NASA Astrophysics Data System (ADS)
Riaz, Shahina; Raza, Zulfiqar Ali; Majeed, Muhammad Irfan; Jan, Tariq
2018-05-01
In the present study, zinc sulfide (ZnS) nanoparticles (NPs) were successfully synthesized through a modified chemical precipitation protocol and then mediated into poly(hydroxybutyrate) (PHB) matrix to get ZnS/PHB nanocomposite. Mean diameter and zeta potential of ZnS NPs, as determined using dynamic light scattering technique (DLS), were observed to be 53 nm and ‑89 mV, respectively. The structural investigations performed using x-ray diffraction (XRD) technique depicted the phase purity of ZnS NPs exhibiting cubic crystal structure. Fourier transform infrared (FTIR) spectroscopic analysis was conducted to identify the presence or absence of bonding vibrational modes on the surface of synthesized single phase ZnS NPs. The FTIR analysis confirmed the metal to sulphur bond formation by showing the characteristic band at 1123 cm‑1. The UV–vis absorption spectra of ZnS NPs confirmed the synthesis of particles in nanoscale regime showing a λ max of 302 nm. These NPs were then successfully incorporated into PHB matrix to synthesize ZnS/PHB nanocomposite. The synthesis of nanocomposite was confirmed by EDX analysis. The chemical bonding and structural properties of ZnS/PHB nanocomposite were determined by FTIR and XRD analysis, respectively. The FTIR analysis confirmed the synthesis of ZnS/PHB nanocomposite. Moreover, XRD analysis showed that structure of nanocomposite was completely controlled by ZnS NPs as pure PHB exhibited orthorhombic crystal structure while the nanocomposite demonstrated cubic crystal structure of ZnS. Thermal properties of nanocomposite were studied through thermogravimetric analysis revealing that the incorporation of ZnS NPs into PHB matrix lead to enhance heat resistance properties of PHB.
NASA Astrophysics Data System (ADS)
Ferrière, L.; Lubala, F. R. T.; Osinski, G. R.; Kaseti, P. K.
2011-03-01
Our detailed analysis of the Luizi structure, combining a remote sensing study with geological field observations and petrographic examination of rock samples collected during our 2010 field campaign allows us to confirm its meteorite impact origin.
Factor analysis of an instrument to measure the impact of disease on daily life.
Pedrosa, Rafaela Batista Dos Santos; Rodrigues, Roberta Cunha Matheus; Padilha, Kátia Melissa; Gallani, Maria Cecília Bueno Jayme; Alexandre, Neusa Maria Costa
2016-01-01
to verify the structure of factors of an instrument to measure the Heart Valve Disease Impact on Daily Life (IDCV) when applied to coronary artery disease patients. the study included 153 coronary artery disease patients undergoing outpatient follow-up care. The IDCV structure of factors was initially assessed by means of confirmatory factor analysis and, subsequently, by exploratory factor analysis. The Varimax rotation method was used to estimate the main components of analysis, eigenvalues greater than one for extraction of factors, and factor loading greater than 0.40 for selection of items. Internal consistency was estimated using Cronbach's alpha coefficient. confirmatory factor analysis did not confirm the original structure of factors of the IDCV. Exploratory factor analysis showed three dimensions, which together explained 78% of the measurement variance. future studies with expansion of case selection are necessary to confirm the IDCV new structure of factors.
NASA Astrophysics Data System (ADS)
Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Gopakumar, N.; Babu, K. Rajendra
2017-12-01
Strontium cyanurate crystals with novel structure and unique optical property like mechanoluminescence have been grown by conventional gel method. Transparent crystals were obtained. The single crystal X-ray diffraction analysis reveals the exquisite structure of the grown crystal. The crystal is centrosymmetric and has a three dimensional polymeric structure. The powder X ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal were identified by Fourier transform infrared spectroscopy. Elemental analysis confirmed the composition of the complex. A study of thermal properties was done by thermo gravimetric analysis and differential thermal analysis. The optical properties like band gap, refractive index and extinction coefficient were evaluated from the UV visible spectral analysis. The etching study was done to reveal the dislocations in the crystal which in turn explains mechanoluminescence emission. The mechanoluminescence property exhibited by the crystal makes it suitable for stress sensing applications. Besides being a centrosymmetric crystal, it also exhibits NLO behavior. Dielectric properties were studied and theoretical calculations of Fermi energy, valence electron plasma energy, penn gap and polarisability have been done.
Structural and optical characterization of NiSe film grown by screen-printing method
NASA Astrophysics Data System (ADS)
Sharma, Kapil; Sharma, D. K.; Dwivedi, D. K.; Kumar, Vipin
2018-05-01
In present investigation NiSe films were grown by economical screen-printing method. Optimum conditions for growing good quality screen-printed films were found. The films were characterized for their structural and optical properties. The polycrystalline nature of films with hexagonal structure was confirmed through XRD analysis. Direct type of optical band gap of 1.75 eV for the NiSe film was confirmed by optical characterization.
Facile Synthesis and Characterization of ZrO₂ Nanoparticles via Modified Co-Precipitation Method.
Ramachandran, M; Subadevi, R; Liu, Wei-Ren; Sivakumar, M
2018-01-01
The crystalline Zirconium oxide (ZrO2) nano particles were synthesized using optimized content of Zirconium nitrate (Zr(NO3)2·3H2O) with varying KOH concentration (0.5, 1 and 1.5 M) by co-precipitation method. The thermal history of the precursor was carefully analyzed through Thermogravimetric (TG/DTA) measurement. The as prepared samples were characterized to ensure structural, functional, morphological, compositional, chemical composition and band gap by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Laser Raman, scanning electron microscopy (SEM), High resolution Transverse Electron Microscopy (HR-TEM), X-ray photo electron spectroscopy (XPS), EDX, Photo luminescence spectroscopy (PL). The monoclinic structure with space group P21/c has been confirmed from XRD (JCPDS 89-9066). The Zr-O stretching vibration and Zr-O2-Zr bending vibrations were confirmed through FTIR analysis. The well dispersed particles with spherical morphology were confirmed through SEM and TEM analysis. The oxidation states of Zr, O and C were confirmed through XPS analysis. The oxygen vacancies and band gap of the particles were investigated through PL analysis.
Nunez-Iglesias, Juan; Blanch, Adam J; Looker, Oliver; Dixon, Matthew W; Tilley, Leann
2018-01-01
We present Skan (Skeleton analysis), a Python library for the analysis of the skeleton structures of objects. It was inspired by the "analyse skeletons" plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API) allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan's measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM)-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions.
Looker, Oliver; Dixon, Matthew W.; Tilley, Leann
2018-01-01
We present Skan (Skeleton analysis), a Python library for the analysis of the skeleton structures of objects. It was inspired by the “analyse skeletons” plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API) allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan’s measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM)-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions. PMID:29472997
Vibrational spectroscopic and structural investigations on fullerene: A DFT approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christy, P. Anto; Premkumar, S.; Asath, R. Mohamed
2016-05-06
The molecular structure of fullerene (C{sub 60}) molecule was optimized by the DFT/B3LYP method with 6-31G and 6-31G(d,p) basis sets using Gaussian 09 program. The vibrational frequencies were calculated for the optimized molecular structure of the molecule. The calculated vibrational frequencies confirm that the molecular structure of the molecule was located at the minimum energy potential energy surface. The calculated vibrational frequencies were assigned on the basis of functional group analysis and also confirmed using the GaussView 05 software. The frontier molecular orbitals analysis was carried out. The FMOs related molecular properties were predicted. The higher ionization potential, higher electronmore » affinity, higher softness, lower band gap energy and lower hardness values were obtained, which confirm that the fullerene molecule has a higher molecular reactivity. The Mulliken atomic charge distribution of the molecule was also calculated. Hence, these results play an important role due to its potential applications as drug delivery devices.« less
Structural and optical properties of NiFe2O4 synthesized via green technology
NASA Astrophysics Data System (ADS)
Patel, S.; Saleem, M.; Varshney, Dinesh
2018-05-01
The nanoparticles of NiFe2O4 were successfully synthesized via green technology using banana peel extract as the catalyst as well as the medium for reaction technique is reported. Analysis of X-ray diffraction spectrum revealed the cubic structure for the prepared spinel ferrite samples crystallized into cubic spinel structure with the space group Fd3m. The Retvield refinement was carried out which obeyed the results obtained from the XRD spectrum analysis of the sample. Raman spectrum provided confirmation for the spinel structure formation and five active Raman modes were observed. Since the optical band-gap value shows inverse response to the crystallite size, The UV-Vis spectrum study confirmed dual but reduced band-gap value.
Structure of native Renilla reniformis luciferin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hori, K.; Charbonneau, H.; Hart, R.C.
1977-10-01
The structure of native luciferin from the bioluminescent coelenterate Renilla reniformis is shown to be 3.7-dihydro-2-(p-hydroxybenzyl)-6-(p-hydroxyphenyl)-8-benzylimidazol(1,2-a)pyrazin-3-one by mass spectral analysis of synthetic luciferin and the luciferin derived from a protein directly involved in the bioluminescent system. A previous report of the molecular weight of luciferin is shown to be incorrect by reexamination of the spectral data and by synthesis of two derivatives. Detailed analysis of kinetic, emission, and quantum yield data for the isolated and synthetic luciferins confirms this structure. Confirmation of this structure in a number of species from different phyla suggests a common substrate for a variety ofmore » bioluminescent marine organisms.« less
NASA Astrophysics Data System (ADS)
Arun, B.; Athira, M.; Akshay, V. R.; Sudakshina, B.; Mutta, Geeta R.; Vasundhara, M.
2018-02-01
We have investigated the structural, magnetic and magnetocaloric properties of nanocrystalline Pr-deficient Pr1-xSrxMnO3-δ Perovskite manganites. Rietveld refinement of the X-ray powder diffraction patterns confirms that all the studied compounds have crystallized into an orthorhombic structure with Pbnm space group. Transmission electron microscopy analysis reveals nanocrystalline compounds with crystallite size less than 50 nm. The selected area electron diffraction patterns reveal the highly crystalline nature of the compounds and energy dispersive X-ray spectroscopic analysis shows that the obtained compositions are nearly identical with the nominal one. The oxygen stoichiometry is estimated by iodometric titration method and stoichiometric compositions are confirmed by X-ray Fluorescence Spectrometry analysis. A large bifurcation is observed in the ZFC/FC curves and Arrott plots not show a linear relation but have a convex curvature nature. The temperature dependence of inverse magnetic susceptibility at higher temperature confirms the existence of ferromagnetic clusters. The experimental results reveal that the reduction of crystallite size to nano metric scale in Pr-deficient manganites adversely influences structural, magnetic and magnetocaloric properties as compared to its bulk counterparts reported earlier.
NASA Astrophysics Data System (ADS)
Das, S.; Bera, K. P.; Nath, T. K.
2017-05-01
Synthesis of Nd-doped BFO multiferroic nanoceramic by the conventional sol-gel method has been carried out. HRXRD and FESEM have been used for the structural analysis to confirm the triclinic structure and to obtain the surface morphology showing agglomeration and to find out the size of the nanoparticles. A high precision LCR meter has been used to record the dielectric constants at various temperatures. Several anomalies are observed whose physical explanations have been given. Space charge polarization effect and magnetoelectric coupling have been confirmed in the synthesized Bi0.9Nd0.1FeO3 nanoceramic sample.
NASA Astrophysics Data System (ADS)
Thirumurugan, R.; Anitha, K.
2018-03-01
A novel organic proton transfer complex of imidazolium dipicolinate (ID) has been synthesized and it was grown as single crystals using slow evaporation method. The molecular structure of synthesized compound and vibrational modes of its functional groups were confirmed by (1H and 13C) NMR, FTIR and FT-Raman spectroscopic studies, respectively. Single crystal X-ray diffraction (SCXRD) analysis confirmed the orthorhombic system with noncentrosymmetric (NCS), P212121, space group of grown ID crystal. UV-Vis-NIR spectral study confirmed its high optical transparency within the region of 285-1500 nm. Powder second harmonic generation (SHG) efficiency of ID crystal was confirmed and it was 6.8 times that of KDP crystal. TG-DTA and DSC analysis revealed the higher thermal stability of grown crystal as 249 °C. The dielectric response and mechanical behaviour of grown crystal were studied effectively. Density functional theory calculations were performed to probe the relationship between the structure and its properties including molecular optimization, Mulliken atomic charge distribution, frontier molecular orbital (FMOs) and molecular electrostatic potential map (MEP) analysis and first hyperpolarizability. All these experimental and computational results were discussed in this communication and it endorsed the ID compound as a potential NLO candidate could be employed in optoelectronics device applications in near future.
Donarelli, Zaira; Gullo, Salvatore; Lo Coco, Gianluca; Marino, Angelo; Scaglione, Piero; Volpes, Aldo; Allegra, Adolfo
2015-01-01
The factor structure of the Fertility Problem Inventory (FPI) and its invariance across gender were examined in Italian couples undergoing infertility treatment. About 1000 subjects (both partners of 500 couples) completed two questionnaires prior to commencing infertility treatment at a private Clinic in Palermo, Italy. Confirmatory Factor Analysis demonstrated that the original factor structure of the FPI was partially confirmed. Two correlated factors (Infertility Life Domains and Importance of Parenthood) were obtained via a post hoc Exploratory Factor Analysis. Finally, the invariance of this factor structure across gender was confirmed. The study supported the relevance of two interrelated factors specific to infertility stress which could help clinicians to focus on the core infertility-related stress domains of infertile couples.
Determination of anisotropy and multimorphology in fly ash based geopolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, M. Irfan, E-mail: mirfanwazir@gmail.com; Azizli, Khairun, E-mail: khairun-azizli@petronas.com.my; Sufian, Suriati, E-mail: suriati@petronas.com.my
2015-07-22
In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.
Determination of anisotropy and multimorphology in fly ash based geopolymers
NASA Astrophysics Data System (ADS)
Khan, M. Irfan; Azizli, Khairun; Sufian, Suriati; Man, Zakaria; Siyal, Ahmer Ali; Ullah, Hafeez
2015-07-01
In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.
Design and Manufacturing of Composite Tower Structure for Wind Turbine Equipment
NASA Astrophysics Data System (ADS)
Park, Hyunbum
2018-02-01
This study proposes the composite tower design process for large wind turbine equipment. In this work, structural design of tower and analysis using finite element method was performed. After structural design, prototype blade manufacturing and test was performed. The used material is a glass fiber and epoxy resin composite. And also, sand was used in the middle part. The optimized structural design and analysis was performed. The parameter for optimized structural design is weight reduction and safety of structure. Finally, structure of tower will be confirmed by structural test.
Vibrational Study of Melatonin and its Radioprotective Activity towards Hydroxyl Radical
NASA Astrophysics Data System (ADS)
Singh, Gurpreet; Kaur, Sarvpreet; Saini, G. S. S.
2011-12-01
Vibrational study of Melatonin (N-acetyl 5-methoxytrypatamin) was done using FTIR and Raman spectroscopy. DFT calculations were employed to the structural analysis of melatonin and to the end products. The theoretical calculations confirmed the different observed vibrational modes. The optimized structure energy calculations of the different end products confirmed the most probable site of the hydroxyl radical attack is the hydrogen attached to nitrogen present in the indole ring.
Antifungal diterpenes from Hypoestes serpens (Acanthaceae).
Rasoamiaranjanahary, Lalao; Marston, Andrew; Guilet, David; Schenk, Kurt; Randimbivololona, Fanantenanirainy; Hostettmann, Kurt
2003-02-01
Two new diterpenes, fusicoserpenol A and dolabeserpenoic acid A, with antifungal activity, were isolated from leaves of Hypoestes serpens (Acanthaceae). Their structures were elucidated by means of spectrometric methods including 1D and 2D NMR experiments and MS analysis. X-ray crystallographic analysis confirmed the structure of fusicoserpenol A and established the relative configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
2017-03-08
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J
2017-01-01
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules. PMID:28382247
Structural, Optical, and Vibrational Properties of ZnO Microrods Deposited on Silicon Substrate
NASA Astrophysics Data System (ADS)
Lahlouh, Bashar I.; Ikhmayies, Shadia J.; Juwhari, Hassan K.
2018-03-01
Zinc oxide (ZnO) microrod films deposited by spray pyrolysis on silicon substrate at 350 ± 5°C have been studied and evaluated, and compared with thin films deposited by electron beam to confirm the identity of the studied samples. The films were characterized using different techniques. The microrod structure was studied and confirmed by scanning electron microscopy. Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction analysis confirmed successful deposition of ZnO thin films with the expected wurtzite structure. Reflectance data showed a substantial drop across the whole studied wavelength range. The photoluminescence (PL) spectra of the studied samples showed a peak at ˜ 360 nm, representing a signature of ZnO. The shift in the PL peak position is due to defects and other species present in the films, as confirmed by FTIR and energy-dispersive x-ray spectroscopy results.
NASA Astrophysics Data System (ADS)
Karpuraranjith, M.; Thambidurai, S.
Biotemplate-based zinc oxide nanocomposite was effectively prepared via simple chemical precipitation route. The functional groups of amino (-NH2), hydroxyl (-OH) and O-Zn-O were confirmed and characterized by FTIR spectroscopy. The structural and morphological properties were confirmed by XRD, UV-Vis DRS, HR-SEM and TEM analyses. The elemental composition of carbon, nitrogen, zinc and oxygen was confirmed by energy-dispersive X-ray analysis (EDAX) and Brunauer-Emmett-Teller high surface area of materials was estimated to be 52.49m2/g, respectively. Thermogravimetric analysis (TGA) shows that biotemplate on zinc oxide nanocomposite has higher thermal stability than chitosan matrix. The results demonstrate that biotemplate on zinc oxide matrix causes immobilization effect among the two components. Therefore, chitosan-ZnO nanocomposite has a microcrystalline morphological structure and also good thermal stability, so it can be a promising material for sensors, medical, tissue engineering and wastewater treatment applications.
NASA Astrophysics Data System (ADS)
Kolos, N. N.; Paponov, B. V.; Orlov, V. D.; Lvovskaya, M. I.; Doroshenko, A. O.; Shishkin, O. V.
2006-03-01
1,5-diaminotetrazole at conditions of its interaction with chalcones (1,3-diphenylpropenones) in hot DMF undergoes Dimroth rearrangement to 5-tetrazolylhydrazine, which results in formation of 1-(5-tetrazolyl)-3,5-diaryl-Δ 2-pyrazolines ( I). Structure of the obtained products was confirmed by their parallel synthesis and X-ray structural analysis. Unusual fluorescence behavior of the tetrazolopyrazolynes in polar solvents was attributed to the dissociation of their highly acidic tetrazole N-H group. The last hypothesis was confirmed at the investigation of the protolytic interactions of I with tertiary amine.
MnMoO4 nanolayers : Synthesis characterizations and electrochemical detection of QA
NASA Astrophysics Data System (ADS)
Muthamizh, S.; Kumar, S. Praveen; Munusamy, S.; Narayanan, V.
2018-04-01
MnMoO4 nanolayers were prepared by precipitation method. The MnMoO4 nanolayers were synthesized by using commercially available (CH3COO)2Mn.4H2O and Na2WO4.2H2O. The XRD pattern reveals that the synthesized MnMoO4 has monoclinic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MnMoO4 nanolayers. DRS-UV analysis shows that MnMoO4 has a band gap of 2.59 eV. FE-SEM and HR-TEM analysis along with EDAX confirms the material morphology in stacked layers like structure in nano scale. Synthesized nanolayers were utilized for the detection of biomolecule quercetin (QA).
Advances in single-molecule magnet surface patterning through microcontact printing.
Mannini, Matteo; Bonacchi, Daniele; Zobbi, Laura; Piras, Federica M; Speets, Emiel A; Caneschi, Andrea; Cornia, Andrea; Magnani, Agnese; Ravoo, Bart Jan; Reinhoudt, David N; Sessoli, Roberta; Gatteschi, Dante
2005-07-01
We present an implementation of strategies to deposit single-molecule magnets (SMMs) using microcontact printing microCP). We describe different approaches of microCP to print stripes of a sulfur-functionalized dodecamanganese (III, IV) cluster on gold surfaces. Comparison by atomic force microscopy profile analysis of the patterned structures confirms the formation of a chemically stable single layer of SMMs. Images based on chemical contrast, obtained by time-of-flight secondary ion mass spectrometry, confirm the patterned structure.
NASA Astrophysics Data System (ADS)
Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Babu, K. Rajendra
2018-05-01
Good quality prismatic crystals of industrially applicable corrosion inhibiting barium complex of 1,3,5-triazinane-2,4,6-trione have been grown by conventional gel method. The crystal structure, packing, and nature of bonds are revealed in the single crystal X-ray diffraction analysis. The crystal has a three-dimensional polymeric structure having a triclinic crystal system with the space group P-1. The powder X-ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal are identified by Fourier transform infrared spectroscopy. Elemental analysis confirms the stoichiometry of the elements present in the complex. Thermogravimetric analysis and differential thermal analysis reveal its good thermal stability. The optical properties like band gap, refractive index and extinction coefficient are evaluated from the UV-visible spectral analysis. The singular property of the material, corrosion inhibition efficiency achieved by the adsorption of the sample molecules is determined by the weight loss method.
NASA Astrophysics Data System (ADS)
Karthigha, S.; Kalainathan, S.; Maheswara Rao, Kunda Uma; Hamada, Fumio; Yamada, Manabu; Kondo, Yoshihiko
2016-02-01
Single crystals of 2-[2-(4-cholro-phenyl)-vinyl]-1-methylquinolinium naphthalene-2-sulfonate (4CLNS) were grown by a slow evaporation technique. The formation of molecule was confirmed from 1H NMR and FTIR analysis. The confirmation of crystal structure was done by single crystal XRD and atomic packing of grown crystal was identified. The grown single crystal crystallized in triclinic structure with centrosymmetric space group P-1. The crystalline nature of the synthesised material was recorded by powder XRD. The optical absorption properties of the grown crystals were analyzed by UV-vis spectral studies. The thermal behaviour of the title material has been studied by TG/DTA analysis which revealed the stability of the compound till its melting point 276.7 °C. The third order nonlinear optical property of 4CLNS was investigated in detail by Z scan technique and it confirms that the title crystal is suitable for photonic devices and NLO optical applications. Emissions at 519 nm in green region of the EM spectrum were found by photoluminescence studies. The charge transfer occurring within the molecule is explained by the calculated HOMO and LUMO energies.
2011-01-01
Background Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of Sarcoptes mite populations from Pyrenean chamois (Rupicapra pyrenaica) in Asturias (Spain), using one multiplex of 9 microsatellite markers and Sarcoptes samples from sympatric Pyrenean chamois, red deer (Cervus elaphus), roe deer (Capreolus capreolus) and red fox (Vulpes vulpes). Results The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity). The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of Sarcoptes mite under the host-taxon law (herbivore derived- and carnivore derived-Sarcoptes mite) among the sympatric wild animals from Asturias. Conclusions The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous Sarcoptes mite. This could eventually be applied to other parasite species. PMID:21794141
NASA Astrophysics Data System (ADS)
Prakash, M.; Geetha, D.; Lydia Caroline, M.; Ramesh, P. S.
2011-12-01
Good transparent single crystals of L-phenylalanine L-phenylalaninium malonate (LPPMA) have been grown successfully by slow evaporation technique from aqueous solution. Single crystal X-ray diffractometer was utilized to measure unit cell parameter and to confirm the crystal structure. The chemical structure of compound was established by FT-NMR technique. The vibrational modes of the molecules of elucidated from FTIR spectra. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance in the visible region. Thermal properties of the LPPMA crystal were carried out by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques, which indicate that the material does not decompose before melting. The melting point of grown crystal was observed as 180 °C by melting point apparatus. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time.
NASA Astrophysics Data System (ADS)
Dey, Chaitali; Chaudhuri, Arka; Goswami, Madhuri Mandal
2018-04-01
Herein, we report the synthesis of manganese ferrite (MnFe2O4) magnetic nano hollow sphere (NHS) by a solvothermal route. Crystalline phase was confirmed by X-ray diffraction (XRD), energy dispersive x-ray (EDX). Magnetic measurements were done in vibrating sample magnetometer (VSM) and morphological structure was analyzed by field emission high resolution scanning electron microscope (FESEM) and structural characterization was confirmed by Fourier transform infrared spectroscopy (FTIR), thermal analysis was performed by thermo-gravimetric analysis-differential thermal analysis (TGA-DTA). The size of the NHS was around 470 nm, this large size may show a potential applicability in industrial application, like dye adsorption, catalysis etc. In addition, because of its ferromagnetic character at room temperature, it can be easily separated by external magnetic field after the application is done.
Substitution effect on a hydroxylated chalcone: Conformational, topological and theoretical studies
NASA Astrophysics Data System (ADS)
Custodio, Jean M. F.; Vaz, Wesley F.; de Andrade, Fabiano M.; Camargo, Ademir J.; Oliveira, Guilherme R.; Napolitano, Hamilton B.
2017-05-01
The effect of substituents on two hydroxylated chalcones was studied in this work. The first chalcone, with a dimethylamine group (HY-DAC) and the second, with three methoxy groups (HY-TRI) were synthesized and crystallized from ethanol on centrosymmetric space group P21/c. The geometric parameters and supramolecular arrangement for both structures obtained from single crystal X-ray diffraction data were analyzed. The intermolecular interactions were investigated by Hirshfeld surfaces with their respective 2D plot for quantification of each type of contact. Additionally, the observed interactions were characterized by QTAIM analysis, and DFT calculations were applied for theoretical vibrational spectra, localization and quantification of frontier orbitals and potential electrostatic map. The flatness of both structures was affected by the substituents, which led to different monoclinic crystalline packing. The calculated harmonic vibrational frequencies and homo-lumo gap confirmed the stability of the structures, while intermolecular interactions were confirmed by potential electrostatic map and QTAIM analysis.
Date, Abhijit A; Srivastava, Deepika; Nagarsenker, Mangal S; Mulherkar, Rita; Panicker, Lata; Aswal, Vinod; Hassan, Puthusserickal A; Steiniger, Frank; Thamm, Jana; Fahr, Alfred
2011-10-01
In the present investigation, the feasibility of fabricating novel self-assembled cationic nanocarriers (LeciPlex) containing cetyltrimethylammonium bromide (CTAB) or didodecyldimethylammonium bromide (DDAB) and soybean lecithin using pharmaceutically acceptable biocompatible solvents such as 2-Pyrrolidone (Soluphor P) and diethyleneglycol monoethyl ether (Transcutol) was established. The interaction between DDAB/CTAB and soybean lecithin in the nanocarriers was confirmed by differential scanning calorimetry and in vitro antimicrobial studies. The positive charge on the nanocarriers was confirmed by zeta potential analysis. Transmission electron microscopy analysis could not reveal sufficient information regarding the internal structure of the nanocarriers, whereas cryotransmission electron microscopy studies indicated that these novel nanocarriers have unilamellar structure. Small-angle neutron scattering studies confirmed interaction of cationic surfactant (DDAB) and lecithin in the nanocarriers and confirmed the presence of unilamellar nanostructures. Various hydrophobic drugs could be encapsulated in the CTAB/DDAB-based lecithin nanocarriers (CTAB-LeciPlex or DDAB-LeciPlex) irrespective of their difference in log p-values. In vitro antimicrobial studies on triclosan-loaded LeciPlex confirmed entrapment of triclosan in the nanocarriers. The ability of CTAB-LeciPlex and DDAB-LeciPlex to condense plasmid DNA was established using agarose gel electrophoresis. DDAB-LeciPlex could successfully transfect pDNA in HEK-293 cells indicating potential in gene delivery.
NASA Astrophysics Data System (ADS)
Hidayat, Yuniawan; Pranowo, Harno Dwi; Armunanto, Ria
2018-05-01
Structure and dynamics of preferential solvation of K(I) ion in aqueous ammonia have been reinvestigated using ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) simulation. The average coordination number of the first solvation consists of 2 ammonia and 4 waters. The mean residence time is less than 2 ps confirming the rapid mobility of ligands. The distance evolution data shows the frequent of ligand exchanges. The second solvation shell shows a more labile structure. The NBO analysis of the first shell structure emphasizes that interaction of K(I)-H2O is stronger than K(I)-NH3. The Wiberg bond confirms a weak electrostatic of ion-ligand interaction.
Marco, José H; Perpiñá, Conxa; Roncero, María; Botella, Cristina
2017-06-01
The main aim of this study was to confirm the factorial structure of the Spanish version of the Multidimensional Body-Self Relations Questionnaire-Appearance Scales in early adolescents from 12 to 14 years. The sample included 355 participants, 189 girls and 166 boys, with ages ranging from 12 to 14 years old. The original MBSRQ-AS 5-factor structure was confirmed, and the model showed a good fit to the data: Appearance Evaluation, Appearance Orientation, Body Areas Satisfaction, Overweight Preoccupation, and Self-Classified Weight. The internal consistency of the test scores was adequate. Girls had higher score s than boys on Appearance Orientation, Overweight Preoccupation, and Self-Classified Weight, and lower scores on Appearance Evaluation and Body Areas Satisfaction. This study confirms the factor structure of the MBSRQ-AS. Copyright © 2017 Elsevier Ltd. All rights reserved.
The executive personal finance scale: item analyses.
Lester, David; Spinella, Marcello
2007-12-01
A scale devised to measure executive personal money management was examined for its factorial structure using 138 college students. On the whole, the factor analysis confirmed the subscale structure of the scale, but the Planning subscale appeared to consist of two distinct components, investment behavior and saving behavior.
Hwang, In Hyun; Swenson, Dale C; Gloer, James B; Wicklow, Donald T
2015-09-04
Three new sesquiterpenoids (pestaloporonins A-C; 1-3) related to the caryophyllene-derived punctaporonins were isolated from cultures of a fungicolous isolate of Pestalotiopsis sp. The structures of 1-3 were determined by analysis of NMR and HRMS data, and the structure of 1, including its absolute configuration, was confirmed by X-ray crystallographic analysis. Compounds 1 and 2 contain new bicyclic and tricyclic ring systems, respectively.
NASA Astrophysics Data System (ADS)
Jeyaseelan, S. Christopher; Hussain, Shamima; Premkumar, R.; Rekha, T. N.; Benial, A. Milton Franklin
2018-04-01
Indole and its derivatives are considered as good ligands for various disease causing proteins in human because of presence of the single nitrogen atom. In the present study, the potential energy surface scan was performed for the most stable molecular structure of the 5-Methoxyindole-3-carboxaldehyde (MICA) molecule. The most stable molecular structure was optimized by DFT/B3LYP method with 6-311G++ (d, p) basis set using Gaussian 09 program package. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculations using VEDA 4.0 program. The Frontier molecular orbitals analysis was performed and related molecular propertieswere calculated. The possible electrophilic and nucleophilic reactive sites of the molecule were studied using molecular electrostatic potential analysis, which confirms the bioactivity of the molecule. The natural bond orbital analysis was also performed to confirm the bioactivity of the title molecule.
Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis.
Neilson, Julia W; Jordan, Fiona L; Maier, Raina M
2013-03-01
PCR-denaturing gradient gel electrophoresis (PCR-DGGE) is widely used in microbial ecology for the analysis of comparative community structure. However, artifacts generated during PCR-DGGE of mixed template communities impede the application of this technique to quantitative analysis of community diversity. The objective of the current study was to employ an artificial bacterial community to document and analyze artifacts associated with multiband signatures and preferential template amplification and to highlight their impacts on the use of this technique for quantitative diversity analysis. Six bacterial species (three Betaproteobacteria, two Alphaproteobacteria, and one Firmicutes) were amplified individually and in combinations with primers targeting the V7/V8 region of the 16S rRNA gene. Two of the six isolates produced multiband profiles demonstrating that band number does not correlate directly with α-diversity. Analysis of the multiple bands from one of these isolates confirmed that both bands had identical sequences which lead to the hypothesis that the multiband pattern resulted from two distinct structural conformations of the same amplicon. In addition, consistent preferential amplification was demonstrated following pairwise amplifications of the six isolates. DGGE and real time PCR analysis identified primer mismatch and PCR inhibition due to 16S rDNA secondary structure as the most probable causes of preferential amplification patterns. Reproducible DGGE community profiles generated in this study confirm that PCR-DGGE provides an excellent high-throughput tool for comparative community structure analysis, but that method-specific artifacts preclude its use for accurate comparative diversity analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Loiola, A R; Andrade, J C R A; Sasaki, J M; da Silva, L R D
2012-02-01
Zeolite 4A (LTA) has been successfully synthesized by a hydrothermal method, where kaolin was used as silica and alumina source. The synthesized zeolite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser granulometry, and FTIR spectroscopy. XRD data from the Rietveld refinement method confirmed only one crystallographic phase. Zeolite A morphology was observed by SEM analysis, and it showed well-defined crystals with slightly different sizes but with the same cubic shape. Particle size distribution of the crystals was confirmed by laser granulometry, whereas FTIR spectroscopy revealed significant structural differences between the starting material and the final zeolite product used as water softener. Copyright © 2010 Elsevier Inc. All rights reserved.
Prakash, M; Geetha, D; Caroline, M Lydia; Ramesh, P S
2011-12-01
Good transparent single crystals of L-phenylalanine L-phenylalaninium malonate (LPPMA) have been grown successfully by slow evaporation technique from aqueous solution. Single crystal X-ray diffractometer was utilized to measure unit cell parameter and to confirm the crystal structure. The chemical structure of compound was established by FT-NMR technique. The vibrational modes of the molecules of elucidated from FTIR spectra. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance in the visible region. Thermal properties of the LPPMA crystal were carried out by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques, which indicate that the material does not decompose before melting. The melting point of grown crystal was observed as 180°C by melting point apparatus. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time. Copyright © 2011 Elsevier B.V. All rights reserved.
Rodríguez, N; Menéndez, N; Tornero, J; Amils, R; de la Fuente, V
2005-03-01
* The analysis of metal distribution in Imperata cylindrica, a perennial grass isolated from the banks of Tinto River (Iberian Pyritic Belt), an extreme acidic environment with high content in metals, has shown a remarkable accumulation of iron. This property has been used to study iron speciation and its distribution among different tissues and structures of the plant. * Mossbauer (MS) and X-ray diffraction (XRD) were used to determine the iron species, scanning electron microscopy (SEM) to locate iron biominerals among plant tissue structures, and energy-dispersive X-ray microanalysis (EDAX), X-ray fluorescence (TXRF) and inductively coupled plasma emission spectroscopy (ICP-MS) to confirm their elemental composition. * The MS spectral analysis indicated that iron accumulated in this plant mainly as jarosite and ferritin. The presence of jarosite was confirmed by XRD and the distribution of both minerals in structures of different tissues was ascertained by SEM-EDAX analysis. * The convergent results obtained by complementary techniques suggest a complex iron management system in I. cylindrica, probably as a consequence of the environmental conditions of its habitat.
Characterisations of collagen-silver-hydroxyapatite nanocomposites
NASA Astrophysics Data System (ADS)
Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.
2016-05-01
The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L. N.
2015-10-01
August 2015, scale solids from the 16H Evaporator Gravity Drain Line (GDL) to the Tank 38H were delivered to SRNL for analysis. The desired analytical goal was to identify and confirm the crystalline structure of the scale material and determine if the form of the aluminosilicate mineral was consistent with previous analysis of the scale material from the GDL.
Design and Evaluation of Glass/epoxy Composite Blade and Composite Tower Applied to Wind Turbine
NASA Astrophysics Data System (ADS)
Park, Hyunbum
2018-02-01
In the study, the analysis and manufacturing of small class wind turbine blade was performed. In the structural design, firstly the loading conditions are defined through the load case analysis. The proposed structural configuration of blade has a sandwich type composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. And also, this work proposes a design procedure and results of tower for the small scale wind turbine systems. Structural analysis of blade including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the finite element method, the load spectrum analysis and the Miner rule. Moreover, investigation on structural safety of tower was verified through structural analysis by FEM. The manufacturing of blade and tower was performed based on structural design. In order to investigate the designed structure, the structural tests were conducted and its results were compared with the calculated results. It is confirmed that the final proposed blade and tower meet the design requirements.
Leaf flavonoids of Albizia lebbeck.
el-Mousallamy, A M
1998-06-01
Two new tri-O-glycoside flavonols: kaempferol and quercetin 3-O-alpha-rhamnopyranosyl(1-->6)-beta-glucopyranosyl(1-->6)-beta- galactopyranosides, were identified from the leaves of Albizia lebbeck. Structures were established by conventional methods of analysis and confirmed by ESI-MS, 1H and 13C-NMR spectral analysis.
Thermal Structure Analysis of SIRCA Tile for X-34 Wing Leading Edge TPS
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Squire, Thomas H.; Rasky, Daniel J. (Technical Monitor)
1997-01-01
This paper will describe in detail thermal/structural analyses of SIRCA tiles which were performed at NASA Ames under the The Tile Analysis Task of the X-34 Program. The analyses used the COSMOS/M finite element software to simulate the material response in arc-jet tests, mechanical deflection tests, and the performance of candidate designs for the TPS system. Purposes of the analysis were to verify thermal and structural models for the SIRCA tiles, to establish failure criteria for stressed tiles, to simulate the TPS response under flight aerothermal and mechanical load, and to confirm that adequate safety margins exist for the actual TPS design.
Development and Validation of Videogame Addiction Scale for Children (VASC).
Yılmaz, Eyüp; Griffiths, Mark D; Kan, Adnan
2017-01-01
The aim of the present study was to develop a valid and reliable Videogame Addiction Scale for Children (VASC). The data were derived from 780 children who completed the Videogame Addiction Scale (405 girls and 375 boys; 48.1% ranging in age from 9 to 12 years). The sample was randomly split into two different sub-samples (sample 1, n = 400; sample 2, n = 380). Sample 1 was used to perform exploratory factor analysis (EFA) to define the factorial structure of VASC. As a result of EFA, a four-factor structure comprising 21 items was obtained and explained 55% of the total variance (the four factors being "self-control," "reward/reinforcement," "problems," and "involvement"). The internal consistency reliability of VASC has found 0.89. Confirmatory factor analysis (CFA) was performed to confirm the factorial structure obtained by EFA in the remaining half of sample ( n = 390). The obtained fit indices from the CFA confirmed the structure of the EFA. The 21-item VASC has good psychometric properties that can be used among Turkish schoolchildren populations.
CENTRIFUGAL VIBRATION TEST OF RC PILE FOUNDATION
NASA Astrophysics Data System (ADS)
Higuchi, Shunichi; Tsutsumiuchi, Takahiro; Otsuka, Rinna; Ito, Koji; Ejiri, Joji
It is necessary that nonlinear responses of structures are clarified by soil-structure interaction analysis for the purpose of evaluating the seismic performances of underground structure or foundation structure. In this research, centrifuge shake table tests of reinforced concrete pile foundation installed in the liquefied ground were conducted. Then, finite element analyses for the tests were conducted to confirm an applicability of the analytical method by comparing the experimental results and analytical results.
NASA Astrophysics Data System (ADS)
Lee, Moon Joo; Hwang, Jun-Ki; Kim, Ji Hoon; Lim, Hyung-Seok; Sun, Yang-Kook; Suh, Kyung-Do; Lee, Young Moo
2016-02-01
Shape-tunable hydroxyl copolyimide (HPI) nanoparticles are fabricated by a re-precipitation method and are coated onto electrospun HPI membranes, followed by heat treatment to prepare thermally rearranged polybenzoxazole (TR-PBO) composite membranes. The morphology of HPI nanoparticles consisted of sphere and sea-squirt structures, which is controlled by changing the concentration of the stabilizer. The morphological characteristics of TR-PBO nanoparticles convert from HPI nanoparticles by heat treatment and their composite membranes is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA) analysis, and contact angle measurements. TGA and DSC measurements confirm the excellent thermal stability compared to Celgard, a commercial PP separator for lithium-ion batteries (LIBs). Further, TR-PBO nano-composite membranes used in coin-cell type LIBs as a separator show excellent high power density performance as compared to Celgard. This is due to the fact that sea-squirt structured nanoparticles have better electrochemical properties than sphere structured nanoparticles at high temperature.
Testosterone metabolism revisited: discovery of new metabolites.
Pozo, Oscar J; Marcos, Josep; Ventura, Rosa; Fabregat, Andreu; Segura, Jordi
2010-10-01
The metabolism of testosterone is revisited. Four previously unreported metabolites were detected in urine after hydrolysis with KOH using a liquid chromatography-tandem mass spectrometry method and precursor ion scan mode. The metabolites were characterized by a product ion scan obtained with accurate mass measurements. Androsta-4,6-dien-3,17-dione, androsta-1,4-dien-3,17-dione, 17-hydroxy-androsta-4,6-dien-3-one and 15-androsten-3,17-dione were proposed as feasible structures for these metabolites on the basis of the mass spectrometry data. The proposed structures were confirmed by analysis of synthetic reference compounds. Only 15-androsten-3,17-dione could not be confirmed, owing to the lack of a commercially available standard. That all four compounds are testosterone metabolites was confirmed by the qualitative analysis of several urine samples collected before and after administration of testosterone undecanoate. The metabolite androsta-1,4-dien-3,17-dione has a structure analogous to that of the exogenous anabolic steroid boldenone. Specific transitions for boldenone and its metabolite 17β-hydroxy-5β-androst-1-en-3-one were also monitored. Both compounds were also detected after KOH treatment, suggesting that this metabolic pathway is involved in the endogenous detection of boldenone previously reported by several authors.
Ireland, Jane L; Power, Christina L; Bramhall, Sarah; Flowers, Catherine
2009-01-01
Few studies have attempted to explore attitudes towards bullying among prisoners, despite acknowledgement that attitudes may play an important role. To evaluate the structure of a new attitudinal scale, the Prison Bullying Scale (PBS), with adult men and women in prison and with young male prisoners. That attitudes would be represented as a multidimensional construct and that the PBS structure would be replicated across confirmatory samples. The PBS was developed and confirmed across four independent studies using item parceling and confirmatory factor analysis: Study I comprised 412 adult male prisoners; Study II, 306 adult male prisoners; Study III, 171 male young offenders; and Study IV, 148 adult women prisoners. Attitudes were represented as a multidimensional construct comprising seven core factors. The exploratory analysis was confirmed in adult male samples, with some confirmation among young offenders and adult women. The fit for young offenders was adequate and improved by factor covariance. The fit for women was the poorest overall. The study notes the importance of developing ecologically valid measures and statistically testing these measures prior to their clinical or research use. The development of the PBS holds value both as an assessment and as a research measure and remains the only ecologically validated measure in existence to assess prisoner attitudes towards bullying.
Structural confirmation of oligosaccharides newly isolated from sugar beet molasses.
Abe, Tatsuya; Horiuchi, Kenichi; Kikuchi, Hiroto; Aritsuka, Tsutomu; Takata, Yusuke; Fukushi, Eri; Fukushi, Yukiharu; Kawabata, Jun; Ueno, Keiji; Onodera, Shuichi; Shiomi, Norio
2012-08-27
Sugar beet molasses is a viscous by-product of the processing of sugar beets into sugar. The molasses is known to contain sucrose and raffinose, a typical trisaccharide, with a well-established structure. Although sugar beet molasses contains various other oligosaccharides as well, the structures of those oligosaccharides have not been examined in detail. The purpose of this study was isolation and structural confirmation of these other oligosaccharides found in sugar beet molasses. Four oligosaccharides were newly isolated from sugar beet molasses using high-performance liquid chromatography (HPLC) and carbon-Celite column chromatography. Structural confirmation of the saccharides was provided by methylation analysis, matrix-assisted laser desorption/ionaization time of flight mass spectrometry (MALDI-TOF-MS), and nuclear magnetic resonance (NMR) measurements. The following oligosaccharides were identified in sugar beet molasses: β-D-galactopyranosyl-(1- > 6)-β-D-fructofuranosyl-(2 <-> 1)-α-D-glucopyranoside (named β-planteose), α-D-galactopyranosyl-(1- > 1)-β-D-fructofuranosyl-(2 <-> 1)-α-D-glucopyranoside (named1-planteose), α-D-glucopyranosyl-(1- > 6)-α-D-glucopyranosyl-(1 <-> 2)-β-D-fructofuranoside (theanderose), and β-D-glucopyranosyl-(1- > 3)-α-D-glucopyranosyl-(1 <-> 2)-β-D-fructofuranoside (laminaribiofructose). 1-planteose and laminaribiofructose were isolated from natural sources for the first time.
Structural analysis of fructans from Agave americana grown in South Africa for spirit production.
Ravenscroft, Neil; Cescutti, Paola; Hearshaw, Meredith A; Ramsout, Ronica; Rizzo, Roberto; Timme, Elizabeth M
2009-05-27
Fructans isolated from Agave americana grown in South Africa are currently used for spirit production. Structural studies on water-soluble fructans were performed to facilitate the development of other applications including its use as a prebiotic. Acid hydrolysis followed by HPAEC-PAD analysis confirmed that the fructan was composed of glucose and fructose, and size analysis by HPAEC-PAD and size exclusion chromatography indicated that the saccharides have a DP range from 6 to 50. An average DP of 14 was estimated by (1)H NMR analysis. Linkage analysis and ESI-MS studies suggest that A. americana has a neofructan structure consisting of a central sucrose to which (2 → 1)- and (2 → 6)-linked β-D-Fruf chains are attached. The (2 → 1)-linked units extend from C-1 of Fru and C-6 of glucose, whereas the (2 → 6)-linked β-D-Fruf units are attached to C-6 of the central Fru. This structure accounts for the presence of equimolar amounts of 1,6-linked Glu and 1,2,6-linked Fru found in linkage analysis and the multiplicity of the NMR signals observed. Detailed ESI-MS studies were performed on fructan fractions: native, periodate oxidized/reduced, and permethylated oligomers. These derivatizations introduced mass differences between Glc and Fru following oxidation and between 1,2-, 1,6-, 2,6-, and 1,2,6-linked units after methylation. Thus, ESI-MS showed the presence of a single Glc per fructan chain and that it is predominantly internal, rather than terminal as found in inulin. These structural features were confirmed by the use of 1D and 2D NMR experiments.
Rueda, Daniel; Sheen, Patricia; Gilman, Robert H.; Bueno, Carlos; Santos, Marco; Pando-Robles, Victoria; Batista, Cesar V.; Zimic, Mirko
2014-01-01
Recombinant wild-pyrazinamidase from H37Rv M. tuberculosis was analyzed by gel electrophoresis under differential reducing conditions to evaluate its quaternary structure. PZAse was fractionated by size exclusion chromatography under non-reducing conditions. PZAse activity was measured and mass spectrometry analysis was performed to determine the identity of proteins by de novo sequencing and to determine the presence of disulfide bonds. This study confirmed that M. tuberculosis wild type PZAse was able to form homo-dimers in vitro. Homo-dimers showed a slightly lower specific PZAse activity compared to monomeric PZAse. PZAse dimers were dissociated into monomers in response to reducing conditions. Mass spectrometry analysis confirmed the existence of disulfide bonds (C72-C138 and C138-C138) stabilizing the quaternary structure of the PZAse homo-dimer. PMID:25199451
NASA Astrophysics Data System (ADS)
Ravishankar, S.; Balu, A. R.; Nagarethinam, V. S.
2018-02-01
This paper reports the effect of Gd doping concentration on the thermal behavior, structural, morphological, optical, electrical and magnetic properties of PbS thin films. Gd doping concentration in PbS was varied as 0 wt.%, 1 wt.%, 2 wt.%, 3 wt.% and 4 wt.%, respectively. Thermogravimetric-Differential Thermal Analysis curves confirm that both the undoped and doped films become well crystallized above 354°C and 342°C, respectively. X-ray diffraction studies confirm that all the films exhibit face-centered cubic crystal structure with a strong (2 0 0) preferential growth. Undoped films exhibit triangular-shaped grains which modify to small cuboids with Gd doping. Energy dispersive x-ray spectra confirm the presence of Gd in the doped films. Transmission electron microscopy images confirm the presence of nanosized grains for both the undoped and doped films. The doped films showed increased transparency and improved magnetic behaviour. The results obtained confirm that Gd3+, a rare earth ion, strongly influences the physical properties of PbS thin films to a large extent.
NASA Astrophysics Data System (ADS)
Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia
2018-06-01
The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking).
Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia
2018-06-15
The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking). Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Muthuraja, P.; Joselin Beaula, T.; Balachandar, S.; Bena Jothy, V.; Dhandapani, M.
2017-10-01
2-aminoguanidinium 4-methyl benzene sulphonate (AGMS), an organic compound with big assembly of hydrogen bonding interactions was crystallized at room temperature. The structure of the compound was confirmed by FT-IR, NMR and single crystal X-ray diffraction analysis. Numerous hydrogen bonded interactions were found to form supramolecular assemblies in the molecular structure. Fingerprint plots of Hirshfeld surface analysis spells out the interactions in various directions. The molecular structure of AGMS was optimised by HF, MP2 and DFT (B3LYP and CAM-B3LYP) methods at 6-311G (d,p) basis set and the geometrical parameters were compared. Electrostatic potential calculations of the reactants and product confirm the transfer of proton. Optical properties of AGMS were ascertained by UV-Vis absorbance and reflectance spectra. The band gap of AGMS is found to be 2.689 eV. Due to numerous hydrogen bonds, the crystal is thermally stable up to 200 °C. Hyperconjugative interactions which are responsible for the second hyperpolarizabilities were accounted by NBO analysis. Static and frequency dependent optical properties were calculated at HF and DFT methods. The hyperpolarizabilities of AGMS increase rapidly at frequencies 0.0428 and 0.08 a.u. compared to static one. The compound exhibits violet and blue emission.
The research on delayed fracture behavior of high-strength bolts in steel structure
NASA Astrophysics Data System (ADS)
Li, Guo dong; Li, Nan
2017-07-01
High-strength bolts have been widely used in power plants. However, the high-strength bolts which being employed in pumping station, steel structure and pipeline anti-whip structure have been found delayed fracture for many times in a power plant, this will affect the reliability of steel fracture and bring blow risk caused by falling objects. The high-strength bolt with delayed fracture was carried out fracture analysis, metallurgical analysis, chemical analysis, mechanical analysis, as well as bolts installation analysis, it can be comprehensively confirmed that the direct cause of high-strength bolts delayed fracture is the stress corrosion, and the root cause of high-strength bolts delayed fracture should be the improper installation at the initial and the imperfect routine anti-corrosion maintenance.
Sakthivel, Muniyan; Geraldine, Pitchairaj; Thomas, Philip A
2011-08-01
Accumulating evidence suggests that oxidative stress underlies age-related formation of cataract, and that antioxidants retard cataractogenesis. This study aimed to evaluate whether ellagic acid, a natural polyphenol with antioxidant properties, prevents alterations in the lenticular protein profile in an experimental model of selenite cataract. Alterations in lenticular protein were determined by two-dimensional electrophoresis (2DE) and image analysis. Eluted αA-crystallin spots were analyzed by mass spectrometry. Western blot analysis was also performed to confirm the differential expression of certain crystallins and cytoskeletal proteins. In cataractous lenses, 2DE and image analysis revealed approximately 45 and 60 prominent spots in soluble and insoluble protein fractions respectively. Analysis of the pI and molecular weight of protein spots revealed differences in the expression of crystallin proteins in soluble and insoluble fractions. Western blot analysis confirmed changes in the expression of αA- and βB1- crystallins in both soluble and insoluble protein fractions, while mass spectrometry confirmed the degradation of αA-crystallin in selenite cataractous lenses. Western blot analysis also confirmed the occurrence of altered expression of certain cytoskeletal proteins in insoluble fractions. However, the lenticular protein profile in lenses from selenite-challenged, ellagic acid-treated rats was essentially similar to that noted in lenses from normal rats. The present study confirms the importance of structural and cytoskeletal proteins in the maintenance of lenticular transparency; the results also suggest that ellagic acid prevents lenticular protein alterations induced by selenite in an experimental setting.
Structural and dielectric studies of Ce doped BaSnO3 perovskite nanostructures
NASA Astrophysics Data System (ADS)
Angel, S. Lilly; Deepa, K.; Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.
2018-04-01
Undoped and Cerium (Ce) doped BaSnO3(BSO) nanostructures were synthesized by co-precipitation method. The cubic structure and perovskite phase were confirmed by X-ray diffraction (XRD). The crystallite size of BSO is 41nm and when Ce ion concentration is increased, the crystallite sizesdecreased. The nanocube, nanocuboids and nanorods are observed from SEM analysis. The purity of the undoped and doped samples are confirmed by EDS spectrum. For larger defects, wide band gap was obtained from UV-Vis and PL spectrum. The dielectric constants are increased at low frequencies when Ce impurities are introduced in the BSO matrix at Sn site.
Bem Sex Role Inventory Validation in the International Mobility in Aging Study.
Ahmed, Tamer; Vafaei, Afshin; Belanger, Emmanuelle; Phillips, Susan P; Zunzunegui, Maria-Victoria
2016-09-01
This study investigated the measurement structure of the Bem Sex Role Inventory (BSRI) with different factor analysis methods. Most previous studies on validity applied exploratory factor analysis (EFA) to examine the BSRI. We aimed to assess the psychometric properties and construct validity of the 12-item short-form BSRI in a sample administered to 1,995 older adults from wave 1 of the International Mobility in Aging Study (IMIAS). We used Cronbach's alpha to assess internal consistency reliability and confirmatory factor analysis (CFA) to assess psychometric properties. EFA revealed a three-factor model, further confirmed by CFA and compared with the original two-factor structure model. Results revealed that a two-factor solution (instrumentality-expressiveness) has satisfactory construct validity and superior fit to data compared to the three-factor solution. The two-factor solution confirms expected gender differences in older adults. The 12-item BSRI provides a brief, psychometrically sound, and reliable instrument in international samples of older adults.
Protein Structure Prediction with Evolutionary Algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.E.; Krasnogor, N.; Pelta, D.A.
1999-02-08
Evolutionary algorithms have been successfully applied to a variety of molecular structure prediction problems. In this paper we reconsider the design of genetic algorithms that have been applied to a simple protein structure prediction problem. Our analysis considers the impact of several algorithmic factors for this problem: the confirmational representation, the energy formulation and the way in which infeasible conformations are penalized, Further we empirically evaluated the impact of these factors on a small set of polymer sequences. Our analysis leads to specific recommendations for both GAs as well as other heuristic methods for solving PSP on the HP model.
Printed strain sensors for early damage detection in engineering structures
NASA Astrophysics Data System (ADS)
Zymelka, Daniel; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi
2018-05-01
In this paper, we demonstrate the analysis of strain measurements recorded using a screen-printed sensors array bonded to a metal plate and subjected to high strains. The analysis was intended to evaluate the capabilities of the printed strain sensors to detect abnormal strain distribution before actual defects (cracks) in the analyzed structures appear. The results demonstrate that the developed device can accurately localize the enhanced strains at the very early stage of crack formation. The promising performance and low fabrication cost confirm the potential suitability of the printed strain sensors for applications within the framework of structural health monitoring (SHM).
Rietveld analysis of the cubic crystal structure of Na-stabilized zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagherazzi, G.; Canton, P.; Benedetti, A.
Using x-ray Rietveld analysis the fcc (fluorite-type) structure of a Na-containing nanocrystalline zirconia powder (9.5 nm estimated of crystallite size) obtained by precipitation and subsequent calcination has been confirmed. The result shows that using conventional x-ray diffraction techniques the cubic crystallographic form of ZrO{sub 2} from the tetragonal one in nanosized powders. These conclusions are supported by the findings of independent Raman scattering experiments. {copyright} {ital 1997 Materials Research Society.}
Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.
Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon
2007-11-01
Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.
Mixed time integration methods for transient thermal analysis of structures
NASA Technical Reports Server (NTRS)
Liu, W. K.
1982-01-01
The computational methods used to predict and optimize the thermal structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a different yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.
Mixed time integration methods for transient thermal analysis of structures
NASA Technical Reports Server (NTRS)
Liu, W. K.
1983-01-01
The computational methods used to predict and optimize the thermal-structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a difficult yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally-useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.
NASA Astrophysics Data System (ADS)
Subhapriya, G.; Kalyanaraman, S.; Jeyachandran, M.; Ragavendran, V.; Krishnakumar, V.
2018-04-01
Synthesized 4-nitro-N-(2,4-dinitrophenyl) benzenamine (NDPBA) molecule was confirmed applying the tool of NMR. Theoretical prediction addressed the NMR chemical shifts and correlated well with the experimental data. The molecule subjected to theoretical DFT at 6-311++G** level unraveled the spectroscopic and structural properties of the NDPBA molecule. Moreover the structural features proved the occurrence of intramolecular Nsbnd H· · O hydrogen bonding in the molecule which was further confirmed with the help of Frontier molecular orbital analysis. Vibrational spectroscopic characterization through FT-IR and Raman experimentally and theoretically gave an account for the vibrational properties. An illustration of the topology of the molecule theoretically helped also in finding the hydrogen bonding energy.
NASA Astrophysics Data System (ADS)
Durlak, Piotr; Berski, Sławomir; Latajka, Zdzisław
2016-01-01
The molecular structure, conformational preferences, topological and vibrational analysis of allicin has been investigated at two different approaches. Calculations have been carried out on static (DFT and MP2) levels with an assortment of Dunning's basis sets and dynamic CPMD simulations. In this both case within the isolated molecule approximation. The results point out that at least twenty different conformers coexist on the PES as confirmed by the flexible character of this molecule. The topological analysis of ELF showed very similar nature of the Ssbnd S and Ssbnd O bonds. The infrared spectrum has been calculated, and a comparative vibrational analysis has been performed.
NASA Astrophysics Data System (ADS)
Ferrer, Evelina G.; Gómez, Analía V.; Añón, María C.; Puppo, María C.
2011-06-01
Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.
