Sample records for structural brain correlates

  1. The effects of musical training on structural brain development: a longitudinal study.

    PubMed

    Hyde, Krista L; Lerch, Jason; Norton, Andrea; Forgeard, Marie; Winner, Ellen; Evans, Alan C; Schlaug, Gottfried

    2009-07-01

    Long-term instrumental music training is an intense, multisensory and motor experience that offers an ideal opportunity to study structural brain plasticity in the developing brain in correlation with behavioral changes induced by training. Here, for the first time, we demonstrate structural brain changes after only 15 months of musical training in early childhood, which were correlated with improvements in musically relevant motor and auditory skills. These findings shed light on brain plasticity, and suggest that structural brain differences in adult experts (whether musicians or experts in other areas) are likely due to training-induced brain plasticity.

  2. Risk and protective factors for structural brain ageing in the eighth decade of life.

    PubMed

    Ritchie, Stuart J; Tucker-Drob, Elliot M; Cox, Simon R; Dickie, David Alexander; Del C Valdés Hernández, Maria; Corley, Janie; Royle, Natalie A; Redmond, Paul; Muñoz Maniega, Susana; Pattie, Alison; Aribisala, Benjamin S; Taylor, Adele M; Clarke, Toni-Kim; Gow, Alan J; Starr, John M; Bastin, Mark E; Wardlaw, Joanna M; Deary, Ian J

    2017-11-01

    Individuals differ markedly in brain structure, and in how this structure degenerates during ageing. In a large sample of human participants (baseline n = 731 at age 73 years; follow-up n = 488 at age 76 years), we estimated the magnitude of mean change and variability in changes in MRI measures of brain macrostructure (grey matter, white matter, and white matter hyperintensity volumes) and microstructure (fractional anisotropy and mean diffusivity from diffusion tensor MRI). All indices showed significant average change with age, with considerable heterogeneity in those changes. We then tested eleven socioeconomic, physical, health, cognitive, allostatic (inflammatory and metabolic), and genetic variables for their value in predicting these differences in changes. Many of these variables were significantly correlated with baseline brain structure, but few could account for significant portions of the heterogeneity in subsequent brain change. Physical fitness was an exception, being correlated both with brain level and changes. The results suggest that only a subset of correlates of brain structure are also predictive of differences in brain ageing.

  3. Brain composition and olfactory learning in honey bees

    PubMed Central

    Gronenberg, Wulfila; Couvillon, Margaret J.

    2015-01-01

    Correlations between brain or brain component size and behavioral measures are frequently studied by comparing different animal species, which sometimes introduces variables that complicate interpretation in terms of brain function. Here, we have analyzed the brain composition of honey bees (Apis mellifera) that have been individually tested in an olfactory learning paradigm. We found that the total brain size correlated with the bees’ learning performance. Among different brain components, only the mushroom body, a structure known to be involved in learning and memory, showed a positive correlation with learning performance. In contrast, visual neuropils were relatively smaller in bees that performed better in the olfactory learning task, suggesting modality-specific behavioral specialization of individual bees. This idea is also supported by inter-individual differences in brain composition. Some slight yet statistically significant differences in the brain composition of European and Africanized honey bees are reported. Larger bees had larger brains, and by comparing brains of different sizes, we report isometric correlations for all brain components except for a small structure, the central body. PMID:20060918

  4. Relations between Brain Structure and Attentional Function in Spina Bifida: Utilization of Robust Statistical Approaches

    PubMed Central

    Kulesz, Paulina A.; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M.; Francis, David J.

    2015-01-01

    Objective Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Method Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product moment correlation was compared with four robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator Results All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Conclusions Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PMID:25495830

  5. Relations between volumetric measures of brain structure and attentional function in spina bifida: utilization of robust statistical approaches.

    PubMed

    Kulesz, Paulina A; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M; Francis, David J

    2015-03-01

    Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product-moment correlation was compared with 4 robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator. All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  6. Individual differences in personality traits reflect structural variance in specific brain regions.

    PubMed

    Gardini, Simona; Cloninger, C Robert; Venneri, Annalena

    2009-06-30

    Personality dimensions such as novelty seeking (NS), harm avoidance (HA), reward dependence (RD) and persistence (PER) are said to be heritable, stable across time and dependent on genetic and neurobiological factors. Recently a better understanding of the relationship between personality traits and brain structures/systems has become possible due to advances in neuroimaging techniques. This Magnetic Resonance Imaging (MRI) study investigated if individual differences in these personality traits reflected structural variance in specific brain regions. A large sample of eighty five young adult participants completed the Three-dimensional Personality Questionnaire (TPQ) and had their brain imaged with MRI. A voxel-based correlation analysis was carried out between individuals' personality trait scores and grey matter volume values extracted from 3D brain scans. NS correlated positively with grey matter volume in frontal and posterior cingulate regions. HA showed a negative correlation with grey matter volume in orbito-frontal, occipital and parietal structures. RD was negatively correlated with grey matter volume in the caudate nucleus and in the rectal frontal gyrus. PER showed a positive correlation with grey matter volume in the precuneus, paracentral lobule and parahippocampal gyrus. These results indicate that individual differences in the main personality dimensions of NS, HA, RD and PER, may reflect structural variance in specific brain areas.

  7. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy.

    PubMed

    Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime

    2016-01-01

    The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  8. Association of Structural Global Brain Network Properties with Intelligence in Normal Aging

    PubMed Central

    Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994

  9. Finer parcellation reveals detailed correlational structure of resting-state fMRI signals.

    PubMed

    Dornas, João V; Braun, Jochen

    2018-01-15

    Even in resting state, the human brain generates functional signals (fMRI) with complex correlational structure. To simplify this structure, it is common to parcellate a standard brain into coarse chunks. Finer parcellations are considered less reproducible and informative, due to anatomical and functional variability of individual brains. Grouping signals with similar local correlation profiles, restricted to each anatomical region (Tzourio-Mazoyer et al., 2002), we divide a standard brain into 758 'functional clusters' averaging 1.7cm 3 gray matter volume ('MD758' parcellation). We compare 758 'spatial clusters' of similar size ('S758'). 'Functional clusters' are spatially contiguous and cluster quality (integration and segregation of temporal variance) is far superior to 'spatial clusters', comparable to multi-modal parcellations of half the resolution (Craddock et al., 2012; Glasser et al., 2016). Moreover, 'functional clusters' capture many long-range functional correlations, with O(10 5 ) reproducibly correlated cluster pairs in different anatomical regions. The pattern of functional correlations closely mirrors long-range anatomical connectivity established by fibre tracking. MD758 is comparable to coarser parcellations (Craddock et al., 2012; Glasser et al., 2016) in terms of cluster quality, correlational structure (54% relative mutual entropy vs 60% and 61%), and sparseness (35% significant pairwise correlations vs 36% and 44%). We describe and evaluate a simple path to finer functional parcellations of the human brain. Detailed correlational structure is surprisingly consistent between individuals, opening new possibilities for comparing functional correlations between cognitive conditions, states of health, or pharmacological interventions. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Disruptions of brain structural network in end-stage renal disease patients with long-term hemodialysis and normal-appearing brain tissues.

    PubMed

    Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi

    2018-05-04

    End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.

  11. Cortical thickness and surface area correlates with cognitive dysfunction among first-episode psychosis patients.

    PubMed

    Haring, L; Müürsepp, A; Mõttus, R; Ilves, P; Koch, K; Uppin, K; Tarnovskaja, J; Maron, E; Zharkovsky, A; Vasar, E; Vasar, V

    2016-07-01

    In studies using magnetic resonance imaging (MRI), some have reported specific brain structure-function relationships among first-episode psychosis (FEP) patients, but findings are inconsistent. We aimed to localize the brain regions where cortical thickness (CTh) and surface area (cortical area; CA) relate to neurocognition, by performing an MRI on participants and measuring their neurocognitive performance using the Cambridge Neuropsychological Test Automated Battery (CANTAB), in order to investigate any significant differences between FEP patients and control subjects (CS). Exploration of potential correlations between specific cognitive functions and brain structure was performed using CANTAB computer-based neurocognitive testing and a vertex-by-vertex whole-brain MRI analysis of 63 FEP patients and 30 CS. Significant correlations were found between cortical parameters in the frontal, temporal, cingular and occipital brain regions and performance in set-shifting, working memory manipulation, strategy usage and sustained attention tests. These correlations were significantly dissimilar between FEP patients and CS. Significant correlations between CTh and CA with neurocognitive performance were localized in brain areas known to be involved in cognition. The results also suggested a disrupted structure-function relationship in FEP patients compared with CS.

  12. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder

    PubMed Central

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-01-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772

  13. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder.

    PubMed

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-04-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.

  14. Structural brain alterations in primary open angle glaucoma: a 3T MRI study

    PubMed Central

    Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang

    2016-01-01

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811

  15. Structural neural correlates of multitasking: A voxel-based morphometry study.

    PubMed

    Zhang, Rui-Ting; Yang, Tian-Xiao; Wang, Yi; Sui, Yuxiu; Yao, Jingjing; Zhang, Chen-Yuan; Cheung, Eric F C; Chan, Raymond C K

    2016-12-01

    Multitasking refers to the ability to organize assorted tasks efficiently in a short period of time, which plays an important role in daily life. However, the structural neural correlates of multitasking performance remain unclear. The present study aimed at exploring the brain regions associated with multitasking performance using global correlation analysis. Twenty-six healthy participants first underwent structural brain scans and then performed the modified Six Element Test, which required participants to attempt six subtasks in 10 min while obeying a specific rule. Voxel-based morphometry of the whole brain was used to detect the structural correlates of multitasking ability. Grey matter volume of the anterior cingulate cortex (ACC) was positively correlated with the overall performance and time monitoring in multitasking. In addition, white matter volume of the anterior thalamic radiation (ATR) was also positively correlated with time monitoring during multitasking. Other related brain regions associated with multitasking included the superior frontal gyrus, the inferior occipital gyrus, the lingual gyrus, and the inferior longitudinal fasciculus. No significant correlation was found between grey matter volume of the prefrontal cortex (Brodmann Area 10) and multitasking performance. Using a global correlation analysis to examine various aspects of multitasking performance, this study provided new insights into the structural neural correlates of multitasking ability. In particular, the ACC was identified as an important brain region that played both a general and a specific time-monitoring role in multitasking, extending the role of the ACC from lesioned populations to healthy populations. The present findings also support the view that the ATR may influence multitasking performance by affecting time-monitoring abilities. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  16. Analysis of evoked deep brain connectivity.

    PubMed

    Klimeš, Petr; Janeček, Jiři; Jurák, Pavel; Halámek, Josef; Chládek, Han; Brázdil, Milan

    2013-01-01

    Establishing dependencies and connectivity among different structures in the human brain is an extremely complex issue. Methods that are often used for connectivity analysis are based on correlation mechanisms. Correlation methods can analyze changes in signal shape or instantaneous power level. Although recent studies imply that observation of results from both groups of methods together can disclose some of the basic functions and behavior of the human brain during mental activity and decision-making, there is no technique covering changes in the shape of signals along with changes in their power levels. We present a method using a time evaluation of the correlation along with a comparison of power levels in every available contact pair from intracranial electrodes placed in deep brain structures. Observing shape changes in signals after stimulation together with their power levels provides us with new information about signal character between different structures in the brain during task-related events - visual stimulation with motor response. The results for a subject with 95 intracerebral contacts used in this paper demonstrate a clear methodology capable of spatially analyzing connectivity among deep brain structures.

  17. Harmonic Brain Modes: A Unifying Framework for Linking Space and Time in Brain Dynamics.

    PubMed

    Atasoy, Selen; Deco, Gustavo; Kringelbach, Morten L; Pearson, Joel

    2018-06-01

    A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at "rest." Here, we introduce the concept of harmonic brain modes-fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.

  18. Cognitive Abilities Independent of IQ Correlate with Regional Brain Structure

    ERIC Educational Resources Information Center

    Johnson, Wendy; Jung, Rex E.; Colom, Roberto; Haier, Richard J.

    2008-01-01

    There is increasing evidence relating psychometric measures of general intelligence and reasoning to regional brain structure and function assessed with a variety of neuroimaging techniques. Cognitive dimensions independent of general intelligence can also be identified psychometrically and studied for any neuroanatomical correlates. Here we…

  19. Integrated Analysis and Visualization of Group Differences in Structural and Functional Brain Connectivity: Applications in Typical Ageing and Schizophrenia.

    PubMed

    Langen, Carolyn D; White, Tonya; Ikram, M Arfan; Vernooij, Meike W; Niessen, Wiro J

    2015-01-01

    Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uni- and bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of significantly different connections comparing multiple metrics are presented. On the global level, "bi-modal comparison plots" show the distribution of uni- and bi-modal group differences and the relationship between structure and function. Differences between brain lobes are visualized using "worm plots". Group differences in connections are examined with an existing visualization, the "connectogram". These visualizations were evaluated in two proof-of-concept studies: (1) middle-aged versus elderly subjects; and (2) patients with schizophrenia versus controls. Each included two measures derived from diffusion weighted images and two from functional magnetic resonance images. The structural measures were minimum cost path between two anatomical regions according to the "Statistical Analysis of Minimum cost path based Structural Connectivity" method and the average fractional anisotropy along the fiber. The functional measures were Pearson's correlation and partial correlation of mean regional time series. The relationship between structure and function was similar in both studies. Uni-modal group differences varied greatly between connectivity types. Group differences were identified in both studies globally, within brain lobes and between regions. In the aging study, minimum cost path was highly effective in identifying group differences on all levels; fractional anisotropy and mean correlation showed smaller differences on the brain lobe and regional levels. In the schizophrenia study, minimum cost path and fractional anisotropy showed differences on the global level and within brain lobes; mean correlation showed small differences on the lobe level. Only fractional anisotropy and mean correlation showed regional differences. The presented visualizations were helpful in comparing and evaluating connectivity measures on multiple levels in both studies.

  20. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity.

    PubMed

    Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P

    2018-05-18

    An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance. Copyright © 2018. Published by Elsevier Inc.

  1. Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy.

    PubMed

    Shapiro, Kevin A; Kim, Hosung; Mandelli, Maria Luisa; Rogers, Elizabeth E; Gano, Dawn; Ferriero, Donna M; Barkovich, A James; Gorno-Tempini, Maria Luisa; Glass, Hannah C; Xu, Duan

    2017-01-01

    Global patterns of brain injury correlate with motor, cognitive, and language outcomes in survivors of neonatal encephalopathy (NE). However, it is still unclear whether local changes in brain structure predict specific deficits. We therefore examined whether differences in brain structure at 6 months of age are associated with neurodevelopmental outcomes in this population. We enrolled 32 children with NE, performed structural brain MR imaging at 6 months, and assessed neurodevelopmental outcomes at 30 months. All subjects underwent T1-weighted imaging at 3 T using a 3D IR-SPGR sequence. Images were normalized in intensity and nonlinearly registered to a template constructed specifically for this population, creating a deformation field map. We then used deformation based morphometry (DBM) to correlate variation in the local volume of gray and white matter with composite scores on the Bayley Scales of Infant and Toddler Development (Bayley-III) at 30 months. Our general linear model included gestational age, sex, birth weight, and treatment with hypothermia as covariates. Regional brain volume was significantly associated with language scores, particularly in perisylvian cortical regions including the left supramarginal gyrus, posterior superior and middle temporal gyri, and right insula, as well as inferior frontoparietal subcortical white matter. We did not find significant correlations between regional brain volume and motor or cognitive scale scores. We conclude that, in children with a history of NE, local changes in the volume of perisylvian gray and white matter at 6 months are correlated with language outcome at 30 months. Quantitative measures of brain volume on early MRI may help identify infants at risk for poor language outcomes.

  2. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: Relationship with hand sensorimotor function and structural connectivity.

    PubMed

    Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N

    2015-01-01

    To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen-Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure-function relationships but requires further validation in other populations of CP.

  3. Disrupted Structural and Functional Networks and Their Correlation with Alertness in Right Temporal Lobe Epilepsy: A Graph Theory Study.

    PubMed

    Jiang, Wenyu; Li, Jianping; Chen, Xuemei; Ye, Wei; Zheng, Jinou

    2017-01-01

    Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.

  4. Discriminating the Difference between Remote and Close Association with Relation to White-Matter Structural Connectivity

    PubMed Central

    Wu, Chinglin; Zhong, Suyu; Chen, Hsuehchih

    2016-01-01

    Remote association is a core ability that influences creative output. In contrast to close association, remote association is commonly agreed to be connected with more original and unique concepts. However, although existing studies have discovered that creativity is closely related to the white-matter structure of the brain, there are no studies that examine the relevance between the connectivity efficiencies and creativity of the brain regions from the perspective of networks. Consequently, this study constructed a brain white matter network structure that consisted of cerebral tissues and nerve fibers and used graph theory to analyze the connection efficiencies among the network nodes, further illuminating the differences between remote and close association in relation to the connectivity of the brain network. Researchers analyzed correlations between the scores of 35 healthy adults with regard to remote and close associations and the connectivity efficiencies of the white-matter network of the brain. Controlling for gender, age, and verbal intelligence, the remote association positively correlated with the global efficiency and negatively correlated with the levels of small-world. A close association negatively correlated with the global efficiency. Notably, the node efficiency in the middle temporal gyrus (MTG) positively correlated with remote association and negatively correlated with close association. To summarize, remote and close associations work differently as patterns in the brain network. Remote association requires efficient and convenient mutual connections between different brain regions, while close association emphasizes the limited connections that exist in a local region. These results are consistent with previous results, which indicate that creativity is based on the efficient integration and connection between different regions of the brain and that temporal lobes are the key regions for discriminating remote and close associations. PMID:27760177

  5. On the role of general system theory for functional neuroimaging.

    PubMed

    Stephan, Klaas Enno

    2004-12-01

    One of the most important goals of neuroscience is to establish precise structure-function relationships in the brain. Since the 19th century, a major scientific endeavour has been to associate structurally distinct cortical regions with specific cognitive functions. This was traditionally accomplished by correlating microstructurally defined areas with lesion sites found in patients with specific neuropsychological symptoms. Modern neuroimaging techniques with high spatial resolution have promised an alternative approach, enabling non-invasive measurements of regionally specific changes of brain activity that are correlated with certain components of a cognitive process. Reviewing classic approaches towards brain structure-function relationships that are based on correlational approaches, this article argues that these approaches are not sufficient to provide an understanding of the operational principles of a dynamic system such as the brain but must be complemented by models based on general system theory. These models reflect the connectional structure of the system under investigation and emphasize context-dependent couplings between the system elements in terms of effective connectivity. The usefulness of system models whose parameters are fitted to measured functional imaging data for testing hypotheses about structure-function relationships in the brain and their potential for clinical applications is demonstrated by several empirical examples.

  6. Brain structural changes and their correlation with vascular disease in type 2 diabetes mellitus patients: a voxel-based morphometric study.

    PubMed

    Wang, Chunxia; Fu, Kailiang; Liu, Huaijun; Xing, Fei; Zhang, Songyun

    2014-08-15

    Voxel-based morphometry has been used in the study of alterations in brain structure in type 1 diabetes mellitus patients. These changes are associated with clinical indices. The age at onset, pathogenesis, and treatment of type 1 diabetes mellitus are different from those for type 2 diabetes mellitus. Thus, type 1 and type 2 diabetes mellitus may have different impacts on brain structure. Only a few studies of the alterations in brain structure in type 2 diabetes mellitus patients using voxel-based morphometry have been conducted, with inconsistent results. We detected subtle changes in the brain structure of 23 cases of type 2 diabetes mellitus, and demonstrated that there was no significant difference between the total volume of gray and white matter of the brain of type 2 diabetes mellitus patients and that in controls. Regional atrophy of gray matter mainly occurred in the right temporal and left occipital cortex, while regional atrophy of white matter involved the right temporal lobe and the right cerebellar hemisphere. The ankle-brachial index in patients with type 2 diabetes mellitus strongly correlated with the volume of brain regions in the default mode network. The ankle-brachial index, followed by the level of glycosylated hemoglobin, most strongly correlated with the volume of gray matter in the right temporal lobe. These data suggest that voxel-based morphometry could detect small structural changes in patients with type 2 diabetes mellitus. Early macrovascular atherosclerosis may play a crucial role in subtle brain atrophy in type 2 diabetes mellitus patients, with chronic hyperglycemia playing a lesser role.

