99). The results confirm that deciduous teeth provide a practical and accurate indicator of the total body burden of bone-seeking environmental pollutants.
Intestinal Calcium Absorption among Hypercalciuric Patients with or without Calcium Kidney Stones.
Vezzoli, Giuseppe; Macrina, Lorenza; Rubinacci, Alessandro; Spotti, Donatella; Arcidiacono, Teresa
2016-08-08
Idiopathic hypercalciuria is a frequent defect in calcium kidney stone formers that is associated with high intestinal calcium absorption and osteopenia. Characteristics distinguishing hypercalciuric stone formers from hypercalciuric patients without kidney stone history (HNSFs) are unknown and were explored in our study. We compared 172 hypercalciuric stone formers with 36 HNSFs retrospectively selected from patients referred to outpatient clinics of the San Raffaele Hospital in Milan from 1998 to 2003. Calcium metabolism and lumbar bone mineral density were analyzed in these patients. A strontium oral load test was performed: strontium was measured in 240-minute urine and serum 30, 60, and 240 minutes after strontium ingestion; serum strontium concentration-time curve and renal strontium clearance were evaluated to estimate absorption and excretion of divalent cations. Serum strontium concentration-time curve (P<0.001) and strontium clearance (4.9±1.3 versus 3.5±2.7 ml/min; P<0.001) were higher in hypercalciuric stone formers than HNSFs, respectively. The serum strontium-time curve was also higher in hypercalciuric stone formers with low bone mineral density (n=42) than in hypercalciuric stone formers with normal bone mineral density (n=130; P=0.03) and HNSFs with low (n=22; P=0.01) or normal bone mineral density (n=14; P=0.02). Strontium clearance was greater in hypercalciuric stone formers with normal bone mineral density (5.3±3.4 ml/min) than in hypercalciuric stone formers and HNSFs with low bone mineral density (3.6±2.5 and 3.1±2.5 ml/min, respectively; P=0.03). Multivariate regression analyses displayed that strontium absorption at 30 minutes was positively associated calcium excretion (P=0.03) and negatively associated with lumbar bone mineral density z score (P=0.001) in hypercalciuric stone formers; furthermore, hypercalciuric patients in the highest quartile of strontium absorption had increased stone production risk (odds ratio, 5.06; 95% confidence interval, 1.2 to 20.9; P=0.03). High calcium absorption in duodenum and jejunum may expose hypercalciuric patients to the risk of stones because of increased postprandial calcium concentrations in urine and tubular fluid. High calcium absorption may identify patients at risk of bone loss among stone formers. Copyright © 2016 by the American Society of Nephrology.
Annual INTEC Groundwater Monitoring Report for Group 5 - Snake River Plain Aquifer (2001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roddy, Michael Scott
2002-02-01
This report describes the monitoring activities conducted and presents the results of groundwater sampling and water-level measurements from October 2000 to September 2001. Groundwater samples were initially collected from 41 wells from the Idaho Nuclear Technology and Engineering Center and the Central Facilities Area and analyzed for iodine-129, strontium-90, tritium, gross alpha, gross beta, technetium-99, uranium isotopes, plutonium isotopes, neptunium-237, americium-241, gamma spectrometry, and mercury. Samples from 41 wells were collected in April and May 2001. Additional sampling was conducted in August 2001 and included the two CFA production wells, the CFA point of compliance for the production wells, onemore » well that was previously sampled and five additional monitoring wells. Iodine-129 and strontium-90 were the only analytes above their respective maximum contaminant levels. Iodine-129 was detected just above its maximum contaminant level of 1 pCi/L at two of the Central Facilities Area landfill wells. Iodine-129 was detected in the CFA production wells at 0.35±0.083 pCi/L in CFA-1, but was below detectable activity in CFA-2. Strontium-90 was above its maximum contaminant level of 8 pCi/L in several wells near the Idaho Nuclear Technology and Engineering Center but was below its maximum contaminant level in the downgradient wells at the Central Facilities Area landfills. Sr-90 was not detected in the CFA production wells. Gross beta results generally mirrored the results for strontium-90 and technetium-99. Plutonium isotopes and neptunium-237 were not detected. Uranium-233/234 and uranium-238 isotopes were detected in all samples. Concentrations of background and site wells were similar and are within background limits for total uranium determined by the USGS, suggesting that the concentrations are background. Uranium-235/236 was detected in 11 samples, but all the detected concentrations were similar and near the minimum detectable activity. Americium-241 was detected at three locations near the minimum detectable activity of approximately 0.07 pCi/L. The gamma spectrometry results detected cesium-137 in three samples, potassium-40 at eight locations, and radium-226 at one location. Mercury was below its maximum contaminant level of 2 µg/L in all samples. Gamma spectrometry results for the CFA production wells did not detect any analytes. Water-level measurements were taken from wells in the Idaho Nuclear Technology and Engineering Center, Central Facilities Area, and the area south of Central Facilities Area to evaluate groundwater flow directions. Water-level measurements indicated groundwater flow to the south-southwest from the Idaho Nuclear Technology and Engineering Center.« less
Photoconductivity in nanostructured sulfur-doped V2O5 thin films
NASA Astrophysics Data System (ADS)
Mousavi, M.; Yazdi, Sh. Tabatabai
2016-03-01
In this paper, S-doped vanadium oxide thin films with doping levels up to 40 at.% are prepared via spray pyrolysis method on glass substrates, and the effect of S-doping on the structural and photoconductivity related properties of β-V2O5 thin films is studied. The results show that most of the films have been grown in the tetragonal β-V2O5 phase structure with the preferred orientation along [200]. With increasing the doping level, the samples tend to be amorphous. The structure of the samples reveals to be nanobelt-shaped whose width decreases from nearly 100 nm to 40 nm with S concentration. The photoconductivity measurements show that by increasing the S-doping level, the photosensitivity increases, which is due to the prolonged electron’s lifetime as a result of enhanced defect states acting as trap levels.
Bolland, Mark J; Grey, Andrew
2014-10-07
Recently, the European Medicines Agency reported that strontium ranelate increases myocardial infarction risk in postmenopausal women, 8.5 years after it was registered for use in osteoporosis. Unreported serious adverse events in clinical trials for other pharmaceuticals have been described in recent years. We assessed reporting of adverse events and fracture efficacy of strontium. We compared data on adverse effects (myocardial infarction, venous thromboembolism and pulmonary embolism) and fracture efficacy of strontium in publicly available regulatory documents with data in publications retrieved from searching PubMed. We identified 5 regulatory documents and 9 primary publications of 7 randomised, placebo-controlled trials of strontium that reported relevant data. We identified several areas of concern in these reports: the increased risk of myocardial infarction with strontium was not identified in a pivotal phase 3 clinical trial despite specific regulatory review of cardiovascular events; data on myocardial infarction were not included in any primary publication; increased risks of venous thromboembolism and pulmonary embolism with strontium were not reported in either of the phase 3 clinical trials; data on venous thromboembolism were reported in only 5 of 9 primary publications, data on pulmonary embolism in only 2 of 9 primary publications, and either was discussed in <50% of subsequent review articles. There were differences in participant numbers, fracture cases and venous thromboembolism cases between regulatory documents and primary publications. Based on all available data from primary publications and regulatory documents, the number of fractures prevented by strontium use is similar to the number of extra cases of venous thromboembolism, pulmonary embolism and myocardial infarction caused by strontium use. The risks of strontium use are similar to the benefits. Full disclosure of the clinical trial data and regulatory documents would allow clinicians and their patients to decide whether use of the drug is worthwhile. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The IRHUM database - bioavailable strontium isotope ratios of France for geochemical fingerprinting
NASA Astrophysics Data System (ADS)
Willmes, Malte; Moffat, Ian; Grün, Rainer; Armstrong, Richard; Kinsley, Les; McMorrow, Linda
2013-04-01
Strontium isotope ratios (87Sr/86Sr) are used as a geochemical tracer in a wide range of fields including archaeology, ecology, soil, food and forensic sciences. These applications are based on the principle that strontium isotopic ratios of materials reflect the geological sources of the strontium, which were available during its formation. Geologic regions with distinct strontium isotope ranges, which depend on their age and composition, can be differentiated. A major constraint for current studies is the lack of robust reference maps to evaluate the strontium isotope ratios measured in the samples. The aim of the IRHUM (isotopic reconstruction of human migration) database is to provide a reference map of bioavailable strontium isotope ratios for continental France. The current dataset contains 400 sample locations covering the major geologic units of the Paris and Aquitaine Basin, the Massif Central, and the Pyrenees. At each site soil and plant samples have been collected to cover the whole range of strontium ratios at a specific location. The database is available online at www.rses.anu.edu.au/research-areas/archaeogeochemistry and contains the bioavailable strontium isotope data as well as major and trace element concentrations for soil and plant samples. Strontium isotopes were analysed using a Neptune multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) and elemental concentrations with a Varian Vista Pro Axial ICP-AES (inductively-coupled plasma atomic emission spectrometer). In addition, IRHUM provides spatial context for each sample, including background geology, field observations and soil descriptions. This metadata allows users to evaluate the suitability of a specific data point for their study. The IRHUM database fills an important gap between high resolution studies from specific sites (e.g. archaeological sites), to the very broad geochemical mapping of Europe. Thus it provides an excellent tool to evaluate the regional context of a sample and complement more closed spaced studies. New results will be added to the database continuously with the aim of covering all major geologic units of France within the next year.
Liszewski, M.J.; Rosentreter, J.J.; Miller, Karl E.; Bartholomay, R.C.
2000-01-01
The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (K(d)s) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experiments using synthesized aqueous solutions were used to determine K(d)s, which describe the distribution of a solute between the solution and solid phase, of 20 surficial-sediment samples from the INEEL. The K(d)s for the 20 surficial-sediment samples ranged from 36 to 275 ml/g. Many properties of both the synthesized aqueous solutions and sediments used in the experiments also were determined. Solution properties determined were initial and equilibrium concentrations of calcium, magnesium, and strontium, pH and specific conductance, and initial concentrations of potassium and sodium. Sediment properties determined were grain-size distribution, bulk mineralogy, whole-rock major-oxide and strontium and barium concentrations, and Brunauer-Emmett-Teller (BET) surface area. Solution and sediment properties were correlated with strontium K(d)s of the 20 surficial sediments using Pearson correlation coefficients. Solution properties with the strongest correlations with strontium K(d)s were equilibrium pH and equilibrium calcium concentration correlation coefficients, 0.6598 and -0.6518, respectively. Sediment properties with the strongest correlations with strontium K(d)s were manganese oxide (MnO), BET surface area, and the >4.75-mm-grain-size fraction correlation coefficients, 0.7054, 0.7022, and -0.6660, respectively. Effects of solution properties on strontium K(d)s were interpreted as being due to competition among similarly charged and sized cations in solution for strontium-sorption sites; effects of sediment properties on strontium K(d)s were interpreted as being surface-area related. Multivariate analyses of these solution and sediment properties resulted in r2 values of 0.8071 when all five properties were used and 0.8043 when three properties, equilibrium pH, MnO, and BET surface area, were used.
Rattray, Gordon W.
2014-01-01
Quality-control (QC) samples were collected from 2002 through 2008 by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, to ensure data robustness by documenting the variability and bias of water-quality data collected at surface-water and groundwater sites at and near the Idaho National Laboratory. QC samples consisted of 139 replicates and 22 blanks (approximately 11 percent of the number of environmental samples collected). Measurements from replicates were used to estimate variability (from field and laboratory procedures and sample heterogeneity), as reproducibility and reliability, of water-quality measurements of radiochemical, inorganic, and organic constituents. Measurements from blanks were used to estimate the potential contamination bias of selected radiochemical and inorganic constituents in water-quality samples, with an emphasis on identifying any cross contamination of samples collected with portable sampling equipment. The reproducibility of water-quality measurements was estimated with calculations of normalized absolute difference for radiochemical constituents and relative standard deviation (RSD) for inorganic and organic constituents. The reliability of water-quality measurements was estimated with pooled RSDs for all constituents. Reproducibility was acceptable for all constituents except dissolved aluminum and total organic carbon. Pooled RSDs were equal to or less than 14 percent for all constituents except for total organic carbon, which had pooled RSDs of 70 percent for the low concentration range and 4.4 percent for the high concentration range. Source-solution and equipment blanks were measured for concentrations of tritium, strontium-90, cesium-137, sodium, chloride, sulfate, and dissolved chromium. Field blanks were measured for the concentration of iodide. No detectable concentrations were measured from the blanks except for strontium-90 in one source solution and one equipment blank collected in September and October 2004, respectively. The detectable concentrations of strontium-90 in the blanks probably were from a small source of strontium-90 contamination or large measurement variability, or both. Order statistics and the binomial probability distribution were used to estimate the magnitude and extent of any potential contamination bias of tritium, strontium-90, cesium-137, sodium, chloride, sulfate, dissolved chromium, and iodide in water-quality samples. These statistical methods indicated that, with (1) 87 percent confidence, contamination bias of cesium-137 and sodium in 60 percent of water-quality samples was less than the minimum detectable concentration or reporting level; (2) 92‒94 percent confidence, contamination bias of tritium, strontium-90, chloride, sulfate, and dissolved chromium in 70 percent of water-quality samples was less than the minimum detectable concentration or reporting level; and (3) 75 percent confidence, contamination bias of iodide in 50 percent of water-quality samples was less than the reporting level for iodide. These results support the conclusion that contamination bias of water-quality samples from sample processing, storage, shipping, and analysis was insignificant and that cross-contamination of perched groundwater samples collected with bailers during 2002–08 was insignificant.
Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model
Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.; ...
2017-11-15
Here, we present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists outmore » to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.« less
Discrete impurity band from surface danging bonds in nitrogen and phosphorus doped SiC nanowires
NASA Astrophysics Data System (ADS)
Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Cao, Mao-Sheng; Fang, Xiao-Yong
2018-04-01
The electronic structure and optical properties of the nitrogen and phosphorus doped silicon carbide nanowires (SiCNWs) are investigated using first-principle calculations based on density functional theory. The results show doping can change the type of the band gap and improve the conductivity. However, the doped SiCNWs form a discrete impurity levels at the Fermi energy, and the dispersion degree decreases with the diameter increasing. In order to reveal the root of this phenomenon, we hydrogenated the doped SiCNWs, found that the surface dangling bonds were saturated, and the discrete impurity levels are degeneracy, which indicates that the discrete impurity band of the doped SiCNWs is derived from the dangling bonds. The surface passivation can degenerate the impurity levels. Therefore, both doping and surface passivation can better improve the photoelectric properties of the SiCNWs. The result can provide additional candidates in producing nano-optoelectronic devices.
Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.