Rietveld refinement, dielectric and magnetic properties of Nb modified Bi0.80Ba0.20FeO3 ceramic
NASA Astrophysics Data System (ADS)
Jangra, Sandhaya; Sanghi, Sujata; Agarwal, Ashish; Rangi, Manisha
2018-05-01
Bi0.80Ba0.20Fe0.95Nb0.05O3 ceramic has been prepared via conventional solid state reaction method. Structure analysis was carried out by X-ray diffraction (XRD) technique at room temperature. XRD pattern confirmed the crystalline nature of prepared sample. Rietveld analysis used for further structural investigations and confirmed the existence of rhombohedral symmetry (R3c space group). The dielectric response shows dispersion at lower frequency range and becomes frequency independent at high frequency. The approximation of conduction mechanism is determined by the temperature dependent behavior of frequency exponent `s'. Fitting results suggests the applicability of small polaron conduction mechanism at lower temperatures and CBH model at higher temperature. Room temperature magnetic measurements give the evidence of significant enhancement in magnetic properties with remanent magnetization (Mr = 0.1218 emu/g) and coercive field (Hc = 3.5342 kOe).
NASA Astrophysics Data System (ADS)
Gupta, Vandana; Raina, Bindu; Verma, Seema; Bamzai, K. K.
2018-05-01
Samarium manganite doped with cadmium having general formula Sm1-xCdxMnO3 for x = 0.05, 0.15 were synthesized by solid state reaction technique. These compositions were characterized by various techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and dielectric. XRD analysis confirms the single phase formation with pervoskites structure having orthorhombic phase. Densities were determined and compared with the results obtained by Archimedes principle. The scanning electron micrograph shows that the particle size distribution is almost homogeneous and spherical in shape. FTIR analysis confirms the presence of various atomic bonds within a molecule. A very large value of dielectric constant was observed at low frequencies due to the presence of grains and interfaces. The dielectric constant value decreases with increase in cadmium doping at samarium site.
"What's in a structure?" The story of biguanides
NASA Astrophysics Data System (ADS)
Kathuria, Deepika; Bankar, Apoorva A.; Bharatam, Prasad V.
2018-01-01
Biguanides are a very interesting class of molecules which have been extensively studied for their medicinal applications. The structural and electronic structural aspects of biguanides have been explored in detail; however, even today, scientific literature continues to represent biguanides incorrectly as 1a. The X-ray crystal structure analysis and various spectroscopic studies such as UV, 1H and 15N NMR have confirmed that biguanide exists as tautomer 1b. Electronic structure analysis also supports the existence of 1b. This review focuses on the structure and electronic structure of biguanides and aims to emphasize the importance of the correct representation of a structure. There is a need to commence the use of 1b for the general representation of biguanides in textbooks and research articles which will ensure a correct perspective for further studies on these molecules.
NASA Astrophysics Data System (ADS)
Sullivan, W. N.
The Darrieus-type Vertical Axis Wind Turbine (VAWT) presents a variety of unusual structural problems to designers. The level of understanding of these structural problems governs, to a large degree, the success or failure of today's rotor designs. A survey is presented of the technology available for rotor structural design with emphasis on the DOE research program now underway. Itemizations are included of the major structural issues unique to the VAWT along with discussion of available analysis techniques for each problem area. It is concluded that tools are available to at least approximately address the most important problems. However, experimental data for confirmation is rather limited in terms of volume and the range of rotor configurations tested.
A Confirmatory Factor Analysis of an Abbreviated Social Support Instrument: The MOS-SSS
ERIC Educational Resources Information Center
Gjesfjeld, Christopher D.; Greeno, Catherine G.; Kim, Kevin H.
2008-01-01
Objective: Confirm the factor structure of the original 18-item Medical Outcome Study Social Support Survey (MOS-SSS) as well as two abbreviated versions in a sample of mothers with a child in mental health treatment. Method: The factor structure, internal consistency, and concurrent validity of the MOS-SSS were assessed using a convenience sample…
More powerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules
Spyrou, John A. B.; Kelly, James; Ren, Jingshan; Grimes, Jonathan; Puerstinger, Gerhard; Stonehouse, Nicola; Walter, Thomas S.; Hu, Zhongyu; Wang, Junzhi; Li, Xuemei; Peng, Wei; Rowlands, David; Fry, Elizabeth E.; Rao, Zihe; Stuart, David I.
2014-01-01
Enterovirus 71 (HEV71) epidemics amongst children and infants result mainly in mild symptoms, however, especially in the Asia-Pacific region, infection can be fatal. At present no therapies are available. We have used structural analysis of the complete virus to guide the design of HEV71 inhibitors. Analysis of complexes with four 3-(-4-pyridyl)-2-imidazolidinone derivatives with varying anti-HEV71 activities, pinpointed key structure-activity correlates. We then identified additional potentially beneficial substitutions, developed methods to reliably triage compounds by quantum mechanics-enhanced ligand docking, and synthesized two candidates. Structural analysis and in vitro assays confirmed the predicted binding modes and their ability to block viral infection. One ligand (IC50 = 25 pM) is an order of magnitude more potent than the best previously reported inhibitor, and is also more soluble. Our approach may be useful in the design of effective drugs for enterovirus infections. PMID:24509833
Hein, Tyler C; Monk, Christopher S
2017-03-01
Child maltreatment is common and has long-term consequences for affective function. Investigations of neural consequences of maltreatment have focused on the amygdala. However, developmental neuroscience indicates that other brain regions are also likely to be affected by child maltreatment, particularly in the social information processing network (SIPN). We conducted a quantitative meta-analysis to: confirm that maltreatment is related to greater bilateral amygdala activation in a large sample that was pooled across studies; investigate other SIPN structures that are likely candidates for altered function; and conduct a data-driven examination to identify additional regions that show altered activation in maltreated children, teens, and adults. We conducted an activation likelihood estimation analysis with 1,733 participants across 20 studies of emotion processing in maltreated individuals. Maltreatment is associated with increased bilateral amygdala activation to emotional faces. One SIPN structure is altered: superior temporal gyrus, of the detection node, is hyperactive in maltreated individuals. The results of the whole-brain corrected analysis also show hyperactivation of the parahippocampal gyrus and insula in maltreated individuals. The meta-analysis confirms that maltreatment is related to increased bilateral amygdala reactivity and also shows that maltreatment affects multiple additional structures in the brain that have received little attention in the literature. Thus, although the majority of studies examining maltreatment and brain function have focused on the amygdala, these findings indicate that the neural consequences of child maltreatment involve a broader network of structures. © 2016 Association for Child and Adolescent Mental Health.
MICELLAR ELECTROKINETIC CHROMATOGRAPHY-MASS SPECTROMETRY (R823292)
The combination of micellar electrokinetic chromatography (MEKC) with mass spectrometry (MS) is very attractive for the direct identification of analyte molecules, for the possibility of selectivity enhancement, and for the structure confirmation and analysis in a MS-MS mode. The...
NASA Astrophysics Data System (ADS)
Zhao, Yuancong; Tu, Qiufen; Wang, Jin; Huang, Qiongjian; Huang, Nan
2010-12-01
Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.
Li, Qingjiang; Shi, Min; Timmons, Cody; Li, Guigen
2006-02-16
[reaction: see text] The aminochlorination of methylenecyclopropanes (MCPs) 1 and vinylidenecyclopropanes (VCPs) has been explored with use of FeCl(3) (20 mol %) as a Lewis acid catalyst in acetonitrile under convenient mild conditions. The stereochemistry has been unambiguously confirmed by X-ray structural analysis. The aziridinium-based mechanism, accounting for both regio- and stereoselectivity, has been carefully studied. A linear free-energy relationship study of this reaction confirms consistency with the Hammet equation.
Optical Sensing Properties of Pyrene-Schiff Bases toward Different Acids.
Babgi, Bandar A; Alzahrani, Asma
2016-07-01
A set of (4-substituted-phenyl)-pyren-1-ylmethylene-amine (PMA) was prepared by the reaction of pyrene-1-carboxaldehyde and the corresponding 4-substituted aniline. The structure of the PMA compounds were confirmed by spectroscopic data (IR, (1)HNMR, (13)CNMR, ISI-MS and elemental analysis. The structure of (4-bromo-phenyl)-pyren-1-ylmethylene-amine (BrPMA) was further confirmed by the single X-ray crystallography. The absorption and emission spectroscopic behaviors were investigated in variant acids. The compounds showed dramatic spectroscopic changes upon acidifying with strong acids and negligible effects when weak acids are used in the acidifications. Hence, the PMA compounds can be used as sensors to distinguish between weak and strong acids.
NASA Astrophysics Data System (ADS)
Abdel-Jaber, H.; Glisic, B.
2015-02-01
Prestressed structures experience limited tensile stresses in concrete, which limits or completely eliminates the occurrence of cracks. However, in some cases, large tensile stresses can develop during the early age of the concrete due to thermal gradients and shrinkage effects. Such stresses can cause early-age cracks, termed ‘pre-release cracks’, which occur prior to the transfer of the prestressing force. When the prestressing force is applied to the cross-section, it is assumed that partial or full closure of the cracks occurs by virtue of the force transfer through the cracked cross-section. Verification of the closure of the cracks after the application of the prestressing force is important as it can either confirm continued structural integrity or indicate and approximate reduced structural capacity. Structural health monitoring (SHM) can be used for this purpose. This paper researches an SHM method that can be applied to prestressed beam structures to assess the condition of pre-release cracks. The sensor network used in this method consists of parallel long-gauge fiber optic strain sensors embedded in the concrete cross-sections at various locations. The same network is used for damage detection, i.e. detection and characterization of the pre-release cracks, and for monitoring the prestress force transfer. The method is validated on a real structure, a curved continuous girder. Results from the analysis confirm the safety and integrity of the structure. The method and its application are presented in this paper.
Analysis in temporal regime of dispersive invisible structures designed from transformation optics
NASA Astrophysics Data System (ADS)
Gralak, B.; Arismendi, G.; Avril, B.; Diatta, A.; Guenneau, S.
2016-03-01
A simple invisible structure made of two anisotropic homogeneous layers is analyzed theoretically in temporal regime. The frequency dispersion is introduced and analytic expression of the transient part of the field is derived for large times when the structure is illuminated by a causal excitation. This expression shows that the limiting amplitude principle applies with transient fields decaying as the power -3 /4 of the time. The quality of the cloak is then reduced at short times and remains preserved at large times. The one-dimensional theoretical analysis is supplemented with full-wave numerical simulations in two-dimensional situations which confirm the effect of dispersion.
Family context assessment in a public health study.
Velasco, David; Sánchez de Miguel, Manuel; Egurza, Maitane; Arranz, Enrique; Aranbarri, Aritz; Fano, Eduardo; Ibarluzea, Jesús
2014-01-01
To analyze the factorial structure of a new instrument to assess the quality of the family context (Etxadi-Gangoiti Scale) in a sample from the Gipuzkoa cohort of the Environment and Childhood (Infancia y Medio Ambiente [INMA]) study. Families in a sample of 433 two-year-old children were assessed in a home visit with subsequent analysis of the factorial structure and psychometric properties of the data. An exploratory factorial analysis (principal axis factoring and varimax rotation) and a confirmatory factorial analysis were carried out; partial confirmation of the original factorial structure of the instrument was obtained, which revealed the following factorial structures. Subscale (1): promotion of cognitive and linguistic development, social skills, psychomotor skills, and pretend play and imitation; subscale (2): promotion of independence and self-esteem, provision of optimal frustration, social and emotional quality of the relationship, and absence of physical punishment; subscale (3): paternal involvement, low exposure to family conflict, low frequency of family conflict, relationship with the extended family, social support, diversity of experiences, low frequency of stressful events, and low parental perception of stress. The structure of the original instrument structure was partially confirmed, which was attributed to the characteristics of the sample. We stress the importance of the variability obtained in the evaluation of the families, as well as of adequate indicators of reliability in such evaluation. The new instrument could be used in public health to identify deficient family contexts and to design preventive interventions focused on parenting skills. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.
Structural and electrical properties of CZTS thin films by electrodeposition
NASA Astrophysics Data System (ADS)
Rao, M. C.; Basha, Sk. Shahenoor
2018-06-01
CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lee, Kyungsun
2013-03-01
In this study, aerodynamic and structural design of the composite propeller blade for a regional turboprop aircraft is performed. The thin and wide chord propeller blade of high speed turboprop aircraft should have proper strength and stiffness to carry various kinds of loads such as high aerodynamic bending and twisting moments and centrifugal forces. Therefore the skin-spar-foam sandwich structure using high strength and stiffness carbon/epoxy composite materials is used to improve the lightness. A specific design procedure is proposed in this work as follows; firstly the aerodynamic configuration design, which is acceptable for the design requirements, is carried out using the in-house code developed by authors, secondly the structure design loads are determined through the aerodynamic load case analysis, thirdly the spar flange and the skin are preliminarily sized by consideration of major bending moments and shear forces using both the netting rule and the rule of mixture, and finally, the stress analysis is performed to confirm the structural safety and stability using finite element analysis commercial code, MSC. NASTRAN/PATRAN. Furthermore the additional analysis is performed to confirm the structural safety due to bird strike impact on the blade during flight operation using a commercial code, ANSYS. To realize the proposed propeller design, the prototype blades are manufactured by the following procedure; the carbon/epoxy composite fabric prepregs are laid up for skin and spar on a mold using the hand lay-up method and consolidated with a proper temperature and vacuum in the oven. To finalize the structural design, the full-scale static structural test is performed under the simulated aerodynamic loads using 3 point loading method. From the experimental results, it is found that the designed blade has a good structural integrity, and the measured results agree well with the analytical results as well.
Wagner, Jessica; Kline, Christina Leah; Pottorf, Richard S.; Nallaganchu, Bhaskara Rao; Olson, Gary L.; Dicker, David T.; Allen, Joshua E.; El-Deiry, Wafik S.
2014-01-01
We previously identified TRAIL-inducing compound 10 (TIC10), also known as NSC350625 or ONC201, from a NCI chemical library screen as a small molecule that has potent anti-tumor efficacy and a benign safety profile in preclinical cancer models. The chemical structure that was originally published by Stahle, et. al. in the patent literature was described as an imidazo[1,2-a]pyrido[4,3-d]pyrimidine derivative. The NCI and others generally accepted this as the correct structure, which was consistent with the mass spectrometry analysis outlined in the publication by Allen et. al. that first reported the molecule's anticancer properties. A recent publication demonstrated that the chemical structure of ONC201 material from the NCI is an angular [3,4-e] isomer of the originally disclosed, linear [4,3-d] structure. Here we confirm by NMR and X-ray structural analysis of the dihydrochloride salt form that the ONC201 material produced by Oncoceutics is the angular [3,4-e] structure and not the linear structure originally depicted in the patent literature and by the NCI. Similarly, in accordance with our biological evaluation, the previously disclosed anti-cancer activity is associated with the angular structure and not the linear isomer. Together these studies confirm that ONC201, produced by Oncoceutics or obtained from the NCI, possesses an angular [3,4-e] structure that represents the highly active anti-cancer compound utilized in prior preclinical studies and now entering clinical trials in advanced cancers. PMID:25587031
Wagner, Jessica; Kline, Christina Leah; Pottorf, Richard S; Nallaganchu, Bhaskara Rao; Olson, Gary L; Dicker, David T; Allen, Joshua E; El-Deiry, Wafik S
2014-12-30
We previously identified TRAIL-inducing compound 10 (TIC10), also known as NSC350625 or ONC201, from a NCI chemical library screen as a small molecule that has potent anti-tumor efficacy and a benign safety profile in preclinical cancer models. The chemical structure that was originally published by Stahle, et. al. in the patent literature was described as an imidazo[1,2-a]pyrido[4,3-d]pyrimidine derivative. The NCI and others generally accepted this as the correct structure, which was consistent with the mass spectrometry analysis outlined in the publication by Allen et. al. that first reported the molecule's anticancer properties. A recent publication demonstrated that the chemical structure of ONC201 material from the NCI is an angular [3,4-e] isomer of the originally disclosed, linear [4,3-d] structure. Here we confirm by NMR and X-ray structural analysis of the dihydrochloride salt form that the ONC201 material produced by Oncoceutics is the angular [3,4-e] structure and not the linear structure originally depicted in the patent literature and by the NCI. Similarly, in accordance with our biological evaluation, the previously disclosed anti-cancer activity is associated with the angular structure and not the linear isomer. Together these studies confirm that ONC201, produced by Oncoceutics or obtained from the NCI, possesses an angular [3,4-e] structure that represents the highly active anti-cancer compound utilized in prior preclinical studies and now entering clinical trials in advanced cancers.
Chemical and structural analysis of gallstones from the Indian subcontinent.
Ramana Ramya, J; Thanigai Arul, K; Epple, M; Giebel, U; Guendel-Graber, J; Jayanthi, V; Sharma, M; Rela, M; Narayana Kalkura, S
2017-09-01
Representative gallstones from north and southern parts of India were analyzed by a combination of physicochemical methods: X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), CHNS analysis, thermal analysis and Nuclear Magnetic Resonance (NMR) spectroscopy ( 1 H and 13 C). The stones from north Indian were predominantly consisting of cholesterol monohydrate and anhydrous cholesterol which was confirmed by XRD analysis. FTIR spectroscopy confirmed the presence of cholesterol and calcium bilirubinate in the south Indian gallstones. EDX spectroscopy revealed the presence of carbon, nitrogen, oxygen, calcium, sulfur, sodium and magnesium and chloride in both south Indian and north Indian gallstones. FTIR and NMR spectroscopy confirmed the occurrence of cholesterol in north Indian gallstones. The respective colour of the north Indian and south Indian gallstones was yellowish and black. The morphology of the constituent crystals of the north Indian and south Indian gallstones were platy and globular respectively. The appreciable variation in colour, morphology and composition of south and north Indian gallstones may be due to different food habit and habitat. Copyright © 2017 Elsevier B.V. All rights reserved.
Vaiyapuri, Periasamy S; Ali, Alshatwi A; Mohammad, Akbarsha A; Kandhavelu, Jeyalakshmi; Kandhavelu, Meenakshisundaram
2015-01-01
The effect of Calotropis gigantea latex (CGLX) on human mammary carcinoma cells is not well established. We present the results of this drug activity at total population and single cell level. CGLX inhibited the growth of MCF7 cancer cells at lower IC50 concentration (17 µL/mL). Microscopy of IC50 drug treated cells at 24 hr confirming the appearance of morphological characteristics of apoptotic and necrotic cells, associated with 70% of DNA damage. FACS analysis confirmed that, 10 and 20% of the disruption of cellular mitochondrial nature by at 24 and 48 h, respectively. Microscopic image analysis of total population level proved that MMP changes were statistically significant with P values. The cell to cell variation was confirmed by functional heterogeneity analysis which proves that CGLX was able to induce the apoptosis without the contribution of mitochondria. We conclude that CGLX inhibits cell proliferation, survival, and heterogeneity of pathways in human mammary carcinoma cells. © 2014 Wiley Periodicals, Inc.
Li, S; Dumdei, E J; Blunt, J W; Munro, M H; Robinson, W T; Pannell, L K
1998-06-26
The structure, stereochemistry, and conformation of theonellapeptolide IIIe (1), a new 36-membered ring cyclic peptolide from the New Zealand deep-water sponge Lamellomorpha strongylata, is described. The sequence of the cytotoxic peptolide was determined through a combination of NMR and MS-MS techniques and confirmed by X-ray crystal structure analysis, which, with chiral HPLC, established the absolute stereochemistry.
Synthesis, structure and conformational analysis of imidazo-thiazines
NASA Astrophysics Data System (ADS)
Perjési, Pál; Sohár, Pál; Böcskei, Zsolt; Magyarfalvi, Gábor; Farkas, Ödön; Mák, Marianna
1996-04-01
BF 3·OEt 2-catalyzed reaction of chalcones (2) with imidazolidine-2-thione (1) yielded 2,3-dihydro-5,7-diaryl-7 H-imidazo[2,1- b][1,3]thiazines (3). The structure of the compounds was confirmed by MS, X-ray and NMR studies. Ab initio and semiempirical theoretical calculations were carried out to corroborate experimental findings concerning the possible conformations of the products.
Withanolides from Jaborosa caulescens var. bipinnatifida
Zhang, Huaping; Cao, Cong-Mei; Gallagher, Robert J.; Day, Victor W.; Montenegro, Gloria; Timmermann, Barbara N.
2013-01-01
Two new withanolides 2,3-dihydrotrechonolide A (1) and 2,3-dihydro-21-hydroxytrechonolide A (2) were isolated along with two known withanolides trechonolide A (3) and jaborosalactone 39 (4) from Jaborosa caulescens var. bipinnatifida (Solanaceae). The structures of 1-2 were elucidated through 2D NMR and other spectroscopic techniques. In addition, the structure of withanolide 1 was confirmed by X-ray crystallographic analysis. PMID:24314746
NASA Astrophysics Data System (ADS)
Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W. G.; Gladisch, Fabian C.; Fokwa, Boniface P. T.
2016-10-01
The new ternary transition metal-rich borides Ta2OsB2 and TaRuB have been successfully synthesized by arc-melting the elements in a water-cooled crucible under an argon atmosphere. The crystal structures of both compounds were solved by single-crystal X-ray diffraction and their metal compositions were confirmed by EDX analysis. It was found that Ta2OsB2 and TaRuB crystallize in the tetragonal Nb2OsB2 (space group P4/mnc, no. 128) and the orthorhombic NbRuB (space group Pmma, no. 51) structure types with lattice parameters a=5.878(2) Å, c=6.857(2) Å and a=10.806(2) Å, b=3.196(1) Å, c=6.312(2) Å, respectively. Furthermore, crystallographic, electronic and bonding characteristics have been studied by density functional theory (DFT). Electronic structure relaxation has confirmed the crystallographic parameters while COHP bonding analysis indicates that B2-dummbells are the strongest bonds in both compounds. Moreover, the formation of osmium dumbbells in Ta2OsB2 through a Peierls distortion along the c-axis, is found to be the origin of superstructure formation. Magnetic susceptibility measurements reveal that the two phases are Pauli paramagnets, thus confirming the theoretical DOS prediction of metallic character. Also hints of superconductivity are found in the two phases, however lack of single phase samples has prevented confirmation. Furthermore, the thermodynamic stability of the two modifications of AMB (A=Nb, Ta; M =Ru, Os) are studied using DFT, as new possible phases containing either B4- or B2-units are predicted, the former being the most thermodynamically stable modification.
Structural study of Cu(II) complexes with benzo[b]furancarboxylic acids
NASA Astrophysics Data System (ADS)
Kalinowska, Diana; Klepka, Marcin T.; Wolska, Anna; Drzewiecka-Antonik, Aleksandra; Ostrowska, Kinga; Struga, Marta
2017-11-01
Four Cu(II) complexes with 2- and 3-benzo[b]furancarboxylic acids have been synthesized and characterized using combination of two spectroscopic techniques. These techniques were: (i) FTIR and (ii) XAFS. FTIR analysis confirmed that complexes were formed and gave insight into identification of possible coordinating groups to the metallic center. XANES analysis indicated that the oxidation state of Cu is +2. EXAFS analysis allowed to identify that the first coordination sphere is formed by 4-5 oxygen atoms with the Cu-O distances around 2 Å. Combining these techniques it was possible to structurally describe novel Cu(II) complexes with benzo[b]furancarboxylic acids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet
Boron-carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.
Fascio, Mirta L; Alvarez-Larena, Angel; D'Accorso, Norma B
2002-11-29
Three isoxazoline tetracycles were obtained enantiomerically pure by intramolecular 1,3-dipolar cycloaddition. The characterization of the new compounds was performed by high-resolution 1H and 13C NMR spectroscopy. The relative configuration of the new chiral centers was determined by NOESY experiments and confirmed by single-crystal X-ray structural analysis.
A novel conformation of gel grown biologically active cadmium nicotinate
NASA Astrophysics Data System (ADS)
Nair, Lekshmi P.; Bijini, B. R.; Divya, R.; Nair, Prabitha B.; Eapen, S. M.; Dileep Kumar, B. S.; Nishanth Kumar, S.; Nair, C. M. K.; Deepa, M.; Rajendra Babu, K.
2017-11-01
The elimination of toxic heavy metals by the formation of stable co-ordination compounds with biologically active ligands is applicable in drug designing. A new crystalline complex of cadmium with nicotinic acid is grown at ambient temperature using the single gel diffusion method in which the crystal structure is different from those already reported. Single crystal x-ray diffraction reveals the identity of crystal structure belonging to monoclinic system, P21/c space group with cell dimensions a = 17.220 (2) Å, b = 10.2480 (2) Å, c = 7.229(9) Å, β = 91.829(4)°. Powder x-ray diffraction analysis confirmed the crystallinity of the sample. The unidentate mode of co-ordination between the metal atom and the carboxylate group is supported by the Fourier Transform Infra Red spectral data. Thermal analysis ensures the thermal stability of the complex. Kinetic and thermodynamic parameters are also calculated. The stoichiometry of the complex is confirmed by the elemental analysis. The UV-visible spectral analysis shows the wide transparency window of the complex in the visible region. The band gap of the complex is found to be 3.92 eV. The complex shows excellent antibacterial and antifungal activity.
Self-assembled squares and triangles by simultaneous hydrogen bonding and metal coordination.
Marshall, Laura J; de Mendoza, Javier
2013-04-05
Through the combination of hydrogen bonding and metal-templated self-assembly, molecular squares and molecular triangles are observed in chloroform solution upon the complexation of hydrogen-bonded dimers of para-pyridyl-substituted 2-ureido-4-[1H]-pyrimidinone (UPy) and an appropriate cis-substituted palladium complex. Molecular modeling studies and NMR analysis confirmed the presence of two distinct structures in solution: the tubular structure of the molecular square and propeller-bowl structure of the molecular triangle.
NASA Astrophysics Data System (ADS)
Thanigaimani, Kaliyaperumal; Khalib, Nuridayanti Che; Temel, Ersin; Arshad, Suhana; Razak, Ibrahim Abdul
2015-11-01
2-amino-5-chloropyridine: 3-methylbenzoic acid [(2A5CP) (3MBA)] (I) cocrystal was synthesized and its single crystal was grown by slow evaporation technique. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction technique. The cocrystal belongs to the monoclinic crystallographic system with space group P21/c, Z = 4, and a = 13.3155 (5) Å, b = 5.5980 (2) Å, c = 18.3787 (7) Å, β = 110.045 (2)°. The crystal structure is stabilized by Npyridine-H•••Odbnd C, Cdbnd O-H•••Npyridine and C-H⋯O type hydrogen bonding interactions. The presence of unionized -COOH functional group in the cocrystal was identified both by spectral methods and X-ray structural analysis. The experimental studies obtained by using the methods of single crystal X-ray analysis, powder X-ray diffraction (PXRD) analysis, FTIR, 1H NMR and 13C NMR spectroscopies confirmed the predicted cocrystal. The supramolecular assembly of the cocrystal was analyzed and discussed. The molecular geometry, vibrational frequencies of the compound in the ground state were calculated by using the density functional theory (DFT) method with 6-311++G (d,p) basis set and were compared with the experimental data. Additionally, HOMO-LUMO energy gap, natural bond orbital (NBO) analysis and nonlinear optical (NLO) properties of the compound were performed at B3LYP/6-311++G (d,p) level. Hirshfeld surfaces were used to confirm the existence of inter-molecular interactions in the compound.
The molecular mechanism for interaction of ceruloplasmin and myeloperoxidase
NASA Astrophysics Data System (ADS)
Bakhautdin, Bakytzhan; Bakhautdin, Esen Göksöy
2016-04-01
Ceruloplasmin (Cp) is a copper-containing ferroxidase with potent antioxidant activity. Cp is expressed by hepatocytes and activated macrophages and has been known as physiologic inhibitor of myeloperoxidase (MPO). Enzymatic activity of MPO produces anti-microbial agents and strong prooxidants such as hypochlorous acid and has a potential to damage host tissue at the sites of inflammation and infection. Thus Cp-MPO interaction and inhibition of MPO has previously been suggested as an important control mechanism of excessive MPO activity. Our aim in this study was to identify minimal Cp domain or peptide that interacts with MPO. We first confirmed Cp-MPO interaction by ELISA and surface plasmon resonance (SPR). SPR analysis of the interaction yielded 30 nM affinity between Cp and MPO. We then designed and synthesized 87 overlapping peptides spanning the entire amino acid sequence of Cp. Each of the peptides was tested whether it binds to MPO by direct binding ELISA. Two of the 87 peptides, P18 and P76 strongly interacted with MPO. Amino acid sequence analysis of identified peptides revealed high sequence and structural homology between them. Further structural analysis of Cp's crystal structure by PyMOL software unfolded that both peptides represent surface-exposed sites of Cp and face nearly the same direction. To confirm our finding we raised anti-P18 antisera in rabbit and demonstrated that this antisera disrupts Cp-MPO binding and rescues MPO activity. Collectively, our results confirm Cp-MPO interaction and identify two nearly identical sites on Cp that specifically bind MPO. We propose that inhibition of MPO by Cp requires two nearly identical sites on Cp to bind homodimeric MPO simultaneously and at an angle of at least 120 degrees, which, in turn, exerts tension on MPO and results in conformational change.
NASA Astrophysics Data System (ADS)
Sathya, K.; Dhamodharan, P.; Dhandapani, M.
2018-05-01
A new proton transfer complex was synthesized by the reaction between 2-amino-3-methyl pyridine with 3,5-dinitro benzoic acid in methanol solvent at room temperature. Chemical composition and stoichiometry of the synthesized complex 2-amino-3-methylpyridinium 3,5-dinitrobenzoate (AMPDB) were verified by CHN analysis. The AMPDB crystals were subjected to FT-IR spectral analysis to confirm the functional groups in the compound. UV-Vis-NIR spectral studies revealed that the AMPDB has a large optical transparency window. Single crystal XRD analysis reveals that AMPDB belongs to a monoclinic system with P21/c space group. NMR spectroscopic data indicate the exact carbon skeleton and hydrogen environment in the molecular structure of AMPDB. The thermal stability of the compound was investigated by thermogravimetry (TG). Computational studies such as optimisation of molecular geometry, natural bond analysis (NBO), Mulliken population analysis and HOMO-LUMO analysis were performed using Gaussian 09 software by B3LYP method at 6-311 G(d p) basis set. The first order hyperpolarizability (β) value is 37 times greater than that of urea. The optical nonlinearities of AMPDB have been investigated by Z-scan technique with He-Ne laser radiation of wavelength 632.8 nm. Hirshfeld analysis indicate O⋯H/H⋯O interactions are the superior interactions confirming intensive hydrogen bond net work.
NASA Astrophysics Data System (ADS)
Rahaman, Sabina; Sunil, M. Anantha; Shaik, Habibuddin; Ghosh, Kaustab
2018-05-01
Deposition of Cu2SnS3 (CTS) thin films is successfully carried out on soda lime glass substrate using low cost ultrasonic spray pyrolysis technique. Vacuum annealing of CTS films is carried out at different temperatures 350°C, 400°C and 450°C. The present work is to study the effect of annealing temperature on the crystal structure, surface morphology and optical properties of CTS thin films. Structural studies confirm the formation of CTS phase. Raman analysis is carried out to study presence of defects with annealing temperature. Optical studies confirm that film prepared at 450°C temperature is suitable as absorber material for photovoltaic applications.
Guzman-Valencia, S; Santillán-Galicia, M T; Guzmán-Franco, A W; González-Hernández, H; Carrillo-Benítez, M G; Suárez-Espinoza, J
2014-10-01
Oligonychus punicae and Oligonychus perseae (Acari: Tetranychidae) are the most important mite species affecting avocado orchards in Mexico. Here we used nucleotide sequence data from segments of the nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and mitochondrial cytochrome oxidase subunit I (COI) genes to assess the phylogenetic relationships between both sympatric mite species and, using only ITS sequence data, examine genetic variation and population structure in both species, to test the hypothesis that, although both species co-occur, their genetic population structures are different in both Michoacan state (main producer) and Mexico state. Phylogenetic analysis showed a clear separation between both species using ITS and COI sequence information. Haplotype network analysis done on 24 samples of O. punicae revealed low genetic diversity with only three haplotypes found but a significant geographical population structure confirmed by analysis of molecular variance (AMOVA) and Kimura-2-parameter (K2P) analyses. In addition, a Mantel test revealed that geographical isolation was a factor responsible for the genetic differentiation. In contrast, analyses of 22 samples of O. perseae revealed high genetic diversity with 15 haplotypes found but no geographical structure confirmed by the AMOVA, K2P and Mantel test analyses. We have suggested that geographical separation is one of the most important factors driving genetic variation, but that it affected each species differently. The role of the ecology of these species on our results, and the importance of our findings in the development of monitoring and control strategies are discussed.
NASA Technical Reports Server (NTRS)
Blackstone, D. L., Jr.
1972-01-01
The author has identified the following significant results. Structurally linear elements in the vicinity of the Rock Springs Uplift, Sweetwater County, Wyoming are reported for the first time. One element trends N 40 deg W near Farson, Wyoming and the other N 65 deg E from Rock Springs. These elements confirm the block-like or mosaic pattern of major structural elements in Wyoming.
Withanolides from Jaborosa caulescens var. bipinnatifida.
Zhang, Huaping; Cao, Cong-Mei; Gallagher, Robert J; Day, Victor W; Montenegro, Gloria; Timmermann, Barbara N
2014-02-01
Withanolides 2,3-dihydrotrechonolide A (1) and 2,3-dihydro-21-hydroxytrechonolide A (2) were isolated along with two known withanolides trechonolide A (3) and jaborosalactone 39 (4) from Jaborosa caulescens var. bipinnatifida (Solanaceae). The structures of 1-2 were elucidated through 2D NMR and other spectroscopic techniques. In addition, the structure of withanolide 1 was confirmed by X-ray crystallographic analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
In vitro study on silk fibroin textile structure for anterior cruciate ligament regeneration.
Farè, Silvia; Torricelli, Paola; Giavaresi, Gianluca; Bertoldi, Serena; Alessandrino, Antonio; Villa, Tomaso; Fini, Milena; Tanzi, Maria Cristina; Freddi, Giuliano
2013-10-01
A novel hierarchical textile structure made of silk fibroin from Bombyx mori capable of matching the mechanical performance requirements of anterior cruciate ligament (ACL) and in vitro cell ingrowth is described. This sericin-free, Silk Fibroin Knitted Sheath with Braided Core (SF-KSBC) structure was fabricated using available textile technologies. Micro-CT analysis confirmed that the core was highly porous and had a higher degree of interconnectivity than that observed for the sheath. The in vivo cell colonization of the scaffolds is thus expected to penetrate even the internal parts of the structure. Tensile mechanical tests demonstrated a maximum load of 1212.4±56.4 N (under hydrated conditions), confirming the scaffold's suitability for ACL reconstruction. The absence of cytotoxic substances in the extracts of the SF-KSBC structure in culture medium was verified by in vitro tests with L929 fibroblasts. In terms of extracellular matrix production, Human Periodontal Ligament Fibroblasts (HPdLFs) cultured in direct contact with SF-KSBC, compared to control samples, demonstrated an increased secretion of aggrecan (PG) and fibronectin (FBN) at 3 and 7 days of culture, and no change in IL-6 and TNF-α secretion. Altogether, the outcomes of this investigation confirm the significant utility of this novel scaffold for ACL tissue regeneration. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dhandapani, M.; Sugandhi, K.; Nithya, S.; Muthuraja, P.; Balachandar, S.; Aranganayagam, K. R.
2018-05-01
The perovskite type organic-inorganic hybrid benzyltributyl ammoniumtetrachloro manganate (II) monohydrates (BTBA-Mn) are synthesized and the single crystals are grown by slow evaporation solution growth technique. The structure of the grown crystals are confirmed by using X-ray diffraction (XRD), unit cell parameter analysis, Fourier transform Infrared (FTIR), elemental analysis and 13C-NMR spectral studies. Thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning colorimetric (DSC) analysis were carried out to understand thermal stability and occurrence of phase transition.
Effect of Cr doping on structural and magnetic properties of ZnS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virpal,; Singh, Jasvir; Sharma, Sandeep
2016-05-23
The structural, optical and magnetic properties of pure and Cr doped ZnS nanoparticles were studied at room temperature. X-ray diffraction analysis confirmed the absence of any mixed phase and the cubic structure of ZnS in pure and Cr doped ZnS nanoparticles. Fourier transfer infrared spectra confirmed the Zn-S stretching bond at 664 cm{sup −1} of ZnS in all prepared nanoparticles. The UV-Visible absorption spectra showed blue shift which became even more pronounced in Cr doped ZnS nanoparticles. However, at relatively higher Cr concentrations a slower red shift was shown by the doped nanoparticles. This phenomenon is attributed to sp-d exchange interactionmore » that becomes prevalent at higher doping concentrations. Further, magnetic hysteresis measurements showed that Cr doped ZnS nanoparticles exhibited ferromagnetic behavior at room temperature.« less
Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses
NASA Astrophysics Data System (ADS)
Santhi, Kalavathy; Kumarsan, Dhanapal; Vengidusamy, Naryanan; Arumainathan, Stephen
2017-07-01
Electrochemical alloying of immiscible Ag and Co was carried out at different current densities from electrolytes of two different concentrations, after optimizing the electrolytic bath and operating conditions. The samples obtained were characterized using X-ray diffraction to confirm the simultaneous deposition of Ag and Co and to determine their crystallographic structure. The atomic percentage of Ag and Co contents in the granular alloy was determined by ICP-OES analysis. The XPS spectra were observed to confirm the presence of Ag and Co in the metallic form in the granular alloy samples. The micrographs observed using scanning and transmission electron microscopes threw light on the surface morphology and the size of the particles. The magnetic nature of the samples was analyzed at room temperature by a vibration sample magnetometer. Their magnetic phase transition while heating was also studied to provide further evidence for the magnetic behaviour and the structure of the deposits.
NASA Astrophysics Data System (ADS)
Suresh, Joghee; Pradheesh, Ganeshan; Alexramani, Vincent; Sundrarajan, Mahalingam; Hong, Sun Ig
2018-03-01
In this work we aim to synthesize biocompatible ZnO nanoparticles from the zinc nitrate via green process using leaf extracts of the Costus pictus D. Don medicinal plant. FTIR studies confirm the presence of biomolecules and metal oxides. X-ray diffraction (XRD) structural analysis reveals the formation of pure hexagonal phase structures of ZnO nanoparticles. The surface morphologies of ZnO nanoparticles observed under a scanning electron microscope (SEM) suggest that most ZnO crystallites are hexagonal. EDX analysis confirms the presence of primarily zinc and oxygen. TEM images show that biosynthesized zinc oxide nanoparticles are hexagonal and spherical. The plausible formation mechanisms of zinc oxide nanoparticles are also predicted. The biosynthesized zinc oxide nanoparticles exhibit strong antimicrobial behavior against bacterial and fungal species when employing the agar diffusion method. Synthesized ZnO nanoparticles exhibit anticancer activity against Daltons lymphoma ascites (DLA) cells as well as antimicrobial activity against some bacterial and fungal strains.
Gan, Sinyee; Zakaria, Sarani; Syed Jaafar, Sharifah Nabihah
2017-09-15
Cellulose carbamate (CC) was synthesized via hydrothermal process and mixed with graphene oxide (GO) to form a homogeneous cellulose matrix nanocomposite films. The properties of CC/GO nanocomposite films fabricated using simple solution-mixing method with different GO loadings were studied. Transmission electron microscope analysis showed the exfoliation of self-synthesized GO nanosheets within the CC matrix. X-ray diffraction results confirmed the crystalline structure of CC/GO films as the CC/GO mass ratio increased from 100/0 to 100/4. The mechanical properties of CC/GO film were significantly improved as compared to neat CC film. From thermogravimetric analysis result, the introduction of GO enhanced the thermal stability and carbon yields. The 3D homogeneous porous structures of the CC/GO films were observed under Field emission scanning electron microscope. These improvements in nanocomposite film properties could be confirmed by Fourier transform infrared spectroscopy due to the strong and good interactions between CC and GO. Copyright © 2017 Elsevier Ltd. All rights reserved.
Canine dacryolithiasis: a case description and mineral analysis.
Malho, Pedro; Sansom, Jane; Johnson, Phillipa; Stewart, Jennifer
2013-07-01
A 4-year-old, female, spayed, Labrador retriever was presented with a painless swelling of the left ventromedial eyelid and epiphora of 3 months duration. Bilateral patency of the nasolacrimal system was confirmed by the appearance of fluorescein dye at both nares. Ultrasonography revealed a well-demarcated fluid-filled structure containing echogenic ill-defined material in close proximity to the nasolacrimal system. A transconjunctival surgical approach confirmed the close anatomical proximity of the cyst and the absence of a communication with the inferior canaliculus. The cyst contained multiple intraluminal calculi (dacryoliths). Following surgical excision of the cyst, the epiphora resolved and no recurrence was noted over a 12-month follow-up period. On histopathology, the cystic structure was lined by stratified squamous epithelium, consistent with lacrimal canaliculus epithelium. Presumed progression of a canalicular diverticulum to a cyst with the formation of intraluminal dacryoliths was suspected. Mineral analysis of the dacryoliths revealed a calcium carbonate composition. © 2012 American College of Veterinary Ophthalmologists.
Humidity sensing behavior of tin-loaded 3-D cubic mesoporous silica
NASA Astrophysics Data System (ADS)
Poonia, Ekta; Dahiya, Manjeet S.; Tomer, Vijay K.; Kumar, Krishan; Kumar, Sunil; Duhan, Surender
2018-07-01
The present scientific investigation deals with template synthesis of 3D-cubic mesoporous KIT-6 with in-situ loading of SnO2 to obtain a material with enhanced number of surface active sites. The structural insights have been reported through analysis of XRD, TEM, FESEM, N2 sorption and mid-IR absorption data. X-ray diffraction confirmed 3D-cubic mesoporous structure of silica with Ia 3 bar d symmetry and existence of anatase SnO2 species. A decrease in surface area on loading of SnO2 nanoparticles is revealed via analysis of N2 adsorption-desorption isotherms. Rapid response time of 15 s and super rapid recovery time of 2 s (with response > 100) have been exhibited by sensor based on sample containing 1 wt% of SnO2. Further investigation on sensing performance of nanocomposite with 1 wt% of SnO2 confirmed its ohmic behavior (with negligible V-I hysteresis), excellent cycle stability, outstanding long term stability and very low hysteresis (1.4% at 53% RH).
Spectroscopic investigations on oxidized multi-walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed
2016-05-06
The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure ofmore » oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.« less
NASA Astrophysics Data System (ADS)
Abraham, S. Daniel; David, S. Theodore; Bennie, R. Biju; Joel, C.; Kumar, D. Sanjay
2016-06-01
Bismuth vanadate (BiVO4) nanocrystals have been successfully synthesised using microwave-assisted combustion synthesis (MCS), and characterised using Fourier transform infrared (FT-IR) and Raman spectra, surface area analysis (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive X-ray analysis (EDX), diffused reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The XRD results confirmed the formation of monoclinic bismuth vanadate. The formations of BiO & VO43-vibrations were ascertained from FT-IR data. The morphology of hallow internal structural micro entities were confirmed by SEM. The optical properties were determined by DRS and PL spectra. Hence, the influence of the preparation methods on the structure, morphology and optical activities of bismuth vanadate was investigated systematically. Photocatalytic degradation (PCD) of Alizarin Red S (ARS), an effective disrupting chemical in aqueous medium was investigated using BiVO4 nanoparticles. The kinetics of PCD was found to follow pseudo first-order.
NASA Astrophysics Data System (ADS)
Ayyaswamy, Arivarasan; Ganapathy, Sasikala; Alsalme, Ali; Alghamdi, Abdulaziz; Ramasamy, Jayavel
2015-12-01
Zinc and sulfur alloyed CdTe quantum dots (QDs) sensitized TiO2 photoelectrodes have been fabricated for quantum dots sensitized solar cells. Alloyed CdTe QDs were prepared in aqueous phase using mercaptosuccinic acid (MSA) as a capping agent. The influence of co-doping on the structural property of CdTe QDs was studied by XRD analysis. The enhanced optical absorption of alloyed CdTe QDs was studied using UV-vis absorption and fluorescence emission spectra. The capping of MSA molecules over CdTe QDs was confirmed by the FTIR and XPS analyses. Thermogravimetric analysis confirms that the prepared QDs were thermally stable up to 600 °C. The photovoltaic performance of alloyed CdTe QDs sensitized TiO2 photoelectrodes were studied using J-V characteristics under the illumination of light with 1 Sun intensity. These results show the highest photo conversion efficiency of η = 1.21%-5% Zn & S alloyed CdTe QDs.
Recent developments in deployment analysis simulation using a multi-body computer code
NASA Technical Reports Server (NTRS)
Housner, Jerrold M.
1989-01-01
Deployment is a candidate mode for construction of structural space systems components. By its very nature, deployment is a dynamic event, often involving large angle unfolding of flexible beam members. Validation of proposed designs and conceptual deployment mechanisms is enhanced through analysis. Analysis may be used to determine member loads thus helping to establish deployment rates and deployment control requirements for a given concept. Futhermore, member flexibility, joint free-play, manufacturing tolerances, and imperfections can affect the reliability of deployment. Analyses which include these effects can aid in reducing risks associated with a particular concept. Ground tests which can play a similar role to that of analyses are difficult and expensive to perform. Suspension systems just for vibration ground tests of large space structures in a 1 g environment present many challenges. Suspension of a structure which spatially expands is even more challenging. Analysis validation through experimental confirmation on relatively small simple models would permit analytical extrapolation to larger more complex space structures.
NASA Astrophysics Data System (ADS)
Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.
2014-12-01
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.
Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.
1992-01-01
A modal aeroelastic analysis combining structural and aerodynamic models is applied to counterrotating propfans to evaluate their structural integrity for wind-tunnel testing. The aeroelastic analysis code is an extension of the 2D analysis code called the Aeroelastic Stability and Response of Propulsion Systems. Rotational speed and freestream Mach number are the parameters for calculating the stability of the two blade designs with a modal method combining a finite-element structural model with 2D steady and unsteady cascade aerodynamic models. The model demonstrates convergence to the least stable aeroelastic mode, describes the effects of a nonuniform inflow, and permits the modification of geometry and rotation. The analysis shows that the propfan designs are suitable for the wind-tunnel test and confirms that the propfans should be flutter-free under the range of conditions of the testing.
NASA Astrophysics Data System (ADS)
Sathya, K.; Dhamodharan, P.; Dhandapani, M.
2018-03-01
A new hydrgen bonded proton transfer complex, 2-methyl imidazolium 3, 5-dinitrobenzoate 3,5-dinitro benzoic acid (MIDB) was synthesized by the reaction between 2-methyl imidazole with 3,5-dinitro benzoic acid (1:2) in methanol solvent at room temperature. The crystals were subjected to FT-IR spectral analysis to confirm the functional groups of the new compound. Single crystal XRD analysis reveals that MIDB belongs to monoclinic system with P21/c space group. The asymmetric unit consists of one 2-methyl imidazolium cation, one 3, 5-dinitrobenzoate anion and one uncharged 3,5-dinitro benzoic acid moiety. Experimental NMR spectroscopic data and theoretically calculated NMR data correlated very well to estabilish the exact carbon skeleton and hydrogen environment in the molecular structure of MIDB. The thermal stability of the compound was investigated by thermogravimetry and differential thermal analysis (TG-DTA). Computational studies such as optimization of molecular geometry, natural bond analysis (NBO), Mulliken population analysis and HOMO-LUMO analysis were performed using Gaussian 09 software by B3LYP method at 6-31 g basis set level. The calculated first-order polarizability (β) of MIDB from computational studies is 4.1752 × 10-30 esu, which is 32 times greater than that of urea. UV-vis-NIR spectral studies revealed that the MIDB has a large optical transparency window. The optical nonlinearities of MIDB have been investigated by Z-scan technique with Hesbnd Ne laser radiation of wavelength 632.8 nm. Hirshfeld analysis indicate O⋯H/H⋯O interactions are the superior interactions confirming excessive hydrogen bond net work in the molecular structure.
Di Maro, Antimo; Chambery, Angela; Carafa, Vincenzo; Costantini, Susan; Colonna, Giovanni; Parente, Augusto
2009-03-01
The amino acid sequence and glycan structure of PD-L1, PD-L2 and PD-L3, type 1 ribosome-inactivating proteins isolated from Phytolacca dioica L. leaves, were determined using a combined approach based on peptide mapping, Edman degradation and ESI-Q-TOF MS in precursor ion discovery mode. The comparative analysis of the 261 amino acid residue sequences showed that PD-L1 and PD-L2 have identical primary structure, as it is the case of PD-L3 and PD-L4. Furthermore, the primary structure of PD-Ls 1-2 and PD-Ls 3-4 have 81.6% identity (85.1% similarity). The ESI-Q-TOF MS analysis confirmed that PD-Ls 1-3 were glycosylated at different sites. In particular, PD-L1 contained three glycidic chains with the well known paucidomannosidic structure (Man)(3) (GlcNAc)(2) (Fuc)(1) (Xyl)(1) linked to Asn10, Asn43 and Asn255. PD-L2 was glycosylated at Asn10 and Asn43, and PD-L3 was glycosylated only at Asn10. PD-L4 was confirmed to be not glycosylated. Despite an overall high structural similarity, the comparative modeling of PD-L1, PD-L2, PD-L3 and PD-L4 has shown potential influences of the glycidic chains on their adenine polynucleotide glycosylase activity on different substrates.
NASA Astrophysics Data System (ADS)
Cheruku, Rajesh; Govindaraj, G.; Vijayan, Lakshmi
2017-12-01
The nanocrystalline lithium ferrite was synthesized by wet chemical methods such as solution combustion technique, sol-gel, and hydrothermal for a comparative study. Different characterization techniques like x-ray powder diffraction and thermal analysis were employed to confirm the structure and phase. Temperature-dependent Raman analysis was employed to classify the phonon modes associated with precise atomic motions existing in the synthesized materials. Morphology of sample surface was explored by scanning electron microscopy, and elemental analysis was done by energy dispersive spectroscopy analysis. The nanocrystalline nature of the materials was confirmed through transmission electron microscopy. Magnetic properties of these samples were explored through a vibrating sample magnetometer. Ac electrical impedance spectroscopy data were investigated using two Cole-Cole functions, and activation energies were calculated for all materials. Among them, solution combustion prepared lithium ferrite shows the highest conductivity and lowest activation energy.
Hwang, In Hyun; Swenson, Dale C; Gloer, James B; Wicklow, Donald T
2016-03-25
Seven new polyketide metabolites (disseminins A-E, 1-5, and spiciferones D and E, 7 and 8) were obtained from cultures of a fungicolous isolate of Pestalotiopsis disseminata (NRRL 62562), together with a related compound (6) previously known only as a semisynthetic product. Structures were determined mainly by analysis of HRMS and NMR data. Biogenetically related compounds 1 and 2 possess uncommon bis-tetrahydrofuran and dioxabicyclo[3.2.1]octane ring systems, respectively. X-ray crystallographic analysis of the p-bromobenzoate derivative of 1 confirmed the structure and enabled assignment of its absolute configuration.
Structure and Dynamics of Interfaces: Drops and Films
NASA Technical Reports Server (NTRS)
Mann, J. Adin, Jr.; Mann, Elizabeth K.; Meyer, William V.; Neumann, A. Wilhelm; Tavana, Hossein
2015-01-01
We aim to acquire measurements of the structure and dynamics of certain liquid-fluid interfaces using an ensemble of techniques in collaboration: (1) Total internal reflection (TIR) Surface light scattering spectroscopy (SLSS), (2) Brewster angle microscopy (BAM), and (3) Drop-shape analysis. SLSS and BAM can be done on a shared interfacial footprint. Results using a 50-50 mixture of pentane-isohexane, which extends the range of NASA's Confined Vapor Bubble (CVB) experiment, yield surface tension results that differ from the expected Langmuir Fit. These results were confirmed using both the SLSS and drop-shape analysis approaches.
Exploration and confirmation of the latent variable structure of the Jefferson scale of empathy
LaNoue, Marianna
2014-01-01
Objectives: To reaffirm the underlying components of the JSE by using exploratory factor analysis (EFA), and to confirm its latent variable structure by using confirmatory factor analysis (CFA). Methods Research participants included 2,612 medical students who entered Jefferson Medical College between 2002 and 2012. This sample was divided into two groups: Matriculants between 2002 and 2007 (n=1,380) and between 2008 and 2012 (n=1,232). Data for 2002-2007 matriculants were subjected to EFA (principal component factor extraction), and data for matriculants of 2008-2012 were used for CFA (structural equation modeling, and root mean square error for approximation). Results The EFA resulted in three factors: “perspective-taking,” “compassionate care” and “walking in patient’s shoes” replicating the 3-factor model reported in most of the previous studies. The CFA showed that the 3-factor model was an acceptable fit, thus confirming the latent variable structure emerged in the EFA. Corrected item-total score correlations for the total sample were all positive and statistically significant, ranging from 0.13 to 0.61 with a median of 0.44 (p<0.01). The item discrimination effect size indices (contrasting item mean scores for the top-third versus bottom-third JSE scorers) ranged from 0.50 to 1.4 indicating that the differences in item mean scores between top and bottom scorers on the JSE were of practical importance. Cronbach’s alpha coefficient of the JSE for the total sample was 0.80, ranging from 0.75 to 0.84 for matriculatnts of different years. Conclusions Findings provided further support for underlying constructs of the JSE, adding to its credibility. PMID:25341215
Facile growth of barium oxide nanorods: structural and optical properties.
Ahmad, Naushad; Wahab, Rizwan; Alam, Manawwer
2014-07-01
This paper reports a large-scale synthesis of barium oxide nanorods (BaO-NRs) by simple solution method at a very low-temperature of - 60 degrees C. The as-grown BaO-NRs were characterized in terms of their morphological, structural, compositional, optical and thermal properties. The morphological characterizations of as-synthesized nanorods were done by scanning electron microscopy (SEM) which confirmed that the synthesized products are rod shaped and grown in high density. The nanorods exhibits smooth and clean surfaces throughout their lengths. The crystalline property of the material was analyzed with X-ray diffraction pattern (XRD). The compositional and thermal properties of synthesized nanorods were observed via Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis which confirmed that the synthesized nanorods are pure BaO and showed good thermal stability. The nanorods exhibited good optical properties as was confirmed from the room-temperature UV-vis spectroscopy. Finally, a plausible mechanism for the formation of BaO-NRs is also discussed in this paper.
Electrical and thermal investigations of the phase transition in sodium bicarbonate, NaHCO3
NASA Astrophysics Data System (ADS)
Abdel-Kader, M. M.; Fadly, M.; Abutaleb, M.; El-Tanahy, Z. H.; Eldehemy, K.; Ali, A. I.
1995-09-01
This paper reports on a structural phase transition in sodium hydrogen carbonate, NaHCO3 as revealed by the investigations of some electrical and thermal parameters. Measurements of d.c. electric conductivity (σ) and relative premittivity (epsilon) of polycrystalline samples of NaHCO3 as a function of temperature in the interval 300 < T < 400 K reveal the existence of a structural phase transition around 365 K. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) were also performed in the same temperature range. The (DTA) results confirm the existence of a structural phase transition at cong 365 K whereas the (TGA) results show the absence of any actual loss in weight in the transition temperature region. The data are correlated to the crystal structure including the hydrogen bonding system.
Lee, Hyunyoung; Cheon, Byungsik; Hwang, Minho; Kang, Donghoon; Kwon, Dong-Soo
2018-02-01
In robotic surgical systems, commercial master devices have limitations owing to insufficient workspace and lack of intuitiveness. To overcome these limitations, a remote-center-of-motion (RCM) master manipulator was proposed. The feasibility of the proposed RCM structure was evaluated through kinematic analysis using a conventional serial structure. Two performance comparison experiments (peg transfer task and objective transfer task) were conducted for the developed master and Phantom Omni. The kinematic analysis results showed that compared with the serial structure, the proposed RCM structure has better performance in terms of design efficiency (19%) and workspace quality (59.08%). Further, in comparison with Phantom Omni, the developed master significantly increased task efficiency and significantly decreased workload in both experiments. The comparatively better performance in terms of intuitiveness, design efficiency, and operability of the proposed master for a robotic system for minimally invasive surgery was confirmed through kinematic and experimental analysis. Copyright © 2017 John Wiley & Sons, Ltd.
Iwano, Megumi; Che, Fang-Sik; Takayama, Seiji; Fukui, Kiichi; Isogai, Akira
2003-01-01
To elucidate the topological positioning of ribosomal RNA genes (rDNA) and nucleolar structure in three dimensions, we examined the localization of rDNA using in situ hybridization (ISH) analysis by scanning electron microscopy (SEM). The rDNA genes within the three-dimensional architecture of nucleoli were detected on chromatin fibers that connect a thick strand-like structure and a protrusion of rDNA into the inner nuclear hole where the nucleolus is formed. This novel use of ISH together with SEM is useful for the analysis of nucleolar structure in detail. Furthermore, rDNA was detected at the periphery of the fibrillar centers (FCs) of the nucleolus using immuno-gold labeling together with transmission electron microscopy (TEM). In situ hybridization with TEM confirmed that rDNA is naked and thus active in the FCs of nucleoli; ISH with SEM confirmed that rDNA is not covered with ribonucleo proteins at the protruding point and is thus inactive. We also show that the distribution pattern of FCs differs from sample to sample. These results indicate that rDNA is transcribed dynamically in a time- and region-specific manner over the course of the cell cycle.
Chithambararaj, Angamuthuraj; Bose, Arumugam Chandra
2011-01-01
Hexagonal molybdenum oxide (h-MoO(3)) was synthesized by a solution based chemical precipitation technique. Analysis by X-ray diffraction (XRD) confirmed that the as-synthesized powder had a metastable hexagonal structure. The characteristic vibrational band of Mo-O was identified from Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images clearly depicted the morphology and size of h-MoO(3.) The morphology study showed that the product comprises one-dimensional (1D) hexagonal rods. From the electron energy loss spectroscopy (EELS) measurement, the elemental composition was investigated and confirmed from the characteristic peaks of molybdenum and oxygen. Thermogravimetric (TG) analysis on metastable MoO(3) revealed that the hexagonal phase was stable up to 430 °C and above this temperature complete transformation into a highly stable orthorhombic phase was achieved. The optical band gap energy was estimated from the Kubelka-Munk (K-M) function and was found to be 2.99 eV. Finally, the ethanol vapor-sensing behavior was investigated and the sensing response was found to vary linearly as a function of ethanol concentration in the parts per million (ppm) range.