  7. Functional brain imaging and the induction of traumatic recall: a cross-correlational review between neuroimaging and hypnosis.

    PubMed

    Vermetten, Eric; Douglas Bremner, J

    2004-07-01

    The behavioral and psychophysiological alterations during recall in patients with trauma disorders often resemble phenomena that are seen in hypnosis. In studies of emotional recall as well as in neuroimaging studies of hypnotic processes similar brain structures are involved: thalamus, hippocampus, amygdala, medial prefrontal cortex, anterior cingulate cortex. This paper focuses on cross-correlations in traumatic recall and hypnotic responses and reviews correlations between the involvement of brain structures in traumatic recall and processes that are involved in hypnotic responsiveness. To further improve uniformity of results of brain imaging specifically for traumatic recall studies, attention is needed for standardization of hypnotic variables, isolation of the emotional process of interest (state),and assessment of trait-related differences.

  8. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    PubMed

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  9. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy.

    PubMed

    Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong

    2017-10-01

    Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. The structural, connectomic and network covariance of the human brain.

    PubMed

    Irimia, Andrei; Van Horn, John D

    2013-02-01

    Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Published by Elsevier Inc.

  11. Brain structure correlates of component reading processes: implications for reading disability.

    PubMed

    Phinney, Erin; Pennington, Bruce F; Olson, Richard; Filley, Christopher M; Filipek, Pauline A

    2007-08-01

    Brain structures implicated in developmental dyslexia (reading disability - RD) vary greatly across structural magnetic resonance imaging (MRI) studies due to methodological differences regarding the definition of RD and the exact measurements of a specific brain structure. The current study attempts to resolve some of those methodological concerns by examining brain volume as it relates to components of proposed RD subtypes. We performed individual regression analyses on total cerebral volume, neocortical volume, subcortical volume, 9 neo-cortical structures and 2 sub-cortical structures. These analyses used three dimensions of reading, phonemic ability (PA), orthographic ability, and rapid naming (RN) ability, while accounting for total cerebral volume, age, and performance IQ (PIQ). Primary analyses included membership to a group (poor reader vs. good reader) in the analysis. The result was a significant interaction between PA and reading ability as it predicts total cerebral volume. Analyses revealed that poor readers lacked a relationship between PA and brain size, but that good readers had a significant positive relationship. This pattern of interaction was not present for the other two reading component factors. These findings bring into question the general belief that individuals with RD are at the low end of a reading ability distribution and do not have a unique disorder. Additional analyses revealed only a few significant relationships between brain size and task performance, most notably a positive correlation between orthographic ability and the angular gyrus (AG), as well as a negative correlation between RN ability and the parietal operculum (PO).

  12. Face-Name Association Learning and Brain Structural Substrates in Alcoholism

    PubMed Central

    Pitel, Anne-Lise; Chanraud, Sandra; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V.

    2011-01-01

    Background Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. Methods Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent a 3T structural MRI. Results Compared with controls, alcoholics had poorer associative and single-item recognition, each impaired to the same extent. Level of processing at encoding had little effect on recognition performance but affected reaction time. Correlations with brain volumes were generally modest and based primarily on reaction time in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task reaction times correlated modestly with volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. Conclusions Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster reaction times and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not present in alcoholics. Rather, their speeded reaction time occurred at the expense of accuracy and was related most robustly to cerebellar volumes. PMID:22509954

  13. Face-name association learning and brain structural substrates in alcoholism.

    PubMed

    Pitel, Anne-Lise; Chanraud, Sandra; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2012-07-01

    Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent 3T structural MRI. Compared with controls, alcoholics had poorer associative and single-item learning and performed at similar levels. Level of processing at encoding had little effect on recognition performance but affected reaction time (RT). Correlations with brain volumes were generally modest and based primarily on RT in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task RTs correlated modestly with smaller tissue volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; and associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster RTs and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not present in alcoholics. Rather, their speeded RTs occurred at the expense of accuracy and were related most robustly to cerebellar volumes. Copyright © 2012 by the Research Society on Alcoholism.

  14. Structural connectome topology relates to regional BOLD signal dynamics in the mouse brain

    NASA Astrophysics Data System (ADS)

    Sethi, Sarab S.; Zerbi, Valerio; Wenderoth, Nicole; Fornito, Alex; Fulcher, Ben D.

    2017-04-01

    Brain dynamics are thought to unfold on a network determined by the pattern of axonal connections linking pairs of neuronal elements; the so-called connectome. Prior work has indicated that structural brain connectivity constrains pairwise correlations of brain dynamics ("functional connectivity"), but it is not known whether inter-regional axonal connectivity is related to the intrinsic dynamics of individual brain areas. Here we investigate this relationship using a weighted, directed mesoscale mouse connectome from the Allen Mouse Brain Connectivity Atlas and resting state functional MRI (rs-fMRI) time-series data measured in 184 brain regions in eighteen anesthetized mice. For each brain region, we measured degree, betweenness, and clustering coefficient from weighted and unweighted, and directed and undirected versions of the connectome. We then characterized the univariate rs-fMRI dynamics in each brain region by computing 6930 time-series properties using the time-series analysis toolbox, hctsa. After correcting for regional volume variations, strong and robust correlations between structural connectivity properties and rs-fMRI dynamics were found only when edge weights were accounted for, and were associated with variations in the autocorrelation properties of the rs-fMRI signal. The strongest relationships were found for weighted in-degree, which was positively correlated to the autocorrelation of fMRI time series at time lag τ = 34 s (partial Spearman correlation ρ = 0.58 ), as well as a range of related measures such as relative high frequency power (f > 0.4 Hz: ρ = - 0.43 ). Our results indicate that the topology of inter-regional axonal connections of the mouse brain is closely related to intrinsic, spontaneous dynamics such that regions with a greater aggregate strength of incoming projections display longer timescales of activity fluctuations.

  15. Finding the "g"-Factor in Brain Structure Using the Method of Correlated Vectors

    ERIC Educational Resources Information Center

    Colom, Roberto; Jung, Rex E.; Haier, Richard J.

    2006-01-01

    It is unclear whether brain mechanisms underlying human intelligence are distributed throughout the brain or mainly concentrated in the frontal lobes. Data are inconsistent possibly due, at least in part, to the different ways the construct of intelligence is measured. Here we apply the method of correlated vectors to determine how the general…

  16. Structural brain correlates of unconstrained motor activity in people with schizophrenia.

    PubMed

    Farrow, Tom F D; Hunter, Michael D; Wilkinson, Iain D; Green, Russell D J; Spence, Sean A

    2005-11-01

    Avolition affects quality of life in chronic schizophrenia. We investigated the relationship between unconstrained motor activity and the volume of key executive brain regions in 16 male patients with schizophrenia. Wristworn actigraphy monitors were used to record motor activity over a 20 h period. Structural magnetic resonance imaging brain scans were parcellated and individual volumes for anterior cingulate cortex and dorsolateral prefrontal cortex extracted. Patients'total activity was positively correlated with volume of left anterior cingulate cortex. These data suggest that the volume of specific executive structures may affect (quantifiable) motor behaviours, having further implications for models of the 'will' and avolition.

  17. Structural and Functional Bases for Individual Differences in Motor Learning

    PubMed Central

    Tomassini, Valentina; Jbabdi, Saad; Kincses, Zsigmond T.; Bosnell, Rose; Douaud, Gwenaelle; Pozzilli, Carlo; Matthews, Paul M.; Johansen-Berg, Heidi

    2013-01-01

    People vary in their ability to learn new motor skills. We hypothesize that between-subject variability in brain structure and function can explain differences in learning. We use brain functional and structural MRI methods to characterize such neural correlates of individual variations in motor learning. Healthy subjects applied isometric grip force of varying magnitudes with their right hands cued visually to generate smoothly-varying pressures following a regular pattern. We tested whether individual variations in motor learning were associated with anatomically colocalized variations in magnitude of functional MRI (fMRI) signal or in MRI differences related to white and grey matter microstructure. We found that individual motor learning was correlated with greater functional activation in the prefrontal, premotor, and parietal cortices, as well as in the basal ganglia and cerebellum. Structural MRI correlates were found in the premotor cortex [for fractional anisotropy (FA)] and in the cerebellum [for both grey matter density and FA]. The cerebellar microstructural differences were anatomically colocalized with fMRI correlates of learning. This study thus suggests that variations across the population in the function and structure of specific brain regions for motor control explain some of the individual differences in skill learning. This strengthens the notion that brain structure determines some limits to cognitive function even in a healthy population. Along with evidence from pathology suggesting a role for these regions in spontaneous motor recovery, our results also highlight potential targets for therapeutic interventions designed to maximize plasticity for recovery of similar visuomotor skills after brain injury. PMID:20533562

  18. Network diffusion accurately models the relationship between structural and functional brain connectivity networks

    PubMed Central

    Abdelnour, Farras; Voss, Henning U.; Raj, Ashish

    2014-01-01

    The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152

  19. Correlations Between Personality and Brain Structure: A Crucial Role of Gender.

    PubMed

    Nostro, Alessandra D; Müller, Veronika I; Reid, Andrew T; Eickhoff, Simon B

    2017-07-01

    Previous studies have shown that males and females differ in personality and gender differences have also been reported in brain structure. However, effects of gender on this "personality-brain" relationship are yet unknown. We therefore investigated if the neural correlates of personality differ between males and females. Whole brain voxel-based morphometry was used to investigate the influence of gender on associations between NEO FFI personality traits and gray matter volume (GMV) in a matched sample of 182 males and 182 females. In order to assess associations independent of and dependent on gender, personality-GMV relationships were tested across the entire sample and separately for males and females. There were no significant correlations between any personality scale and GMV in the analyses across the entire sample. In contrast, significant associations with GMV were detected for neuroticism, extraversion, and conscientiousness only in males. Interestingly, GMV in left precuneus/parieto-occipital sulcus correlated with all 3 traits. Thus, our results indicate that brain structure-personality relationships are highly dependent on gender, which might be attributable to hormonal interplays or differences in brain organization between males and females. Our results thus provide possible neural substrates of personality-behavior relationships and underline the important role of gender in these associations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu.

    PubMed

    Shaw, Daniel Joel; Mareček, Radek; Brázdil, Milan

    2016-12-01

    Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.

  1. Eating disorder psychopathology, brain structure, neuropsychological correlates and risk mechanisms in very preterm young adults.

    PubMed

    Micali, Nadia; Kothari, Radha; Nam, Kie Woo; Gioroukou, Elena; Walshe, Muriel; Allin, Matthew; Rifkin, Larry; Murray, Robin M; Nosarti, Chiara

    2015-03-01

    This study investigates the prevalence of eating disorder (ED) psychopathology, neuropsychological function, structural brain correlates and risk mechanisms in a prospective cohort of very preterm (VPT) young adults. We assessed ED psychopathology and neuropsychological correlates in 143 cohort individuals born at <33 weeks of gestation. Structural brain correlates and risk factors at birth, in childhood and adolescence, were investigated using prospectively collected data throughout childhood/adolescence. VPT-born individuals had high levels of ED psychopathology at age 21 years. Executive function did not correlate with ED symptomatology. VPT adults presenting with ED psychopathology had smaller grey matter volume at age 14/15 years in the left posterior cerebellum and smaller white matter volume in the fusiform gyrus bilaterally, compared with VPT adults with no ED psychopathology. Caesarean delivery predicted engaging in compensatory behaviours, and severe eating difficulty at age 14 years predicted ED symptomatology in young adulthood. VPT individuals are at risk for ED symptomatology, with evidence of associated structural alterations in posterior brain regions. Further prospective studies are needed to clarify the pathways that lead from perinatal/obstetric complications to ED and relevant neurobiological mechanisms. © 2015 The Authors. European Eating Disorders Review published by John Wiley &Sons, Ltd. © 2015 The Authors. European Eating Disorders Review published by John Wiley & Sons, Ltd.

  2. Patients with primary biliary cholangitis and fatigue present with depressive symptoms and selected cognitive deficits, but with normal attention performance and brain structure.

    PubMed

    Zenouzi, Roman; von der Gablentz, Janina; Heldmann, Marcus; Göttlich, Martin; Weiler-Normann, Christina; Sebode, Marcial; Ehlken, Hanno; Hartl, Johannes; Fellbrich, Anja; Siemonsen, Susanne; Schramm, Christoph; Münte, Thomas F; Lohse, Ansgar W

    2018-01-01

    In primary biliary cholangitis (PBC) fatigue is a major clinical challenge of unknown etiology. By demonstrating that fatigue in PBC is associated with an impaired cognitive performance, previous studies have pointed out the possibility of brain abnormalities underlying fatigue in PBC. Whether structural brain changes are present in PBC patients with fatigue, however, is unclear. To evaluate the role of structural brain abnormalities in PBC patients severely affected from fatigue we, therefore, performed a case-control cerebral magnetic resonance imaging (cMRI) study and correlated changes of white and grey brain matter with the cognitive and attention performance. 20 female patients with PBC and 20 female age-matched controls were examined in this study. The assessment of fatigue, psychological symptoms, cognitive and attention performance included clinical questionnaires, established cognition tests and a computerized test battery of attention performance. T1-weighted cMRI and diffusion tensor imaging (DTI) scans were acquired with a 3 Tesla scanner. Structural brain alterations were investigated with voxel-based morphometry (VBM) and DTI analyses. Results were correlated to the cognitive and attention performance. Compared to healthy controls, PBC patients had significantly higher levels of fatigue and associated psychological symptoms. Except for an impairment of verbal fluency, no cognitive or attention deficits were found in the PBC cohort. The VBM and DTI analyses revealed neither major structural brain abnormalities in the PBC cohort nor correlations with the cognitive and attention performance. Despite the high burden of fatigue and selected cognitive deficits, the attention performance of PBC patients appears to be comparable to healthy people. As structural brain alterations do not seem to be present in PBC patients with fatigue, fatigue in PBC must be regarded as purely functional. Future studies should evaluate, whether functional brain changes underlie fatigue in PBC.

  3. Spectral mapping of brain functional connectivity from diffusion imaging.

    PubMed

    Becker, Cassiano O; Pequito, Sérgio; Pappas, George J; Miller, Michael B; Grafton, Scott T; Bassett, Danielle S; Preciado, Victor M

    2018-01-23

    Understanding the relationship between the dynamics of neural processes and the anatomical substrate of the brain is a central question in neuroscience. On the one hand, modern neuroimaging technologies, such as diffusion tensor imaging, can be used to construct structural graphs representing the architecture of white matter streamlines linking cortical and subcortical structures. On the other hand, temporal patterns of neural activity can be used to construct functional graphs representing temporal correlations between brain regions. Although some studies provide evidence that whole-brain functional connectivity is shaped by the underlying anatomy, the observed relationship between function and structure is weak, and the rules by which anatomy constrains brain dynamics remain elusive. In this article, we introduce a methodology to map the functional connectivity of a subject at rest from his or her structural graph. Using our methodology, we are able to systematically account for the role of structural walks in the formation of functional correlations. Furthermore, in our empirical evaluations, we observe that the eigenmodes of the mapped functional connectivity are associated with activity patterns associated with different cognitive systems.

  4. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: Relationship with hand sensorimotor function and structural connectivity

    PubMed Central

    Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S.; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N.

    2015-01-01

    Aim To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Methods Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen–Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Results Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. Conclusion The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure–function relationships but requires further validation in other populations of CP. PMID:26106533

  5. Development of Human Brain Structural Networks Through Infancy and Childhood

    PubMed Central

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  6. Structural brain correlates associated with professional handball playing.

    PubMed

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing affinity. Investigations of neuroplasticity specifically in sportsmen might help to understand the neural mechanisms of expertise in general.

  7. Brain structure and function correlates of cognitive subtypes in schizophrenia.

    PubMed

    Geisler, Daniel; Walton, Esther; Naylor, Melissa; Roessner, Veit; Lim, Kelvin O; Charles Schulz, S; Gollub, Randy L; Calhoun, Vince D; Sponheim, Scott R; Ehrlich, Stefan

    2015-10-30

    Stable neuropsychological deficits may provide a reliable basis for identifying etiological subtypes of schizophrenia. The aim of this study was to identify clusters of individuals with schizophrenia based on dimensions of neuropsychological performance, and to characterize their neural correlates. We acquired neuropsychological data as well as structural and functional magnetic resonance imaging from 129 patients with schizophrenia and 165 healthy controls. We derived eight cognitive dimensions and subsequently applied a cluster analysis to identify possible schizophrenia subtypes. Analyses suggested the following four cognitive clusters of schizophrenia: (1) Diminished Verbal Fluency, (2) Diminished Verbal Memory and Poor Motor Control, (3) Diminished Face Memory and Slowed Processing, and (4) Diminished Intellectual Function. The clusters were characterized by a specific pattern of structural brain changes in areas such as Wernicke's area, lingual gyrus and occipital face area, and hippocampus as well as differences in working memory-elicited neural activity in several fronto-parietal brain regions. Separable measures of cognitive function appear to provide a method for deriving cognitive subtypes meaningfully related to brain structure and function. Because the present study identified brain-based neural correlates of the cognitive clusters, the proposed groups of individuals with schizophrenia have some external validity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Brain Structural Concomitants of Resting State Heart Rate Variability in the Young and Old – Evidence from Two Independent Samples

    PubMed Central

    Yoo, Hyun Joo; Thayer, Julian F; Greening, Steven; Lee, Tae-Ho; Ponzio, Allison; Min, Jungwon; Sakaki, Michiko; Nga, Lin; Mather, Mara; Koenig, Julian

    2018-01-01

    Previous research has shown associations between brain structure and resting state high-frequency heart rate variability (HF-HRV). Age affects both brain structure and HF-HRV. Therefore we sought to examine the relationship between brain structure and HF-HRV as a function of age. Data from two independent studies were used for the present analysis. Study 1 included 19 older adults (10 males, age range 62–78 years) and 19 younger adults (12 males, age range 19–37). Study 2 included 23 older adults (12 males; age range 55–75) and 27 younger adults (17 males; age range 18–34). The root-mean-square of successive R-R-interval differences (RMSSD) from ECG recordings was used as time-domain measure of HF-HRV. MRI scans were performed on a 3.0-T Siemens Magnetom Trio scanner. Cortical reconstruction and volumetric segmentation were performed with the Freesurfer image analysis suite, including 12 regions as regions-of-interests (ROI). Zero-order and partial correlations were used to assess the correlation of RMSSD with cortical thickness in selected ROIs. Lateral orbitofrontal cortex (OFC) cortical thickness was significantly associated with RMSSD. Further, both studies, in line with previous research, showed correlations between RMSSD and anterior cingulate cortex (ACC) cortical thickness. Meta-analysis on adjusted correlation coefficients from individual studies confirmed an association of RMSSD with the left rostral ACC and the left lateral OFC. Future longitudinal studies are necessary to trace individual trajectories in the association of HRV and brain structure across aging. PMID:28921167

  9. Neuroanatomical correlates of personality in the elderly.

    PubMed

    Wright, Christopher I; Feczko, Eric; Dickerson, Bradford; Williams, Danielle

    2007-03-01

    Extraversion and neuroticism are two important and frequently studied dimensions of human personality. They describe individual differences in emotional responding that are quite stable across the adult lifespan. Neuroimaging research has begun to provide evidence that neuroticism and extraversion have specific neuroanatomical correlates within the cerebral cortex and amygdala of young adults. However, these brain areas undergo alterations in size with aging, which may influence the nature of these personality factor-brain structure associations in the elderly. One study in the elderly demonstrated associations between perisylvian cortex structure and measures of self transcendence [Kaasinen, V., Maguire, R.P., Kurki, T., Bruck, A., Rinne, J.O., 2005. Mapping brain structure and personality in late adulthood. NeuroImage 24, 315-322], but the neuroanatomical correlates of extraversion and neuroticism, or other measures of the Five Factor Model of personality have not been explored. The purpose of the present study was to investigate the structural correlates of neuroticism and extraversion in healthy elderly subjects (n=29) using neuroanatomic measures of the cerebral cortex and amygdala. We observed that the thickness of specific lateral prefrontal cortex (PFC) regions, but not amygdala volume, correlates with measures of extraversion and neuroticism. The results suggest differences in the regional neuroanatomic correlates of specific personality traits with aging. We speculate that this relates to the influences of age-related structural changes in the PFC.