Here, we present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists outmore » to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.« less
Lin, Liangwu; Sun, Xinyuan; Jiang, Yao; He, Yuehui
2013-12-21
Novel near-UV and blue excited Eu(3+), Tb(3+)-codoped one dimensional strontium germanate full-color nano-phosphors have been successfully synthesized by a simple sol-hydrothermal method. The morphologies, internal structures, chemical constitution and optical properties of the resulting samples were characterized using FE-SEM, TEM, HRTEM, EDS, XRD, FTIR, XPS, PL and PLE spectroscopy and luminescence decay curves. The results suggested that the obtained Eu(3+), Tb(3+)-codoped strontium germanate nanowires are single crystal nanowires with a diameter ranging from 10 to 80 nm, average diameter of around 30 nm and the length ranging from tens to hundreds micrometers. The results of PL and PLE spectra indicated that the Eu(3+), Tb(3+)-codoped single crystal strontium germanate nanowires showed an intensive blue, blue-green, green, orange and red or green, orange and red light emission under excitation at 350-380 nm and 485 nm, respectively, which may attributed to the coexistent Eu(3+), Eu(2+) and Tb(3+) ions, and the defects located in the strontium germanate nanowires. A possible mechanism of energy transfer among the host, Eu(3+) and Tb(3+) ions was proposed. White-emission can be realized in a single-phase strontium germanate nanowire host by codoping with Tb(3+) and Eu(3+) ions. The Eu(3+), Tb(3+)-codoped one-dimensional strontium germanate full-color nano-phosphors have superior stability under electron bombardment. Because of their strong PL intensity, good CIE chromaticity and stability, the novel 1D strontium germanate full-color nano-phosphors have potential applications in W-LEDs.
Kirschneck, Christian; Wolf, Michael; Reicheneder, Claudia; Wahlmann, Ulrich; Proff, Peter; Roemer, Piero
2014-12-05
The anchorage mechanisms currently used in orthodontic treatment have various disadvantages. The objective of this study was to determine the applicability of the osteoporosis medication strontium ranelate in pharmacologically induced orthodontic tooth anchorage. In 48 male Wistar rats, a constant orthodontic force of 0.25 N was reciprocally applied to the upper first molar and the incisors by means of a Sentalloy(®) closed coil spring for two to four weeks. 50% of the animals received strontium ranelate at a daily oral dosage of 900 mg per kilogramme of body weight. Bioavailability was determined by blood analyses. The extent of tooth movement was measured both optometrically and cephalometrically (CBCT). Relative alveolar gene expression of osteoclastic markers and OPG-RANKL was assessed by qRT-PCR and root resorption area and osteoclastic activity were determined in TRAP-stained histologic sections of the alveolar process. Compared to controls, the animals treated with strontium ranelate showed up to 40% less tooth movement after four weeks of orthodontic treatment. Gene expression and histologic analyses showed significantly less osteoclastic activity and a significantly smaller root resorption area. Blood analyses confirmed sufficient bioavailability of strontium ranelate. Because of its pharmacologic effects on bone metabolism, strontium ranelate significantly reduced tooth movement and root resorption in orthodontic treatment of rats. Strontium ranelate may be a viable agent for inducing tooth anchorage and reducing undesired root resorption in orthodontic treatment. Patients under medication of strontium ranelate have to expect prolonged orthodontic treatment times. Copyright © 2014 Elsevier B.V. All rights reserved.
Electronic effects of Se and Pb dopants in TlBr
NASA Astrophysics Data System (ADS)
Smith, Holland M.; Phillips, David J.; Sharp, Ian D.; Beeman, Jeffrey W.; Chrzan, Daryl C.; Haegel, Nancy M.; Haller, Eugene E.; Ciampi, Guido; Kim, Hadong; Shah, Kanai S.
2012-05-01
Deep levels in Se- and Pb-doped bulk TlBr detectors were characterized with photo-induced conductivity transient spectroscopy (PICTS) and cathodoluminescence (CL). Se-doped TlBr revealed two traps with energies of 0.35 and 0.45 eV in PICTS spectra. The Pb-doped material revealed three levels with energies of 0.11, 0.45, and 0.75 eV. CL measurements in both materials correlate with optical transitions involving some of the identified levels. The ambipolar carrier lifetimes of Se-doped and Pb-doped TlBr were measured with microwave reflectivity transients and found to be significantly lower than the lifetime of undoped TlBr.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Scandium 48 (Sc 48) Selenium 75 (Se 75) Silicon 31 (Si 31) Silver 105 (Ag 105) Silver 110m (Ag 110m) Silver 111 (Ag 111) Sodium 22 (Na 22) Sodium 24 (Na 24) Strontium 85 (Sr 85) Strontium 89 (Sr 89) Strontium...
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Scandium 48 (Sc 48) Selenium 75 (Se 75) Silicon 31 (Si 31) Silver 105 (Ag 105) Silver 110m (Ag 110m) Silver 111 (Ag 111) Sodium 22 (Na 22) Sodium 24 (Na 24) Strontium 85 (Sr 85) Strontium 89 (Sr 89) Strontium...
10 CFR 32.62 - Same: Quality assurance; prohibition of transfer.
Code of Federal Regulations, 2014 CFR
2014-01-01
... reject any which has an observable physical defect that could affect containment of the strontium-90. (b) Each person licensed under § 32.61 shall test each device for possible loss of strontium-90 or for... detection device containing strontium-90 in a manner sufficient to provide reasonable assurance that the...
10 CFR 32.62 - Same: Quality assurance; prohibition of transfer.
Code of Federal Regulations, 2012 CFR
2012-01-01
... reject any which has an observable physical defect that could affect containment of the strontium-90. (b) Each person licensed under § 32.61 shall test each device for possible loss of strontium-90 or for... shall show no visible evidence of physical contact between the water and the strontium-90. Absolute...
10 CFR 32.62 - Same: Quality assurance; prohibition of transfer.
Code of Federal Regulations, 2011 CFR
2011-01-01
... reject any which has an observable physical defect that could affect containment of the strontium-90. (b) Each person licensed under § 32.61 shall test each device for possible loss of strontium-90 or for... shall show no visible evidence of physical contact between the water and the strontium-90. Absolute...
10 CFR 32.62 - Same: Quality assurance; prohibition of transfer.
Code of Federal Regulations, 2013 CFR
2013-01-01
... reject any which has an observable physical defect that could affect containment of the strontium-90. (b) Each person licensed under § 32.61 shall test each device for possible loss of strontium-90 or for... detection device containing strontium-90 in a manner sufficient to provide reasonable assurance that the...
STRONTIUM-90 IN PLANTS AND ANIMALS OF ARCTIC ALASKA, 1959-61.
WATSON, D G; HANSON, W C; DAVIS, J J
1964-05-22
The strontium-90 content of the biota near Cape Thompson, Alaska, was related to environmental factors. In plants, perennials with persistent aerial parts had maximum and similar concentrations of strontium-90. The content of caribou muscle varied seasonally and was highest in winter when lichens were an important caribou food.
Jon H. Connolly; Walter C. Shortle; Jody Jellison
1999-01-01
The white-rot wood decay fungus Resinicium bicolor (Abertini & Schwein.: Fr.) Parmasto was studied for its ability to solubilize and translocate ions from the naturally occurring mineral strontianite. Resinicium bicolor colonized a soil mixture culture medium containing strontianite sand, solubilized strontium ions from this...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Lingling; Zaidi, Samir; Peng Yuanzhen
Strontium ranelate, a new agent for the treatment of osteoporosis, has been shown stimulate bone formation in various experimental models. This study examines the effect of strontium ranelate on gene expression in osteoblasts, as well as the formation of mineralized (von Kossa-positive) colony-forming unit-osteoblasts (CFU-obs). Bone marrow-derived stromal cells cultured for 21 days under differentiating conditions, when exposed to strontium ranelate, displayed a significant time- and concentration-dependent increase in the expression of the master gene, Runx2, as well as bone sialoprotein (BSP), but interestingly without effects on osteocalcin. This was associated with a significant increase in the formation of CFU-obsmore » at day 21 of culture. In U-33 pre-osteoblastic cells, strontium ranelate significantly enhanced the expression of Runx2 and osteocalcin, but not BSP. Late, more mature osteoblastic OB-6 cells showed significant elevations in BSP and osteocalcin, but with only minimal effects on Runx2. In conclusion, strontium ranelate stimulates osteoblast differentiation, but the induction of the program of gene expression appears to be cell type-specific. The increased osteoblastic differentiation is the likely basis underlying the therapeutic bone-forming actions of strontium ranelate.« less
Strontium ranelate: a novel mode of action leading to renewed bone quality.
Ammann, Patrick
2005-01-01
Various bone resorption inhibitors and bone stimulators have been shown to decrease the risk of osteoporotic fractures. However, there is still a need for agents promoting bone formation by inducing positive uncoupling between bone formation and bone resorption. In vitro studies have suggested that strontium ranelate enhances osteoblast cell replication and activity. Simultaneously, strontium ranelate dose-dependently inhibits osteoclast activity. In vivo studies indicate that strontium ranelate stimulates bone formation and inhibits bone resorption and prevents bone loss and/or promotes bone gain. This positive uncoupling between bone formation and bone resorption results in bone gain and improvement in bone geometry and microarchitecture, without affecting the intrinsic bone tissue quality. Thus, all the determinants of bone strength are positively influenced. In conclusion, strontium ranelate, a new treatment of postmenopausal osteoporosis, acts through an innovative mode of action, both stimulating bone formation and inhibiting bone resorption, resulting in the rebalancing of bone turnover in favor of bone formation. Strontium ranelate increases bone mass while preserving the bone mineralization process, resulting in improvement in bone strength and bone quality.
Nevile, Jessica C; Hurn, Simon D; Turner, Andrew G; McCowan, Christina
2015-05-01
To report three cases of canine corneal squamous cell carcinoma (SCC) treated with strontium 90 beta radiation as an adjunct to surgical excision. Corneal SCC was excised with lamellar keratectomy. This was followed by local application of strontium 90 beta radiation. Available case follow-up times range from 3 to 50 months. One case suffered a recurrence 5 months following initial excision and strontium 90 treatment. Strontium 90 beta radiation has been used extensively as an adjunctive treatment for equine corneal SCC and in other canine ocular tumors; however, there is a paucity of information regarding use in canine corneal SCC. The cases presented here suggest its use following keratectomy may be helpful in preventing disease recurrence. At the dosage used, severe adverse effects were not observed. © 2014 American College of Veterinary Ophthalmologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Yuhua; Lekse, Jonathan; Wang, Xianfeng
2015-04-22
The electronic structural and phonon properties of Na 2-αM αZrO 3 (M ¼ Li,K, α = ¼ 0.0,0.5,1.0,1.5,2.0) are investigated by first-principles density-functional theory and phonon dynamics. The thermodynamic properties of CO 2 absorption and desorption in these materials are also analyzed. With increasing doping level α, the binding energies of Na 2-αLi αZrO 3 are increased while the binding energies of Na 2-α K αZrO 3 are decreased to destabilize the structures. The calculated band structures and density of states also show that, at the same doping level, the doping sites play a significant role in the electronic properties.more » The phonon dispersion results show that few soft modes are found in several doped configurations, which indicates that these structures are less stable than other configurations with different doping levels. From the calculated relationships among the chemical-potential change, the CO 2 pressure, and the temperature of the CO 2 capture reactions by Na 2-αM αZrO 3, and from thermogravimetric-analysis experimental measurements, the Li- and K-doped mixtures Na 2-αM αZrO 3 have lower turnover temperatures (T t) and higher CO 2 capture capacities, compared to pure Na 2ZrO 3. The Li-doped systems have a larger T t decrease than the K-doped systems. When increasing the Li-doping level α, the T t of the corresponding mixture Na 2-αLi αZrO 3 decreases further to a low-temperature range. However, in the case of K-doped systems Na 2-αK αZrO 3, although doping K into Na 2ZrO 3 initially shifts its T t to lower temperatures, further increases of the K-doping level α causes T t to increase. Therefore, doping Li into Na 2ZrO 3 has a larger influence on its CO 2 capture performance than the K-doped Na 2ZrO 3. Compared with pure solidsM 2ZrO 3, after doping with other elements, these doped systems’ CO 2 capture performances are improved.« less
NASA Astrophysics Data System (ADS)
Maekura, T.; Tanaka, K.; Motoyama, C.; Yoneda, R.; Yamamoto, K.; Nakashima, H.; Wang, D.
2017-10-01
The direct band gap electroluminescence (EL) intensity was investigated for asymmetric metal/Ge/metal diodes fabricated on n-type Ge with doping levels in the range of 4.0 × 1013-3.1 × 1018 cm-3. Up to a doping level of 1016 cm-3 order, commercially available (100) n-Ge substrates were used. To obtain a doping level higher than 1017 cm-3 order, which is commercially unavailable, n+-Ge/p-Ge structures were fabricated by Sb doping on p-type (100) Ge substrates with an in-diffusion at 600 °C followed by a push-diffusion at 700 °C-850 °C. The EL intensity was increased with increasing doping level up to 1.0 × 1018 cm-3. After that, it was decreased with a further increase in n-type doping level. This EL intensity decrease is explained by the decreased number of holes in the active region. One reason is the difficulty in hole injection through the PtGe/n-Ge contact due to the occurring of tunneling electron current. Another reason is the loss of holes caused by both the small thickness of n+-Ge layer and the existence of n+p junction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huguet, F. et al.
1962-01-01
The absorption of cesium-137 and strontium-90 by vines, permanent pasture, potatoes, green vegetables, tomatoes, onions, cabbage, and beans in France in 1960 is presented. The strontium coefficient has varied very little from one year to the next and that of cesium has slightly diminished. The values obtained suggest that the concentrations in irrigation water should not exceed one fifth of the maximum permissible concentration in drinking water. (auth)
Riedel, Christoph; Zimmermann, Elizabeth A; Zustin, Jozef; Niecke, Manfred; Amling, Michael; Grynpas, Marc; Busse, Björn
2017-02-01
Strontium ranelate and fluoride salts are therapeutic options to reduce fracture risk in osteoporosis. Incorporation of these elements in the physiological hydroxyapatite matrix of bone is accompanied by changes in bone remodeling, composition, and structure. However, a direct comparison of the effectiveness of strontium and fluoride treatment in human cortical bone with a focus on the resulting mechanical properties remains to be established. Study groups are composed of undecalcified specimens from healthy controls, treatment-naïve osteoporosis cases, and strontium ranelate or fluoride-treated osteoporosis cases. Concentrations of both elements were determined using instrumental neutron activation analysis (INAA). Backscattered electron imaging was carried out to investigate the calcium content and the cortical microstructure. In comparison to osteoporotic patients, fluoride and strontium-treated patients have a lower cortical porosity indicating an improvement in bone microstructure. Mechanical properties were assessed via reference point indentation as a measure of bone's resistance to deformation. The strontium-incorporation led to significantly lower total indentation distance values compared to osteoporotic cases; controls have the highest resistance to indentation. In conclusion, osteoporosis treatment with strontium and fluoride showed positive effects on the microstructure and the mechanical characteristics of bone in comparison to treatment-naïve osteoporotic bone. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 433-442, 2017. © 2016 Wiley Periodicals, Inc.