Rare earth substitution on structural and optical behaviour of CdSe thin films
NASA Astrophysics Data System (ADS)
Singh, Sarika; Shrivastava, A. K.; Tapdiya, Swati
2018-05-01
A series of Sm2+,Gd2+ doped with Cadmium selenide CdSe (x =0.01) has been prepared by using Chemical bath deposition technique. Structural, Optical and Morphological studies were performed using X-ray diffraction (XRD), UV-Visible spectrometer, Raman Studies and Scanning Electron Microscopy (SEM). XRD patterns confirm the samples with Sm,Gd ions, some diffraction peaks appeared which belongs to the cubic phase structure. The values of lattice parameter (a) decreased and particle size decrease on doping. Morphology of the grown films reveals that surface are homogeneous and uniformly spread on the substrates. The elemental analysis of CdSe doped Sm and Gd (1%) different composition was analyzed by Energy Dispersive X-Rays (EDX). The optical values of some important parameters of the studied films were calculated by UVstudy are determined from transmission spectra at wavelength 200 to 900nm. Optical band gap Eg was calculated by tauc relation. Energy band gap of CdSe doped with Sm and Gd varies at 1.8eV and 1.9eV respectively. Bandgap In Raman analysis, a prominent peak shows that confirmation of nano crystalline phase. And intensity of peaks was decreasing after doping.
Development of a scale to assess cancer stigma in the non-patient population.
Marlow, Laura A V; Wardle, Jane
2014-04-23
Illness-related stigma has attracted considerable research interest, but few studies have specifically examined stigmatisation of cancer in the non-patient population. The present study developed and validated a Cancer Stigma Scale (CASS) for use in the general population. An item pool was developed on the basis of previous research into illness-related stigma in the general population and patients with cancer. Two studies were carried out. The first study used Exploratory factor analysis to explore the structure of items in a sample of 462 postgraduate students recruited through a London university. The second study used Confirmatory factor analysis to confirm the structure among 238 adults recruited through an online market research panel. Internal reliability, test-retest reliability and construct validity were also assessed. Exploratory factor analysis suggested six subscales, representing: Awkwardness, Severity, Avoidance, Policy Opposition, Personal Responsibility and Financial Discrimination. Confirmatory factor analysis confirmed this structure with a 25-item scale. All subscales showed adequate to good internal and test-retest reliability in both samples. Construct validity was also good, with mean scores for each subscale varying in the expected directions by age, gender, experience of cancer, awareness of lifestyle risk factors for cancer, and social desirability. Means for the subscales were consistent across the two samples. These findings highlight the complexity of cancer stigma and provide the Cancer Stigma Scale (CASS) which can be used to compare populations, types of cancer and evaluate the effects of interventions designed to reduce cancer stigma in non-patient populations.
Synthesis and structure analysis of ferrocene-containing pseudopeptides.
Angelici, Gaetano; Górecki, Marcin; Pescitelli, Gennaro; Zanna, Nicola; Monari, Magda; Tomasini, Claudia
2017-10-23
Ferrocene with its aromaticity and facile redox properties is an attractive moiety to be incorporated into functional moieties. Medicinal applications of ferrocene are well known and ferrocene itself shows cytotoxic and antianemic properties. In this article, we will describe the synthesis and the structure analysis of two pseudopeptides containing a ferrocene moiety as N-terminal group. After purification, Fc-l-Phe-d-Oxd-OBn [l-Phel-phenylalanine; d-Oxd(4R,5S)-4-Methyl-5-carboxy-oxazolidin-2-one] appears as bright brown solid that spontaneously forms brown needles. The X-ray diffraction of the crystals shows the presence of strong π interactions between the ferrocenyl moiety and the phenyl rings, while no NH•••OC hydrogen bonds are formed. This result is confirmed by FT-IR and 1 H NMR analysis. In contrast, both FT-IR and 1 H NMR analysis suggest that Fc-(l-Phe-d-Oxd) 2 -OBn forms a turn conformation stabilized by intramolecular NH•••OC hydrogen bonds in solution. Chiroptical spectroscopies (ECD and VCD) substantially confirmed the absence of a well-defined folded structure. The presence of the Fc moiety is responsible for specific ECD signals, one of which displayed pronounced temperature dependence and is directly related with the helicity assumed by the Fc core. Solid-state ECD spectra were recorded and rationalized on the basis of the X-ray geometry and quantum-mechanical calculations. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yumnam, Nivedita; Hirwa, Hippolyte; Wagner, Veit
2017-12-01
Analysis of charge extraction by linearly increasing voltage is conducted on metal-insulator-semiconductor capacitors in a structure relevant to organic solar cells. For this analysis, an analytical model is developed and is used to determine the conductivity of the active layer. Numerical simulations of the transient current were performed as a way to confirm the applicability of our analytical model and other analytical models existing in the literature. Our analysis is applied to poly(3-hexylthiophene)(P3HT) : phenyl-C61-butyric acid methyl ester (PCBM) which allows to determine the electron and hole mobility independently. A combination of experimental data analysis and numerical simulations reveals the effect of trap states on the transient current and where this contribution is crucial for data analysis.
Restricted Gene Flow among Hospital Subpopulations of Enterococcus faecium
Willems, Rob J. L.; Top, Janetta; van Schaik, Willem; Leavis, Helen; Bonten, Marc; Sirén, Jukka; Hanage, William P.; Corander, Jukka
2012-01-01
ABSTRACT Enterococcus faecium has recently emerged as an important multiresistant nosocomial pathogen. Defining population structure in this species is required to provide insight into the existence, distribution, and dynamics of specific multiresistant or pathogenic lineages in particular environments, like the hospital. Here, we probe the population structure of E. faecium using Bayesian-based population genetic modeling implemented in Bayesian Analysis of Population Structure (BAPS) software. The analysis involved 1,720 isolates belonging to 519 sequence types (STs) (491 for E. faecium and 28 for Enterococcus faecalis). E. faecium isolates grouped into 13 BAPS (sub)groups, but the large majority (80%) of nosocomial isolates clustered in two subgroups (2-1 and 3-3). Phylogenetic and eBURST analysis of BAPS groups 2 and 3 confirmed the existence of three separate hospital lineages (17, 18, and 78), highlighting different evolutionary trajectories for BAPS 2-1 (lineage 78) and 3-3 (lineage 17 and lineage 18) isolates. Phylogenomic analysis of 29 E. faecium isolates showed agreement between BAPS assignment of STs and their relative positions in the phylogenetic tree. Odds ratio calculation confirmed the significant association between hospital isolates with BAPS 3-3 and lineages 17, 18, and 78. Admixture analysis showed a scarce number of recombination events between the different BAPS groups. For the E. faecium hospital population, we propose an evolutionary model in which strains with a high propensity to colonize and infect hospitalized patients arise through horizontal gene transfer. Once adapted to the distinct hospital niche, this subpopulation becomes isolated, and recombination with other populations declines. PMID:22807567
John; Krohn; Florke; Aust; Draeger; Schulz
1999-09-01
Two known (1 and 2) and four new (3-6) diterpenes named oidiolactones A-F, respectively, and the antibiotic cladosporin were isolated from the fungus Oidiodendron truncata. The structure determination was mainly based on 1D and 2D NMR spectroscopy. The structures of compound 4, displaying an equilibrium between open-chain and cyclized form, and of cladosporin were confirmed by X-ray analysis.
Diterpenoid glycosides from the bitter fern Gleichenia quadripartita.
Socolsky, Cecilia; Asakawa, Yoshinori; Bardón, Alicia
2007-12-01
Fifteen new diterpenoid glycosides (1a-n, 2) were isolated from an Argentine collection of the bitter fern Gleichenia quadripartita along with the known flavonoid glycoside afzelin. Structure elucidation was accomplished by 1D and 2D NMR spectroscopy and by high-resolution MS analyses. In addition, X-ray crystallographic analysis of a monocrystal of 1a as well as chemical derivatization of 1h and 1m were performed to confirm their structures.
Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.
Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil
2016-01-01
The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com
2016-07-06
Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.
Flavonoids from the flowers of Aesculus hippocastanum.
Dudek-Makuch, Marlena; Matławska, Irena
2011-01-01
The flavonoids, kaempferol derivatives: 3-O-alpha-arabinofuranoside, 3-O-beta-glucopyranoside, 3-O-alpha-rhamnopyranoside, 3-O-alpha-rhamnopyranosyl (1 --> 6)-O-beta-glucopyranoside and quercetin derivatives: 3-O-alpha-arabinofuranoside, 3-O-beta-glucopyranoside, 3-O-alpha-rhamnopyranosyl (1 --> 6)-O-beta-glucopyranoside, were isolated from the flowers of Aesculus hippocastanum and identified. The structures of these compounds were confirmed by a chemical analysis and spectrophotometric methods (UV, 1H-, 13C-NMR, ESI-MS). The presence of free aglycones: kaempferol and quercetin was confirmed chromatographically by comparison with standards.
An optimal design of wind turbine and ship structure based on neuro-response surface method
NASA Astrophysics Data System (ADS)
Lee, Jae-Chul; Shin, Sung-Chul; Kim, Soo-Young
2015-07-01
The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.
Jia, Mingrui; Shi, Ranran; Zhao, Xuli; Fu, Zhijian; Bai, Zhijing; Sun, Tao; Zhao, Xuejun; Wang, Wenbo; Xu, Chao; Yan, Fang
2017-01-01
Abstract Mutation analysis as the gold standard is particularly important in diagnosis of osteogenesis imperfecta (OI) and it may be preventable upon early diagnosis. In this study, we aimed to analyze the clinical and genetic materials of an OI pedigree as well as to confirm the deleterious property of the mutation. A pedigree with OI was identified. All family members received careful clinical examinations and blood was drawn for genetic analyses. Genes implicated in OI were screened for mutation. The function and structure of the mutant protein were predicted using bioinformatics analysis. The proband, a 9-month fetus, showed abnormal sonographic images. Disproportionately short and triangular face with blue sclera was noticed at birth. She can barely walk and suffered multiple fractures till 2-year old. Her mother appeared small stature, frequent fractures, blue sclera, and deformity of extremities. A heterozygous missense mutation c.1009G>T (p.G337C) in the COL1A2 gene was identified in her mother and her. Bioinformatics analysis showed p.G337 was well-conserved among multiple species and the mutation probably changed the structure and damaged the function of collagen. We suggest that the mutation p.G337C in the COL1A2 gene is pathogenic for OI by affecting the protein structure and the function of collagen. PMID:28953610
NASA Astrophysics Data System (ADS)
Sun, Jiwen; Wei, Ling; Fu, Danying
2002-01-01
resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.
Impedance spectroscopy and electric modulus behavior of Molybdenum doped Cobalt-Zinc ferrite
NASA Astrophysics Data System (ADS)
Pradhan, A. K.; Nath, T. K.; Saha, S.
2017-07-01
The complex impedance spectroscopy and the electric modulus of Mo doped Cobalt-Zinc inverse spinel ferrite has been investigated in detail. The conventional ceramic technique has been used to prepare the CZMO. The HRXRD technique has been used to study the structural analysis which confirms the inverse spinel structure of the material and also suggest the material have Fd3m space group. The complex impedance spectroscopic data and the electric modulus formalism have been used to understand the dielectric relaxation and conduction process. The contribution of grain and grain boundary in the electrical conduction process of CZMO has been confirmed from the Cole-Cole plot. The activation energy is calculated from both the IS (Impedance Spectroscopy) and electric modulus formalism and found to be nearly same for the materials.
NASA Astrophysics Data System (ADS)
Samuel, Bincy Susan; Krishnamurthy, R.; Rajasekaran, R.
2014-11-01
Single crystals of pure and L-aspartic acid doped Zinc (Tris) Thiourea Sulphate (ZTS) were grown from aqueous solution by solution growth method. The cell parameters and structure of the grown crystals were determined by X-ray diffraction studies. The presence of functional group in the compound has been confirmed by FTIR and FT-Raman analysis. The optical transparency range has been studied through UV-Vis spectroscopy. TGA/DTA studies show thermal stability of the grown crystals. Microhardness study reveals that the hardness number (Hv) increases with load for pure and doped ZTS crystals. Dielectric studies have been carried out and the results are discussed. The second harmonic generation was confirmed for L-aspartic acid doped ZTS which is greater than pure ZTS.
Antecedent-Based Interventions for Young Children at Risk for Emotional and Behavioral Disorders
ERIC Educational Resources Information Center
Park, Kristy L.; Scott, Terrance M.
2009-01-01
Following descriptive functional assessment procedures, a brief structural analysis was used to confirm the hypothesized antecedent conditions that preceded problem behavior across three children enrolled in Head Start classrooms. A withdrawal design investigated the effectiveness of antecedent-based interventions to reduce disruptive behaviors…
Long-Range Correlations in Sentence Series from A Story of the Stone
Yang, Tianguang; Gu, Changgui; Yang, Huijie
2016-01-01
A sentence is the natural unit of language. Patterns embedded in series of sentences can be used to model the formation and evolution of languages, and to solve practical problems such as evaluating linguistic ability. In this paper, we apply de-trended fluctuation analysis to detect long-range correlations embedded in sentence series from A Story of the Stone, one of the greatest masterpieces of Chinese literature. We identified a weak long-range correlation, with a Hurst exponent of 0.575±0.002 up to a scale of 104. We used the structural stability to confirm the behavior of the long-range correlation, and found that different parts of the series had almost identical Hurst exponents. We found that noisy records can lead to false results and conclusions, even if the noise covers a limited proportion of the total records (e.g., less than 1%). Thus, the structural stability test is an essential procedure for confirming the existence of long-range correlations, which has been widely neglected in previous studies. Furthermore, a combination of de-trended fluctuation analysis and diffusion entropy analysis demonstrated that the sentence series was generated by a fractional Brownian motion. PMID:27648941
NASA Astrophysics Data System (ADS)
Sreedevi, R.; Saravana Kumar, G.; Amarsingh Bhabu, K.; Balu, T.; Murugakoothan, P.; Rajasekaran, T. R.
2018-02-01
Bis(guanidinium) 5-sulfosalicylate single crystal was grown by using Sankaranarayanan-Ramasamy (SR) method from the solution of methanol and water in equimolar ratio. Good quality crystal with 50 mm length and 10 mm in diameter was grown. The grown crystal was subjected to single crystal X-ray diffraction analysis to confirm the crystal structure and it was found to be orthorhombic. UV-Vis-NIR spectroscopic study revealed that the SR method grown crystal had good optical transparency with wide optical band gap of 4.4 eV. The presence of the functional groups and modes of vibrations were identified by FTIR spectroscopy recorded in the range 4000-400 cm-1. The mechanical strength of the grown crystal was confirmed using Vickers microhardness tester by applying load from 25 g to 100 g. Density functional theory (DFT) method with B3LYP/6-31-G (d,p) level basis set was employed and hence the optimized molecular geometry, first order hyperpolarizability, dipole moment, thermodynamic functions, molecular electrostatic potential and frontier molecular orbital analysis of the grown BGSSA sample was computed and analysed.
Long-Range Correlations in Sentence Series from A Story of the Stone.
Yang, Tianguang; Gu, Changgui; Yang, Huijie
2016-01-01
A sentence is the natural unit of language. Patterns embedded in series of sentences can be used to model the formation and evolution of languages, and to solve practical problems such as evaluating linguistic ability. In this paper, we apply de-trended fluctuation analysis to detect long-range correlations embedded in sentence series from A Story of the Stone, one of the greatest masterpieces of Chinese literature. We identified a weak long-range correlation, with a Hurst exponent of 0.575±0.002 up to a scale of 104. We used the structural stability to confirm the behavior of the long-range correlation, and found that different parts of the series had almost identical Hurst exponents. We found that noisy records can lead to false results and conclusions, even if the noise covers a limited proportion of the total records (e.g., less than 1%). Thus, the structural stability test is an essential procedure for confirming the existence of long-range correlations, which has been widely neglected in previous studies. Furthermore, a combination of de-trended fluctuation analysis and diffusion entropy analysis demonstrated that the sentence series was generated by a fractional Brownian motion.
Wang, Mengcheng; Armour, Cherie; Wu, Yan; Ren, Fen; Zhu, Xiongzhao; Yao, Shuqiao
2013-09-01
The primary aim was to examine the depressive symptom structure of Mainland China adolescents using the Center for Epidemiologic Studies Depression Scale (CES-D). Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were simultaneously conducted to determine the structure of the CES-D in a large scale, representative adolescent samples recruited from Mainland China. Multigroup CFA (N = 5059, 48% boys, mean = 16.55±1.06) was utilized to test the factorial invariance of the depressive symptom structure, which was generated by EFA and confirmed by CFA across gender. The CES-D can be interpreted in terms of 3 symptom dimensions. Additionally, factorial invariance of the new proposed model across gender was supported at all assuming different degrees of invariance. Mainland Chinese adolescents have specific depressive symptom structure, which is consistent across gender. © 2013 Wiley Periodicals, Inc.
Vibrational spectroscopic, molecular docking and quantum chemical studies on 6-aminonicotinamide
NASA Astrophysics Data System (ADS)
Mohamed Asath, R.; Premkumar, S.; Mathavan, T.; Milton Franklin Benial, A.
2017-04-01
The most stable molecular structure of 6-aminonicotinamide (ANA) molecule was predicted by conformational analysis and vibrational spectral analysis was carried out by experimental and theoretical methods. The calculated and experimentally observed vibrational frequencies were assigned and compared. The π→π* electronic transition of the molecule was predicted by theoretically calculated ultraviolet-visible spectra in gas and liquid phase and further validated experimentally using ethanol as a solvent. Frontier molecular orbitals analysis was carried out to probe the reactive nature of the ANA molecule and further the site selectivity to specific chemical reactions were effectively analyzed by Fukui function calculation. The molecular electrostatic potential surface was simulated to confirm the reactive sites of the molecule. The natural bond orbital analysis was also performed to understand the intra molecular interactions, which confirms the bioactivity of the ANA molecule. Neuroprotective nature of the ANA molecule was analyzed by molecular docking analysis and the ANA molecule was identified as a good inhibitor against Alzheimer's disease.
Khmelnitsky, Yuri L; Mozhaev, Vadim V; Cotterill, Ian C; Michels, Peter C; Boudjabi, Sihem; Khlebnikov, Vladimir; Madhava Reddy, M; Wagner, Gregory S; Hansen, Henrik C
2013-06-01
The structures of the two predominant metabolites (M4 and M5) of RVX-208, observed both in in vitro human and animal liver microsomal incubations, as well as in plasma from animal in vivo studies, were determined. A panel of biocatalytic systems was tested to identify biocatalysts suitable for milligram scale production of metabolite M4 from RVX-208. Rabbit liver S9 fraction was selected as the most suitable system, primarily based on pragmatic metrics such as catalyst cost and estimated yield of M4 (∼55%). Glucuronidation of RVX-208 catalyzed by rabbit liver S9 fraction was optimized to produce M4 in amounts sufficient for structural characterization. Structural studies using LC/MS/MS analysis and (1)H NMR spectroscopy showed the formation of a glycosidic bond between the primary hydroxyl group of RVX-208 and glucuronic acid. NMR results suggested that the glycosidic bond has the β-anomeric configuration. A synthetic sample of M4 confirmed the proposed structure. Metabolite M5, hypothesized to be the carboxylate of RVX-208, was prepared using human liver microsomes, purified by HPLC, and characterized by LC/MS/MS and (1)H NMR. The structure was confirmed by comparison to a synthetic sample. Both samples confirmed M5 as a product of oxidation of primary hydroxyl group of RVX-208 to carboxylic acid. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet
2018-05-01
Needle shaped single crystal of the title compound was grown by slow evaporation solution growth technique using ethanol as solvent. The grown single crystal was characterized using FT-IR, Single crystal XRD and Thermal analysis. The FT-IR spectrum confirms the molecular structure and identifies the different functional groups present in the compound. Single crystal XRD study reveals that the crystallized compound belongs to the monoclinic crystal system with P21/c space group and the corresponding cell parameters were identified. The thermal stability of the material was determined using both TGA and DTA analysis. The intermolecular interaction of each individual atom in the crystal lattice was estimated using Hirshfeld surface and finger print analysis.
Jayakumar, Sangeetha; Saravanan, T; Philip, John
2018-06-01
Nanocomposites containing α-Bi2O3, β-Bi2O3 and Bi nanoparticles as nanofillers in vulcanized silicone resin as a matrix are prepared and their diagnostic X-ray attenuation property is studied. The nanocomposites are prepared using a simple solution casting technique, with nanofiller concentration varying from 2-50 wt%. Thermogravimetric analysis and differential scanning calorimetry are performed to study the thermal stability of the nanocomposites. The attenuation property is studied by exposing the nanocomposites containing α-Bi2O3, β-Bi2O3 and Bi nanoparticles to X-rays of energy 30-60 keV. Nanocomposites containing β-Bi2O3 nanoparticles are found to exhibit the highest attenuation than nanocomposites of α-Bi2O3 and Bi nanoparticles of similar concentration. Nanocomposites containing 50 wt% of β-Bi2O3 nanoparticles exhibit an X-ray attenuation of 93, 86, 71, 45 and 10% at an X-ray photon energy of 40, 45, 50, 55 and 59 keV, respectively. Further increase in photon energy is found to saturate the flat panel detector owing to the lower thickness of the nanocomposites. Analysis of high resolution X-ray radiographs of the nanocomposites confirms the uniform distribution of nanofillers in the matrix. Thermal analysis confirms the structural integrity and thermal stability of the nanocomposites. Heat flow curves also confirm the interaction of nanofillers with the matrix, corroborated by a change in the peak position and its endothermic/exothermic nature, corresponding to the phase transition of the nanofillers. It is also interpreted from thermal analysis of nanocomposites that the nanofillers interact with the matrix either by intercalating in the bridging polymer chain of silicone resin network structure or by occupying the interchain space. Thermal analysis of X-ray exposed nanocomposites shows no significant change in heat flow rates, thus, confirming the stability of the nanocomposites. Our study shows that nanocomposites containing β-Bi2O3 nanofiller are potential candidates for radiopaque fabrics which can find application in diagnostic X-ray shielding in mammography, dental scan, etc.
Cytotoxic 20,24-epoxywithanolides from Physalis angulata.
Maldonado, Emma; Hurtado, Norma E; Pérez-Castorena, Ana L; Martínez, Mahinda
2015-12-01
A new withanolide, physangulide B (1), was isolated from calyxes of Physalis angulata. This compound was also present in the aerial parts along with the known physangulide (4), which was isolated as the acetonide 3, and 24,25-epoxywithanolide D (6). Structures of these compounds were determined by analysis of their spectroscopic data, which indicated the presence of a 20,24-epoxy group in both physangulides. The structures of compounds 1 and 6 were confirmed by X-ray analysis of their corresponding acetyl derivatives 2 and 7. The structure of physangulide was originally described as the 22S withanolide 5, now its structure and configuration are revised to 4. Evaluation of the cytotoxic activity of compounds 1-3 against two human cancer cell lines indicated a potent activity of compound 1 and its derivative 2. Copyright © 2015 Elsevier Inc. All rights reserved.
Wildgrube, H J; Dehwald, H
1990-01-01
The characteristics of the echo structure constitute an important criterion for the appraisal of sonograms. Since every pixel usually represents one out of 64 gray values, it should be possible to use the density as an objective parameter of the echo structure. In this study, the echogenicity of the pancreas was examined. The density of the pancreas became higher with increasing accumulation of fatty connective tissue or as a result of air in the intestine. In 42 people with varying degrees of obesity, the echo structure was compared with the gray scale distribution of the lumen of the gallbladder, aorta and the water-filled stomach. The results indicated that the increasing echodensity is attributable to reflections and scatter of the ultrasound in adjacent regions. The presence of air gave rise to the same effect. On the basis of standardized investigations at 15-minute intervals, the density and the visual index under the influence of a quick-acting simethicone preparation (Lefax) were compared. The density also decreased significantly within 30 to 45 minutes parallel to the reduction of superimpositional interferences due to air. The present investigations confirm the relevance of gray scale analysis for objective confirmation of sonographic structures. However, they make it evident that the echo pattern is quantifiable only under standardized conditions and when the projection plane is largely occupied. Misleading mixed values are measured in marginal zones and in superimpositions.
P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing.
Jekat, Stephan B; Ernst, Antonia M; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M; Noll, Gundula A; Prüfer, Dirk
2013-01-01
Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing.
Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties
NASA Astrophysics Data System (ADS)
Agzamova, P. A.; Leskova, Yu. V.; Nikiforov, A. E.
2013-05-01
Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions 139La and 89Y in LaTiO3 and YTiO3, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.
NASA Astrophysics Data System (ADS)
Dhilip, M.; Anbarasu, V.; Kumar, K. Saravana; Sivakumar, K.
2018-04-01
A series of Europium orthoferrites, Eu2-xFexO3 (x = 0 - 0.5) are successfully prepared by employing solid state reaction technique. The structural analysis through powder X-Ray diffraction technique reveals the multiphase formation of all the prepared compounds. Further, the unit cell visualization of all the prepared compounds confirms the change of crystal structure from cubic to orthorhombic phase. The crystal structure analysis confirms the typical framework of Eu - Fe - O chains with unprecedented ratio of Eu3+ and Fe3+ ions. The optical properties of prepared compounds are investigated using photoluminescence (PL) analysis. Upon excitation at 495 nm wavelength, the emission spectrum of prepared compounds exhibits a broad band in the range of 500-700nm with maximum intensity peak at 548 nm (Blue - 2.26eV). Hence, the substitution of Fe3+ ion yields with intrinsic blue photoluminescence (5D0 → 7F0) of Eu3+ and is easily shielded by the substitution of Fe3+ which may be due to the closer conduction band gap of Eu3+ (2.26 eV) with Fe3+ (2.67 eV). The schematic energy level diagram for Fe3+ in the Eu3+ host matrix has been proposed for the better understanding of photoluminescence processes. The variation of intensity of PL peak between 500 and 700 nm for the substitution of Fe in the range of x = 0 - 0.5 yields with interesting optical properties for exploring new phosphor materials for optoelectronic device fabrications.
Chen, Yanhua; Watson, Roger; Hilton, Andrea
2016-05-01
To understand nursing students' expectation from their mentors and assess mentors' performance, a scale of mentors' behavior was developed based on literature review and focus group in China. This study aims to explore the structure of mentors' behavior. A cross-sectional survey. Data were collected from nursing students in three hospitals in southwest China in 2014. A total of 669 pre-registered nursing students in their final year clinical learning participated in this study. Exploratory factor analysis and Mokken scale analysis was employed to explore the structure and hierarchical property of mentors' behavior. Three dimensions (professional development, facilitating learning and psychosocial support) were identified by factor analysis and confirmed by Mokken scaling analysis. The three sub-scales showed internal consistency reliability from 87% to 91%, and moderate to strong precision in ordering students' expectation about mentors' behavior and a small Mokken scale showing hierarchy was identified. Some insight into the structure of mentoring in nursing education has been obtained and a scale which could be used in the study of mentoring and in the preparation of mentors has been developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
MinOmics, an Integrative and Immersive Tool for Multi-Omics Analysis.
Maes, Alexandre; Martinez, Xavier; Druart, Karen; Laurent, Benoist; Guégan, Sean; Marchand, Christophe H; Lemaire, Stéphane D; Baaden, Marc
2018-06-21
Proteomic and transcriptomic technologies resulted in massive biological datasets, their interpretation requiring sophisticated computational strategies. Efficient and intuitive real-time analysis remains challenging. We use proteomic data on 1417 proteins of the green microalga Chlamydomonas reinhardtii to investigate physicochemical parameters governing selectivity of three cysteine-based redox post translational modifications (PTM): glutathionylation (SSG), nitrosylation (SNO) and disulphide bonds (SS) reduced by thioredoxins. We aim to understand underlying molecular mechanisms and structural determinants through integration of redox proteome data from gene- to structural level. Our interactive visual analytics approach on an 8.3 m2 display wall of 25 MPixel resolution features stereoscopic three dimensions (3D) representation performed by UnityMol WebGL. Virtual reality headsets complement the range of usage configurations for fully immersive tasks. Our experiments confirm that fast access to a rich cross-linked database is necessary for immersive analysis of structural data. We emphasize the possibility to display complex data structures and relationships in 3D, intrinsic to molecular structure visualization, but less common for omics-network analysis. Our setup is powered by MinOmics, an integrated analysis pipeline and visualization framework dedicated to multi-omics analysis. MinOmics integrates data from various sources into a materialized physical repository. We evaluate its performance, a design criterion for the framework.
NASA Astrophysics Data System (ADS)
Reznickova, A.; Kolska, Z.; Orendac, M.; Cizmar, E.; Sajdl, P.; Svorcik, V.
2016-08-01
This study focuses on high density polyethylene (HDPE) activated by Ar plasma treatment, subsequently grafted with copper sulfonated phthalocyanine (CuPc) especially pointing out to the surface and magnetic properties of those composites. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, zeta potential and by electron spin resonance (ESR). XPS analysis confirmed the successful grafting of phthalocyanine. The highest absorption was found for the sample grafted with bCuPc for 1 h. Electrokinetic analysis also confirmed the plasma treatment and also subsequent CuPc grafting influence significantly the surface chemistry and charge. These results correspond well with XPS determination. ESR studies confirmed the presence of CuPc grafted on HDPE. It was found, that grafting is mediated by magnetically inactive functional groups, rather than radicals. Magnetic properties of CuPc do not seem to change significantly after grafting CuPc on polyethylene surface.
Pestalactams A-C: novel caprolactams from the endophytic fungus Pestalotiopsis sp.
Davis, Rohan A; Carroll, Anthony R; Andrews, Katherine T; Boyle, Glen M; Tran, Truc Linh; Healy, Peter C; Kalaitzis, John A; Shivas, Roger G
2010-04-21
Chemical investigations of a fermentation culture from the endophytic fungus Pestalotiopsis sp. yielded three novel caprolactams, pestalactams A-C (). The structures of were determined by analysis of 1D and 2D-NMR, UV, IR, and MS data. The structure of pestalactam A was confirmed following single crystal X-ray diffraction analysis. Pestalactams A-C are the first C-7 alkylated caprolactam natural products to be reported. Pestalactams A () and B () were tested against two different strains of the malaria parasite Plasmodium falciparum (3D7 and Dd2), and the mammalian cell lines, MCF-7 and NFF, and showed modest in vitro activity in all assays.
Electrical and magnetic properties of nano-sized magnesium ferrite
NASA Astrophysics Data System (ADS)
T, Smitha; X, Sheena; J, Binu P.; Mohammed, E. M.
2015-02-01
Nano-sized magnesium ferrite was synthesized using sol-gel techniques. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. Vibration Sample Magnetometer was used to record the magnetic measurements. XRD analysis reveals the prepared sample is single phasic without any impurity. Particle size calculation shows the average crystallite size of the sample is 19nm. FTIR analysis confirmed spinel structure of the prepared samples. Magnetic measurement study shows that the sample is ferromagnetic with high degree of isotropy. Hysterisis loop was traced at temperatures 100K and 300K. DC electrical resistivity measurements show semiconducting nature of the sample.
Caci, Barbara; Cardaci, Maurizio; Scrima, Fabrizio; Tabacchi, Marco Elio
2017-04-01
The studies reported analyze the factorial structure of Facebook Addiction Italian Questionnaire (FAIQ), a variant of 20-item Young's Internet Addiction Test (IAT). In Study 1, we tested FAIQ psychometric properties using exploratory factor analysis (EFA). In Study 2, we performed a confirmatory factor analysis (CFA) to verify the FAIQ factorial structure identified through EFA. Results from CFA confirm the presence of a four-factor model accounting for 58 percent of total variance, plus a general higher order factor that best fits the data. Further relationships between FAIQ factor scores, personality, and Facebook usage have been explored.
RNA structural constraints in the evolution of the influenza A virus genome NP segment
Gultyaev, Alexander P; Tsyganov-Bodounov, Anton; Spronken, Monique IJ; van der Kooij, Sander; Fouchier, Ron AM; Olsthoorn, René CL
2014-01-01
Conserved RNA secondary structures were predicted in the nucleoprotein (NP) segment of the influenza A virus genome using comparative sequence and structure analysis. A number of structural elements exhibiting nucleotide covariations were identified over the whole segment length, including protein-coding regions. Calculations of mutual information values at the paired nucleotide positions demonstrate that these structures impose considerable constraints on the virus genome evolution. Functional importance of a pseudoknot structure, predicted in the NP packaging signal region, was confirmed by plaque assays of the mutant viruses with disrupted structure and those with restored folding using compensatory substitutions. Possible functions of the conserved RNA folding patterns in the influenza A virus genome are discussed. PMID:25180940
English Validation of the Parental Socialization Scale—ESPA29
Martínez, Isabel; Cruise, Edie; García, Óscar F.; Murgui, Sergio
2017-01-01
Parenting styles have traditionally been studied following the classical two-dimensional orthogonal model of parental socialization. The Parental Socialization Scale ESPA29 is used to measure the four styles of parental socialization through the acceptance/involvement and strictness/imposition dimensions. The ESPA29 scale is a developmentally appropriate measure of parenting styles, which has been validated in several languages including Spanish, Italian, and Brazilian Portuguese. In this study, the English translation of the ESPA29 was evaluated. The objective of the work is to test the ESPA29’s structure of parenting practices with a United States sample measuring parenting practices using exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). The scores of fathers’ and mothers’ behavioral practices toward their children were obtained for a sample of 911 United States adolescents between 14 and 18 years of age. First, the total sample was split and a principal components analysis with varimax rotation was carried out with one of the two halves. EFA showed a two-factor structure fully congruent with the theoretical model for mothers’ and fathers’ scores. Next, a CFA was calculated on the second half by using the factor structure obtained in the previous EFA. The CFA replicated the two-factor structure with appropriate fit index. The seven parenting practices that were measured loaded appropriately on the acceptance/involvement and strictness/imposition dimensions. Then, the multigroup analysis between girls and boys showed equal loading in the factors and equal covariation between the acceptance/involvement and the strictness/imposition dimensions. Additionally, the two dimensions of the ESPA29 scale were related to self-esteem in order to obtain an external validity index. The findings confirm the invariant structure of the ESPA29 was in the United States and their equivalence in both fathers’ and mothers’ scores. These findings validate the instrument and confirm its applicability in cross-cultural research on parenting practices and child adjustment. PMID:28611711
English Validation of the Parental Socialization Scale-ESPA29.
Martínez, Isabel; Cruise, Edie; García, Óscar F; Murgui, Sergio
2017-01-01
Parenting styles have traditionally been studied following the classical two-dimensional orthogonal model of parental socialization. The Parental Socialization Scale ESPA29 is used to measure the four styles of parental socialization through the acceptance/involvement and strictness/imposition dimensions. The ESPA29 scale is a developmentally appropriate measure of parenting styles, which has been validated in several languages including Spanish, Italian, and Brazilian Portuguese. In this study, the English translation of the ESPA29 was evaluated. The objective of the work is to test the ESPA29's structure of parenting practices with a United States sample measuring parenting practices using exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). The scores of fathers' and mothers' behavioral practices toward their children were obtained for a sample of 911 United States adolescents between 14 and 18 years of age. First, the total sample was split and a principal components analysis with varimax rotation was carried out with one of the two halves. EFA showed a two-factor structure fully congruent with the theoretical model for mothers' and fathers' scores. Next, a CFA was calculated on the second half by using the factor structure obtained in the previous EFA. The CFA replicated the two-factor structure with appropriate fit index. The seven parenting practices that were measured loaded appropriately on the acceptance/involvement and strictness/imposition dimensions. Then, the multigroup analysis between girls and boys showed equal loading in the factors and equal covariation between the acceptance/involvement and the strictness/imposition dimensions. Additionally, the two dimensions of the ESPA29 scale were related to self-esteem in order to obtain an external validity index. The findings confirm the invariant structure of the ESPA29 was in the United States and their equivalence in both fathers' and mothers' scores. These findings validate the instrument and confirm its applicability in cross-cultural research on parenting practices and child adjustment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhanjadeo, Madhabi M.; Academy of Scientific and Innovative Research; Nayak, Ashok K.
DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Fieldmore » emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.« less
Structural and Mössbauer analysis of pure and Ce-Dy doped cobalt ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Hashim, Mohd.; Meena, Sher Singh; Kumar, Shalendra; Ahmed, Ateeq; Bhatt, Pramod
2018-05-01
Ce and Dy doped Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0.00 and 0.04) were synthesized via the chemical route using citrate-gel auto-combustion method. The structural analysis has been carried out with the help of x-ray diffraction (XRD). Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. Mössbauer spectra were recorded for both samples at room temperature. Presence of the well resolved sextet spectra corresponding to A and B sub-lattice clearly shows that both the samples have ferrimagnetic ordering at room temperature. Isomer shift observed from fitting of the Mössbauer spectra infers that Fe3+ ions are in high valence state. The decrease in the hyperfine field due to the doping of Ce and Dy clearly showed that magnetic interactions diluted due to the doping of Ce and Dy ions.
Analysis of HD 73045 light curve data
NASA Astrophysics Data System (ADS)
Das, Mrinal Kanti; Bhatraju, Naveen Kumar; Joshi, Santosh
2018-04-01
In this work we analyzed the Kepler light curve data of HD 73045. The raw data has been smoothened using standard filters. The power spectrum has been obtained by using a fast Fourier transform routine. It shows the presence of more than one period. In order to take care of any non-stationary behavior, we carried out a wavelet analysis to obtain the wavelet power spectrum. In addition, to identify the scale invariant structure, the data has been analyzed using a multifractal detrended fluctuation analysis. Further to characterize the diversity of embedded patterns in the HD 73045 flux time series, we computed various entropy-based complexity measures e.g. sample entropy, spectral entropy and permutation entropy. The presence of periodic structure in the time series was further analyzed using the visibility network and horizontal visibility network model of the time series. The degree distributions in the two network models confirm such structures.
NASA Astrophysics Data System (ADS)
Peng, Heng; Liu, Yinghua; Chen, Haofeng
2018-05-01
In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.
Erfani, Maryam; Saion, Elias; Soltani, Nayereh; Hashim, Mansor; Wan Abdullah, Wan Saffiey B.; Navasery, Manizheh
2012-01-01
Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4) nanoparticles and tetraborate (CaB4O7) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures. PMID:23203073
NASA Astrophysics Data System (ADS)
Selvi, N.; Sankar, S.; Dinakaran, K.
2014-12-01
Nanocrystallites of SnO2 core and dual shells (ZnO, SiO2) coated SnO2 core-shell nanospheres were successfully synthesized by co-precipitation method. The as prepared and annealed samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and UV-Vis analysis. XRD pattern confirms the obtained SnO2 core with tetragonal rutile crystalline structure and the shell ZnO with hexagonal structure. FTIR result shows the functional groups present in the samples. The spherical morphology and the formation of the core-shell structures have been confirmed by HRTEM measurements. The UV-Vis showed that band gap is red shifted for as-prepared and the shells coated core-shell samples. From this investigation it can be concluded that the surface modification with different metal and insulating oxides strongly influences the optical properties of the core-shell materials which enhance their potential applications towards optical devices fabrication.
Growth and characterization of AgGa0.5In0.5Se2 single crystals by modified vertical Bridgman method
NASA Astrophysics Data System (ADS)
Vijayakumar, P.; Ramasamy, P.
2016-05-01
AgGa0.5In0.5Se2 single crystal was grown using a double wall quartz ampoule with accelerated crucible rotation technique by modified vertical Bridgman method. The structural perfection was measured using HRXRD. The grown single crystal composition was measured using ICP-OES analysis and compositional uniformities were measured using Raman spectroscopy analysis. Photoconductivity measurements confirm the positive photoconducting nature.
Pei, Qing; Zhang, David D; Li, Guodong; Lee, Harry F
2015-01-01
The relationship between climate change and the macroeconomy in pre-industrial Europe has attracted considerable attention in recent years. This study follows the combined paradigms of evolutionary economics and ecological economics, in which wavelet analysis (spectrum analysis and coherence analysis) is applied as the first attempt to examine the relationship between climate change and the macroeconomic structure in pre-industrial Europe in the frequency domain. Aside from confirming previous results, this study aims to further substantiate the association between climate change and macroeconomy by presenting new evidence obtained from the wavelet analysis. Our spectrum analysis shows a consistent and continuous frequency band of 60-80 years in the temperature, grain yield ratio, grain price, consumer price index, and real wage throughout the study period. Besides, coherence analysis shows that the macroeconomic structure is shaped more by climate change than population change. In addition, temperature is proven as a key climatic factor that influences the macroeconomic structure. The analysis reveals a unique frequency band of about 20 years (15-35 years) in the temperature in AD1600-1700, which could have contributed to the widespread economic crisis in pre-industrial Europe. Our findings may have indications in re-examining the Malthusian theory.
Pei, Qing; Zhang, David D.; Li, Guodong; Lee, Harry F.
2015-01-01
The relationship between climate change and the macroeconomy in pre-industrial Europe has attracted considerable attention in recent years. This study follows the combined paradigms of evolutionary economics and ecological economics, in which wavelet analysis (spectrum analysis and coherence analysis) is applied as the first attempt to examine the relationship between climate change and the macroeconomic structure in pre-industrial Europe in the frequency domain. Aside from confirming previous results, this study aims to further substantiate the association between climate change and macroeconomy by presenting new evidence obtained from the wavelet analysis. Our spectrum analysis shows a consistent and continuous frequency band of 60–80 years in the temperature, grain yield ratio, grain price, consumer price index, and real wage throughout the study period. Besides, coherence analysis shows that the macroeconomic structure is shaped more by climate change than population change. In addition, temperature is proven as a key climatic factor that influences the macroeconomic structure. The analysis reveals a unique frequency band of about 20 years (15–35 years) in the temperature in AD1600-1700, which could have contributed to the widespread economic crisis in pre-industrial Europe. Our findings may have indications in re-examining the Malthusian theory. PMID:26039087
A Potential Waste to be Selected as Media for Metal and Nutrient Removal
NASA Astrophysics Data System (ADS)
Zayadi, N.; Othman, N.; Hamdan, R.
2016-07-01
This study describes the potential of application of cassava peel, banana peel, coconut shell, and coconut coir to be selected as metal removal while limestone and steel slag for nutrient removal. The media were characterized by X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-EDX), and X-Ray Powder Diffraction (XRD). The results of XRF analysis medias show the present of calcium oxide, CaO which confirm the high efficiency in adsorbing metal ions and nutrient which is in agreement with the result of XRD. The characteristics of medias by FTIR analysis also confirmed the involvement of alcohol, carboxylic, alkanes, amines and ethers which play important role to reduce ions while FESEM-EDX indicates the porous structures of study medias. The characterization analysis highlight that cassava peel and steel slag were selected as a potential media in this study.
Synthesis and characterization of biopolymer protected zinc sulphide nanoparticles
NASA Astrophysics Data System (ADS)
Senapati, U. S.; Sarkar, D.
2015-09-01
Zinc sulphide (ZnS) nanoparticles are prepared by a simple, economic and green synthesis route. X-ray diffraction patterns confirm zinc blend structure. ZnS formation is confirmed through chemical analysis by energy dispersive analysis of X-rays. Transmission electron microscopy reveals formation of nanosize with dimension in the range of 8-2 nm. Band gap of the nanocrystals is found to lie in the range of 4.51-4.65 eV. Photoluminescence study indicate defect like vacancies. The growth mechanism of ZnS nanoparticles is discussed with the help of Fourier transform infrared spectroscopy and thermogravimetric analysis. The materials show high dielectric constant compared to its bulk counterpart. The dielectric loss of the samples shows anomalous behaviour. The frequency dependent A.C. conductivity of the samples is discussed both in high and low frequency regimes. Current-voltage (I-V) characteristic performed under dark and under illumination, shows excellent light response of the material.
Magnetic ground state of the multiferroic hexagonal LuFe O3
NASA Astrophysics Data System (ADS)
Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.
2018-05-01
The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .
NASA Astrophysics Data System (ADS)
Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei
2018-03-01
In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.
Dima, Alexandra Lelia; Schulz, Peter Johannes
2017-01-01
Background The eHealth Literacy Scale (eHEALS) is a tool to assess consumers’ comfort and skills in using information technologies for health. Although evidence exists of reliability and construct validity of the scale, less agreement exists on structural validity. Objective The aim of this study was to validate the Italian version of the eHealth Literacy Scale (I-eHEALS) in a community sample with a focus on its structural validity, by applying psychometric techniques that account for item difficulty. Methods Two Web-based surveys were conducted among a total of 296 people living in the Italian-speaking region of Switzerland (Ticino). After examining the latent variables underlying the observed variables of the Italian scale via principal component analysis (PCA), fit indices for two alternative models were calculated using confirmatory factor analysis (CFA). The scale structure was examined via parametric and nonparametric item response theory (IRT) analyses accounting for differences between items regarding the proportion of answers indicating high ability. Convergent validity was assessed by correlations with theoretically related constructs. Results CFA showed a suboptimal model fit for both models. IRT analyses confirmed all items measure a single dimension as intended. Reliability and construct validity of the final scale were also confirmed. The contrasting results of factor analysis (FA) and IRT analyses highlight the importance of considering differences in item difficulty when examining health literacy scales. Conclusions The findings support the reliability and validity of the translated scale and its use for assessing Italian-speaking consumers’ eHealth literacy. PMID:28400356
NASA Astrophysics Data System (ADS)
Kulkarni, Rupali B.; Anis, Mohd; Hussaini, S. S.; Shirsat, Mahendra D.
2018-03-01
Present investigation reports the growth of pure and L-threonine (LT) doped cadmium thiourea acetate (CTA) crystals by slow solution evaporation technique followed by structural, optical and dielectric characterization studies. A bulk single crystal of LT-CTA has been grown at temperature 38 °C. The single crystal x-ray diffraction technique has been employed to confirm the structural parameters of pure and LT doped CTA crystals. The increase in optical transparency of LT-CTA crystal was ascertained in the range of 200 to 900 nm using UV-visible spectral analysis. The widened optical band gap of the LT-CTA crystal is found to be 4.7 eV. Pure and doped crystals are subjected to FT-IR analysis to indicate the presence of functional groups quantitatively. Appreciable enhancement in second harmonic generation (SHG) efficiency of LT-CTA crystal with reference to parent CTA was confirmed from Kurtz-Perry SHG test (1.31 times of CTA crystal). The assertive influence of LT on electrical properties of grown crystals has been investigated in the temperature range 35 °C-120 °C. Electronic purity and the color centered photoluminescence emission nature of pure and IA-CTA crystals were justified by luminescence analysis. With the aid of single beam Z-scan analysis, the Kerr lensing nonlinearity was identified and the magnitude of TONLO parameters has been determined. The cubic susceptibility (χ3) and figure of merit (FOM) was found to be 4.81 × 10-4esu and 978.35. Results vitalize LT-CTA for laser stabilization systems.
Development of a scale to assess cancer stigma in the non-patient population
2014-01-01
Background Illness-related stigma has attracted considerable research interest, but few studies have specifically examined stigmatisation of cancer in the non-patient population. The present study developed and validated a Cancer Stigma Scale (CASS) for use in the general population. Methods An item pool was developed on the basis of previous research into illness-related stigma in the general population and patients with cancer. Two studies were carried out. The first study used Exploratory factor analysis to explore the structure of items in a sample of 462 postgraduate students recruited through a London university. The second study used Confirmatory factor analysis to confirm the structure among 238 adults recruited through an online market research panel. Internal reliability, test-retest reliability and construct validity were also assessed. Results Exploratory factor analysis suggested six subscales, representing: Awkwardness, Severity, Avoidance, Policy Opposition, Personal Responsibility and Financial Discrimination. Confirmatory factor analysis confirmed this structure with a 25-item scale. All subscales showed adequate to good internal and test-retest reliability in both samples. Construct validity was also good, with mean scores for each subscale varying in the expected directions by age, gender, experience of cancer, awareness of lifestyle risk factors for cancer, and social desirability. Means for the subscales were consistent across the two samples. Conclusions These findings highlight the complexity of cancer stigma and provide the Cancer Stigma Scale (CASS) which can be used to compare populations, types of cancer and evaluate the effects of interventions designed to reduce cancer stigma in non-patient populations. PMID:24758482
Dodds, A W; Smith, S L; Levine, R P; Willis, A C
1998-01-01
Complement components C3 and C4 have been isolated from the serum of the nurse shark (Ginglymostoma cirratum) and of the channel catfish (Ictalurus punctatus). As in the higher vertebrates, the fish C4 proteins have three-chain structures while the C3 proteins have two-chain structures. All four proteins have intra-chain thioesters located within their highest molecular mass polypeptides. N-terminal sequence analysis of the polypeptides has confirmed the identity of the proteins. In all cases except the catfish C3 alpha-chain, which appears to have a blocked N-terminus, sequence similarities are apparent in comparisons with the chains of C3 and C4 from higher vertebrates. We have confirmed that the activity/protein previously designated C2n is the nurse shark analogue of mammalian C4. This is the first report of structural evidence for C4 in both the bony and cartilaginous fish.
Curci, Antonietta; Lanciano, Tiziana; Soleti, Emanuela; Zammuner, Vanda Lucia; Salovey, Peter
2013-01-01
In 2 studies, we assessed the construct validity of the Italian version of the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) version 2.0. In Study 1, we administered the MSCEIT together with measures of crystallized and fluid intelligence, personality, and affect. In Study 2, we administered the MSCEIT together with indexes of dispositional coping, emotion regulation strategies, alexithymia, state-trait anxiety, depression, and depressive rumination. We evaluated the factorial structure of the MSCEIT with a confirmatory factor analysis model using data combined from Study 1 and 2. The results confirm that the MSCEIT Italian version satisfactorily discriminates emotional intelligence ability from crystallized and fluid intelligence, personality, and affect, and exhibits significant correlations with various psychological well-being criteria. Furthermore, data from both studies confirm that the factorial structure of MSCEIT is consistent with the theory on which it is based, although it was difficult to rule out alternative structures.
Bone accumulation of the Tc-99m complex of carbamyl phosphate and its analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosain, P.; Spencer, R.P.; Ahlquist, K.J.
1978-05-01
Carbamyl phosphate, an organic moecule containing a single phosphate group, has been used in the therapy of sickle-cell disease. Carbamyl phosphate bound Tc-99m and achieved bone uptake in mice, rabbits, and a human volunteer. By examination of the structural formula, a working hypothesis was developed that predicted that the Tc-99m complexes of the analogous compounds acetyl phosphate, propionyl phosphate, and butyryl phosphate, each carrying single phosphate and carbonyl groups, would also show bone specificity. This was confirmed experimentally. Phosphonoacetic acid is a structural analog of these compounds. The structural analysis also predicted that aminomethylphosphonic acid and phosphoenolpyruvate would not havemore » as avid bone affinity, and this was also confirmed. These compounds represent a new class of bone-seeking agents that have the common properties of a lone phosphate and a carbonyl function. Such agents may permit the synthesis of additional analogs in an effort to obtain optimal affinity in the Tc-99m complexes.« less
NASA Astrophysics Data System (ADS)
Thirumurugan, R.; Babu, B.; Anitha, K.; Chandrasekaran, J.
2017-12-01
A novel organic nonlinear optical (NLO) material, creatininium L-tartrate monohydrate (CTM) was synthesized and it was grown as single crystals with optical quality. 1H and 13C NMR spectral studies were performed and molecular structure of synthesized CTM compound was confirmed. Single crystal X-ray diffraction (SXRD) analysis confirmed that CTM was crystallized in orthorhombic system with non-centrosymmetric (NCS), P212121, space group. The grown crystal exhibited admirable properties such as second harmonic generation efficiency (SHG) (1.9 times KDP), and high laser damage threshold (LDT) value of 3.7 GW cm-2. CTM crystal displayed high transparency (∼60%) in the visible and near-IR region with low cut-off wavelength at 249 nm. Photoluminescence study confirmed blue wavelength emission (∼463 nm) of grown crystal. Thermal and mechanical behaviours have been successfully analysed for grown crystals. The dielectric studies were carried out for grown crystal as a function of frequencies at different temperatures. Hirshfeld surface and fingerprint plots provided the percentage of individual interactions contributed by each atom. Moreover, density functional theory (DFT) calculations have been employed to probe the frontier molecular orbitals (FMOs) and first hyperpolarizability (β) analysis of the optimized CTM structure. These results validated CTM as a suitable NLO candidate and were discussed in this work.
Mehta, Prina; Al-Kinani, Ali A; Arshad, Muhammad Sohail; Chang, Ming-Wei; Alany, Raid G; Ahmad, Zeeshan
2017-10-30
Despite exponential growth in research relating to sustained and controlled ocular drug delivery, anatomical and chemical barriers of the eye still pose formulation challenges. Nanotechnology integration into the pharmaceutical industry has aided efforts in potential ocular drug device development. Here, the integration and in vitro effect of four different permeation enhancers (PEs) on the release of anti-glaucoma drug timolol maleate (TM) from polymeric nanofiber formulations is explored. Electrohydrodynamic (EHD) engineering, more specifically electrospinning, was used to engineer nanofibers (NFs) which coated the exterior of contact lenses. Parameters used for engineering included flow rates ranging from 8 to 15μL/min and a novel EHD deposition system was used; capable of hosting four lenses, masked template and a ground electrode to direct charged atomised structures. SEM analysis of the electrospun structures confirmed the presence of smooth nano-fibers; whilst thermal analysis confirmed the stability of all formulations. In vitro release studies demonstrated a triphasic release; initial burst release with two subsequent sustained release phases with most of the drug being released after 24h (86.7%) Biological evaluation studies confirmed the tolerability of all formulations tested with release kinetics modelling results showing drug release was via quasi-Fickian or Fickian diffusion. There were evident differences (p<0.05) in TM release dependant on permeation enhancer. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Confirming the Structural Validity of the My Class Inventory -- Short Form Revised
ERIC Educational Resources Information Center
Mariani, Melissa; Villares, Elizabeth; Sink, Christopher A.; Colvin, Kimberly; Kuba, Summer Perhay
2015-01-01
Researchers analyzed data collected from elementary school students (N = 893) to further establish the psychometric soundness of the My Class Inventory--Short Form Revised (MCI-SFR). A confirmatory factor analysis was conducted resulting in a good fit for a four-factor model, which corresponds to the instrument's four scales (Cohesion,…
Carpatizine, a novel bridged oxazine derivative generated by non-enzymatic reactions.
Fu, Peng; MacMillan, John B
2017-06-27
Carpatizine (1), a new bridged oxazine derivative, was isolated from a marine-derived Streptomyces strain SNE-011. The structure was fully determined by spectroscopic analysis, ECD calculations and chemical methods. A plausible non-enzymatic reaction mechanism from daryamide D leading to carpatizine was presented, which was confirmed by chemical transformation.
ERIC Educational Resources Information Center
Yang, Hongfei; Hai, Tang
2015-01-01
The psychometrics of the Chinese Solution-Focused Inventory (CSFI) was studied in Chinese college students. Confirmatory factor analysis confirmed the 3-factor structure. All subscales showed good reliability and convergent and incremental validity. Results of hierarchical regression analyses indicated that the 3 subscales accounted for additional…
USDA-ARS?s Scientific Manuscript database
Tetraethyl piperazine-1,4-diyldiphosphonate (PDP) and O,O,O',O'-tetramethyl piperazine-1,4-diyldiphosphonothioate (PDSP) were synthesized in one simple step and their structures were confirmed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and elemental analysis (EA). Print cloth, twil...
The Structure of Sexual Harassment: A Confirmatory Analysis across Cultures and Settings.
ERIC Educational Resources Information Center
Gelfand, Michele J.; And Others
1995-01-01
Three samples (1,746 U.S. female undergraduates, 389 Brazilian female undergraduates, and 307 female university employees) were used to test a tripartite model of sexual harassment (gender harassment, unwanted sexual attention, and sexual coercion). Results confirm the generalizability of the construct across workplace and education settings and…
Spanish Validation of the Spence Children's Anxiety Scale
ERIC Educational Resources Information Center
Orgiles, Mireia; Mendez, Xavier; Spence, Susan H.; Huedo-Medina, Tania B.; Espada, Jose P.
2012-01-01
The purpose of this study was to investigate the factorial structure and psychometric properties of the Spence Children's Anxiety Scale (SCAS) in a sample of 1,708 Spanish children aged between 8 and 12 years. The SCAS was demonstrated to have satisfactory internal consistency with the Spanish sample, and factor analysis confirmed the six-factor…
A new sesquiterpenoid metabolite from Psilocybe samuiensis.
Pornpakakul, Surachai; Suwancharoen, Sunisa; Petsom, Amorn; Roengsumran, Sophon; Muangsin, Nongnuj; Chaichit, Narongsak; Piapukiew, Jittra; Sihanonth, Prakistin; Allen, John W
2009-01-01
A novel 2,3-secoaromadendrane-type sesquiterpenoid metabolite, psilosamuiensin A (1), was isolated from the broth of Psilocybe samuiensis. The structure of psilosamuiensin A was established by spectroscopic data and its configurations were confirmed by single crystal X-ray crystallographic analysis. This is the first report of psilosamuiensin A found in the genus Psilocybes.
Lala, S; Brahmachari, S; Das, P K; Das, D; Kar, T; Pradhan, S K
2014-09-01
Single phase nanocrystalline biocompatible A-type carbonated hydroxyapatite (A-cHAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO3 and CaHPO4.2H2O powders in open air at room temperature within 2h of milling. The A-type carbonation in HAp is confirmed by FTIR analysis. Structural and microstructure parameters of as-milled powders are obtained from both Rietveld's powder structure refinement analysis and transmission electron microscopy. Size and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Mechanical alloying causes amorphization of a part of crystalline A-cHAp which is analogous to native bone mineral. Some primary bond lengths of as-milled samples are critically measured. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay test reveals high percentage of cell viability and hence confirms the biocompatibility of the sample. The overall results indicate that the processed A-cHAp has a chemical composition very close to that of biological apatite. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Perumal, R.; Hassan, Z.
2016-06-01
Zinc oxide receives remarkable attention due to its several attractive physical properties. Zinc oxide thin films doped with nitrogen were grown by employing RF magnetron sputtering method at room temperature. Doping was accomplished in gaseous medium by mixing high purity nitrogen gas along with argon sputtering gas. Structural studies confirmed the high crystalline nature with c-axis oriented growth of the nitrogen doped zinc oxide thin films. The tensile strain was developed due to the incorporation of the nitrogen into the ZnO crystal lattice. Surface roughness of the grown films was found to be decreased with increasing doping level was identified through atomic force microscope analysis. The presenting phonon modes of each film were confirmed through FTIR spectral analysis. The increasing doping level leads towards red-shifting of the cut-off wavelength due to decrement of the band gap was identified through UV-vis spectroscopy. All the doped films exhibited p-type conductivity was ascertained using Hall measurements and the obtained results were presented.