  10. Prediction of brain-computer interface aptitude from individual brain structure.

    PubMed

    Halder, S; Varkuti, B; Bogdan, M; Kübler, A; Rosenstiel, W; Sitaram, R; Birbaumer, N

    2013-01-01

    Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. This confirms that structural brain traits contribute to individual performance in BCI use.

  11. Prediction of brain-computer interface aptitude from individual brain structure

    PubMed Central

    Halder, S.; Varkuti, B.; Bogdan, M.; Kübler, A.; Rosenstiel, W.; Sitaram, R.; Birbaumer, N.

    2013-01-01

    Objective: Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. Methods: We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Results: Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Conclusions: Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. Significance: This confirms that structural brain traits contribute to individual performance in BCI use. PMID:23565083

  12. Sparse brain network using penalized linear regression

    NASA Astrophysics Data System (ADS)

    Lee, Hyekyoung; Lee, Dong Soo; Kang, Hyejin; Kim, Boong-Nyun; Chung, Moo K.

    2011-03-01

    Sparse partial correlation is a useful connectivity measure for brain networks when it is difficult to compute the exact partial correlation in the small-n large-p setting. In this paper, we formulate the problem of estimating partial correlation as a sparse linear regression with a l1-norm penalty. The method is applied to brain network consisting of parcellated regions of interest (ROIs), which are obtained from FDG-PET images of the autism spectrum disorder (ASD) children and the pediatric control (PedCon) subjects. To validate the results, we check their reproducibilities of the obtained brain networks by the leave-one-out cross validation and compare the clustered structures derived from the brain networks of ASD and PedCon.

  13. Brain structure correlates of urban upbringing, an environmental risk factor for schizophrenia.

    PubMed

    Haddad, Leila; Schäfer, Axel; Streit, Fabian; Lederbogen, Florian; Grimm, Oliver; Wüst, Stefan; Deuschle, Michael; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas

    2015-01-01

    Urban upbringing has consistently been associated with schizophrenia, but which specific environmental exposures are reflected by this epidemiological observation and how they impact the developing brain to increase risk is largely unknown. On the basis of prior observations of abnormal functional brain processing of social stress in urban-born humans and preclinical evidence for enduring structural brain effects of early social stress, we investigated a possible morphological correlate of urban upbringing in human brain. In a sample of 110 healthy subjects studied with voxel-based morphometry, we detected a strong inverse correlation between early-life urbanicity and gray matter (GM) volume in the right dorsolateral prefrontal cortex (DLPFC, Brodmann area 9). Furthermore, we detected a negative correlation of early-life urbanicity and GM volumes in the perigenual anterior cingulate cortex (pACC) in men only. Previous work has linked volume reductions in the DLPFC to the exposure to psychosocial stress, including stressful experiences in early life. Besides, anatomical and functional alterations of this region have been identified in schizophrenic patients and high-risk populations. Previous data linking functional hyperactivation of pACC during social stress to urban upbringing suggest that the present interaction effect in brain structure might contribute to an increased risk for schizophrenia in males brought up in cities. Taken together, our results suggest a neural mechanism by which early-life urbanicity could impact brain architecture to increase the risk for schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome.

    PubMed

    Labus, Jennifer S; Hollister, Emily B; Jacobs, Jonathan; Kirbach, Kyleigh; Oezguen, Numan; Gupta, Arpana; Acosta, Jonathan; Luna, Ruth Ann; Aagaard, Kjersti; Versalovic, James; Savidge, Tor; Hsiao, Elaine; Tillisch, Kirsten; Mayer, Emeran A

    2017-05-01

    Preclinical and clinical evidence supports the concept of bidirectional brain-gut microbiome interactions. We aimed to determine if subgroups of irritable bowel syndrome (IBS) subjects can be identified based on differences in gut microbial composition, and if there are correlations between gut microbial measures and structural brain signatures in IBS. Behavioral measures, stool samples, and structural brain images were collected from 29 adult IBS and 23 healthy control subjects (HCs). 16S ribosomal RNA (rRNA) gene sequencing was used to profile stool microbial communities, and various multivariate analysis approaches were used to quantitate microbial composition, abundance, and diversity. The metagenomic content of samples was inferred from 16S rRNA gene sequence data using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). T1-weighted brain images were acquired on a Siemens Allegra 3T scanner, and morphological measures were computed for 165 brain regions. Using unweighted Unifrac distances with hierarchical clustering on microbial data, samples were clustered into two IBS subgroups within the IBS population (IBS1 (n = 13) and HC-like IBS (n = 16)) and HCs (n = 23) (AUROC = 0.96, sensitivity 0.95, specificity 0.67). A Random Forest classifier provided further support for the differentiation of IBS1 and HC groups. Microbes belonging to the genera Faecalibacterium, Blautia, and Bacteroides contributed to this subclassification. Clinical features distinguishing the groups included a history of early life trauma and duration of symptoms (greater in IBS1), but not self-reported bowel habits, anxiety, depression, or medication use. Gut microbial composition correlated with structural measures of brain regions including sensory- and salience-related regions, and with a history of early life trauma. The results confirm previous reports of gut microbiome-based IBS subgroups and identify for the first time brain structural alterations associated with these subgroups. They provide preliminary evidence for the involvement of specific microbes and their predicted metabolites in these correlations.

  15. How structure sculpts function: Unveiling the contribution of anatomical connectivity to the brain's spontaneous correlation structure

    NASA Astrophysics Data System (ADS)

    Bettinardi, R. G.; Deco, G.; Karlaftis, V. M.; Van Hartevelt, T. J.; Fernandes, H. M.; Kourtzi, Z.; Kringelbach, M. L.; Zamora-López, G.

    2017-04-01

    Intrinsic brain activity is characterized by highly organized co-activations between different regions, forming clustered spatial patterns referred to as resting-state networks. The observed co-activation patterns are sustained by the intricate fabric of millions of interconnected neurons constituting the brain's wiring diagram. However, as for other real networks, the relationship between the connectional structure and the emergent collective dynamics still evades complete understanding. Here, we show that it is possible to estimate the expected pair-wise correlations that a network tends to generate thanks to the underlying path structure. We start from the assumption that in order for two nodes to exhibit correlated activity, they must be exposed to similar input patterns from the entire network. We then acknowledge that information rarely spreads only along a unique route but rather travels along all possible paths. In real networks, the strength of local perturbations tends to decay as they propagate away from the sources, leading to a progressive attenuation of the original information content and, thus, of their influence. Accordingly, we define a novel graph measure, topological similarity, which quantifies the propensity of two nodes to dynamically correlate as a function of the resemblance of the overall influences they are expected to receive due to the underlying structure of the network. Applied to the human brain, we find that the similarity of whole-network inputs, estimated from the topology of the anatomical connectome, plays an important role in sculpting the backbone pattern of time-average correlations observed at rest.

  16. Dance and music share gray matter structural correlates.

    PubMed

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2017-02-15

    Intensive practise of sensorimotor skills, such as music and dance, is associated with brain structural plasticity. While the neural correlates of music have been well-investigated, less is known about the neural correlates of dance. Additionally, the gray matter structural correlates of dance versus music training have not yet been directly compared. The objectives of the present study were to compare gray matter structure as measured by surface- and voxel-based morphometry between expert dancers, expert musicians and untrained controls, as well as to correlate gray matter structure with performance on dance- and music-related tasks. Dancers and musicians were found to have increased cortical thickness compared to controls in superior temporal regions. Gray matter structure in the superior temporal gyrus was also correlated with performance on dance imitation, rhythm synchronization and melody discrimination tasks. These results suggest that superior temporal regions are important in both dance- and music-related skills and may be affected similarly by both types of long-term intensive training. This work advances knowledge of the neural correlates of dance and music, as well as training-associated brain plasticity in general. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Contrasting Effects of Vocabulary Knowledge on Temporal and Parietal Brain Structure across Lifespan

    ERIC Educational Resources Information Center

    Richardson, Fiona M.; Thomas, Michael S. C.; Filippi, Roberto; Harth, Helen; Price, Cathy J.

    2010-01-01

    Using behavioral, structural, and functional imaging techniques, we demonstrate contrasting effects of vocabulary knowledge on temporal and parietal brain structure in 47 healthy volunteers who ranged in age from 7 to 73 years. In the left posterior supramarginal gyrus, vocabulary knowledge was positively correlated with gray matter density in…

  18. Brain structural differences associated with the behavioural phenotype in children with Williams syndrome.

    PubMed

    Campbell, Linda E; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Karmiloff-Smith, Annette; Murphy, Declan G M; Murphy, Kieran C

    2009-03-03

    We investigated structural brain morphology of intellectually disabled children with Williams (WS) syndrome and its relationship to the behavioural phenotype. We compared the neuroanatomy of 15 children (mean age:13+/-2) with WS and 15 age/gender-matched healthy children using a manual region-of-interest analysis to measure bulk (white+grey) tissue volumes and unbiased fully-automated voxel-based morphometry to assess differences in grey/white matter throughout the brain. Ratings of abnormal behaviours were correlated with brain structure. Compared to controls, the brains of children with WS had a decreased volume of the right parieto-occipital regions and basal ganglia. We identified reductions of grey matter of the parieto-occipital regions, left putamen/globus pallidus and thalamus; and in white matter of the basal ganglia and right posterior cingulate gyrus. In contrast, significant increases of grey matter were identified in the frontal lobes, anterior cingulate gyrus, left temporal lobe, and of white matter bilaterally in the anterior cingulate. Inattention in WS was correlated with volumetric differences in the frontal lobes, caudate nucleus and cerebellum, and hyperactivity was related to differences in the left temporal and parietal lobes and cerebellum. Finally, ratings of peer problems were related to differences in the temporal lobes, right basal ganglia and frontal lobe. In one of the first studies of brain structure in intellectually disabled children with WS using voxel-based morphometry, our findings suggest that this group has specific differences in grey/white matter morphology. In addition, it was found that structural differences were correlated to ratings of inattention, hyperactivity and peer problems in children with WS.

  19. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. Copyright © 2012 Wiley Periodicals, Inc.

  20. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.

    PubMed

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-18

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  1. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    NASA Astrophysics Data System (ADS)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  2. Structural correlates of active-staining following magnetic resonance microscopy in the mouse brain

    PubMed Central

    Cleary, Jon O.; Wiseman, Frances K.; Norris, Francesca C.; Price, Anthony N.; Choy, ManKin; Tybulewicz, Victor L.J.; Ordidge, Roger J.; Brandner, Sebastian; Fisher, Elizabeth M.C.; Lythgoe, Mark F.

    2011-01-01

    Extensive worldwide efforts are underway to produce knockout mice for each of the ~ 25,000 mouse genes, which may give new insights into the underlying pathophysiology of neurological disease. Microscopic magnetic resonance imaging (μMRI) is a key method for non-invasive morphological phenotyping, capable of producing high-resolution 3D images of ex-vivo brains, after fixation with an MR contrast agent. These agents have been suggested to act as active-stains, enhancing structures not normally visible on MRI. In this study, we investigated the structural correlates of the MRI agent Gd-DTPA, together with the optimal preparation and scan parameters for contrast-enhanced gradient-echo imaging of the mouse brain. We observed that in-situ preparation was preferential to ex-situ due to the degree of extraction damage. In-situ brains scanned with optimised parameters, enabled images with a high signal-to-noise-ratio (SNR ~ 30) and comprehensive anatomical delineation. Direct correlation of the MR brain structures to histology, detailed fine histoarchitecture in the cortex, cerebellum, olfactory bulb and hippocampus. Neurofilament staining demonstrated that regions of negative MR contrast strongly correlated to myelinated white-matter structures, whilst structures of more positive MR contrast corresponded to areas with high grey matter content. We were able to identify many sub-regions, particularly within the hippocampus, such as the unmyelinated mossy fibres (stratum lucidum) and their region of synapse in the stratum pyramidale, together with the granular layer of the dentate gyrus, an area of densely packed cell bodies, which was clearly visible as a region of hyperintensity. This suggests that cellular structure influences the site-specific distribution of the MR contrast agent, resulting in local variations in T2*, which leads to enhanced tissue discrimination. Our findings provide insights not only into the cellular distribution and mechanism of MR active-staining, but also allow for three dimensional analysis, which enables interpretation of magnetic resonance microscopy brain data and highlights cellular structure for investigation of disease processes in development and disease. PMID:21310249

  3. Technetium-99m-HMPAO SPECT, CT and MRI in the evaluation of patients with chronic traumatic brain injury: a correlation with neuropsychological performance.

    PubMed

    Ichise, M; Chung, D G; Wang, P; Wortzman, G; Gray, B G; Franks, W

    1994-02-01

    The purposes of this study were: (1) to compare 99mTc-hexamethylpropyleneamineoxime (HMPAO) SPECT with CT and MRI in chronic traumatic brain injury (TBI) patients and (2) to correlate both functional and structural neuroimaging measurements of brain damage with neuropsychological (NP) performance. Twenty-nine patients (minor TBI, n = 15 and major TBI, n = 14) and 17 normal controls (NC) underwent HMPAO SPECT, CT, MRI and NP testing. Imaging data were analyzed both visually and quantitatively. Nineteen (66%) patients showed 42 abnormalities on SPECT images, whereas 13 (45%) and 10 (34%) patients showed 29 abnormalities on MRI and 24 abnormalities on CT. SPECT detected relatively more abnormalities than CT or MRI in the minor TBI subgroup. The TBI group showed impairment on 11 tests for memory, attention and executive function. Of these, the anterior-posterior ratio (APR) correlated with six tests, whereas the ventricle-to-brain ratio (VBR), a known structural index of a poor NP outcome, correlated with only two tests. In evaluating chronic TBI patients, HMPAO SPECT, as a complement to CT or MRI, may play a useful role by demonstrating brain dysfunction in morphologically intact brain regions and providing objective evidence for some of the impaired NP performance.

  4. Development of human brain structural networks through infancy and childhood.

    PubMed

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Correlation between pulmonary function and brain volume in healthy elderly subjects.

    PubMed

    Taki, Yasuyuki; Kinomura, Shigeo; Ebihara, Satoru; Thyreau, Benjamin; Sato, Kazunori; Goto, Ryoi; Kakizaki, Masako; Tsuji, Ichiro; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-06-01

    Cigarette smoking decreases brain regional gray matter volume and is related to chronic obstructive lung disease (COPD). COPD leads to decreased pulmonary function, which is represented by forced expiratory volume in one second percentage (FEV1.0 %); however, it is unclear if decreased pulmonary function is directly related to brain gray matter volume decline. Because there is a link between COPD and cognitive decline, revealing a direct relationship between pulmonary function and brain structure is important to better understand how pulmonary function affects brain structure and cognitive function. Therefore, the purpose of this study was to analyze whether there were significant correlations between FEV1.0 % and brain regional gray and white matter volumes using brain magnetic resonance (MR) image data from 109 community-dwelling healthy elderly individuals. Brain MR images were processed with voxel-based morphometry using a custom template by applying diffeomorphic anatomical registration using the exponentiated lie algebra procedure. We found a significant positive correlation between the regional white matter volume of the cerebellum and FEV1.0 % after adjusting for age, sex, and intracranial volume. Our results suggest that elderly individuals who have a lower FEV1.0 % have decreased regional white matter volume in the cerebellum. Therefore, preventing decreased pulmonary function is important for cerebellar white matter volume in the healthy elderly population.

  6. White matter integrity of central executive network correlates with enhanced brain reactivity to smoking cues.

    PubMed

    Bi, Yanzhi; Yuan, Kai; Yu, Dahua; Wang, Ruonan; Li, Min; Li, Yangding; Zhai, Jinquan; Lin, Wei; Tian, Jie

    2017-12-01

    The attentional bias to smoking cues contributes to smoking cue reactivity and cognitive declines underlines smoking behaviors, which were probably associated with the central executive network (CEN). However, little is known about the implication of the structural connectivity of the CEN in smoking cue reactivity and cognitive control impairments in smokers. In the present study, the white matter structural connectivity of the CEN was quantified in 35 smokers and 26 non-smokers using the diffusion tensor imaging and deterministic fiber tractography methods. Smoking cue reactivity was evaluated using cue exposure tasks, and cognitive control performance was assessed by the Stroop task. Relative to non-smokers, smokers showed increased fractional anisotropy (FA) values of the bilateral CEN fiber tracts. The FA values of left CEN positively correlated with the smoking cue-induced activation of the dorsolateral prefrontal cortex and right middle occipital cortex in smokers. Meanwhile, the FA values of left CEN positively correlated with the incongruent errors during Stroop task in smokers. Collectively, the present study highlighted the role of the structural connectivity of the CEN in smoking cue reactivity and cognitive control performance, which may underpin the attentional bias to smoking cues and cognitive deficits in smokers. The multimodal imaging method by forging links from brain structure to brain function extended the notion that structural connections can modulate the brain activity in specific projection target regions. Hum Brain Mapp 38:6239-6249, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Complex network analysis of resting-state fMRI of the brain.

    PubMed

    Anwar, Abdul Rauf; Hashmy, Muhammad Yousaf; Imran, Bilal; Riaz, Muhammad Hussnain; Mehdi, Sabtain Muhammad Muntazir; Muthalib, Makii; Perrey, Stephane; Deuschl, Gunther; Groppa, Sergiu; Muthuraman, Muthuraman

    2016-08-01

    Due to the fact that the brain activity hardly ever diminishes in healthy individuals, analysis of resting state functionality of the brain seems pertinent. Various resting state networks are active inside the idle brain at any time. Based on various neuro-imaging studies, it is understood that various structurally distant regions of the brain could be functionally connected. Regions of the brain, that are functionally connected, during rest constitutes to the resting state network. In the present study, we employed the complex network measures to estimate the presence of community structures within a network. Such estimate is named as modularity. Instead of using a traditional correlation matrix, we used a coherence matrix taken from the causality measure between different nodes. Our results show that in prolonged resting state the modularity starts to decrease. This decrease was observed in all the resting state networks and on both sides of the brain. Our study highlights the usage of coherence matrix instead of correlation matrix for complex network analysis.

  8. Individual differences in brain structure and resting brain function underlie cognitive styles: evidence from the Embedded Figures Test.