Ober, J.A.
1993-01-01
Part of a special section reviewing the market performance of industrial minerals in 1992. Imports of celestite (strontium ore) reached nearly 45 kt, which represents an increase of 35 percent over 1991. Mexico supplied almost all of the celestite. Nearly 70 percent of the strontium consumed in the U.S. is used in television picture tube faceplate glass to block X-ray emissions.
STRONTIUM AS AN EFFICIENT PROMOTER FOR SUPPORTED PALLADIUM HYDROGENATION CATALYSTS
The effect of strontium promotion is studied for a series of supported palladium catalysts such as Pd/zeolite-β, Pd/Al2O3, Pd/SiO2, Pd/hydrotalcite and Pd/MgO. Strontium is found to be an effective promoter for enhancing the metal area, perce...
Strontium-90 concentration factors of lake plankton, macrophytes, and substrates.
Kalnina, Z; Polikarpov, G
1969-06-27
The ratio of concentration of strontium-90 in living and inert lake components to that in lake water (concentration factors) was determined for plankton, macrophytes, and substrates in eutrophic, mesotropric-eutrophic, and dystrophic Latgalian lakes. Concentration factors of strontium-90 in aquatic organisms and substrates are higher in a dystrophic lake than in the other types.
NASA Astrophysics Data System (ADS)
Tarafder, Solaiman
Although tricalcium phosphate (TCP) is widely used in bone tissue engineering, the strength degradation kinetics is not well controlled. This study focuses on the underlying mechanism of strength degradation kinetics by incorporating trace elements in TCP. The objective of this research is to modify the mechanical properties of TCP to achieve the desired degradation rate for the specific need, and improve the in vivo bioactivity for early wound healing by incorporating trace elements such as strontium (Sr2+), magnesium (Mg2+) and silicon (Si4+) as dopants. The hypothesis of this research is that the presence of different trace elements in TCP will influence its phase stability, microstructure, mechanical strength, and both in vitro and in vivo bioactivity. Direct three dimensional printing (3DP) was used to fabricate designed interconnected macroporous pure and doped TCP scaffolds. Microwave sintering as opposed to conventional sintering was also used for better densification and higher mechanical strength. A maximum compressive strength of 10.95 +/- 1.28 MPa and 12.01 +/- 1.56 MPa were achieved for pure and Sr2+-Mg2+ doped TCP scaffolds with 500 microm designed pores (˜400 microm after sintering) sintered in microwave furnace, respectively. Substitution of Mg2+ and Sr2+ into calcium (Ca2+) sites of TCP crystal lattice contributed to phase stability and controlled gradual degradation. On the other hand, Si4+ substitution into phosphorous (P5+) sites destabilized the crystal structure and accelerated degradation of TCP. Interconnected macroporous beta-TCP scaffolds facilitated in vivo guided bone tissue regeneration through infiltration of cells and extracellular matrix into the designed pores. Presence of Sr2+, Mg2+ and Si4+ into beta-TCP induced increased in vivo early bone formation and better bone remodeling through increased extracellular matrix production such as, collagen and osteocalcin, when tested in rat and rabbit distal femur model. The presence of Si4+ along with Mg 2+ induced increased new blood vessel formation. Our results exhibited that Sr2+, Mg2+ and Si4+ doped 3DP TCP scaffolds have strong potential in bone tissue engineering applications for early wound healing.
Durmuş, Kasım; Turgut, Nergiz Hacer; Doğan, Mehtap; Tuncer, Ersin; Özer, Hatice; Altuntaş, Emine Elif; Akyol, Melih
2017-10-01
Mandibular fractures are the most common facial fractures. They can be treated by conservative techniques or by surgery. The authors hypothesized that the application of a single local dose of strontium chloride would accelerate the healing of subcondylar mandibular fractures, shorten the recovery time and prevent complications. The aim of the present pilot study was to evaluate the effects of a single local dose of strontium chloride on the healing of subcondylar mandibular fractures in rats. This randomized experimental study was carried out on 24 male Wistar albino rats. The rats were randomly divided into 3 groups: experimental group 1, receiving 3% strontium chloride; experimental group 2, receiving 5% strontium chloride; and the control group. A full thickness surgical osteotomy was created in the subcondylar area. A single dose of strontium solution (0.3 cc/site) was administered locally by injection on the bone surfaces of the fracture line created. Nothing was administered to the control group. The mandibles were dissected on postoperative day 21. The fractured hemimandibles were submitted to histopathological examination. The median bone fracture healing score was 9 (range: 7-9) in experimental group 1; 8 (range: 7-10) in experimental group 2; and 7.50 (range: 7-8) in the control group. When the groups were compared in terms of bone healing scores, there was a statistically significant difference between experimental group 1 and the control group (p < 0.05). This study is the first to show that local strontium may have positive effects on the healing of subcondylar mandibular fractures. In the authors' opinion, 3% strontium was beneficial for accelerating facial skeleton consolidation and bone regeneration in rat subcondylar mandibular fractures. This treatment procedure may be combined with closed fracture treatment or a conservative approach.
Endotrophic Calcium, Strontium, and Barium Spores of Bacillus megaterium and Bacillus cereus1
Foerster, Harold F.; Foster, J. W.
1966-01-01
Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333–1345. 1966.—Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl2, SrCl2, or BaCl2. Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed “coat fraction” from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH. Images PMID:4956334
Electrical properties of Er-doped CdS thin films
NASA Astrophysics Data System (ADS)
Dávila-Pintle, J. A.; Lozada-Morales, R.; Palomino-Merino, M. R.; Rivera-Márquez, J. A.; Portillo-Moreno, O.; Zelaya-Angel, O.
2007-01-01
Cadmium sulfide thin films were prepared by chemical bath on glass substrates at 80°C. CdS was Er-doped during the growth process by adding water-diluted Er(NO3)33•H2O to the CdS aqueous growing solution. The relative volume of the doping solution was varied in order to obtain different doping levels. The crystalline structure of CdS:Er films was cubic zinc blende for all the doped layers prepared. The (111) interplanar distance has an irregular variation with the Er doping level. Consequently, the band gap energy (Eg) firstly increases and afterward diminishes becoming, at last, approximately constant at around Eg=2.37eV. For higher doping levels, in the as-grown films, dark electrical conductivity (σ ) values reach 1.8×10-2Ω-1cm-1 at room temperature. The logarithm of σ vs 1/kT plot, where k is Boltzmann's constant and T the absolute temperature, indicates an effective doping of CdS as a result of the Er introduction into the lattice of the material. Hall effect measurements reveal a n-type doping with 2.8×1019cm-3 as maximum carrier density.
Novel Fission-Product Separation based on Room-Temperature Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Robin D.
2004-12-31
U.S. DOE's underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive cesium-137 and strontium-90. Because the primary chemical components of alkaline supernatants are sodium nitrate and sodium hydroxide, the majority of this could be disposed of as low level waste if radioactive cesium-137 and strontium- 90 could be selectively removed. The underlying goal of this project was to investigate the application of ionic liquids as novel solvents for new solvent extraction processes for separation of cesium-137 and strontium-90 from tank wastes. Ionic liquids are a distinct sub-set of liquids, comprising only of cationsmore » and anions they are proving to be increasingly interesting fluids for application in systems from electrochemistry to energetic materials, and are also rapidly establishing their promise as viable media for synthesis and separations operations. Properties including low melting points, electrochemical conductivity, wide liquid ranges, lack of vapor-pressure, and chemical tunability have encouraged researchers to explore the uses of ILs in place of volatile organic solvents. The most promising current developments arise from control of the unique combinations of chemical and physical properties characteristic of ionic liquids.« less
Thermoelectric Properties in Fermi Level Tuned Topological Materials (Bi1-xSnx)2Te3
NASA Astrophysics Data System (ADS)
Lin, Chan-Chieh; Shon, Won Hyuk; Rathnam, Lydia; Rhyee, Jong-Soo
2018-03-01
We investigated the thermoelectric properties of Sn-doped (Bi1-xSnx)2Te3 (x = 0, 0.1, 0.3, 0.5, and 0.7%) compounds, which is known as topological insulators. Fermi level tuning by Sn-doping can be justified by the n- to p-type transition with increasing Sn-doping concentration, as confirmed by Seebeck coefficient and Hall coefficient. Near x = 0.3 and 0.5%, the Fermi level resides inside the bulk band gap, resulting in a low Seebeck coefficient and increase of electrical resistivity. The magnetoconductivity with applying magnetic field showed weak antilocalization (WAL) effect for pristine Bi2Te3 while Sn-doped compounds do not follow the WAL behavior of magneto-conductivity, implying that the topological surface Dirac band contribution in magneto-conductivity is suppressed with decreasing the Fermi level by Sn-doping. This research can be applied to the topological composite of p-type/n-type topological materials by Fermi level tuning via Sn-doping in Bi2Te3 compounds.
Gholipour, Yousef; Giudicessi, Silvana L; Nonami, Hiroshi; Erra-Balsells, Rosa
2010-07-01
Nanoparticles (NPs) of diamond, titanium dioxide, titanium silicon oxide, barium strontium titanium oxide, and silver (Ag) were examined for their potential as MALDI matrixes for direct laser desorption/ionization of carbohydrates, especially fructans, from plant tissue. Two sample preparation methods including solvent-assisted and solvent-free (dry) NPs deposition were performed and compared. All examined NPs except for Ag could desorb/ionize standard sucrose and fructans in positive and in negative ion mode. Ag NPs yielded good signals only for nonsalt-doped samples that were measured in the negative ion mode. In the case of in vivo studies, except for Ag, all NPs studied could desorb/ionize carbohydrates from tissue in both the positive and negative ion modes. Furthermore, compared to the results obtained with soluble sugars extracted from plant tissues, fructans with higher molecular weight intact molecular ions could be detected when the plant tissues were directly profiled. The limit of detection (LOD) of fructans and the ratios between signal intensities and fructan concentrations were analyzed. NPs had similar LODs for standard fructan triose (1-kestose) in the positive ion mode and better LODs in the negative ion mode when compared with the common crystalline organic MALDI matrixes used for carbohydrates (2,5-dihydroxybenzoic acid and nor-harmane) or carbon nanotubes. Solvent-free NP deposition on tissues partially improves the signal acquisition. Although lower signal-to-noise ratio sugar signals were acquired from the tissues when compared to the solvent-assisted method, the reproducibility averaged over all sample was more uniform.
Zhou, Fei; Sadigh, Babak; Aberg, Daniel; ...
2016-08-12
The excellent light yield proportionality of europium-doped strontium iodide (SrI 2:Eu) has resulted in state-of-the-art γ-ray detectors with remarkably high-energy resolution, far exceeding that of most halide compounds. In this class of materials, the formation of self-trapped hole polarons is very common. However, polaron formation is usually expected to limit carrier mobilities and has been associated with poor scintillator light-yield proportionality and resolution. Here using a recently developed first-principles method, we perform an unprecedented study of polaron transport in SrI 2, both for equilibrium polarons, as well as nascent polarons immediately following a self-trapping event. We propose a rationale formore » the unexpected high-energy resolution of SrI 2. We identify nine stable hole polaron configurations, which consist of dimerised iodine pairs with polaron-binding energies of up to 0.5 eV. They are connected by a complex potential energy landscape that comprises 66 unique nearest-neighbour migration paths. Ab initio molecular dynamics simulations reveal that a large fraction of polarons is born into configurations that migrate practically barrier free at room temperature. Consequently, carriers created during γ-irradiation can quickly diffuse away reducing the chance for nonlinear recombination, the primary culprit for non-proportionality and resolution reduction. We conclude that the flat, albeit complex, landscape for polaron migration in SrI 2 is a key for understanding its outstanding performance. This insight provides important guidance not only for the future development of high-performance scintillators but also of other materials, for which large polaron mobilities are crucial such as batteries and solid-state ionic conductors.« less
Li, Yiming; Stone, Wendy; Schemitsch, Emil H; Zalzal, Paul; Papini, Marcello; Waldman, Stephen D; Towler, Mark R
2016-11-01
This work considered the effect of both increasing additions of Strontium (Sr 2+ ) and incubation time on solubility and both antibacterial and osteo-stimulatory effects of a series of glasses based on the B 2 O 3 -P 2 O 5 -CaCO 3 -Na 2 CO 3 -TiO 2 -SrCO 3 series. The amorphous nature of all the glasses was confirmed by X-ray diffraction. Discs of each glass were immersed in de-ionized water for 1, 7 and 30 days, and the water extracts were used for ion release profiles, pH measurements and cytotoxicity testing. Atomic absorption spectroscopy was employed to detect the release of Na + , Ca 2+ and Sr 2+ ions from the glasses with respect to maturation, which indicated that the addition of Sr 2+ retarded solubility of the glass series. This effect was also confirmed by weight loss analysis through comparing the initial weight of glass discs before and after periods of incubation. The incorporation of Sr 2+ in the glasses did not influence the pH of the water extracts when the glasses were stored for up to 30 days. Cytotoxicity testing with an osteoblastic cell line (MC3T3-E1) indicated that glasses with the higher (20 mol% and 25 mol%) Sr 2+ incorporation promoted proliferation of osteoblast cells, while the glasses with lower Sr 2+ contents inhibited cell growth. The glass series, except for Ly-B5 (which contained the highest Sr 2+ incorporation; 25 mol%), were bacteriostatic against S. aureus in the short term (1-7 days) as a result of the dissolution products released. © The Author(s) 2016.
Erbium Doped GaN Lasers by Optical Pumping
2016-07-13
obtained via growth by hydride vapor phase epitaxy (HVPE) in conjunction with a laser-lift-off (LLO) process. An Er doping level of 1.4 × 10^20 atoms/cm3... conjunction with a laser-lift-off (LLO) 2 process. An Er doping level
Determination of n-Type Doping Level in Single GaAs Nanowires by Cathodoluminescence.
Chen, Hung-Ling; Himwas, Chalermchai; Scaccabarozzi, Andrea; Rale, Pierre; Oehler, Fabrice; Lemaître, Aristide; Lombez, Laurent; Guillemoles, Jean-François; Tchernycheva, Maria; Harmand, Jean-Christophe; Cattoni, Andrea; Collin, Stéphane
2017-11-08
We present an effective method of determining the doping level in n-type III-V semiconductors at the nanoscale. Low-temperature and room-temperature cathodoluminescence (CL) measurements are carried out on single Si-doped GaAs nanowires. The spectral shift to higher energy (Burstein-Moss shift) and the broadening of luminescence spectra are signatures of increased electron densities. They are compared to the CL spectra of calibrated Si-doped GaAs layers, whose doping levels are determined by Hall measurements. We apply the generalized Planck's law to fit the whole spectra, taking into account the electron occupation in the conduction band, the bandgap narrowing, and band tails. The electron Fermi levels are used to determine the free electron concentrations, and we infer nanowire doping of 6 × 10 17 to 1 × 10 18 cm -3 . These results show that cathodoluminescence provides a robust way to probe carrier concentrations in semiconductors with the possibility of mapping spatial inhomogeneities at the nanoscale.