Faburay, Bonto; Wilson, William; McVey, D. Scott; Drolet, Barbara S.; Weingartl, Hana; Madden, Daniel; Young, Alan; Ma, Wenjun
2013-01-01
Abstract The Rift Valley fever virus (RVFV) encodes the structural proteins nucleoprotein (N), aminoterminal glycoprotein (Gn), carboxyterminal glycoprotein (Gc), and L protein, 78-kD, and the nonstructural proteins NSm and NSs. Using the baculovirus system, we expressed the full-length coding sequence of N, NSs, NSm, Gc, and the ectodomain of the coding sequence of the Gn glycoprotein derived from the virulent strain of RVFV ZH548. Western blot analysis using anti-His antibodies and monoclonal antibodies against Gn and N confirmed expression of the recombinant proteins, and in vitro biochemical analysis showed that the two glycoproteins, Gn and Gc, were expressed in glycosylated form. Immunoreactivity profiles of the recombinant proteins in western blot and in indirect enzyme-linked immunosorbent assay against a panel of antisera obtained from vaccinated or wild type (RVFV)-challenged sheep confirmed the results obtained with anti-His antibodies and demonstrated the suitability of the baculo-expressed antigens for diagnostic assays. In addition, these recombinant proteins could be valuable for the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA). PMID:23962238
Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.
2015-01-01
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution. PMID:26042819
Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P; Elvin, Christopher M; Hill, Anita J; Choudhury, Namita R; Dutta, Naba K
2015-06-04
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.
NASA Astrophysics Data System (ADS)
Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.
2015-06-01
Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.
Standardization of the Hare Psychopathy Checklist-Revised in a Spanish prison sample.
Moltó, J; Poy, R; Torrubia, R
2000-01-01
This investigation examined the reliability, validity, and factor structure of the Hare Psychopathy Checklist-Revised (PCL-R) in male adult Spanish prison populations (n = 117). The interrater reliability and internal consistency coefficients were high, and similar to those obtained in other countries. This data provides support for the homogeneity and unidimensionality of the psychopathy construct in Spanish male prison samples. The analysis of factor structure also replicated the two factor solution of previous studies. The two factors showed different patterns of intercorrelations with several self-report measures of personality, demographic, and criminal history variables, which confirmed the construct validity of PCL-R. The results confirm the psychometric properties of the PCL-R as a measure of psychopathy in Spanish male inmates, and suggest that psychopathy is a construct also observed in Southern European countries.
Psychometric properties of the Spanish version of the Collective Efficacy Questionnaire for Sports.
Román Martínez, Julio; Guillén, Félix; Feltz, Deborah
2011-08-01
The present study analyses the psychometric properties of the Spanish version of the Collective Efficacy Questionnaire in Sports (CEQS). The sample comprises 312 athletes (167 males and 145 females), with a mean age of 24.09 (SD= 6.67), with diverse performance levels (professional, semiprofessional and university level), all practitioners of team sports. The factor structure of the questionnaire was analyzed with confirmatory factor analysis (CFA). The results confirm the 5-factor internal structure of the CESQ (Effort, Ability, Unity, Perseverance and Preparation), made up of four items each. We also found acceptable values of the alpha coefficient, which confirms that the CESQ is a reliable instrument. Lastly, we found preliminary support for the validity of the construct of the CESQ, which is sufficient evidence to justify its use to measure the collective efficacy in Spanish athletes.
Ni doped Fe3O4 magnetic nanoparticles.
Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J
2012-03-01
In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.
Dutta, Achintya Kumar; Dar, Manzoor; Vaval, Nayana; Pal, Sourav
2014-02-27
We report a comparative single-reference and multireference coupled-cluster investigation on the structure, potential energy surface, and IR spectroscopic properties of the trans peroxo nitrate radical, one of the key intermediates in stratospheric NOX chemistry. The previous single-reference ab initio studies predicted an unbound structure for the trans peroxo nitrate radical. However, our Fock space multireference coupled-cluster calculation confirms a bound structure for the trans peroxo nitrate radical, in accordance with the experimental results reported earlier. Further, the analysis of the potential energy surface in FSMRCC method indicates a well-behaved minima, contrary to the shallow minima predicted by the single-reference coupled-cluster method. The harmonic force field analysis, of various possible isomers of peroxo nitrate also reveals that only the trans structure leads to the experimentally observed IR peak at 1840 cm(-1). The present study highlights the critical importance of nondynamic correlation in predicting the structure and properties of high-energy stratospheric NOx radicals.
Matching 4.7-Å XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix
Sanii, B.; Martinez-Avila, O.; Simpliciano, C.; Zuckermann, R.N.; Habelitz, S.
2014-01-01
The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. PMID:25048248
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Stępniowski, Wojciech J.; Sulka, Grzegorz D.; Ciepiela, Eryk; Jaskuła, Marian
2014-02-01
Anodic porous alumina layers were fabricated by a two-step self-organized anodization in 0.3 M oxalic acid under various anodizing potentials ranging from 30 to 60 V at two different temperatures (10 and 17 ∘C). The effect of anodizing conditions on structural features and pore arrangement of AAO was investigated in detail by using the dedicated executable publication combined with ImageJ software. With increasing anodizing potential, a linear increase of the average pore diameter, interpore distance, wall thickness and barrier layer thickness, as well as a decrease of the pore density, were observed. In addition, the higher pore diameter and porosity values were obtained for samples anodized at the elevated temperature, independently of the anodizing potential. A degree of pore order was investigated on the basis of Delaunay triangulations (defect maps) and calculation of pair distribution or angle distribution functions (PDF or ADF), respectively. All methods confirmed that in order to obtain nanoporous alumina with the best, hexagonal pore arrangement, the potential of 40 V should be applied during anodization. It was confirmed that the dedicated executable publication can be used to a fast and complex analysis of nanopore arrangement and structural features of nanoporous oxide layers.
Wood degradation under UV irradiation: A lignin characterization.
Cogulet, Antoine; Blanchet, Pierre; Landry, Véronic
2016-05-01
The photodegradation of white spruce by artificial ageing was studied by several techniques: colourimetry, FTIR-ATR and FT-Raman spectroscopy. Samples were exposed at a xenon lamp for 2000h. Two distinct colour changes were found by colourimetric analysis, yellowing and silvering. These colour modifications indicate the formation of chromophoric structures which supports previous FTIR-ATR experiments. The degradation of lignin to generate the first chromophoric group for yellowing and then the appearance of surface layer cellulose. New carbonyl compounds conjugated with double bond at 1615cm(-1) are probably the second chromophoric group. The crystallinity index was also calculated and showed an increase of cellulose crystallinity by prior degradation of amorphous cellulose. The FT-Raman analysis confirms the wood sensitivity to photodegradation but the most remarkable results is the increase of fluorescence as a function of time. In softwood lignin, the compound able to produce fluorescence is a free rotating 5-5' linkage of one biphenyl structure. At native state these linkages are not free rotating, this phenomenon means the release of 5-5' linkage of lignin structure by cleavage of both α carbon linkages (Norrish type I reaction). These data confirm also the photosensitivity of α and β carbon in lignin and the resistance of 5-5' linkages. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sangeetha, M.; Mathammal, R.
2017-09-01
We report on a cocrystal of 2-(benzyl amino) pyridine (BAP) with oxalic acid (OA) in the ratio 1:1. The cocrystal was synthesised and single crystals were grown under slow evaporation technique at room temperature. Single crystal X-ray diffraction (SCXRD) analysis determined the structure of the cocrystal formed and it belongs to orthorhombic system with Cc space group. It was also subjected to X-ray Powder diffraction (XRPD) to confirm the cocrystal structure. Hirshfeld surfaces and fingerprints were plotted to analyze the intermolecular interactions. Spectroscopic techniques such as FTIR, FT-Raman and NMR were carried out to identify the functional groups present in the cocrystal. The bioactivity of the cocrystal was revealed from the UV-Vis analysis. Computational Density Functional Theory (DFT) was adopted at the B3LYP/6-31+G** level to calculate the optimized geometrical parameters and the vibrational frequencies of the cocrystal. The non-linear optical property of the cocrystal was revealed from the SHG test. The different types of interactions and delocalization of charge were analysed from Natural Bond Orbital (NBO) calculations. The HOMO-LUMO energies and MEP surface maps confirmed the pharmaceutical importance of the (1:1) BAPOA cocrystal. The cocrystal has been explored for the invitro antioxidant activity and insilico molecular docking studies.
Structural, morphological and optical properties of pulsed laser deposited ZnSe/ZnSeO3 thin films
NASA Astrophysics Data System (ADS)
Hassan, Syed Ali; Bashir, Shazia; Zehra, Khushboo; Salman Ahmed, Qazi
2018-04-01
The effect of varying laser pulses on structural, morphological and optical behavior of Pulsed Laser Deposited (PLD) ZnSe/ZnSeO3 thin films has been investigated. The films were grown by employing Excimer laser (100 mJ, 248 nm, 18 ns, 30 Hz) at various number of laser pulses i.e. 3000, 4000, 5000 and 6000 with elevated substrate temperature of 300 °C. One film was grown at Room Temperature (RT) by employing 3000 number of laser pulses. In order to investigate the structural analysis of deposited films, XRD analysis was performed. It was observed that the room temperature is not favorable for the growth of crystalline film. However, elevated substrate temperature to 300°C, two phases with preferred orientation of ZnSeO3 (2 1 2) and ZnSe (3 3 1) were identified. AFM and SEM analysis were performed to explore the surface morphology of grown films. Morphological analysis also confirmed the non-uniform film growth at room temperature. At elevated substrate temperature (300 °C), the growth of dendritic rods and cubical crystalline structures are observed for lower number of laser pulses i.e. 3000 and 4000 respectively. With increased number of pulses i.e. 5000 and 6000, the films surface morphology becomes smooth which is confirmed by measurement of surface RMS roughness. Number of grains, skewness, kurtosis and other parameters have been evaluated by statistical analysis. In order to investigate the thickness, and optical properties of deposited films, ellipsometery and UV–Vis spectroscopy techniques were employed. The estimated band gap energy is 2.67 eV for the film grown at RT, whereas band gap values varies from 2.80 eV to 3.01 eV for the films grown at 300 °C with increasing number of laser pulses.
The Attitudes to Ageing Questionnaire: Mokken Scaling Analysis
Shenkin, Susan D.; Watson, Roger; Laidlaw, Ken; Starr, John M.; Deary, Ian J.
2014-01-01
Background Hierarchical scales are useful in understanding the structure of underlying latent traits in many questionnaires. The Attitudes to Ageing Questionnaire (AAQ) explored the attitudes to ageing of older people themselves, and originally described three distinct subscales: (1) Psychosocial Loss (2) Physical Change and (3) Psychological Growth. This study aimed to use Mokken analysis, a method of Item Response Theory, to test for hierarchies within the AAQ and to explore how these relate to underlying latent traits. Methods Participants in a longitudinal cohort study, the Lothian Birth Cohort 1936, completed a cross-sectional postal survey. Data from 802 participants were analysed using Mokken Scaling analysis. These results were compared with factor analysis using exploratory structural equation modelling. Results Participants were 51.6% male, mean age 74.0 years (SD 0.28). Three scales were identified from 18 of the 24 items: two weak Mokken scales and one moderate Mokken scale. (1) ‘Vitality’ contained a combination of items from all three previously determined factors of the AAQ, with a hierarchy from physical to psychosocial; (2) ‘Legacy’ contained items exclusively from the Psychological Growth scale, with a hierarchy from individual contributions to passing things on; (3) ‘Exclusion’ contained items from the Psychosocial Loss scale, with a hierarchy from general to specific instances. All of the scales were reliable and statistically significant with ‘Legacy’ showing invariant item ordering. The scales correlate as expected with personality, anxiety and depression. Exploratory SEM mostly confirmed the original factor structure. Conclusions The concurrent use of factor analysis and Mokken scaling provides additional information about the AAQ. The previously-described factor structure is mostly confirmed. Mokken scaling identifies a new factor relating to vitality, and a hierarchy of responses within three separate scales, referring to vitality, legacy and exclusion. This shows what older people themselves consider important regarding their own ageing. PMID:24892302
Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; ...
2014-12-02
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signaturemore » and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belianinov, Alex, E-mail: belianinova@ornl.gov; Ganesh, Panchapakesan; Lin, Wenzhi
2014-12-01
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe{sub 0.55}Se{sub 0.45} (T{sub c} = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe{sub 1−x}Se{sub x} structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified bymore » their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less
NASA Astrophysics Data System (ADS)
Mehmood, Faisal; Iqbal, Javed; Gul, Asma; Ahmed, Waqqar; Ismail, M.
2017-04-01
Simple chemical co-precipitation method has been employed to synthesize two dimensional copper (Cu) doped tungsten oxide (WO3) nanoplates. A numbers of characterization techniques have been used to investigate their structural, optical and biocompatible anti cancer properties. The XRD results have confirmed the monoclinic crystal structure of WO3 nanoplates, and also successful doping of Cu ions into the WO3 crystal lattice. The presence of functional groups and chemical bonding have been verified through FTIR and Raman spectroscopy. The SEM images demonstrate that both undoped and Cu doped WO3 samples have squares plate like morphology. The EDX spectra confirm the presence of Cu, W and O ions. Diffuse reflectance spectroscopy (DRS) analysis has revealed a substantial red-shift in the absorption edge and a decrease in the band gap energy of nanoplates with Cu doping. Photoluminescence spectroscopy has been used to study the presence of defects like oxygen vacancies. Furthermore, the differential cytotoxic properties of Cu doped WO3 samples have been evaluated against human breast (MCF-7) and liver (Hep-2) cancer cells with ectocervical epithelial (HECE) healthy cells. The present findings confirm that the Cu doped WO3 nanoplates can be used as an efficient biocompatible anti cancer agent.
Experimental confirmation of long-memory correlations in star-wander data.
Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Ziad, Aziz
2014-07-01
In this Letter we have analyzed the temporal correlations of the angle-of-arrival fluctuations of stellar images. Experimentally measured data were carefully examined by implementing multifractal detrended fluctuation analysis. This algorithm is able to discriminate the presence of fractal and multifractal structures in recorded time sequences. We have confirmed that turbulence-degraded stellar wavefronts are compatible with a long-memory correlated monofractal process. This experimental result is quite significant for the accurate comprehension and modeling of the atmospheric turbulence effects on the stellar images. It can also be of great utility within the adaptive optics field.
Solid state structure and absolute configuration of filifolinol acetate.
Muñoz, Marcelo A; Urzúa, Alejandro; Echeverría, Javier; Modak, Brenda; Joseph-Nathan, Pedro
2011-06-01
Careful reevaluation of the 1H and 13C NMR spectroscopic data of filifolinol acetate (4) led to the reassignment of the C-10 and C-11 signals, as well as the gem-dimethyl signals. Single crystal X-ray analysis provided an independent structural confirmation of 4, and comparison of the experimental vibrational circular dichroism spectrum with calculations performed using density functional theory provided the absolute configuration of this 3H-spiro-1-benzofuran-2,1'-cyclohexane and related molecules.
NASA Astrophysics Data System (ADS)
He, Chenye; Bu, Xiuming; Yang, Siwei; He, Peng; Ding, Guqiao; Xie, Xiaoming
2018-04-01
Direct growth of high quality graphene on the surface of SrTiO3 (STO) was realized through chemical vapor deposition (CVD), to construct few-layer 'graphene shell' on every STO nanoparticle. The STO/graphene composite shows significantly enhanced UV light photocatalytic activity compared with the STO/rGO reference. Mechanism analysis confirms the role of special core-shell structure and chemical bond (Tisbnd C) for rapid interfacial electron transfer and effective electron-hole separation.
One-pot and two-step synthesis of novel carbonylthioureas and dicarbonyldithioureas derivatives
NASA Astrophysics Data System (ADS)
Banaei, Alireza; Shiran, Jafar Abbasi; Saadat, Afshin; Ardabili, Farnaz Fazlalizadeh; McArdle, Patrick
2015-11-01
One-pot, two-step synthesis of several 1-cyclopropanecarbonyl-3-(substituted phenyl)-thioureas and 1-(phenylene-1,4-dione)-3,3‧-(substituted phenyl)-dithioureas have been successfully prepared. The structures of the synthesized compounds were confirmed by elemental analysis, FT-IR spectroscopy and NMR. Also the crystal structure one of these compounds was determined by X-ray crystallography. All synthesized compounds were evaluated for antibacterial activity using Salmonella enterica (SE), Micrococcus luteus (ML), Bacillus subtilis (BS) and Pseudomonas aeruginosa (PS).
Silambarasan, A; Rajesh, P; Ramasamy, P
2014-01-24
The organic single crystals of 4-nitroaniline 4-aminobenzoic acid (4NAABA) were grown from ethanol solvent. The lattice parameters of the grown crystal have been confirmed from single crystal XRD analysis. The powder XRD pattern shows the various planes of grown crystal. The FTIR and (1)H NMR spectral analysis confirm the presence of various functional groups and the placement of proton in 4NAABA compound respectively. The UV absorption was carried out which shows the cutoff wavelength around 459 nm. The optical band gap of the crystal has been evaluated from the transmission spectra and absorption coefficient by extrapolation technique. In addition, a fluorescence spectral analysis is carried out for 4NAABA crystals. The thermal properties of crystals were evaluated from thermogravimetrical analysis. It shows that the grown crystal is stable up to 160°C and the crystal has sharp melting point at 151°C. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Priya, M. Siva; Benitta, T. Asenath; James, C.
2011-03-01
Colorless crystals of 5-(2,5-dimethylphenoxy)-2,2-dimethyl pentanoic acid were grown by slow evaporation method and the FT-IR and FT-Raman spectra of the sample were recorded in the region 4000-450 cm -1 and 4000-50 cm -1 respectively. Molecular structure is optimized with the help of B3LYP/6-31G (d) density functional theory method. Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the σ ∗ antibonding orbitals and E (2) energies confirms the occurrence of intra-molecular charge transfer (ICT) within the molecule. The assignments of the vibrational spectra have been carried out with the help of Normal coordinate analysis following the scaled quantum mechanical force field (SQMFF) methodology. Mulliken population analysis on atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule.
Polymorphism in magic-sized Au144(SR)60 clusters
NASA Astrophysics Data System (ADS)
Jensen, Kirsten M. Ø.; Juhas, Pavol; Tofanelli, Marcus A.; Heinecke, Christine L.; Vaughan, Gavin; Ackerson, Christopher J.; Billinge, Simon J. L.
2016-06-01
Ultra-small, magic-sized metal nanoclusters represent an important new class of materials with properties between molecules and particles. However, their small size challenges the conventional methods for structure characterization. Here we present the structure of ultra-stable Au144(SR)60 magic-sized nanoclusters obtained from atomic pair distribution function analysis of X-ray powder diffraction data. The study reveals structural polymorphism in these archetypal nanoclusters. In addition to confirming the theoretically predicted icosahedral-cored cluster, we also find samples with a truncated decahedral core structure, with some samples exhibiting a coexistence of both cluster structures. Although the clusters are monodisperse in size, structural diversity is apparent. The discovery of polymorphism may open up a new dimension in nanoscale engineering.
Structural and optical properties of Sb65Se35-xGex thin films
NASA Astrophysics Data System (ADS)
Saleh, S. A.; Al-Hajry, A.; Ali, H. M.
2011-07-01
Sb65Se35-xGex (x=0-20 at.%) thin films, prepared by the electron beam evaporation technique on ultrasonically cleaned glass substrates at 300 K, were investigated. The amorphous structure of the thin films was confirmed by x-ray diffraction analysis. The structure was deduced from the Raman spectra measured for all germanium contents in the Sb-Se-Ge matrix. The absorption coefficient (α) of the films was determined by optical transmission measurements. The compositional dependence of the optical band gap is discussed in light of topological and chemical ordered network models.
Schmaderer, Harald; Bhuyan, Mouchumi
2009-01-01
Summary Flavin chromophores can mediate redox reactions upon irradiation by blue light. In an attempt to increase their catalytic efficacy, flavin derivatives bearing a guanidinium ion as oxoanion binding site were prepared. Chromophore and substrate binding site are linked by a rigid Kemp’s acid structure. The molecular structure of the new flavins was confirmed by an X-ray structure analysis and their photocatalytic activity was investigated in benzyl ester cleavage, nitroarene reduction and a Diels–Alder reaction. The modified flavins photocatalyze the reactions, but the introduced substrate binding site does not enhance their performance. PMID:19590745
Schmaderer, Harald; Bhuyan, Mouchumi; König, Burkhard
2009-05-28
Flavin chromophores can mediate redox reactions upon irradiation by blue light. In an attempt to increase their catalytic efficacy, flavin derivatives bearing a guanidinium ion as oxoanion binding site were prepared. Chromophore and substrate binding site are linked by a rigid Kemp's acid structure. The molecular structure of the new flavins was confirmed by an X-ray structure analysis and their photocatalytic activity was investigated in benzyl ester cleavage, nitroarene reduction and a Diels-Alder reaction. The modified flavins photocatalyze the reactions, but the introduced substrate binding site does not enhance their performance.
NASA Astrophysics Data System (ADS)
Choudhary, Pankaj; Varshney, Dinesh
2018-05-01
Co2+ doped Mg-Zn spinel chromite compositions Mg0.5Zn0.5-xCoxCr2O4 (0.0 ≤ x ≤ 0.5) have been synthesized by the high-temperature solid state method. Synchrotron and X-ray diffraction (XRD) studies show single-phase crystalline nature. The structural analysis is validated by Rietveld refinement confirms the cubic structure with space group Fd3m. Crystallite size is estimated from Synchrotron XRD which was found to be 30-34 nm. Energy dispersive analysis confirms stoichiometric Mg0.5Zn0.5-xCoxCr2O4 composition. Average crystallite size distribution is estimated from imaging software (Image - J) of SEM is in the range of 100-250 nm. Raman spectroscopy reveals four active phonon modes, and a pronounced red shift is due to enhanced Co2+ concentration. Increased Co2+ concentration in Mg-Zn chromites shows a prominent narrowing of band gap from 3.46 to 2.97 eV. The dielectric response is attributed to the interfacial polarization, and the electrical modulus study supports non-Debye type of dielectric relaxation. Ohmic junctions (minimum potential drop) at electrode interface are active at lower levels of doping (x < 0.2) give rise to a low-frequency semicircle as evidenced from the complex impedance analysis. The low dielectric loss and high ac conductivity of Co2+ doped Mg-Zn spinel chromites are suitable for power transformer applications at high frequencies.
Percolation analysis of nonlinear structures in scale-free two-dimensional simulations
NASA Technical Reports Server (NTRS)
Dominik, Kurt G.; Shandarin, Sergei F.
1992-01-01
Results are presented of applying percolation analysis to several two-dimensional N-body models which simulate the formation of large-scale structure. Three parameters are estimated: total area (a(c)), total mass (M(C)), and percolation density (rho(c)) of the percolating structure at the percolation threshold for both unsmoothed and smoothed (with different scales L(s)) nonlinear with filamentary structures, confirming early speculations that this type of model has several features of filamentary-type distributions. Also, it is shown that, by properly applying smoothing techniques, many problems previously considered detrimental can be dealt with and overcome. Possible difficulties and prospects with the use of this method are discussed, specifically relating to techniques and methods already applied to CfA deep sky surveys. The success of this test in two dimensions and the potential for extrapolation to three dimensions is also discussed.
Karpuraranjith, M; Thambidurai, S
2017-11-01
A new biopolymer based ZnO-PVP nanocomposite was successfully synthesized by single step in situ precipitation method using chitosan as biosurfactant, zinc chloride as a source material, PVP as stabilizing agent and sodium hydroxide as precipitating agent. The chemical bonding and crystalline behaviors of chitosan, zinc oxide and PVP were confirmed by FT-IR and XRD analysis. The biopolymer connected ZnO particles intercalated PVP matrix was layer and rod like structure appeared in nanometer range confirmed by HR-SEM and TEM analysis. The surface topography image of CS/ZnO-PVP nanocomposite was obtained in the average thickness of 12nm was confirmed by AFM analysis. Thermal stability of cationic biopolymer based ZnO intercalated PVP has higher stability than CS-PVP and chitosan. Consequently, antimicrobial activity of chitosan/ZnO-PVP matrix acts as a better microbial inhibition activity than PVP-ZnO nanocomposite. The obtained above results demonstrate that CS and ZnO intercalated PVP matrix has better reinforced effect than other components. Therefore, Chitosan/ZnO-PVP nanocomposite may be a promising material for the biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Waris, Sana; Habib, Safia; Tantry, Irfan Qadir; Khan, Rizwan Hasan; Mahmood, Riaz; Ali, Asif
2018-07-01
Acetaldehyde is a reactive aldehyde produced as an intermediate of alcohol metabolism and tobacco pyrolysis. It has the potential to interact with different biomolecules in various tissues which results in the formation of stable, unstable and covalent adducts. This causes structural and functional modifications that may lead to severe complications such as cancer. This study has probed the structural modifications in human immunoglobulin G (IgG) as a function of different concentrations of acetaldehyde in the presence of reducing agent, sodium borohydride. Acetaldehyde mediated modifications in IgG have been characterised by various physicochemical techniques. UV-spectrophotometry showed that acetaldehyde modified IgG exhibited marked increase in hyperchromicity. Fluorescence studies revealed a significant quenching of tryptophan fluorescence which resulted in loss of β-sheet secondary structure that was confirmed by circular dichroic analysis. Gross structural changes in the morphology of IgG were confirmed by increase in mass and hydrodynamic radius of this glycoprotein along with the appearance of fibrillar structures in modified IgG, when compared to the granular structure of the native form of IgG observed by scanning electron microscope. The results indicate that acetaldehyde causes alterations in the secondary and tertiary structure of the protein leading to diminution of normal function of IgG molecule. Copyright © 2018 Elsevier B.V. All rights reserved.
A confirmative clinimetric analysis of the 36-item Family Assessment Device.
Timmerby, Nina; Cosci, Fiammetta; Watson, Maggie; Csillag, Claudio; Schmitt, Florence; Steck, Barbara; Bech, Per; Thastum, Mikael
2018-02-07
The Family Assessment Device (FAD) is a 60-item questionnaire widely used to evaluate self-reported family functioning. However, the factor structure as well as the number of items has been questioned. A shorter and more user-friendly version of the original FAD-scale, the 36-item FAD, has therefore previously been proposed, based on findings in a nonclinical population of adults. We aimed in this study to evaluate the brief 36-item version of the FAD in a clinical population. Data from a European multinational study, examining factors associated with levels of family functioning in adult cancer patients' families, were used. Both healthy and ill parents completed the 60-item version FAD. The psychometric analyses conducted were Principal Component Analysis and Mokken-analysis. A total of 564 participants were included. Based on the psychometric analysis we confirmed that the 36-item version of the FAD has robust psychometric properties and can be used in clinical populations. The present analysis confirmed that the 36-item version of the FAD (18 items assessing 'well-being' and 18 items assessing 'dysfunctional' family function) is a brief scale where the summed total score is a valid measure of the dimensions of family functioning. This shorter version of the FAD is, in accordance with the concept of 'measurement-based care', an easy to use scale that could be considered when the aim is to evaluate self-reported family functioning.
NASA Astrophysics Data System (ADS)
Hashim, Mohd.; Raghasudha, M.; Meena, Sher Singh; Shah, Jyoti; Shirsath, Sagar E.; Kumar, Shalendra; Ravinder, D.; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.
2018-03-01
Ce and Dy substituted Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) were synthesized through the chemical route, citrate-gel auto-combustion method. The structural characterization was carried out with the help of XRD Rieveld analysis, SEM and EDAX analysis. Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. SEM and EDAX results show that the particles are homogeneous with slight agglomeration without any impurity pickup. The effect of RE ion doping (Ce and Dy) on the dielectric, magnetic and impedance studies was systematically investigated by LCR meter, Vibrating Sample Magnetometer and Impedance analyzer respectively at room temperature in the frequency range of 10 Hz-10 MHz. Various dielectric parameters viz., dielectric constant, dielectric loss and ac conductivity were measured. The dielectric constant of all the ferrite compositions shows normal dielectric dispersion of ferrites with frequency. Impedance analysis confirms that the conduction in present ferrites is majorly due to the grain boundary mechanism. Ferrite sample with x = 0.03 show high dielectric constant, low dielectric loss and hence can be utilized in high frequency electromagnetic devices. Magnetization measurements indicate that with increase in Ce and Dy content in cobalt ferrites, the magnetization values decreased and coercivity has increased.
Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs.
Laucou, Valérie; Launay, Amandine; Bacilieri, Roberto; Lacombe, Thierry; Adam-Blondon, Anne-Françoise; Bérard, Aurélie; Chauveau, Aurélie; de Andrés, Maria Teresa; Hausmann, Ludger; Ibáñez, Javier; Le Paslier, Marie-Christine; Maghradze, David; Martinez-Zapater, José Miguel; Maul, Erika; Ponnaiah, Maharajah; Töpfer, Reinhard; Péros, Jean-Pierre; Boursiquot, Jean-Michel
2018-01-01
Grapevine is a very important crop species that is mainly cultivated worldwide for fruits, wine and juice. Identification of the genetic bases of performance traits through association mapping studies requires a precise knowledge of the available diversity and how this diversity is structured and varies across the whole genome. An 18k SNP genotyping array was evaluated on a panel of Vitis vinifera cultivars and we obtained a data set with no missing values for a total of 10207 SNPs and 783 different genotypes. The average inter-SNP spacing was ~47 kbp, the mean minor allele frequency (MAF) was 0.23 and the genetic diversity in the sample was high (He = 0.32). Fourteen SNPs, chosen from those with the highest MAF values, were sufficient to identify each genotype in the sample. Parentage analysis revealed 118 full parentages and 490 parent-offspring duos, thus confirming the close pedigree relationships within the cultivated grapevine. Structure analyses also confirmed the main divisions due to an eastern-western gradient and human usage (table vs. wine). Using a multivariate approach, we refined the structure and identified a total of eight clusters. Both the genetic diversity (He, 0.26-0.32) and linkage disequilibrium (LD, 28.8-58.2 kbp) varied between clusters. Despite the short span LD, we also identified some non-recombining haplotype blocks that may complicate association mapping. Finally, we performed a genome-wide association study that confirmed previous works and also identified new regions for important performance traits such as acidity. Taken together, all the results contribute to a better knowledge of the genetics of the cultivated grapevine.
Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs
Launay, Amandine; Bacilieri, Roberto; Lacombe, Thierry; Adam-Blondon, Anne-Françoise; Bérard, Aurélie; Chauveau, Aurélie; de Andrés, Maria Teresa; Maghradze, David; Maul, Erika; Ponnaiah, Maharajah; Töpfer, Reinhard; Péros, Jean-Pierre; Boursiquot, Jean-Michel
2018-01-01
Grapevine is a very important crop species that is mainly cultivated worldwide for fruits, wine and juice. Identification of the genetic bases of performance traits through association mapping studies requires a precise knowledge of the available diversity and how this diversity is structured and varies across the whole genome. An 18k SNP genotyping array was evaluated on a panel of Vitis vinifera cultivars and we obtained a data set with no missing values for a total of 10207 SNPs and 783 different genotypes. The average inter-SNP spacing was ~47 kbp, the mean minor allele frequency (MAF) was 0.23 and the genetic diversity in the sample was high (He = 0.32). Fourteen SNPs, chosen from those with the highest MAF values, were sufficient to identify each genotype in the sample. Parentage analysis revealed 118 full parentages and 490 parent-offspring duos, thus confirming the close pedigree relationships within the cultivated grapevine. Structure analyses also confirmed the main divisions due to an eastern-western gradient and human usage (table vs. wine). Using a multivariate approach, we refined the structure and identified a total of eight clusters. Both the genetic diversity (He, 0.26–0.32) and linkage disequilibrium (LD, 28.8–58.2 kbp) varied between clusters. Despite the short span LD, we also identified some non-recombining haplotype blocks that may complicate association mapping. Finally, we performed a genome-wide association study that confirmed previous works and also identified new regions for important performance traits such as acidity. Taken together, all the results contribute to a better knowledge of the genetics of the cultivated grapevine. PMID:29420602
NASA Astrophysics Data System (ADS)
Theyvaraju, D.; Muthukumaran, S.
2015-11-01
Zn0.96-xNi0.04CuxO nanoparticles have been synthesized by varying different Cu concentrations between 0% and 4% using simple sol-gel method. X-ray diffraction studies confirmed the hexagonal structure of the prepared samples. The formation of secondary phases, CuO (111) and Zn (101) at higher Cu content is due un-reacted Cu2+ and Zn2+ ions present in the solution which reduces the interaction between precursor ions and surfaces of ZnO. Well agglomerated and rod-like structure noticed at Cu=4% greatly de-generate and enhanced the particle size. The nominal elemental composition of Zn, Cu, Ni and O was confirmed by energy dispersive X-ray analysis. Even though energy gap was increased (blue-shift) from Cu=0-2% by quantum size effect, the s-d and p-d exchange interactions between the band electrons of ZnO and localized d electrons of Cu and Ni led to decrease (red-shift) the energy gap at Cu=4%. Presence of Zn-Ni-Cu-O bond was confirmed by Fourier transform infrared analysis. Ultraviolet emission by band to band electronic transition and defect related blue emission were discussed by photoluminescence spectra. The observed optical properties concluded that the doping of Cu in the present system is useful to tune the emission wavelength and hence acting as the important candidates for the optoelectronic device applications. Ferromagnetic ordering of Cu=2% sample was enhanced by charge carrier concentration where as the antiferromagnetic interaction between neighboring Cu-Cu ions suppressed the ferromagnetism at higher doping concentrations of Cu.
NASA Astrophysics Data System (ADS)
El Hamdani, H.; El Amane, M.; Duhayon, C.
2018-03-01
Co-crystal of 1,10-phenanthrolin-1-ium-caffeine-hexafluorophosphate was synthesized, studied by FTIR, 1H, 13C NMR, DSC and X-ray structure and crystallized in the monoclinic space group C2/c. The unit cell parameters are a = 19.3761 (3), b = 17.9548 (3), c = 13.8074 (3) with β = 117.8132 (10). The final R value is 0.069 for 29,522 measured reflections. The co-crystal structure analysis indicate the 1,10-phenanthroline is protonated by one nitrogen atom and formed the 1,10-phenanthrolin-1-ium cation, which is stabilized by hydrogen bonds N+-H…Odbnd C interaction with carbonyl and imidazol ring in caffeine molecule. The intermolecular hydrogen bonds: Csbnd H...O, Csbnd H...N, Nsbnd H...O, Csbnd H...F and intramolecular hydrogen bond: C1sbnd H12...O14, together play a vital role in stabilizing the structure of co-crystal. The X-ray structural analysis confirm the assignments of the structure from infrared, 1H, 13C NMR, spectroscopic data DSC and molar conductivity analysis. The antimicrobial activity of the co-crystal was studied.
NASA Astrophysics Data System (ADS)
Uday Bhasker, S.; Choudary, G. S. V. R. K.; Reddy, M. V. Ramana
2018-05-01
The ever growing applications and ever evolving challenges of magnetic nano particles has been motivating the researchers from various disciplines towards this area of magnetic nano particles. Cation substitutional effect on the magnetic structure of the nanoparticles forms a crucial aspect in their applications. Here the environmentally benign auto combustion method was employed to synthesize chromium substituted nickel cobalt ferrite (Ni0.75Co0.25Fe2-xCrxO4; x = 0, 0.10, 0.15) nano particles, from aqueous metal nitrate solutions. Chromium substitution has shown its effect on the structural, magnetic and electrical properties of Ni0.75Co0.25Fe2O4. Structural and phase analysis of the prepared samples show increased phase purity of ferrite sample with increasing Cr substitution. The TEM (Transmission Electron Microscope) image confirms the nano size of the particles, EDS (Energy dispersive X-ray Spectroscopy) has supported the stoichiometry of the prepared samples and FTIR (Fourier-transform infrared spectroscopic) analysis confirms the spinel structure and also suggests cation redistributions with chromium substitution. VSM (Vibrational Sample Magnetometer) is used to study the magnetic properties through magnetic hysteresis (M-H) loop and magnetic Hopkinson effect. All samples show hysteresis and show reduction in magnetic properties with increase in chromium content. The thermo magnetic study shows Hopkinson peak(s) in the magnetization vs. temperature (M-T) graph and also shows variation in the nature of Hopkinson peak with chromium substitution. Possible reasons for the changes in the nature of the peak are discussed.
Rekha, P; Peramaiyan, G; NizamMohideen, M; Kumar, R Mohan; Kanagadurai, R
2015-03-15
A novel organic single crystal of Piperazinium (bis) p-toluenesulfonate (PPTS) was grown by a slow evaporation solution growth technique. The structure of the grown crystal was determined using single crystal X-ray diffraction analysis. The PPTS crystal belongs to the triclinic crystal system with space group of P1¯. The presence of functional groups was confirmed by FTIR spectral analysis. The optical transmittance range and cut-off wavelength were identified by UV-vis-NIR spectral studies. The luminescent properties of PPTS crystal were investigated. The thermal behavior of PPTS crystal was studied by TG-DT analyses. Copyright © 2014 Elsevier B.V. All rights reserved.
Structural and magnetic properties of Co{sub 2}Ti{sub 1−x}Fe{sub x}Al (0 ≤ x ≤ 0.5) alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Lakhan, E-mail: lakhanbainsla@gmail.com; Gupta, Sachin, E-mail: lakhanbainsla@gmail.com; Suresh, K. G., E-mail: lakhanbainsla@gmail.com
2014-04-24
In this work we studied the effect of partial Fe substitution for Ti on the structural and magnetic properties of the Co{sub 2}TiAl. X-ray diffraction analysis indicates the presence of B2 type disorder for x > 0, (111) reflections are absent for x > 0 which is the characteristic of B2 type disorder. XRD analysis also shows presence of second phase. Magnetization measurements also confirm the presence of dual phase. Curie temperature of the alloys increases with increase in Fe concentration. Saturation magnetic moments agree very well with those calculated by Slater-Pauling rule.
Nano sized La2Co2O6 double perovskite synthesized by sol gel method
NASA Astrophysics Data System (ADS)
Solanki, Neha; Lodhi, Pavitra Devi; Choudhary, K. K.; Kaurav, Netram
2018-05-01
We report here the synthesis of double perovskite La2Co2O6 (LCO) compound by a sol gel route method. The double perovskite structure of LCO system was confirmed via X-ray diffraction (XRD) analysis. Further, the lattice parameter, unit cell volume and bond length were refined by means of rietveld analysis using the full proof software. Debye Scherer formula was used to determine the particle size. The compound crystallized in triclinic structure with space group P-1 in ambient condition. We also obtained Raman modes from XRD spectra of poly-crystalline LCO sample. These results were interpreted for the observation of phonon excitations in this compound.
NASA Astrophysics Data System (ADS)
Shalini, D.; Kalainathan, S.; Ambika, V. Revathi; Hema, N.; Jayalakshmi, D.
2017-11-01
Semi-organic nonlinear optical crystal Calcium5-Sulfosalicylate (CA5SS) was grown by slow evaporation solution growth technique. The cell parameters and molecular structure of the grown crystal were studied by single crystal x-ray diffraction analysis. The presence of various functional groups of the grown crystal was confirmed using Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) analysis. UV-Visible spectrum shows that CA5SS crystals have high transmittance in the range of 330-900 nm. The refractive index, birefringence and transient photoluminescence properties of the grown crystal were analyzed. The frequency doubling of the grown crystal (CA5SS) were studied and compared with that of KDP.
Zitser, Jennifer; Peretz, Chava; Ber David, Aya; Shabtai, Herzl; Ezra, Adi; Kestenbaum, Meir; Brozgol, Marina; Rosenberg, Alina; Herman, Talia; Balash, Yakov; Gadoth, Avi; Thaler, Avner; Stebbins, Glenn T; Goetz, Christopher G; Tilley, Barbara C; Luo, Sheng T; Liu, Yuanyuan; Giladi, Nir; Gurevich, Tanya
2017-12-01
The Movement Disorders Society (MDS) published the English new Unified Parkinson's Disease Rating Scale (MDS-UPDRS) as the official benchmark scale for Parkinson's disease (PD) in 2008. We aimed to validate the Hebrew version of the MDS-UPDRS, explore its dimensionality and compare it to the original English one. The MDS-UPDRS questionnaire was translated to Hebrew and was tested on 389 patients with PD, treated at the Movement Disorders Unit at Tel-Aviv Medical Center. The MDS-UPDRS is made up of four sections. The higher the score, the worst the clinical situation of the patient is. Confirmatory and explanatory factor analysis were applied to determine if the factor structure of the English version could be confirmed in the Hebrew version. The Hebrew version of the MDS-UPDRS showed satisfactory clinimetric properties. The internal consistency of the Hebrew-version was satisfactory, with Cronbach's alpha values 0.79, 0.90, 0.93, 0.80, for parts 1 to 4 respectively. In the confirmatory factor analysis, all four parts had high (greater than 0.90) comparative fit index (CFI) in comparison to the original English MDS-UPDRS with high factor structure (0.96, 0.99, 0.94, 1.00, respectively), thus confirming the pre-specified English factor structure. Explanatory factor analysis yielded that the Hebrew responses differed from the English one within an acceptable range: in isolated item differences in factor structure and in the findings of few items having cross loading on multiple factors. The Hebrew version of the MDS-UPDRS meets the requirements to be designated as the Official Hebrew Version of the MDS-UPDRS. Copyright © 2017 Elsevier Ltd. All rights reserved.
P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing
Jekat, Stephan B.; Ernst, Antonia M.; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M.; Noll, Gundula A.; Prüfer, Dirk
2013-01-01
Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing. PMID:23840197
NASA Astrophysics Data System (ADS)
Panopoulou, A.; Fransen, S.; Gomez Molinero, V.; Kostopoulos, V.
2012-07-01
The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces the same result as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub- reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation of both structures was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able via the FBG responses to identify a potential failure.
Reasons for Living and Their Moderating Effects on Korean Adolescents' Suicidal Ideation
ERIC Educational Resources Information Center
Lee, Seung-yeon
2011-01-01
The present study validated the use of the Korean version of the Reasons for Living Inventory for Adolescents (KRFL-A) in a group of 406 South Korean high school students. Confirmatory factor analysis confirmed the original 5-factor structure, and other psychometric properties demonstrated the usefulness of the KRFL-A as a measure of cognitive…
The Effects of Education Quality on Income Growth and Mortality Decline
ERIC Educational Resources Information Center
Jamison, Eliot A.; Jamison, Dean T.; Hanushek, Eric A.
2007-01-01
Previous work shows that higher levels of education quality (as measured by international student achievement tests) increase growth rates of national income. This paper begins by confirming those findings in an analysis involving more countries over more time with additional controls. We then use the panel structure of our data to assess whether…
ERIC Educational Resources Information Center
Mahmoud, Ali Bassam; Khalifa, Bayan
2015-01-01
Purpose: The purpose of this paper is to confirm the factorial structure of SERVPERF based on an exploration of its dimensionality among Syrian universities' students. It also aimed at assessing the perceived service quality offered at these universities. Design/methodology/approach: A cross-sectional survey was conducted targeting students at…
Efficacy of pinosylvins against white-rot and brown-rot fungi
Catherine C. Celimene; Jessie A. Micales; Leslie Ferge; Raymond A. Young
1999-01-01
Three stilbenes, pinosylvin (PS), pinosylvin monomethyl ether (PSM) and pinosylvin dimethyl ether (PSD), were extracted from white spruce (Picea glauca), jack pine (Pinus banksiana), and red pine (Pinus resinosa) pine cones, and their structures were confirmed by spectroscopic and chromatographic (HPLC, GC/MS, NMR and FTIR) analysis. PS, PSM, PSD or a 1:1:1 mixture of...
2014-01-01
attention deficit - hyperactivity disorder ( ADHD ) in their offspring. The...17 ACRONYMS AND ABBREVIATIONS ADHD attention deficit - hyperactivity disorder ADMA asymmetric dimethylarginine APG Aberdeen Proving...Wright, R.O.; Weisskopf, M.G. Attention - Deficit / Hyperactivity Disorder and Urinary Metabololites or Organophosphate Pesticides. Pediatrics
Validation of the Chinese Expanded Euthanasia Attitude Scale
ERIC Educational Resources Information Center
Chong, Alice Ming-Lin; Fok, Shiu-Yeu
2013-01-01
This article reports the validation of the Chinese version of an expanded 31-item Euthanasia Attitude Scale. A 4-stage validation process included a pilot survey of 119 college students and a randomized household survey with 618 adults in Hong Kong. Confirmatory factor analysis confirmed a 4-factor structure of the scale, which can therefore be…
Structural elucidation and molecular characterization of Marinobacter sp. α-amylase.
Kumar, Sumit; Khan, Rizwan Hasan; Khare, S K
2016-01-01
Halophiles have been perceived as potential source of novel enzymes in recent years. The interest emanates from their ability to catalyze efficiently under high salt and organic solvents. Marinobacter sp. EMB8 α-amylase was found to be active and stable in salt and organic solvents. A study was carried out using circular dichroism (CD), fluorescence spectroscopy, and bioinformatics analysis of similar protein sequence to ascertain molecular basis of salt and solvent adaptability of α-amylase. Structural changes recorded in the presence of varying amounts of NaCl exhibited an increase in negative ellipticity as a function of salt, confirming that salt stabilizes the protein and increases the secondary structure, making it catalytically functional. The data of intrinsic and extrinsic fluorescence (using 1-anilinonaphthalene 8-sulfonate [ANS] as probe) further confirmed the role of salt. The α-amylase was active in the presence of nonpolar solvents, namely, hexane and decane, but inactivated by ethanol. The decrease in the activity was correlated with the loss of tertiary structure in the presence of ethanol. Guanidine hydrochloride and pH denaturation indicated the molten globule state at pH 4.0. Partial N-terminal amino acid sequence of the purified α-amylase revealed the relatedness to Pseudoalteromonas sp. α-amylase. "FVHLFEW" was found as the N-terminal signature sequence. Bioinformatics analysis was done using M. algicola α-amylase protein having the same N-terminal signature sequence. The three-dimensional structure of Marinobacter α-amylase was deduced using the I-TASSER server, which reflected the enrichment of acidic amino acids on the surface, imparting the stability in the presence of salt. Our study clearly indicate that salt is necessary for maintaining the secondary and tertiary structure of halophilic protein, which is a necessary prerequisite for catalysis.
Srikumar, P S; Rohini, K
2013-10-01
Lafora disease (LD) is an autosomal recessive, progressive form of myoclonus epilepsy which affects worldwide. LD occurs mainly in countries like southern Europe, northern Africa, South India, and in the Middle East. LD occurs with its onset mainly in teenagers and leads to decline and death within 2 to 10 years. The genes EPM2A and EPM2B are commonly involved in 90 % of LD cases. EPM2A codes for protein laforin which contains an amino terminal carbohydrate binding module (CBM) belonging to the CBM20 family and a carboxy terminal dual specificity phosphatase domain. Mutations in laforin are found to abolish glycogen binding and have been reported in wet lab methods. In order to investigate on structural insights on laforin mutation K81A, we performed molecular dynamics (MD) simulation studies for native and mutant protein. MD simulation results showed loss of stability due to mutation K87A which confirmed the structural reason for conformational changes observed in laforin. The conformational change of mutant laforin was confirmed by analysis using root mean square deviation, root mean square fluctuation, solvent accessibility surface area, radius of gyration, hydrogen bond, and principle component analysis. Our results identified that the flexibility of K87A mutated laforin structure, with replacement of acidic amino acid to aliphatic amino acid in functional CBM domain, have more impact in abolishing glycogen binding that favors LD.
Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.
2018-04-01
We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.
Andreu, Yolanda; Galdon, Maria J; Durá, Estrella; Ferrando, Maite; Pascual, Juan; Turk, Dennis C; Jiménez, Yolanda; Poveda, Rafael
2006-01-01
Background This paper seeks to analyse the psychometric and structural properties of the Multidimensional Pain Inventory (MPI) in a sample of temporomandibular disorder patients. Methods The internal consistency of the scales was obtained. Confirmatory Factor Analysis was carried out to test the MPI structure section by section in a sample of 114 temporomandibular disorder patients. Results Nearly all scales obtained good reliability indexes. The original structure could not be totally confirmed. However, with a few adjustments we obtained a satisfactory structural model of the MPI which was slightly different from the original: certain items and the Self control scale were eliminated; in two cases, two original scales were grouped in one factor, Solicitous and Distracting responses on the one hand, and Social activities and Away from home activities, on the other. Conclusion The MPI has been demonstrated to be a reliable tool for the assessment of pain in temporomandibular disorder patients. Some divergences to be taken into account have been clarified. PMID:17169143
NASA Astrophysics Data System (ADS)
Santoshkumar, B.; Biswas, Amrita; Kalyanaraman, S.; Thangavel, R.; Udayabhanu, G.; Annadurai, G.; Velumani, S.
2017-06-01
Magnesium doped zinc oxide nanorod arrays on zinc oxide seed layers were grown by hydrothermal method. X-ray diffraction (XRD) patterns revealed the growth orientation along the preferential (002) direction. The hexagonal morphology was revealed from the field emission scanning electron microscope (FESEM) images. The elemental composition of the samples was confirmed by energy dispersive x-ray analysis spectra (EDS) and mapping dots. Carrier concentration, resistivity and mobility of the samples were obtained by Hall measurements. I-V characteristic curve confirmed the increase in resistivity upon doping. Photoluminescence (PL) spectra exposed the characteristic of UV emission along with defect mediated visible emission in the samples. Electrochemical impedance spectroscopy and cyclic voltammetry were undertaken to study the charge transport property. Owing to the change in the structural parameters and defect concentration the electrical properties of the doped samples were altered.
Arab-Chapelet, B; Martin, P M; Costenoble, S; Delahaye, T; Scheinost, A C; Grandjean, S; Abraham, F
2016-04-28
Mixed actinide(III,IV) oxalates of the general formula M2.2UAn(C2O4)5·nH2O (An = Pu or Am and M = H3O(+) and N2H5(+)) have been quantitatively precipitated by oxalic precipitation in nitric acid medium (yield >99%). Thorough multiscale structural characterization using XRD and XAS measurements confirmed the existence of mixed actinide oxalate solid solutions. The XANES analysis confirmed that the oxidation states of the metallic cations, tetravalent for uranium and trivalent for plutonium and americium, are maintained during the precipitation step. EXAFS measurements show that the local environments around U(+IV), Pu(+III) and Am(+III) are comparable, and the actinides are surrounded by ten oxygen atoms from five bidentate oxalate anions. The mean metal-oxygen distances obtained by XAS measurements are in agreement with those calculated from XRD lattice parameters.
Factor structure of the Japanese Interpersonal Competence Scale.
Matsudaira, Tomomi; Fukuhara, Taihei; Kitamura, Toshinori
2008-04-01
Assessing social competence is important for clinical and preventive interventions of depression. The aim of the present paper was to examine the factor structure of the Japanese Interpersonal Competence Scale (JICS). Exploratory and confirmatory factor analysis was performed on the survey responses of 730 participants. Simultaneous multigroup analyses were conducted to confirm factor stability across psychological health status and sex differences. Two factors, which represent Perceptive Ability and Self-Restraint, were confirmed to show a moderate correlation. Perceptive Ability involves a more cognitive aspect of social competence, while Self-Restraint involves a more behavioral aspect, both of which are considered to reflect the emotion-based relating style specific to the Japanese people: indulgent dependence (amae) and harmony (wa). In addition, Self-Restraint may be linked to social functioning. Both constructs may confound a respondent's perceived confidence. Despite its shortcomings, the JICS is a unique measure of social competence in the Japanese cultural context.
Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di
2013-01-15
The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.
NASA Astrophysics Data System (ADS)
Karpuraranjith, M.; Thambidurai, S.
2017-03-01
A new chitosan (as biotemplate)-zinc-tin oxide hybrid structure was successfully synthesized by a chemical precipitation method and annealed at 500 °C. We studied the structural changes, optical, thermal and photo catalytic properties. The chemical bonding of the Zn-O and Sn-O-Sn functional groups were confirmed by FT-IR absorption peaks appearing at 538 and 635 cm-1. The different ratio of ZnO to SnO2 particles on the biotemplate matrix altered the morphology of the hybrids from an agglomerated state to a microcrystalline form confirmed by HR-SEM and TEM analysis. The formation of a Zn0.15Sn0.85O hybrid structure was observed in the visible light region, with an energy band gap of ˜3.19 eV and higher surface area of 98 m2 g-1. The thermal property shows that CS-Zn0.15Sn0.85O has a higher thermal stability than a CS-Zn0.25Sn0.75O hybrid structure. The results demonstrate that the biotemplate-zinc-tin oxide hybrid structure has a reinforced effect compared to the other components. Therefore, a biotemplate-based zinc-tin oxide hybrid structure could be a promising material for better dye removal efficiency, which was obtained for ˜100 and 96% with MB and RY-15 dyes.
Structural and electronic properties of in-plane phase engineered WSe2: A DFT study
NASA Astrophysics Data System (ADS)
Bhart, Ankush; Kapoor, Pooja; Sharma, Munish; Sharma, Raman; Ahluwalia, P. K.
2018-04-01
We present first principal investigations on structural and electronic properties of in-plane phase engineered WSe2 with armchair type interface. The 2H and 1T phases of WSe2, joined along x-direction is a natural metal-semiconductor heterostructure and therefore shows potential for applications in 2D electronics and opto-electronics. The electronic properties transit towards metallic 1T region. No inflections across interface shows negligible mismatch strain which is unlike what has been reported for MoS2. Charge density analysis shows charge accumulation on 1T domain. This can lead to reduction of Schottky barrier heights at the metal-semiconductor junction. STM analysis confirms transition of 1T phase towards distorted 1T' structure. The present results provide essential insights for nano-devices using 2D hybrid materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Karachinsky, L. Ya.; Novikov, I. I.
It is demonstrated that metamorphic GaAs/InAlGaAs/InGaAs heterostructures with InAs/InGaAs quantum wells, which emit light in the 1250–1400 nm spectral range, can be fabricated by molecular-beam epitaxy. The structural and optical properties of the heterostructures are studied by X-ray diffraction analysis, transmission electron microscopy, and the photoluminescence method. Comparative analysis of the integrated photoluminescence intensity of the heterostructures and a reference sample confirm the high efficiency of radiative recombination in the heterostructures. It is confirmed by transmission electron microscopy that dislocations do not penetrate into the active region of the metamorphic heterostructures, where the radiative recombination of carriers occurs.
Polymorphism in magic-sized Au144(SR)60 clusters
Jensen, Kirsten M. O.; Juhas, Pavol; Tofanelli, Marcus A.; ...
2016-06-14
Ultra-small, magic-sized metal nanoclusters represent an important new class of materials with properties between molecules and particles. However, their small size challenges the conventional methods for structure characterization. We present the structure of ultra-stable Au144(SR)60 magic-sized nanoclusters obtained from atomic pair distribution function analysis of X-ray powder diffraction data. Our study reveals structural polymorphism in these archetypal nanoclusters. Additionally, in order to confirm the theoretically predicted icosahedral-cored cluster, we also find samples with a truncated decahedral core structure, with some samples exhibiting a coexistence of both cluster structures. Although the clusters are monodisperse in size, structural diversity is apparent. Finally,more » the discovery of polymorphism may open up a new dimension in nanoscale engineering.« less
Development and validation of makeup and sexualized clothing questionnaires.
Smith, Haylie; Perez, Marisol; Sladek, Michael R; Becker, Carolyn Black; Ohrt, Tara K; Bruening, Amanda B
2017-01-01
Body acceptance programs on college campuses indicated that collegiate women often report feeling pressure to dress in a sexualized manner, and use makeup to enhance beauty. Currently, no quantitative measures exist to assess attitudes and daily behaviors that may arise in response to perceived pressure to wear makeup or dress in a provocative manner. The goal of the current studies was to develop brief self-report questionnaires aimed at assessing makeup and sexualized clothing use and attitudes in young women. An exploratory factor analysis in a sample of 403 undergraduate women was used in Study 1 to create items to measure the pressure women feel to wear makeup and sexualized clothing. A confirmatory factor analysis ( N = 153) was used in Study 2 to confirm the factor structure found in Study 1. An incremental validity analysis was also conducted in Study 2. Across both studies, participants completed online questionnaires. In Study 1, items were developed for two questionnaires to assess perceived pressure to wear makeup and discomfort when not wearing makeup, and perceived pressure to wear sexualized clothing, and body image concerns with regards to sexualized clothing. The exploratory factor analyses revealed Unconfident and Unease scales for the Makeup Questionnaire (MUQ) and Body Dissatisfaction and Pressure scales for the Sexualized Clothing Questionnaire (SCQ). In Study 2, the confirmatory factor analyses confirmed the factor structure for the MUQ and SCQ. The incremental validity analysis revealed that these measures can be used to predict self-objectification and shape and weight concern in women. These studies provide preliminary support for the factor structure of two novel questionnaires aimed at assessing perceived pressure to wear makeup and sexualized clothing.
Diviani, Nicola; Dima, Alexandra Lelia; Schulz, Peter Johannes
2017-04-11
The eHealth Literacy Scale (eHEALS) is a tool to assess consumers' comfort and skills in using information technologies for health. Although evidence exists of reliability and construct validity of the scale, less agreement exists on structural validity. The aim of this study was to validate the Italian version of the eHealth Literacy Scale (I-eHEALS) in a community sample with a focus on its structural validity, by applying psychometric techniques that account for item difficulty. Two Web-based surveys were conducted among a total of 296 people living in the Italian-speaking region of Switzerland (Ticino). After examining the latent variables underlying the observed variables of the Italian scale via principal component analysis (PCA), fit indices for two alternative models were calculated using confirmatory factor analysis (CFA). The scale structure was examined via parametric and nonparametric item response theory (IRT) analyses accounting for differences between items regarding the proportion of answers indicating high ability. Convergent validity was assessed by correlations with theoretically related constructs. CFA showed a suboptimal model fit for both models. IRT analyses confirmed all items measure a single dimension as intended. Reliability and construct validity of the final scale were also confirmed. The contrasting results of factor analysis (FA) and IRT analyses highlight the importance of considering differences in item difficulty when examining health literacy scales. The findings support the reliability and validity of the translated scale and its use for assessing Italian-speaking consumers' eHealth literacy. ©Nicola Diviani, Alexandra Lelia Dima, Peter Johannes Schulz. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 11.04.2017.