    PubMed

    Hao, Xin; Wang, Kangcheng; Li, Wenfu; Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Qinglin

    2013-01-01

    Cognitive styles can be characterized as individual differences in the way people perceive, think, solve problems, learn, and relate to others. Field dependence/independence (FDI) is an important and widely studied dimension of cognitive styles. Although functional imaging studies have investigated the brain activation of FDI cognitive styles, the combined structural and functional correlates with individual differences in a large sample have never been investigated. In the present study, we investigated the neural correlates of individual differences in FDI cognitive styles by analyzing the correlations between Embedded Figures Test (EFT) score and structural neuroimaging data [regional gray matter volume (rGMV) was assessed using voxel-based morphometry (VBM)]/functional neuroimaging data [resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF)] throughout the whole brain. Results showed that the increased rGMV in the left inferior parietal lobule (IPL) was associated with the EFT score, which might be the structural basis of effective local processing. Additionally, a significant positive correlation between ALFF and EFT score was found in the fronto-parietal network, including the left inferior parietal lobule (IPL) and the medial prefrontal cortex (mPFC). We speculated that the left IPL might be associated with superior feature identification, and mPFC might be related to cognitive inhibition of global processing bias. These results suggested that the underlying neuroanatomical and functional bases were linked to the individual differences in FDI cognitive styles and emphasized the important contribution of superior local processing ability and cognitive inhibition to field-independent style.

  9. Individual Differences in Brain Structure and Resting Brain Function Underlie Cognitive Styles: Evidence from the Embedded Figures Test

    PubMed Central

    Hao, Xin; Wang, Kangcheng; Li, Wenfu; Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Qinglin

    2013-01-01

    Cognitive styles can be characterized as individual differences in the way people perceive, think, solve problems, learn, and relate to others. Field dependence/independence (FDI) is an important and widely studied dimension of cognitive styles. Although functional imaging studies have investigated the brain activation of FDI cognitive styles, the combined structural and functional correlates with individual differences in a large sample have never been investigated. In the present study, we investigated the neural correlates of individual differences in FDI cognitive styles by analyzing the correlations between Embedded Figures Test (EFT) score and structural neuroimaging data [regional gray matter volume (rGMV) was assessed using voxel-based morphometry (VBM)] / functional neuroimaging data [resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF)] throughout the whole brain. Results showed that the increased rGMV in the left inferior parietal lobule (IPL) was associated with the EFT score, which might be the structural basis of effective local processing. Additionally, a significant positive correlation between ALFF and EFT score was found in the fronto-parietal network, including the left inferior parietal lobule (IPL) and the medial prefrontal cortex (mPFC). We speculated that the left IPL might be associated with superior feature identification, and mPFC might be related to cognitive inhibition of global processing bias. These results suggested that the underlying neuroanatomical and functional bases were linked to the individual differences in FDI cognitive styles and emphasized the important contribution of superior local processing ability and cognitive inhibition to field-independent style. PMID:24348991

  10. Attention Performance Measured by Attention Network Test Is Correlated with Global and Regional Efficiency of Structural Brain Networks

    PubMed Central

    Xiao, Min; Ge, Haitao; Khundrakpam, Budhachandra S.; Xu, Junhai; Bezgin, Gleb; Leng, Yuan; Zhao, Lu; Tang, Yuchun; Ge, Xinting; Jeon, Seun; Xu, Wenjian; Evans, Alan C.; Liu, Shuwei

    2016-01-01

    Functional neuroimaging studies have indicated the involvement of separate brain areas in three distinct attention systems: alerting, orienting, and executive control (EC). However, the structural correlates underlying attention remains unexplored. Here, we utilized graph theory to examine the neuroanatomical substrates of the three attention systems measured by attention network test (ANT) in 65 healthy subjects. White matter connectivity, assessed with diffusion tensor imaging deterministic tractography was modeled as a structural network comprising 90 nodes defined by the automated anatomical labeling (AAL) template. Linear regression analyses were conducted to explore the relationship between topological parameters and the three attentional effects. We found a significant positive correlation between EC function and global efficiency of the whole brain network. At the regional level, node-specific correlations were discovered between regional efficiency and all three ANT components, including dorsolateral superior frontal gyrus, thalamus and parahippocampal gyrus for EC, thalamus and inferior parietal gyrus for alerting, and paracentral lobule and inferior occipital gyrus for orienting. Our findings highlight the fundamental architecture of interregional structural connectivity involved in attention and could provide new insights into the anatomical basis underlying human behavior. PMID:27777556

  11. Inter-subject FDG PET Brain Networks Exhibit Multi-scale Community Structure with Different Normalization Techniques.

    PubMed

    Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A

    2018-07-01

    Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.

  12. Familial and environmental influences on brain volumes in twins with schizophrenia.

    PubMed

    Picchioni, Marco M; Rijsdijk, Fruhling; Toulopoulou, Timothea; Chaddock, Christopher; Cole, James H; Ettinger, Ulrich; Oses, Ana; Metcalfe, Hugo; Murray, Robin M; McGuire, Philip

    2017-03-01

    Reductions in whole brain and grey matter volumes are robust features of schizophrenia, yet their etiological influences are unclear. We investigated the association between the genetic and environmental risk for schizophrenia and brain volumes. Whole brain, grey matter and white matter volumes were established from structural MRIs from twins varying in their zygosity and concordance for schizophrenia. Hippocampal volumes were measured manually. We conducted between-group testing and full genetic modelling. We included 168 twins in our study. Whole brain, grey matter, white matter and right hippocampal volumes were smaller in twins with schizophrenia. Twin correlations were larger for whole brain, grey matter and white matter volumes in monozygotic than dizygotic twins and were significantly heritable, whereas hippocampal volume was the most environmentally sensitive. There was a significant phenotypic correlation between schizophrenia and reductions in all the brain volumes except for that of the left hippocampus. For whole brain, grey matter and the right hippocampus the etiological links with schizophrenia were principally associated with the shared familial environment. Lower birth weight and perinatal hypoxia were both associated with lower whole brain volume and with lower white matter and grey matter volumes, respectively. Scan data were collected across 2 sites, and some groups were modest in size. Whole brain, grey matter and right hippocampal volume reductions are linked to schizophrenia through correlated familial risk (i.e., the shared familial environment). The degree of influence of etiological factors varies between brain structures, leading to the possibility of a neuroanatomically specific etiological imprint.

  13. Robust estimation of fractal measures for characterizing the structural complexity of the human brain: optimization and reproducibility

    PubMed Central

    Goñi, Joaquín; Sporns, Olaf; Cheng, Hu; Aznárez-Sanado, Maite; Wang, Yang; Josa, Santiago; Arrondo, Gonzalo; Mathews, Vincent P; Hummer, Tom A; Kronenberger, William G; Avena-Koenigsberger, Andrea; Saykin, Andrew J.; Pastor, María A.

    2013-01-01

    High-resolution isotropic three-dimensional reconstructions of human brain gray and white matter structures can be characterized to quantify aspects of their shape, volume and topological complexity. In particular, methods based on fractal analysis have been applied in neuroimaging studies to quantify the structural complexity of the brain in both healthy and impaired conditions. The usefulness of such measures for characterizing individual differences in brain structure critically depends on their within-subject reproducibility in order to allow the robust detection of between-subject differences. This study analyzes key analytic parameters of three fractal-based methods that rely on the box-counting algorithm with the aim to maximize within-subject reproducibility of the fractal characterizations of different brain objects, including the pial surface, the cortical ribbon volume, the white matter volume and the grey matter/white matter boundary. Two separate datasets originating from different imaging centers were analyzed, comprising, 50 subjects with three and 24 subjects with four successive scanning sessions per subject, respectively. The reproducibility of fractal measures was statistically assessed by computing their intra-class correlations. Results reveal differences between different fractal estimators and allow the identification of several parameters that are critical for high reproducibility. Highest reproducibility with intra-class correlations in the range of 0.9–0.95 is achieved with the correlation dimension. Further analyses of the fractal dimensions of parcellated cortical and subcortical gray matter regions suggest robustly estimated and region-specific patterns of individual variability. These results are valuable for defining appropriate parameter configurations when studying changes in fractal descriptors of human brain structure, for instance in studies of neurological diseases that do not allow repeated measurements or for disease-course longitudinal studies. PMID:23831414

  14. Brief Report: CANTAB Performance and Brain Structure in Pediatric Patients with Asperger Syndrome

    ERIC Educational Resources Information Center

    Kaufmann, Liane; Zotter, Sibylle; Pixner, Silvia; Starke, Marc; Haberlandt, Edda; Steinmayr-Gensluckner, Maria; Egger, Karl; Schocke, Michael; Weiss, Elisabeth M.; Marksteiner, Josef

    2013-01-01

    By merging neuropsychological (CANTAB/Cambridge Neuropsychological Test Automated Battery) and structural brain imaging data (voxel-based-morphometry) the present study sought to identify the neurocognitive correlates of executive functions in individuals with Asperger syndrome (AS) compared to healthy controls. Results disclosed subtle group…

  15. Sexual dimorphism of volume reduction but not cognitive deficit in fetal alcohol spectrum disorders: A combined diffusion tensor imaging, cortical thickness and brain volume study.

    PubMed

    Treit, Sarah; Chen, Zhang; Zhou, Dongming; Baugh, Lauren; Rasmussen, Carmen; Andrew, Gail; Pei, Jacqueline; Beaulieu, Christian

    2017-01-01

    Quantitative magnetic resonance imaging (MRI) has revealed abnormalities in brain volumes, cortical thickness and white matter microstructure in fetal alcohol spectrum disorders (FASD); however, no study has reported all three measures within the same cohort to assess the relative magnitude of deficits, and few studies have examined sex differences. Participants with FASD (n = 70; 30 females; 5-32 years) and healthy controls (n = 74; 35 females; 5-32 years) underwent cognitive testing and MRI to assess cortical thickness, regional brain volumes and fractional anisotropy (FA)/mean diffusivity (MD) of white matter tracts. A significant effect of group, age-by-group, or sex-by-group was found for 9/9 volumes, 7/39 cortical thickness regions, 3/9 white matter tracts, and 9/10 cognitive tests, indicating group differences that in some cases differ by age or sex. Volume reductions for several structures were larger in males than females, despite similar deficits of cognition in both sexes. Correlations between brain structure and cognitive scores were found in females of both groups, but were notably absent in males. Correlations within a given MRI modality (e.g. total brain volume and caudate volume) were prevalent in both the control and FASD groups, and were more numerous than correlations between measurement types (e.g. volumes and diffusion tensor imaging) in either cohort. This multi-modal MRI study finds widespread differences of brain structure in participants with prenatal alcohol exposure, and to a greater extent in males than females which may suggest attenuation of the expected process of sexual dimorphism of brain structure during typical development.

  16. Brain structural correlates of reward sensitivity and impulsivity in adolescents with normal and excess weight.

    PubMed

    Moreno-López, Laura; Soriano-Mas, Carles; Delgado-Rico, Elena; Rio-Valle, Jacqueline S; Verdejo-García, Antonio

    2012-01-01

    Neuroscience evidence suggests that adolescent obesity is linked to brain dysfunctions associated with enhanced reward and somatosensory processing and reduced impulse control during food processing. Comparatively less is known about the role of more stable brain structural measures and their link to personality traits and neuropsychological factors on the presentation of adolescent obesity. Here we aimed to investigate regional brain anatomy in adolescents with excess weight vs. lean controls. We also aimed to contrast the associations between brain structure and personality and cognitive measures in both groups. Fifty-two adolescents (16 with normal weight and 36 with excess weight) were scanned using magnetic resonance imaging and completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ), the UPPS-P scale, and the Stroop task. Voxel-based morphometry (VBM) was used to assess possible between-group differences in regional gray matter (GM) and to measure the putative differences in the way reward and punishment sensitivity, impulsivity and inhibitory control relate to regional GM volumes, which were analyzed using both region of interest (ROI) and whole brain analyses. The ROIs included areas involved in reward/somatosensory processing (striatum, somatosensory cortices) and motivation/impulse control (hippocampus, prefrontal cortex). Excess weight adolescents showed increased GM volume in the right hippocampus. Voxel-wise volumes of the second somatosensory cortex (SII) were correlated with reward sensitivity and positive urgency in lean controls, but this association was missed in excess weight adolescents. Moreover, Stroop performance correlated with dorsolateral prefrontal cortex volumes in controls but not in excess weight adolescents. Adolescents with excess weight have structural abnormalities in brain regions associated with somatosensory processing and motivation.

  17. Expression of alcoholism-relevant genes in the liver are differently correlated to different parts of the brain.

    PubMed

    Wang, Lishi; Huang, Yue; Jiao, Yan; Chen, Hong; Cao, Yanhong; Bennett, Beth; Wang, Yongjun; Gu, Weikuan

    2013-01-01

    The purpose of this study is to investigate whether expression profiles of alcoholism-relevant genes in different parts of the brain are correlated differently with those in the liver. Four experiments were conducted. First, we used gene expression profiles from five parts of the brain (striatum, prefrontal cortex, nucleus accumbens, hippocampus, and cerebellum) and from liver in a population of recombinant inbred mouse strains to examine the expression association of 10 alcoholism-relevant genes. Second, we conducted the same association analysis between brain structures and the lung. Third, using five randomly selected, nonalcoholism-relevant genes, we conducted the association analysis between brain and liver. Finally, we compared the expression of 10 alcoholism-relevant genes in hippocampus and cerebellum between an alcohol preference strain and a wild-type control. We observed a difference in correlation patterns in expression levels of 10 alcoholism-relevant genes between different parts of the brain with those of liver. We then examined the association of gene expression between alcohol dehydrogenases (Adh1, Adh2, Adh5, and Adh7) and different parts of the brain. The results were similar to those of the 10 genes. Then, we found that the association of those genes between brain structures and lung was different from that of liver. Next, we found that the association patterns of five alcoholism-nonrelevant genes were different from those of 10 alcoholism-relevant genes. Finally, we found that the expression level of 10 alcohol-relevant genes is influenced more in hippocampus than in cerebellum in the alcohol preference strain. Our results show that the expression of alcoholism-relevant genes in liver is differently associated with the expression of genes in different parts of the brain. Because different structural changes in different parts of the brain in alcoholism have been reported, it is important to investigate whether those structural differences in the brains of those with alcoholism are due to the difference in the associations of gene expression between genes in liver and in different parts of the brain.

  18. Structural Brain Correlates Associated with Professional Handball Playing

    PubMed Central

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    Background There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. Methodology/Hypotheses We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Results Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Discussion/Conclusion Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing affinity. Investigations of neuroplasticity specifically in sportsmen might help to understand the neural mechanisms of expertise in general. PMID:25915906

  19. Structural Magnetic Resonance Imaging Correlates of Aggression in Psychosis: A Systematic Review and Effect Size Analysis.

    PubMed

    Widmayer, Sonja; Sowislo, Julia F; Jungfer, Hermann A; Borgwardt, Stefan; Lang, Undine E; Stieglitz, Rolf D; Huber, Christian G

    2018-01-01

    Background: Aggression in psychoses is of high clinical importance, and volumetric MRI techniques have been used to explore its structural brain correlates. Methods: We conducted a systematic review searching EMBASE, ScienceDirect, and PsycINFO through September 2017 using thesauri representing aggression, psychosis, and brain imaging. We calculated effect sizes for each study and mean Hedge's g for whole brain (WB) volume. Methodological quality was established using the PRISMA checklist (PROSPERO: CRD42014014461). Results: Our sample consisted of 12 studies with 470 patients and 155 healthy controls (HC). After subtracting subjects due to cohort overlaps, 314 patients and 96 HC remained. Qualitative analyses showed lower volumes of WB, prefrontal regions, temporal lobe, hippocampus, thalamus and cerebellum, and higher volumes of lateral ventricles, amygdala, and putamen in violent vs. non-violent people with schizophrenia. In quantitative analyses, violent persons with schizophrenia exhibited a significantly lower WB volume than HC ( p = 0.004), and also lower than non-violent persons with schizophrenia ( p = 0.007). Conclusions: We reviewed evidence for differences in brain volume correlates of aggression in persons with schizophrenia. Our results point toward a reduced whole brain volume in violent as opposed to non-violent persons with schizophrenia. However, considerable sample overlap in the literature, lack of reporting of potential confounding variables, and missing research on affective psychoses limit our explanatory power. To permit stronger conclusions, further studies evaluating structural correlates of aggression in psychotic disorders are needed.

  20. Ising model with conserved magnetization on the human connectome: Implications on the relation structure-function in wakefulness and anesthesia

    NASA Astrophysics Data System (ADS)

    Stramaglia, S.; Pellicoro, M.; Angelini, L.; Amico, E.; Aerts, H.; Cortés, J. M.; Laureys, S.; Marinazzo, D.

    2017-04-01

    Dynamical models implemented on the large scale architecture of the human brain may shed light on how a function arises from the underlying structure. This is the case notably for simple abstract models, such as the Ising model. We compare the spin correlations of the Ising model and the empirical functional brain correlations, both at the single link level and at the modular level, and show that their match increases at the modular level in anesthesia, in line with recent results and theories. Moreover, we show that at the peak of the specific heat (the critical state), the spin correlations are minimally shaped by the underlying structural network, explaining how the best match between the structure and function is obtained at the onset of criticality, as previously observed. These findings confirm that brain dynamics under anesthesia shows a departure from criticality and could open the way to novel perspectives when the conserved magnetization is interpreted in terms of a homeostatic principle imposed to neural activity.

  1. Stuck in a State of Inattention? Functional Hyperconnectivity as an Indicator of Disturbed Intrinsic Brain Dynamics in Adolescents With Concussion: A Pilot Study

    PubMed Central

    Virji-Babul, Naznin

    2018-01-01

    Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions (n = 6) and a group of healthy adolescent athletes (n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort. PMID:29357675

  2. Stuck in a State of Inattention? Functional Hyperconnectivity as an Indicator of Disturbed Intrinsic Brain Dynamics in Adolescents With Concussion: A Pilot Study.

    PubMed

    Muller, Angela M; Virji-Babul, Naznin

    2018-01-01

    Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions ( n = 6) and a group of healthy adolescent athletes ( n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort.

  3. Abdominal fat distribution and its relationship to brain changes: the differential effects of age on cerebellar structure and function: a cross-sectional, exploratory study

    PubMed Central

    Raschpichler, Matthias; Straatman, Kees; Schroeter, Matthias Leopold; Arelin, Katrin; Schlögl, Haiko; Fritzsch, Dominik; Mende, Meinhard; Pampel, André; Böttcher, Yvonne; Stumvoll, Michael; Villringer, Arno; Mueller, Karsten

    2013-01-01

    Objectives To investigate whether the metabolically important visceral adipose tissue (VAT) relates differently to structural and functional brain changes in comparison with body weight measured as body mass index (BMI). Moreover, we aimed to investigate whether these effects change with age. Design Cross-sectional, exploratory. Setting University Clinic, Integrative Research and Treatment Centre. Participants We included 100 (mean BMI=26.0 kg/m², 42 women) out of 202 volunteers randomly invited by the city's registration office, subdivided into two age groups: young-to-mid-age (n=51, 20–45 years of age, mean BMI=24.9, 24 women) versus old (n=49, 65–70 years of age, mean BMI=27.0, 18 women). Main outcome measures VAT, BMI, subcutaneous abdominal adipose tissue, brain structure (grey matter density), functional brain architecture (eigenvector centrality, EC). Results We discovered a loss of cerebellar structure with increasing VAT in the younger participants, most significantly in regions involved in motor processing. This negative correlation disappeared in the elderly. Investigating functional brain architecture showed again inverse VAT–cerebellum correlations, whereas now regions involved in cognitive and emotional processing were significant. Although we detected similar results for EC using BMI, significant age interaction for both brain structure and functional architecture was only found using VAT. Conclusions Visceral adiposity is associated with cerebellar changes of both structure and function, whereas the regions involved contribute to motor, cognitive and emotional processes. Furthermore, these associations seem to be age dependent, with younger adults’ brains being adversely affected. PMID:23355665

  4. The neuroanatomy of general intelligence: sex matters.

    PubMed

    Haier, Richard J; Jung, Rex E; Yeo, Ronald A; Head, Kevin; Alkire, Michael T

    2005-03-01

    We examined the relationship between structural brain variation and general intelligence using voxel-based morphometric analysis of MRI data in men and women with equivalent IQ scores. Compared to men, women show more white matter and fewer gray matter areas related to intelligence. In men IQ/gray matter correlations are strongest in frontal and parietal lobes (BA 8, 9, 39, 40), whereas the strongest correlations in women are in the frontal lobe (BA10) along with Broca's area. Men and women apparently achieve similar IQ results with different brain regions, suggesting that there is no singular underlying neuroanatomical structure to general intelligence and that different types of brain designs may manifest equivalent intellectual performance.