NASA Astrophysics Data System (ADS)
Umishio, Hiroshi; Matsui, Takuya; Sai, Hitoshi; Sakurai, Takeaki; Matsubara, Koji
2018-02-01
Large-grain-size (>1 mm) liquid-phase-crystallized silicon (LPC-Si) films with a wide range of carrier doping levels (1016-1018 cm-3 either of the n- or p-type) were prepared by irradiating amorphous silicon with a line-shaped 804 nm laser, and characterized for solar cell applications. The LPC-Si films show high electron and hole mobilities with maximum values of ˜800 and ˜200 cm2 V-1 s-1, respectively, at a doping level of ˜(2-4) × 1016 cm-3, while their carrier lifetime monotonically increases with decreasing carrier doping level. A grain-boundary charge-trapping model provides good fits to the measured mobility-carrier density relations, indicating that the potential barrier at the grain boundaries limits the carrier transport in the lowly doped films. The open-circuit voltage and short-circuit current density of test LPC-Si solar cells depend strongly on the doping level, peaking at (2-5) × 1016 cm-3. These results indicate that the solar cell performance is governed by the minority carrier diffusion length for the highly doped films, while it is limited by majority carrier transport as well as by device design for the lowly doped films.
NASA Astrophysics Data System (ADS)
Jiang, Baojiang; Tian, Chungui; Wang, Lei; Sun, Li; Chen, Chen; Nong, Xiaozhen; Qiao, Yingjie; Fu, Honggang
2012-02-01
In this work, we developed a concentrated ammonia-assisted hydrothermal method to obtain N-doped graphene sheets by simultaneous N-doping and reduction of graphene oxide (GO) sheets. The effects of hydrothermal temperature on the surface chemistry and the structure of N-doped graphene sheets were also investigated. X-ray photoelectron spectroscopy (XPS) study of N-doped graphene reveals that the highest doping level of 7.2% N is achieved at 180 °C for 12 h. N binding configurations of sample consist of pyridine N, quaternary N, and pyridine-N oxides. N doping is accompanied by the reduction of GO with decreases in oxygen levels from 34.8% in GO down to 8.5% in that of N-doped graphene. Meanwhile, the sample exhibits excellent N-doped thermal stability. Electrical measurements demonstrate that products have higher capacitive performance than that of pure graphene, the maximum specific capacitance of 144.6 F/g can be obtained which ascribe the pseudocapacitive effect from the N-doping. The samples also show excellent long-term cycle stability of capacitive performance.
Process for the extraction of strontium from acidic solutions
Horwitz, E.P.; Dietz, M.L.
1994-09-06
The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid. 4 figs.
Process for the extraction of strontium from acidic solutions
Horwitz, E. Philip; Dietz, Mark L.
1994-01-01
The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.
Strontium-90: concentrations in surface waters of the Atlantic Ocean.
Bowen, V T; Noshkin, V E; Volchok, H L; Sugihara, T T
1969-05-16
From the large body of analyses of strontium-90 in surface waters of the Atlantic Ocean, annual average concentrations (from 10 degrees N to 70 degrees N) have been compared to those predicted. The data indicate higher fall-out over ocean than over land and confirm the rapid rates of down-mixing shown by most studies of subsurface strontium-90.
Process for the extraction of strontium from acidic solutions
Horwitz, E.P.; Dietz, M.L.
1993-01-01
The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.
Crystallization of carbonate hydroxyapatite in the presence of strontium ranelate
NASA Astrophysics Data System (ADS)
Izmailov, R. R.; Golovanova, O. A.
2015-11-01
The influence of strontium ranelate on the crystallization of carbonate hydroxyapatite from a prototype of synovial fluid of humans has been investigated. The synthesis products are studied by IR Fourier spectroscopy, X-ray diffraction, and differential thermal analysis. The amount of strontium in the samples is determined by atomic emission analysis. The sizes of crystallites in the synthesized phases are calculated from the Selyakov-Scherrer formula; the lattice parameters are also determined. The phases obtained are found to be species of calcium-deficient strontium-containing carbonate hydroxyapatite of mixed A and B types. Schemes of chemical reactions occurring during heat treatment are proposed.
Petróczi, Andrea; Norman, Paul; Brueckner, Sebastian
2017-01-01
In sport, a wide array of substances with established or putative performance-enhancing properties is used. Most substances are fully acceptable, whilst a defined set, revised annually, is prohibited; thus, using any of these prohibited substances is declared as cheating. In the increasingly tolerant culture of pharmacological and technical human enhancements, the traditional normative approach to anti-doping, which involves telling athletes what they cannot do to improve their athletic ability and performance, diverges from the otherwise positive values attached to human improvement and enhancement in society. Today, doping is the epitome of conflicting normative expectations about the goal (performance enhancement) and the means by which the goal is achieved (use of drugs). Owing to this moral-functional duality, addressing motivations for doping avoidance at the community level is necessary, but not sufficient, for effective doping prevention. Relevant and meaningful anti-doping must also recognise and respect the values of those affected, and consolidate them with the values underpinning structural, community level anti-doping. Effective anti-doping efforts are pragmatic, positive, preventive, and proactive. They acknowledge the progressive nature of how a "performance mindset" forms in parallel with the career transition to elite level, encompasses all levels and abilities, and directly addresses the reasons behind doping use with tangible solutions. For genuine integration into sport and society, anti-doping should consistently engage athletes and other stakeholders in developing positive preventive strategies to ensure that anti-doping education not only focuses on the intrinsic values associated with the spirit of sport but also recognises the values attached to performance enhancement, addresses the pressures athletes are under, and meets their needs for practical solutions to avoid doping. Organisations involved in anti- doping should avoid the image of "controlling" but, instead, work in partnerships with all stakeholders to involve and ensure integration of the targeted individuals in global community-based preventive interventions. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Perkasa, Rilis Eka; Umniati, B. Sri; Sunendar, Bambang
2017-09-01
Bone scaffold is one of the most important component in bone tissue engineering. Basically, bone scaffold is a biocompatible structure designed to replace broken bone tissue temporarily. Unlike conventional bone replacements, an advanced bone scaffold should be bioactive (e.g: supporting bone growth) and biodegradable as new bone tissue grow, while retain its mechanical properties similarity with bone. It is also possible to add more bioactive substrates to bone scaffold to further support its performance. One of the substrate is strontium, an element that could improve the ability of the bone to repair itself. However, it must be noted that excessive consumption of strontium could lead to toxicity and diseases, such as osteomalacia and hypocalcemia. This research aimed to investigate the effect of strontium addition to the cytotoxic property of chitosan-alginate-carbonate apatite bone scaffold. The amount of strontium added to the bone scaffold was 5% molar of the carbonate apatite content. As a control, bone scaffold without stronsium (0% molar) were also made. The effect of chitosan concentration variation on the cytotoxicity were also observed, where the concentration varies on 1% and 3% w/v of chitosan solution. The results showed an optimum result on bone scaffold sample with 5% molar of strontium and 3% chitosan, where 87.67% cells in the performed MTS-Assay cytotoxicity testing survived. This showed that the use of up to 5% molar addition of strontium and 3% chitosan could enhance the survivability of the cell.
Recent development on high-power tandem-pumped fiber laser
NASA Astrophysics Data System (ADS)
Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian
2016-11-01
High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.
An unexpected rise in strontium-90 in US deciduous teeth in the 1990s.
Mangano, Joseph J; Gould, Jay M; Sternglass, Ernest J; Sherman, Janette D; McDonnell, William
2003-12-30
For several decades, the United States has been without an ongoing program measuring levels of fission products in the body. Strontium-90 (Sr-90) concentrations in 2089 deciduous (baby) teeth, mostly from persons living near nuclear power reactors, reveal that average levels rose 48.5% for persons born in the late 1990s compared to those born in the late 1980s. This trend represents the first sustained increase since the early 1960s, before atmospheric weapons tests were banned. The trend was consistent for each of the five states for which at least 130 teeth are available. The highest averages were found in southeastern Pennsylvania, and the lowest in California (San Francisco and Sacramento), neither of which is near an operating nuclear reactor. In each state studied, the average Sr-90 concentration is highest in counties situated closest to nuclear reactors. It is likely that, 40 years after large-scale atmospheric atomic bomb tests ended, much of the current in-body radioactivity represents nuclear reactor emissions.
Location analysis and strontium-90 concentrations in deer antlers on the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiller, B L; Eberhardt, L E; Poston, T M
1995-05-01
The primary objective of this study was to examine the levels of strontium-90 ({sup 90}Sr) in deer antlers collected from near previously active reactor sites and distant from the reactor sites along that portion of the Columbia River which borders the Hanford Site. A second objective was to analyze the movements and home-ranges of mule deer residing within these areas and determine to what extent this information contributes to the observed {sup 90}Sr concentrations. {sup 90}Sr is a long-lived radionuclide (29.1 year half life) produced by fission in irradiated fuel in plutonium production reactors on the Hanford Site. It ismore » also a major component of atmospheric fallout from weapons testing. Concentrations of radionuclides found in the developed environment onsite do not pose a health concern to humans or various wildlife routinely monitored. However, elevated levels of radionuclides in found biota may indicate routes of exposure requiring attention.« less
NASA Astrophysics Data System (ADS)
Mousavi, M.; Kompany, A.; Shahtahmasebi, N.; Bagheri-Mohagheghi, M.-M.
2013-12-01
In this research, S-doped vanadium oxide thin films, with doping levels from 0 to 40 at.%, are prepared by spray pyrolysis technique on glass substrates. For electrochemical measurements, the films were deposited on florin-tin oxide coated glass substrates. The effect of S-doping on structural, electrical, optical and electrochemical properties of vanadium oxide thin films was studied. The x-ray diffractometer analysis indicated that most of the samples have cubic β-V2O5 phase structure with preferred orientation along [200]. With increase in the doping levels, the structure of the samples tends to be amorphous. The scanning electron microscopy images show that the structure of the samples is nanobelt-shaped and the width of the nanobelts decreases from nearly 100 to 40 nm with increase in the S concentration. With increase in the S-doping level, the sheet resistance and the optical band gap increase from 940 to 4015 kΩ/square and 2.41 to 2.7 eV, respectively. The cyclic voltammogram results obtained for different samples show that the undoped sample is expanded and the sample prepared at 20 at.% S-doping level has sharper anodic and cathodic peaks.
Zn-dopant dependent defect evolution in GaN nanowires
NASA Astrophysics Data System (ADS)
Yang, Bing; Liu, Baodan; Wang, Yujia; Zhuang, Hao; Liu, Qingyun; Yuan, Fang; Jiang, Xin
2015-10-01
Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101&cmb.macr;3), (101&cmb.macr;1) and (202&cmb.macr;1), as well as Type I stacking faults (...ABABC&cmb.b.line;BCB...), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (...ABABAC&cmb.b.line;BA...) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires.Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101&cmb.macr;3), (101&cmb.macr;1) and (202&cmb.macr;1), as well as Type I stacking faults (...ABABC&cmb.b.line;BCB...), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (...ABABAC&cmb.b.line;BA...) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires. Electronic supplementary information (ESI) available: HRTEM image of undoped GaN nanowires and first-principles calculations of Zn doped WZ-GaN. See DOI: 10.1039/c5nr04771d
van Loef, Edgar V.; Wang, Yimin; Miller, Stuart R.; Brecher, Charles; Rhodes, William H.; Baldoni, Gary; Topping, Stephen; Lingertat, Helmut; Sarin, Vinod K.; Shah, Kanai S.
2011-01-01
In this paper we report on the fabrication and characterization of SrHfO3:Ce ceramics. Powders were prepared by solid-state synthesis using metal oxides and carbonates. X-ray diffraction measurements showed that phase-pure SrHfO3 is formed at 1200°C. Inductively coupled plasma spectroscopy confirmed the purity and composition of each batch. SrHfO3 exhibits several phase changes in the solid, but this does not appear to be detrimental to the ceramics. Microprobe experiments showed uniform elemental grain composition, whereas aluminum added as charge compensation for trivalent cerium congregated at grain boundaries and triple points. Radioluminescence spectra revealed that the light yield decreases when the concentration of excess Sr increases. The decrease in the light yield may be related to the change of Ce3+ into Ce4+ ions. For stoichiometric SrHfO3:Ce, the light yield is about four times that of bismuth germanate (BGO), the conventional benchmark, indicating great potential for many scintillator applications. PMID:21339835
Jun, Areum; Kim, Junyoung; Shin, Jeeyoung; Kim, Guntae
2016-09-26
Recently, there have been efforts to use clean and renewable energy because of finite fossil fuels and environmental problems. Owing to the site-specific and weather-dependent characteristics of the renewable energy supply, solid oxide electrolysis cells (SOECs) have received considerable attention to store energy as hydrogen. Conventional SOECs use Ni-YSZ (yttria-stabilized zirconia) and LSM (strontium-doped lanthanum manganites)-YSZ as electrodes. These electrodes, however, suffer from redox-instability and coarsening of the Ni electrode along with delamination of the LSM electrode during steam electrolysis. In this study, we successfully design and fabricate highly efficient SOECs using layered perovskites, PrBaMn2 O5+δ (PBM) and PrBa0.5 Sr0.5 Co1.5 Fe0.5 O5+δ (PBSCF50), as both electrodes for the first time. The SOEC with layered perovskites as both-side electrodes shows outstanding performance, reversible cycling, and remarkable stability over 600 hours. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of BiPbSrCaCuO superconductor
Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.
1994-04-05
A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.
Synthesis of BiPbSrCaCuO superconductor
Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.
1994-01-01
A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.
Strain Engineering Defect Concentrations in Reduced Ceria for Improved Electro-Catalytic Performance
2014-06-30
coupling, curvature relaxation, lanthanum strontium ferrite, ceria. oxygen surface exchange 16. SECURITY CLASSIFICATION OF: 17. LlMITATJON OF a. REPORT...Temperature Lanthanum Strontium Ferrite Oxygen Surface Exchange Coefficient Measurements by Curvature Relaxation. 225th Meeting of the Electrochemical...Manuscripts Received Paper TOTAL: Received Paper TOTAL: 06/30/2014 Received Paper 1.00 Qing Yang, Jason Nicholas. Porous Thick Film Lanthanum Strontium
Sorption of strontium-90 from fresh waters during sulfate modification of barium manganite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryzhen`kov, A.P.; Egorov, Yu.V.
1995-11-01
Recovery of strontium-90 with barium manganite from fresh waters (natural fresh waters of open basins) can be increased by adding agents that contain sulfate ions and thus modify the sorbent and chemically bind the sorbate. The treatment results in a heterogeneous anion-exchange transformation of barium manganite into barium sulfate-manganese dioxide and in simultaneous absorptive coprecipitation of strontium sulfate (microcomponent).