Revathi, S; Kennedy, L John; Basha, S K Khadheer; Padmanabhan, R
2018-07-01
Nanostructured PbZr0.52Ti0.48O3 (PZT) powder was synthesized at 500 °C-800 °C using sol-gel route. X-ray diffraction and Rietveld analysis confirmed the formation of perovskite structure. The sample heat treated at 800 °C alone showed the formation of morphotropic phase boundary with coexistence of tetragonal and rhombohedral phase. The PZT powder and PVDF were used in 0-3 connectivity to form the PZT/PVDF composite film using solvent casting method. The composite films containing 10%, 50%, 70% and 80% volume fraction of PZT in PVDF were fabricated. The XRD spectra validated that the PZT structure remains unaltered in the composites and was not affected by the presence of PVDF. The scanning electron microscopy images show good degree of dispersion of PZT in PVDF matrix and the formation of pores at higher PZT loading. The quantitative analysis of elements and their composition were confirmed from energy dispersive X-ray analysis. The optical band gap of the PVDF film is 3.3 eV and the band gap decreased with increase in volume fraction of PZT fillers. The FTIR spectra showed the bands corresponding to different phases of PVDF (α, β, γ) and perovskite phase of PZT. The thermogravimetric analysis showed that PZT/PVDF composite films showed better thermal stability than the pure PVDF film and hydrophobicity. The dielectric constant was measured at frequency ranging from 1 Hz to 6 MHz and for temperature ranging from room temperature to 150 °C. The composite with 50% PZT filler loading shows the maximum dielectric constant at the studied frequency and temperature range with flexibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guozhen; Conn, Charlotte E.; Drummond, Calum J.
2010-01-12
Eight lanthanide(III) oleates have been prepared and characterized. The chelation and self-assembly structures of these rare-earth oleates have been studied by elemental analysis, Fourier transfer infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD) analysis. Elemental analysis and FTIR results indicate that three oleate anions are complexed with one lanthanide cation and, with the exception of anhydrous cerium(III) oleate, form either a mono- or a hemihydrate. The X-ray analysis showed that the neat lanthanide soaps have a lamellar bilayer structure at room temperature. The thermal behavior has been investigated by cross-polarized optical microscopy (POM), differential scanning calorimetry (DSC), and thermogravimetric analysismore » (TGA). POM scans showed that all the lanthanide oleates form a lamellar phase in the presence of excess water. Small-angle X-ray scattering (SAXS) and XRD were used to investigate the internal structure of the bulk lanthanide oleates in excess water, and these X-ray results confirmed that the lanthanide oleates do not swell in water. Select lanthanide oleates were dispersed in water to form nonswelling lamellar submicrometer particles, confirmed by dynamic light scattering (DLS) and synchrotron SAXS measurements. NMR results indicated that colloidal dispersions of lanthanide oleates containing paramagnetic ions, such as gadolinium(III), terbium(III), and dysprosium(III), have a significant effect on the longitudinal (T{sub 1}) and transverse (T{sub 2}) relaxation times of protons in water. Time-resolved fluorescence measurements have demonstrated that colloidal dispersions of europium(III) oleate exhibit strong luminescence. The rare earth metal soaps exemplify the potential of self-assembled chelating amphiphiles as contrast agents in medical imaging modalities such as magnetic resonance imaging (MRI) and fluorescence imaging.« less
Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S
2014-11-11
Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method. Copyright © 2014 Elsevier B.V. All rights reserved.
Meta-Analysis of Effect Sizes Reported at Multiple Time Points Using General Linear Mixed Model.
Musekiwa, Alfred; Manda, Samuel O M; Mwambi, Henry G; Chen, Ding-Geng
2016-01-01
Meta-analysis of longitudinal studies combines effect sizes measured at pre-determined time points. The most common approach involves performing separate univariate meta-analyses at individual time points. This simplistic approach ignores dependence between longitudinal effect sizes, which might result in less precise parameter estimates. In this paper, we show how to conduct a meta-analysis of longitudinal effect sizes where we contrast different covariance structures for dependence between effect sizes, both within and between studies. We propose new combinations of covariance structures for the dependence between effect size and utilize a practical example involving meta-analysis of 17 trials comparing postoperative treatments for a type of cancer, where survival is measured at 6, 12, 18 and 24 months post randomization. Although the results from this particular data set show the benefit of accounting for within-study serial correlation between effect sizes, simulations are required to confirm these results.
Ewing, Jane E; King, Madeleine T; Smith, Narelle F
2009-03-01
To validate two health-related quality of life (HRQOL) measures, the PedsQL Generic Core and Cancer Module adolescent forms (13-18 years), after modification for 16-25-year-old adolescents and young adults (AYA) with cancer or a blood disorder. AYA patients and nominated proxies were recruited from three Sydney hospitals. Modified forms were administered by telephone or in clinics/wards. Analyses included correlations, factor analysis, and analysis of variance of known-groups (defined by the Memorial Symptom Assessment Scale). Eighty-eight patients and 79 proxies completed questionnaires. Factor structures consistent with those of the unmodified forms confirmed construct validity. Cronbach's alpha ranged 0.81-0.98. Inter-scale correlations were as hypothesized, confirming discriminant validity. Statistically significant differences between groups with mild, moderate, and severe symptoms (P < 0.05) confirmed clinical validity. These modified forms provide reliable and valid measures of HRQOL in AYA with cancer or a blood disorder, suitable for clinical trials, research, and practice.
NASA Astrophysics Data System (ADS)
Kore, R. M.; Thakur, A. V.; Fugare, B. Y.; Lokhande, B. J.
2018-04-01
In the present study, we report synthesis of NiO nanoparticles by varying the reagent ratio of nickel nitrate and ammonium bicarbonate using solvent deficient approach. The synthesis process involves the solid state grinding reaction of nickel nitrate and different mole ratio of ammonium bicarbonate varying from 0.5 to 4, to obtain the precursor followed by rinsing and annealing at 300°C for 2 h. The XRD and FTIR analysis is carried to confirm the formation of NiO nanoparticles. The XRD analysis confirms the cubic structure of NiO. The peaks observed in FTIR confirms the presence of Ni - O vibration mode. The FESEM images shows the particle size is larger for lower content of ammonium bicarbonate and decreases with increase in amount of bicarbonate added. Electrochemical performance clearly indicates the specific capacitance increases from 0.5 to 2 and further decreases with increase in the ammonium bicarbonate. The maximum achieved specific capacitance is 1218 Fg-1 for the reagent ratio 2 of ammonium bicarbonate.
Henriksen, Marius; Creaby, Mark W; Lund, Hans; Juhl, Carsten; Christensen, Robin
2014-01-01
Objective We performed a systematic review, meta-analysis and assessed the evidence supporting a causal link between knee joint loading during walking and structural knee osteoarthritis (OA) progression. Design Systematic review, meta-analysis and application of Bradford Hill's considerations on causation. Data sources We searched MEDLINE, Scopus, AMED, CINAHL and SportsDiscus for prospective cohort studies and randomised controlled trials (RCTs) from 1950 through October 2013. Study eligibility criteria We selected cohort studies and RCTs in which estimates of knee joint loading during walking were used to predict structural knee OA progression assessed by X-ray or MRI. Data analyses Meta-analysis was performed to estimate the combined OR for structural disease progression with higher baseline loading. The likelihood of a causal link between knee joint loading and OA progression was assessed from cohort studies using the Bradford Hill guidelines to derive a 0–4 causation score based on four criteria and examined for confirmation in RCTs. Results Of the 1078 potentially eligible articles, 5 prospective cohort studies were included. The studies included a total of 452 patients relating joint loading to disease progression over 12–72 months. There were very serious limitations associated with the methodological quality of the included studies. The combined OR for disease progression was 1.90 (95% CI 0.85 to 4.25; I2=77%) for each one-unit increment in baseline knee loading. The combined causation score was 0, indicating no causal association between knee loading and knee OA progression. No RCTs were found to confirm or refute the findings from the cohort studies. Conclusions There is very limited and low-quality evidence to support for a causal link between knee joint loading during walking and structural progression of knee OA. Trial registration number CRD42012003253 PMID:25031196
Henriksen, Marius; Creaby, Mark W; Lund, Hans; Juhl, Carsten; Christensen, Robin
2014-07-15
We performed a systematic review, meta-analysis and assessed the evidence supporting a causal link between knee joint loading during walking and structural knee osteoarthritis (OA) progression. Systematic review, meta-analysis and application of Bradford Hill's considerations on causation. We searched MEDLINE, Scopus, AMED, CINAHL and SportsDiscus for prospective cohort studies and randomised controlled trials (RCTs) from 1950 through October 2013. We selected cohort studies and RCTs in which estimates of knee joint loading during walking were used to predict structural knee OA progression assessed by X-ray or MRI. Meta-analysis was performed to estimate the combined OR for structural disease progression with higher baseline loading. The likelihood of a causal link between knee joint loading and OA progression was assessed from cohort studies using the Bradford Hill guidelines to derive a 0-4 causation score based on four criteria and examined for confirmation in RCTs. Of the 1078 potentially eligible articles, 5 prospective cohort studies were included. The studies included a total of 452 patients relating joint loading to disease progression over 12-72 months. There were very serious limitations associated with the methodological quality of the included studies. The combined OR for disease progression was 1.90 (95% CI 0.85 to 4.25; I(2)=77%) for each one-unit increment in baseline knee loading. The combined causation score was 0, indicating no causal association between knee loading and knee OA progression. No RCTs were found to confirm or refute the findings from the cohort studies. There is very limited and low-quality evidence to support for a causal link between knee joint loading during walking and structural progression of knee OA. CRD42012003253. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Rather, Mehraj ud Din; Samad, Rubiya; Want, Basharat
2018-03-01
The physical properties of BaY0.025Ti0.9625O3, SrFe12O19, and 0.90BaY0.025Ti0.9625O3-0.10 SrFe12O19 composite have been studied. The proposed composite was synthesized by solid-state reaction method from yttrium barium titanate processed by solid-state reaction and strontium hexaferrite obtained by a sol-gel process. Microstructural analysis revealed monophasic grains for yttrium barium titanate phase, while loosely packed biphasic structure was observed for the composite. Powder x-ray analysis showed that the individual phases retained their crystal structure in the composite, without formation of any new additional phase. Measurement of magnetic hysteresis loops at room temperature indicated that the magnetic parameters of the composite were diluted by the presence of the ferroelectric phase. The ferroelectric hysteresis of yttrium barium titanate confirmed the ferroelectric transition at 119°C. Meanwhile, the symmetrical ferroelectric loops observed at different fields established the ferroelectric nature of the composite. Improved dielectric properties and low dielectric losses were observed due to yttrium doping in the composite. The diffuseness of the ferroelectric transitions for the composite was confirmed by the Curie-Weiss law. Activation energy calculations revealed the charge-hopping conduction mechanism in the composite. Magnetodielectric studies confirmed that the overall magnetocapacitance in the composite exhibited combined effects of magnetoresistance and magnetoelectric coupling.
NASA Astrophysics Data System (ADS)
Kamal Babu, Karupannan; Panneerselvam, Kavan; Sathiya, Paulraj; Noorul Haq, Abdul Haq; Sundarrajan, Srinivasan; Mastanaiah, Potta; Srinivasa Murthy, Chunduri Venkata
2018-02-01
Friction stir welding (FSW) process was conducted on cryorolled (CR) AA2219 plate using different tool pin profiles such as cylindrical pin, threaded cylindrical pin, square pin and hexagonal pin profiles. The FSW was carried out with pairs of 6 mm thick CR aluminium plates with different tool pin profiles. The different tool pin profile weld portions' behaviors like mechanical (tensile strength, impact and hardness) and metallurgical characteristics were analyzed. The results of the mechanical analysis revealed that the joint made by the hexagonal pin tool had good strength compared to other pin profiles. This was due to the pulsating action and material flow of the tool resulting in dynamic recrystallization in the weld zone. This was confirmed by the ultra fine grain structure formation in Weld Nugget (WN) of hexagonal pin tool joint with a higher percentage of precipitate dissolution. The fractograph of the hexagonal tool pin weld portion confirmed the finer dimple structure morphology without having any interior defect compared to other tool pin profiles. The lowest weld joint strength was obtained from cylindrical pin profile weld joint due to insufficient material flow during welding. The Transmission Electron Microscope and EDX analysis showed the dissolution of the metastable θ″, θ' (Al2Cu) partial precipitates in the WN and proved the influence of metastable precipitates on enhancement of mechanical behavior of weld. The XRD results also confirmed the Al2Cu precipitation dissolution in the weld zone.
ERIC Educational Resources Information Center
LaBelle, Sara; Johnson, Zac D.
2018-01-01
Three studies were conducted to generate a valid and reliable instrument to measure student-to-student confirmation. Study One (N = 396) sought to establish a factor structure based on previous research. Study Two (N = 396) sought to confirm this factor structure and assess criterion-related validity. Study Three (N = 283) sought to assess…
Relation between textured surface and diffuse reflectance of Cu films
NASA Astrophysics Data System (ADS)
Shukla, Gaurav; Angappane, S.
2018-04-01
Cu nanostructures namely chevron, slanted and vertical posts deposited on Si substrate by glancing angle deposition (GLAD) technique using DC magnetron sputtering are studied to understand the optical reflectance properties of various textures. The X-ray diffraction analysis confirmed the crystalline nature of the different structures of deposited Cu films. The FESEM images confirmed the formation of chevron, slanted and vertical posts. From the optical reflectance spectra, we found that the reflectance is more for chevron than vertical and slanted posts which have almost the same reflectance over the entire wavelength. The films with chevron texture would find various applications, like, light detector, light trapping, sensors etc.
Mixed Carrier Conduction in Modulation-doped Field Effect Transistors
NASA Technical Reports Server (NTRS)
Schacham, S. E.; Haugland, E. J.; Mena, R. A.; Alterovitz, S. A.
1995-01-01
The contribution of more than one carrier to the conductivity in modulation-doped field effect transistors (MODFET) affects the resultant mobility and complicates the characterization of these devices. Mixed conduction arises from the population of several subbands in the two-dimensional electron gas (2DEG), as well as the presence of a parallel path outside the 2DEG. We characterized GaAs/AlGaAs MODFET structures with both delta and continuous doping in the barrier. Based on simultaneous Hall and conductivity analysis we conclude that the parallel conduction is taking place in the AlGaAs barrier, as indicated by the carrier freezeout and activation energy. Thus, simple Hall analysis of these structures may lead to erroneous conclusions, particularly for real-life device structures. The distribution of the 2D electrons between the various confined subbands depends on the doping profile. While for a continuously doped barrier the Shubnikov-de Haas analysis shows superposition of two frequencies for concentrations below 10(exp 12) cm(exp -2), for a delta doped structure the superposition is absent even at 50% larger concentrations. This result is confirmed by self-consistent analysis, which indicates that the concentration of the second subband hardly increases.
Johnson, Kenneth A.; Ve, Thomas; Larsen, Øivind; Pedersen, Rolf B.; Lillehaug, Johan R.; Jensen, Harald B.; Helland, Ronny; Karlsen, Odd A.
2014-01-01
CorA is a copper repressible protein previously identified in the methanotrophic bacterium Methylomicrobium album BG8. In this work, we demonstrate that CorA is located on the cell surface and binds one copper ion per protein molecule, which, based on X-ray Absorption Near Edge Structure analysis, is in the reduced state (Cu(I)). The structure of endogenously expressed CorA was solved using X-ray crystallography. The 1.6 Å three-dimensional structure confirmed the binding of copper and revealed that the copper atom was coordinated in a mononuclear binding site defined by two histidines, one water molecule, and the tryptophan metabolite, kynurenine. This arrangement of the copper-binding site is similar to that of its homologous protein MopE* from Metylococcus capsulatus Bath, confirming the importance of kynurenine for copper binding in these proteins. Our findings show that CorA has an overall fold similar to MopE, including the unique copper(I)-binding site and most of the secondary structure elements. We suggest that CorA plays a role in the M. album BG8 copper acquisition. PMID:24498370
Geotechnical approaches to coal ash content control in mining of complex structure deposits
NASA Astrophysics Data System (ADS)
Batugin, SA; Gavrilov, VL; Khoyutanov, EA
2017-02-01
Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.
Plaga, W; Lottspeich, F; Oesterhelt, D
1992-04-01
An improved purification procedure, including nickel chelate affinity chromatography, is reported which resulted in a crystallizable pyruvate:ferredoxin oxidoreductase preparation from Halobacterium halobium. Crystals of the enzyme were obtained using potassium citrate as the precipitant. The genes coding for pyruvate:ferredoxin oxidoreductase were cloned and their nucleotide sequences determined. The genes of both subunits were adjacent to one another on the halobacterial genome. The derived amino acid sequences were confirmed by partial primary structure analysis of the purified protein. The structural motif of thiamin-diphosphate-binding enzymes was unequivocally located in the deduced amino acid sequence of the small subunit.
Karataş, Tuğba; Özen, Şükrü; Kutlutürkan, Sevinç
2017-01-01
Objective: The main aim of this study was to investigate the factor structure and psychometric properties of the Brief Illness Perception Questionnaire (BIPQ) in Turkish cancer patients. Methods: This methodological study involved 135 cancer patients. Statistical methods included confirmatory or exploratory factor analysis and Cronbach alpha coefficients for internal consistency. Results: The values of fit indices are within the acceptable range. The alpha coefficients for emotional illness representations, cognitive illness representations, and total scale are 0.83, 0.80, and 0.85, respectively. Conclusions: The results confirm the two-factor structure of the Turkish BIPQ and demonstrate its reliability and validity. PMID:28217734
NASA Astrophysics Data System (ADS)
Noirot, Gaël; Stern, Daniel; Mei, Simona; Wylezalek, Dominika; Cooke, Elizabeth A.; De Breuck, Carlos; Galametz, Audrey; Hatch, Nina A.; Vernet, Joël; Brodwin, Mark; Eisenhardt, Peter; Gonzalez, Anthony H.; Jarvis, Matt; Rettura, Alessandro; Seymour, Nick; Stanford, S. A.
2018-05-01
We report spectroscopic results from our 40-orbit Hubble Space Telescope slitless grism spectroscopy program observing the 20 densest Clusters Around Radio-Loud AGN (CARLA) candidate galaxy clusters at 1.4 < z < 2.8. These candidate rich structures, among the richest and most distant known, were identified on the basis of [3.6]–[4.5] color from a 408 hr multi-cycle Spitzer program targeting 420 distant radio-loud AGN. We report the spectroscopic confirmation of 16 distant structures at 1.4 < z < 2.8 associated with the targeted powerful high-redshift radio-loud AGN. We also report the serendipitous discovery and spectroscopic confirmation of seven additional structures at 0.87 < z < 2.12 not associated with the targeted radio-loud AGN. We find that 1010–1011 M ⊙ member galaxies of our confirmed CARLA structures form significantly fewer stars than their field counterparts at all redshifts within 1.4 ≤ z ≤ 2. We also observe higher star-forming activity in the structure cores up to z = 2, finding similar trends as cluster surveys at slightly lower redshifts (1.0 < z < 1.5). By design, our efficient strategy of obtaining just two grism orbits per field only obtains spectroscopic confirmation of emission line galaxies. Deeper spectroscopy will be required to study the population of evolved, massive galaxies in these (forming) clusters. Lacking multi-band coverage of the fields, we adopt a very conservative approach of calling all confirmations “structures,” although we note that a number of features are consistent with some of them being bona fide galaxy clusters. Together this survey represents a unique and large homogenous sample of spectroscopically confirmed structures at high redshifts, potentially more than doubling the census of confirmed, massive clusters at z > 1.4.
Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.
Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai
2016-07-20
Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.
Synthesis and characterization of mesoporous ZnS with narrow size distribution of small pores
NASA Astrophysics Data System (ADS)
Nistor, L. C.; Mateescu, C. D.; Birjega, R.; Nistor, S. V.
2008-08-01
Pure, nanocrystalline cubic ZnS forming a stable mesoporous structure was synthesized at room temperature by a non-toxic surfactant-assisted liquid liquid reaction, in the 9.5 10.5 pH range of values. The appearance of an X-ray diffraction (XRD) peak in the region of very small angles (˜ 2°) reveals the presence of a porous material with a narrow pore size distribution, but with an irregular arrangement of the pores, a so-called worm hole or sponge-like material. The analysis of the wide angle XRD diffractograms shows the building blocks to be ZnS nanocrystals with cubic structure and average diameter of 2 nm. Transmission electron microscopy (TEM) investigations confirm the XRD results; ZnS crystallites of 2.5 nm with cubic (blende) structure are the building blocks of the pore walls with pore sizes from 1.9 to 2.5 nm, and a broader size distribution for samples with smaller pores. Textural measurements (N2 adsorption desorption isotherms) confirm the presence of mesoporous ZnS with a narrow range of small pore sizes. The relatively lower surface area of around 100 m2/g is attributed to some remaining organic molecules, which are filling the smallest pores. Their presence, confirmed by IR spectroscopy, seems to be responsible for the high stability of the resulting mesoporous ZnS as well.
Operando SXRD of E-ALD deposited sulphides ultra-thin films: Crystallite strain and size
NASA Astrophysics Data System (ADS)
Giaccherini, Andrea; Russo, Francesca; Carlà, Francesco; Guerri, Annalisa; Picca, Rosaria Anna; Cioffi, Nicola; Cinotti, Serena; Montegrossi, Giordano; Passaponti, Maurizio; Di Benedetto, Francesco; Felici, Roberto; Innocenti, Massimo
2018-02-01
Electrochemical Atomic Layer Deposition (E-ALD), exploiting surface limited electrodeposition of atomic layers, can easily grow highly ordered ultra-thin films and 2D structures. Among other compounds CuxZnyS grown by means of E-ALD on Ag(111) has been found particularly suitable for the solar energy conversion due to its band gap (1.61 eV). However its growth seems to be characterized by a micrometric thread-like structure, probably overgrowing a smooth ultra-thin films. On this ground, a SXRD investigation has been performed, to address the open questions about the structure and the growth of CuxZnyS by means of E-ALD. The experiment shows a pseudo single crystal pattern as well as a powder pattern, confirming that part of the sample grows epitaxially on the Ag(111) substrate. The growth of the film was monitored by following the evolution of the Bragg peaks and Debye rings during the E-ALD steps. Breadth and profile analysis of the Bragg peaks lead to a qualitative interpretation of the growth mechanism. This study confirms that Zn lead to the growth of a strained Cu2S-like structure, while the growth of the thread-like structure is probably driven by the release of the stress from the epitaxial phase.
Electronic structure and bonding interactions in Ba1- x Sr x Zr0.1Ti0.9O3 ceramics
NASA Astrophysics Data System (ADS)
Mangaiyarkkarasi, Jegannathan; Sasikumar, Subramanian; Saravanan, Olai Vasu; Saravanan, Ramachandran
2017-06-01
An investigation on the precise electronic structure and bonding interactions has been carried out on Ba1- x Sr x Zr0.1Ti0.9O3 (short for BSZT, x = 0, 0.05, 0.07 and 0.14) ceramic systems prepared via high-temperature solid state reaction technique. The influence of Sr doping on the BSZT structure has been examined by characterizing the prepared samples using PXRD, UV-visible spectrophotometry, SEM and EDS. Powder profile refinement of X-ray data confirms that all the synthesized samples have been crystallized in cubic perovskite structure with single phase. Charge density distribution of the BSZT systems has been completely analyzed by the maximum entropy method (MEM). Co-substitution of Sr at the Ba site and Zr at the Ti site into the BaTiO3 structure presents the ionic nature between Ba and O ions and the covalent nature between Ti and O ions, revealed from MEM calculations. Optical band gap values have been evaluated from UV-visible absorption spectra. Particles with irregular shapes and well defined grain boundaries are clearly visualized from SEM images. The phase purity of the prepared samples is further confirmed by EDS qualitative spectral analysis.
Azadirachtin derivatives from seed kernels of Azadirachta excelsa.
Kanokmedhakul, Somdej; Kanokmedhakul, Kwanjai; Prajuabsuk, Thirada; Panichajakul, Sanha; Panyamee, Piyanan; Prabpai, Samran; Kongsaeree, Palangpon
2005-07-01
Three new azadirachtin derivatives, named azadirachtins O-Q (1-3), along with the known azadirachtin B (4), azadirachtin L (5), azadirachtin M (6) 11alpha-azadirachtin H (7), 11beta-azadirachtin H (8), and azadirachtol (9) were isolated from seed kernels of Azadirachta excelsa. Their structures were established by spectroscopic techniques, and the structure of 3 was confirmed by X-ray analysis. Compounds 1-7 and 9 exhibited toxicity to the diamondback moth (Plutella xylostella) with an LD50 of 0.75-1.92 microg/g body weight, in 92 h.
Salony; Garg, N; Baranwal, R; Chhabra, M; Mishra, S; Chaudhuri, T K; Bisaria, V S
2008-02-01
Cyathus bulleri, a ligninolytic fungus, produces a single laccase the internal peptides (3) of which bear similarity to laccases of several white rot fungi. Comparison of the total amino acid composition of this laccase with several fungal laccases indicated dissimilarity in the proportion of some basic and hydrophobic amino acids. Analysis of the circular dichroism spectrum of the protein indicated 37% alpha-helical, 26% beta-sheet and 38% random coil content which differed significantly from that in the solved structures of other laccases, which contain higher beta-sheet structures. The critical role of the carboxylic group containing amino acids was demonstrated by determining the kinetic parameters at different pH and this was confirmed by the observation that a critical Asp is strongly conserved in both Ascomycete and Basidiomycete laccases. The enzyme was denatured in the presence of a number of denaturing agents and refolded back to functional state with copper. In the folding experiments under alkaline conditions, zinc could replace copper in restoring 100% of laccase activity indicating the non-essential role of copper in this laccase. The laccase was expressed in Escherichia coli by a modification of the ligation-anchored PCR approach making it the first fungal laccase to be expressed in a bacterial host. The laccase sequence was confirmed by way of analysis of a 435 bp sequence of the insert.
Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation.
Yang, Ye; Christensen, Ole F; Sorensen, Daniel
2011-02-01
Over recent years, statistical support for the presence of genetic factors operating at the level of the environmental variance has come from fitting a genetically structured heterogeneous variance model to field or experimental data in various species. Misleading results may arise due to skewness of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box-Cox transformations. Litter size data in rabbits and pigs that had previously been analysed in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box-Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected by the presence of asymmetry in the distribution of data. We recommend that to avoid one important source of spurious inferences, future work seeking support for a genetic component acting on environmental variation using a parametric approach based on normality assumptions confirms that these are met.
Rajesh, P S; Rai, V Ravishankar
2014-01-03
The aiiA homologous gene known to encode AHL- lactonase enzyme which hydrolyze the N-acylhomoserine lactone (AHL) quorum sensing signaling molecules produced by Gram negative bacteria. In this study, the degradation of AHL molecules was determined by cell-free lysate of endophytic Enterobacter species. The percentage of quorum quenching was confirmed and quantified by HPLC method (p<0.0001). Amplification and sequence BLAST analysis showed the presence of aiiA homologous gene in endophytic Enterobacter asburiae VT65, Enterobacter aerogenes VT66 and Enterobacter ludwigii VT70 strains. Sequence alignment analysis revealed the presence of two zinc binding sites, "HXHXDH" motif as well as tyrosine residue at the position 194. Based on known template available at Swiss-Model, putative tertiary structure of AHL-lactonase was constructed. The result showed that novel endophytic strains of Enterobacter genera encode the novel aiiA homologous gene and its structural importance for future study. Copyright © 2013 Elsevier Inc. All rights reserved.
Population structure of Streptococcus oralis
Do, Thuy; Jolley, Keith A.; Maiden, Martin C. J.; Gilbert, Steven C.; Clark, Douglas; Wade, William G.; Beighton, David
2009-01-01
Streptococcus oralis is a member of the normal human oral microbiota, capable of opportunistic pathogenicity; like related oral streptococci, it exhibits appreciable phenotypic and genetic variation. A multilocus sequence typing (MLST) scheme for S. oralis was developed and the resultant data analysed to examine the population structure of the species. Analysis of 113 isolates, confirmed as belonging to the S. oralis/mitis group by 16S rRNA gene sequencing, characterized the population as highly diverse and undergoing inter- and intra-species recombination with a probable clonal complex structure. ClonalFrame analysis of these S. oralis isolates along with examples of Streptococcus pneumoniae, Streptococcus mitis and Streptococcus pseudopneumoniae grouped the named species into distinct, coherent populations and did not support the clustering of S. pseudopneumoniae with S. mitis as reported previously using distance-based methods. Analysis of the individual loci suggested that this discrepancy was due to the possible hybrid nature of S. pseudopneumoniae. The data are available on the public MLST website (http://pubmlst.org/soralis/). PMID:19423627
Morphological, structural and thermal studies of gallium nitride ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indrakanti, Rajani; Rao, V. Brahmaji; Kiran, C. Udaya
2016-05-06
We report the synthesis and Characterization of III-V doped Nano ferrite Ga{sub (2x+2)}N Fe{sub 2(49-x)}O{sub 3} for x=1 and x=5 by Sol-Gel method. The Morphological, structural and Thermal characterisation studies are done by using Transmission Electron Microscopy, Energy Dispersive X-ray Analysis, Selected Area Electron Diffraction, Thermo-Gravimetric Analysis and Differential Thermal Analysis. Using the Sci-Finder software we could not trace any reports related to GaNFe{sub 2}O{sub 3} in the literature. It has been observed from our studies that the particles are in the Cylindrical and the Globular structure. The particle diameter values from the Histograms are in good agreement with themore » XRD values that were communicated by us earlier. The SAED and the EDAX studies reveal the confirmation of the composition and also that the synthesized Ferrite exhibits crystalline nature. The TG-DTA results show that the compound indicates constant sample weight.« less
NASA Astrophysics Data System (ADS)
Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang
2018-02-01
The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.
Laudenbach, Beatrice Theres; Martínez-Montero, Saúl; Cencic, Regina; Habjan, Matthias; Pichlmair, Andreas; Damha, Masad J.; Pelletier, Jerry; Nagar, Bhushan
2017-01-01
IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2′-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2′-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA. PMID:28251928
Sharmin, Nusrat; Hasan, Muhammad S; Rudd, Chris D; Boyd, Daniel; Werner-Zwanziger, Ulrike; Ahmed, Ifty; Parsons, Andrew J
2017-05-01
In this study, nine phosphate-based glass formulations from the system P 2 O 5 -CaO-Na 2 O-MgO-B 2 O 3 were prepared with P 2 O 5 content fixed as 40, 45 and 50 mol%, where Na 2 O was replaced by 5 and 10 mol% B 2 O 3 and MgO and CaO were fixed to 24 and 16 mol%, respectively. The effect of B 2 O 3 addition on the viscosity-temperature behaviour, fragility index and structure of the glasses was investigated. The composition of the glasses was confirmed by ICP-AES. The viscosity-temperature behaviour of the glasses were measured using beam-bending and parallel -plate viscometers. The viscosity of the glasses investigated was found to shift to higher temperature with increasing B 2 O 3 content. The kinetic fragility parameter, m and F 1/2 , estimated from the viscosity curve were found to decease with increasing B 2 O 3 content. The structural analysis was achieved by a combination of Fourier transform infrared spectroscopy and solid state nuclear magnetic resonance. 31 P solid-state magic-angle-spinning nuclear magnetic resonance (MAS-NMR) showed that the local structure of the glasses changes with increasing B 2 O 3 content. As B 2 O 3 was added to the glass systems, the phosphate connectivity increases as the as the Q 1 units transforms into Q 2 units. The 11 B NMR results confirmed the presence of tetrahedral boron (BO 4 ) units for all the compositions investigated. Structural analysis indicates an increasing level of cross-linking with increasing B 2 O 3 content. Evidence of the presence of P-O-B bonds was also observed from the FTIR and 31 P NMR analysis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 764-777, 2017. © 2016 Wiley Periodicals, Inc.
Wagner, J A; Schnoll, R A; Gipson, M T
1998-07-01
Adherence to self-monitoring of blood glucose (SMBG) is problematic for many people with diabetes. Self-reports of adherence have been found to be unreliable, and existing paper-and-pencil measures have limitations. This study developed a brief measure of SMBG adherence with good psychometric properties and a useful factor structure that can be used in research and in practice. A total of 216 adults with diabetes responded to 30 items rated on a 9-point Likert scale that asked about blood monitoring habits. In part I of the study, items were evaluated and retained based on their psychometric properties. The sample was divided into exploratory and confirmatory halves. Using the exploratory half, items with acceptable psychometric properties were subjected to a principal components analysis. In part II of the study, structural equation modeling was used to confirm the component solution with the entire sample. Structural modeling was also used to test the relationship between these components. It was hypothesized that the scale would produce four correlated factors. Principal components analysis suggested a two-component solution, and confirmatory factor analysis confirmed this solution. The first factor measures the degree to which patients rely on others to help them test and thus was named "social influence." The second component measures the degree to which patients use physical symptoms of blood glucose levels to help them test and thus was named "physical influence." Results of the structural model show that the components are correlated and make up the higher-order latent variable adherence. The resulting 15-item scale provides a short, reliable way to assess patient adherence to SMBG. Despite the existence of several aspects of adherence, this study indicates that the construct consists of only two components. This scale is an improvement on previous measures of adherence because of its good psychometric properties, its interpretable factor structure, and its rigorous empirical development.
NASA Astrophysics Data System (ADS)
Smaoui, S.; Ben Aribia, W.; Kabadou, A.; Abdelmouleh, M.
2017-04-01
A novel mixed valence tellurium oxide, TiGa0.67Te2.33O8, was synthesized and its crystal structure determined using the X-ray powder diffraction technique. The obtained oxide was found to crystallize in a cubic unit-cell, Ia 3 bar space group, with the lattice parameter a = 10.9557(1) Å. Rietveld refinement of the structure led to ultimate confidence factors Rp = 7.63 and Rwp = 6.71. This structure was based on slabs containing groups of (Te/Ga)O4 joined by the metal cations Ti4+. The structure analysis showed a cation ordering of Te4+ and Te6+ yielding a TiGa2/3Te7/3O8 formula. The IR and RAMAN spectra confirmed the presence of the TiO6 and (Te/Ga)O4 groups. The dielectric anomalies observed at 500 K were attributed to the mixed valence structure, arising from the mixed-valence Te6+/Te4+. We detected only one peak in thermal behavior by the DTA/TG analysis; which implied a melting reaction.
NASA Astrophysics Data System (ADS)
Kumara, Karthik; Dileep Kumar, A.; Naveen, S.; Ajay Kumar, K.; Lokanath, N. K.
2018-06-01
A novel pyrazole derivative, 3-(benzo[d][1,3]dioxol-5-yl)-5-(3-methylthiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carboxamide was synthesized and characterized by elemental analysis, FT-IR, NMR (1H and 13C), MS, UV-visible spectra and finally the structure was confirmed by the single crystal X-ray diffraction studies. The title compound (C16H15N3O3S) crystallized in the triclinic crystal system, with the space group Pī. A dihedral angle of 65.84(1)° between the pyrazole and the thiophene rings confirms the twisted conformation between them. The X-ray structure revealed that the pyrazole ring adopts an E-form and an envelope conformation on C7 atom. The crystal and molecular structure of the title compound is stabilized by inter molecular hydrogen bonds. The compound possesses three dimensional supramolecular self-assembly, in which Csbnd H⋯O and Nsbnd H⋯O chains build up two dimensional arrays, which are extended to 3D network through Csbnd H···Cg and Csbnd O···Cg interactions. The structure also exhibits intramolecular hydrogen bonds of the type Nsbnd H⋯N and π···π stacking interactions, which contributes to the crystal packing. Further, Hirshfeld surface analysis was carried out for the graphical visualization of several short intermolecular interactions on the molecular surface while the 2D finger-print plot provides percentage contribution of each individual atom-to-atom interactions. The thermal decomposition of the compound has been studied by thermogravimetric analysis. The molecular geometries and electronic structures of the compounds were fully optimized, calculated with ab-initio methods by HF, DFT/B3LYP functional in combination of different basis set with different solvent environment and the structural parameters were compared with the experimental data. The Mulliken atomic charges and molecular electrostatic potential on molecular van der Waals (vdW) surface were calculated to know the electrophilic and nucleophilic regions of the molecular surface. Nonlinear optical properties of the title compound were also discussed based on the polarizability and hyperpolarizability values.
Validation and Utility of the Social Emotional Health Survey-Secondary for Japanese Students
ERIC Educational Resources Information Center
Ito, Ayako; Smith, Douglas C.; You, Sukkyung; Shimoda, Yoshiyuki; Furlong, Michael J.
2015-01-01
The article explores the use of the Social and Emotional Health Survey-Secondary version (SEHS-S) with a sample of 975 Japanese students in Grades 7-9 attending schools located northwest of Tokyo. A confirmatory factor analysis using half the sample confirmed the four-factor structure of the SEHS-S, and further analyses verified its second-order…
Yarkandi, Naeema H; El-Ghamry, Hoda A; Gaber, Mohamed
2017-06-01
A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L) 2 ]·l2H 2 O, [Ni(L)Cl·(H 2 O) 2 ].5H 2 O, [Cu(L)Cl] and [Zn(L)(CH 3 COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, 1 H & 13 C NMR, mass spectral analysis, molar conductivity measurement, UV-Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV-Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K b ). Copyright © 2017 Elsevier B.V. All rights reserved.
Doostmohammadi, A; Monshi, A; Fathi, M H; Karbasi, S; Braissant, O; Daniels, A U
2011-10-01
In this study, the cytotoxicity evaluation of prepared 63S bioactive glass and bone-derived hydroxyapatite particles with yeast and human chondrocyte cells was carried out using isothermal micro-nano calorimetry (IMNC), which is a new method for studying cell/biomaterial interactions. Bioactive glass particles were made via sol-gel method and hydroxyapatite was obtained from bovine bone. Elemental analysis was carried out by XRF and EDXRF. Amorphous structure of the glass and completely crystalline structure of HA were detected by XRD analysis. Finally, the cytotoxicity of bioactive glass and bone-derived HA particles with yeast and cultured human chondrocyte cells was evaluated using IMNC. The results confirmed the viability, growth and proliferation of human chondrocyte cells in contact with 63S bioactive glass, and bone-derived HA particles. Also the results indicated that yeast model which is much easier to handle, can be considered as a good proxy and can provide a rapid primary estimate of the ranges to be used in assays involving human cells. All of these results confirmed that IMNC is a convenient method which caters to measuring the cell-biomaterial interactions alongside the current methods.
Crystallized InBiS3 thin films with enhanced optoelectronic properties
NASA Astrophysics Data System (ADS)
Ali, N.; Hussain, Arshad; Ahmed, R.; Omar, M. Firdaus Bin; Sultan, M.; Fu, Yong Qing
2018-04-01
In this paper, a one-step thermal evaporation approach was used for fabrication of indium bismuth sulphide thin films, and the synergetic effects of co-evaporation of two sources (indium granules and Bi2S3 powders) were investigated using different characterization techniques. X-ray diffraction (XRD) analysis confirmed the crystalline orthorhombic structure for the post-annealed samples. Surface roughness and crystal size of the obtained film samples were increased with increasing annealing temperatures. Analysis using X-ray photoelectron spectroscopy showed the formation of the InBiS3 structure for the obtained films, which is also confirmed by the XRD results. The optical absorption coefficient value of the annealed samples was found to be in the order of 105 cm-1 in the visible region of the solar spectrum. The optical band gap energy and electrical resistivity of the fabricated samples were observed to decrease (from 2.2 to 1.3 eV, and from 0.3 to 0.01 Ω-cm, respectively) with increasing annealing temperatures (from 200 to 350 °C), indicating the suitability of the prepared InBiS3 thin films for solar cell applications.
Variants of early-onset restrictive eating disturbances in middle childhood.
Kurz, Susanne; van Dyck, Zoé; Dremmel, Daniela; Munsch, Simone; Hilbert, Anja
2016-01-01
This study sought to determine the factor structure of the newly developed self-report screening questionnaire Eating Disturbances in Youth-Questionnaire (EDY-Q) as well as to report the distribution of variants of early-onset restrictive eating disturbances characteristic of avoidant/restrictive food intake disorder (ARFID) in a middle childhood population sample. Using the EDY-Q, a total of 1,444 children aged 8-13 years were screened in elementary schools in Switzerland via self-report. The factor analysis of the 12 items covering ARFID related symptoms was performed using a principal component analysis (PCA). The PCA showed a four factor solution, with clear allocation to the scales covering three variants of early-onset restrictive eating disturbances and weight problems. Inadequate overall food intake was reported by 19.3% of the children, a limited accepted amount of food by 26.1%, and food avoidance based on a specific underlying fear by 5.0%. The postulated factor structure of the EDY-Q was confirmed, further supporting the existence of distinct variants of early-onset restrictive eating disturbances. Avoidant/restrictive eating behavior seems to be a common experience in middle childhood, but results have to be confirmed using validated interviews. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.
2017-12-01
Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.
Iwata-Otsubo, Aiko; Lin, Jer-Young; Gill, Navdeep; Jackson, Scott A
2016-05-01
Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.
Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.
Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S
2014-09-01
The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.
Chang, Yu-Wei; Ko, Tzu-Ping; Lee, Chien-Der; Chang, Yuan-Chih; Lin, Kuei-Ann; Chang, Chia-Seng; Wang, Andrew H.-J.; Wang, Ting-Fang
2009-01-01
RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet unknown mechanisms. We recently reported a structure of RadA left-handed helical filament, and here present three new structures of RadA left-handed helical filaments. Comparative structural analysis between different RadA/Rad51 helical filaments reveals that the N-terminal domain (NTD) of RadA/Rad51, implicated in dsDNA binding, is highly flexible. We identify a hinge region between NTD and polymerization motif as responsible for rigid body movement of NTD. Mutant analysis further confirms that structural flexibility of NTD is essential for RadA's recombinase activity. These results support our previous hypothesis that ATP-dependent axial rotation of RadA nucleoprotein helical filament promotes homologous recombination. PMID:19295907
NASA Astrophysics Data System (ADS)
Šoral, Michal; Markus, Jozef; Doháňošová, Jana; Šoralová, Stanislava; Dvoranová, Dana; Chyba, Andrej; Moncol, Ján; Berkeš, Dušan; Liptaj, Tibor
2017-01-01
Acid-catalyzed cyclization of spirocyclic 1‧-benzyl-2‧-(prop-2-en-1-yl)spiro[indole-3,3‧-pyrrolidine]-5‧-one (1) was performed. The pentacyclic product of Povarov-like imino-Diels-Alder reaction was isolated in high yield instead of expected tetracyclic aza-Prins intermediate. The unusual exotic alkaloid-type structure of the resulting molecule 2 was unambiguously confirmed by a detailed NMR analysis using a set of 2D NMR spectra including an INADEQUATE experiment. The relative configuration of 2 was predicted from the synthesis mechanism and DFT geometry calculations and independently confirmed using NOESY and residual dipolar coupling (RDC) assisted NMR analysis in stretched crosslinked polystyrene gels. The reversibility of the cycloaddition in aprotic solvents was observed. A new reaction pathway yielding a rare 6-5-5-5 tetracyclic spiroindoline 3 was suggested. The relative configuration within the tetracyclic framework was ultimately proved using Single-crystal X-ray diffraction analysis of compound 4.
NASA Astrophysics Data System (ADS)
Vigneshwaran, A. N.; Kalainathan, S.; Raja, C. Ramachandra
2018-03-01
Potassium pentaborate (KB5) is an excellent nonlinear optical material especially in the UV region. In this work, Li and NH4 doped KB5 crystals were grown using slow evaporation solution growth method. The incorporation of dopant has been confirmed and analysed by Energy dispersive X-ray analysis (EDAX), Inductively coupled plasma (ICP) analysis and Raman spectroscopy. The crystalline perfection of pure and doped KB5 crystals was studied by High resolution X-ray diffraction (HRXRD) analysis. Structural grain boundaries were observed in doped crystals. Second harmonic generation was confirmed for pure and doped crystals and output values revealed the enhancement of SHG efficiency in doped crystals. Resistance against laser damage was carried out using 1064 nm Nd-YAG laser of pulse width 10 ns. The laser damage threshold value is increased in Li doped crystal and decreased in NH4 doped crystal when compared to pure KB5 crystal.
NASA Astrophysics Data System (ADS)
De Velasco-Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.; Vázquez, Norma Aurea-Rangel; Pérez-Cruz, Ma. Ana
2018-03-01
In the present work the possible surface modification of natural zeolite using cold oxygen plasma was studied. The sample with and without treatment was characterized using nitrogen adsorption isotherms at -196 °C, FT-IR spectroscopy, SEM/EDX analysis and X-Ray Diffraction. Additionally, the two samples were used for the removal of lead and acid, basic, reactive and food dyes in batch systems. The natural zeolite was found to be a mesoporous material with a low specific surface area (23 m2/g). X-ray patterns confirmed that clinoptilolite was the main crystal structure present in the natural zeolite. The molecular properties of dyes and the zeolitic structure were studied using molecular simulation, with the purpose to understand the adsorption mechanism. The results pointed out that only the roughness of the clinoptilolite was affected by the plasma treatment, whereas the specific surface area, chemical functionality and crystal structure remained constant. Finally, adsorption results confirmed that the plasma treatment had no significant effects on the dyes and lead retention capacities of the natural zeolite.
Suvitha, A; Murugakoothan, P
2012-02-01
The semi-organic nonlinear optical (NLO) crystal, zinc guanidinium phosphate (ZGuP) has been grown through synthesis between zinc sulphate, guanidine carbonate and orthophosphoric acid from its aqueous solution by slow solvent evaporation technique. Solubility of the synthesized material has been determined for various temperatures using water as solvent. The grown crystal has been characterized by powder X-ray diffraction to confirm the crystal structure. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier transform infrared spectroscopy technique. (1)H and (13)C FT-NMR have been recorded to elucidate the molecular structure. The optical absorption study confirms the suitability of the crystal for device applications. The second harmonic generation (SHG) efficiency of ZGuP is found to be 1.825 times that of potassium dihydrogen phosphate (KDP). Thermal behavior of the grown crystals has been studied by thermogravimetric and differential thermal analysis. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ganeshraja, Ayyakannu Sundaram; Clara, Antoni Samy; Rajkumar, Kanniah; Wang, Yanjie; Wang, Yu; Wang, Junhu; Anbalagan, Krishnamoorthy
2015-10-01
The present article is focused on recent developments toward the preparation of room temperature ferromagnetic nanocomposites using better photocatalytic performance. These nanocomposites were successfully prepared by a simple hydrothermal method and their molecular formulas were confirmed as Ti0.90Sn0.10O2 (S1), 0.2CuO-Ti0.73Sn0.06Cu0.21O2-δ (S2), and Ti0.82Sn0.09Fe0.09O2-δ (S3). The ICP, XRD, DRS, FTIR, Raman, XAFS, XPS, EPR, SEM-EDX, HRSEM, HRTEM, photoluminescence and vibrating sample magnetometric measurements were employed to characterize the phase structures, morphologies, optical and magnetic properties of the photocatalysts. The local structures of Sn4+ and Fe3+ were confirmed by 119Sn and 57Fe Mössbauer analysis. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in water under visible light irradiation. Among the samples, tin doped TiO2 (S1) showed the best photocatalytic performance and stability.
Sialyldisaccharide conformations: a molecular dynamics perspective
NASA Astrophysics Data System (ADS)
Selvin, Jeyasigamani F. A.; Priyadarzini, Thanu R. K.; Veluraja, Kasinadar
2012-04-01
Sialyldisaccharides are significant terminal components of glycoconjugates and their negative charge and conformation are extensively utilized in molecular recognition processes. The conformation and flexibility of four biologically important sialyldisaccharides [Neu5Acα(2-3)Gal, Neu5Acα(2-6)Gal, Neu5Acα(2-8)Neu5Ac and Neu5Acα(2-9)Neu5Ac] are studied using Molecular Dynamics simulations of 20 ns duration to deduce the conformational preferences of the sialyldisaccharides and the interactions which stabilize the conformations. This study clearly describes the possible conformational models of sialyldisaccharides deduced from 20 ns Molecular Dynamics simulations and our results confirm the role of water in the structural stabilization of sialyldisaccharides. An extensive analysis on the sialyldisaccharide structures available in PDB also confirms the conformational regions found by experiments are detected in MD simulations of 20 ns duration. The three dimensional structural coordinates for all the MD derived sialyldisaccharide conformations are deposited in the 3DSDSCAR database and these conformational models will be useful for glycobiologists and biotechnologists to understand the biological functions of sialic acid containing glycoconjugates.
Bravo-Alonso, Irene; Navarrete, Rosa; Arribas-Carreira, Laura; Perona, Almudena; Abia, David; Couce, María Luz; García-Cazorla, Angels; Morais, Ana; Domingo, Rosario; Ramos, María Antonia; Swanson, Michael A; Van Hove, Johan L K; Ugarte, Magdalena; Pérez, Belén; Pérez-Cerdá, Celia; Rodríguez-Pombo, Pilar
2017-06-01
The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches. © 2017 Wiley Periodicals, Inc.
Probing the transition state for nucleic acid hybridization using phi-value analysis.
Kim, Jandi; Shin, Jong-Shik
2010-04-27
Genetic regulation by noncoding RNA elements such as microRNA and small interfering RNA (siRNA) involves hybridization of a short single-stranded RNA with a complementary segment in a target mRNA. The physical basis of the hybridization process between the structured nucleic acids is not well understood primarily because of the lack of information about the transition-state structure. Here we use transition-state theory, inspired by phi-value analysis in protein folding studies, to provide quantitative analysis of the relationship between changes in the secondary structure stability and the activation free energy. Time course monitoring of the hybridization reaction was performed under pseudo-steady-state conditions using a single fluorophore. The phi-value analysis indicates that the native secondary structure remains intact in the transition state. The nativelike transition state was confirmed via examination of the salt dependence of the hybridization kinetics, indicating that the number of sodium ions associated with the transition state was not substantially affected by changes in the native secondary structure. These results propose that hybridization between structured nucleic acids undergoes a transition state leading to formation of a nucleation complex and then is followed by sequential displacement of preexisting base pairings involving successive small energy barriers. The proposed mechanism might provide new insight into physical processes during small RNA-mediated gene silencing, which is essential to selection of a target mRNA segment for siRNA design.
Dash, Paban Kumar; Sharma, Shashi; Soni, Manisha; Agarwal, Ankita; Sahni, Ajay Kumar; Parida, Manmohan
2015-01-02
Dengue is now hyper-endemic in most parts of south and southeast Asia including India. The northern India particularly national capital New Delhi witnessed major Dengue outbreaks with Dengue virus type 1 (DENV-1) as the dominant serotype since last five years. This study was initiated to decipher the complete genome information of recently circulating DENV-1 (2009-2011) along with the prototype Indian DENV-1, isolated in 1956. Further extensive ML phylogenetic and Bayesian phylogeography analysis was carried out to investigate the evolution of this virus and understand its spatiotemporal diffusion across the globe. The complete genome analysis revealed deletion of a unique 21-nucleotide stretch in the 3' un-translated region of recent Indian DENV-1. The north Indian DENV-1 revealed up to 5.2% nucleotide sequence difference compared to recent isolates from southern India. Selection pressure analysis revealed positive selection in few amino acid sites of both structural and non-structural proteins. The molecular phylogeny classified the Indian DENV-1 into genotype III, which is also known as cosmopolitan genotype. The northern and southern Indian DENV-1 were grouped into distinct clades. The molecular clock analysis estimated a mean evolutionary rate of 7.08×10(-4) substitutions/site/year for cosmopolitan genotype. The phylogeography analysis revealed that the cosmopolitan genotype DENV-1 originated ∼1938 in India and subsequently spread globally. The diffusion of virus from India to Caribbean and South America was confirmed through SPREAD analysis. This study also confirmed the temporal displacement of different clades of DENV-1 in India over last five decades. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Radoń, Adrian; Włodarczyk, Patryk; Łukowiec, Dariusz
2018-05-01
The article presents the influence of reduction by hydrogen in statu nascendi and modification by hydrogen peroxide on the structure and electrical conductivity of electrochemically exfoliated graphite. It was confirmed that the electrochemical exfoliation can be used to produce oxidized nanographite with an average number of 25 graphene layers. The modified electrochemical exfoliated graphite and reduced electrochemical exfoliated graphite were characterized by high thermal stability, what was associated with removing of labile oxygen-containing groups. The presence of oxygen-containing groups was confirmed using Fourier-transform infrared spectroscopy. Influence of chemical modification by hydrogen and hydrogen peroxide on the electrical conductivity was determined in wide frequency (0.1 Hz-10 kHz) and temperature range (-50 °C-100 °C). Material modified by hydrogen peroxide (0.29 mS/cm at 0 °C) had the lowest electrical conductivity. This can be associated with oxidation of unstable functional groups and was also confirmed by analysis of Raman spectra. The removal of oxygen-containing functional groups by hydrogen in statu nascendi resulted in a 1000-fold increase in the electrical conductivity compared to the electrochemical exfoliated graphite.
[Validation of a Japanese version of the Experience in Close Relationship- Relationship Structure].
Komura, Kentaro; Murakami, Tatsuya; Toda, Koji
2016-08-01
The purpose of this study was to translate the Experience of Close Relationship-Relationship Structure (ECRRS) and evaluate its validity. In study 1 (N = 982), evidence based internal structure (factor structure, internal consistency, and correlation among sub-scales) and evidence based relations to other variables (depression, reassurance seeking and self-esteem) were confirmed. In study 2 (N = 563), evidence based on internal structure was reconfirmed, and evidence based relations to other variables (IWMS, RQ, and ECR-GO) were confirmed. In study 3 (N = 342), evidence based internal structure (test-retest reliability) was confirmed. Based on these results, we concluded that ECR-RS was valid for measuring adult attachment style.
NASA Astrophysics Data System (ADS)
Sathya, K.; Dhamodharan, P.; Dhandapani, M.
2017-06-01
Single crystals of 1H-benzo[d]imidazol-3-ium-3,5-dinitrobenzoate (BDNB) were grown by reacting 3,5-dinitrobenzoic acid and benzimidazole by slow evaporation method. UV-Vis-NIR spectral studies of the BDNB show that the crystal is excellently transparent in entire visible region. Chemically and magnetically equivalent protons in BDNB were identified by 1H NMR technique. The carbon frame work of the molecule was established by 13C NMR spectroscopy. Proton transfer mechanism was confirmed by the presence of N+H group in BDNB by FT-IR spectroscopic technique. TG/DTA analyses confirmed that the crystal is stable up to172 °C. Single crystal XRD analysis was carried out to ascertain the molecular structure and the crystal belongs to monoclinic system with space group P21/c. Computational studies that include optimization of molecular geometry, natural bond analysis, Mulliken population analysis and HOMO-LUMO analysis were performed using B3LYP method at 6-31 g level. The low HOMO-LUMO energy gap of BDNB confirms high reactivity of BDNB. Hirshfeld analysis expose that O⋯H/H⋯O interactions are the prominent interactions. Theoretical calculations indicate that first order hyperpolarizability is 16 times greater than urea. The results show that the BDNB may be used for opto-electronic applications. The antimicrobial and antioxidant analyses shows concentration of the compound increases inhibition activity also increases.
NASA Astrophysics Data System (ADS)
Lin, Chien-Liang
2018-02-01
This study sought to develop a self-report instrument to be used in the assessment of the project competences of college students engaged in online project-based learning. Three scales of the KIPSSE instrument developed for this study, namely, the knowledge integration, project skills, and self-efficacy scales, were based on related theories and the analysis results of three project advisor interviews. Those items of knowledge integration and project skill scales focused on the integration of different disciplines and technological skills separately. Two samples of data were collected from information technology-related courses taught with an online project-based learning strategy over different semesters at a college in southern Taiwan. The validity and reliability of the KIPSSE instrument were confirmed through item analysis and confirmatory factor analysis using structural equation modeling of two samples of students' online response sets separately. The Cronbach's alpha reliability coefficient for the entire instrument was 0.931; for each scale, the alpha ranged from 0.832 to 0.907. There was also a significant correlation ( r = 0.55, p < 0.01) between the KIPSSE instrument results and the students' product evaluation scores. The findings of this study confirmed the validity and reliability of the KIPSSE instrument. The confirmation process and related implications are also discussed.
NASA Astrophysics Data System (ADS)
Abbas, Mohamed; Torati, Sri Ramulu; Kim, Cheolgi
2015-07-01
A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency.A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02680f
Stress of algicidal substances from a bacterium Exiguobacterium sp. h10 on Microcystis aeruginosa.
Li, Y; Liu, L; Xu, Y; Li, P; Zhang, K; Jiang, X; Zheng, T; Wang, H
2017-01-01
Microcystis aeruginosa is a cyanobacterial bloom-causing species and is considered a serious threat to human health and biological safety. In this study, the algicidal bacterium h10 showed high algicidal effects on M. aeruginosa 7820, and strain h10 was confirmed to belong to the genus Exiguobacterium, for which the name Exiguobacterium sp. h10 is proposed. Algicidal activity and mode analysis revealed that the supernatant, rather than the bacterial cells, was responsible for the algicidal activity, indicating that the algicidal mode of strain h10 is by indirect attack through the production of algicidal substances. Analysis of the algicidal substance characteristics showed a molecular weight of <1000 Da and that algicidal substances exhibit high thermal stability and pH instability, and the characteristic functional groups of the algicidal substance mainly included carbonyl, amino and hydroxyl groups. Under the effects of the algicidal substance, the cellular pigment content was significantly decreased, and the algal cell structure and morphology were seriously damaged. The results indicate that the algicidal bacterium Exiguobacterium sp. h10 could be a potential bio-agent for controlling cyanobacterial blooms of M. aeruginosa. In this study, the effects of algicidal substances from an algicidal bacterium Exiguobacterium sp. h10 on the toxic cyanobacterium, Microcystis aeruginosa 7820, were first investigated. The algicidal mode of action was confirmed as an indirect attack through the production of algicidal substances. The characteristics of the algicidal substance were determined, especially the functional groups analysis that confirmed the algicidal substances were glycolipid mixtures. With the stress of algicidal substances, the algal chlorophyll a synthesis, cell structure and morphology were seriously damaged. This study proved that algicidal bacteria are promising sources of potential cyanobacterial bloom-control, and provided good procedures for the identification and analysis of an algicidal bacterium and substances. Letters in Applied Microbiology © 2016 The Society for Applied Microbiology.