  5. Neuroanatomical correlates of brain-computer interface performance.

    PubMed

    Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi

    2015-04-15

    Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Whole-brain structural connectivity in dyskinetic cerebral palsy and its association with motor and cognitive function.

    PubMed

    Ballester-Plané, Júlia; Schmidt, Ruben; Laporta-Hoyos, Olga; Junqué, Carme; Vázquez, Élida; Delgado, Ignacio; Zubiaurre-Elorza, Leire; Macaya, Alfons; Póo, Pilar; Toro, Esther; de Reus, Marcel A; van den Heuvel, Martijn P; Pueyo, Roser

    2017-09-01

    Dyskinetic cerebral palsy (CP) has long been associated with basal ganglia and thalamus lesions. Recent evidence further points at white matter (WM) damage. This study aims to identify altered WM pathways in dyskinetic CP from a standardized, connectome-based approach, and to assess structure-function relationship in WM pathways for clinical outcomes. Individual connectome maps of 25 subjects with dyskinetic CP and 24 healthy controls were obtained combining a structural parcellation scheme with whole-brain deterministic tractography. Graph theoretical metrics and the network-based statistic were applied to compare groups and to correlate WM state with motor and cognitive performance. Results showed a widespread reduction of WM volume in CP subjects compared to controls and a more localized decrease in degree (number of links per node) and fractional anisotropy (FA), comprising parieto-occipital regions and the hippocampus. However, supramarginal gyrus showed a significantly higher degree. At the network level, CP subjects showed a bilateral pathway with reduced FA, comprising sensorimotor, intraparietal and fronto-parietal connections. Gross and fine motor functions correlated with FA in a pathway comprising the sensorimotor system, but gross motor also correlated with prefrontal, temporal and occipital connections. Intelligence correlated with FA in a network with fronto-striatal and parieto-frontal connections, and visuoperception was related to right occipital connections. These findings demonstrate a disruption in structural brain connectivity in dyskinetic CP, revealing general involvement of posterior brain regions with relative preservation of prefrontal areas. We identified pathways in which WM integrity is related to clinical features, including but not limited to the sensorimotor system. Hum Brain Mapp 38:4594-4612, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Origin of hyperbolicity in brain-to-brain coordination networks

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan

    2018-02-01

    Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 < 1 and can be attributed to the topology of the subgraph formed around the cross-brains linking channels. We identify these subgraphs in each studied two-brain network and decompose their structure into simple geometric descriptors (triangles, tetrahedra and cliques of higher orders) that contribute to hyperbolicity. Considering topologies that exceed two separate brain networks as a measure of coordination synergy between the brains, we identify different neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.

  8. Bilateral Brain Regions Associated with Naming in Older Adults

    ERIC Educational Resources Information Center

    Obler, Loraine K.; Rykhlevskaia, Elena; Schnyer, David; Clark-Cotton, Manuella R.; Spiro, Avron, III; Hyun, JungMoon; Kim, Dae-Shik; Goral, Mira; Albert, Martin L.

    2010-01-01

    To determine structural brain correlates of naming abilities in older adults, we tested 24 individuals aged 56-79 on two confrontation-naming tests (the Boston Naming Test (BNT) and the Action Naming Test (ANT)), then collected from these individuals structural Magnetic-Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) data. Overall,…

  9. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  10. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    PubMed

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  11. A critical review of the neuroimaging literature on synesthesia

    PubMed Central

    Hupé, Jean-Michel; Dojat, Michel

    2015-01-01

    Synesthesia refers to additional sensations experienced by some people for specific stimulations, such as the systematic arbitrary association of colors to letters for the most studied type. Here, we review all the studies (based mostly on functional and structural magnetic resonance imaging) that have searched for the neural correlates of this subjective experience, as well as structural differences related to synesthesia. Most differences claimed for synesthetes are unsupported, due mainly to low statistical power, statistical errors, and methodological limitations. Our critical review therefore casts some doubts on whether any neural correlate of the synesthetic experience has been established yet. Rather than being a neurological condition (i.e., a structural or functional brain anomaly), synesthesia could be reconsidered as a special kind of childhood memory, whose signature in the brain may be out of reach with present brain imaging techniques. PMID:25873873

  12. Lenticular nucleus correlates of general self-efficacy in young adults.

    PubMed

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Kotozaki, Yuka; Shinada, Takamitsu; Maruyama, Tsukasa; Sekiguchi, Atsushi; Iizuka, Kunio; Yokoyama, Ryoichi; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Miyauchi, Carlos Makoto; Magistro, Daniele; Sakaki, Kohei; Jeong, Hyeonjeong; Sasaki, Yukako; Kawashima, Ryuta

    2017-09-01

    General self-efficacy (GSE) is an important factor in education, social participation, and medical treatment. However, the only study that has investigated the direct association between GSE and a neural correlate did not identify specific brain regions, rather only assessed brain structures, and included older adult subjects. GSE is related to motivation, physical activity, learning, the willingness to initiate behaviour and expend effort, and adjustment. Thus, it was hypothesized in the present study that the neural correlates of GSE might be related to changes in the basal ganglia, which is a region related to the abovementioned self-efficacy factors. This study aimed to identify the brain structures associated with GSE in healthy young adults (n = 1204, 691 males and 513 females, age 20.7 ± 1.8 years) using regional grey matter density and volume (rGMD and rGMV), fractional anisotropy (FA) and mean diffusivity (MD) analyses of magnetic resonance imaging (MRI) data. The findings showed that scores on the GSE Scale (GSES) were associated with a lower MD value in regions from the right putamen to the globus pallidum; however, there were no significant association between GSES scores and regional brain structures using the other analyses (rGMD, rGMV, and FA). Thus, the present findings indicated that the lenticular nucleus is a neural correlate of GSE.

  13. Insults to the Developing Brain and Impact on Neurodevelopmental Outcome

    ERIC Educational Resources Information Center

    Adams-Chapman, Ira

    2009-01-01

    Premature infants have a disproportionately increased risk for brain injury based on several mechanisms including intraventricular hemorrhage, ischemia and the vulnerability of developing neuronal progenitor cells. Injury to the developing brain often results in neurologic abnormalities that can be correlated with a structural lesion; however more…

  14. On the role of general system theory for functional neuroimaging

    PubMed Central

    Stephan, Klaas Enno

    2004-01-01

    One of the most important goals of neuroscience is to establish precise structure–function relationships in the brain. Since the 19th century, a major scientific endeavour has been to associate structurally distinct cortical regions with specific cognitive functions. This was traditionally accomplished by correlating microstructurally defined areas with lesion sites found in patients with specific neuropsychological symptoms. Modern neuroimaging techniques with high spatial resolution have promised an alternative approach, enabling non-invasive measurements of regionally specific changes of brain activity that are correlated with certain components of a cognitive process. Reviewing classic approaches towards brain structure–function relationships that are based on correlational approaches, this article argues that these approaches are not sufficient to provide an understanding of the operational principles of a dynamic system such as the brain but must be complemented by models based on general system theory. These models reflect the connectional structure of the system under investigation and emphasize context-dependent couplings between the system elements in terms of effective connectivity. The usefulness of system models whose parameters are fitted to measured functional imaging data for testing hypotheses about structure–function relationships in the brain and their potential for clinical applications is demonstrated by several empirical examples. PMID:15610393

  15. Prepartum and Postpartum Maternal Depressive Symptoms Are Related to Children's Brain Structure in Preschool.

    PubMed

    Lebel, Catherine; Walton, Matthew; Letourneau, Nicole; Giesbrecht, Gerald F; Kaplan, Bonnie J; Dewey, Deborah

    2016-12-01

    Perinatal maternal depression is a serious health concern with potential lasting negative consequences for children. Prenatal depression is associated with altered brain gray matter in children, though relations between postpartum depression and children's brains and the role of white matter are unclear. We studied 52 women who provided Edinburgh Postnatal Depression Scale (EPDS) scores during each trimester of pregnancy and at 3 months postpartum and their children who underwent magnetic resonance imaging at age 2.6 to 5.1 years. Associations between maternal depressive symptoms and magnetic resonance imaging measures of cortical thickness and white matter structure in the children were investigated. Women's second trimester EPDS scores negatively correlated with children's cortical thickness in right inferior frontal and middle temporal regions and with radial and mean diffusivity in white matter emanating from the inferior frontal area. Cortical thickness, but not diffusivity, correlations survived correction for postpartum EPDS. Postpartum EPDS scores negatively correlated with children's right superior frontal cortical thickness and with diffusivity in white matter originating from that region, even after correcting for prenatal EPDS. Higher maternal depressive symptoms prenatally and postpartum are associated with altered gray matter structure in children; the observed white matter correlations appear to be uniquely related to the postpartum period. The reduced thickness and diffusivity suggest premature brain development in children exposed to higher maternal perinatal depressive symptoms. These results highlight the importance of ensuring optimal women's mental health throughout the perinatal period, because maternal depressive symptoms appear to increase children's vulnerability to nonoptimal brain development. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Gradual emergence of spontaneous correlated brain activity during fading of general anesthesia in rats: Evidences from fMRI and local field potentials

    PubMed Central

    Bettinardi, Ruggero G.; Tort-Colet, Núria; Ruiz-Mejias, Marcel; Sanchez-Vives, Maria V.; Deco, Gustavo

    2015-01-01

    Intrinsic brain activity is characterized by the presence of highly structured networks of correlated fluctuations between different regions of the brain. Such networks encompass different functions, whose properties are known to be modulated by the ongoing global brain state and are altered in several neurobiological disorders. In the present study, we induced a deep state of anesthesia in rats by means of a ketamine/medetomidine peritoneal injection, and analyzed the time course of the correlation between the brain activity in different areas while anesthesia spontaneously decreased over time. We compared results separately obtained from fMRI and local field potentials (LFPs) under the same anesthesia protocol, finding that while most profound phases of anesthesia can be described by overall sparse connectivity, stereotypical activity and poor functional integration, during lighter states different frequency-specific functional networks emerge, endowing the gradual restoration of structured large-scale activity seen during rest. Noteworthy, our in vivo results show that those areas belonging to the same functional network (the default-mode) exhibited sustained correlated oscillations around 10 Hz throughout the protocol, suggesting the presence of a specific functional backbone that is preserved even during deeper phases of anesthesia. Finally, the overall pattern of results obtained from both imaging and in vivo-recordings suggests that the progressive emergence from deep anesthesia is reflected by a corresponding gradual increase of organized correlated oscillations across the cortex. PMID:25804643

  17. Dance and the brain: a review.

    PubMed

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2015-03-01

    Dance is a universal form of human expression that offers a rich source for scientific study. Dance provides a unique opportunity to investigate brain plasticity and its interaction with behavior. Several studies have investigated the behavioral correlates of dance, but less is known about the brain basis of dance. Studies on dance observation suggest that long- and short-term dance training affect brain activity in the action observation and simulation networks. Despite methodological challenges, the feasibility of conducting neuroimaging while dancing has been demonstrated, and several brain regions have been implicated in dance execution. Preliminary work from our laboratory suggests that long-term dance training changes both gray and white matter structure. This article provides a critical summary of work investigating the neural correlates of dance. It covers functional neuroimaging studies of dance observation and performance as well as structural neuroimaging studies of expert dancers. To stimulate ongoing dialogue between dance and science, future directions in dance and brain research as well as implications are discussed. Research on the neuroscience of dance will lead to a better understanding of brain-behavior relationships and brain plasticity in experts and nonexperts and can be applied to the development of dance-based therapy programs. © 2014 New York Academy of Sciences.

  18. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation.

    PubMed

    Geerligs, Linda; Cam-Can; Henson, Richard N

    2016-07-15

    Studies of brain-wide functional connectivity or structural covariance typically use measures like the Pearson correlation coefficient, applied to data that have been averaged across voxels within regions of interest (ROIs). However, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance. Here, we propose a new measure based on "distance correlation"; a test of multivariate dependence of high dimensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of 214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation and distance correlation showed similar average connectivity patterns, for both functional connectivity and structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions, 2) more similar across participants, and 3) more robust to different sets of ROIs. Moreover, we found that the similarity between functional connectivity and structural covariance estimates was higher for distance correlation compared to Pearson correlation. We also explored the relative effects of different preprocessing options and motion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns, for functional as well as structural data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. BDNF and BMI effects on brain structures of bipolar offspring: results from the global mood and brain science initiative.

    PubMed

    Mansur, R B; Brietzke, E; McIntyre, R S; Cao, B; Lee, Y; Japiassú, L; Chen, K; Lu, R; Lu, W; Li, T; Xu, G; Lin, K

    2017-12-01

    To compare brain-derived neurotrophic factor (BDNF) levels between offspring of individuals with bipolar disorders (BD) and healthy controls (HCs) and investigate the effects of BDNF levels and body mass index (BMI) on brain structures. Sixty-seven bipolar offspring and 45 HCs were included (ages 8-28). Structural images were acquired using 3.0 Tesla magnetic resonance imaging. Serum BDNF levels were measured using enzyme-linked immunosorbent assay. Multivariate and univariate analyses of covariance were conducted. Significantly higher BDNF levels were observed among bipolar offspring, relative to HCs (P > 0.025). Offspring status moderated the association between BDNF and BMI (F 1 =4.636, P = 0.034). After adjustment for relevant covariates, there was a trend for a significant interaction of group and BDNF on neuroimaging parameters (Wilks'λ F 56,94 =1.463, P = 0.052), with significant effects on cerebellar white matter and superior and middle frontal regions. Brain volume and BDNF were positively correlated among HCs and negatively correlated among bipolar offspring. Interactions between BDNF and BMI on brain volumes were non-significant among HCs (Wilks'λ F 28,2 =2.229, P = 0.357), but significant among bipolar offspring (Wilks'λ F 28,12 =2.899, P = 0.028). Offspring status and BMI moderate the association between BDNF levels and brain structures among bipolar offspring, underscoring BDNF regulation and overweight/obesity as key moderators of BD pathogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Photon Entanglement Through Brain Tissue.

    PubMed

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  1. Photon Entanglement Through Brain Tissue

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.

    2016-12-01

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  2. Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia.

    PubMed

    Horga, Guillermo; Bernacer, Javier; Dusi, Nicola; Entis, Jonathan; Chu, Kingwai; Hazlett, Erin A; Haznedar, M Mehmet; Kemether, Eileen; Byne, William; Buchsbaum, Monte S

    2011-10-01

    Ventricular enlargement is one of the most consistent abnormal structural brain findings in schizophrenia and has been used to infer brain shrinkage. However, whether ventricular enlargement is related to local overlying cortex and/or adjacent subcortical structures or whether it is related to brain volume change globally has not been assessed. We systematically assessed interrelations of ventricular volumes with gray and white matter volumes of 40 Brodmann areas (BAs), the thalamus and its medial dorsal nucleus and pulvinar, the internal capsule, caudate and putamen. We acquired structural MRI ( patients with schizophrenia (n = 64) and healthy controls (n = 56)) and diffusion tensor fractional anisotropy (FA) (untreated schizophrenia n = 19, controls n = 32). Volumes were assessed by manual tracing of central structures and a semi-automated parcellation of BAs. Patients with schizophrenia had increased ventricular size associated with decreased cortical gray matter volumes widely across the brain; a similar but less pronounced pattern was seen in normal controls; local correlations (e.g. temporal horn with temporal lobe volume) were not appreciably higher than non-local correlations (e.g. temporal horn with prefrontal volume). White matter regions adjacent to the ventricles similarly did not reveal strong regional relationships. FA and center of mass of the anterior limb of the internal capsule also appeared differentially influenced by ventricular volume but findings were similarly not regional. Taken together, these findings indicate that ventricular enlargement is globally interrelated with gray matter volume diminution but not directly correlated with volume loss in the immediately adjacent caudate, putamen, or internal capsule.

  3. Multilayer motif analysis of brain networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito

    2017-04-01

    In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.

  4. Verbal Memory in Parkinson’s Disease: A Combined DTI and fMRI Study

    PubMed Central

    Lucas-Jiménez, Olaia; Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Ibarretxe-Bilbao, Naroa

    2015-01-01

    Background: While significant progress has been made to determine the functional role of specific gray matter areas underlying verbal memory in Parkinson’s disease (PD), very little is known about the relationship between these regions and their underlying white matter structures. Objective: The objectives of this study were (1) to investigate verbal memory, fractional anisotropy and brain activation differences between PD patients and healthy controls (HC), (2) to explore the neuroanatomical and neurofunctional correlates of verbal memory in PD, and (3) to investigate the relationship between these neuroanatomical and neurofunctional verbal memory correlates in PD. Methods: Functional magnetic resonance imaging (fMRI) while performing a verbal memory paradigm and diffusion tensor imaging data (DTI), were acquired in 37 PD patients and 15 age-, sex-, and education-matched HC. Results: PD patients showed verbal recognition memory impairment, lower fractional anisotropy in the anterior cingulate tract, and lower brain activation in the inferior orbitofrontal cortex compared to HC. Brain activation in the inferior orbitofrontal cortex correlated significantly with verbal recognition memory impairment in PD patients. In addition, a relationship between brain activation in the inferior orbitofrontal cortex and fractional anisotropy of the uncinate fasciculus was found in PD. Conclusions: These results reveal that deficits in verbal memory in PD are accompanied by functional brain activation changes, but also have specific structural correlates related to white matter microstructural integrity. PMID:27070003

  5. The relationship between subcortical brain volume and striatal dopamine D2/3 receptor availability in healthy humans assessed with [11 C]-raclopride and [11 C]-(+)-PHNO PET.

    PubMed

    Caravaggio, Fernando; Ku Chung, Jun; Plitman, Eric; Boileau, Isabelle; Gerretsen, Philip; Kim, Julia; Iwata, Yusuke; Patel, Raihaan; Chakravarty, M Mallar; Remington, Gary; Graff-Guerrero, Ariel

    2017-11-01

    Abnormalities in dopamine (DA) and brain morphology are observed in several neuropsychiatric disorders. However, it is not fully understood how these abnormalities may relate to one another. For such in vivo findings to be used as biomarkers for neuropsychiatric disease, it must be understood how variability in DA relates to brain structure under healthy conditions. We explored how the availability of striatal DA D 2/3 receptors (D 2/3 R) is related to the volume of subcortical brain structures in a sample of healthy humans. Differences in D 2/3 R availability measured with an antagonist radiotracer ([ 11 C]-raclopride) versus an agonist radiotracer ([ 11 C]-(+)-PHNO) were examined. Data from 62 subjects scanned with [ 11 C]-raclopride (mean age = 38.98 ± 14.45; 23 female) and 68 subjects scanned with [ 11 C]-(+)-PHNO (mean age = 38.54 ± 14.59; 25 female) were used. Subcortical volumes were extracted from T1-weighted images using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Partial correlations were used controlling for age, gender, and total brain volume. For [ 11 C]-(+)-PHNO, ventral caudate volumes were positively correlated with BP ND in the dorsal caudate and globus pallidus (GP). Ventral striatum (VS) volumes were positively correlated with BP ND in the VS. With [ 11 C]-raclopride, BP ND in the VS was negatively correlated with subiculum volume of the hippocampus. Moreover, BP ND in the GP was negatively correlated with the volume of the lateral posterior nucleus of the thalamus. Findings are purely exploratory and presented corrected and uncorrected for multiple comparisons. We hope they will help inform the interpretation of future PET studies where concurrent changes in D 2/3 R and brain morphology are observed. Hum Brain Mapp 38:5519-5534, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Working Memory Performance Is Correlated with Local Brain Morphology in the Medial Frontal and Anterior Cingulate Cortex in Fibromyalgia Patients: Structural Correlates of Pain-Cognition Interaction

    ERIC Educational Resources Information Center

    Luerding, R.; Weigand, T.; Bogdahn, U.; Schmidt-Wilcke, T.