Study of cobalt effect on structural and optical properties of Dy doped ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Pandey, Praveen C.
2018-05-01
The present study has been carried out to investigate the effect of Co doping on structural and optical properties of Dy doped ZnO nanoparticles. We have prepared pure Zinc oxide, Dy (1%) doped ZnO and Dy (1%) doped ZnO co-doped with Co(2%) with the help of simple sol-gel combustion method. The structural analysis carried out using X-ray diffraction spectra (XRD) indicates substitution of Dy and Co at Zn site of ZnO crystal structure and hexagonal crystal structure without any secondary phase formation in all the samples. The surface morphology was analyzed by transmission electron microscopy (TEM). Absorption study indicates that Dy doping causes a small shift in band edge, while Co co-doping results significant change is absorption edge as well as introduce defect level absorption in the visible region. The band gap of samples decreases due to Dy and Co doping, which can be attributed to defect level formation below the conduction band in the system.
Synthesis and thermoelectric property of Ca and In-doped n-type Bi85Sb15 alloy
NASA Astrophysics Data System (ADS)
Kadel, Kamal; Li, Wenzhi; Joshi, Giri; Ren, Zhifeng
2014-03-01
In the present work we investigated the thermo-electric properties of undoped Bi85Sb15 and different Ca-doped Bi85Sb15Cax (x =0.5, 2, and 5) and In-doped Bi85Sb15Inx(x =0.5, 2) alloys synthesized via arc-melting first and followed by ball milling and hot pressing. Effect of different Ca and In doping levels on transport properties of Bi85Sb15 alloys has been investigated. It is found that thermal conductivity decreases with increasing Ca and decreasing In. Electrical transport measurements show that power factor increases with doping level of Ca up to Bi85Sb15Ca2 and then decreases yielding the maximum power factor of 3.8 × 10-3 Wm-1K-2 and zT of 0.39 at room temperature for Bi85Sb15Ca2. For indium doping, power factor decreases with doping level from 0.5 to 2, yielding the maximum zT value of 0.37 at room temperature for Bi85Sb15In0.5. In this work, calcium doping in Bi85Sb15 alloy is found to yield better thermoelectric property than indium doping.
NASA Astrophysics Data System (ADS)
Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping
2017-02-01
The strontium doped Mn-based perovskites have been proposed as one of the best oxygen reduction reaction catalysts (ORRCs) to substitute the noble metal. However, few studies have investigated the catalytic activities of LSM with the A-site deficiencies. Here, the (La1-xSrx)0.98MnO3 (LSM) perovskites with A-site deficiencies are prepared by a modified solid-liquid method. The structure, morphology, valence state and oxygen adsorption behaviors of these LSM samples are characterized, and their catalytic activities toward ORR are studied by the rotating ring-disk electrode (RRDE) and aluminum-air battery technologies. The results show that the appropriate doping with Sr and introducing A-site stoichiometry can effectively tailor the Mn valence and increase the oxygen adsorption capacity of LSM. Among all the LSM samples in this work, the (La0.7Sr0.3)0.98MnO3 perovskite composited with 50% carbon (50%LSM30) exhibits the best ORR catalytic activity due to the excellent oxygen adsorption capacity. Also, this catalyst has much higher durability than that of commercial 20%Pt/C. Moreover, the maximum power density of the aluminum-air battery using 50%LSM30 as the ORRC can reach 191.3 mW cm-2. Our work indicates that the LSM/C composite catalysts with A-site deficiencies can be used as a promising ORRC in the metal-air batteries.
Psychological and social correlates of doping attitudes among Italian athletes.
Zucchetti, Giulia; Candela, Filippo; Villosio, Carlo
2015-02-01
This study aims to identify the main psychological and social correlates of doping attitudes among Italian athletes. It is well recognized that athlete disposition and attitude towards doping is one of the factors responsible for doping behavior. Less is known, however, about the factors that sustain the level of athletes' attitudes towards doping. The main psychological (i.e., perfectionism, sport motivation, self-confidence and life satisfaction) and social correlates (i.e., social network and contact with people who use sports drugs) of attitudes towards doping among Italian athletes are examined in this paper. Differences are hypothesized regarding the type of sport (resistance sport vs. non-resistance sport) and athlete participation in competitive sport (i.e., agonistics) or in non-competitive sport (i.e., amateurs) on the level of attitude towards doping. The research hypothesis is that each of these constructs affects the level of athletes' attitudes toward doping. Data were collected from a sample of athletes (N=109), aged from 15 to 45 (M=31.5; SD=13.78) recruited in a Sports Medicine Center. Socio-demographic information, attitude towards doping, psychological and social variables were assessed through self-report questionnaire. Hierarchical multiple regression showed that both psychological (i.e., extrinsic motivation, perfectionism) and social variables (i.e., athletes' contact with doping users) were associated with athletes' attitudes towards doping. The results highlighted that athletes with excessive perfectionism, extrinsically motivated and who have contact with doping users have a positive attitude toward doping. Athletes who exhibit these characteristics should be considered at risk and monitored to prevent possible future sports drug use. Copyright © 2014 Elsevier B.V. All rights reserved.
Measurement of actinides and strontium-90 in high activity waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, S.L. III; Nelson, M.R.
1994-08-01
The reliable measurement of trace radionuclides in high activity waste is important to support waste processing activities at SRS (F and H Area Waste Tanks, Extended Sludge Processing (ESP) and In-Tank precipitation (ITP) processing). Separation techniques are needed to remove high levels of gamma activity and alpha/beta interferences prior to analytical measurement. Using new extraction chromatographic resins from EiChrom Industries, Inc., the SRS Central Laboratory has developed new high speed separation methods that enable measurement of neptunium, thorium, uranium, plutonium, americium and strontium-90 in high activity waste solutions. Small particle size resin and applied vacuum are used to reduce analysismore » times and enhance column performance. Extraction chromatographic resins are easy to use and eliminate the generation of contaminated liquid organic waste.« less
87Sr/ 86Sr Concentrations in the Appalachian Basin: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mordensky, Stanley P.; Lieuallen, A. Erin; Verba, Circe
This document reviews 87Sr/ 86Sr isotope data across the Appalachian Basin from existing literature to show spatial and temporal variation. Isotope geochemistry presents a means of understanding the geochemical effects hydraulic fracturing may have on shallow ground substrates. Isotope fractionation is a naturally occurring phenomenon brought about by physical, chemical, and biological processes that partition isotopes between substances; therefore, stable isotope geochemistry allows geoscientists to understand several processes that shape the natural world. Strontium isotopes can be used as a tool to answer an array of geological and environmental inquiries. In some cases, strontium isotopes are sensitive to the introductionmore » of a non-native fluid into a system. This ability allows strontium isotopes to serve as tracers in certain systems. Recently, it has been demonstrated that strontium isotopes can serve as a monitoring tool for groundwater and surface water systems that may be affected by hydraulic fracturing fluids (Chapman et al., 2013; Kolesar Kohl et al., 2014). These studies demonstrated that 87Sr/ 86Sr values have the potential to monitor subsurface fluid migration in regions where extraction of Marcellus Shale gas is occurring. This document reviews publicly available strontium isotope data from 39 sample locations in the Appalachian Basin (Hamel et al., 2010; Chapman et al., 2012; Osborn et al., 2012; Chapman et al., 2013; Capo et al., 2014; Kolesar Kohl et al., 2014). The data is divided into two sets: stratigraphic (Upper Devonian/Lower Mississippi, Middle Devonian, and Silurian) and groundwater. ArcMap™ (ESRI, Inc.) was used to complete inverse distance weighting (IDW) analyses for each dataset to create interpolated surfaces in an attempt to find regional trends or variations in strontium isotopic values across the Appalachian Basin. 87Sr/ 86Sr varies up to ~ 0.011 across the Appalachian Basin, but the current publicly available data is limited in frequency and regional extent, causing artifacts and high uncertainty when interpolating data for locations far from sampling sites. These factors highlight the need for additional strontium isotope sampling across the region. Identifying potential contamination from hydraulic fracturing fluid in Appalachian Basin groundwater using strontium isotopes would require additional sampling. For a more comprehensive strontium isotope database, samples would need to be collected during prefracturing, syn-fracturing, and post-fracturing stages. This would add a temporal component to the spatial data and make tracing of fluid migration with strontium isotopes more accurate. Future research and modeling that incorporates subsurface geology and watershed data would also serve to increase the accuracy and certainty of the interpolations of these analyses. Prospective geospatial Appalachian Basin isotope studies would also benefit from the integration of geologic mapping because surface and subsurface geology influences observed strontium isotope values.« less
Abney, Kent D.; Kinkead, Scott A.; Mason, Caroline F. V.; Rais, Jiri
1997-01-01
Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.
Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.
1997-09-09
Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.
EFFECTS OF HYDROBIOTITES UPON STRONTIUM-89 AND CESIUM-137 RETENTION BY RUMINANT ANIMALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansard, S.L.
1964-02-01
Radiochemicai studies with ruminant animals indicate that activated verxites, a nearly pure hydrobiotite, effectively bind Sr-89 and Cs-137 in vitro and in vivo, thus increasing excretion rate and quantity of these radionuclides injected or ingested at tracer levels. (auth)
Alkan, Fahri; Muñoz-Castro, Alvaro; Aikens, Christine M
2017-10-26
We perform a theoretical investigation using density functional theory (DFT) and time-dependent DFT (TDDFT) on the doping of the Au 25 (SR) 18 -1 nanocluster with group IX transition metals (M = cobalt, rhodium and iridium). Different doping motifs, charge states and spin multiplicities were considered for the single-atom doped nanoclusters. Our results show that the interaction (or the lack of interaction) between the d-type energy levels that mainly originate from the dopant atom and the super-atomic levels plays an important role in the energetics, the electronic structure and the optical properties of the doped systems. The evaluated MAu 24 (SR) 18 q (q = -1, -3) systems favor an endohedral disposition of the doping atom typically in a singlet ground state, with either a 6- or 8-valence electron icosahedral core. For the sake of comparison, the role of the d energy levels in the electronic structure of a variety of doped Au 25 (SR) 18 -1 nanoclusters was investigated for dopant atoms from other families such as Cd, Ag and Pd. Finally, the effect of spin-orbit coupling (SOC) on the electronic structure and absorption spectra was determined. The information in this study regarding the relative energetics of the d-based and super-atom energy levels can be useful to extend our understanding of the preferred doping modes of different transition metals in protected gold nanoclusters.
Use of barium-strontium carbonatite for flux welding and surfacing of mining machines
NASA Astrophysics Data System (ADS)
Kryukov, R. E.; Kozyrev, N. A.; Usoltsev, A. A.
2017-09-01
The results of application of barium-strontium carbonatite for modifying and refining iron-carbon alloys, used for welding and surfacing in ore mining and smelting industry, are generalized. The technology of manufacturing a flux additive containing 70 % of barium-strontium carbonatite and 30 % of liquid glass is proposed. Several compositions of welding fluxes based on silicomanganese slag were tested. The flux additive was introduced in an amount of 1, 3, 5 %. Technological features of welding with the application of the examined fluxes are determined. X-ray spectral analysis of the chemical composition of examined fluxes, slag crusts and weld metal was carried out, as well as metallographic investigations of welded joints. The principal possibility of applying barium-strontium carbonatite as a refining and gas-protective additive for welding fluxes is shown. The use of barium-strontium carbonatite reduces the contamination of the weld seam with nonmetallic inclusions: non-deforming silicates, spot oxides and brittle silicates, and increases the desulfurizing capacity of welding fluxes.
Active Calcium and Strontium Transport in Human Erythrocyte Ghosts
Olson, Erik J.; Cazort, Ralph J.
1969-01-01
Both calcium and strontium could be transported actively from erythrocytes if adenosine triphosphate, guanosine triphosphate, or inosine triphosphate were included in the hypotonic medium used to infuse calcium or strontium into the cells. Acetyl phosphate and pyrophosphate were not energy sources for the transport of either ion. Neither calcium nor strontium transport was accompanied by magnesium exchange, and the addition of Mg++ to the reaction medium in a final concentration of 3.0 mmoles/liter did not promote the transport of either ion. In the absence of nucleotide triphosphates, the addition of 1.5 mmoles/liter of Sr++ to the reaction solution did not bring about active calcium transport and similarly 1.5 mmoles/liter of Ca++ did not bring about active strontium transport. The inclusion of 1.5 mmoles/liter of Ca++ or Sr++ in the reaction medium did not interfere with the transport of the other ion when the erythrocytes were infused with adenosine triphosphate. PMID:4304202
Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium.
Jang, J G; Park, S M; Lee, H K
2016-11-15
The present study investigates the physical barrier effect of geopolymeric waste form on leaching behavior of cesium and strontium. Fly ash-based geopolymers and slag-blended geopolymers were used as solidification agents. The leaching behavior of cesium and strontium from geopolymers was evaluated in accordance with ANSI/ANS-16.1. The diffusivity of cesium and strontium in a fly ash-based geopolymer was lower than that in Portland cement by a factor of 10(3) and 10(4), respectively, showing significantly improved immobilization performance. The leaching resistance of fly ash-based geopolymer was relatively constant regardless of the type of fly ash. The diffusivity of water-soluble cesium and strontium ions were highly correlated with the critical pore diameter of the binder. The critical pore diameter of the fly ash-based geopolymer was remarkably smaller than those of Portland cement and slag-blended geopolymer; consequently, its ability physically to retard the diffusion of nuclides (physical barrier effect) was superior. Copyright © 2016 Elsevier B.V. All rights reserved.
Process for the recovery of strontium from acid solutions
Horwitz, E. Philip; Dietz, Mark L.
1992-01-01
The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.
Drevet, Richard; Benhayoune, Hicham
2013-10-01
Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM. © 2013.
NASA Astrophysics Data System (ADS)
Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.; Pellin, Michael J.; Rost, Detlef; Savina, Michael R.; Jadhav, Manavi; Kelly, Christopher H.; Gyngard, Frank; Hoppe, Peter; Dauphas, Nicolas
2018-01-01
We used CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis of small samples, to analyze strontium, zirconium, and barium isotopes in 22 presolar silicon carbide grains. Twenty of the grains showed detectable strontium and barium, but none of the grains had enough zirconium to be detected with CHILI. Nine grains were excluded from further consideration since they showed very little signals (<1000 counts) for strontium as well as for barium. Among the 11 remaining grains, we found three X grains. The discovery of three supernova grains among only 22 grains was fortuitous, because only ∼1% of presolar silicon carbide grains are type X, but was confirmed by silicon isotopic measurements of grain residues with NanoSIMS. While one of the X grains showed strontium and barium isotope patterns expected for supernova grains, the two other supernova grains have 87Sr/86Sr < 0.5, values never observed in any natural sample before. From their silicon isotope ratios, the latter two grains can be classified as X2 grains, while the former grain belongs to the more common X1 group. The differences of these grains in strontium and barium isotopic composition constrain their individual formation conditions in Type II supernovae.