Gas-phase conformations of 2-methyl-1,3-dithiolane investigated by microwave spectroscopy
NASA Astrophysics Data System (ADS)
Van, Vinh; Stahl, Wolfgang; Schwell, Martin; Nguyen, Ha Vinh Lam
2018-03-01
The conformational analysis of 2-methyl-1,3-dithiolane using quantum chemical calculations at some levels of theory yielded only one stable conformer with envelope geometry. However, other levels of theory indicated two envelope conformers. Analysis of the microwave spectrum recorded using two molecular jet Fourier transform microwave spectrometers covering the frequency range from 2 to 40 GHz confirms that only one conformer exists under jet conditions. The experimental spectrum was reproduced using a rigid-rotor model with centrifugal distortion correction within the measurement accuracy of 1.5 kHz, and molecular parameters were determined with very high accuracy. The gas phase structure of the title molecule is compared with the structures of other related molecules studied under the same experimental conditions.
Wang, Xia; Meng, QianQian; Peng, XingRong; Hu, GuiLin; Qiu, MingHua
2018-10-15
Eight new ent-kaurane diterpene fatty acid esters, namely caffarolides A-H (1-8), were isolated from green beans of Coffea arabica. Their chemical structures were confirmed by extensive spectroscopic analysis including 1D, 2D NMR (HSQC, HMBC, 1 H- 1 H COSY, and ROESY), HRMS, IR and CD spectra and by GC-FID analysis. Interestingly, the diterpene moiety of these new compounds first occurred in genus Coffea. All the isolates were evaluated for platelet aggregation activity in vitro. As the results, caffarolides C, D and F (3, 4 and 6) showed induction effect for platelet aggregation and the possible structure-activity relationships have been discussed briefly. Copyright © 2018 Elsevier Ltd. All rights reserved.
A psychometric examination of the Interpersonal Sexual Objectification Scale among college men.
Davidson, M Meghan; Gervais, Sarah J; Canivez, Gary L; Cole, Brian P
2013-04-01
Whereas sexual objectification has most commonly been studied among women, recent calls by counseling psychologists have urged for an extension of objectification research to more fully include men (e.g., Heimerdinger-Edwards, Vogel, & Hammer, 2011). The present study examined the factor structure of the Interpersonal Sexual Objectification Scale (ISOS; Kozee, Tylka, Augustus-Horvath, & Denchik, 2007) with men. Specifically, analyses included exploratory factor analysis (EFA) with a sample of 287 college men and confirmatory factor analysis (CFA) with an independent sample of 221 college men. A correlated 3-factor structure was suggested by multiple criteria in EFA and was further confirmed by CFA with a bifactor model illustrating the most item variance associated with a general interpersonal sexual objectification dimension for men.
NASA Astrophysics Data System (ADS)
Mao, Hanping; Liu, Zhongshou
2018-01-01
In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe3O4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples.
Park, Young Il
2016-01-01
BACKGROUND/OBJECTIVES This research analyzes the effects of the food choices of industrial workers according to their sugar intake pattern on their job satisfaction through the construction of a model on the relationship between sugar intake pattern and job satisfaction. SUBJECTS/METHODS Surveys were collected from May to July 2015. A statistical analysis of the 775 surveys from Kyungsangnam-do was conducted using SPSS13.0 for Windows and SEM was performed using the AMOS 5.0 statistics package. RESULTS The reliability of the data was confirmed by an exploratory factor analysis through a Cronbach's alpha coefficient, and the measurement model was proven to be appropriate by a confirmatory factor analysis in conjunction with AMOS. The results of factor analysis on food choice, sugar intake pattern and job satisfaction were categorized into five categories. The reliability of these findings was supported by a Cronbach's alpha coefficient of 0.6 and higher for all factors except confection (0.516) and dairy products (0.570). The multicollinearity results did not indicate a problem between the variables since the highest correlation coefficient was 0.494 (P < 0.01). In an attempt to study the sugar intake pattern in accordance with the food choices and job satisfaction of industrial workers, a structural equation model was constructed and analyzed. CONCLUSIONS All tests confirmed that the model satisfied the recommended levels for the goodness of fit index, and thus, the overall research model was proven to be appropriate. PMID:27478555
Krishna, Gamidi Rama; Devarapalli, Ramesh; Prusty, Rajesh; Liu, Tiandong; Fraser, Cassandra L; Ramamurty, Upadrasta; Reddy, Chilla Malla
2015-11-01
The structure and mechanical properties of crystalline materials of three boron difluoride dibenzoylmethane (BF2dbm) derivatives were investigated to examine the correlation, if any, among mechanochromic luminescence (ML) behaviour, solid-state structure, and the mechanical behaviour of single crystals. Qualitative mechanical deformation tests show that the crystals of BF2dbm( (t) Bu)2 can be bent permanently, whereas those of BF2dbm(OMe)2 exhibit an inhomogeneous shearing mode of deformation, and finally BF2dbmOMe crystals are brittle. Quantitative mechanical analysis by nano-indentation on the major facets of the crystals shows that BF2dbm( (t) Bu)2 is soft and compliant with low values of elastic modulus, E, and hardness, H, confirming its superior suceptibility for plastic deformation, which is attributed to the presence of a multitude of slip systems in the crystal structure. In contrast, both BF2dbm(OMe)2 and BF2dbmOMe are considerably stiffer and harder with comparable E and H, which are rationalized through analysis of the structural attributes such as the intermolecular interactions, slip systems and their relative orientation with respect to the indentation direction. As expected from the qualitative mechanical behaviour, prominent ML was observed in BF2dbm( (t) Bu)2, whereas BF2dbm(OMe)2 exhibits only a moderate ML and BF2dbmOMe shows no detectable ML, all examined under identical conditions. These results confirm that the extent of ML in crystalline organic solid-state fluorophore materials can be correlated positively with the extent of plasticity (low recovery). In turn, they offer opportunities to design new and improved efficient ML materials using crystal engineering principles.
Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).
Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A
2006-05-19
Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.
Roy Choudhury, Amrita; Perdih, Andrej; Zuperl, Spela; Sikorska, Emilia; Solmajer, Tom; Jurga, Stefan; Zhukov, Igor; Novič, Marjana
2013-11-01
Membrane proteins represent about a third of the gene products in most organisms, as revealed by the genome sequencing projects. They account for up to two thirds of known drugable targets, which emphasizes their critical pharmaceutical importance. Here we present a study on bilitranslocase (BTL) (TCDB 2.A.65), a membrane protein primarily involved in the transport of bilirubin from blood to liver cells. Bilitranslocase has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its 3D structure. However, at present, only a limited knowledge is available beyond the primary structure of BTL. It has been recently confirmed experimentally that one of the four computationally predicted transmembrane segments of bilitranslocase, TM3, has a helical structure with hydrophilic amino acid residues oriented towards one side, which is typical for transmembrane domains of membrane proteins. In this study we confirmed by the use of multidimensional NMR spectroscopy that the second transmembrane segment, TM2, also appears in a form of α-helix. The stability of this polypeptide chain was verified by molecular dynamics (MD) simulation in dipalmitoyl phosphatidyl choline (DPPC) and in sodium dodecyl sulfate (SDS) micelles. The two α-helices, TM2 corroborated in this study, and TM3 confirmed in our previous investigation, provide reasonable building blocks of a potential transmembrane channel for transport of bilirubin and small hydrophilic molecules, including pharmaceutically active compounds. Copyright © 2013 Elsevier B.V. All rights reserved.
Confirmatory factor analysis of the Child Oral Health Impact Profile (Korean version).
Cho, Young Il; Lee, Soonmook; Patton, Lauren L; Kim, Hae-Young
2016-04-01
Empirical support for the factor structure of the Child Oral Health Impact Profile (COHIP) has not been fully established. The purposes of this study were to evaluate the factor structure of the Korean version of the COHIP (COHIP-K) empirically using confirmatory factor analysis (CFA) based on the theoretical framework and then to assess whether any of the factors in the structure could be grouped into a simpler single second-order factor. Data were collected through self-reported COHIP-K responses from a representative community sample of 2,236 Korean children, 8-15 yr of age. Because a large inter-factor correlation of 0.92 was estimated in the original five-factor structure, the two strongly correlated factors were combined into one factor, resulting in a four-factor structure. The revised four-factor model showed a reasonable fit with appropriate inter-factor correlations. Additionally, the second-order model with four sub-factors was reasonable with sufficient fit and showed equal fit to the revised four-factor model. A cross-validation procedure confirmed the appropriateness of the findings. Our analysis empirically supported a four-factor structure of COHIP-K, a summarized second-order model, and the use of an integrated summary COHIP score. © 2016 Eur J Oral Sci.
Electrical and structural behaviour of the perovskite LaCr0.4Co0.4Fe0.2O3
NASA Astrophysics Data System (ADS)
Rativa-Parada, W.; Gómez-Cuaspud, J. A.; Vera-López, E.; Carda-Castelló, J. B.
2017-12-01
The electrical and structural properties of the LaCr0.4Co0.4Fe0.2O3 perovskite are investigated. The oxide is synthetized by polymerization-combustion method, using citric acid as a chelating agent and low calcination temperature. The X-ray diffraction, Raman spectroscopy and transmission electron microscopy analysis show conformation of a pure phase with rhombohedral (R-3c) structure and confirmed high structural crystallinity facilitated by synthesis method. The characterization by means of impedance spectroscopy is performed at room temperature. It is observed that the oxides behave as materials of the semiconductor type and that the conductivity increase in accordance to a thermal excitation phenomenon.
NASA Astrophysics Data System (ADS)
Teixeira, R. R.; Barbosa, L. C. A.; Kabeshov, M. A.; Maltha, C. R. A.; Corrêa, R. S.; Doriguetto, A. C.
2014-10-01
Herein we describe structural insights of (5Z)-3-benzyl-5-(2-fluorobenzylidene)furan-2(5H)-one (6) and (5Z)-3-benzyl-5-(pentafluorobenzylidene)furan-2(5H)-one (7), γ-alkylidenebutenolides analogues of the natural products nostoclides. Their structures were investigated by NMR spectroscopy and X-ray crystallography. The stereochemistry of the exocyclic double bond of these fluorinated compounds was determined to be Z by NMR analysis and confirmed by X-ray data. Compounds 6 and 7 crystallized in the monoclinic crystal system P21/c group. A comparison between structural features of (6) and (7) and nostoclide derivatives previously published by us is described.
Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers.
Wang, Zhixin; Liang, Yong; Yin, Xuefan; Peng, Chao; Hu, Weiwei; Faist, Jérôme
2017-05-15
An analytical coupled-wave model is developed for surface-emitting photonic-crystal quantum cascade lasers (PhC-QCLs). This model provides an accurate and efficient analysis of full three-dimensional device structure with large-area cavity size. Various laser properties of interest including the band structure, mode frequency, cavity loss, mode intensity profile, and far field pattern (FFP), as well as their dependence on PhC structures and cavity size, are investigated. Comparison with numerical simulations confirms the accuracy and validity of our model. The calculated FFP and polarization profile well explain the previously reported experimental results. In particular, we reveal the possibility of switching the lasing modes and generating single-lobed FFP by properly tuning PhC structures.
Brignole-Baudouin, Françoise; Desbenoit, Nicolas; Hamm, Gregory; Liang, Hong; Both, Jean-Pierre; Brunelle, Alain; Fournier, Isabelle; Guerineau, Vincent; Legouffe, Raphael; Stauber, Jonathan; Touboul, David; Wisztorski, Maxence; Salzet, Michel; Laprevote, Olivier; Baudouin, Christophe
2012-01-01
We investigated in a rabbit model, the eye distribution of topically instilled benzalkonium_(BAK) chloride a commonly used preservative in eye drops using mass spectrometry imaging. Three groups of three New Zealand rabbits each were used: a control one without instillation, one receiving 0.01%BAK twice a day for 5 months and one with 0.2%BAK one drop a day for 1 month. After sacrifice, eyes were embedded and frozen in tragacanth gum. Serial cryosections were alternately deposited on glass slides for histological (hematoxylin-eosin staining) and immunohistological controls (CD45, RLA-DR and vimentin for inflammatory cell infiltration as well as vimentin for Müller glial cell activation) and ITO or stainless steel plates for MSI experiments using Matrix-assisted laser desorption ionization time-of-flight. The MSI results were confirmed by a round-robin study on several adjacent sections conducted in two different laboratories using different sample preparation methods, mass spectrometers and data analysis softwares. BAK was shown to penetrate healthy eyes even after a short duration and was not only detected on the ocular surface structures, but also in deeper tissues, especially in sensitive areas involved in glaucoma pathophysiology, such as the trabecular meshwork and the optic nerve areas, as confirmed by images with histological stainings. CD45-, RLA-DR- and vimentin-positive cells increased in treated eyes. Vimentin was found only in the inner layer of retina in normal eyes and increased in all retinal layers in treated eyes, confirming an activation response to a cell stress. This ocular toxicological study confirms the presence of BAK preservative in ocular surface structures as well as in deeper structures involved in glaucoma disease. The inflammatory cell infiltration and Müller glial cell activation confirmed the deleterious effect of BAK. Although these results were obtained in animals, they highlight the importance of the safety-first principle for the treatment of glaucoma patients.
Brignole-Baudouin, Françoise; Desbenoit, Nicolas; Hamm, Gregory; Liang, Hong; Both, Jean-Pierre; Brunelle, Alain; Fournier, Isabelle; Guerineau, Vincent; Legouffe, Raphael; Stauber, Jonathan; Touboul, David; Wisztorski, Maxence; Salzet, Michel; Laprevote, Olivier; Baudouin, Christophe
2012-01-01
We investigated in a rabbit model, the eye distribution of topically instilled benzalkonium_(BAK) chloride a commonly used preservative in eye drops using mass spectrometry imaging. Three groups of three New Zealand rabbits each were used: a control one without instillation, one receiving 0.01%BAK twice a day for 5 months and one with 0.2%BAK one drop a day for 1 month. After sacrifice, eyes were embedded and frozen in tragacanth gum. Serial cryosections were alternately deposited on glass slides for histological (hematoxylin-eosin staining) and immunohistological controls (CD45, RLA-DR and vimentin for inflammatory cell infiltration as well as vimentin for Müller glial cell activation) and ITO or stainless steel plates for MSI experiments using Matrix-assisted laser desorption ionization time-of-flight. The MSI results were confirmed by a round-robin study on several adjacent sections conducted in two different laboratories using different sample preparation methods, mass spectrometers and data analysis softwares. BAK was shown to penetrate healthy eyes even after a short duration and was not only detected on the ocular surface structures, but also in deeper tissues, especially in sensitive areas involved in glaucoma pathophysiology, such as the trabecular meshwork and the optic nerve areas, as confirmed by images with histological stainings. CD45-, RLA-DR- and vimentin-positive cells increased in treated eyes. Vimentin was found only in the inner layer of retina in normal eyes and increased in all retinal layers in treated eyes, confirming an activation response to a cell stress. This ocular toxicological study confirms the presence of BAK preservative in ocular surface structures as well as in deeper structures involved in glaucoma disease. The inflammatory cell infiltration and Müller glial cell activation confirmed the deleterious effect of BAK. Although these results were obtained in animals, they highlight the importance of the safety-first principle for the treatment of glaucoma patients. PMID:23209668
dos Reis, Evelyze Pinheiro; Fernandes Salomão, Tânia Maria; de Oliveira Campos, Lucio Antonio; Tavares, Mara Garcia
2014-01-01
The genetic diversity and structure of the ant Atta robusta were assessed by ISSR (inter-simple sequence repeats) in 72 colonies collected from 10 localities in the Brazilian states of Espírito Santo (48 colonies) and Rio de Janeiro (24 colonies). The ISSR pattern included 67 bands, 51 of them (76.1%) polymorphic. Analysis of molecular variance (AMOVA) revealed a high level (57.4%) of inter-population variation, which suggested a high degree of genetic structure that was confirmed by UPGMA (unweighted pair-group method using an arithmetic average) cluster analysis. The significant correlation between genetic and geographic distances (r = 0.64, p < 0.05) indicated isolation that reflected the distance between locations. Overall, the populations were found to be genetically divergent. This finding indicates the need for management plans to preserve and reduce the risk of extinction of A. robusta. PMID:25249782
The ambivalent effect of lattice structure on a spatial game
NASA Astrophysics Data System (ADS)
Zhang, Hui; Gao, Meng; Li, Zizhen; Maa, Zhihui; Wang, Hailong
2011-06-01
The evolution of cooperation is studied in lattice-structured populations, in which each individual who adopts one of the following strategies ‘always defect' (ALLD), ‘tit-for-tat' (TFT), and ‘always cooperate' (ALLC) plays the repeated Prisoner's Dilemma game with its neighbors according to an asynchronous update rule. Computer simulations are applied to analyse the dynamics depending on major parameters. Mathematical analyses based on invasion probability analysis, mean-field approximation, as well as pair approximation are also used. We find that the lattice structure promotes the evolution of cooperation compared with a non-spatial population, this is also confirmed by invasion probability analysis in one dimension. Meanwhile, it also inhibits the evolution of cooperation due to the advantage of being spiteful, which indicates the key role of specific life-history assumptions. Mean-field approximation fails to predict the outcome of computer simulations. Pair approximation is accurate in two dimensions but fails in one dimension.
Dos Reis, Evelyze Pinheiro; Fernandes Salomão, Tânia Maria; de Oliveira Campos, Lucio Antonio; Tavares, Mara Garcia
2014-09-01
The genetic diversity and structure of the ant Atta robusta were assessed by ISSR (inter-simple sequence repeats) in 72 colonies collected from 10 localities in the Brazilian states of Espírito Santo (48 colonies) and Rio de Janeiro (24 colonies). The ISSR pattern included 67 bands, 51 of them (76.1%) polymorphic. Analysis of molecular variance (AMOVA) revealed a high level (57.4%) of inter-population variation, which suggested a high degree of genetic structure that was confirmed by UPGMA (unweighted pair-group method using an arithmetic average) cluster analysis. The significant correlation between genetic and geographic distances (r = 0.64, p < 0.05) indicated isolation that reflected the distance between locations. Overall, the populations were found to be genetically divergent. This finding indicates the need for management plans to preserve and reduce the risk of extinction of A. robusta.
Magnetic characteristics of CoPd and FePd antidot arrays on nanoperforated Al2O3 templates
NASA Astrophysics Data System (ADS)
Maximenko, A.; Fedotova, J.; Marszałek, M.; Zarzycki, A.; Zabila, Y.
2016-02-01
Hard magnetic antidot arrays show promising results in context of designing of percolated perpendicular media. In this work the technology of magnetic FePd and CoPd antidot arrays fabrication is presented and correlation between surface morphology, structure and magnetic properties is discussed. CoPd and FePd antidot arrays were fabricated by deposition of Co/Pd and Fe/Pd multilayers (MLs) on porous anodic aluminum oxide templates with bowl-shape cell structure with inclined intercellular regions. FePd ordered L10 structure was obtained by successive vacuum annealing at elevated temperatures (530 °C) and confirmed by XRD analysis. Systematic analysis of magnetization curves evidenced perpendicular magnetic anisotropy of CoPd antidot arrays, while FePd antidot arrays revealed isotropic magnetic anisotropy with increased out-of-plane magnetic contribution. MFM images of antidots showed more complicated contrast, with alternating magnetic dots oriented parallel and antiparallel to tip magnetization moment.
Diarylheptanoids from Rhizomes of Alpinia officinarum Inhibit Aggregation of α-Synuclein.
Fu, Guangmiao; Zhang, Wei; Du, Dongsheng; Ng, Yu Pong; Ip, Fanny C F; Tong, Rongbiao; Ip, Nancy Y
2017-08-09
Two new diarylheptanoids, alpinin A (1) and alpinin B (2), together with 18 known diarylheptanoids (3-20), were isolated from the rhizomes of Alpinia officinarum. Their structures were elucidated by comprehensive spectroscopic analysis, including high-resolution mass spectrometry, infrared spectroscopy, and one- and two-dimensional nuclear magnetic resonance spectroscopy. Structurally, alpinin A is a new member of the small family of oxa-bridged diarylheptanoids and contains the characteristic 2,6-cis-configured tetrahydropyran motif (C 1 -C 5 oxa bridge). The absolute configuration of alpinin A was confirmed by asymmetric total synthesis of the enantiomer (ent-1), corroborating the assignment of the molecular structure. The absolute configuration of alpinin B was determined on the basis of the analysis of the circular dichroism exciton chirality spectrum. We evaluated the inhibitory activity of all isolated diarylheptanoids against α-synuclein aggregation at 10 μM. Alpinins A and B significantly inhibited α-synuclein aggregation by 66 and 67%, respectively.
Jeon, Hyunsoo; Lee, Keunchul; Kwon, Sungho
2016-08-01
The study examined whether self-compassion mediates the relationship between social support and subjective well-being, as perceived by athletes. It also investigated the structural relationships between these variables. Participants were 333 athletes attending high school or university. Structural equation analysis showed that self-compassion partially mediated the relationship between social support and subjective well-being. To test the stability of the model, a multiple group analysis was performed according to sex of participant and school level, and this demonstrated that the model had similar fit to the data regardless of group. The confirmation that self-compassion plays an intermediary role in the relationship between social support and subjective well-being demonstrates that self-compassionate attitudes can be fostered by social support, and that, in turn, has a positive effect on an individual's subjective well-being. © The Author(s) 2016.
Chemical and protein structural basis for biological crosstalk between PPAR α and COX enzymes
NASA Astrophysics Data System (ADS)
Cleves, Ann E.; Jain, Ajay N.
2015-02-01
We have previously validated a probabilistic framework that combined computational approaches for predicting the biological activities of small molecule drugs. Molecule comparison methods included molecular structural similarity metrics and similarity computed from lexical analysis of text in drug package inserts. Here we present an analysis of novel drug/target predictions, focusing on those that were not obvious based on known pharmacological crosstalk. Considering those cases where the predicted target was an enzyme with known 3D structure allowed incorporation of information from molecular docking and protein binding pocket similarity in addition to ligand-based comparisons. Taken together, the combination of orthogonal information sources led to investigation of a surprising predicted relationship between a transcription factor and an enzyme, specifically, PPAR α and the cyclooxygenase enzymes. These predictions were confirmed by direct biochemical experiments which validate the approach and show for the first time that PPAR α agonists are cyclooxygenase inhibitors.
Effect Of Neodymium Substitution In Structural Characteristics Of Magnesium Ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thankachan, Smitha; Binu, P. J.; Xavier, Sheena
2011-10-20
The effect of Nd{sup 3+} substitution on the structural properties of Magnesium ferrite was studied in the series MgNd{sub x}Fe{sub 2-x}O{sub 4}, where x = 0 to 0.3 in steps of 0.05. The series was prepared by sol-gel technique which is one of the novel technique to prepare nanosized samples. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. XRD analysis reveals the prepared samples are single phasic till x = 0.2. From x0 = .25, a secondary phase of iron neodymium oxide appears along with the spinel phase. Particle size calculation shows the prepared samples aremore » in the 9nm to 11 nm regime. Lattice parameter was found to increase with concentration of Nd. XRD and FTIR analysis confirmed spinel structure of the prepared samples. XRF result shows the expected composition of prepared samples. The frequency dependence of the dielectric constant in the range 100 Hz--120MHz was also studied« less
NASA Astrophysics Data System (ADS)
Piana Agostinetti, Nicola; Faccenna, Claudio
2018-05-01
The Apennines is a well-studied orogeny formed by the accretion of continental slivers during the subduction of the Adriatic plate, but its deep structure is still a topic of controversy. Here we illuminated the deep structure of the Northern Apennines belt by combining results from the analysis of active seismic (CROP03) and receiver function data. The result from combining these two approaches provides a new robust view of the structure of the deep crust/upper mantle, from the back-arc region to the Adriatic subduction zone. Our analysis confirms the shallow Moho depth beneath the back-arc region and defines the top of the downgoing plate, showing that the two plates separate at depth about 40 km closer to the trench than reported in previous reconstructions. This spatial relationship has profound implications for the geometry of the shallow subduction zone and of the mantle wedge, by the amount of crustal material consumed at trench.
Stress analysis for structures with surface cracks
NASA Technical Reports Server (NTRS)
Bell, J. C.
1978-01-01
Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.
Perrone, Olavo Micali; Colombari, Felippe Mariano; Rossi, Jessika Souza; Moretti, Marcia Maria Souza; Bordignon, Sidnei Emilio; Nunes, Christiane da Costa Carreira; Gomes, Eleni; Boscolo, Mauricio; Da-Silva, Roberto
2016-10-01
Sugarcane bagasse (SCB) was treated in three stages using ozone oxidation (O), washing in an alkaline medium (B) and ultrasonic irradiation (U). The impact of each pretreatment stage on the physical structure of the SCB was evaluated by its chemical composition, using an infrared technique (FTIR-ATR), and using thermogravimetric analysis (TGA/DTG). The pretreatment sequence O, B, U provided a significant reduction of lignin and hemicellulose, which was confirmed by changes in the absorption bands corresponding to these compounds, when observed using infrared. Thermogravimetric analysis confirmed an increased thermal stability in the treated sample due to the removal of hemicellulose and extractives during the pretreatment. This pretreatment released 391mg glucose/g from treated SCB after the enzymatic hydrolysis, corresponding to a yield of 94% of the cellulose available. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brown, J. William; Ramesh, P. S.; Geetha, D.
2018-02-01
We report fabrication of mesoporous Fe doped CuS nanocomposites with uniform mesoporous spherical structures via a mild hydrothermal method employing copper nitrate trihydrate (Cu (NO3).3H2O), Thiourea (Tu,Sc(NH2)2 and Iron tri nitrate (Fe(No3)3) as initial materials with cationic surfactant cetyltrimethylamoniame bromide (CTAB) as stabilizer/size controller and Ethylene glycol as solvent at 130 °C temperature. The products were characterized by XRD, SEM/EDX, TEM, FTIR and UV analysis. X-ray diffraction (XRD) spectra confirmed the Fe doped CuS nanocomposites which are crystalline in nature. EDX and XRD pattern confirmed that the product is hexagonal CuS phase. Fe doped spherical structure of CuS with grain size of 21 nm was confirmed by XRD pattern. Fe doping was identified by energy dispersive spectrometry (EDS). The Fourier-transform infrared (FTIR) spectroscopy results revealed the occurrence of active functional groups required for the reduction of copper ions. Studies showed that after a definite time relining on the chosen copper source, the obtained Fe-CuS nanocomposite shows a tendency towards self-assembly and creating mesoporous like nano and submicro structures by TEM/SAED. The achievable mechanism of producing this nanocomposite was primarily discussed. The electrochemical study confirms the pseudocapacitive nature of the CuS and Fe-CuS electrodes. The CuS and Fe-CuS electrode shows a specific capacitance of about 328.26 and 516.39 Fg-1 at a scan rate of 5 mVs-1. As the electrode in a supercapacitor, the mesoporous nanostructured Fe-CuS shows excellent capacitance characteristics.
Shen, Kui; Ramirez, Benjamin; Mapes, Brandon; Shen, Grace R.; Gokhale, Vijay; Brown, Mary E.; Santarsiero, Bernard; Ishii, Yoshitaka; Dudek, Steven M.; Wang, Ting; Garcia, Joe G. N.
2015-01-01
The MYLK gene encodes the multifunctional enzyme, myosin light chain kinase (MLCK), involved in isoform-specific non-muscle and smooth muscle contraction and regulation of vascular permeability during inflammation. Three MYLK SNPs (P21H, S147P, V261A) alter the N-terminal amino acid sequence of the non-muscle isoform of MLCK (nmMLCK) and are highly associated with susceptibility to acute lung injury (ALI) and asthma, especially in individuals of African descent. To understand the functional effects of SNP associations, we examined the N-terminal segments of nmMLCK by 1H-15N heteronuclear single quantum correlation (HSQC) spectroscopy, a 2-D NMR technique, and by in silico molecular modeling. Both NMR analysis and molecular modeling indicated SNP localization to loops that connect the immunoglobulin-like domains of nmMLCK, consistent with minimal structural changes evoked by these SNPs. Molecular modeling analysis identified protein-protein interaction motifs adversely affected by these MYLK SNPs including binding by the scaffold protein 14-3-3, results confirmed by immunoprecipitation and western blot studies. These structure-function studies suggest novel mechanisms for nmMLCK regulation, which may confirm MYLK as a candidate gene in inflammatory lung disease and advance knowledge of the genetic underpinning of lung-related health disparities. PMID:26111161
Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV).
Snow, M; Bain, N; Black, J; Taupin, V; Cunningham, C O; King, J A; Skall, H F; Raynard, R S
2004-10-21
The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders this the most comprehensive molecular epidemiological study of marine VHSV conducted to date. Phylogenetic analysis of nucleoprotein gene sequences confirmed the existence of the 4 major genotypes previously identified based on N- and subsequent G-gene based analyses. The range of Genotype I included subgroups of isolates associated with rainbow trout aquaculture (Genotype Ia) and those from the Baltic marine environment (Genotype Ib) to emphasise the relatively close genetic relationship between these isolates. The existence of an additional genotype circulating within the Baltic Sea (Genotype II) was also confirmed. Genotype III included marine isolates from around the British Isles in addition to those associated with turbot mariculture, highlighting a continued risk to the development of this industry. Genotype IV consisted of isolates from the marine environment in North America. Taken together, these findings suggest a marine origin of VHSV in rainbow trout aquaculture. The implications of these findings with respect to the future control of VHSV are discussed. The capacity for molecular phylogenetic analysis to resolve complex epidemiological problems is also demonstrated and its likely future importance to disease management issues highlighted.
Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R
2012-01-01
In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.
Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry
NASA Astrophysics Data System (ADS)
Wormwood, Kelly L.; Ngounou Wetie, Armand Gatien; Gomez, Marcus Vinicius; Ju, Yue; Kowalski, Paul; Mihasan, Marius; Darie, Costel C.
2018-05-01
Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. [Figure not available: see fulltext.
Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry.
Wormwood, Kelly L; Ngounou Wetie, Armand Gatien; Gomez, Marcus Vinicius; Ju, Yue; Kowalski, Paul; Mihasan, Marius; Darie, Costel C
2018-05-01
Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. Graphical Abstract ᅟ.
Gray matter structural compromise is equally distributed in left and right temporal lobe epilepsy.
Liu, Min; Bernhardt, Boris C; Bernasconi, Andrea; Bernasconi, Neda
2016-02-01
In drug-resistant temporal lobe epilepsy (TLE), MRI studies have shown consistent mesiotemporal and neocortical structural alterations when comparing patients to healthy controls. It remains, however, relatively unclear whether the side of seizure focus differentially impacts the degree of structural damage. This work performed a comprehensive surface-based analysis of mesiotemporal and neocortical morphology on preoperative 1.5 T MRI in 25/35 LTLE/RTLE patients that achieved seizure freedom after surgery (i.e., Engel-I outcome; 7 ± 2 years follow-up), an imaging-independent confirmation of focus lateralization. Compared to 46 age- and sex-matched controls, both TLE groups displayed marked ipsilateral atrophy in mesiotemporal regions, while cortical thinning was bilateral. Direct contrasts between LTLE and RTLE did not reveal significant differences. Bootstrap simulations indicated low reproducibility of observing a between-cohort difference; power analysis revealed that more than 110 patients would be necessary to detect subtle differences. No difference between LTLE and RTLE was confirmed when using voxel-based morphometry, an independent proxy of gray matter volume. Similar results were obtained analyzing a separate 3 T dataset (15/15 LTLE/RTLE patients; Engel-I after 4 ± 2 years follow-up; 42 controls). Our results strongly support equivalent gray matter compromise in left and right TLE. The morphological profile of seizure-free patients, presenting with ipsilateral mesiotemporal and bilateral cortical atrophy, motivates the development of neuromarkers of outcome that consider both mesiotemporal and neocortical structures. Hum Brain Mapp 37:515-524, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry
NASA Astrophysics Data System (ADS)
Wormwood, Kelly L.; Ngounou Wetie, Armand Gatien; Gomez, Marcus Vinicius; Ju, Yue; Kowalski, Paul; Mihasan, Marius; Darie, Costel C.
2018-04-01
Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide's analgesic effect with very low side effects. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Chand, Prakash; Vaish, Swapnil; Kumar, Praveen
2017-11-01
In the present work, transition metal spinel ferrite (MFe2O4; M = Co, Ni, Zn) nanostructures synthesized by chemical co-precipitation method. XRD analysis confirms the formation of cubic spinel-type structure with space group Fd3m and the average crystallite size calculated by Scherrer's formula found to be in 9-14 nm range. Scanning electron microscopy was used to study surface morphology of the samples. Moreover, Raman and PL spectra also confirm the formation of the cubic structure. The Raman spectra measured on cobalt, nickel and zinc ferrite revealed a larger number of phonon bands than expected for the cubic spinel structure. The calculated optical energy band gaps, obtained by Tauc's relation from UV-Vis absorption spectra are found to be as 2.44, 3.54 and 3.25 eV for CoFe2O4, NiFe2O4&ZnFe2O, respectively. The analysis of the complex impedance spectra of all ferrites samples shows the presence of one semicircular arc at all selected temperatures, signifying a key role of the grain boundary contribution. The dielectric constants (ε ‧) were measured in the frequency range from 10 Hz to 5 MHz at different temperatures and is found to be decreased suddenly with an increase in frequency and maintain a steady state or constant at higher frequencies for all the three samples. The AC conductivity is found to be increased with frequency and temperature of all the three samples which is explained on the basis of Koop's phenomenological theory.
Hatta, Taichi; Narita, Keiichi; Naria, Keiichi; Yanagihara, Kazuhiro; Ishiguro, Hiroshi; Murayama, Toshinori; Yokode, Masayuki
2016-02-19
Developments in chemotherapy have led to changes in cancer care in Japan, with the government promoting a transition to outpatient chemotherapy. This requires patients and their families to participate more actively in treatment than in the past. However, it remains unclear how patients' motivation for medical treatment affects clinical consultations with their physicians. To investigate this, we developed a psychological index called the Achievement Motive Index for Medical Treatment (AMI-MeT), which comprises self-derived achievement motivation (AMS) and achievement motivation derived from others (AMO). However, its factor structure has not yet been confirmed in populations other than healthy university students. Thus, the aims of this study were to confirm the factor structure of the AMI-MeT in other groups and to determine the convergent and divergent validity of the AMI-MeT. The AMI-MeT was administered to university students (n = 414), apparently healthy workers (n = 154), and cancer patients (n = 51). Multi-group confirmatory factor analysis was conducted and the mean scores of the AMI-MeT were compared between the groups. Correlations between the AMI-MeT and the Self-Construal Scale, comprising independent self-construal (IndSC) and interdependent self-construal (InterSC) subscales, were investigated in another group of students (n = 335). The multi-group confirmatory factor analysis supported a two-factor structure of the AMI-MeT: the weak invariance model was the best fit for the data. The mean scores of the AMI-MeT in apparently healthy workers and cancer patients were significantly higher than that in students (P < .01). The correlation analysis revealed that AMS scores were associated with IndSC scores (r = .25, P < .01) and AMO scores with InterSC scores (r = .30, P < .01). The two-factor model of the AMI-MeT was deemed appropriate for all three groups, and the subscales of the AMI-MeT successfully reflected the self and other dimensions. The AMI-MeT appears to be an effective tool for measuring medical treatment motivation, making it useful in participant observational research on medical consultations for Japanese cancer treatment.
Buckling analysis of planar compression micro-springs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jing; Sui, Li; Shi, Gengchen
2015-04-15
Large compression deformation causes micro-springs buckling and loss of load capacity. We analyzed the impact of structural parameters and boundary conditions for planar micro-springs, and obtained the change rules for the two factors that affect buckling. A formula for critical buckling deformation of micro-springs under compressive load was derived based on elastic thin plate theory. Results from this formula were compared with finite element analysis results but these did not always correlate. Therefore, finite element analysis is necessary for micro-spring buckling analysis. We studied the variation of micro-spring critical buckling deformation caused by four structural parameters using ANSYS software undermore » two constraint conditions. The simulation results show that when an x-direction constraint is added, the critical buckling deformation increases by 32.3-297.9%. The critical buckling deformation decreases with increase in micro-spring arc radius or section width and increases with increase in micro-spring thickness or straight beam width. We conducted experiments to confirm the simulation results, and the experimental and simulation trends were found to agree. Buckling analysis of the micro-spring establishes a theoretical foundation for optimizing micro-spring structural parameters and constraint conditions to maximize the critical buckling load.« less
Application of a data-mining method based on Bayesian networks to lesion-deficit analysis
NASA Technical Reports Server (NTRS)
Herskovits, Edward H.; Gerring, Joan P.
2003-01-01
Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.
NASA Astrophysics Data System (ADS)
Tornari, Vivi; Andrianakis, Michalis; Hatzigiannakis, Kostas; Kosma, Kiki; Detalle, Vincent; Giovanacci, David
2017-07-01
The demand for non destructive and non invasive structural diagnostic techniques able to perform on field remote structural evaluation of historical structures and works of art it faces an increased demand. The techniques must have some basic important characteristics The non destructivity, accuracy, repeatability, non physical contact, portability, resolution, broad range of applicability depending on the type of artwork and the question at hand, are all among the important requirements underlying the requirement for on-field structural diagnostics. In this respect there are two known techniques that have been developed at full to provide a suited structural diagnostic application in artwork conservation. The systems presented here but discussed in detail elsewhere are stimulated infrared thermography (SIRT) and digital holographic speckle pattern interferometry (DHSPI) the prior can be found n market at commercial devise level while the latter is at laboratory prototype level. The two systems are being exploited for their complimentary advantages and in this paper are used in combined testing on art related targets according to the above criteria to confirm the enhanced diagnostic information that their complimentary use provides. Results confirm the effectiveness of each technique alone and the combination of data of both techniques in the conservation field. Each system is first briefly described and examples are given with the aim to present the suitability and appropriateness for use in structural documentation analysis and reports. The experimental work is in laboratory work-in-progress focusing on the hybriding of data synthesis.
Yamamoto, Norifumi
2014-08-21
The conformational conversion of proteins into an aggregation-prone form is a common feature of various neurodegenerative disorders including Alzheimer's, Huntington's, Parkinson's, and prion diseases. In the early stage of prion diseases, secondary structure conversion in prion protein (PrP) causing β-sheet expansion facilitates the formation of a pathogenic isoform with a high content of β-sheets and strong aggregation tendency to form amyloid fibrils. Herein, we propose a straightforward method to extract essential information regarding the secondary structure conversion of proteins from molecular simulations, named secondary structure principal component analysis (SSPCA). The definite existence of a PrP isoform with an increased β-sheet structure was confirmed in a free-energy landscape constructed by mapping protein structural data into a reduced space according to the principal components determined by the SSPCA. We suggest a "spot" of structural ambivalence in PrP-the C-terminal part of helix 2-that lacks a strong intrinsic secondary structure, thus promoting a partial α-helix-to-β-sheet conversion. This result is important to understand how the pathogenic conformational conversion of PrP is initiated in prion diseases. The SSPCA has great potential to solve various challenges in studying highly flexible molecular systems, such as intrinsically disordered proteins, structurally ambivalent peptides, and chameleon sequences.
Integrated Japanese Dependency Analysis Using a Dialog Context
NASA Astrophysics Data System (ADS)
Ikegaya, Yuki; Noguchi, Yasuhiro; Kogure, Satoru; Itoh, Toshihiko; Konishi, Tatsuhiro; Kondo, Makoto; Asoh, Hideki; Takagi, Akira; Itoh, Yukihiro
This paper describes how to perform syntactic parsing and semantic analysis in a dialog system. The paper especially deals with how to disambiguate potentially ambiguous sentences using the contextual information. Although syntactic parsing and semantic analysis are often studied independently of each other, correct parsing of a sentence often requires the semantic information on the input and/or the contextual information prior to the input. Accordingly, we merge syntactic parsing with semantic analysis, which enables syntactic parsing taking advantage of the semantic content of an input and its context. One of the biggest problems of semantic analysis is how to interpret dependency structures. We employ a framework for semantic representations that circumvents the problem. Within the framework, the meaning of any predicate is converted into a semantic representation which only permits a single type of predicate: an identifying predicate "aru". The semantic representations are expressed as sets of "attribute-value" pairs, and those semantic representations are stored in the context information. Our system disambiguates syntactic/semantic ambiguities of inputs referring to the attribute-value pairs in the context information. We have experimentally confirmed the effectiveness of our approach; specifically, the experiment confirmed high accuracy of parsing and correctness of generated semantic representations.
Kankeu, Cynthia; Clarke, Kylie; Van Haver, Delphi; Gevaert, Kris; Impens, Francis; Dittrich, Anna; Roderick, H Llewelyn; Passante, Egle; Huber, Heinrich J
2018-05-17
The rat cardiomyoblast cell line H9C2 has emerged as a valuable tool for studying cardiac development, mechanisms of disease and toxicology. We present here a rigorous proteomic analysis that monitored the changes in protein expression during differentiation of H9C2 cells into cardiomyocyte-like cells over time. Quantitative mass spectrometry followed by gene ontology (GO) enrichment analysis revealed that early changes in H9C2 differentiation are related to protein pathways of cardiac muscle morphogenesis and sphingolipid synthesis. These changes in the proteome were followed later in the differentiation time-course by alterations in the expression of proteins involved in cation transport and beta-oxidation. Studying the temporal profile of the H9C2 proteome during differentiation in further detail revealed eight clusters of co-regulated proteins that can be associated with early, late, continuous and transient up- and downregulation. Subsequent reactome pathway analysis based on these eight clusters further corroborated and detailed the results of the GO analysis. Specifically, this analysis confirmed that proteins related to pathways in muscle contraction are upregulated early and transiently, and proteins relevant to extracellular matrix organization are downregulated early. In contrast, upregulation of proteins related to cardiac metabolism occurs at later time points. Finally, independent validation of the proteomics results by immunoblotting confirmed hereto unknown regulators of cardiac structure and ionic metabolism. Our results are consistent with a 'function follows form' model of differentiation, whereby early and transient alterations of structural proteins enable subsequent changes that are relevant to the characteristic physiology of cardiomyocytes.
ERIC Educational Resources Information Center
Ellwanger, Steven J.
2007-01-01
This article enhances our knowledge of general strain theory (GST) by applying it to the context of traffic delinquency. It does so by first describing and confirming the development of a social-psychological measure allowing for a test of GST. Structural regression analysis is subsequently employed to test the theory within this context across a…
2009-01-27
high temperature mechanical properties , it was confirmed that the three phase eutectic structure exhibited exceptionally high strength and creep...microstructurc constituent, offer an attractive property balance of high melting temperature, oxidation resistance and useful high temperature mechanical ...design of new multiphase high-temperature alloys with balanced environmental and mechanical properties . 15. SUBJECT TERMS Phase Stability, Alloying
Kuevda, E V; Gubareva, E A; Gumenyuk, I S; Sotnichenko, A S; Gilevich, I V; Nakokhov, R Z; Rusinova, T V; Yudina, T G; Red'ko, A N; Alekseenko, S N
2017-03-01
We modified the protocol of obtaining of biological scaffolds of rat lungs based on dynamic recording of specific resistivity of working detergent solution (conductometry) during perfusion decellularization. Termination of sodium deoxycholate exposure after attaining ionic equilibrium plateau did not impair the quality of decellularization and preserved structural matrix components, which was confirmed by morphological analysis and quantitative assay of residual DNA.
High symmetry effects on hydrogen bond rearrangement: The 4.1 THz vibrational band of (D2O)4
NASA Astrophysics Data System (ADS)
Brown, Mac G.; Keutsch, Frank N.; Braly, Linda B.; Saykally, Richard J.
1999-11-01
Vibration-rotation-tunneling (VRT) spectroscopy has been extended to the 4 THz spectral region through the observation of a second intermolecular vibration of (D2O)4. Analysis of the precisely measured perpendicular transition confirms the previously reported cyclic homodromic structure and reveals a dramatically increased (30×) hydrogen bond rearrangement rate in the excited state.
SYNTHESIS AND
NASA Astrophysics Data System (ADS)
Mashiko, W.; Katsumata, T.; Inaguma, Y.
(La,Zn)TiO3 was synthesized by an ion exchange method using ZnCl2 molten salt. By a powder X-ray diffraction, it was confirmed that perovskite structure was retained after ion exchange. The composition of ion exchanged sample was determined to be La0.55(6)Li0.064(4)Zn0.13(1)Ti1.0(1)O2.97 by ICP analysis, and the homogeneous distribution of Zn in this sample was confirmed by the scanning electron microscope (SEM). The bulk and total conductivity of the sample at the room temperature was measured to be 6.9 × 10-7 S·cm-1, 1.7 × 10-7 S·cm-1, respectively. The mobile species was confirmed to be Zn2+ by the electrolysis at 500°C.
NASA Astrophysics Data System (ADS)
Nadeem, Saad; Iqbal, Farukh; Mutalib, Mohamed Ibrahim Abdul; Abdullah, Bawadi; Shaharun, Maizatul Shima
2017-10-01
Metal composite materials-48 (MCM-48) with silica zirconia mesoporous matrix (having a Zr/Si ratio of 0.02) has been developed successfully using autogenous conditions and Copper tetra phenyl porphyrin (CuTPP) inclusion via flexible ligand approach. Thermo gravimetric analysis (TGA) was used to study the thermal stability which gives the stability up to 700°C, Fourier transform infrared spectroscopy (FTIR) for the functional group attachment also confirmed the MCM-48 structure and the Zirconia addition and X-Ray photon spectroscopy (XPS) for the binding energies and bonding also revealed the surface Zr4+ states. DRS-UV-Vis study for the photophysical behaviour, visible light activation and band gap reduction which reduced from 5.6 to 2.8 eV. All the characterizations have confirmed that nanoscale mesoporous silica with successful inclusion of zirconia in the matrix and the encapsulation of CuTPP was confirmed via diffuse reflectance (DR Uv-Vis) spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bau, R.; Brewer, I.; Chiang, M.Y.
Neutron diffraction has been used to monitor the absolute stereochemistry of an enzymatic reaction. (-)(2S)malic-3-d acid was prepared by the action of fumarase on fumaric acid in D/sub 2/O. After a large number of cations were screened, it was found that (+)(R)..cap alpha..-phenylethylamine forms the large crystals necessary for a neutron diffraction analysis. The subsequent structure determination showed that (+)(R)..cap alpha..-phenylethylammonium (-)(2S)malate-3-d has an absolute configuration of R at the CHD site. This result confirms the absolute stereochemistry of fumarate-to-malate transformation as catalyzed by the enzyme fumarase.
Erbium induced magnetic properties of Er/ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayachandraiah, C.; Divya, A.; Sivakumar, K.
Pure and Er (2, 3 and 4 at. %) doped ZnO nanoparticles have been synthesized by chemical co-precipitation method. EDS spectrum confirmed the presence of Zn, O and Er in the synthesized samples. The XRD measurements confirmed the hexagonal wurtzite structure of ZnO for all samples. The crystallite size of the samples decreases with increase in concentration and are compatible with the results that obtained from TEM analysis.EPR spectra exhibitedferromagnetic signals the substitution Er The possible ferromagnetic zinc interstials signal is appeared for 2 at. % of Er dopant. The room temperature ferromagnetic is observed only for 2 at. %more » of Er while all other samples exhibiting weak ferromagnetic nature.« less
Synthesis, characterization and properties of L-arginine-passivated silver nanocolloids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunatkari, A. L., E-mail: ashok.sunatkari@rediffmail.com; Talwatkar, S. S.; Tamgadge, Y. S.
2016-05-06
We investigate the effect of L-arginine-surface passivation on localised surface plasmon resonance (LSPR), size and stability of colloidal Silver Nanoparticles (AgNPs) synthesized by chemical reduction method. The surface Plasmon resonance absorption peak of AgNPs shows blue shift with the increase in L-arginine concentration. Transmission electron microscopy (TEM) analysis confirmed that the average size of AgNPs reduces from 10 nm to 6 nm as the concentration of L-Arginine increased from 1 to 5 mM. The X-ray diffraction study (XRD) confirmed the formation face-centred cubic (fcc) structured AgNPs. FT-IR studies revealed strong bonding between L-arginine functional groups and AgNPs.
Hiramura, Hidetoshi; Shono, Masahiro; Tanaka, Nao; Nagata, Toshiaki; Kitamura, Toshinori
2008-01-01
The present study examines the effects of stressful life events, depression, and depressogenic cognitive patterns on suicidal ideation in 500 Japanese undergraduate students. The above factors were assessed at baseline (T1) and two weeks later (T3). At T1, structural equation modeling confirmed that (1) cognitive patterns and depression, but not stressful life events, influence suicidal ideation, and (2) cognitive patterns also influence suicidal ideation through depression. These findings were confirmed in a longitudinal analysis. The results suggest that the effects of stressful life events on suicidal ideation are indirect and are mediated by depressogenic cognitive styles and depressed mood.
NASA Astrophysics Data System (ADS)
Loganathan, A.; Kumar, K.
2016-06-01
In the present work, pure and Sr2+ ions substituted Mg ferrite nanoparticles (NPs) had been prepared by co-precipitation method and their structural, optical, and magnetic properties at different calcination temperatures were studied. On this purpose, thermo gravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy, UV-Visible diffused reflectance spectroscopy, impedance spectroscopy, and vibrating sample magnetometer were carried out. The exo- and endothermic processes of synthesized precursors were investigated by TG-DTA measurements. The structural properties of the obtained products were examined by XRD analysis and show that the synthesized NPs are in the cubic spinel structure. The existence of two bands around 578-583 and 430-436 cm-1 in FT-IR spectrum also confirmed the formation of spinel-structured ferrite NPs. The lattice constants and particle size are estimated using XRD data and found to be strongly dependent on calcination temperatures. The optical, electrical, and magnetic properties of ferrite compositions also investigated and found to be strongly dependant on calcination temperatures.
Structure-Based Annotation of a Novel Sugar Isomerase from the Pathogenic E. coli O157:H7
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Staalduinen, L.; Park, C; Yeom, S
2010-01-01
Prokaryotes can use a variety of sugars as carbon sources in order to provide a selective survival advantage. The gene z5688 found in the pathogenic Escherichia coli O157:H7 encodes a 'hypothetical' protein of unknown function. Sequence analysis identified the gene product as a putative member of the cupin superfamily of proteins, but no other functional information was known. We have determined the crystal structure of the Z5688 protein at 1.6 {angstrom} resolution and identified the protein as a novel E. coli sugar isomerase (EcSI) through overall fold analysis and secondary-structure matching. Extensive substrate screening revealed that EcSI is capable ofmore » acting on D-lyxose and D-mannose. The complex structure of EcSI with fructose allowed the identification of key active-site residues, and mutagenesis confirmed their importance. The structure of EcSI also suggested a novel mechanism for substrate binding and product release in a cupin sugar isomerase. Supplementation of a nonpathogenic E. coli strain with EcSI enabled cell growth on the rare pentose d-lyxose.« less
Connecting Core Percolation and Controllability of Complex Networks
Jia, Tao; Pósfai, Márton
2014-01-01
Core percolation is a fundamental structural transition in complex networks related to a wide range of important problems. Recent advances have provided us an analytical framework of core percolation in uncorrelated random networks with arbitrary degree distributions. Here we apply the tools in analysis of network controllability. We confirm analytically that the emergence of the bifurcation in control coincides with the formation of the core and the structure of the core determines the control mode of the network. We also derive the analytical expression related to the controllability robustness by extending the deduction in core percolation. These findings help us better understand the interesting interplay between the structural and dynamical properties of complex networks. PMID:24946797
NASA Astrophysics Data System (ADS)
Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Ravichandran, K.
2018-05-01
Heusler Alloy based Cr2CoSi nanoparticles were synthesized by using ball milling. X-ray diffractions studies were used to characterize the crystal structure of Cr2CoSi nanoparticles and magnetic properties were studied using VSM. XRD data analysis confirms the Heusler alloy phase showing the L21 structure. Magnetic properties are measured for synthesized samples having coercivity Hc = 389 Oe, with high saturation magnetization value Ms = 8.64 emu/g and remenance value Mr = 2.93 emu/g. Synthesized Heusler alloy Cr2CoSi nanoparticles can be potential materials for use in Spin polarized based spin sensors, spin devices, magnetic sensors and transducer applications.
Population structure in the Island of Ugljan--demographic processes and marital migration.
Malnar, Ana
2008-12-01
This research on the basic demographic processes and marital migrations of the population on Ugljan Island in the period from 1857 to 2001 was conducted within the context of the long-term anthropological research of the population structure of Croatia's islands. The analysis was based on the study of the origin of 5 244 married couples from Preko, Kali, Kukljica, Lukoran and Ugljan and carried out using data preserved in the old Registers of Marriages. The results show a high level of endogamy and reproductive isolation of the population in all the villages and they also confirm the importance of using historical and demographic sources for researching the shaping of population structures.
NASA Astrophysics Data System (ADS)
Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.
2013-01-01
In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.
Characterization of some selected vulcanized and raw silicon rubber materials
NASA Astrophysics Data System (ADS)
Sasikala, A.; Kala, A.
2017-06-01
Silicone Rubber is a high need of importance of Medical devices, Implants, Aviation and Aerospace wiring applications. Silicone rubbers are widely used in industry, and there are in multiple formulations. A raw and vulcanized silicone rubber Chemical and Physical structures of particles was confirmed and mechanical strength has been analyzed by FTIR spectroscopy. Thermal properties studied from Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analysis. Activation energy of the rubber materials were calculated using Broido method, Piloyon-Novikova relation and coats-Red fern methods.
[Recurrence plot analysis of HRV for brain ischemia and asphyxia].
Chen, Xiaoming; Qiu, Yihong; Zhu, Yisheng
2008-02-01
Heart rate variability (HRV) is the tiny variability existing in the cycles of the heart beats, which reflects the corresponding balance between sympathetic and vagus nerves. Since the nonlinear characteristic of HRV is confirmed, the Recurrence Plot method, a nonlinear dynamic analysis method based on the complexity, could be used to analyze HRV. The results showed the recurrence plot structures and some quantitative indices (L-Mean, L-Entr) during asphyxia insult vary significantly as compared to those in normal conditions, which offer a new method to monitor brain asphyxia injury.
Bai, Zhi-Qiang; Lin, Xiuping; Wang, Junfeng; Zhou, Xuefeng; Liu, Juan; Yang, Bin; Yang, Xianwen; Liao, Shengrong; Wang, Lishu; Liu, Yonghong
2015-01-01
Four new meroterpenoids (2–5), along with three known analogues (1, 6, and 7) were isolated from mangrove plant Acanthus ilicifolius derived endophytic fungus Aspergillus flavipes. The structures of these compounds were elucidated by NMR and MS analysis, the configurations were assigned by CD data, and the stereochemistry of 1 was confirmed by X-ray crystallography analysis. A possible biogenetic pathway of compounds 1–7 was also proposed. All compounds were evaluated for antibacterial and cytotoxic activities. PMID:25574738
Mesnage, Robin; Arno, Matthew; Costanzo, Manuela; Malatesta, Manuela; Séralini, Gilles-Eric; Antoniou, Michael N
2015-08-25
Glyphosate-based herbicides (GBH) are the major pesticides used worldwide. Converging evidence suggests that GBH, such as Roundup, pose a particular health risk to liver and kidneys although low environmentally relevant doses have not been examined. To address this issue, a 2-year study in rats administering 0.1 ppb Roundup (50 ng/L glyphosate equivalent) via drinking water (giving a daily intake of 4 ng/kg bw/day of glyphosate) was conducted. A marked increased incidence of anatomorphological and blood/urine biochemical changes was indicative of liver and kidney structure and functional pathology. In order to confirm these findings we have conducted a transcriptome microarray analysis of the liver and kidneys from these same animals. The expression of 4224 and 4447 transcript clusters (a group of probes corresponding to a known or putative gene) were found to be altered respectively in liver and kidney (p < 0.01, q < 0.08). Changes in gene expression varied from -3.5 to 3.7 fold in liver and from -4.3 to 5.3 in kidneys. Among the 1319 transcript clusters whose expression was altered in both tissues, ontological enrichment in 3 functional categories among 868 genes were found. First, genes involved in mRNA splicing and small nucleolar RNA were mostly upregulated, suggesting disruption of normal spliceosome activity. Electron microscopic analysis of hepatocytes confirmed nucleolar structural disruption. Second, genes controlling chromatin structure (especially histone-lysine N-methyltransferases) were mostly upregulated. Third, genes related to respiratory chain complex I and the tricarboxylic acid cycle were mostly downregulated. Pathway analysis suggests a modulation of the mTOR and phosphatidylinositol signalling pathways. Gene disturbances associated with the chronic administration of ultra-low dose Roundup reflect a liver and kidney lipotoxic condition and increased cellular growth that may be linked with regeneration in response to toxic effects causing damage to tissues. Observed alterations in gene expression were consistent with fibrosis, necrosis, phospholipidosis, mitochondrial membrane dysfunction and ischemia, which correlate with and thus confirm observations of pathology made at an anatomical, histological and biochemical level. Our results suggest that chronic exposure to a GBH in an established laboratory animal toxicity model system at an ultra-low, environmental dose can result in liver and kidney damage with potential significant health implications for animal and human populations.
Orbital processing of high-quality CdTe compound semiconductors
NASA Technical Reports Server (NTRS)
Larson, David J., Jr.; Alexander, J. I. D.; Gillies, D.; Carlson, F. M.; Wu, J.; Black, D.