    2008-01-01

    Fibromyalgia (FM) is a disorder of unknown aetiology, characterized by chronic widespread pain, stiffness and sleep disturbances. In addition, patients frequently complain of memory and attention deficits. Accumulating evidence suggests that FM is associated with CNS dysfunction and with an altered brain morphology. However, few studies have…

  7. Correlations between brain structure and symptom dimensions of psychosis in schizophrenia, schizoaffective, and psychotic bipolar I disorders.

    PubMed

    Padmanabhan, Jaya L; Tandon, Neeraj; Haller, Chiara S; Mathew, Ian T; Eack, Shaun M; Clementz, Brett A; Pearlson, Godfrey D; Sweeney, John A; Tamminga, Carol A; Keshavan, Matcheri S

    2015-01-01

    Structural alterations may correlate with symptom severity in psychotic disorders, but the existing literature on this issue is heterogeneous. In addition, it is not known how cortical thickness and cortical surface area correlate with symptom dimensions of psychosis. Subjects included 455 individuals with schizophrenia, schizoaffective, or bipolar I disorders. Data were obtained as part of the Bipolar Schizophrenia Network for Intermediate Phenotypes study. Diagnosis was made through the Structured Clinical Interview for DSM-IV. Positive and negative symptom subscales were assessed using the Positive and Negative Syndrome Scale. Structural brain measurements were extracted from T1-weight structural MRIs using FreeSurfer v5.1 and were correlated with symptom subscales using partial correlations. Exploratory factor analysis was also used to identify factors among those regions correlating with symptom subscales. The positive symptom subscale correlated inversely with gray matter volume (GMV) and cortical thickness in frontal and temporal regions, whereas the negative symptom subscale correlated inversely with right frontal cortical surface area. Among regions correlating with the positive subscale, factor analysis identified four factors, including a temporal cortical thickness factor and frontal GMV factor. Among regions correlating with the negative subscale, factor analysis identified a frontal GMV-cortical surface area factor. There was no significant diagnosis by structure interactions with symptom severity. Structural measures correlate with positive and negative symptom severity in psychotic disorders. Cortical thickness demonstrated more associations with psychopathology than cortical surface area. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Effects of induced placental and fetal growth restriction, size at birth and early neonatal growth on behavioural and brain structural lateralization in sheep.

    PubMed

    Hunter, Damien Seth; Hazel, Susan J; Kind, Karen L; Liu, Hong; Marini, Danila; Giles, Lynne C; De Blasio, Miles J; Owens, Julie A; Pitcher, Julia B; Gatford, Kathryn L

    2017-09-01

    Poor perinatal growth in humans results in asymmetrical grey matter loss in fetuses and infants and increased functional and behavioural asymmetry, but specific contributions of pre- and postnatal growth are unclear. We therefore compared strength and direction of lateralization in obstacle avoidance and maze exit preference tasks in offspring of placentally restricted (PR: 10M, 13F) and control (CON: 23M, 17F) sheep pregnancies at 18 and 40 weeks of age, and examined gross brain structure of the prefrontal cortex at 52 weeks of age (PR: 14M, 18F; CON: 23M, 25F). PR did not affect lateralization direction, but 40-week-old PR females had greater lateralization strength than CON (P = .021). Behavioural lateralization measures were not correlated with perinatal growth. PR did not alter brain morphology. In males, cross-sectional areas of the prefrontal cortex and left hemisphere correlated positively with skull width at birth, and white matter area correlated positively with neonatal growth rate of the skull (all P < .05). These studies reinforce the need to include progeny of both sexes in future studies of neurodevelopmental programming, and suggest that restricting in utero growth has relatively mild effects on gross brain structural or behavioural lateralization in sheep.

  9. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study.

    PubMed

    Popescu, Mihai; Otsuka, Asuka; Ioannides, Andreas A

    2004-04-01

    There are formidable problems in studying how 'real' music engages the brain over wide ranges of temporal scales extending from milliseconds to a lifetime. In this work, we recorded the magnetoencephalographic signal while subjects listened to music as it unfolded over long periods of time (seconds), and we developed and applied methods to correlate the time course of the regional brain activations with the dynamic aspects of the musical sound. We showed that frontal areas generally respond with slow time constants to the music, reflecting their more integrative mode; motor-related areas showed transient-mode responses to fine temporal scale structures of the sound. The study combined novel analysis techniques designed to capture and quantify fine temporal sequencing from the authentic musical piece (characterized by a clearly defined rhythm and melodic structure) with the extraction of relevant features from the dynamics of the regional brain activations. The results demonstrated that activity in motor-related structures, specifically in lateral premotor areas, supplementary motor areas, and somatomotor areas, correlated with measures of rhythmicity derived from the music. These correlations showed distinct laterality depending on how the musical performance deviated from the strict tempo of the music score, that is, depending on the musical expression.

  10. Brain structural network topological alterations of the left prefrontal and limbic cortex in psychogenic erectile dysfunction.

    PubMed

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-05-01

    Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.

  11. Gray matter correlates of creative potential: A latent variable voxel-based morphometry study

    PubMed Central

    Jauk, Emanuel; Neubauer, Aljoscha C.; Dunst, Beate; Fink, Andreas; Benedek, Mathias

    2015-01-01

    There is increasing research interest in the structural and functional brain correlates underlying creative potential. Recent investigations found that interindividual differences in creative potential relate to volumetric differences in brain regions belonging to the default mode network, such as the precuneus. Yet, the complex interplay between creative potential, intelligence, and personality traits and their respective neural bases is still under debate. We investigated regional gray matter volume (rGMV) differences that can be associated with creative potential in a heterogeneous sample of N = 135 individuals using voxel-based morphometry (VBM). By means of latent variable modeling and consideration of recent psychometric advancements in creativity research, we sought to disentangle the effects of ideational originality and fluency as two independent indicators of creative potential. Intelligence and openness to experience were considered as common covariates of creative potential. The results confirmed and extended previous research: rGMV in the precuneus was associated with ideational originality, but not with ideational fluency. In addition, we found ideational originality to be correlated with rGMV in the caudate nucleus. The results indicate that the ability to produce original ideas is tied to default-mode as well as dopaminergic structures. These structural brain correlates of ideational originality were apparent throughout the whole range of intellectual ability and thus not moderated by intelligence. In contrast, structural correlates of ideational fluency, a quantitative marker of creative potential, were observed only in lower intelligent individuals in the cuneus/lingual gyrus. PMID:25676914

  12. Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks

    PubMed Central

    Hosseini, S. M. Hadi; Kesler, Shelli R.

    2013-01-01

    In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672

  13. Dissociable brain biomarkers of fluid intelligence.

    PubMed

    Paul, Erick J; Larsen, Ryan J; Nikolaidis, Aki; Ward, Nathan; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F; Barbey, Aron K

    2016-08-15

    Cognitive neuroscience has long sought to understand the biological foundations of human intelligence. Decades of research have revealed that general intelligence is correlated with two brain-based biomarkers: the concentration of the brain biochemical N-acetyl aspartate (NAA) measured by proton magnetic resonance spectroscopy (MRS) and total brain volume measured using structural MR imaging (MRI). However, the relative contribution of these biomarkers in predicting performance on core facets of human intelligence remains to be well characterized. In the present study, we sought to elucidate the role of NAA and brain volume in predicting fluid intelligence (Gf). Three canonical tests of Gf (BOMAT, Number Series, and Letter Sets) and three working memory tasks (Reading, Rotation, and Symmetry span tasks) were administered to a large sample of healthy adults (n=211). We conducted exploratory factor analysis to investigate the factor structure underlying Gf independent from working memory and observed two Gf components (verbal/spatial and quantitative reasoning) and one working memory component. Our findings revealed a dissociation between two brain biomarkers of Gf (controlling for age and sex): NAA concentration correlated with verbal/spatial reasoning, whereas brain volume correlated with quantitative reasoning and working memory. A follow-up analysis revealed that this pattern of findings is observed for males and females when analyzed separately. Our results provide novel evidence that distinct brain biomarkers are associated with specific facets of human intelligence, demonstrating that NAA and brain volume are independent predictors of verbal/spatial and quantitative facets of Gf. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Macro and micro structures in the dorsal anterior cingulate cortex contribute to individual differences in self-monitoring.

    PubMed

    Yang, Junyi; Tian, Xue; Wei, Dongtao; Liu, Huijuan; Zhang, Qinglin; Wang, Kangcheng; Chen, Qunlin; Qiu, Jiang

    2016-06-01

    Individual differences in self-monitoring, which are the capability to adjust behavior to adapt to social situations, influence a wide range of social behaviors. However, understanding of focal differences in brain structures related to individual self-monitoring is minimal, particularly when micro and macro structures are considered simultaneously. The present study investigates the relationship between self-monitoring and brain structure in a relatively large sample of young adults. Voxel-based morphometry (VBM) revealed a significant positive correlation between self-monitoring and gray matter volume in the dorsal cingulate anterior cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and bilateral ventral striatum (VS). Further analysis revealed a significant negative correlation between self-monitoring and white matter (WM) integrity, as indexed by fractional anisotropy (FA) in the anterior cingulum (ACG) bundle. Moreover, there was a significant positive correlation between self-monitoring and mean radius diffusion (RD). These results shed light on the structural neural basis of variation in self-monitoring.

  15. Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion.

    PubMed

    Samadani, Uzma; Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H; McStay, Christopher; Todd, S Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul

    2015-04-15

    Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury.

  16. Eye Tracking Detects Disconjugate Eye Movements Associated with Structural Traumatic Brain Injury and Concussion

    PubMed Central

    Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H.; McStay, Christopher; Todd, S. Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul

    2015-01-01

    Abstract Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury. PMID:25582436

  17. Cross-population myelination covariance of human cerebral cortex.

    PubMed

    Ma, Zhiwei; Zhang, Nanyin

    2017-09-01

    Cross-population covariance of brain morphometric quantities provides a measure of interareal connectivity, as it is believed to be determined by the coordinated neurodevelopment of connected brain regions. Although useful, structural covariance analysis predominantly employed bulky morphological measures with mixed compartments, whereas studies of the structural covariance of any specific subdivisions such as myelin are rare. Characterizing myelination covariance is of interest, as it will reveal connectivity patterns determined by coordinated development of myeloarchitecture between brain regions. Using myelin content MRI maps from the Human Connectome Project, here we showed that the cortical myelination covariance was highly reproducible, and exhibited a brain organization similar to that previously revealed by other connectivity measures. Additionally, the myelination covariance network shared common topological features of human brain networks such as small-worldness. Furthermore, we found that the correlation between myelination covariance and resting-state functional connectivity (RSFC) was uniform within each resting-state network (RSN), but could considerably vary across RSNs. Interestingly, this myelination covariance-RSFC correlation was appreciably stronger in sensory and motor networks than cognitive and polymodal association networks, possibly due to their different circuitry structures. This study has established a new brain connectivity measure specifically related to axons, and this measure can be valuable to investigating coordinated myeloarchitecture development. Hum Brain Mapp 38:4730-4743, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Rapid Morphological Brain Abnormalities during Acute Methamphetamine Intoxication in the Rat. An Experimental study using Light and Electron Microscopy

    PubMed Central

    Sharma, Hari S.; Kiyatkin, Eugene A.

    2009-01-01

    This study describes morphological abnormalities of brain cells during acute methamphetamine (METH) intoxication in the rat and demonstrates the role of hyperthermia, disruption of the blood-brain barrier (BBB) and edema in their development. Rats with chronically implanted brain, muscle and skin temperature probes and an intravenous (iv) catheter were exposed to METH (9 mg/kg) at standard (23°C) and warm (29°C) ambient temperatures, allowing for the observation of hyperthermia ranging from mild to pathological levels (38–42°C). When brain temperature peaked or reached a level suggestive of possible lethality (>41.5°C), rats were injected with Evans blue (EB), rapidly anesthetized, perfused, and their brains were taken for further analyses. Four brain areas (cortex, hippocampus, thalamus and hypothalamus) were analyzed for EB extravasation, water and electrolyte (Na+, K+, Cl−) contents, immunostained for albumin and glial fibrillary acidic protein, and examined for neuronal, glial and axonal alterations using standard light and electron microscopy. These examinations revealed profound abnormalities in neuronal, glial, and endothelial cells, which were stronger with METH administered at 29°C than 23°C and tightly correlated with brain and body hyperthermia. These changes had some structural specificity, but in each structure they tightly correlated with increases in EB levels, the numbers of albumin-positive cells, and water and ion contents, suggesting leakage of the BBB, acutely developing brain edema, and serious shifts in brain ion homeostasis as leading factors underlying brain abnormalities. While most of these acute structural and functional abnormalities appear to be reversible, they could trigger subsequent cellular alterations in the brain and accelerate neurodegeneration—the most dangerous complication of chronic amphetamine-like drug abuse. PMID:18773954

  19. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales

    PubMed Central

    Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.

    2016-01-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  20. Cognitive Reserve and Brain Maintenance: Orthogonal Concepts in Theory and Practice.

    PubMed

    Habeck, C; Razlighi, Q; Gazes, Y; Barulli, D; Steffener, J; Stern, Y

    2017-08-01

    Cognitive Reserve and Brain Maintenance have traditionally been understood as complementary concepts: Brain Maintenance captures the processes underlying the structural preservation of the brain with age, and might be assessed relative to age-matched peers. Cognitive Reserve, on the other hand, refers to how cognitive processing can be performed regardless of how well brain structure has been maintained. Thus, Brain Maintenance concerns the "hardware," whereas Cognitive Reserve concerns "software," that is, brain functioning explained by factors beyond mere brain structure. We used structural brain data from 368 community-dwelling adults, age 20-80, to derive measures of Brain Maintenance and Cognitive Reserve. We found that Brain Maintenance and Cognitive were uncorrelated such that values on one measure did not imply anything about the other measure. Further, both measures were positively correlated with verbal intelligence and education, hinting at formative influences of the latter to both measures. We performed extensive split-half simulations to check our derived measures' statistical robustness. Our approach enables the out-of-sample quantification of Brain Maintenance and Cognitive Reserve for single subjects on the basis of chronological age, neuropsychological performance and structural brain measures. Future work will investigate the prognostic power of these measures with regard to future cognitive status. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. A radiologic correlation with the basic functional neuroanatomy of the brain.

    PubMed

    Bilicka, Z; Liska, M; Bluska, P; Bilicky, J

    2014-01-01

    Primary cortical areas for motor, sensory and sensitive functions are localized in certain areas of the brain cortex. In clinical practice, cross sectional imaging (computer tomography and magnetic resonance) is wildy used for diagnostics purpose, treatment planning and follow up of the patients. Accurate orientation in brain structures is necessary for the evaluation of radiological images. There are numerable landmark signs, which can be used for precise identification of important brain structures. In this review article, the mostly used anatomical landmarks are described and shown on the cross sectional images (magnetic resonance imaging) (Fig. 14, Ref. 25).

  2. Large-scale cortical correlation structure of spontaneous oscillatory activity

    PubMed Central

    Hipp, Joerg F.; Hawellek, David J.; Corbetta, Maurizio; Siegel, Markus; Engel, Andreas K.

    2013-01-01

    Little is known about the brain-wide correlation of electrophysiological signals. Here we show that spontaneous oscillatory neuronal activity exhibits frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography (MEG). Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz), and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency specific power-envelope correlations. PMID:22561454

  3. Dynamical graph theory networks techniques for the analysis of sparse connectivity networks in dementia

    NASA Astrophysics Data System (ADS)

    Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke

    2017-05-01

    Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.

  4. Markov models for fMRI correlation structure: Is brain functional connectivity small world, or decomposable into networks?

    PubMed

    Varoquaux, G; Gramfort, A; Poline, J B; Thirion, B

    2012-01-01

    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Atrophy of spared gray matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke.

    PubMed

    Gauthier, Lynne V; Taub, Edward; Mark, Victor W; Barghi, Ameen; Uswatte, Gitendra

    2012-02-01

    Although the motor deficit after stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to constraint-induced movement therapy in patients with chronic stroke may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Voxel-based morphometry analysis was performed on MRI scans from 80 patients with chronic stroke to investigate whether variations in gray matter density were correlated with extent of residual motor impairment or with constraint-induced movement therapy-induced motor recovery. Decreased gray matter density in noninfarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced gray matter density in multiple remote brain regions predicted a lesser extent of motor improvement from constraint-induced movement therapy. Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke.

  6. Atrophy of spared grey matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke

    PubMed Central

    Gauthier, Lynne V.; Taub, Edward; Mark, Victor W.; Barghi, Ameen; Uswatte, Gitendra

    2011-01-01

    Background and Purpose Although the motor deficit following stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to Constraint-Induced Movement therapy (CI therapy) in chronic stroke patients may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Methods Voxel-based morphometry (VBM) analysis was performed on MRI scans from 80 chronic stroke patients to investigate whether variations in grey matter density were correlated with extent of residual motor impairment or with CI therapy-induced motor recovery. Results Decreased grey matter density in non-infarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced grey matter density in multiple remote brain regions predicted a lesser extent of motor improvement from CI therapy. Conclusions Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke. PMID:22096036

  7. Structural Brain Imaging of Long-Term Anabolic-Androgenic Steroid Users and Nonusing Weightlifters.

    PubMed

    Bjørnebekk, Astrid; Walhovd, Kristine B; Jørstad, Marie L; Due-Tønnessen, Paulina; Hullstein, Ingunn R; Fjell, Anders M

    2017-08-15

    Prolonged high-dose anabolic-androgenic steroid (AAS) use has been associated with psychiatric symptoms and cognitive deficits, yet we have almost no knowledge of the long-term consequences of AAS use on the brain. The purpose of this study is to investigate the association between long-term AAS exposure and brain morphometry, including subcortical neuroanatomical volumes and regional cortical thickness. Male AAS users and weightlifters with no experience with AASs or any other equivalent doping substances underwent structural magnetic resonance imaging scans of the brain. The current paper is based upon high-resolution structural T1-weighted images from 82 current or past AAS users exceeding 1 year of cumulative AAS use and 68 non-AAS-using weightlifters. Images were processed with the FreeSurfer software to compare neuroanatomical volumes and cerebral cortical thickness between the groups. Compared to non-AAS-using weightlifters, the AAS group had thinner cortex in widespread regions and significantly smaller neuroanatomical volumes, including total gray matter, cerebral cortex, and putamen. Both volumetric and thickness effects remained relatively stable across different AAS subsamples comprising various degrees of exposure to AASs and also when excluding participants with previous and current non-AAS drug abuse. The effects could not be explained by differences in verbal IQ, intracranial volume, anxiety/depression, or attention or behavioral problems. This large-scale systematic investigation of AAS use on brain structure shows negative correlations between AAS use and brain volume and cortical thickness. Although the findings are correlational, they may serve to raise concern about the long-term consequences of AAS use on structural features of the brain. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Photon Entanglement Through Brain Tissue

    PubMed Central

    Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.