NASA Astrophysics Data System (ADS)
Fuchs, Maximilian; Gentleman, Eileen; Shahid, Saroash; Hill, Robert; Brauer, Delia
2015-10-01
Bioactive glasses (BG) are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC) are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO) with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid), ions were released fast (up to 90% within 15 minutes at pH 1), which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa), staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid), which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.
Bern, C.R.; Porder, S.; Townsend, A.R.
2007-01-01
Weathering and leaching can progressively deplete the pools of soluble, rock-derived elements in soils and ecosystems over millennial time-scales, such that productivity increasingly relies on inputs from atmospheric deposition. This transition has been explored using strontium isotopes, which have been widely assumed to be a proxy for the provenance of other rock-derived elements. We compared rock versus atmospheric proportions of strontium to those for sulfur, a plant macronutrient, at several tropical forest sites in Hawaii and Costa Rica. Isotopic analyses reveal that sulfur is often decoupled from strontium in the transition to atmospheric dependence. Decoupling is likely the result of differences in chemical factors such as atmospheric input rates, mobility in the soil environment, and mineral weathering susceptibility. Strontium and sulfur decoupling appears to be accentuated by the physical process of erosion. Erosion rates are presumed to be high on the Osa Peninsula of Costa Rica, where the recent onset of rapid tectonic uplift has placed the landscape in a transient state. Decoupling is strong there, as erosion has rejuvenated the supply of rock-derived strontium but not sulfur. The landscape response to changes in tectonic uplift on the Osa Peninsula has produced decoupling at the landscape scale. Decoupling is more variable along a Hawaiian catena, presumably due to smaller scale variations in erosion rates and their influence on rejuvenation of rock-strontium inputs. These results illustrate how chemical and physical processes can interact to produce contrasting origins for different nutrient elements in soils and the ecosystems they support. ?? 2007 Elsevier B.V. All rights reserved.
Pressure effects on magnetic ground states in cobalt doped multiferroic Mn 1-xCo xWO 4
Wang, Jinchen; Ye, Feng; Chi, Songxue; ...
2016-04-28
Using x-ray and high pressure neutron diffraction, we studied the pressure effect on structural and magnetic properties of multiferroic Mn 1-xCo xWO 4 single crystals (x = 0, 0.05, 0.135 and 0.17), and compared it with the effects of doping. Both Co doping and pressure stretch the Mn-Mn chain along the c direction. At high doping level (x = 0.135 and 0.17), pressure and Co doping drive the system in a very similar way and induce a spin-flop transition for the x = 0.135 compound. In contrast, magnetic ground states at lower doping level (x = 0 and 0.05) aremore » robust against pressure but experience a pronounced change upon Co substitution. As Co introduces both chemical pressure and magnetic anisotropy into the frustrated magnetic system, our results suggest the magnetic anisotropy is the main driving force for the Co induced phase transitions at low doping level, and chemical pressure plays a more significant role at higher Co concentrations.« less
NASA Astrophysics Data System (ADS)
Lauchnor, E. G.; Schultz, L.; Mitchell, A.; Cunningham, A. B.; Gerlach, R.
2013-12-01
The process of ureolytically-induced calcium carbonate mineralization has been shown in laboratory studies to be effective in co-precipitation of heavy metals and radionuclides. During this process, the microbially catalyzed hydrolysis of urea increases alkalinity and pH, thus promoting CaCO3 precipitation in the presence of dissolved calcium. One proposed application of biomineralization includes the remediation of radionuclides such as strontium, which can be co-precipitated in situ within calcite. Strontium is of concern at several US DOE sites where it is a radioactive product of uranium fission and groundwater contaminant. Our research focuses on promoting attached bacteria, or biofilms, in subsurface environments where they serve as immobilized catalysts in biomineralization and can aide in co-precipitation of some contaminants. In this work, flat plate reactors with 1 mm etched flow channels designed to mimic a porous medium environment were used. Reactors were inoculated with the model ureolytic bacterium Sporosarcina pasteurii and addition of urea, calcium and strontium containing fluid was performed to induce biomineralization. Continuous flow and stopped-flow injection strategies were investigated to evaluate differences in strontium co-precipitation efficiency. During stopped-flow experiments, injection of cementation fluid containing urea, Ca2+ and Sr2+ was alternated with growth nutrients for stimulation of microbial activity. Control parameters such as urea and calcium concentration and injection flow rate are currently being varied to optimize rate and efficiency of strontium co-precipitation. Ureolytically induced calcite precipitation and strontium incorporation in the calcite was verified by chemical and mineralogical analyses, including X-ray diffraction and ICP-MS. Strontium co-precipitation efficiency was similar under different injection strategies. Alternating calcium-containing fluid with growth nutrients allowed for continued viability of the ureolytic biofilms and also insured that bacterially-induced mineralization was still occurring after 60 days of operation. Batch rate experiments demonstrated the effective use of alternative sources of substrates for biomineralization, which are economical for use in field-scale remediation. Fertilizer has been shown to be an effective urea source and several economical carbon and nutrient sources such as molasses and whey are being evaluated for stimulating ureolytic microorganisms. This research demonstrates on a bench scale the use of different injection strategies to control precipitation of calcium carbonate, as well as the feasibility of strontium co-precipitation in porous media. The ongoing optimization of strontium co-precipitation will lead to additional work on potential remediation of other heavy metal groundwater contaminants.
Da Silva, Eric; Kirkham, Brian; Heyd, Darrick V; Pejović-Milić, Ana
2013-10-01
Plaster of Paris [poP, CaSO4·(1)/(2) H2O] is the standard phantom material used for the calibration of in vivo X-ray fluorescence (IVXRF)-based systems of bone metal quantification (i.e bone strontium and lead). Calibration of IVXRF systems of bone metal quantification employs the use of a coherent normalization procedure which requires the application of a coherent correction factor (CCF) to the data, calculated as the ratio of the relativistic form factors of the phantom material and bone mineral. Various issues have been raised as to the suitability of poP for the calibration of IVXRF systems of bone metal quantification which include its chemical purity and its chemical difference from bone mineral (a calcium phosphate). This work describes the preparation of a chemically pure hydroxyapatite phantom material, of known composition and stoichiometry, proposed for the purpose of calibrating IVXRF systems of bone strontium and lead quantification as a replacement for poP. The issue with contamination by the analyte was resolved by preparing pure Ca(OH)2 by hydroxide precipitation, which was found to bring strontium and lead levels to <0.7 and <0.3 μg/g Ca, respectively. HAp phantoms were prepared from known quantities of chemically pure Ca(OH)2, CaHPO4·2H2O prepared from pure Ca(OH)2, the analyte, and a HPO4(2-) containing setting solution. The final crystal structure of the material was found to be similar to that of the bone mineral component of NIST SRM 1486 (bone meal), as determined by powder X-ray diffraction spectrometry.
Safronov, Alexander P.; Mikhnevich, Ekaterina A.; Blyakhman, Felix A.; Sklyar, Tatyana F.; Larrañaga Varga, Aitor; Medvedev, Anatoly I.; Fernández Armas, Sergio
2018-01-01
Magnetic biosensors are an important part of biomedical applications of magnetic materials. As the living tissue is basically a “soft matter.” this study addresses the development of ferrogels (FG) with micron sized magnetic particles of magnetite and strontium hexaferrite mimicking the living tissue. The basic composition of the FG comprised the polymeric network of polyacrylamide, synthesized by free radical polymerization of monomeric acrylamide (AAm) in water solution at three levels of concentration (1.1 M, 0.85 M and 0.58 M) to provide the FG with varying elasticity. To improve FG biocompatibility and to prevent the precipitation of the particles, polysaccharide thickeners—guar gum or xanthan gum were used. The content of magnetic particles in FG varied up to 5.2 wt % depending on the FG composition. The mechanical properties of FG and their deformation in a uniform magnetic field were comparatively analyzed. FG filled with strontium hexaferrite particles have larger Young’s modulus value than FG filled with magnetite particles, most likely due to the specific features of the adhesion of the network’s polymeric subchains on the surface of the particles. FG networks with xanthan are stronger and have higher modulus than the FG with guar. FG based on magnetite, contract in a magnetic field 0.42 T, whereas some FG based on strontium hexaferrite swell. Weak FG with the lowest concentration of AAm shows a much stronger response to a field, as the concentration of AAm governs the Young’s modulus of ferrogel. A small magnetic field magnetoimpedance sensor prototype with Co68.6Fe3.9Mo3.0Si12.0B12.5 rapidly quenched amorphous ribbon based element was designed aiming to develop a sensor working with a disposable stripe sensitive element. The proposed protocol allowed measurements of the concentration dependence of magnetic particles in gels using magnetoimpedance responses in the presence of magnetite and strontium hexaferrite ferrogels with xanthan. We have discussed the importance of magnetic history for the detection process and demonstrated the importance of remnant magnetization in the case of the gels with large magnetic particles. PMID:29337918
Sorption Modeling of Strontium, Plutonium, Uranium and Neptunium Adsorption on Monosodium Titanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.F.
2003-10-30
We examined the ability of various equilibrium isotherms to replicate the available data for the adsorption of strontium (Sr), plutonium (Pu), uranium (U) and neptunium (Np) on monosodium titanate (MST) during the treatment of simulated and actual Savannah River Site high-level waste. The analysis considered 29 isotherm models from the literature. As part of this study, we developed a general method for selecting the best isotherm models. The selection criteria for rating the isotherms considered the relative error in predicting the experimental data, the complexity of the mathematical expressions, the thermodynamic validity of the expressions, and statistical significance for themore » expressions. The Fowler Guggenheim-Jovanovic Freundlich (FG-JF), the Fowler Guggenheim-Langmuir Freundlich (FG-LF) and the Dubinin-Astashov (DA) models each reliably predicted the actinide and strontium adsorption on MST. The first two models describe the adsorption process by single layer formation and later al interactions between adsorbed sorbates while the Dubinin-Astashov model assumes volume filling of micropores (by osmotic pressure difference). These two mechanisms include mutually exclusive assumptions. However, we can not determine which model best represents the various adsorption mechanisms on MST. Based on our analysis, the DA model predicted the data well. The DA model assumes that an initial sorption layer forms after which networking begins in the pore spaces, filling the volume by a second mechanism. If this mechanism occurs in MST, as the experimental data suggests, then we expect all the empty and closed spaces of MST to contain actinides and strontium when saturated. Prior microstructure analyses determined that the MST surface is best described as heterogeneous (i.e., a semi-crystalline outer layer on an amorphous core) or composite material for adsorption. Therefore, we expect the empty spaces (of nanometer size) between the crystalline units in the fibrous material to provide sorption area for the actinides and strontium. Since each of the three models work reliably, we recommend use of the computationally simplest model as the primary tool until future work can differentiate between the two mechanisms. The Dubinin-Astashov model possesses a simpler mathematical form with fewer parameters and operations.« less
Xia, Tian; Zhao, Yan; Sager, Tina; George, Saji; Pokhrel, Suman; Li, Ning; Schoenfeld, David; Meng, Huan; Lin, Sijie; Wang, Xiang; Wang, Meiying; Ji, Zhaoxia; Zink, Jeffrey I.; Mädler, Lutz; Castranova, Vincent; Lin, Shuo; Nel, Andre E.
2014-01-01
We have recently shown that the dissolution of ZnO nanoparticles and Zn2+ shedding leads to a series of sub-lethal and lethal toxicological responses at cellular level that can be alleviated by iron-doping. Iron-doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser toxic effects in vivo, toxicity studies were performed in rodent and zebrafish models. First, we synthesized a fresh batch of ZnO nanoparticles doped with 1–10 wt % of Fe. These particles were extensively characterized to confirm their doping status, reduced rate of dissolution in an exposure medium and reduced toxicity in a cellular screen. Subsequent studies compared the effects of undoped to doped particles in the rat lung, mouse lung and the zebrafish embryo. The zebrafish studies looked at embryo hatching and mortality rates as well as the generation of morphological defects, while the endpoints in the rodent lung included an assessment of inflammatory cell infiltrates, LDH release and cytokine levels in the bronchoalveolar lavage fluid. Iron doping, similar to the effect of the metal chelator, DTPA, interfered in the inhibitory effects of Zn2+ on zebrafish hatching. In the oropharyngeal aspiration model in the mouse, iron doping was associated with decreased polymorphonuclear cell counts and IL-6 mRNA production. Doped particles also elicited decreased heme oxygenase 1 expression in the murine lung. In the intratracheal instillation studies in the rat, Fe-doping was associated with decreased polymorphonuclear cell counts, LDH and albumin levels. All considered, the above data show that Fe-doping is a possible safe design strategy for preventing ZnO toxicity in animals and the environment. PMID:21250651
Srivastava, D.; Azough, F.; Combe, E.; Funahashi, R.; Kepaptsoglou, D. M.; Ramasse, Q. M.; Molinari, M.; Yeandel, S. R.; Baran, J. D.
2015-01-01
A combination of experimental and computational techniques has been employed to study doping effects in perovskite CaMnO3. High quality Sr–Mo co-substituted CaMnO3 ceramics were prepared by the conventional mixed oxide route. Crystallographic data from X-ray and electron diffraction showed an orthorhombic to tetragonal symmetry change on increasing the Sr content, suggesting that Sr widens the transition temperature in CaMnO3 preventing phase transformation-cracking on cooling after sintering, enabling the fabrication of high density ceramics. Atomically resolved imaging and analysis showed a random distribution of Sr in the A-site of the perovskite structure and revealed a boundary structure of 90° rotational twin boundaries across {101}orthorhombic; the latter are predominant phonon scattering sources to lower the thermal conductivity as suggested by molecular dynamics calculations. The effect of doping on the thermoelectric properties was evaluated. Increasing Sr substitution reduces the Seebeck coefficient but the power factor remains high due to improved densification by Sr substitution. Mo doping generates additional charge carriers due to the presence of Mn3+ in the Mn4+ matrix, reducing electrical resistivity. The major impact of Sr on thermoelectric behaviour is the reduction of the thermal conductivity as shown experimentally and by modelling. Strontium containing ceramics showed thermoelectric figure of merit (ZT) values higher than 0.1 at temperatures above 850 K. Ca0.7Sr0.3Mn0.96Mo0.04O3 ceramics exhibit enhanced properties with S 1000K = –180 μV K–1, ρ 1000K = 5 × 10–5 Ωm, k 1000K = 1.8 W m–1 K–1 and ZT ≈ 0.11 at 1000 K. PMID:28496979
Noh, Seung Hyo; Kwon, Choah; Hwang, Jeemin; Ohsaka, Takeo; Kim, Beom-Jun; Kim, Tae-Young; Yoon, Young-Gi; Chen, Zhongwei; Seo, Min Ho; Han, Byungchan
2017-06-08
In this study, we report self-assembled nitrogen-doped fullerenes (N-fullerene) as non-precious catalysts, which are active for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and thus applicable for energy conversion and storage devices such as fuel cells and metal-air battery systems. We screen the best N-fullerene catalyst at the nitrogen doping level of 10 at%, not at the previously known doping level of 5 or 20 at% for graphene. We identify that the compressive surface strain induced by doped nitrogen plays a key role in the fine-tuning of catalytic activity.