1994-01-01
CdZnTe crystals were grown in one-g and in micro-g for comparative analysis. The two micro-g crystals were grown in the Crystal Growth Furnace during the First United States Microgravity Laboratory mission (USML-1). The samples were analyzed for chemical homogeneity, structural perfection, and optoelectronic performance (infrared transmission). Fourier Transform Infrared (FTIR) transmission of both ground and flight materials showed that the infrared transmission was close to theoretical, 63% versus 66%, suggesting that the material was close to the stochiometric composition during both the ground and flight experiments. Infrared microscopy confirmed that the principal precipitates were Te and their size (1-10 microns) and density suggested that the primary flight and ground base samples experienced similar cooling rates. Macrosegregation was predicted, using scaling analysis, to be low even in one-g crystals and this was confirmed experimentally, with nearly diffusion controlled growth achieved even in the partial mixing regime on the ground. Radial segregation was monitored in the flight samples and was found to vary with fraction solidified, but was disturbed due to the asymmetric grvitational and thermal fields experienced by the flight samples. The flight samples, however, were found to be much higher in structural perfection than the ground samples produced in the same furnace under identical growth conditions except for the gravitational level. Rocking curve widths were found to be substantially reduced, from 20/35 (one-g) to 9/20 (micro-g) for the best regions of the crystals. The full width at half maximum (FWHM) of 9 arc seconds is as good as the best reported terrestrially for this material. The ground samples were found to have a fully developed mosaic structure consisting of subgrains, whereas the flight sample dislocations were discrete and no mosaic substructure was evident. The defect density was reduced from 50-100,000 (one-g) to 500-25000 EPD (micro-g). These results were confirmed using rocking curve analysis, synchrotron topography, and etch pit analysis. The low dislocation density is thought to have resulted from the near-absence of hydrostatic pressure which allowed the melt to solidify with minimum or no wall contact, resulting in very low stress being exerted on the crystal during growth or during post-solidification cooling.
Comparison of NASTRAN analysis with ground vibration results of UH-60A NASA/AEFA test configuration
NASA Technical Reports Server (NTRS)
Idosor, Florentino; Seible, Frieder
1990-01-01
Preceding program flight tests, a ground vibration test and modal test analysis of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to complement the UH-60A test plan and NASA/ARMY Modern Technology Rotor Airloads Program. The 'NASA/AEFA' shake test configuration was tested for modal frequencies and shapes and compared with its NASTRAN finite element model counterpart to give correlative results. Based upon previous findings, significant differences in modal data existed and were attributed to assumptions regarding the influence of secondary structure contributions in the preliminary NASTRAN modeling. An analysis of an updated finite element model including several secondary structural additions has confirmed that the inclusion of specific secondary components produces a significant effect on modal frequency and free-response shapes and improves correlations at lower frequencies with shake test data.
NASA Astrophysics Data System (ADS)
Asath, R. Mohamed; Rekha, T. N.; Premkumar, S.; Mathavan, T.; Benial, A. Milton Franklin
2016-12-01
Conformational analysis was carried out for N-(5-aminopyridin-2-yl)acetamide (APA) molecule. The most stable, optimized structure was predicted by the density functional theory calculations using the B3LYP functional with cc-pVQZ basis set. The optimized structural parameters and vibrational frequencies were calculated. The experimental and theoretical vibrational frequencies were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed, which reveals that the higher molecular reactivity and stability of the APA molecule and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the APA molecule. Antidiabetic activity was studied based on the molecular docking analysis and the APA molecule was identified that it can act as a good inhibitor against diabetic nephropathy.
NASA Astrophysics Data System (ADS)
Ahmed, Muhammad Naeem; Sadiq, Beenish; Al-Masoudi, Najim A.; Yasin, Khawaja Ansar; Hameed, Shahid; Mahmood, Tariq; Ayub, Khurshid; Tahir, Muhammad Nawaz
2018-03-01
A new series of bis((5-aryl-1,3,4-oxadiazol-2-yl)thio)alkanes 4-14 have been synthesized via nucleophilic substitution reaction of dihaloalkanes with respective 1,3,4-oxadiazole-2-thiols 3a-f, and characterized by spectroscopic techniques. The structures of 4 and 12 were unambiguously confirmed by single-crystal X-ray diffraction analysis. Density functional theory calculations at B3LYP/6-31 + G(d) level of theory were performed for comparison of X-ray geometric parameters, molecular electrostatic potential (MEP) and frontier molecular orbital analyses of synthesized compounds. MEP analysis revealed that these compounds are nucleophilic in nature. Frontier molecular orbitals (FMOs) analysis of 4-14 was performed for evaluation of kinetic stability. All synthesized compounds were screened in vitro for antimicrobial activity against three bacterial and three fungal strains and showed promising results.
Khalid, Ikrima; Ahmad, Mahmood; Usman Minhas, Muhammad; Barkat, Kashif
2018-02-01
Mixtures of polymer (chondroitin sulfate) and monomer (AMPS) in the presence of co-monomer (MBA) were employed for the production of hydrogels, with adjustable properties, following free radical copolymerization. The hydrogel's structural properties were assessed by FTIR, DSC, TGA, SEM and XRD which confirmed the development and stability of synthesized structure. The results from FTIR analysis showed that CS react with the AMPS monomer during the polymerization process and confirmed the grafting of AMPS chains onto CS backbone. The surface morphology of CS-co-poly(AMPS) hydrogels, as evident by SEM, corresponds to their improved swelling ability due to high porosity. Thermal analysis showed that crosslinking formed a stable hydrogel network which is thermally more stable than its basic ingredients. The effects of pH revealed an increasing trend in swelling with increasing concentration of either CS or AMPS. In addition, different modalities for drug loading were studied with respect to drug homogeneous distribution; loxoprofen sodium was employed as model drug and was loaded by swelling-diffusion method. In vitro drug release profiles and kinetics were assessed to confirm their reproducibility and reliability. Higuchi model is the best fit model to explain drug release from formed gels indicating diffusion-controlled release. Similarly, Korsmeyer-Peppas model yields remarkably good adjustments where release kinetics involves a combination of diffusion in hydrated matrix and polymer relaxation. Conclusively, CS-co-poly(AMPS) hydrogels could be a potential alternate to conventional dosage forms for controlled delivery of loxoprofen sodium for extended period of time. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Sarkar, Sonia; Kotteeswaran, Venkatesan
2018-06-01
Plants contain different important phytochemicals that can be used as a potential treatment for various ailments including cancer. The green synthesis of silver nanoparticles from the extract of different plant parts has gained a wide range of engrossment among the researchers due to its unique optical and structural property. The aim of this study is green synthesis of silver nanoparticles from the aqueous leaf extract of pomegranate (Punica granatum) and to investigate its anticancer activity on human cervical cancer cells (HeLa). The synthesis of silver nanoparticle was depicted by the colour change from golden yellowish to dark brownish, UV-visible spectral analysis gave a characteristic surface plasmon absorption peak at . Further morphological characterization was done by Zeta potential where the size analysis was depicted to be 46.1 nm and zeta potential as . Fourier transform infrared spectroscopy (FTIR) inferred 3 intense sharp peaks at , , , confirmed the presence of flavonoids and polyphenols. The scanning electron microscopy (SEM) analysis with energy diffraction spectroscopy (EDS) confirmed the presence of silver nanoparticles with size ranged from to . X-ray diffraction (XRD) confirmed the crystallographic nature of silver. The cell proliferation activity of nanoparticles was tested by 3, ‑4, 5 dimethylthiazol-2,5 diphenyl tetrazolium bromide (MTT) assay where the inhibitory concentration () was found at inhibiting of HeLa cell line. The anticancer activity of nanoparticles was determined by lactate dehydrogenase (LDH) assay where showed of cytotoxicity. Furthermore, the anticancer property of nanoparticles was confirmed by the DNA fragmentation assay.
Li, Chih-Ying; Waid-Ebbs, Julia; Velozo, Craig A.; Heaton, Shelley C.
2016-01-01
Primary Objective Social problem solving deficits characterize individuals with traumatic brain injury (TBI). Poor social problem solving interferes with daily functioning and productive lifestyles. Therefore, it is of vital importance to use the appropriate instrument to identify deficits in social problem solving for individuals with TBI. This study investigates factor structure and item-level psychometrics of the Social Problem Solving Inventory-Revised Short Form (SPSI-R:S), for adults with moderate and severe TBI. Research Design Secondary analysis of 90 adults with moderate and severe TBI who completed the SPSI-R:S. Methods and Procedures An exploratory factor analysis (EFA), principal components analysis (PCA) and Rasch analysis examined the factor structure and item-level psychometrics of the SPSI-R:S. Main Outcomes and Results The EFA showed three dominant factors, with positively worded items represented as the most definite factor. The other two factors are negative problem solving orientation and skills; and negative problem solving emotion. Rasch analyses confirmed the three factors are each unidimensional constructs. Conclusions The total score interpretability of the SPSI-R:S may be challenging due to the multidimensional structure of the total measure. Instead, we propose using three separate SPSI-R:S subscores to measure social problem solving for the TBI population. PMID:26052731
Li, Chih-Ying; Waid-Ebbs, Julia; Velozo, Craig A; Heaton, Shelley C
2016-01-01
Social problem-solving deficits characterise individuals with traumatic brain injury (TBI), and poor social problem solving interferes with daily functioning and productive lifestyles. Therefore, it is of vital importance to use the appropriate instrument to identify deficits in social problem solving for individuals with TBI. This study investigates factor structure and item-level psychometrics of the Social Problem Solving Inventory-Revised: Short Form (SPSI-R:S), for adults with moderate and severe TBI. Secondary analysis of 90 adults with moderate and severe TBI who completed the SPSI-R:S was performed. An exploratory factor analysis (EFA), principal components analysis (PCA) and Rasch analysis examined the factor structure and item-level psychometrics of the SPSI-R:S. The EFA showed three dominant factors, with positively worded items represented as the most definite factor. The other two factors are negative problem-solving orientation and skills; and negative problem-solving emotion. Rasch analyses confirmed the three factors are each unidimensional constructs. It was concluded that the total score interpretability of the SPSI-R:S may be challenging due to the multidimensional structure of the total measure. Instead, we propose using three separate SPSI-R:S subscores to measure social problem solving for the TBI population.
Core-Shell Magnetic Morphology of Structurally Uniform Magnetite Nanoparticles
NASA Astrophysics Data System (ADS)
Krycka, K. L.; Booth, R. A.; Hogg, C. R.; Ijiri, Y.; Borchers, J. A.; Chen, W. C.; Watson, S. M.; Laver, M.; Gentile, T. R.; Dedon, L. R.; Harris, S.; Rhyne, J. J.; Majetich, S. A.
2010-05-01
A new development in small-angle neutron scattering with polarization analysis allows us to directly extract the average spatial distributions of magnetic moments and their correlations with three-dimensional directional sensitivity in any magnetic field. Applied to a collection of spherical magnetite nanoparticles 9.0 nm in diameter, this enhanced method reveals uniformly canted, magnetically active shells in a nominally saturating field of 1.2 T. The shell thickness depends on temperature, and it disappears altogether when the external field is removed, confirming that these canted nanoparticle shells are magnetic, rather than structural, in origin.
Penifupyrone, a new cytotoxic funicone derivative from the endophytic fungus Penicillium sp. HSZ-43.
Chen, Ming-Jun; Fu, Yang-Wu; Zhou, Qun-Ying
2014-01-01
Penifupyrone (1), a new funicone derivative, has been isolated from the endophytic fungus Penicillium sp. HSZ-43, along with three known analogues, funicone (2), deoxyfunicone (3) and 3-O-methylfunicone (4). These structures were identified by using spectroscopic methods, including UV, MS, 1D and 2D NMR experiments. The structure of 1 was confirmed by single-crystal X-ray diffraction analysis. All the isolated compounds were evaluated for cytotoxicity against human oral epidermoid carcinoma KB cells, and compound 1 exhibited moderate cytotoxic activity with IC50 value of 4.7 μM.
NASA Astrophysics Data System (ADS)
Shiryaeva, Ekaterina S.; Tyurin, Daniil A.; Feldman, Vladimir I.
2012-05-01
The primary radical cation of cyclopropylacetylene was first characterized by EPR spectroscopy in low-temperature freon matrices. The assignment was confirmed by specific deuteration and quantum-chemical calculations at PBE0 and CCSD(T) levels. Photolysis with visible light led to irreversible transformation of the initial species to a ring-open structure. Detailed computational analysis of energy and magnetic resonance parameters of possible reaction products justified formation of pent-3-en-1-yne radical cation (presumably, a (Z)-isomer). This conclusion was also supported by the effect of specific deuteration.
Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming
2017-07-15
We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Andonov, P.; Fischer, H. E.; Palleau, P.; Kimura, S.
2001-05-01
The structure of liquid LiNbO3 has been investigated by neutron diffraction using samples with different isotopic composition of lithium. The intensity scattered by these samples has been measured for momentum transfers 0.4 Å-1 T> 1500 K, which include the undercooling domain. From an analysis of the correlation functions Gij(r) of the atomic pairs Li-Li, Li-Nb, Li-O and their structural evolutions, given by Δ Gi-j (r) = Gi-j(r)1500 -Gi-j(r)1550 made with reference to the crystalline LiNbO3 ferroelectric structure, it was possible to confirm a local ordering similar to that of the crystal. The presence of clusters (groupings of NbO3 octahedra) is confirmed. Both regular and irregular N b06 octahedra are observed in the liquid near solidification. With its high mobility in the melt, the Li atom plays an important role in the clustering: the Li-O and Li-Nb bonds make possible the staking of four octahedra groups into clusters of eight octahedra or more. The Li-Li bonds join these groups. The diameter of the clusters is a least 22 Å in the undercooling regime.
The effects of pore structure on the behavior of water in lignite coal and activated carbon.
Nwaka, Daniel; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong
2016-09-01
The effects of physical structure (pore structure) on behavior of water in lignite coal and activated carbon (AC) samples were investigated by using Differential Scanning Calorimetry (DSC) and low-temperature X-ray diffraction (XRD) techniques. AC samples with different pore structures were prepared at 800°C in steam and the results were compared with that of parent lignite coal. The DSC results confirmed the presence of two types of freezable water that freeze at -8°C (free water) and -42°C (freezable bound water). A shift in peak position of free water (FW) towards lower temperature was observed in AC samples compared to the lignite coal with decreasing water loading. The amount of free water (FW) increased with increasing gasification conversion. The amounts of free and freezable bound water (FBW) in AC samples were calculated and correlated to pore volume and average pore size. The amount of FW in AC samples is well correlated to the pore volume and average pore size of the samples, while an opposite trend was observed for FBW. The low-temperature XRD analysis confirmed the existence of non-freezable water (NFW) in coal and AC with the boundary between the freezable and non-freezable water (NFW) determined. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudharsana, N.; Krishnakumar, V.; Nagalakshmi, R., E-mail: nagaphys@yahoo.com
Graphical abstract: ORTEP diagram of HQDBT. - Highlights: • Single crystal XRD and NMR studies confirm the formation of the title compound. • SHG efficiency was found to be 0.6 times that of KDP. • First-order hyperpolarizability (β) was calculated using HF and B3LYP methods. - Abstract: A novel 8-hydroxyquinolinium dibenzoyl-(L)-tartrate methanol monohydrate crystal has been grown by slow evaporation technique. The single crystal X-ray diffraction analysis has been done for the title compound and is found to crystallize in orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. The optical absorption cut-off wavelength is found to be 440 nm. The vibrationalmore » analysis has been carried out to assess the functional groups present in the title compound. The molecular structure of the title compound has been confirmed by nuclear magnetic resonance spectroscopy. Thermogravimetric, differential scanning calorimetric and differential thermal analyses reveal the melting point and thermal stability of the title compound. The second harmonic generation efficiency is confirmed by Kurtz–Perry powder technique. Further quantum chemical calculations are performed using Gaussian 03 software.« less
Pandey, Preeti; Pandey, S.; Dubey, Shaifali
2013-01-01
Etodolac, a nonsteroidal antiinflammatory drug, widely used in arthritis is associated with gastric ulceration and irritation due to presence of free carboxylic group. The current investigation reports synthesis of mutual amide prodrug of etodolac by masking free carboxylic group with glucosamine, a nutritional supplement for treatment of arthritis. Confirmation and characterization of the structure of the synthesized prodrug done by elemental and spectroscopy analysis, melting point, determination of migration parameters (Rf, RM, and Rt) by using thin layer chromatography and high performance liquid chromatography, respectively. Partition coefficient and solubility study confirms its lipophilic character so can be suitable candidate for controlled release delivery. In vitro hydrolytic studies of prodrug confirms good rate of hydrolysis in blood plasma, fecal matter, and simulated intestinal fluid while stable in gastric simulated fluid. In vivo pharmacological screening performed on animals. Prodrug with respect to etodolac shows good analgesic, antiinflammatory, and antiarthritic activity. The prodrug was assessed for their probable damaging effects by ulcerogeniticity and histopathological analysis. The histopathological studies showed less ulceration in the gastric region when treated with prodrug, thereby proving the prodrug to be better in action as compared to etodolac and are advantageous in having less gastrointestinal side effects. PMID:24302794
NASA Astrophysics Data System (ADS)
Rao Kummara, Madhusudana; Kumar, Anuj; Soo, Han Sung
2017-11-01
Sodium hyaluronate (HA) stabilized curcumin-Ag (Cur-Ag) hybrid nanoparticles were prepared in the water-ethanol mixture under constant mechanical stirring condition. The obtained HA stabilized Cur-Ag hybrid nanoparticles were characterized by fourier transform infrared spectroscopy, UV-visible spectroscopy, and x-ray diffraction to confirm the formation and structural interactions. The obtained Cur-Ag hybrid nanoparticles showed spherical shape with their size range 5-12 nm that was increased with the increasing a amount of silver ions as confirmed by transmission electron microscopic analysis. Further, a fibrous cellulose filter paper was impregnated with these hybrid nanoparticles and chitosan (CS) as biopolymer via polyelectrolyte complexation. The morphological analysis confirmed the uniform distribution of hybrid nanoparticle system onto the cellulose fibers of the fibrous filter paper. As per disc diffusion method, the Cur-Ag hybrid nanoparticles impregnated CS-coated filter paper exhibited excellent antibacterial properties against gram-negative Escherichia coli (E.coli) bacteria compared to HA stabilized Cur only. Moreover, as prepared hybrid nanoparticles impregnated biocomposite system is eco-friendly with efficient antibacterial property and have good potential to be used in medical applications.
Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes.
Lohse, Konrad; Frantz, Laurent A F
2014-04-01
Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4-7.3%) than suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics and robust to realistic levels of recombination.
Neandertal Admixture in Eurasia Confirmed by Maximum-Likelihood Analysis of Three Genomes
Lohse, Konrad; Frantz, Laurent A. F.
2014-01-01
Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4−7.3%) than suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics and robust to realistic levels of recombination. PMID:24532731
NASA Astrophysics Data System (ADS)
Pramodh, B.; Lokanath, N. K.; Naveen, S.; Naresh, P.; Ganguly, S.; Panda, J.
2018-06-01
In the present work, the crystal structure of a novel chalcone derivative, (E)-1-(5-bromothiophen-2-yl)-3-(p-tolyl) prop-2-en-1-one has been confirmed by X-ray diffraction studies. Hirshfeld surface analysis was carried out to explore the intermolecular interactions. From the Hirshfeld surface analysis it was observed that H⋯H (26.7%) and C⋯H (26.3%) are the major contributors to the intermolecular interactions which stabilizes the crystal structure. The coordinates were optimized using the density functional theory (DFT) calculations using B3LYP hybrid functions with 6-31G(d) basis set. The structural parameters obtained from XRD studies compliment with those calculated using DFT calculations. The HOMO and LUMO energy gap was found to be 4.1778 eV. The molecular electrostatic potential (MEP) was plotted to identify the possible reactions sites of the molecule. Further, non-linear optical (NLO) properties were investigated by calculating hyperpolarizabilities which indicate that the title compound would be a potential candidate for the NLO applications.
The effect of time synchronization of wireless sensors on the modal analysis of structures
NASA Astrophysics Data System (ADS)
Krishnamurthy, V.; Fowler, K.; Sazonov, E.
2008-10-01
Driven by the need to reduce the installation cost and maintenance cost of structural health monitoring (SHM) systems, wireless sensor networks (WSNs) are becoming increasingly popular. Perfect time synchronization amongst the wireless sensors is a key factor enabling the use of low-cost, low-power WSNs for structural health monitoring applications based on output-only modal analysis of structures. In this paper we present a theoretical framework for analysis of the impact created by time delays in the measured system response on the reconstruction of mode shapes using the popular frequency domain decomposition (FDD) technique. This methodology directly estimates the change in mode shape values based on sensor synchronicity. We confirm the proposed theoretical model by experimental validation in modal identification experiments performed on an aluminum beam. The experimental validation was performed using a wireless intelligent sensor and actuator network (WISAN) which allows for close time synchronization between sensors (0.6-10 µs in the tested configuration) and guarantees lossless data delivery under normal conditions. The experimental results closely match theoretical predictions and show that even very small delays in output response impact the mode shapes.
A Second-Order Confirmatory Factor Analysis of the Moral Distress Scale-Revised for Nurses.
Sharif Nia, Hamid; Shafipour, Vida; Allen, Kelly-Ann; Heidari, Mohammad Reza; Yazdani-Charati, Jamshid; Zareiyan, Armin
2017-01-01
Moral distress is a growing problem for healthcare professionals that may lead to dissatisfaction, resignation, or occupational burnout if left unattended, and nurses experience different levels of this phenomenon. This study aims to investigate the factor structure of the Persian version of the Moral Distress Scale-Revised in intensive care and general nurses. This methodological research was conducted with 771 nurses from eight hospitals in the Mazandaran Province of Iran in 2017. Participants completed the Moral Distress Scale-Revised, data collected, and factor structure assessed using the construct, convergent, and divergent validity methods. The reliability of the scale was assessed using internal consistency (Cronbach's alpha, Theta, and McDonald's omega coefficients) and construct reliability. Ethical considerations: This study was approved by the Ethics Committee of Mazandaran University of Medical Sciences. The exploratory factor analysis ( N = 380) showed that the Moral Distress Scale-Revised has five factors: lack of professional competence at work, ignoring ethical issues and patient conditions, futile care, carrying out the physician's orders without question and unsafe care, and providing care under personal and organizational pressures, which explained 56.62% of the overall variance. The confirmatory factor analysis ( N = 391) supported the five-factor solution and the second-order latent factor model. The first-order model did not show a favorable convergent and divergent validity. Ultimately, the Moral Distress Scale-Revised was found to have a favorable internal consistency and construct reliability. The Moral Distress Scale-Revised was found to be a multidimensional construct. The data obtained confirmed the hypothesis of the factor structure model with a latent second-order variable. Since the convergent and divergent validity of the scale were not confirmed in this study, further assessment is necessary in future studies.
Johnson, Jennifer L.; Wittgenstein, Helena; Mitchell, Sharon E.; Hyma, Katie E.; Temnykh, Svetlana V.; Kharlamova, Anastasiya V.; Gulevich, Rimma G.; Vladimirova, Anastasiya V.; Fong, Hiu Wa Flora; Acland, Gregory M.; Trut, Lyudmila N.; Kukekova, Anna V.
2015-01-01
The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species. PMID:26061395
Johnson, Jennifer L; Wittgenstein, Helena; Mitchell, Sharon E; Hyma, Katie E; Temnykh, Svetlana V; Kharlamova, Anastasiya V; Gulevich, Rimma G; Vladimirova, Anastasiya V; Fong, Hiu Wa Flora; Acland, Gregory M; Trut, Lyudmila N; Kukekova, Anna V
2015-01-01
The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jheng-Sin; Clavel, Michael B.; Hudait, Mantu K., E-mail: mantu.hudait@vt.edu
The structural, morphological, optical, and electrical transport characteristics of a metamorphic, broken-gap InAs/GaSb p-i-n tunnel diode structure, grown by molecular beam epitaxy on GaAs, were demonstrated. Precise shutter sequences were implemented for the strain-balanced InAs/GaSb active layer growth on GaAs, as corroborated by high-resolution X-ray analysis. Cross-sectional transmission electron microscopy and detailed micrograph analysis demonstrated strain relaxation primarily via the formation of 90° Lomer misfit dislocations (MDs) exhibiting a 5.6 nm spacing and intermittent 60° MDs at the GaSb/GaAs heterointerface, which was further supported by a minimal lattice tilt of 180 arc sec observed during X-ray analysis. Selective area diffraction and Fastmore » Fourier Transform patterns confirmed the full relaxation of the GaSb buffer layer and quasi-ideal, strain-balanced InAs/GaSb heteroepitaxy. Temperature-dependent photoluminescence measurements demonstrated the optical band gap of the GaSb layer. Strong optical signal at room temperature from this structure supports a high-quality material synthesis. Current–voltage characteristics of fabricated InAs/GaSb p-i-n tunnel diodes measured at 77 K and 290 K demonstrated two bias-dependent transport mechanisms. The Shockley–Read–Hall generation–recombination mechanism at low bias and band-to-band tunneling transport at high bias confirmed the p-i-n tunnel diode operation. This elucidated the importance of defect control in metamorphic InAs/GaSb tunnel diodes for the implementation of low-voltage and high-performance tunnel field effect transistor applications.« less
Verma, Chandni; Chaudhary, Anshu; Shanker Singh, Hridaya
2017-09-26
The phylogenetic studies on monogeneans of the genus Thaparocleidus parasitizing W. attu in India was inferred from 18S rDNA gene data. Out of species of Thaparocleidus, one new, T. armillatus sp. n., is described herein which distinguished from its congener species in the shapes and sizes of sclerotized structures and rest of the two species, T. indicus and T. wallagonius are redescribed morphologically as well as validated and confirmed by molecular means also. Besides the above, T. gangus was also included in the molecular analysis as it is recently described on the basis of morphology only. The phylogenetic tree was also reconstructed in order to elucidate the taxonomic status of Thaparocleidus armillatus sp. n., T. indicus, T. wallagonius and T. gangus. This research reports for the first time, the molecular phylogenetic analysis of 18S rDNA gene for four species belonging to the genus Thaparocleidus from W. attu collected off the River Ganga in India. In phylogram, all four species of Thapaocleidus come in a single clade that confirmed their monophyletic status. A very low interspecific variability was observed in T. armillatus sp. n. and T. wallagonius suggesting that these species are highly similar in morphology. Correspondingly, T. indicus and T. gangus also showed low interspecific variability which too signifies their morphological similarities in their sclerotized structures. Our result suggested that all four species taken in the present investigation from India are monophyletic and it is also observed that morphological similarities in the sclerotized structures are well correlated with phylogeny.
Strain Prioritization and Genome Mining for Enediyne Natural Products
Yan, Xiaohui; Ge, Huiming; Huang, Tingting; Hindra; Yang, Dong; Teng, Qihui; Crnovčić, Ivana; Li, Xiuling; Rudolf, Jeffrey D.; Lohman, Jeremy R.; Gansemans, Yannick; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Van Nieuwerburgh, Filip; Rader, Christoph
2016-01-01
ABSTRACT The enediyne family of natural products has had a profound impact on modern chemistry, biology, and medicine, and yet only 11 enediynes have been structurally characterized to date. Here we report a genome survey of 3,400 actinomycetes, identifying 81 strains that harbor genes encoding the enediyne polyketide synthase cassettes that could be grouped into 28 distinct clades based on phylogenetic analysis. Genome sequencing of 31 representative strains confirmed that each clade harbors a distinct enediyne biosynthetic gene cluster. A genome neighborhood network allows prediction of new structural features and biosynthetic insights that could be exploited for enediyne discovery. We confirmed one clade as new C-1027 producers, with a significantly higher C-1027 titer than the original producer, and discovered a new family of enediyne natural products, the tiancimycins (TNMs), that exhibit potent cytotoxicity against a broad spectrum of cancer cell lines. Our results demonstrate the feasibility of rapid discovery of new enediynes from a large strain collection. PMID:27999165
Drieschner, Klaus H; Boomsma, Anne
2008-06-01
The Treatment Motivation Scales for forensic outpatient treatment (TMS-F) is a Dutch 85-item self-report questionnaire for the motivation of forensic outpatients to engage in their treatment and six cognitive and affective determinants of this motivation. Following descriptions of the conceptual basis and construction, the psychometric properties of the TMS-F are evaluated in two studies. In Study 1 (N = 378), the factorial structure of the instrument and the dimensionality of its scales are evaluated by confirmative factor analysis. In Study 2 with a new sample (N = 376), the results of Study 1 are largely confirmed. It is found that the factorial structure of the TMS-F is in accordance with expectations, that all scales are sufficiently homogeneous and reliable to interpret the sum scores, and that these results are stable across independent samples. The relative importance of the six determinants of the motivation to engage in the treatment and the generalizability of the results are discussed.
Statistical results from 10 years of Cassini Langmuir probe plasma measurements
NASA Astrophysics Data System (ADS)
Holmberg, M.; Shebanits, O.; Wahlund, J. E.; Morooka, M.; Andre, N.
2016-12-01
We use a new analysis method to obtain 10 years of Cassini RPWS Langmuir probe (LP) measurements to study the structure and dynamics of the inner plasma disk of Saturn. The LP plasma density measurements show good agreement with electron densities derived from the RPWS electric field power spectra and confirms and/or improves a number of previous findings about the structure of the plasma disk. E.g., the Enceladus plume is detected as a localised density maximum at the orbit of Enceladus, but the peak density of the inner plasma disk, excluding Enceladus plume passages, is located closer to 4.7 Rs. No density peaks are recorded at the orbits of the moons Mimas, Tethys, Dione, and Rhea. We confirm the previously detected plasma density dayside/nightside asymmetry, which is likely due to a particle drift in the dusk to dawn direction. Presented is also the LP result on the seasonal dependence of the plasma disk within Enceladus' orbit.
The application of cluster analysis in the intercomparison of loop structures in RNA.
Huang, Hung-Chung; Nagaswamy, Uma; Fox, George E
2005-04-01
We have developed a computational approach for the comparison and classification of RNA loop structures. Hairpin or interior loops identified in atomic resolution RNA structures were intercompared by conformational matching. The root-mean-square deviation (RMSD) values between all pairs of RNA fragments of interest, even if from different molecules, are calculated. Subsequently, cluster analysis is performed on the resulting matrix of RMSD distances using the unweighted pair group method with arithmetic mean (UPGMA). The cluster analysis objectively reveals groups of folds that resemble one another. To demonstrate the utility of the approach, a comprehensive analysis of all the terminal hairpin tetraloops that have been observed in 15 RNA structures that have been determined by X-ray crystallography was undertaken. The method found major clusters corresponding to the well-known GNRA and UNCG types. In addition, two tetraloops with the unusual primary sequence UMAC (M is A or C) were successfully assigned to the GNRA cluster. Larger loop structures were also examined and the clustering results confirmed the occurrence of variations of the GNRA and UNCG tetraloops in these loops and provided a systematic means for locating them. Nineteen examples of larger loops that closely resemble either the GNRA or UNCG tetraloop were found in the large ribosomal RNAs. When the clustering approach was extended to include all structures in the SCOR database, novel relationships were detected including one between the ANYA motif and a less common folding of the GAAA tetraloop sequence.
The application of cluster analysis in the intercomparison of loop structures in RNA
HUANG, HUNG-CHUNG; NAGASWAMY, UMA; FOX, GEORGE E.
2005-01-01
We have developed a computational approach for the comparison and classification of RNA loop structures. Hairpin or interior loops identified in atomic resolution RNA structures were intercompared by conformational matching. The root-mean-square deviation (RMSD) values between all pairs of RNA fragments of interest, even if from different molecules, are calculated. Subsequently, cluster analysis is performed on the resulting matrix of RMSD distances using the unweighted pair group method with arithmetic mean (UPGMA). The cluster analysis objectively reveals groups of folds that resemble one another. To demonstrate the utility of the approach, a comprehensive analysis of all the terminal hairpin tetraloops that have been observed in 15 RNA structures that have been determined by X-ray crystallography was undertaken. The method found major clusters corresponding to the well-known GNRA and UNCG types. In addition, two tetraloops with the unusual primary sequence UMAC (M is A or C) were successfully assigned to the GNRA cluster. Larger loop structures were also examined and the clustering results confirmed the occurrence of variations of the GNRA and UNCG tetraloops in these loops and provided a systematic means for locating them. Nineteen examples of larger loops that closely resemble either the GNRA or UNCG tetraloop were found in the large ribosomal RNAs. When the clustering approach was extended to include all structures in the SCOR database, novel relationships were detected including one between the ANYA motif and a less common folding of the GAAA tetraloop sequence. PMID:15769871
Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun
2011-08-22
Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.
Mao, Hanping; Liu, Zhongshou
2018-01-15
In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe 3 O 4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N 2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Fabrication of Ni@Ti core-shell nanoparticles by modified gas aggregation source
NASA Astrophysics Data System (ADS)
Hanuš, J.; Vaidulych, M.; Kylián, O.; Choukourov, A.; Kousal, J.; Khalakhan, I.; Cieslar, M.; Solař, P.; Biederman, H.
2017-11-01
Ni@Ti core-shell nanoparticles were prepared by a vacuum based method using the gas aggregation source (GAS) of nanoparticles. Ni nanoparticles fabricated in the GAS were afterwards coated by a Ti shell. The Ti shell was deposited by means of magnetron sputtering. The Ni nanoparticles were decelerated in the vicinity of the magnetron to the Ar drift velocity in the second deposition chamber. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy analysis of the nanoparticles showed the core-shell structure. It was shown that the thickness of the shell can be easily tuned by the process parameters with a maximum achieved thickness of the Ti shell ~2.5 nm. The core-shell structure was confirmed by the STEM analysis of the particles.
NASA Astrophysics Data System (ADS)
Shimada, Toru; Hasegawa, Takeshi
2017-10-01
The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pKa‧. The determination of pKa‧ is performed for various ionic strengths, which reveals the thermodynamic acid constant (pKa = 7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of - 1 and the blue form that of - 2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed.
Shimada, Toru; Hasegawa, Takeshi
2017-10-05
The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pK a '. The determination of pK a ' is performed for various ionic strengths, which reveals the thermodynamic acid constant (pK a =7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of -1 and the blue form that of -2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohamed Asath, R.; Premkumar, R.; Mathavan, T.; Milton Franklin Benial, A.
2017-09-01
Potential energy surface scan was performed and the most stable molecular structure of the N,N-di-tert-butoxycarbonyl (Boc)-2-amino pyridine (DBAP) molecule was predicted. The most stable molecular structure of the molecule was optimized using B3LYP method with cc-pVTZ basis set. Anticancer activity of the DBAP molecule was evaluated by molecular docking analysis. The structural parameters and vibrational wavenumbers were calculated for the optimized molecular structure. The experimental and theoretical wavenumbers were assigned and compared. Ultraviolet-Visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated and Fukui function calculations were also carried out to investigate the reactive nature of the DBAP molecule. The natural bond orbital analysis was also performed to probe the intramolecular interactions and confirm the bioactivity of the DBAP molecule. The molecular docking analysis reveals the better inhibitory nature of the DBAP molecule against the epidermal growth factor receptor (EGFR) protein which causes lung cancer. Hence, the present study unveils the structural and bioactive nature of the title molecule. The DBAP molecule was identified as a potential inhibitor against the lung cancer which may be useful in further development of drug designing in the treatment of lung cancer.
NASA Technical Reports Server (NTRS)
Sanchez, Christopher M.
2011-01-01
NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.
NASA Astrophysics Data System (ADS)
Vijayalakshmi, S.; Kalyanaraman, S.; Ravindran, T. R.
2014-02-01
Second harmonic generation (SHG) in Bis (Cinnamic acid): Hexamine cocrystal was extensively analyzed through charge transfer (CT). The CT interactions through hydrogen bonding were well established with the aid of vibrational analysis and Natural Bond Orbital (NBO) analysis. The retentivity of coplanar nature of the cinnamic acid in the cocrystal was confirmed through UV-Visible spectroscopy and supported by Raman studies. Structural analysis indicated the quinoidal character of the given material presenting a high SHG efficiency. The first order hyperpolarizability value was calculated theoretically by density functional theory (DFT) and Hartree-Fock (HF) methods in support for the large value of SHG.
Han, Dongmei; Försterling, F. Holger; Li, Xiaoyan; Deschamps, Jeffrey R.; Parrish, Damon; Cao, Hui; Rallapalli, Sundari; Clayton, Terry; Teng, Yun; Majumder, Samarpan; Sankar, Subramaniam; Roth, Bryan L.; Sieghart, Werner; Furtmuller, Roman; Rowlett, James; Weed, Mike R.; Cook, James M.
2013-01-01
The stable conformations of GABAA-benzodiazepine receptor bivalent ligands were determined by low temperature NMR spectroscopy and confirmed by single crystal X-ray analysis. The stable conformations in solution correlated well with those in the solid state. The linear conformation was important for these dimers to access the binding site and exhibit potent in vitro affinity and was illustrated for α5 subtype selective ligands. Bivalent ligands with an oxygen-containing linker folded back upon themselves both in solution and the solid state. Dimers which are folded do not bind to Bz receptors. PMID:18790643
Pickens, C L; Milliron, A R; Fussner, A L; Dversdall, B C; Langenstroer, P; Ferguson, S; Fu, X; Schmitz, F J; Poole, E C
1999-07-01
Several urinary calculi were submitted to our institution for compositional analysis. The typical techniques of analysis, polarized light microscopy, electron microprobe analysis, and infrared spectroscopy proved inadequate for a definitive identification. As a result, a more detailed organic analysis was conducted to determine the exact chemical structure of the material. Infrared spectroscopy and mass spectrometric analysis were carried out on the solid material, providing information concerning the functional groups and the molecular mass of the organic constituent and its components. The stone was solubilized in deuterated solvents and analyzed by nuclear magnetic resonance spectroscopy, which resulted in a definitive chemical structure. The spectroscopic analysis indicated that the stones were composed of a calcium salt of beta-(2-methoxyphenoxy)-lactic acid, a metabolite of the pharmaceutical guaifenesin, which is used as an expectorant. Guaifenesin, an expectorant common in over-the-counter cold and allergy remedies, can cause urolithiasis if taken in excess. Discussions with physicians and their patients confirmed that most patients admitted to taking large doses of guaifenesin-containing medications.
Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps.
Baptista, C; Robert, D; Duarte, A P
2008-05-01
This study examines the structure of residual and dissolved lignins from Pinus pinaster pulps obtained at different degrees of delignification by laboratory conventional kraft pulping. The cooking H factor was varied from 85 to 8049. The residual and dissolved lignin samples were characterised by elemental analysis, residual carbohydrate content, permanganate oxidation and 13C NMR spectroscopy. The reflectance factor of the pulps was also determined in order to tentatively correlate the delignification degree and residual lignin structure with the pulp colour. The obtained results confirmed that the delignification degree increases the condensation of the lignin structure, which might have an influence upon the observed increased pulp colour. The lack of selectivity of kraft pulping process in the case of more delignified pulps was also shown.
Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong
2018-06-01
The present dataset describes the entrained-flow pyrolysis of Microalgae Chlorella vulgaris and the results obtained during bio-char characterization. The dataset includes a brief explanation of the experimental procedure, experimental conditions and the influence of pyrolysis conditions on bio-chars morphology and carbon structure. The data show an increase in sphericity and surface smoothness of bio-chars at higher pressures and temperatures. Data confirmed that the swelling ratio of bio-chars increased with pressure up to 2.0 MPa. Consequently, changes in carbon structure of bio-chars were investigated using Raman spectroscopy. The data showed the increase in carbon order of chars at elevated pressures. Changes in the chemical structure of bio-char as a function of pyrolysis conditions were investigated using FTIR analysis.
Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T
1993-01-01
Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043
NASA Astrophysics Data System (ADS)
Ranjbar, M.; Ghazi, M. E.; Izadifard, M.
2018-06-01
In this paper we have investigated the annealing temperature effect on the structure, morphology, dielectric and magnetic properties of sol-gel synthesized multiferroic BiFeO3 nanoparticles. X-ray diffraction spectroscopy revealed that all the samples have rhombohedrally distorted perovskite structure and the most pure BFO phase is obtained on the sample annealed at 800 °C. Field emission scanning electron microscopy (FESEM) revealed that increasing annealing temperature would increase the particle size. Decrease in dielectric constant was also observed by increasing annealing temperature. Vibrating sample method (VSM) analysis confirmed that samples annealed at 500-700 °C with particle size below the BFO's spiral spin structure length, have well saturated M-H curve and show ferromagnetic behavior.
NASA Astrophysics Data System (ADS)
Durairajan, A.; Thangaraju, D.; Moorthy Babu, S.
2013-02-01
Mixed alkali double tungstates K1-xNaxGd(WO4)2 (KNGW) (0 ⩽ x ⩽ 1) were synthesized by solid state reaction using sodium doped monoclinic KGd(WO4)2 (KGW). Synthesized KNGW powders were characterized using powder X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and Raman analysis. DTA analysis confirms that the melting point of the KGW matrix increases from 1063 °C to 1255 °C with increasing sodium content. The Powder XRD analyses reveal that mixed phases were observed up to 40 wt.% of Na in the KGW matrix above that percentage there is domination of scheelite structure in the synthesized powder. Polyhedral type, bi-pyramidal shape and spheroid shape morphology was observed for KGW, NKGW and NGW powders respectively. The Raman analysis was carried out to understand the vibrational characteristic changes with mixing of sodium ions in the KGW matrix.
Bischof-Kastner, Christina; Kuntsche, Emmanuel
2014-01-01
Background Internationally, up to 15.1% of intensive Internet use among adolescents is dysfunctional. To provide a basis for early intervention and preventive measures, understanding the motives behind intensive Internet use is important. Objective This study aims to develop a questionnaire, the Internet Motive Questionnaire for Adolescents (IMQ-A), as a theory-based measurement for identifying the underlying motives for high-risk Internet use. More precisely, the aim was to confirm the 4-factor structure (ie, social, enhancement, coping, and conformity motives) as well as its construct and concurrent validity. Another aim was to identify the motivational differences between high-risk and low-risk Internet users. Methods A sample of 101 German adolescents (female: 52.5%, 53/101; age: mean 15.9, SD 1.3 years) was recruited. High-risk users (n=47) and low-risk users (n=54) were identified based on a screening measure for online addiction behavior in children and adolescents (Online-Suchtverhalten-Skala, OSVK-S). Here, “high-risk” Internet use means use that exceeds the level of intensive Internet use (OSVK-S sum score ≥7). Results The confirmatory factor analysis confirmed the IMQ-A’s 4-factor structure. A reliability analysis revealed good internal consistencies of the subscales (.71 up to .86). Moreover, regression analyses confirmed that the enhancement and coping motive groups significantly predicted high-risk Internet consumption and the OSVK-S sum score. A mixed-model ANOVA confirmed that adolescents mainly access the Internet for social motives, followed by enhancement and coping motives, and that high-risk users access the Internet more frequently for coping and enhancement motives than low-risk users. Low-risk users were primarily motivated socially. Conclusions The IMQ-A enables the assessment of motives related to adolescent Internet use and thus the identification of populations at risk. The questionnaire enables the development of preventive measures or early intervention programs, especially dealing with internal motives of Internet consumption. PMID:25299174
Bischof-Kastner, Christina; Kuntsche, Emmanuel; Wolstein, Jörg
2014-10-09
Internationally, up to 15.1% of intensive Internet use among adolescents is dysfunctional. To provide a basis for early intervention and preventive measures, understanding the motives behind intensive Internet use is important. This study aims to develop a questionnaire, the Internet Motive Questionnaire for Adolescents (IMQ-A), as a theory-based measurement for identifying the underlying motives for high-risk Internet use. More precisely, the aim was to confirm the 4-factor structure (ie, social, enhancement, coping, and conformity motives) as well as its construct and concurrent validity. Another aim was to identify the motivational differences between high-risk and low-risk Internet users. A sample of 101 German adolescents (female: 52.5%, 53/101; age: mean 15.9, SD 1.3 years) was recruited. High-risk users (n=47) and low-risk users (n=54) were identified based on a screening measure for online addiction behavior in children and adolescents (Online-Suchtverhalten-Skala, OSVK-S). Here, "high-risk" Internet use means use that exceeds the level of intensive Internet use (OSVK-S sum score ≥7). The confirmatory factor analysis confirmed the IMQ-A's 4-factor structure. A reliability analysis revealed good internal consistencies of the subscales (.71 up to .86). Moreover, regression analyses confirmed that the enhancement and coping motive groups significantly predicted high-risk Internet consumption and the OSVK-S sum score. A mixed-model ANOVA confirmed that adolescents mainly access the Internet for social motives, followed by enhancement and coping motives, and that high-risk users access the Internet more frequently for coping and enhancement motives than low-risk users. Low-risk users were primarily motivated socially. The IMQ-A enables the assessment of motives related to adolescent Internet use and thus the identification of populations at risk. The questionnaire enables the development of preventive measures or early intervention programs, especially dealing with internal motives of Internet consumption.
NASA Astrophysics Data System (ADS)
Kamińska, Anna
2010-01-01
The relationship between karst of chalk and tectonics in the interfluve of the middle Wieprz and Bug Rivers has been already examined by Maruszczak (1966), Harasimiuk (1980) and Dobrowolski (1998). Investigating the connection of the karst formation course and the substratum structure, the direction of the landforms and their spatial pattern were analysed and compared later to the structural pattern. The obvious completion of the collected data is a quantity analysis using statistical methods. This paper deals with the characteristics of such quantity analysis. By using the tools of the directional statistics, the following indexes have been calculated: the mean vector orientation, the length of the vector mean, strength of the vector mean, the Batschelet variance, as well as determined confidence intervals for the mean vector. In order to examine the distribution structure of these forms, the selected methods of the spatial statistics have been used-angular wavelet analysis (Rosenberg 2004) and the semivariogram analysis (Namysłowska-Wilczyńska 2006). On the basis of conducted analyses, it is possible to describe in detail the regularities in spatial distribution of the surface karst forms in the interfluve of the middle Wieprz and Bug Rivers. The orientation analysis reveals an important feature of their direction-along with a rise in the size of surface karst forms, the level of concentration around the mean vector orientation increases. Primary karst forms point out poor concentration along the longitudinal direction whereas complex forms are clearly concentrated along the WNW-ESE direction. Hence, only after clumping of the primary forms into the complex ones, the convergence of the surface karst forms direction with the direction of the main faults in the Meso-Cenozoic complex is visible (after A. Henkiel 1984). The results of the wavelet analysis modified by Rosenberg (2004) have indicated significant directions of the clumping of the surface karst forms. A clear difference in the distribution of these forms in west and east areas is noticed. Whereas the west area is dominated by the W-E, NW-SE, N-S directions, the karst forms in the east are concentrated along the NE-SW direction. The semivariogram analysis has confirmed the importance of the W-E and NE-SW directions. Moreover, this analysis has indicated which areas are characterized by the poor karst forms direction. It is a region where the Kock-Wasylów dislocation zone crosses the Święcica dislocation zone in the north-east part of the analysed area. The south-east region is the second such area. The picture of the spatial pattern one confirms the previous results (Dobrowolski 1998) and refers clearly to the structural pattern of this area. Nevertheless, the analyses mentioned above have shown the dominance of the W-E direction over the NW-SE one. The obtained results of the spatial and direction analyses expand and confirm hitherto information about the relation between the spatial pattern of the karst landforms and the tectonics in the interfluve of the middle Wieprz and Bug Rivers.
Pelentsov, Lemuel J; Fielder, Andrea L; Laws, Thomas A; Esterman, Adrian J
2016-01-01
Children and families affected by rare diseases have received scant consideration from the medical, scientific, and political communities, with parents' needs especially having received little attention. Affected parents often have limited access to information and support and appropriate health care services. While scales to measure the needs of parents of children with chronic illnesses have been developed, there have been no previous attempts to develop a scale to assess the needs of parents of children with rare diseases. To develop a scale for measuring the supportive care needs of parents of children with rare diseases. A total of 301 responses to our Parental Needs Survey were randomly divided into two halves, one for exploratory factor analysis and the other for confirmatory factor analysis (CFA). After removing unsuitable items, exploratory factor analysis was undertaken to determine the factor structure of the data. CFA using structural equation modeling was then undertaken to confirm the factor structure. Seventy-two items were entered into the CFA, with a scree plot showing a likely four-factor solution. The results provided four independent subscales of parental needs: Understanding the disease (four items); Working with health professionals (four items); Emotional issues (three items); and Financial needs (three items). The structural equation modeling confirmed the suitability of the four-factor solution and demonstrated that the four subscales could be added to provide an overall scale of parental need. This is the first scale developed to measure the supportive care needs of parents of children with rare diseases. The scale is suitable for use in surveys to develop policy, in individual clinical assessments, and, potentially, for evaluating new programs. Measuring the supportive care needs of parents caring for a child with a rare disease will hopefully lead to better physical and psychological health outcomes for parents and their affected children.
Remelhe, Mafalda; Teixeira, Pedro M; Lopes, Irene; Silva, Luís; Correia de Sousa, Jaime
2017-01-12
Enabling patients with asthma to obtain the knowledge, confidence and skills they need in order to assume a major role in the management of their disease is cost effective. It should be an integral part of any plan for long-term control of asthma. The modified Patient Enablement Instrument (mPEI) is an easily administered questionnaire that was adapted in the United Kingdom to measure patient enablement in asthma, but its applicability in Portugal is not known. Validity and reliability of questionnaires should be tested before use in settings different from those of the original version. The purpose of this study was to test the applicability of the mPEI to Portuguese asthma patients after translation and cross-cultural adaptation, and to verify the structural validity, internal consistency and reproducibility of the instrument. The mPEI was translated to Portuguese and back translated to English. Its content validity was assessed by a debriefing interview with 10 asthma patients. The translated instrument was then administered to a random sample of 142 patients with persistent asthma. Structural validity and internal consistency were assessed. For reproducibility analysis, 86 patients completed the instrument again 7 days later. Item-scale correlations and exploratory factor analysis were used to assess structural validity. Cronbach's alpha was used to test internal consistency, and the intra-class correlation coefficient was used for the analysis of reproducibility. All items of the Portuguese version of the mPEI were found to be equivalent to the original English version. There were strong item-scale correlations that confirmed construct validity, with a one component structure and good internal consistency (Cronbach's alpha >0.8) as well as high test-retest reliability (ICC=0.85). The mPEI showed sound psychometric properties for the evaluation of enablement in patients with asthma making it a reliable instrument for use in research and clinical practice in Portugal. Further studies are needed to confirm its responsiveness.
NASA Astrophysics Data System (ADS)
Sreelalitha, K.; Thyagarajan, K.
2016-01-01
In the present study, we investigate the structural, morphological and magnetic properties of sol-gel spin-coated PZT thin films on alumina substrate. The morphotropic phase boundary (MPB) of PZT [Pb (Zr1-xTix)03] between the tetragonal and rhombohedral phases occurs at the Zr/Ti ratio of 52/48. At the MPB the physical properties of PZT are of far-reaching importance due to their possible crystalline phases. In this study Pb(Zr0.52Ti0.48)03 sols are prepared at room temperature and at 125 °C. The gels are coated onto alumina substrate using a spin-coating unit as two and three layers. The structural studies using XRD confirm the perovskite phase formation at an annealing temperature of 660 °C for both films. The structural parameter grain size, dislocation density, lattice parameters and strain were dependent on the sol temperature. The SEM morphology of the samples represents well-developed dense grain structure and thickness in micrometer ranges. The VSM analysis shows diamagnetic and ferromagnetic hysteresis loop. The ferromagnetism at low fields in PZT films is confirmed by studying the magnetic properties of powder made of the same gel. The effect of heat treatment on the gel preparation is observed on structural, morphological and magnetic properties of PZT thin films. The ferromagnetism in PZT can be attributed to oxygen vacancies. The squareness ratio of the films shows the application of the films as a high-density recording medium.
ERIC Educational Resources Information Center
Chan, Y. C.; Lam, Gladys L. T.; Chun, P. K. R.; So, Moon Tong Ernest
2006-01-01
Objectives: To evaluate whether or not the original six-factor structure of the Child Abuse Potential (CAP) Inventory suggested by [Milner, J. S. (1986). "The Child Abuse Potential Inventory: Manual" (2nd ed.). DeKalb, IL: Psytec. Inc.] can be confirmed with data from a group of Chinese mothers in Hong Kong. Method: Eight hundred and…
NASA Astrophysics Data System (ADS)
Alam, Mahboob; Park, Soonheum
2018-05-01
The synthesis of 3β,6β-dichloro-5α-hydroxy-5α-cholestane (in general, steroidal chlorohydrin or steroidal halohydrin) and theoretical study of the structure are reported in this paper. The individuality of chlorohydrin was confirmed by FT-IR, NMR, MS, CHN microanalysis and X-ray crystallography. DFT calculations on the titled molecule have been performed. The molecular structure and spectra explained by Gaussian hybrid computational analysis theory (B3LYP) are found to be in correlation with the experimental data obtained from the various spectrophotometric techniques. The theoretical geometry optimization data were compared with the X-ray data. The vibrational bands appearing in the FT-IR are assigned with accuracy using harmonic frequencies along with intensities and animated modes. Molecular properties like NBO, HOMO-LUMO analysis, chemical reactivity descriptors, MEP mapping and dipole moment have been dealt at same level of theory. The calculated electronic spectrum of chlorohydrin is interpreted on the basis of TD-DFT calculations.
NASA Astrophysics Data System (ADS)
Subhapriya, S.; Gomathipriya, P.
2018-06-01
In this study, Titania nanorods were synthesised from aqueous extract of Turbinaria conoides (brown seaweeds) (TiO2NRs-TC) under surfactant free medium. The photocatalytic activity of the synthesised nanorods was tested towards the photocatalytic decolourization using simulated dye wastewater containing Navy Blue HER (NBHER). The synthesised Titania nanorods were characterized by using x-ray diffraction (XRD), UV–visible spectroscopy (UV–vis), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrophotometer (EDS) and Transmission Electron Microscopy (TEM). XRD pattern confirms the anatase phase formation and HR-SEM micrograph shows the presence of rod like structure with the size of about 50 nm. TEM analysis proves the rod like structure with a size of 45–50 nm which was in agreement with the XRD analysis and HR-SEM images. EDS and XDS confirmed the formation of Titania nanoparticles. The formation of TiO2NRs-TC has a beneficial influence on the dye Navy blue HER photodegradation. TiO2-TC nano rods also show superior photocatalytic ability in hydrogen generation (2.1 mmol/h‑1g‑1). The antibacterial activity of the synthesised nanoparticles was examined using disc diffusion method which showed diverse susceptibility of microorganisms to the Titania nanoparticles.
James, Veronica
2011-01-01
High- and low-angle X-ray diffraction studies of hard α -keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard α -keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, including multiple-timemore » exposures to verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard α -keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid α -keratin structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Veronica
2014-09-24
High- and low-angle X-ray diffraction studies of hard {alpha}-keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard {alpha}-keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, including multiple-time exposures tomore » verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard {alpha}-keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid {alpha}-keratin structure.« less
Ellis, David; Chavez, Oswaldo; Coombs, Joseph J; Soto, Julian V; Gomez, Rene; Douches, David S; Panta, Ana; Silvestre, Rocio; Anglin, Noelle Lynette
2018-05-24
Breeders rely on genetic integrity of material from genebanks, however, mislabeling and errors in original data can occur. Paired samples of original material and their in vitro counterparts from 250 diverse potato landrace accessions from the International Potato Center (CIP), were fingerprinted using the Infinium 12K V2 Potato Array to confirm genetic identity and evaluate genetic diversity. Diploid, triploid, and tetraploid accessions were included representing seven cultivated potato taxa (Hawkes, 1990). Fingerprints between mother field plants and in vitro clones, were used to evaluate identity, relatedness, and ancestry. Clones of the same accession grouped together, however eleven (4.4%) accessions were mismatches genetically. SNP genotypes were used to construct a phylogeny to evaluate inter- and intraspecific relationships and population structure. Data suggests that the triploids evaluated are genetically similar. STRUCTURE analysis identified several putative hybrids and suggests six populations with significant gene flow between. This study provides a model for genetic identity of plant genetic resources collections as mistakes in conservation of these collections and in genebanks is a reality and confirmed identity is critical for breeders and other users of these collections, as well as for quality management programs and to provide insights into the diversity of the accessions evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Veronica
High- and low-angle X-ray diffraction studies of hard α -keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard α -keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, including multiple-timemore » exposures to verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard α -keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid α -keratin structure.« less
In silico study of breast cancer associated gene 3 using LION Target Engine and other tools.
León, Darryl A; Cànaves, Jaume M
2003-12-01
Sequence analysis of individual targets is an important step in annotation and validation. As a test case, we investigated human breast cancer associated gene 3 (BCA3) with LION Target Engine and with other bioinformatics tools. LION Target Engine confirmed that the BCA3 gene is located on 11p15.4 and that the two most likely splice variants (lacking exon 3 and exons 3 and 5, respectively) exist. Based on our manual curation of sequence data, it is proposed that an additional variant (missing only exon 5) published in a public sequence repository, is a prediction artifact. A significant number of new orthologs were also identified, and these were the basis for a high-quality protein secondary structure prediction. Moreover, our research confirmed several distinct functional domains as described in earlier reports. Sequence conservation from multiple sequence alignments, splice variant identification, secondary structure predictions, and predicted phosphorylation sites suggest that the removal of interaction sites through alternative splicing might play a modulatory role in BCA3. This in silico approach shows the depth and relevance of an analysis that can be accomplished by including a variety of publicly available tools with an integrated and customizable life science informatics platform.