    2016-01-01

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness. PMID:27995952

  9. Brain architecture and social complexity in modern and ancient birds.

    PubMed

    Burish, Mark J; Kueh, Hao Yuan; Wang, Samuel S-H

    2004-01-01

    Vertebrate brains vary tremendously in size, but differences in form are more subtle. To bring out functional contrasts that are independent of absolute size, we have normalized brain component sizes to whole brain volume. The set of such volume fractions is the cerebrotype of a species. Using this approach in mammals we previously identified specific associations between cerebrotype and behavioral specializations. Among primates, cerebrotypes are linked principally to enlargement of the cerebral cortex and are associated with increases in the complexity of social structure. Here we extend this analysis to include a second major vertebrate group, the birds. In birds the telencephalic volume fraction is strongly correlated with social complexity. This correlation accounts for almost half of the observed variation in telencephalic size, more than any other behavioral specialization examined, including the ability to learn song. A prominent exception to this pattern is owls, which are not social but still have very large forebrains. Interpolating the overall correlation for Archaeopteryx, an ancient bird, suggests that its social complexity was likely to have been on a par with modern domesticated chickens. Telencephalic volume fraction outperforms residuals-based measures of brain size at separating birds by social structure. Telencephalic volume fraction may be an anatomical substrate for social complexity, and perhaps cognitive ability, that can be generalized across a range of vertebrate brains, including dinosaurs. Copyright 2004 S. Karger AG, Basel

  10. CORRELATION INDICES OF CEREBRAL HEMODYNAMICS AND ELECTRICAL ACTIVITY IN CHILDREN WITH IMPAIRED MOTOR SKILLS.

    PubMed

    Golovchenko, I V; Hayday, M I

    The correlations between the indicators of cerebral hemodynamics and electrical activity in children with impaired motor skills of central origin (children with cerebral palsy) were investigated. There is established a high number of links between indicators of rheoencephalogram (REG) and electroencephalogram (EEG) in the left cerebral hemisphere than in the right. In frontomastoidal allocation 19 correlations and in occipitomastoidal - 59 links. We suppose that poor circulation in vertebroplasty-basilar system leads to the defeat of the brain stem, which, with afferent pathways of the reticular formation, connects the thalamus with the cortex. In the reticular formation there is an inhibition of ascending activators influences, which eland to decreasing of the cortex is tonus. You can talk about the functional immaturity of the system of nonspecific activation by the reticular formation of the brain stem. Children with violation of motor activity had significantly more negative and positive significant and high correlation among the existing indicators of electric brain activity and cerebral hemodynamics, in our opinion, is due to the development of interconnection compensation that is carried out by adjustment of the functional systems and the formation of new forms of adaptive responses in conditions of disontogenetik. Feature correlation pattern of the EEG, of children with disorders of motor activity, is associated with a significantly great number of high and significant correlations between measures of electrical brain activity in the δ- and q- rhythms, especially in the temporal areas of the cerebral cortex. According to visual analysis of EEG there is revealed a common manifestation of changes of bioelectric brain activity in children with disorders of motor activity. This is manifested in the development of paroxysmal activity of action potentials of θ- and δ-rhythms with the focus of activity in the anterior areas of the cerebral cortex; the formation of a mosaic representation of the θ-rhythms in temporal areas; the presence of hypersynchronous a-paroxysms in the posterior areas of the cerebral cortex. The given facts testify to activation of mechanisms of limbic-neocortical systems and synchronizing influences of the reticular formation of the stem and diencephalic structures. There is also detected greater number of correlations when occipitomastoidal registration was lone it reflects compensatory redistribution of cerebral blood flow over the affected structures of brain stem structures that are associated with the provision of cortical functions.

  11. Brain structure-function associations in multi-generational families genetically enriched for bipolar disorder.

    PubMed

    Fears, Scott C; Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C; Aldana, Ileana; Teshiba, Terri M; Abaryan, Zvart; Al-Sharif, Noor B; Navarro, Linda; Tishler, Todd A; Altshuler, Lori; Bartzokis, George; Escobar, Javier I; Glahn, David C; Thompson, Paul M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Cantor, Rita M; Freimer, Nelson B; Bearden, Carrie E

    2015-07-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family members. Additionally, while age had a relatively strong impact on all neurocognitive traits, the effects of age on cognition did not differ between diagnostic groups. Most brain-behaviour associations were also similar across the age range, with the exception of cortical and ventricular volume and lingual gyrus thickness, which showed weak correlations with verbal fluency and inhibitory control at younger ages that increased in magnitude in older subjects, regardless of diagnosis. Findings indicate that neuroanatomical traits potentially impacted by bipolar disorder are significantly associated with multiple neurobehavioural domains. Structure-function relationships are generally preserved across diagnostic groups, with the notable exception of ventrolateral prefrontal and parietal association cortex, volumetric increases in which may be associated with cognitive resilience specifically in individuals with bipolar disorder. Although age impacted all neurobehavioural traits, we did not find any evidence of accelerated cognitive decline specific to bipolar disorder subjects. Regardless of diagnosis, greater global brain volume may represent a protective factor for the effects of ageing on executive functioning. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss.

  13. Parcellating an Individual Subject's Cortical and Subcortical Brain Structures Using Snowball Sampling of Resting-State Correlations

    PubMed Central

    Wig, Gagan S.; Laumann, Timothy O.; Cohen, Alexander L.; Power, Jonathan D.; Nelson, Steven M.; Glasser, Matthew F.; Miezin, Francis M.; Snyder, Abraham Z.; Schlaggar, Bradley L.; Petersen, Steven E.

    2014-01-01

    We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability—reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units. PMID:23476025

  14. Multi-scale integration and predictability in resting state brain activity

    PubMed Central

    Kolchinsky, Artemy; van den Heuvel, Martijn P.; Griffa, Alessandra; Hagmann, Patric; Rocha, Luis M.; Sporns, Olaf; Goñi, Joaquín

    2014-01-01

    The human brain displays heterogeneous organization in both structure and function. Here we develop a method to characterize brain regions and networks in terms of information-theoretic measures. We look at how these measures scale when larger spatial regions as well as larger connectome sub-networks are considered. This framework is applied to human brain fMRI recordings of resting-state activity and DSI-inferred structural connectivity. We find that strong functional coupling across large spatial distances distinguishes functional hubs from unimodal low-level areas, and that this long-range functional coupling correlates with structural long-range efficiency on the connectome. We also find a set of connectome regions that are both internally integrated and coupled to the rest of the brain, and which resemble previously reported resting-state networks. Finally, we argue that information-theoretic measures are useful for characterizing the functional organization of the brain at multiple scales. PMID:25104933

  15. Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in MRI of the schizophrenic brain.

    PubMed

    Latha, Manohar; Kavitha, Ganesan

    2018-02-03

    Schizophrenia (SZ) is a psychiatric disorder that especially affects individuals during their adolescence. There is a need to study the subanatomical regions of SZ brain on magnetic resonance images (MRI) based on morphometry. In this work, an attempt was made to analyze alterations in structure and texture patterns in images of the SZ brain using the level-set method and Laws texture features. T1-weighted MRI of the brain from Center of Biomedical Research Excellence (COBRE) database were considered for analysis. Segmentation was carried out using the level-set method. Geometrical and Laws texture features were extracted from the segmented brain stem, corpus callosum, cerebellum, and ventricle regions to analyze pattern changes in SZ. The level-set method segmented multiple brain regions, with higher similarity and correlation values compared with an optimized method. The geometric features obtained from regions of the corpus callosum and ventricle showed significant variation (p < 0.00001) between normal and SZ brain. Laws texture feature identified a heterogeneous appearance in the brain stem, corpus callosum and ventricular regions, and features from the brain stem were correlated with Positive and Negative Syndrome Scale (PANSS) score (p < 0.005). A framework of geometric and Laws texture features obtained from brain subregions can be used as a supplement for diagnosis of psychiatric disorders.

  16. Neural Correlates of Emotional Personality: A Structural and Functional Magnetic Resonance Imaging Study

    PubMed Central

    Koelsch, Stefan; Skouras, Stavros; Jentschke, Sebastian

    2013-01-01

    Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called E κ value (computed from the electrocardiogram) which has previously been related to tender emotionality. Questionnaire scores and E κ values were related to both functional (eigenvector centrality mapping, ECM) and structural (voxel-based morphometry, VBM) neuroimaging data. Functional magnetic resonance imaging (fMRI) data were obtained from 22 individuals (12 females) while listening to music (joy, fear, or neutral music). ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens). Individuals with higher E κ values (indexing higher tender emotionality) showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females) showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher E κ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher E κ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (E κ) correlates with both function (increased network centrality) and structure (grey matter volume) of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for emotional personality. Results are the first to show personality-related differences using eigenvector centrality mapping, and the first to show structural brain differences for a physiological measure associated with personality. PMID:24312166

  17. Structural and functional brain changes in early- and mid-stage primary open-angle glaucoma using voxel-based morphometry and functional magnetic resonance imaging.

    PubMed

    Jiang, Ming-Ming; Zhou, Qing; Liu, Xiao-Yong; Shi, Chang-Zheng; Chen, Jian; Huang, Xiang-He

    2017-03-01

    To investigate structural and functional brain changes in patients with primary open-angle glaucoma (POAG) by using voxel-based morphometry based on diffeomorphic anatomical registration through exponentiated Lie algebra (VBM-DARTEL) and blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), respectively.Thirteen patients diagnosed with POAG and 13 age- and sex-matched healthy controls were enrolled in the study. For each participant, high-resolution structural brain imaging and blood flow imaging were acquired on a 3.0-Tesla magnetic resonance imaging (MRI) scanner. Structural and functional changes between the POAG and control groups were analyzed. An analysis was carried out to identify correlations between structural and functional changes acquired in the previous analysis and the retinal nerve fiber layer (RNFL).Patients in the POAG group showed a significant (P < 0.001) volume increase in the midbrain, left brainstem, frontal gyrus, cerebellar vermis, left inferior parietal lobule, caudate nucleus, thalamus, precuneus, and Brodmann areas 7, 18, and 46. Moreover, significant (P < 0.001) BOLD signal changes were observed in the right supramarginal gyrus, frontal gyrus, superior frontal gyrus, left inferior parietal lobule, left cuneus, and left midcingulate area; many of these regions had high correlations with the RNFL.Patients with POAG undergo widespread and complex changes in cortical brain structure and blood flow. (ClinicalTrials.gov number: NCT02570867).

  18. Graph theory analysis of cortical thickness networks in adolescents with d-transposition of the great arteries.

    PubMed

    Watson, Christopher G; Stopp, Christian; Newburger, Jane W; Rivkin, Michael J

    2018-02-01

    Adolescents with d-transposition of the great arteries (d-TGA) who had the arterial switch operation in infancy have been found to have structural brain differences compared to healthy controls. We used cortical thickness measurements obtained from structural brain MRI to determine group differences in global brain organization using a graph theoretical approach. Ninety-two d-TGA subjects and 49 controls were scanned using one of two identical 1.5-Tesla MRI systems. Mean cortical thickness was obtained from 34 regions per hemisphere using Freesurfer. A linear model was used for each brain region to adjust for subject age, sex, and scanning location. Structural connectivity for each group was inferred based on the presence of high inter-regional correlations of the linear model residuals, and binary connectivity matrices were created by thresholding over a range of correlation values for each group. Graph theory analysis was performed using packages in R. Permutation tests were performed to determine significance of between-group differences in global network measures. Within-group connectivity patterns were qualitatively different between groups. At lower network densities, controls had significantly more long-range connections. The location and number of hub regions differed between groups: controls had a greater number of hubs at most network densities. The control network had a significant rightward asymmetry compared to the d-TGA group at all network densities. Using graph theory analysis of cortical thickness correlations, we found differences in brain structural network organization among d-TGA adolescents compared to controls. These may be related to the white matter and gray matter differences previously found in this cohort, and in turn may be related to the cognitive deficits this cohort presents.

  19. Embracing covariation in brain evolution: Large brains, extended development, and flexible primate social systems

    PubMed Central

    Charvet, Christine J.; Finlay, Barbara L.

    2012-01-01

    Brain size, body size, developmental length, life span, costs of raising offspring, behavioral complexity, and social structures are correlated in mammals due to intrinsic life-history requirements. Dissecting variation and direction of causation in this web of relationships often draw attention away from the factors that correlate with basic life parameters. We consider the “social brain hypothesis,” which postulates that overall brain and the isocortex are selectively enlarged to confer social abilities in primates, as an example of this enterprise and pitfalls. We consider patterns of brain scaling, modularity, flexibility of brain organization, the “leverage,” and direction of selection on proposed dimensions. We conclude that the evidence supporting selective changes in isocortex or brain size for the isolated ability to manage social relationships is poor. Strong covariation in size and developmental duration coupled with flexible brains allow organisms to adapt in variable social and ecological environments across the life span and in evolution. PMID:22230623

  20. Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia.

    PubMed

    Brans, Rachel G H; van Haren, Neeltje E M; van Baal, G Caroline M; Schnack, Hugo G; Kahn, René S; Hulshoff Pol, Hilleke E

    2008-11-01

    Structural brain abnormalities have consistently been found in schizophrenia, with increased familial risk for the disease associated with these abnormalities. Some brain volume changes are progressive over the course of the illness. Whether these progressive brain volume changes are mediated by genetic or disease-related factors is unknown. To investigate whether genetic and/or environmental factors are associated with progressive brain volume changes in schizophrenia. Longitudinal 5-year follow-up in monozygotic (MZ) and dizygotic (DZ) twin pairs discordant for schizophrenia and healthy comparison twin pairs using brain magnetic resonance imaging. Participants were recruited from the twin pair cohort at the University Medical Center Utrecht. A total of 92 participants completed the study: 9 MZ and 10 DZ twin pairs discordant for schizophrenia and 14 MZ and 13 DZ healthy twin pairs. Percentage volume changes of the whole brain; cerebral gray and white matter of the frontal, temporal, parietal, and occipital lobes; cerebellum; and lateral and third ventricles over time between and within twin pairs were compared using repeated measures analysis of covariance. Structural equation modeling was applied to estimate contributions of additive genetic and common and unique environmental factors. Significant decreases over time in whole brain and frontal and temporal lobe volumes were found in patients with schizophrenia and their unaffected co-twins compared with control twins. Bivariate structural equation modeling using cross-trait/cross-twin correlations revealed significant additive genetic influences on the correlations between schizophrenia liability and progressive whole brain (66%; 95% confidence interval [CI], 51%-100%), frontal lobe (76%; 95% CI, 54%-100%), and temporal lobe (79%; CI, 56%-100%) volume change. The progressive brain volume loss found in patients with schizophrenia and their unaffected co-twins is at least partly attributable to genetic factors related to the illness.

  1. Influence of the segmentation on the characterization of cerebral networks of structural damage for patients with disorders of consciousness

    NASA Astrophysics Data System (ADS)

    Martínez, Darwin; Mahalingam, Jamuna J.; Soddu, Andrea; Franco, Hugo; Lepore, Natasha; Laureys, Steven; Gómez, Francisco

    2015-01-01

    Disorders of consciousness (DOC) are a consequence of a variety of severe brain injuries. DOC commonly results in anatomical brain modifications, which can affect cortical and sub-cortical brain structures. Postmortem studies suggest that severity of brain damage correlates with level of impairment in DOC. In-vivo studies in neuroimaging mainly focus in alterations on single structures. Recent evidence suggests that rather than one, multiple brain regions can be simultaneously affected by this condition. In other words, DOC may be linked to an underlying cerebral network of structural damage. Recently, geometrical spatial relationships among key sub-cortical brain regions, such as left and right thalamus and brain stem, have been used for the characterization of this network. This approach is strongly supported on automatic segmentation processes, which aim to extract regions of interests without human intervention. Nevertheless, patients with DOC usually present massive structural brain changes. Therefore, segmentation methods may highly influence the characterization of the underlying cerebral network structure. In this work, we evaluate the level of characterization obtained by using the spatial relationships as descriptor of a sub-cortical cerebral network (left and right thalamus) in patients with DOC, when different segmentation approaches are used (FSL, Free-surfer and manual segmentation). Our results suggest that segmentation process may play a critical role for the construction of robust and reliable structural characterization of DOC conditions.

  2. The social network-network: size is predicted by brain structure and function in the amygdala and paralimbic regions

    PubMed Central

    Von Der Heide, Rebecca; Vyas, Govinda

    2014-01-01

    The social brain hypothesis proposes that the large size of the primate neocortex evolved to support complex and demanding social interactions. Accordingly, recent studies have reported correlations between the size of an individual’s social network and the density of gray matter (GM) in regions of the brain implicated in social cognition. However, the reported relationships between GM density and social group size are somewhat inconsistent with studies reporting correlations in different brain regions. One factor that might account for these discrepancies is the use of different measures of social network size (SNS). This study used several measures of SNS to assess the relationships SNS and GM density. The second goal of this study was to test the relationship between social network measures and functional brain activity. Participants performed a social closeness task using photos of their friends and unknown people. Across the VBM and functional magnetic resonance imaging analyses, individual differences in SNS were consistently related to structural and functional differences in three regions: the left amygdala, right amygdala and the right entorhinal/ventral anterior temporal cortex. PMID:24493846

  3. The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity.

    PubMed

    Başar, Erol; Düzgün, Aysel

    2016-05-01

    Since the beginning of the last century, the localization of brain function has been represented by Brodmann areas, maps of the anatomic organization of the brain. They are used to broadly represent cortical structures with their given sensory-cognitive functions. In recent decades, the analysis of brain oscillations has become important in the correlation of brain functions. Moreover, spectral connectivity can provide further information on the dynamic connectivity between various structures. In addition, brain responses are dynamic in nature and structural localization is almost impossible, according to Luria (1966). Therefore, brain functions are very difficult to localize; hence, a combined analysis of oscillation and event-related coherences is required. In this study, a model termed as "CLAIR" is described to enrich and possibly replace the concept of the Brodmann areas. A CLAIR model with optimum function may take several years to develop, but this study sets out to lay its foundation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Joint Pairing and Structured Mapping of Convolutional Brain Morphological Multiplexes for Early Dementia Diagnosis.

    PubMed

    Lisowska, Anna; Rekik, Islem

    2018-06-21

    Diagnosis of brain dementia, particularly early mild cognitive impairment (eMCI), is critical for early intervention to prevent the onset of Alzheimer's Disease (AD), where cognitive decline is severe and irreversible. There is a large body of machine-learning based research investigating how dementia alters brain connectivity, mainly using structural (derived from diffusion MRI) and functional (derived from resting-state functional MRI) brain connectomic data. However, how early dementia affects cortical brain connections in morphology remains largely unexplored. To fill this gap, we propose a joint morphological brain multiplexes pairing and mapping strategy for early MCI detection, where a brain multiplex not only encodes the similarity in morphology between pairs of brain regions, but also a pair of brain morphological networks. Experimental results confirm that the proposed framework outperforms in classification accuracy several state-of-the-art methods. More importantly, we unprecedentedly identified most discriminative brain morphological networks between eMCI and NC, which included the paired views derived from maximum principal curvature and the sulcal depth for the left hemisphere and sulcal depth and the average curvature for the right hemisphere. We also identified the most highly correlated morphological brain connections in our cohort, which included the (pericalcarine cortex, insula cortex) on the maximum principal curvature view, (entorhinal cortex, insula cortex) on the mean sulcal depth view, and (entorhinal cortex, pericalcarine cortex) on the mean average curvature view, for both hemispheres. These highly correlated morphological connections might serve as biomarkers for early MCI diagnosis.

  5. Brain correlates of music-evoked emotions.

    PubMed

    Koelsch, Stefan

    2014-03-01

    Music is a universal feature of human societies, partly owing to its power to evoke strong emotions and influence moods. During the past decade, the investigation of the neural correlates of music-evoked emotions has been invaluable for the understanding of human emotion. Functional neuroimaging studies on music and emotion show that music can modulate activity in brain structures that are known to be crucially involved in emotion, such as the amygdala, nucleus accumbens, hypothalamus, hippocampus, insula, cingulate cortex and orbitofrontal cortex. The potential of music to modulate activity in these structures has important implications for the use of music in the treatment of psychiatric and neurological disorders.