Atomic composition and electrical characteristics of epitaxial CVD diamond layers doped with boron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surovegina, E. A., E-mail: suroveginaka@ipmras.ru; Demidov, E. V.; Drozdov, M. N.
2016-12-15
The results of analysis of the atomic composition, doping level, and hole mobility in epitaxial diamond layers when doped with boron are reported. The layers are produced by chemical-vapor deposition. The possibilities of uniform doping with boron to a level in the range 5 × 10{sup 17} to ~10{sup 20} at cm{sup –3} and of δ doping to the surface concentration (0.3–5) × 10{sup 13} at cm{sup –3} are shown. The conditions for precision ion etching of the structures are determined, and barrier and ohmic contacts to the layers are formed.
NASA Astrophysics Data System (ADS)
Korenev, V. V.; Savelyev, A. V.; Maximov, M. V.; Zubov, F. I.; Shernyakov, Yu M.; Zhukov, A. E.
2017-11-01
The effect of modulation p-doping on multi-state lasing in InAs/InGaAs quantum dot (QD) lasers is studied for different levels of acceptor concentration. It is shown that in case of the short laser cavities, p-doping results in higher output power of the ground-state optical transitions of InAs/InGaAs QDs whereas in longer samples p-doping may result in the decrease of this power component. On the basis of this observation, the optimal design of laser active region and optimal doping level are discussed in details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Binita; Halder, Saswata; Sinha, T. P.
2016-05-23
Europium-doped luminescent barium samarium tantalum oxide Ba{sub 2}SmTaO{sub 6} (BST) has been investigated by first-principles calculation, and the crystal structure, electronic structure, and optical properties of pure BST and Eu-doped BST have been examined and compared. Based on the calculated results, the luminescence properties and mechanism of Eu-doped BST has been discussed. In the case of Eu-doped BST, there is an impurity energy band at the Fermi level, which is formed by seven spin up energy levels of Eu and act as the luminescent centre, which is evident from the band structure calculations.
Mineral resource of the month: strontium
Ober, Joyce A.
2008-01-01
Last month as Americans sat transfixed watching fireworks on July 4, they were probably unaware that strontium was responsible for the beautiful reds in the display. Strontium, a soft silver-white or yellowish metallic element that turns yellow when exposed to air (and red when it burns), is prized for its brilliant red flame. Because it reacts with air and water, the metal is only present naturally in compounds, such as celestite and strontianite.
Process for the recovery of strontium from acid solutions
Horwitz, E.P.; Dietz, M.L.
1992-03-31
The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid. 5 figs.
NASA Astrophysics Data System (ADS)
Korenev, V. V.; Savelyev, A. V.; Maximov, M. V.; Zubov, F. I.; Shernyakov, Yu. M.; Kulagina, M. M.; Zhukov, A. E.
2017-09-01
The influence of the modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot (QD) lasers is studied experimentally for devices having various external losses. It is shown that in the case of short cavities (high external loss), there is an increase in the lasing power component corresponding to the ground-state optical transitions of QDs as the p-doping level grows. However, in the case of long cavities (small external loss), higher dopant concentrations may have an opposite effect on the output power. Based on these observations, an optimal design of laser geometry and an optimal doping level are discussed.
A Moral Foundation for Anti-Doping: How Far Have We Progressed? Where Are the Limits?
Murray, Thomas H
2017-01-01
Clarity about the ethical justification of anti-doping is essential. In its absence, critics multiply and confusion abounds. Three broad reasons are typically offered in anti-doping's defense: to protect athletes' health; to promote fairness; and to preserve meaning and values in sport - what the World Anti-Doping Agency (WADA) Code refers to as the spirit of sport. Protecting health is itself an important value, but many sports encourage athletes to take significant risks. The case against doping is buttressed by concern for athletes' health, but it cannot be the sole foundation. Promoting fairness is vital in all sports as the metaphor of the level playing field attests. But playing fields can be leveled by providing performance-enhancing drugs to all competitors. When doping is prohibited, fairness is aided by effective anti-doping. But the fundamental justification for anti-doping is found in the meanings and values we pursue in and through sport. © 2017 S. Karger AG, Basel.
Thermoelectric properties of the yttrium-doped ceramic oxide SrTiO3
NASA Astrophysics Data System (ADS)
Khan, Tamal Tahsin; Ur, Soon-Chul
2017-01-01
The doping dependence of the thermoelectric figure of merit, ZT, of the ceramic oxide SrTiO3 at high temperature has been studied. In this study, yttrium was used as the doping element. A conventional solid-state reaction method was used for the preparation of Y-doped SrTiO3. The doping level in SrTiO3 was controlled to be in the doping range of 2 - 10 mole%. Almost all the yttrium atoms incorporated into the SrTiO3 provided charge carriers, as was observed by using X-ray diffraction pattern. The relative densities of all the samples varied from 98.53% to 99.45%. The thermoelectric properties, including the electrical conductivity σ, Seebeck coefficient S, thermal conductivity k, and the figure of merit, ZT, were investigated at medium temperatures. The ZT value showed an obvious doping level dependence, in which a value as high as 0.18 is realized at 773 K for a doping of 8 mole%.
First principles study of crystal Si-doped Ge2Sb2Te5
NASA Astrophysics Data System (ADS)
Yan, Beibei; Yang, Fei; Chen, Tian; Wang, Minglei; Chang, Hong; Ke, Daoming; Dai, Yuehua
2017-02-01
Ge2Sb2Te5 (GST) and Si-doped GST with hexagonal structure were investigated by means of First-principles calcucations. We performed many kinds of doping types and studied the electronic properties of Si-doped GST with various Si concentrations. The theoretical calculations show that the lowest formation energy appeared when Si atoms substitute the Sb atoms (SiSb). With the increasing of Si concentrations from 10% to 30%, the impurity states arise around the Fermi level and the band gap of the SiSb structure broadens. Meanwhile, the doping supercell has the most favorable structure when the doping concentration keeps in 20%. The Si-doped GST exhibits p-type metallic characteristics more distinctly owing to the Fermi level moves toward the valence band. The Te p, d-orbitals electrons have greater impact on electronic properties than that of Te s-orbitals.
Effect of doping on electronic properties of HgSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Abhinav, E-mail: abhinavn76@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com
2016-05-23
First principle study of electronic properties of pure and doped HgSe have been performed using all electron Full Potential Linearized Augmented Plane Wave (FP-LAPW) method using ELK code. The electronic exchange and co-relations are considered using Generalized Gradient Approach (GGA). Lattice parameter, Density of States (DOS) and Band structure calculations have been performed. The total energy curve (Energy vs Lattice parameter), DOS and band structure calculations are in good agreement with the experimental values and those obtained using other DFT codes. The doped material is studied within the Virtual Crystal Approximation (VCA) with doping levels of 10% to 25% ofmore » electrons (hole) per unit cell. Results predict zero band gap in undopedHgSe and bands meet at Fermi level near the symmetry point Γ. For doped HgSe, we found that by electron (hole) doping, the point where conduction and valence bands meet can be shifted below (above) the fermi level.« less
Yang, Shengfeng; Chen, Youping
2015-01-01
In this paper, we present the development of a concurrent atomistic–continuum (CAC) methodology for simulation of the grain boundary (GB) structures and their interaction with other defects in ionic materials. Simulation results show that the CAC simulation allows a smooth passage of cracks through the atomistic–continuum interface without the need for additional constitutive rules or special numerical treatment; both the atomic-scale structures and the energies of the four different [001] tilt GBs in bi-crystal strontium titanate obtained by CAC compare well with those obtained by existing experiments and density function theory calculations. Although 98.4% of the degrees of freedom of the simulated atomistic system have been eliminated in a coarsely meshed finite-element region, the CAC results, including the stress–strain responses, the GB–crack interaction mechanisms and the effect of the interaction on the fracture strength, are comparable with that of all-atom molecular dynamics simulation results. In addition, CAC simulation results show that the GB–crack interaction has a significant effect on the fracture behaviour of bi-crystal strontium titanate; not only the misorientation angle but also the atomic-level details of the GB structure influence the effect of the GB on impeding crack propagation. PMID:25792957
Yang, Shengfeng; Chen, Youping
2015-03-08
In this paper, we present the development of a concurrent atomistic-continuum (CAC) methodology for simulation of the grain boundary (GB) structures and their interaction with other defects in ionic materials. Simulation results show that the CAC simulation allows a smooth passage of cracks through the atomistic-continuum interface without the need for additional constitutive rules or special numerical treatment; both the atomic-scale structures and the energies of the four different [001] tilt GBs in bi-crystal strontium titanate obtained by CAC compare well with those obtained by existing experiments and density function theory calculations. Although 98.4% of the degrees of freedom of the simulated atomistic system have been eliminated in a coarsely meshed finite-element region, the CAC results, including the stress-strain responses, the GB-crack interaction mechanisms and the effect of the interaction on the fracture strength, are comparable with that of all-atom molecular dynamics simulation results. In addition, CAC simulation results show that the GB-crack interaction has a significant effect on the fracture behaviour of bi-crystal strontium titanate; not only the misorientation angle but also the atomic-level details of the GB structure influence the effect of the GB on impeding crack propagation.
Zimmerman, C.E.
2005-01-01
Analysis of otolith strontium (Sr) or strontium-to-calcium (Sr:Ca) ratios provides a powerful tool to reconstruct the chronology of migration among salinity environments for diadromous salmonids. Although use of this method has been validated by examination of known individuals and translocation experiments, it has never been validated under controlled experimental conditions. In this study, incorporation of otolith Sr was tested across a range of salinities and resulting levels of ambient Sr and Ca concentrations in juvenile chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), sockeye salmon (Oncorhynchus nerka), rainbow trout (Oncorhynchus rnykiss), and Arctic char (Salvelinus alpinus). Experimental water was mixed, using stream water and seawater as end members, to create experimental salinities of 0.1, 6.3, 12.7, 18.6, 25.5, and 33.0 psu. Otolith Sr and Sr:Ca ratios were significantly related to salinity for all species (r2 range: 0.80-0.91) but provide only enough predictive resolution to discriminate among fresh water, brackish water, and saltwater residency. These results validate the use of otolith Sr:Ca ratios to broadly discriminate salinity histories encountered by salmonids but highlight the need for further research concerning the influence of osmoregulation and physiological changes associated with smoking on otolith microchemistry.
Chen, X B; Nisbet, D R; Li, R W; Smith, P N; Abbott, T B; Easton, M A; Zhang, D-H; Birbilis, N
2014-03-01
A simple strontium phosphate (SrP) conversion coating process was developed to protect magnesium (Mg) from the initial degradation post-implantation. The coating morphology, deposition rate and resultant phases are all dependent on the processing temperature, which determines the protective ability for Mg in minimum essential medium (MEM). Coatings produced at 80 °C are primarily made up of strontium apatite (SrAp) with a granular surface, a high degree of crystallinity and the highest protective ability, which arises from retarding anodic dissolution of Mg in MEM. Following 14 days' immersion in MEM, the SrAp coating maintained its integrity with only a small fraction of the surface corroded. The post-degradation effect of uncoated Mg and Mg coated at 40 and 80 °C on the proliferation and differentiation of human mesenchymal stem cells was also studied, revealing that the SrP coatings are biocompatible and permit proliferation to a level similar to that of pure Mg. The present study suggests that the SrP conversion coating is a promising option for controlling the early rapid degradation rate, and hence hydrogen gas evolution, of Mg implants without adverse effects on surrounding cells and tissues. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zn-dopant dependent defect evolution in GaN nanowires.
Yang, Bing; Liu, Baodan; Wang, Yujia; Zhuang, Hao; Liu, Qingyun; Yuan, Fang; Jiang, Xin
2015-10-21
Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101¯3), (101¯1) and (202¯1), as well as Type I stacking faults (…ABABCBCB…), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (…ABABACBA…) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires.
The Effects of Boron Doping on Residual Stress of Hfcvd Diamond Film for Mems Applications
NASA Astrophysics Data System (ADS)
Zhao, Tianqi; Wang, Xinchang; Sun, Fanghong
In this study, the residual stress of boron-doped diamond (BDD) films is investigated as a function of boron doping level using X-ray diffraction (XRD) analysis. Boron doping level is controlled from 1000ppm to 9000ppm by dissolving trimethyl borate into acetone. BDD films are deposited on silicon wafers using a bias-enhanced hot filament chemical vapor deposition (BE-HFCVD) system. Residual stress calculated by sin2 ψ method varies linearly from -2.4GPa to -1.1GPa with increasing boron doping level. On the BDD film of -1.75GPa, free standing BDD cantilevers are fabricated by photolithography and ICP-RIE processes, then tested by laser Doppler vibrometer (LDV). A cantilever with resonant frequency of 183KHz and Q factor of 261 in the air is fabricated.
NASA Astrophysics Data System (ADS)
Marshall, B. D.; Futa, K.; Scofield, K. M.
2002-12-01
The proposed radioactive waste repository at Yucca Mountain, Nevada would be constructed in the high-silica rhyolite member of the Topopah Spring Tuff, an ash-flow tuff within the ~500-m-thick unsaturated zone. Dry-drilled rock cores from this unit have been packaged to preserve their water content. Two methods have been used to extract the strontium contained in the pore water for isotopic measurements. In the first method, samples of dried core were crushed, and the 0.25 to 2.4 mm size fractions were leached with ultra-pure water for about 1 hour to dissolve the salts left behind by the evaporated pore water. Concentrations of strontium in the pore water were calculated from determinations of porosity and saturation on adjacent core and the measured strontium concentration in the leachate. In the second method, pore water was extracted from sealed core using an ultracentrifuge, minimizing evaporation of water from the core at all steps in the process. The centrifugation of 150 to 200 g of welded tuff at 15,000 rpm for 6 hours typically results in the recovery of as much as 3 ml of pore water for analysis. Strontium isotope compositions were determined by thermal ionization mass spectrometry; 87Sr /86Sr ratios have a reproducibility of 0.00005. The ranges of 87Sr/86Sr ratios determined by the two methods are identical: 0.71215 to 0.71267 in the leachates (n = 35) and 0.71214 to 0.71266 in the extracted pore waters (n = 21). However, the calculated strontium concentrations in the leachates average 300 μg/L, whereas those in the extracted pore water average 1440 μg/L, indicating that a substantial portion of the pore-water salts remain in the crushed rock after leaching. The strontium data determined on extracted pore water shows that the leaching of pore-water salts results in accurate 87Sr/86Sr, but that a substantial correction to the strontium concentration is required due to the inefficiency of the leaching procedure and the small pore sizes in the welded tuffs. The strontium isotope data obtained on leachates can be used to constrain models of water-rock interaction and estimates of travel times in the unsaturated zone.