Ali, Syed Mashhood; Shamim, Shazia
2015-07-01
Complexation of racemic citalopram with β-cyclodextrin (β-CD) in aqueous medium was investigated to determine atom-accurate structure of the inclusion complexes. (1) H-NMR chemical shift change data of β-CD cavity protons in the presence of citalopram confirmed the formation of 1 : 1 inclusion complexes. ROESY spectrum confirmed the presence of aromatic ring in the β-CD cavity but whether one of the two or both rings was not clear. Molecular mechanics and molecular dynamic calculations showed the entry of fluoro-ring from wider side of β-CD cavity as the most favored mode of inclusion. Minimum energy computational models were analyzed for their accuracy in atomic coordinates by comparison of calculated and experimental intermolecular ROESY peak intensities, which were not found in agreement. Several least energy computational models were refined and analyzed till calculated and experimental intensities were compatible. The results demonstrate that computational models of CD complexes need to be analyzed for atom-accuracy and quantitative ROESY analysis is a promising method. Moreover, the study also validates that the quantitative use of ROESY is feasible even with longer mixing times if peak intensity ratios instead of absolute intensities are used. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kim, Hee Jin; Talukdar, Krishan; Choi, Sang-June
2016-02-01
Metal-organic frameworks can be intentionally coordinated to achieve improved proton conductivity because they have highly ordered structures and modular nature that serve as a scaffold to anchor acidic groups and develop efficient proton transfer pathways for fuel cell application. Using the concept of a coordination network, the conductivity of Nafion® was tuned by the incorporation of HKUST-1. It has CuII-paddle wheel type nodes and 1,3,5-benzenetricarboxylate struts, feature accessible sites that provides an improved protonic channel depending on the water content. In spite of the fact that HKUST-1 is neutral, coordinated water molecules are contributed adequately acidic by CuII to supply protons to enhance proton conductivity. Water molecules play a vital part in transfer of proton as conducting media and serve as triggers to change proton conductivity through reforming hydrogen bonding networks by water adsorption/desorption process. Increased ion exchange capacity and proton conductivity with lower water uptake of the H3PO4-doped material, and improved thermal stability (as confirmed by thermogravimetric analysis) were achieved. The structure of HKUST-1 was confirmed via field emission scanning electron microscopy and X-ray diffraction, while the porosity and adsorption desorption capacity were characterized by porosity analysis.
NASA Astrophysics Data System (ADS)
Ravichandran, K.; Dineshbabu, N.; Arun, T.; Manivasaham, A.; Sindhuja, E.
2017-01-01
Transparent conducting oxide films of undoped, Mo doped, Mo + F co-doped ZnO were deposited using a facile homemade nebulizer spray pyrolysis technique. The effects of Mo and F doping on the structural, optical, electrical and surface morphological properties were investigated using XRD, UV-vis-NIR spectroscopy, I-V and Hall probe techniques, FESEM and AFM, and XPS, respectively. The XRD analysis confirms that all the films are well crystallized with hexagonal wurtzite structure. All the synthesized samples exhibit high transmittance (above 85%) in the visible region. The current-voltage (I-V) characteristics show the ohmic conduction nature of the films. The Hall probe measurements show that the synergistic effects of Mo and F doping cause desirable improvements in the quality factor of the ZnO films. A minimum resistivity of 5.12 × 10-3 Ω cm with remarkably higher values of mobility and carrier concentration is achieved for Mo (2 at.%) + F (15 at.%) co-doped ZnO films. A considerable variation in the intensity of deep level emission caused by Mo and F doping is observed in the photoluminescence (PL) studies. The presence of the constituent elements in the samples is confirmed by XPS analysis.
Sauvage, François-Ludovic; Picard, Nicolas; Saint-Marcoux, Franck; Gaulier, Jean-Michel; Lachâtre, Gérard; Marquet, Pierre
2009-09-01
LC coupled to single (LC-MS) and tandem (LC-MS/MS) mass spectrometry is recognized as the most powerful analytical tools for metabolic studies in drug discovery. In this article, we describe five cases illustrating the utility of screening xenobiotic metabolites in routine analysis of forensic samples using LC-MS/MS. Analyses were performed using a previously published LC-MS/MS general unknown screening (GUS) procedure developed using a hybrid linear IT-tandem mass spectrometer. In each of the cases presented, the presence of metabolites of xenobiotics was suspected after analyzing urine samples. In two cases, the parent drug was also detected and the metabolites were merely useful to confirm drug intake, but in three other cases, metabolite detection was of actual forensic interest. The presented results indicate that: (i) the GUS procedure developed is useful to detect a large variety of drug metabolites, which would have been hardly detected using targeted methods in the context of clinical or forensic toxicology; (ii) metabolite structure can generally be inferred from their "enhanced" product ion scan spectra; and (iii) structure confirmation can be achieved through in vitro metabolic experiments or through the analysis of urine samples from individuals taking the parent drug.
Matsuo, Kouki; Isogai, Emiko; Araki, Yoshio
2000-01-01
Previously, Rhodotorula glutinis was reported to produce a large amount of exocellular mannan, having a repeating unit of →3)-d-Manp-(1→4)-d-Manp-(1→. Recently, we found that antigenic polysaccharides of Leptospira biflexa serovar patoc strain Patoc I have the same repeating unit and cross-react with antisera raised against extended strains of other leptospires (K. Matsuo, E. Isogai, and Y. Araki, Carbohydr. Res., in press). This structural identity and the difficulty of producing and isolating antigens led us to confirm the usefulness of Rhodotorula mannan as an immunoreactive antigen in a serological diagnosis of leptospirosis. In the present investigation, we confirmed the structural identity of an exocellular mannan isolated from R. glutinis AHU 3479 and tried to use it as an immunoreactive antigen in a serological diagnosis of leptospirosis. From its chemical analysis and 1H- and 13C-labeled nuclear magnetic resonance spectrometry, the Rhodotorula mannan was confirmed to consist of the same disaccharide units. Furthermore, such a preparation was shown to immunoreact to various sera from patients suffering with leptospirosis as well as to most rabbit antiserum preparations obtained from immunization with various strains of pathogenic leptospires. Therefore, the Rhodotorula mannan preparation is useful as an immunoreactive antigen in the serological diagnosis for leptospirosis. PMID:11015396
Measuring attitudes towards suicide: Preliminary evaluation of an attitude towards suicide scale.
Cwik, Jan Christopher; Till, Benedikt; Bieda, Angela; Blackwell, Simon E; Walter, Carolin; Teismann, Tobias
2017-01-01
Our study aimed to validate a previously published scale assessing attitudes towards suicide. Factor structure, convergent and discriminant validity, and predictive validity were investigated. Adult German participants (N=503; mean age=24.74years; age range=18-67years) anonymously completed a set of questionnaires. An exploratory factor analysis was conducted, and incongruous items were deleted. Subsequently, scale properties of the reduced scale and its construct validity were analyzed. A confirmatory factor analysis was then conducted in an independent sample (N=266; mean age=28.77years; age range=18-88years) to further confirm the factor structure of the questionnaire. Parallel analysis indicated a three-factor solution, which was also supported by confirmatory factor analysis: right to commit suicide, interpersonal gesture and resilience. The subscales demonstrated acceptable construct and discriminant validity. Cronbach's α for the subscales ranged from 0.67 to 0.83, explaining 49.70% of the total variance. Positive attitudes towards suicide proved to be predictive of suicide risk status, providing preliminary evidence for the utility of the scale. Future studies aiming to reproduce the factor structure in a more heterogeneous sample are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshpande, S. K.; Angadi, Basavaraj
2018-04-01
The Pb0.7Bi0.3Fe0.65Nb0.35O3 (PBFNO) multiferroic solid solution was synthesized by using single step solid state reaction method. Single phase formation was confirmed through room temperature (RT) X Ray Diffraction (XRD) and Neutron Diffraction (ND). Rietveld refinement was used to perform the structural analysis using FullProf Suite program. RT XRD and ND patterns well fitted with monoclinic structure (Cm space group) and cell parameters from the ND data are found to be a = 5.6474(4) Å, b = 5.6415(3) Å, c = 3.9992(3) Å and β = 89.95(2)°. ND data at RT exhibits G-type antiferromagnetic structure. The electrical properties (impedance and modulus) of PBFNO were studied as a function of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K) by Impedance spectroscopy technique. Impedance and modulus spectroscopy studies confirm the contribution to the conductivity is from grains only and the relaxation is of non-Debye type. The PBFNO sample exhibits negative temperature coefficient of resistance (NTCR) behaviour. PBFNO is found be a potential candidate for RT applications.
Correlation between structural and transport properties of electron beam irradiated PrMnO3 compounds
NASA Astrophysics Data System (ADS)
Christopher, Benedict; Rao, Ashok; Nagaraja, B. S.; Shyam Prasad, K.; Okram, G. S.; Sanjeev, Ganesh; Petwal, Vikash Chandra; Verma, Vijay Pal; Dwivedi, Jishnu; Poornesh, P.
2018-02-01
The structural, electrical, magnetic, and thermal properties of electron beam (EB) irradiated PrMnO3 manganites were investigated in the present communication. X-ray diffraction data reveals that all samples are single phased with orthorhombic distorted structure (Pbnm). Furthermore, the diffracted data are analyzed in detail using Rietveld refinement technique. It is observed that the EB dosage feebly disturbs the MnO6 octahedra. The electrical resistivity of all the samples exhibits semiconducting behavior. Small polaron hopping model is conveniently employed to investigate the semiconducting nature of the pristine as well as EB irradiated samples. The Seebeck coefficient (S) of the pristine as well as the irradiated samples exhibit large positive values at lower temperatures, signifying holes as the dominant charge carriers. The analysis of Seebeck coefficient data confirms that the small polaron hopping mechanism assists the thermoelectric transport property in the high temperature region. The magnetic measurements confirm the existence of paramagnetic (PM) to ferromagnetic (FM) behavior for the pristine and irradiated samples. In the lower temperature regime, coexistence of FM clusters and AFM matrix is dominating. Thus, the complex magnetic behavior of the compound has been explained in terms of rearrangement of antiferromagnetically coupled ionic moments.
NASA Astrophysics Data System (ADS)
Ravikumar, M.; Chandramohan, R.; Kumar, K. Deva Arun; Valanarasu, S.; Kathalingam, A.; Ganesh, V.; Shkir, Mohd.; AlFaify, S.; Algarni, H.
2018-07-01
High quality Cadmium oxide thin films doped with Praseodymium (Pr) were prepared using perfume atomizer based spray pyrolysis technique at substrate temperature near 350 °C. Structural analysis of films was examined by XRD and confirmed that the films are cubic in structure. All un-doped and doped films were good crystalline in nature with smooth and flat surface without significant modifications owed to doping. Optical transmittances of doped films was decrease in the visible and IR range with increasing Pr doping concentration. Band gap widened from 2.42 to 2.20 eV when doped with Pr from 0 to 5 at. %. In addition, the photoluminescence property of the films was also observed. Further, the electrical studies were performed on pure and doped samples Viz., the electrical resistivity, carrier concentration (ρ) and Hall mobility (μ). It confirmed that the deposited films has good structural environments in terms of grain size, absolute stress correspond and low resistivity. Current-voltage measurements on the nanostructured Al/Pr-nCdO/p-Si/Al device showed a non-linear electric characteristics indicating diode like behavior.
Surface analysis characterisation of gum binders used in modern watercolour paints
NASA Astrophysics Data System (ADS)
Sano, Naoko; Cumpson, Peter J.
2016-02-01
Conducting this study has demonstrated that not only SEM-EDX but also XPS can be an efficient tool for characterising watercolour paint surfaces. We find that surface effects are mediated by water. Once the powdered components in the watercolour come into contact with water they dramatically transform their chemical structures at the surface and show the presence of pigment components with a random dispersion within the gum layer. Hence the topmost surface of the paint is confirmed as being composed of the gum binder components. This result is difficult to confirm using just one analytical technique (either XPS or SEM-EDX). In addition, peak fitting of C1s XPS spectra suggests that the gum binder in the commercial watercolour paints is probably gum arabic (by comparison with the reference materials). This identification is not conclusive, but the combination techniques of XPS and SEM shows the surface structure with material distribution of the gum binder and the other ingredients of the watercolour paints. Therefore as a unique technique, XPS combined with SEM-EDX may prove a useful method in the study of surface structure for not only watercolour objects but also other art objects; which may in future help in the conservation for art.
Campoy, José Antonio; Lerigoleur-Balsemin, Emilie; Christmann, Hélène; Beauvieux, Rémi; Girollet, Nabil; Quero-García, José; Dirlewanger, Elisabeth; Barreneche, Teresa
2016-02-24
Depiction of the genetic diversity, linkage disequilibrium (LD) and population structure is essential for the efficient organization and exploitation of genetic resources. The objectives of this study were to (i) to evaluate the genetic diversity and to detect the patterns of LD, (ii) to estimate the levels of population structure and (iii) to identify a 'core collection' suitable for association genetic studies in sweet cherry. A total of 210 genotypes including modern cultivars and landraces from 16 countries were genotyped using the RosBREED cherry 6 K SNP array v1. Two groups, mainly bred cultivars and landraces, respectively, were first detected using STRUCTURE software and confirmed by Principal Coordinate Analysis (PCoA). Further analyses identified nine subgroups using STRUCTURE and Discriminant Analysis of Principal Components (DAPC). Several sub-groups correspond to different eco-geographic regions of landraces distribution. Linkage disequilibrium was evaluated showing lower values than in peach, the reference Prunus species. A 'core collection' containing 156 accessions was selected using the maximum length sub tree method. The present study constitutes the first population genetics analysis in cultivated sweet cherry using a medium-density SNP (single nucleotide polymorphism) marker array. We provided estimations of linkage disequilibrium, genetic structure and the definition of a first INRA's Sweet Cherry core collection useful for breeding programs, germplasm management and association genetics studies.
NASA Astrophysics Data System (ADS)
Koteswararao, B.; Hazra, Binoy K.; Rout, Dibyata; Srinivasarao, P. V.; Srinath, S.; Panda, S. K.
2017-07-01
We have studied the structural and magnetic properties and electronic structure of the compound InCuPO5 synthesized by a solid state reaction method. The structure of InCuPO5 comprises S = ½ uniform spin chains formed by corner-shared CuO4 units. Magnetic susceptibility (χ(T)) data show a broad maximum at about 65 K, a characteristic feature of one-dimensional (1D) magnetism. The χ(T) data are fitted to the coupled S = ½ Heisenberg antiferromagnetic (HAFM) uniform chain model that gives the intra-chain coupling (J/k B) between nearest-neighbor Cu2+ ions as -100 K and the ratio of inter-chain to intra-chain coupling (J‧/J) as about 0.07. The exchange couplings estimated from the magnetic data analysis are in good agreement with the values computed from the electronic structure calculations based on the density functional theory + Hubbard U (DFT + U) approach. The combination of theoretical and experimental analysis confirms that InCuPO5 is a candidate material for weakly coupled S = ½ uniform chains. A detailed theoretical analysis of the electronic structure further reveals that the system is insulating with a gap of 2.4 eV and a local moment of 0.70 µ B/Cu.
Gupta, Payal; Dash, Prasanta K
2017-09-11
Secretory phospholipase A 2 (sPLA 2 ) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA 2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA 2 s (I and II) from flax. PLA 2 activity of the cloned sPLA 2 s were biochemically assayed authenticating them as bona fide phospholipase A 2 . Physiochemical properties of both the sPLA 2 s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA 2 I as a hydrophobic protein and LusPLA 2 II as a hydrophilic protein. Structural analysis of flax sPLA 2 s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA 2 isoforms with rice sPLA 2 confirmed monomeric structural preservation among plant phospholipase A 2 and provided insight into structure of folded flax sPLA 2 s.
Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi
2017-01-01
The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chaudhari, J. J.; Joshi, U. S.
2018-05-01
In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.
Shohaimi, Shamarina; Wei, Wong Yoke; Shariff, Zalilah Mohd
2014-01-01
Comprehensive feeding practices questionnaire (CFPQ) is an instrument specifically developed to evaluate parental feeding practices. It has been confirmed among children in America and applied to populations in France, Norway, and New Zealand. In order to extend the application of CFPQ, we conducted a factor structure validation of the translated version of CFPQ (CFPQ-M) using confirmatory factor analysis among mothers of primary school children (N = 397) in Malaysia. Several items were modified for cultural adaptation. Of 49 items, 39 items with loading factors >0.40 were retained in the final model. The confirmatory factor analysis revealed that the final model (twelve-factor model with 39 items and 2 error covariances) displayed the best fit for our sample (Chi-square = 1147; df = 634; P < 0.05; CFI = 0.900; RMSEA = 0.045; SRMR = 0.0058). The instrument with some modifications was confirmed among mothers of school children in Malaysia. The present study extends the usability of the CFPQ and enables researchers and parents to better understand the relationships between parental feeding practices and related problems such as childhood obesity.
Influence of high-energy milling on structure and microstructure of asbestos-cement materials
NASA Astrophysics Data System (ADS)
Iwaszko, Józef; Zawada, Anna; Lubas, Małgorzata
2018-03-01
Asbestos-Containing Waste (ACW) in the form of a fragment from an asbestos-cement board was subjected to high-energy milling in a planetary mill at a constant rotational speed of 650 rpm and for variable milling times: 1, 2, and 3 h. The initial and the milled materials were subjected to infrared spectroscopic examination to identify the asbestos variety and to evaluate changes in the structure caused by high-energy milling. FT-IR (Fourier Transform Infrared Spectroscopy) examinations followed optical microscopy and SEM (Scanning Electron Microscopy) studies as well as X-ray analysis of the phase composition. It was found that the asbestos fibres present in the asbestos-cement board were respirable fibres with pathogenic properties. Identifying asbestos using the spectroscopic method showed that chrysotile asbestos was present in the as-received ACW while no characteristics of absorption bands from crocidolite or amosite were found. The results of the spectroscopic examinations were confirmed by the X-ray phase analysis. During SEM investigations of the milled ACW, complete loss of the fibrous structure of chrysotile was observed. The FT-IR examinations of the milled material showed that with an increased milling time, the characteristic absorption bands characteristic for chrysotile diminished and already after 2 h of milling their almost complete decay was observed. Thereby, it was confirmed that high-energy milling results in destruction of the crystalline structure of the asbestos phase. The conducted studies have shown that the treatment of asbestos-cement materials using high-energy milling is an effective method for asbestos disposal, capable of competing with other technologies and solutions. Moreover, FT-IR spectroscopy was found to be useful to identify asbestos phases and to assess changes caused by high-energy milling.
Hu, H; Wang, T; Fu, Q
2017-10-01
Little is known about the psychological factors currently influencing blood donation in China. This study investigated the structure of psychological factors and their correlation with donation behaviour of adults in a transforming city in China over a 6-month period. Participants were recruited in Nanjing from May 2013 to April 2014. Preliminary focus group interviews with 102 participants were conducted to generate new items for a Theory of Planned Behaviour (TPB) questionnaire. The questionnaires were completed by 300 participants, and responses were subjected to factor analysis. We confirmed the resulting factorial structure with 861 respondents and examined the associations between these factors and donation behaviour during the next 6 months using structural equation modelling. Factor analysis and structural equation modelling of the data supported an extended TPB model with self-reported past donation behaviour as a covariate. After controlling for past donation behaviour, attitudes towards blood donation (β = 0·288), subjective norm (β = 0·149), self-efficacy (β = 0·199), trust in third-party health professionals (β = 0·237), mistrust towards blood collection agencies (BCAs) (β = -0·085) and traditional Chinese beliefs (β = -0·046) were significantly related to donation intention, whilst donation intention was positively (β = 0·212) associated with donation behaviour. These findings confirm that psychological factors such as attitudes are predictors of blood donation. Recruitment efforts using public information campaigns and interpersonal communications should focus on strengthening positive attitudes, increasing trust in third-party health professionals, elevating self-efficacy, changing traditional Chinese beliefs and relieving mistrust in blood collection agencies (BCAs). © 2017 British Blood Transfusion Society.
Genetic diversity and population structure of Musa accessions in ex situ conservation
2013-01-01
Background Banana cultivars are mostly derived from hybridization between wild diploid subspecies of Musa acuminata (A genome) and M. balbisiana (B genome), and they exhibit various levels of ploidy and genomic constitution. The Embrapa ex situ Musa collection contains over 220 accessions, of which only a few have been genetically characterized. Knowledge regarding the genetic relationships and diversity between modern cultivars and wild relatives would assist in conservation and breeding strategies. Our objectives were to determine the genomic constitution based on Internal Transcribed Spacer (ITS) regions polymorphism and the ploidy of all accessions by flow cytometry and to investigate the population structure of the collection using Simple Sequence Repeat (SSR) loci as co-dominant markers based on Structure software, not previously performed in Musa. Results From the 221 accessions analyzed by flow cytometry, the correct ploidy was confirmed or established for 212 (95.9%), whereas digestion of the ITS region confirmed the genomic constitution of 209 (94.6%). Neighbor-joining clustering analysis derived from SSR binary data allowed the detection of two major groups, essentially distinguished by the presence or absence of the B genome, while subgroups were formed according to the genomic composition and commercial classification. The co-dominant nature of SSR was explored to analyze the structure of the population based on a Bayesian approach, detecting 21 subpopulations. Most of the subpopulations were in agreement with the clustering analysis. Conclusions The data generated by flow cytometry, ITS and SSR supported the hypothesis about the occurrence of homeologue recombination between A and B genomes, leading to discrepancies in the number of sets or portions from each parental genome. These phenomenons have been largely disregarded in the evolution of banana, as the “single-step domestication” hypothesis had long predominated. These findings will have an impact in future breeding approaches. Structure analysis enabled the efficient detection of ancestry of recently developed tetraploid hybrids by breeding programs, and for some triploids. However, for the main commercial subgroups, Structure appeared to be less efficient to detect the ancestry in diploid groups, possibly due to sampling restrictions. The possibility of inferring the membership among accessions to correct the effects of genetic structure opens possibilities for its use in marker-assisted selection by association mapping. PMID:23497122
Phase diagram and electrical behavior of silicon-rich iridium silicide compounds
NASA Technical Reports Server (NTRS)
Allevato, C. E.; Vining, Cronin B.
1992-01-01
The iridium-silicon phase diagram on the silicon-rich side was investigated by means of X-ray powder diffraction, density, differential thermal analysis, metalography, microprobe analysis, and electrical resistivity. Attempts were made to prepare eight previously reported silicon-rich iridium silicide compounds by arc melting and Bridgman-like growth. However, microprobe analysis identified only four distinct compositions: IrSi, Ir3Si4, Ir3Si5 and IrSi sub about 3. The existence of Ir4Si5 could not be confirmed in this study, even though the crystal structure has been previously reported. Differential thermal analysis (DTA) in conjunction with X-ray powder diffraction confirm polymorphism in IrSi sub about 3, determined to have orthorhombic and monoclinic unit cells in the high and low temperature forms. A eutectic composition alloy of 83 +/- 1 atomic percent silicon was observed between IrSi sub about 3 and silicon. Ir3Si4 exhibits distinct metallic behavior while Ir3Si5 is semiconducting. Both and IrSi and IrSi sub about 3 exhibit nearly temperature independent electrical resistivities on the order of 5-10 x 10 exp -6 ohms-m.
Navas, Javier; Sánchez-Coronilla, Antonio; Gallardo, Juan Jesús; Hernández, Norge Cruz; Piñero, Jose Carlos; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; De los Santos, Desireé M; Aguilar, Teresa; Martín-Calleja, Joaquín
2015-04-14
This paper presents the synthesis of the organic-inorganic hybrid perovskite, CH3NH3PbI3, doped in the Pb(2+) position with Sn(2+), Sr(2+), Cd(2+) and Ca(2+). The incorporation of the dopants into the crystalline structure was analysed, observing how the characteristics of the dopant affected properties such as the crystalline phase, emission and optical properties. XRD showed how doping with Sn(2+), Sr(2+) and Cd(2+) did not modify the normal tetragonal phase. When doping with Ca(2+), the cubic phase was obtained. Moreover, DR-UV-Vis spectroscopy showed how the band gap decreased with the dopants, the values following the trend Sr(2+) < Cd(2+) < Ca(2+) < CH3NH3PbI3 ≈ Sn(2+). The biggest decrease was generated by Sr(2+), which reduced the CH3NH3PbI3 value by 4.5%. In turn, cathodoluminescence (CL) measurements confirmed the band gap obtained. Periodic-DFT calculations were performed to understand the experimental structures. The DOS analysis confirmed the experimental results obtained using UV-Vis spectroscopy, with the values calculated following the trend Sn(2+) ≈ Pb(2+) > Cd(2+) > Sr(2+) for the tetragonal structure and Pb(2+) > Ca(2+) for the cubic phase. The electron localization function (ELF) analysis showed similar electron localizations for undoped and Sn(2+)-doped tetragonal structures, which were different from those doped with Sr(2+) and Cd(2+). Furthermore, when Cd(2+) was incorporated, the Cd-I interaction was strengthened. For Ca(2+) doping, the Ca-I interaction had a greater ionic nature than Cd-I. Finally, an analysis based on the non-covalent interaction (NCI) index is presented to determine the weak-type interactions of the CH3NH3 groups with the dopant and I atoms. To our knowledge, this kind of analysis with these hybrid systems has not been performed previously.
Insights into the Functional Architecture of the Catalytic Center of a Maize β-Glucosidase Zm-p60.11
Zouhar, Jan; Vévodová, Jitka; Marek, Jaromír; Damborský, Jir̆í; Su, Xiao-Dong; Brzobohatý, Br̆etislav
2001-01-01
The maize (Zea mays) β-glucosidase Zm-p60.1 has been implicated in regulation of plant development by the targeted release of free cytokinins from cytokinin-O-glucosides, their inactive storage forms. The crystal structure of the wild-type enzyme was solved at 2.05-Å resolution, allowing molecular docking analysis to be conducted. This indicated that the enzyme specificity toward substrates with aryl aglycones is determined by aglycone aromatic system stacking with W373, and interactions with edges of F193, F200, and F461 located opposite W373 in a slot-like aglycone-binding site. These aglycone-active site interactions recently were hypothesized to determine substrate specificity in inactive enzyme substrate complexes of ZM-Glu1, an allozyme of Zm-p60.1. Here, we test this hypothesis by kinetic analysis of F193I/Y/W mutants. The decreased Km of all mutants confirmed the involvement of F193 in determining enzyme affinity toward substrates with an aromatic aglycone. It was unexpected that a 30-fold decrease in kcat was found in F193I mutant compared with the wild type. Kinetic analysis and computer modeling demonstrated that the F193-aglycone-W373 interaction not only contributes to aglycone recognition as hypothesized previously but also codetermines catalytic rate by fixing the glucosidic bond in an orientation favorable for attack by the catalytic pair, E186 and E401. The catalytic pair, assigned initially by their location in the structure, was confirmed by kinetic analysis of E186D/Q and E401D/Q mutants. It was unexpected that the E401D as well as C205S and C211S mutations dramatically impaired the assembly of a catalysis-competent homodimer, suggesting novel links between the active site structure and dimer formation. PMID:11706179
NASA Astrophysics Data System (ADS)
Sibi, N.; Subodh, G.
2017-12-01
Garnets are naturally occurring minerals with the general formula X3Y2Z3O12 having various applications. In the present study, the structural and physical properties of a garnet mineral obtained from Indian Rare Earth Ltd., Manavalakurichi, Tamil Nadu, India were comprehensively investigated. The compositional analysis using electron probe micro analysis (EPMA) revealed that the mineral belongs to almandine-pyrope solid solution (Al70Py29) with the chemical formula (Fe1.72Mg0.8Mn0.01Ca0.02) (Fe0.04Al2.36) Si2.93O12. Rietveld refinement of the x-ray diffraction pattern confirms that the space group is Ia{ - }\\overline{3} d with refined cubic lattice parameter a = 11.550(4) Å. The refined occupancy values of multiple cations in the dodecahedral and octahedral sites are in agreement with the EPMA data. Fourier transform infrared and FT Raman spectra show bands corresponding to almandine-pyrope solid solution. Peak splitting of IR and Raman bands confirms presence of multiple cations in the dodecahedral site. Thermogravimetric/differential thermal analysis shows that the mineral is stable up to 600°C in spite of the presence of Fe2+ ions. Low temperature magnetic susceptibility data is in agreement with the amount of Fe2+ ions present in the mineral. The dielectric constant of the mineral varied from 6 to 16.5 when sintered at temperatures ranging from 600°C to 1250°C.
Suguna, S; Anbuselvi, D; Jayaraman, D; Nagaraja, K S; Jeyaraj, B
2014-11-11
Piperazine-1,4-diium bis 2,4,6-trinitrophenolate is one of the useful organic materials with nonlinear optical (NLO) and pharmaceutical applications. The material was grown by slow evaporation solution growth method at room temperature. The crystal system and lattice parameters were identified by single crystal XRD analysis. The grown material crystallizes in monoclinic system with P21/n space group. The main functional groups NH2, NO2, CN, CC, and phenolic 'O' atom were identified using FTIR analysis. The protons and carbons of grown crystal with various chemical environments were studied by 1H and 13C NMR spectroscopy to confirm the molecular structure. The optical properties of the crystal were studied by UV-vis-NIR spectroscopy and the transmission 100% range starts from 532 nm onwards. The optical band gap was measured as 2.63 eV from the plot of (αhν)2 versus hν. The thermal stability was detected at 304.1°C using TG-DTA analysis. The dielectric studies of the sample were carried out at different temperatures in the frequency range from 50 Hz to 5 MHz to establish the dielectric nature of the crystal. Photoconductivity measurements were carried out on the grown crystal. The Second Harmonic Generation (SHG) of the crystal was tested to confirm the nonlinear optical property. Copyright © 2014 Elsevier B.V. All rights reserved.
Moreno-Murcia, Juan A; Martínez-Galindo, Celestina; Moreno-Pérez, Víctor; Marcos, Pablo J.; Borges, Fernanda
2012-01-01
This study aimed to cross-validate the psychometric properties of the Basic Psychological Needs in Exercise Scale (BPNES) by Vlachopoulos and Michailidou, 2006 in a Spanish context. Two studies were conducted. Confirmatory factor analysis results confirmed the hypothesized three-factor solution In addition, we documented evidence of reliability, analysed as internal consistency and temporal stability. Future studies should analyse the scale's validity and reliability with different populations and check their experimental effect. Key pointsThe Basic Psychological Needs in Exercise Scale (BPNES) is valid and reliable for measuring basic psychological needs in healthy physical exercise in the Spanish context.The factor structure of three correlated factors has shown minimal invariance across gender. PMID:24149130
Multivariate analysis of fears in dental phobic patients according to a reduced FSS-II scale.
Hakeberg, M; Gustafsson, J E; Berggren, U; Carlsson, S G
1995-10-01
This study analyzed and assessed dimensions of a questionnaire developed to measure general fears and phobias. A previous factor analysis among 109 dental phobics had revealed a five-factor structure with 22 items and an explained total variance of 54%. The present study analyzed the same material using a multivariate statistical procedure (LISREL) to reveal structural latent variables. The LISREL analysis, based on the correlation matrix, yielded a chi-square of 216.6 with 195 degrees of freedom (P = 0.138) and showed a model with seven latent variables. One was a general fear factor correlated to all 22 items. The other six factors concerned "Illness & Death" (5 items), "Failures & Embarrassment" (5 items), "Social situations" (5 items), "Physical injuries" (4 items), "Animals & Natural phenomena" (4 items). One item (opposite sex) was included in both "Failures & Embarrassment" and "Social situations". The last factor, "Social interaction", combined all the items in "Failures & Embarrassment" and "Social situations" (9 items). In conclusion, this multivariate statistical analysis (LISREL) revealed and confirmed a factor structure similar to our previous study, but added two important dimensions not shown with a traditional factor analysis. This reduced FSS-II version measures general fears and phobias and may be used on a routine clinical basis as well as in dental phobia research.
Influence of Zn doping on structural, optical and dielectric properties of LaFeO3
NASA Astrophysics Data System (ADS)
Manzoor, Samiya; Husain, Shahid
2018-05-01
The effect of Zn doping on structural, optical and dielectric properties of nano-crystalline LaFe1‑xZnxO3 (0.0 ≤ x ≤ 0.3) samples have been investigated. These samples are synthesized using conventional solid state reaction route. X-ray diffraction patterns with Rietveld analysis confirm the single phase nature of samples. Further, the sample formation has been confirmed by FTIR spectroscopy. All the samples are formed in orthorhombic crystal symmetry with Pbnm space group. The average crystallite sizes, calculated from the Scherer’s formula, lie in the range below 50 nm. Rietveld refinement technique is used to determine lattice parameters, bond lengths and unit cell volume. Williamson-Hall analysis has been performed to calculate the crystallite size and lattice strain. Crystallite sizes are found to be of nanometer range while the strain is of the order of 10‑3. Zn doping leads to the expansion of volume due to the tensile strain. Optical bandgap has been determined from Kubelka-Munk function using Tauc’s relation. Zinc doping in LaFeO3 leads to decrease in optical bandgap. Dielectric constant as a function of frequency is measured in the frequency range of 75 kHz–5 MHz. The dielectric behavior has been investigated by analyzing ‘universal dielectric response’ (UDR) model. The dielectric constant (ε‧) shows colossal value with Zn doping in the whole frequency range. However, the imaginary part (ε″) shows relaxational behavior which may be attributed to the strong correlation that exists between conduction mechanism and dielectric behavior in ferrites. Cole-Cole analysis has been done that confirms the dielectric material does not follow the ideal Debye theory but shows distribution of relaxation times. The a.c conductivity increases with frequency and with Zn doping due to the increased polaron hopping.
Ghate, Minakshi; Dahule, H K; Thejo Kalyani, N; Dhoble, S J
2018-03-01
A novel blue luminescent 6-chloro-2-(4-cynophenyl) substituted diphenyl quinoline (Cl-CN DPQ) organic phosphor has been synthesized by the acid-catalyzed Friedlander reaction and then characterized to confirm structural, optical and thermal properties. Structural properties of Cl-CN-DPQ were analyzed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction technique (XRD) and scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) spectroscopy. FTIR spectra confirmed the presence of different functional groups and bond stretching. 1 H-NMR and 13 C-NMR confirmed the formation of an organic Cl-CN-DPQ compound. X-ray diffraction study provided its crystalline nature. The surface morphology of Cl-CN-DPQ was analyzed by SEM, while EDAX spectroscopy revealed the elemental analysis. Differential thermal analysis (TGA/DTA) disclosed its thermal stability up to 250°C. The optical properties of Cl-CN-DPQ were investigated by UV-vis absorption and photoluminescence (PL) measurements. Cl-CN-DPQ exhibits intense blue emission at 434 nm in a solid-state crystalline powder with CIE co-ordinates (0.157, 0.027), when excited at 373 nm. Cl-CN-DPQ shows remarkable Stokes shift in the range 14800-5100 cm -1 , which is the characteristic feature of intense light emission. A narrow full width at half-maximum (FWHM) value of PL spectra in the range 42-48 nm was observed. Oscillator strength, energy band gap, quantum yield, and fluorescence energy yield were also examined using UV-vis absorption and photoluminescence spectra. These results prove its applications towards developing organic luminescence devices and displays, organic phosphor-based solar cells and displays, organic lasers, chemical sensors and many more. Copyright © 2017 John Wiley & Sons, Ltd.
Measuring risky adolescent cycling behaviour.
Feenstra, Hans; Ruiter, Robert A C; Schepers, Jan; Peters, Gjalt-Jorn; Kok, Gerjo
2011-09-01
Adolescents are at a greater risk of being involved in traffic accidents than most other age groups, even before they start driving cars. This article aims to determine the factor structure of a self-report questionnaire measuring adolescent risky cycling behaviour, the ACBQ (Adolescent Cycling Behaviour Questionnaire). The questionnaire's structure was based on the widely used Driver Behaviour Questionnaire (DBQ). A sample of secondary school students (N = 1749; age range: 13-18 years) filled out the questionnaire. Factor analysis revealed a three-factor structure underlying the questionnaire, which was confirmed on two equally large portions of the entire sample. These three underlying factors were identified as errors, common violations and exceptional violations. The ACBQ is a useful instrument for measuring adolescents' risky cycling behaviour.
Structure and magnetic properties of Sm1-xZrx Fe10Si2 (x=0.2-0.6) alloys
NASA Astrophysics Data System (ADS)
Gjoka, M.; Sarafidis, C.; Psycharis, V.; Devlin, E.; Niarchos, D.; Hadjipanayis, G.
2017-10-01
Structure and magnetic properties of Sm1-xZrxFe10Si2 (0.1 ≤ x ≤ 0.6) alloys have been characterized using X-ray diffraction, thermomagnetic analysis and Mössbauer spectroscopy. The formation of the tetragonal ThMn12 -type structure was been observed in all alloys, without further annealing. The Curie temperature decreases linearly with Zr substitution from 322 °C for x=0.1 to 395 °C for x=0.6. Mössbauer spectroscopy showed the iron hyperfine field values decrease with increasing Zr content, and also confirmed changes to the magnetic anisotropy with increasing Zr content observed by XRD on oriented samples.
Structural, morphological and optical studies of F doped SnO2 thin films
NASA Astrophysics Data System (ADS)
Chandel, Tarun; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, Poolla
2018-05-01
Highly conducting and transparent FTO (flourine doped tin Oxide) thin films were grown on the glass substrates using a low cost spray pyrolysis technique. The films were characterized for their structural, morphological and optical studies using XRD, SEM and UV-Vis spectroscopy. XRD studies show that the FTO films crystallize in Tetragonal cassiterite structure. Morphological analysis using SEM show that the films are uniformly covered with spherical grains albeit high in surface roughness. The average optical transmission greater than 80% in the visible region along with the appearance of interference fringes in the transmission curves confirms the high quality of the films. Electrical studies show that the films exhibit sheet resistance below 10 Ω ϒ-1.
The structural and Raman spectral studies on Ni0.5Cu0.5Fe2O4 ferrite
NASA Astrophysics Data System (ADS)
Somani, M.; Saleem, M.
2018-05-01
Spinel ferrite Ni0.5Cu0.5Fe2O4 has been successfully prepared via solid state reaction. The crystal structure studies using XRD technique revealed cubic structure of the sample. The XRD spectra was further refined via Retvield Refinement and all the parameters regarding structure were obtained which confirmed cubic structure. The assigned space group was found to be Fd-3m. Particle size was calculated to be 56 nm. The Raman Spectra revealed five active Raman modes which confirmed spinel structure.
NASA Astrophysics Data System (ADS)
Paul, T.; Ghosh, A.
2017-04-01
We have studied the structure and electrical properties of La2Mo2O9 thin films of different thicknesses prepared by the laser deposition technique at different substrate temperatures. The structural properties of the thin films have been investigated using XRD, XPS, AFM, TEM, SEM, and Raman spectroscopy. The electrical transport properties of the thin films have been investigated in wide temperature and frequency ranges. The cubic nature of the thin films has been confirmed from structural analysis. An enhancement of the oxygen ion conductivity of the films up to five orders of magnitude is obtained compared to that of the bulk La2Mo2O9, suggesting usefulness of the thin films as electrolytes in micro-solid oxide fuel cells. The enhanced dc ionic conductivity of the thin films has been interpreted using the rule of the mixture model, while a power law model has been used to investigate the frequency and temperature dependences of the conductivity. The analysis of the results predicts the three-dimensional oxygen ion conduction in the thin films.
Optimization of chemical structure of Schottky-type selection diode for crossbar resistive memory.
Kim, Gun Hwan; Lee, Jong Ho; Jeon, Woojin; Song, Seul Ji; Seok, Jun Yeong; Yoon, Jung Ho; Yoon, Kyung Jean; Park, Tae Joo; Hwang, Cheol Seong
2012-10-24
The electrical performances of Pt/TiO(2)/Ti/Pt stacked Schottky-type diode (SD) was systematically examined, and this performance is dependent on the chemical structures of the each layer and their interfaces. The Ti layers containing a tolerable amount of oxygen showed metallic electrical conduction characteristics, which was confirmed by sheet resistance measurement with elevating the temperature, transmission line measurement (TLM), and Auger electron spectroscopy (AES) analysis. However, the chemical structure of SD stack and resulting electrical properties were crucially affected by the dissolved oxygen concentration in the Ti layers. The lower oxidation potential of the Ti layer with initially higher oxygen concentration suppressed the oxygen deficiency of the overlying TiO(2) layer induced by consumption of the oxygen from TiO(2) layer. This structure results in the lower reverse current of SDs without significant degradation of forward-state current. Conductive atomic force microscopy (CAFM) analysis showed the current conduction through the local conduction paths in the presented SDs, which guarantees a sufficient forward-current density as a selection device for highly integrated crossbar array resistive memory.
Fluorine-doped NiO nanostructures: Structural, morphological and spectroscopic studies
NASA Astrophysics Data System (ADS)
Singh, Kulwinder; Kumar, Manjeet; Singh, Dilpreet; Singh, Manjinder; Singh, Paviter; Singh, Bikramjeet; Kaur, Gurpreet; Bala, Rajni; Thakur, Anup; Kumar, Akshay
2018-05-01
Nanostructured NiO has been prepared by co-precipitation method. In this study, the effect of fluorine doping (1, 3 and 5 wt. %) on the structural, morphological as well as optical properties of NiO nanostructures has been studied. X-ray diffraction (XRD) has employed for studying the structural properties. Cubic crystal structure of NiO was confirmed by the XRD analysis. Crystallite size increased with increase in doping concentration. Nelson-Riley factor (NRF) analysis indicated the presence of defect states in the synthesized samples. Field emission scanning electron microscopy showed the spherical morphology of the synthesized samples and also revealed that the particle size varied with dopant content. The optical properties were studied using UV-Visible Spectroscopy. The results indicated that the band gap energy of the synthesized nanostructures decreased with increase in doping concentration upto 3% but increased as the doping concentration was further raised to 5%. This can be ascribed to the defect states variations in the synthesized samples. The results suggested that the synthesized nanostructures are promising candidate for optoelectronic as well as gas sensing applications.
Cescutti, P; Ravenscroft, N; Ng, S; Lam, Z; Dutton, G G
1993-06-21
The capsular polysaccharide of Klebsiella SK1 was investigated by methylation analysis, Smith degradation, and 1H NMR spectroscopy. The oligosaccharides (P1 and P2) obtained by bacteriophage phi SK1 degradation of the polymer were studied by methylation analysis, and 1D- and 2D-NMR spectroscopy. The resulting data showed that the parent repeating unit is a branched pentasaccharide having a structure identical to the revised structure recently proposed for Klebsiella serotype K8 capsular polysaccharide. [Formula: see text] The 2D-NMR data showed that one third of the glucuronic acid residues in the SK1 polymer are acetylated at O-2, O-3, or O-4. FABMS studies confirmed the presence of monoacetylated glucuronic acid residues. Thus, the relationship between the Klebsiella K8 and SK1 polymers is akin to that found for Klebsiella polysaccharides K30 and K33, which have been typed as serologically distinct yet their structures differ only in the degree of acetylation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popa, Karin; Raison, Philippe E., E-mail: philippe.raison@ec.europa.eu; Martel, Laura
2015-10-15
PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis ofmore » room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.« less
Chemical synthesis and NMR characterization of structured polyunsaturated triacylglycerols.
Fauconnot, Laëtitia; Robert, Fabien; Villard, Renaud; Dionisi, Fabiola
2006-02-01
The chemical synthesis of pure triacylglycerol (TAG) regioisomers, that contain long chain polyunsaturated fatty acids, such as arachidonic acid (AA) or docosahexaenoic acid (DHA), and saturated fatty acids, such as lauric acid (La) or palmitic acid (P), at defined positions, is described. A single step methodology using (benzotriazol-1-yloxy)-tripyrrolidinophosphonium hexafluorophosphate (PyBOP), an activator of carboxyl group commonly used in peptide synthesis and occasionally used in carboxylic acid esterification, has been developed for structured TAG synthesis. Identification of the fatty acyl chains for each TAG species was confirmed by atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) and fatty acid positional distribution was determined by (1)H and (13)C NMR spectra. The generic described procedures can be applied to a large variety of substrates and was used for the production of specific triacylglycerols of defined molecular structures, with high regioisomeric purity. Combination of MS and NMR was shown to be an efficient tool for structural analysis of TAG. In particular, some NMR signals were demonstrated to be regioisomer specific, allowing rapid positional analysis of LC-PUFA containing TAG.
Empirically testing vaterite structural models using neutron diffraction and thermal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakoumakos, Bryan C.; Pracheil, Brenda M.; Koenigs, Ryan
Otoliths, calcium carbonate (CaCO 3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite a metastable polymorph of CaCO 3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while sturgeon otoliths are primarily composed ofmore » vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 522 model, a = 7.1443(4)Å , c = 25.350(4)Å , V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.« less
Empirically testing vaterite structural models using neutron diffraction and thermal analysis
Chakoumakos, Bryan C.; Pracheil, Brenda M.; Koenigs, Ryan; ...
2016-11-18
Otoliths, calcium carbonate (CaCO 3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite a metastable polymorph of CaCO 3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while sturgeon otoliths are primarily composed ofmore » vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 522 model, a = 7.1443(4)Å , c = 25.350(4)Å , V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.« less
Comparative studies of industrial grade carbon black powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chawla, Komal, E-mail: komalchawla.rs@gmail.com; Chauhan, Alok P. S., E-mail: chauhan.alok@gmail.com, E-mail: alok.chauhan@alumni.stonybrook.edu
Comparative studies of two dissimilar industrial grade Carbon Black (CB) powders (N375 and N405) were conducted. The structure, surface area and particle size are the three important characteristics of CB powder that determine their processability and application as filler in preparing rubber compounds. The powders were characterized for their structure using dibutyl phthalate absorption (DBPA), particle size via laser particle size analyzer and surface area by nitrogen adsorption method. The structural characterization showed that N405 had lower DBPA in comparison to N375, confirming low structure of N405 grade CB powder. It was observed from the particle size analysis that N375more » was coarser than N405 grade CB. The total surface area values were determined by the BET method based on the cross sectional area of the nitrogen molecule. N375, a coarse grade CB powder with high structure, depicted less surface area as compared to N405.« less
Chan, Wallace Chi Ho
2014-08-01
This study examines the factor structure of the Chinese version of the Meaning in Life Questionnaire (C-MLQ) in a sample of Hong Kong Chinese caregivers of patients with chronic illness (N = 223). Confirmatory factor analysis was performed to examine the factor structure. Findings confirm that, identical to the original version, C-MLQ showed the same two-factor structure: Presence and Search. Correlation between Presence and Search was found to be positive and moderate (r = .47). This study establishes empirically the same factor structure as the original version of MLQ among caregivers in Hong Kong. The relationship between Presence and Meaning is discussed in the contexts of Chinese culture and caregiving. Results suggest caregivers' continuing need for meaning in life. Medical social workers may help caregivers to integrate their caregiving experience with their sense of meaning in life and search for meaning in life to sustain their caregiving role.
Heterointerface engineering of broken-gap InAs/GaSb multilayer structures.
Liu, Jheng-Sin; Zhu, Yan; Goley, Patrick S; Hudait, Mantu K
2015-02-04
Broken-gap InAs/GaSb strain balanced multilayer structures were grown by molecular beam epitaxy (MBE), and their structural, morphological, and band alignment properties were analyzed. Precise shutter sequence during the MBE growth process, enable to achieve the strain balanced structure. Cross-sectional transmission electron microscopy exhibited sharp heterointerfaces, and the lattice line extended from the top GaSb layer to the bottom InAs layer. X-ray analysis further confirmed a strain balanced InAs/GaSb multilayer structure. A smooth surface morphology with surface roughness of ∼0.5 nm was demonstrated. The effective barrier height -0.15 eV at the GaSb/InAs heterointerface was determined by X-ray photoelectron spectroscopy, and it was further corroborated by simulation. These results are important to demonstrate desirable characteristics of mixed As/Sb material systems for high-performance and low-power tunnel field-effect transistor applications.
Wu, Fei; Minteer, Shelley
2015-02-02
It has been hypothesized that the high metabolic flux in the mitochondria is due to the self-assembly of enzyme supercomplexes (called metabolons) that channel substrates from one enzyme to another, but there has been no experimental confirmation of this structure or the channeling. A structural investigation of enzyme organization within the Krebs cycle metabolon was accomplished by in vivo cross-linking and mass spectrometry. Eight Krebs cycle enzyme components were isolated upon chemical fixation, and interfacial residues between mitochondrial malate dehydrogenase, citrate synthase, and aconitase were identified. Using constraint protein docking, a low-resolution structure for the three-enzyme complex was achieved, as well as the two-fold symmetric octamer. Surface analysis showed formation of electrostatic channeling upon protein-protein association, which is the first structural evidence of substrate channeling in the Krebs cycle metabolon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural characterizations of human periostin dimerization and cysteinylation.
Liu, Jianmei; Zhang, Junying; Xu, Fei; Lin, Zhaohan; Li, Zhiqiang; Liu, Heli
2018-05-12
Human periostin plays a multifaceted role in remodeling the extracellular matrix milieu by interacting with other proteins and itself in both a heterophilic and homophilic manner. However, the structural mechanism for its extensive interactions has remained elusive. Here, we report the crystal structures of human periostin (EMI-Fas1 I- IV ) and its Cys60Ala mutant. In combination with multi-angle light scattering analysis and biochemical assays, the crystal structures reveal that periostin mainly exists as a dimer in solution and its homophilic interaction is mainly mediated by the EMI domain. Furthermore, Cys60 undergoes cysteinylation as confirmed by mass spectroscopy, and this site hardly affects the homophilic interaction. Also, the structures yield insights into how periostin forms heterophilic interactions with other proteins under physiological or pathological conditions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Brownridge, Scott; Crawford, Margaret-Jane; Du, Hongbin; Harcourt, Richard D; Knapp, Carsten; Laitinen, Risto S; Passmore, Jack; Rautiainen, J Mikko; Suontamo, Reijo J; Valkonen, Jussi
2007-02-05
The bonding in the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I42+ (three sigma + two pi bonds), the Se-I pi-bonded Se2I42+ (four sigma + one pi bonds), and their higher-energy isomers have been studied using modern DFT and ab initio calculations and theoretical analysis methods: atoms in molecules (AIM), molecular orbital (MO), natural bond orbital (NBO), and valence bond (VB) analyses, giving their relative energies, theoretical bond orders, and atomic charges. The aim of this work was to seek theory-based answers to four main questions: (1) Are the previously proposed simple pi*-pi* bonding models valid for S2I42+ and Se2I42+? (2) What accounts for the difference in the structures of S2I42+ and Se2I42+? (3) Why are the classically bonded isolobal P2I4 and As2I4 structures not adopted? (4) Is the high experimentally observed S-S bond order supported by theoretical bond orders, and how does it relate to high bond orders between other heavier main group elements? The AIM analysis confirmed the high bond orders and established that the weak bonds observed in S2I42+ and Se2I42+ are real and the bonding in these cations is covalent in nature. The full MO analysis confirmed that S2I42+ contains three sigma and two pi bonds, that the positive charge is essentially equally distributed over all atoms, that the bonding between S2 and two I2+ units in S2I42+ is best described by two mutually perpendicular 4c2e pi*-pi* bonds, and that in Se2I42+, two SeI2+ moieties are joined by a 6c2e pi*-pi* bond, both in agreement with previously suggested models. The VB treatment provided a complementary approach to MO analysis and provided insight how the formation of the weak bonds affects the other bonds. The NBO analysis and the calculated AIM charges showed that the minimization of the electrostatic repulsion between EI2+ units (E = S, Se) and the delocalization of the positive charge are the main factors that explain why the nonclassical structures are favored for S2I42+ and Se2I42+. The difference in the structures of S2I42+ and Se2I42+ is related to the high strength of the S-S pi bond compared to the weak S-I sigma bond and the additional stabilization from increased delocalization of positive charge in the structure of S2I42+ compared to the structure of Se2I42+. The investigation of the E2X42+ series (E = S, Se, Te; X = Cl, Br, I) revealed that only S2I42+ adopts the highly np pi-np pi (n > or = 3)-bonded structure, while all other dications favor the pi-bonded Se2I42+ structure. Theoretical bond order calculations for S2I42+ confirm the previously presented experimentally based bond orders for S-S (2.1-2.3) and I-I (1.3-1.5) bonds. The S-S bond is determined to have the highest reported S-S bond order in an isolated compound and has a bond order that is either similar to or slightly less than the Si-Si bond order in the proposed triply bonded [(Me3Si)2CH]2(iPr)SiSi triple bond SiSi(iPr)[CH(SiMe3)2]2 depending on the definition of bond orders used.
NASA Astrophysics Data System (ADS)
Shokrvash, Hussein; Rad, Rahim Yazdani; Massoudi, Abouzar
2018-04-01
Design and synthesis of a prototype Cu-Nb nanocomposite are presented. Oxygen-free Cu-Nb nanocomposites were prepared using an electrolysis facility with special emphasis on the cathodic deoxidation of Cu and nanometric Nb2O5 blends in a molten NaCl-CaCl2 electrolyte. The as-prepared nanocomposites were characterized by X-ray diffraction and energy-dispersive X-ray spectroscopy. The elemental analysis of the Cu matrix and Nb phase revealed the high solubility of Nb in the Cu structure (0.85 at. pct) and Cu in the Nb structure (10.59 at. pct) over short synthesis times (4-5 hours). Furthermore, precise analysis using field emission scanning electron microscopy and transmission electron microscopy confirmed the unique structure and nanocomposite morphology of the Cu-Nb nanocomposite. The successful synthesis of Cu-Nb nanocomposites offers a new conceptual and empirical outlook on the generation of bulk nanostructures of immiscible bimetals using electro-synthesis.
Vives-Vergara, Alejandra; González-López, Francisca; Solar, Orielle; Bernales-Baksai, Pamela; González, María José; Benach, Joan
2017-04-20
The purpose of this study is to perform a psychometric analysis (acceptability, reliability and factor structure) of the Chilean version of the new Employment Precariousness Scale (EPRES). The data is drawn from a sample of 4,248 private salaried workers with a formal contract from the first Chilean Employment Conditions, Work, Health and Quality of Life (ENETS) survey, applied to a nationally representative sample of the Chilean workforce in 2010. Item and scale-level statistics were performed to assess scaling properties, acceptability and reliability. The six-dimensional factor structure was examined with confirmatory factor analysis. The scale exhibited high acceptability (roughly 80%) and reliability (Cronbach's alpha 0.83) and the factor structure was confirmed. One subscale (rights) demonstrated poorer metric properties without compromising the overall scale. The Chilean version of the Employment Precariousness Scale (EPRES-Ch) demonstrated good metric properties, pointing to its suitability for use in epidemiologic and public health research.
NASA Astrophysics Data System (ADS)
Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E.
2018-05-01
Chitosan/ZnO nanocomposites was synthesized by in-situ chemical precipitation method. The effect of polysaccharide Chitosan concentration (0.1 g, 0.5 g, 1 g and 3 g) was investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) with Energy dispersive spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HRTEM), UV-visible (UV), Fourier Transform Infrared (FTIR) and Photoluminescence Spectroscopy (PL). XRD pattern confirms the hexagonal wurtzite structure of the Chitosan/ZnO nanocomposites. The structural morphology and the elemental composition of the samples were analysed by FESEM and EDX respectively. From TEM analysis, it is observed that the particles in spindle shape morphology with average particle size ranges 10-20 nm. UV-Vis analysis reveals that the Chitosan concentration affect the absorption band edge and shift towards lower wavelength. The oxygen vacancy induced photoluminescence of ZnO nanoparticles was observed and its intensity decreases by tuning the Chitosan concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shankar, A., E-mail: amitshan2009@gmail.com; Rai, D.P.; Chettri, Sandeep
2016-08-15
We have investigated the electronic structure, elastic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12} using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) approach is used to perform the calculations presented here. The electronic structure calculation suggests an indirect band gap semiconducting nature of the material with energy band gap of 0.08 eV. The analysis of the elastic constants at relaxed positions reveals the ductile nature of the sample material with covalent contribution in the inter-atomic bonding. The narrow band gap semiconductingmore » nature with high value of Seebeck coefficient suggests the possibility of the thermoelectric application of the material. The analysis of the thermal transport properties confirms the result obtained from the energy band structure of the material with high thermopower and dimensionless figure of merit 0.19 at room temperature.« less
Polymeric phase change nanocomposite (PMMA/Fe:ZnO) for electronic packaging application
NASA Astrophysics Data System (ADS)
Maji, Pranabi; Choudhary, Ram Bilash; Majhi, Malati
2018-01-01
This paper reported the effect of Fe-doped ZnO (Fe:ZnO) nanoparticles on the structural, morphological, thermal, optical and dielectric properties of PMMA matrix. Fe-doped ZnO nanoparticle was synthesized by co-precipitation method, after its surface modification incorporated into the PMMA matrix by free radical polymerization method. The phase analysis and crystal structure were investigated by XRD and FTIR technique. These studies confirmed the chemical structure of the PMMA/Fe:ZnO nanocomposite. FESEM image showed the pyramidal shape and high porosity of PMMA/Fe:ZnO nanocomposite. Thermal analysis of the sample was carried out by thermo-gravimetric analyzer. PMMA/Fe:ZnO nanocomposite was found to have better thermal stability compared to pure one. Broadband dielectric spectroscopic technique was used to investigate the transition of electrical properties of Fe-doped ZnO nanoparticle reinforced PMMA matrix in temperature range 313-373 K. The results elucidated a phase transition from glassy to rubbery state at 344 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolaie, Ph.; Stenz, C.; Tikhonchuk, V.
2008-08-15
The interaction of laser driven jets with gas puffs at various pressures is investigated experimentally and is analyzed by means of numerical tools. In the experiment, a combination of two complementary diagnostics allowed to characterize the main structures in the interaction zone. By changing the gas composition and its density, the plasma cooling time can be controlled and one can pass from a quasiadiabatic outflow to a strongly radiation cooling jet. This tuning yields hydrodynamic structures very similar to those seen in astrophysical objects; the bow shock propagating through the gas, the shocked materials, the contact discontinuity, and the Machmore » disk. From a dimensional analysis, a scaling is made between both systems and shows the study relevance for the jet velocity, the Mach number, the jet-gas density ratio, and the dissipative processes. The use of a two-dimensional radiation hydrodynamic code, confirms the previous analysis and provides detailed structure of the interaction zone and energy repartition between jet and surrounding gases.« less
Arjunan, V; Rani, T; Santhanam, R; Mohan, S
2012-10-01
The FT-IR and FT-Raman spectra of H bond inner conformer of 2,3-epoxypropanol have been recorded in the regions 3700-400 and 3700-100 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The normal coordinate analysis was carried out to confirm the precision of the assignments. The structure of the conformers H bond inner and H bond outer1 were optimised and the structural characteristics were determined by density functional theory (DFT) using B3LYP and MP2 methods with 6-31G** and 6-311++G** basis sets. The vibrational frequencies were calculated in all these methods and were compared with the experimental frequencies which yield good agreement between observed and calculated frequencies. The electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. Copyright © 2012 Elsevier B.V. All rights reserved.