NASA Astrophysics Data System (ADS)
Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah
2018-05-01
Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.
Continental fragmentation and the strontium isotopic evolution of seawater.
NASA Astrophysics Data System (ADS)
Eric, H.; Jean Pascal, C.
2008-12-01
The time evolution of the strontium isotopic composition of seawater over the last 600 million years has the form of an asymmetric trough. The values are highest in the Cambrian and recent and lowest in the Jurassic. Superimposed on this trend are a number of smaller oscillations. The mechanisms responsible for these global isotopic fluctuations are subject to much debates. In order to get a quantitative picture of the changing paleogeography, we have characterized land-ocean distributions over Late Proterozoic to Phanerozoic times from measurement of perimeters and areas of continental fragments, based on paleomagnetic reconstructions. These measurements served to calculate geophysically constrainted breakup and scatter indexes of continental land masses from 0 to 1100 Ma (Cogne and Humler, 2008). Both parameters (strontium isotopic ratios of seawater and continental fragmentation indexes) are obviously highly correlated during the last 600 Ma. Low continental dispersion (that is large continental land masses) are associated with low seawater strontium isotopic ratios (that is when the continental inputs to oceans are minimum) and high continental dispersion (that is relatively small and widely distributed continents) with high seawater strontium isotopic ratios (that is when the continental input to ocean is maximum). Importantly, this first order evolution appears to conflict with the common idea of mountains erosion as a source for radiogenic strontium to oceans because high strontium isotopic ratios in seawater correspond to period of maximum dispersion of continents and not with period of general collisions. At first glance, it would seem that continental erosion increases with the degree of continental dispersion. Models showing that continental precipitation increases when continental masses are smaller and more widely dispersed and/or the length of continental margins available for rivers to carry continental material to oceans are thus favoured in order to resolve the paradox.
Nishikawa, Masami; Shiroishi, Wataru; Honghao, Hou; Suizu, Hiroshi; Nagai, Hideyuki; Saito, Nobuo
2017-08-17
For an Ir-doped TiO 2 (Ir:TiO 2 ) photocatalyst, we examined the most dominant electron-transfer path for the visible-light-driven photocatalytic performance. The Ir:TiO 2 photocatalyst showed a much higher photocatalytic activity under visible-light irradiation than nondoped TiO 2 after grafting with the cocatalyst of Fe 3+ . For the Ir:TiO 2 photocatalyst, the two-step photoexcitation of an electron from the valence band to the conduction band through the Ir doping level occurred upon visible-light irradiation, as observed by electron spin resonance spectroscopy. The two-step photoexcitation through the doping level was found to be a more stable process with a lower recombination rate of hole-electron pairs than the two-step photoexcitation process through an oxygen vacancy. Once electrons are photoexcited to the conduction band by the two-step excitation, the electrons can easily transfer to the surface because the conduction band is a continuous electron path, whereas the electrons photoexcited at only the doping level could not easily transfer to the surface because of the discontinuity of this path. The observed two-step photoexcitation from the valence band to the conduction band through the doping level significantly contributes to the enhancement of the photocatalytic performance.
Rentsch, Barbe; Bernhardt, Anne; Henß, Anja; Ray, Seemun; Rentsch, Claudia; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael; Rammelt, Stefan; Lode, Anja
2018-03-15
Remodeling of calcium phosphate bone cements is a crucial prerequisite for their application in the treatment of large bone defects. In the present study trivalent chromium ions were incorporated into a brushite forming calcium phosphate cement in two concentrations (10 and 50 mmol/mol β-tricalcium phosphate) and implanted into a femoral defect in rats for 3 and 6 month, non-modified brushite was used as reference. Based on our previous in vitro findings indicating both an enhanced osteoclastic activity and cytocompatibility towards osteoprogenitor cells we hypothesized a higher in vivo remodeling rate of the Cr 3+ doped cements compared to the reference. A significantly enhanced degradation of the modified cements was evidenced by micro computed tomography, X-ray and histological examinations. Furthermore the formation of new bone tissue after 6 month of implantation was significantly increased from 29% to 46% during remodeling of cements, doped with the higher Cr 3+ amount. Time of flight secondary ion mass spectrometry (ToF-SIMS) of histological sections was applied to investigate the release of Cr 3+ ions from the cement after implantation and to image their distribution in the implant region and the surrounding bone tissue. The relatively weak incorporation of chromium into the newly formed bone tissue is in agreement to the low chromium concentrations which were released from the cements in vitro. The faster degradation of the Cr 3+ doped cements was also verified by ToF-SIMS. The positive effect of Cr 3+ doping on both degradation and new bone formation is discussed as a synergistic effect of Cr 3+ bioactivity on osteoclastic resorption on one hand and improvement of cytocompatibility and solubility by structural changes in the calcium phosphate matrix on the other hand. While biologically active metal ions like strontium, magnesium and zinc are increasingly applied for the modification of ceramic bone graft materials, the present study is the first report on the incorporation of low doses of trivalent chromium ions into a calcium phosphate based biomaterial and testing of its performance in bone defect regeneration in vivo. Chromium(III)-doped calcium phosphate bone cements show improved cytocompatibility and both degradation rate and new bone formation in vivo are significantly increased compared to the reference cement. This important discovery might be the starting point for the application of trivalent chromium salts for the modification of bone graft materials to increase their remodelling rate. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Method for liquid chromatographic extraction of strontium from acid solutions
Horwitz, E. Philip; Dietz, Mark L.
1992-01-01
A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.
2016-01-09
studied in detail using scanning tunneling microscopy and angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the...angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the electron mobility at room temperature was comparable...scanning tunneling microscopy and angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the electron mobility at room
Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.; ...
2017-05-10
Here, we used CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis of small samples, to analyze strontium, zirconium, and barium isotopes in 22 presolar silicon carbide grains. Twenty of the grains showed detectable strontium and barium, but none of the grains had enough zirconium to be detected with CHILI. Nine grains were excluded from further consideration since they showed very little signals (<1000 counts) for strontium as well as for barium. Among the 11 remaining grains, we found three X grains. The discovery of three supernova grains among only 22 grainsmore » was fortuitous, because only ~1% of presolar silicon carbide grains are type X, but was confirmed by silicon isotopic measurements of grain residues with NanoSIMS. And while one of the X grains showed strontium and barium isotope patterns expected for supernova grains, the two other supernova grains have 87Sr/86Sr < 0.5, values never observed in any natural sample before. From their silicon isotope ratios, the latter two grains can be classified as X2 grains, while the former grain belongs to the more common X1 group. The differences of these grains in strontium and barium isotopic composition constrain their individual formation conditions in Type II supernovae.« less
Process for strontium-82 separation
Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.
1992-01-01
A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.
Here, we used CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis of small samples, to analyze strontium, zirconium, and barium isotopes in 22 presolar silicon carbide grains. Twenty of the grains showed detectable strontium and barium, but none of the grains had enough zirconium to be detected with CHILI. Nine grains were excluded from further consideration since they showed very little signals (<1000 counts) for strontium as well as for barium. Among the 11 remaining grains, we found three X grains. The discovery of three supernova grains among only 22 grainsmore » was fortuitous, because only ~1% of presolar silicon carbide grains are type X, but was confirmed by silicon isotopic measurements of grain residues with NanoSIMS. And while one of the X grains showed strontium and barium isotope patterns expected for supernova grains, the two other supernova grains have 87Sr/86Sr < 0.5, values never observed in any natural sample before. From their silicon isotope ratios, the latter two grains can be classified as X2 grains, while the former grain belongs to the more common X1 group. The differences of these grains in strontium and barium isotopic composition constrain their individual formation conditions in Type II supernovae.« less
Process for strontium-82 separation
Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.
1992-12-01
A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.
Sekulic, Damir; Zenic, Natasa; Versic, Sime; Maric, Dora; Gabrilo, Goran; Jelicic, Mario
2017-01-01
Abstract The official reports on doping behavior in kickboxing are alarming, but there have been no empirical studies that examined this problem directly. The aim of this study was to investigate the prevalence, gender differences and covariates of potential-doping-behavior, in kickboxing athletes. A total of 130 high-level kickboxing athletes (92 males, 21.37 ± 4.83 years of age, 8.39 ± 5.73 years of training experience; 38 women, 20.31 ± 2.94 years of age; 9.84 ± 4.74 years of training experience) completed questionnaires to study covariates and potential-doping behavior. The covariates were: sport factors (i.e. experience, success), doping-related factors (i.e. opinion about penalties for doping users, number of doping testing, potential-doping-behavior, etc.), sociodemographic variables, task- and ego-motivation, knowledge on sports nutrition, and knowledge on doping. Gender-based differences were established by independent t-tests, and the Mann-Whitney test. Multinomial logistic regression analyses were performed to define the relationships between covariates and a tendency toward potential-doping behavior (positive tendency – neutral – negative tendency). The potential-doping behavior was higher in those athletes who perceived kickboxing as doping contaminated sport. The more experienced kickboxers were associated with positive intention toward potential-doping behavior. Positive intention toward potential-doping behavior was lower in those who had better knowledge on sports nutrition. The task- and ego-motivation were not associated to potential-doping behavior. Because of the high potential-doping-behavior (less than 50% of athletes showed a negative tendency toward doping), and similar prevalence of potential-doping behavior between genders, this study highlights the necessity of a systematic anti-doping campaign in kickboxing. Future studies should investigate motivational variables as being potentially related to doping behavior in younger kickboxers. PMID:29134049
Madelung and Hubbard interactions in polaron band model of doped organic semiconductors
Png, Rui-Qi; Ang, Mervin C.Y.; Teo, Meng-How; Choo, Kim-Kian; Tang, Cindy Guanyu; Belaineh, Dagmawi; Chua, Lay-Lay; Ho, Peter K.H.
2016-01-01
The standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the π–π* gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine–fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime. PMID:27582355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Li; Rivera-Ramos, Milton E.; Hernández-Maldonado, Arturo J.
2014-05-28
A Sr{sup 2+}-SAPO-34 material that displays superior CO2 adsorption selectivity and capacity was characterized via XPS and UV-vis spectroscopy to elucidate the valence state of strontium cations and framework silicon environment. Most importantly, the location of the strontium has been estimated from a Rietveld refinement analysis of synchrotron diffraction data. The XPS analysis indicated that the apparent valence state of the strontium is less than 2, an indication of its interaction with the large anionic framework. Furthermore, UV-vis tests pointed to changes in the silicon environment, plausibly related to this valence state or framework faulting. For the refinement, the analysismore » found that strontium occupied two unique sites: a site Sr1 slightly displaced from six-membered rings and a site Sr2 positioned at the top or bottom of the eight-membered rings. The latter position favors the interaction of the alkaline earth metal with CO{sub 2}, probably resulting in an enhanced electric field-quadrupole moment interaction.« less
Harvey, R. W.; Price, T. H.
1982-01-01
The relation of salmonella isolation efficiency and the size of inoculum introduced from a buffered peptone water culture of sewage polluted water into strontium chloride B medium was investigated. Two separate studies were made, one using enrichment at 37 degrees C, the other at 43 degrees C. From these trials, two inocula suitable for efficient salmonella isolation were determined. Using this information, strontium chloride B medium was compared with modified Rappaport's broth (R25). The inoculum used with R25 was 0.005 ml, determined in an earlier study. Two incubation temperatures were employed with strontium chloride enrichment (37 and 43 degrees C). Rappaport's medium was incubated at 37 degrees C only. Elevated temperature enrichment at 43 degrees C improved the performance of strontium chloride B, but Rappaport's broth still gave significantly better results. This supports earlier studies on simplification of salmonella isolation and standardization of routine technique on a single enrichment medium: Rappaport broth (R25) incubated at 37 degrees C. PMID:7047641
CA-45 AND Sr-85 METABOLISM IN MAN. Progress Report for June 15, 1959- May 20, 1960
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-10-31
Bone formation rate in a normal, healthy, young adult was observed to be 0.521 g calcium/day. Calcium balance and bone formation and destruction rates were studied in patients with disuse osetoporosis associated with quadriplegia secondary to poliomyelitis and patients with senile and posmenopausal osteoporosis. Renal strontium/calcium discrimination, studied for nine cases, was given by a mean factor of 4.3. This factor means that, exposed to trace amounts of strontium and normal calcium loads, the human kidney will produce a urine containing 4.3 atoms of strontium per unit filtered strontium for each atom calcium per unit filtered calcium. The mean valuemore » for gastrointestinal discrimination between endogenously secreted Sr/sup 85/ and Ca/sup 45/ was 1.4. The ratio of strontium-determined pool to calcium- determined pool was 1.04 plus or minus 0.13 (1 S.D.) and the corresponding ratio for bone formation values was 1.04 plus or minus 0.32 (1 S.D.) for nine patients studied. (C.J.G.)« less
Turrel, Jane M; Farrelly, John; Page, Rodney L; McEntee, Margaret C
2006-03-15
To determine the efficacy of strontium 90 beta irradiation in the management of cutaneous mast cell tumors (CMCTs) in cats. Retrospective case series. 35 client-owned cats with CMCTs. Medical records of cats with CMCTs in which tumors were radiated by use of a strontium 90 ophthalmic applicator from 1992 to 2002 were reviewed. Cats were included if CMCT was diagnosed, there were no other sites of MCT involvement at the time of treatment, and records contained adequate follow-up information to permit retrospective assessment of local tumor control. 54 tumors in 35 cats were treated with a median dose of 135 Gy of strontium 90 beta irradiation, resulting in local tumor control in 53 of 54 (98%) tumors with a median follow-up time of 783 days after treatment. Median survival time was 1,075 days. Adverse effects of treatment appeared to be infrequent and of mild severity. Results indicated that strontium 90 beta irradiation resulted in long-term tumor control and should be considered an effective alternative to surgical resection in management of CMCTs in cats.
O'Donnell, R G; Mitchell, P I; Priest, N D; Strange, L; Fox, A; Henshaw, D L; Long, S C
1997-08-18
Concentrations of plutonium-239, plutonium-240, strontium-90 and total alpha-emitters have been measured in children's teeth collected throughout Great Britain and Ireland. The concentrations of plutonium and strontium-90 were measured in batched samples, each containing approximately 50 teeth, using low-background radiochemical methods. The concentrations of total alpha-emitters were determined in single teeth using alpha-sensitive plastic track detectors. The results showed that the average concentrations of total alpha-emitters and strontium-90 were approximately one to three orders of magnitude greater than the equivalent concentrations of plutonium-239,240. Regression analyses indicated that the concentrations of plutonium, but not strontium-90 or total alpha-emitters, decreased with increasing distance from the Sellafield nuclear fuel reprocessing plant-suggesting that this plant is a source of plutonium contamination in the wider population of the British Isles. Nevertheless, the measured absolute concentrations of plutonium (mean = 5 +/- 4 mBq kg-1 ash wt.) were so low that they are considered to present an insignificant radiological hazard.