  6. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering.

    PubMed

    Sitek, Kevin R; Cai, Shanqing; Beal, Deryk S; Perkell, Joseph S; Guenther, Frank H; Ghosh, Satrajit S

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers.

  7. Regional gray matter correlates of vocational interests

    PubMed Central

    2012-01-01

    Background Previous studies have identified brain areas related to cognitive abilities and personality, respectively. In this exploratory study, we extend the application of modern neuroimaging techniques to another area of individual differences, vocational interests, and relate the results to an earlier study of cognitive abilities salient for vocations. Findings First, we examined the psychometric relationships between vocational interests and abilities in a large sample. The primary relationships between those domains were between Investigative (scientific) interests and general intelligence and between Realistic (“blue-collar”) interests and spatial ability. Then, using MRI and voxel-based morphometry, we investigated the relationships between regional gray matter volume and vocational interests. Specific clusters of gray matter were found to be correlated with Investigative and Realistic interests. Overlap analyses indicated some common brain areas between the correlates of Investigative interests and general intelligence and between the correlates of Realistic interests and spatial ability. Conclusions Two of six vocational-interest scales show substantial relationships with regional gray matter volume. The overlap between the brain correlates of these scales and cognitive-ability factors suggest there are relationships between individual differences in brain structure and vocations. PMID:22591829

  8. Regional gray matter correlates of vocational interests.

    PubMed

    Schroeder, David H; Haier, Richard J; Tang, Cheuk Ying

    2012-05-16

    Previous studies have identified brain areas related to cognitive abilities and personality, respectively. In this exploratory study, we extend the application of modern neuroimaging techniques to another area of individual differences, vocational interests, and relate the results to an earlier study of cognitive abilities salient for vocations. First, we examined the psychometric relationships between vocational interests and abilities in a large sample. The primary relationships between those domains were between Investigative (scientific) interests and general intelligence and between Realistic ("blue-collar") interests and spatial ability. Then, using MRI and voxel-based morphometry, we investigated the relationships between regional gray matter volume and vocational interests. Specific clusters of gray matter were found to be correlated with Investigative and Realistic interests. Overlap analyses indicated some common brain areas between the correlates of Investigative interests and general intelligence and between the correlates of Realistic interests and spatial ability. Two of six vocational-interest scales show substantial relationships with regional gray matter volume. The overlap between the brain correlates of these scales and cognitive-ability factors suggest there are relationships between individual differences in brain structure and vocations.

  9. Effect of Heterogeneity of Tissues on RF Energy Absorption in the Brain for Exposure Assessment in Epidemiological Studies on Mobile Phone Use and Brain Tumors

    NASA Astrophysics Data System (ADS)

    Varsier, Nadege; Wake, Kanako; Taki, Masao; Watanabe, Soichi

    We compared SAR distributions in major anatomical structures of the brain of a homogeneous and a heterogeneous model using FDTD calculations. Our results proved a good correlation between SAR values in lobes of the brain where tumors may arise more frequently. However SAR values at some specific locations were shown to be under or overestimated.

  10. Creative females have larger white matter structures: Evidence from a large sample study.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Makoto Miyauchi, Carlos; Shinada, Takamitsu; Sakaki, Kohei; Sassa, Yuko; Nozawa, Takayuki; Ikeda, Shigeyuki; Yokota, Susumu; Daniele, Magistro; Kawashima, Ryuta

    2017-01-01

    The importance of brain connectivity for creativity has been theoretically suggested and empirically demonstrated. Studies have shown sex differences in creativity measured by divergent thinking (CMDT) as well as sex differences in the structural correlates of CMDT. However, the relationships between regional white matter volume (rWMV) and CMDT and associated sex differences have never been directly investigated. In addition, structural studies have shown poor replicability and inaccuracy of multiple comparisons over the whole brain. To address these issues, we used the data from a large sample of healthy young adults (776 males and 560 females; mean age: 20.8 years, SD = 0.8). We investigated the relationship between CMDT and WMV using the newest version of voxel-based morphometry (VBM). We corrected for multiple comparisons over whole brain using the permutation-based method, which is known to be quite accurate and robust. Significant positive correlations between rWMV and CMDT scores were observed in widespread areas below the neocortex specifically in females. These associations with CMDT were not observed in analyses of fractional anisotropy using diffusion tensor imaging. Using rigorous methods, our findings further supported the importance of brain connectivity for creativity as well as its female-specific association. Hum Brain Mapp 38:414-430, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Immunological biomarkers associated with brain structure and executive function in late-life depression: exploratory pilot study.

    PubMed

    Smagula, Stephen F; Lotrich, Francis E; Aizenstein, Howard J; Diniz, Breno S; Krystek, Jeffrey; Wu, Gregory F; Mulsant, Benoit H; Butters, Meryl A; Reynolds, Charles F; Lenze, Eric J

    2017-06-01

    Several immunological biomarkers are altered in late-life major depressive disorder (LLD). Immunological alterations could contribute to LLD's consequences, but little is known about the relations between specific immunological biomarkers and brain health in LLD. We performed an exploratory pilot study to identify, from several candidates, the specific immunological biomarkers related to important aspects of brain health that are altered in LLD (brain structure and executive function). Adults (n = 31) were at least 60 years old and had major depressive disorder. A multiplex immunoassay assessed 13 immunological biomarkers, and we examined their associations with structural MRI (grey matter volume and white matter hyperintensity volume (WMH)) and executive function (Color-Word Interference and Trail-Making tests) measures. Vascular endothelial growth factor (VEGF) and the chemokine eotaxin had significant negative associations with grey matter volume (VEGF: n = 31, r = -0.65; eotaxin: n = 29, r = -0.44). Tumor necrosis factor alpha (TNF-α) had a significant positive relationship with WMHs (n = 30, r = 0.52); interferon-γ (IFN-γ) and macrophage inflammatory protein-1α (MIP-1α) were also significantly associated with WMHs (IFN-γ: n = 31, r = 0.48; MIP-1α: n = 29, r = 0.45). Only eotaxin was associated with executive function (set-shifting performance as measured with the Trail-making test: n = 33, r = -0.43). Immunological markers are associated with brain structure in LLD. We found the immunological correlates of grey and white matter differ. Prospective studies are needed to evaluate whether these immunological correlates of brain health increase the risk of LLD's consequences. Eotaxin, which correlated with both grey matter volume and set-shifting performance, may be particularly relevant to neurodegeneration and cognition in LLD. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Herpes zoster chronification to postherpetic neuralgia induces brain activity and grey matter volume change

    PubMed Central

    Cao, Song; Qin, Bangyong; Zhang, Yi; Yuan, Jie; Fu, Bao; Xie, Peng; Song, Ganjun; Li, Ying; Yu, Tian

    2018-01-01

    Objective: Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), which is a chronic neuropathic pain (NP). Whether the chronification from HZ to PHN induced brain functional or structural change is unknown and no study compared the changes of the same brains of patients who transited from HZ to PHN. We minimized individual differences and observed whether the chronification of HZ to PHN induces functional and pain duration dependent grey matter volume (GMV) change in HZ-PHN patients. Methods: To minimize individual differences induced error, we enrolled 12 patients with a transition from HZ to PHN. The functional and structural changes of their brains between the two states were identified with resting-state functional MRI (rs-fMRI) technique (i.e., the regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) method) and the voxel based morphometry (VBM) technology respectively. The correlations between MRI parameters (i.e., ΔReHo, ΔfALFF and ΔVBM) and Δpain duration were analyzed too. Results: Compared with HZ brains, PHN brains exhibited abnormal ReHo, fALFF and VBM values in pain matrix (the frontal lobe, parietal lobe, thalamus, limbic lobe and cerebellum) as well as the occipital lobe and temporal lobe. Nevertheless, the activity of vast area of cerebellum and frontal lobe significantly increased while that of occipital lobe and limbic lobe showed apparent decrease when HZ developed to PHN. In addition, PHN brain showed decreased GMV in the frontal lobe, the parietal lobe and the occipital lobe but increased in the cerebellum and the temporal lobe. Correlation analyses showed that some of the ReHo, fALFF and VBM differential areas (such as the cerebellum posterior lobe, the thalamus extra-nuclear and the middle temporal gyrus) correlated well with Δpain duration. Conclusions: HZ chronification induced functional and structural change in cerebellum, occipital lobe, temporal lobe, parietal lobe and limbic lobe. These changes may be correlated with HZ-PHN chronification. In addition, these changes could be reasons of refractory chronic pain of PHN. PMID:29423004

  13. Brain Volume Differences Associated With Hearing Impairment in Adults

    PubMed Central

    Vriend, Chris; Heslenfeld, Dirk J.; Versfeld, Niek J.; Kramer, Sophia E.

    2018-01-01

    Speech comprehension depends on the successful operation of a network of brain regions. Processing of degraded speech is associated with different patterns of brain activity in comparison with that of high-quality speech. In this exploratory study, we studied whether processing degraded auditory input in daily life because of hearing impairment is associated with differences in brain volume. We compared T1-weighted structural magnetic resonance images of 17 hearing-impaired (HI) adults with those of 17 normal-hearing (NH) controls using a voxel-based morphometry analysis. HI adults were individually matched with NH adults based on age and educational level. Gray and white matter brain volumes were compared between the groups by region-of-interest analyses in structures associated with speech processing, and by whole-brain analyses. The results suggest increased gray matter volume in the right angular gyrus and decreased white matter volume in the left fusiform gyrus in HI listeners as compared with NH ones. In the HI group, there was a significant correlation between hearing acuity and cluster volume of the gray matter cluster in the right angular gyrus. This correlation supports the link between partial hearing loss and altered brain volume. The alterations in volume may reflect the operation of compensatory mechanisms that are related to decoding meaning from degraded auditory input. PMID:29557274

  14. Alternations of White Matter Structural Networks in First Episode Untreated Major Depressive Disorder with Short Duration.

    PubMed

    Lu, Yi; Shen, Zonglin; Cheng, Yuqi; Yang, Hui; He, Bo; Xie, Yue; Wen, Liang; Zhang, Zhenguang; Sun, Xuejin; Zhao, Wei; Xu, Xiufeng; Han, Dan

    2017-01-01

    It is crucial to explore the pathogenesis of major depressive disorder (MDD) at the early stage for the better diagnostic and treatment strategies. It was suggested that MDD might be involving in functional or structural alternations at the brain network level. However, at the onset of MDD, whether the whole brain white matter (WM) alterations at network level are already evident still remains unclear. In the present study, diffusion MRI scanning was adopt to depict the unique WM structural network topology across the entire brain at the early stage of MDD. Twenty-one first episode, short duration (<1 year) and drug-naïve depression patients, and 25 healthy control (HC) subjects were recruited. To construct the WM structural network, atlas-based brain regions were used for nodes, and the value of multiplying fiber number by the mean fractional anisotropy along the fiber bundles connected a pair of brain regions were used for edges. The structural network was analyzed by graph theoretic and network-based statistic methods. Pearson partial correlation analysis was also performed to evaluate their correlation with the clinical variables. Compared with HCs, the MDD patients had a significant decrease in the small-worldness (σ). Meanwhile, the MDD patients presented a significantly decreased subnetwork, which mainly involved in the frontal-subcortical and limbic regions. Our results suggested that the abnormal structural network of the orbitofrontal cortex and thalamus, involving the imbalance with the limbic system, might be a key pathology in early stage drug-naive depression. And the structural network analysis might be potential in early detection and diagnosis of MDD.

  15. Alternations of White Matter Structural Networks in First Episode Untreated Major Depressive Disorder with Short Duration

    PubMed Central

    Lu, Yi; Shen, Zonglin; Cheng, Yuqi; Yang, Hui; He, Bo; Xie, Yue; Wen, Liang; Zhang, Zhenguang; Sun, Xuejin; Zhao, Wei; Xu, Xiufeng; Han, Dan

    2017-01-01

    It is crucial to explore the pathogenesis of major depressive disorder (MDD) at the early stage for the better diagnostic and treatment strategies. It was suggested that MDD might be involving in functional or structural alternations at the brain network level. However, at the onset of MDD, whether the whole brain white matter (WM) alterations at network level are already evident still remains unclear. In the present study, diffusion MRI scanning was adopt to depict the unique WM structural network topology across the entire brain at the early stage of MDD. Twenty-one first episode, short duration (<1 year) and drug-naïve depression patients, and 25 healthy control (HC) subjects were recruited. To construct the WM structural network, atlas-based brain regions were used for nodes, and the value of multiplying fiber number by the mean fractional anisotropy along the fiber bundles connected a pair of brain regions were used for edges. The structural network was analyzed by graph theoretic and network-based statistic methods. Pearson partial correlation analysis was also performed to evaluate their correlation with the clinical variables. Compared with HCs, the MDD patients had a significant decrease in the small-worldness (σ). Meanwhile, the MDD patients presented a significantly decreased subnetwork, which mainly involved in the frontal–subcortical and limbic regions. Our results suggested that the abnormal structural network of the orbitofrontal cortex and thalamus, involving the imbalance with the limbic system, might be a key pathology in early stage drug-naive depression. And the structural network analysis might be potential in early detection and diagnosis of MDD. PMID:29118724

  16. Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain

    PubMed Central

    2012-01-01

    Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function. PMID:22651826

  17. Differences in Brain Structure and Function in Older Adults with Self-Reported Disabling and Non-Disabling Chronic Low Back Pain

    PubMed Central

    Buckalew, Neilly; Haut, Marc W.; Aizenstein, Howard; Morrow, Lisa; Perera, Subashan; Kuwabara, Hiroto; Weiner, Debra K.

    2010-01-01

    Objective The primary aim of this pilot study was to identify structural and functional brain differences in older adults with self-reported disabling chronic low back pain (CLBP) compared with those who reported non-disabling CLBP. Design Cross-sectional. Participants Sixteen cognitively intact older adults, eight with disabling CLBP and eight with non-disabling. Exclusions were psychiatric or neurological disorders, substance abuse, opioid use, or diabetes mellitus. Methods Participants underwent: structural and functional brain MRI; neuropsychological assessment using the Repeatable Battery for the Assessment of Neuropsychological Status, Trail Making Tests A and B; and physical performance assessment using the Short Physical Performance Battery. Results In the disabled group there was significantly lower white matter (WM) integrity (P < 0.05) of the splenium of the corpus callosum. This group also demonstrated activation of the right medial prefrontal cortex at rest whereas the non-disabled demonstrated activation of the left lateral prefrontal cortex. Combined groups analysis revealed a strong positive correlation (rs = 0.80, P < 0.0002) between WM integrity of the left centrum semiovale with gait-speed. Secondary analysis revealed a strong negative correlation between total months of CLBP and WM integrity of the SCC (rs = −0.59, P < 0.02). Conclusions Brain structure and function is different in older adults with disabling CLBP compared to those with non-disabling CLBP. Deficits in brain morphology combining groups are associated with pain duration and poor physical function. Our findings suggest brain structure and function may play a key role in chronic-pain-related-disability and may be important treatment targets. PMID:20609128

  18. Altered voxel-wise gray matter structural brain networks in schizophrenia: Association with brain genetic expression pattern.

    PubMed

    Liu, Feng; Tian, Hongjun; Li, Jie; Li, Shen; Zhuo, Chuanjun

    2018-05-04

    Previous seed- and atlas-based structural covariance/connectivity analyses have demonstrated that patients with schizophrenia is accompanied by aberrant structural connection and abnormal topological organization. However, it remains unclear whether this disruption is present in unbiased whole-brain voxel-wise structural covariance networks (SCNs) and whether brain genetic expression variations are linked with network alterations. In this study, ninety-five patients with schizophrenia and 95 matched healthy controls were recruited and gray matter volumes were extracted from high-resolution structural magnetic resonance imaging scans. Whole-brain voxel-wise gray matter SCNs were constructed at the group level and were further analyzed by using graph theory method. Nonparametric permutation tests were employed for group comparisons. In addition, regression modes along with random effect analysis were utilized to explore the associations between structural network changes and gene expression from the Allen Human Brain Atlas. Compared with healthy controls, the patients with schizophrenia showed significantly increased structural covariance strength (SCS) in the right orbital part of superior frontal gyrus and bilateral middle frontal gyrus, while decreased SCS in the bilateral superior temporal gyrus and precuneus. The altered SCS showed reproducible correlations with the expression profiles of the gene classes involved in therapeutic targets and neurodevelopment. Overall, our findings not only demonstrate that the topological architecture of whole-brain voxel-wise SCNs is impaired in schizophrenia, but also provide evidence for the possible role of therapeutic targets and neurodevelopment-related genes in gray matter structural brain networks in schizophrenia.

  19. Brain Microstructural Correlates of Cognitive Dysfunction in Clinically and Biochemically Normal Hepatitis C Virus Infection.

    PubMed

    Kumar, Ajay; Deep, Amar; Gupta, Rakesh K; Atam, Virendra; Mohindra, Samir

    2017-09-01

    This study examined correlates of the brain's neurocognitive performance among clinically and biochemically normal adult patient with hepatitis C virus (HCV). We hypothesized that anti-HCV positive individuals would demonstrate structural brain abnormalities and neurocognitive dysfunction as well as the changes in cell component and extracellular space in the white matter regions of brain in asymptomatic HCV infection by using diffusion tensor tractrography (DTT) metrics. Anti-HCV positive patient ( n  = 40), and healthy controls ( n  = 31), fulfilling inclusion criteria (incidentally detected anti-HCV positive) and able to provide informed consent were screened and recruited for the study. All these subjects and controls underwent subjective assessment of their quality of life related symptoms, neuropsychometric tests (NPT) and magnetic resonance imaging. The patients were subjected to neuroimaging as well as psychological testing. There was no significant difference in basic laboratory parameters in these two groups. Independent t -test reveals significantly lower neuropsychological functioning as compared to healthy control. A significantly decreased FA values and myoinsitol were observed in HCV subjects on sensory, inferior longitudinal fascicules, and STR fiber bundles as compared to healthy control. Bivariate correlation analysis reveals that neuropsychological scores are significantly positive. Our result show that HCV positive individuals would demonstrate structural brain abnormalities and neurocognitive dysfunction as well as the changes in cell component and extracellular space in the white matter regions of brain in asymptomatic HCV infection by using DTT metrics.

  20. Diffusion tensor imaging reveals adolescent binge ethanol-induced brain structural integrity alterations in adult rats that correlate with behavioral dysfunction.

    PubMed

    Vetreno, Ryan P; Yaxley, Richard; Paniagua, Beatriz; Crews, Fulton T

    2016-07-01

    Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction. © 2015 Society for the Study of Addiction.

  1. Quantitative Assessment of Normal Fetal Brain Myelination Using Fast Macromolecular Proton Fraction Mapping.

    PubMed

    Yarnykh, V L; Prihod'ko, I Y; Savelov, A A; Korostyshevskaya, A M

    2018-05-10

    Fast macromolecular proton fraction mapping is a recently emerged MRI method for quantitative myelin imaging. Our aim was to develop a clinically targeted technique for macromolecular proton fraction mapping of the fetal brain and test its capability to characterize normal prenatal myelination. This prospective study included 41 pregnant women (gestational age range, 18-38 weeks) without abnormal findings on fetal brain MR imaging performed for clinical indications. A fast fetal brain macromolecular proton fraction mapping protocol was implemented on a clinical 1.5T MR imaging scanner without software modifications and was performed after a clinical examination with an additional scan time of <5 minutes. 3D macromolecular proton fraction maps were reconstructed from magnetization transfer-weighted, T1-weighted, and proton density-weighted images by the single-point method. Mean macromolecular proton fraction in the brain stem, cerebellum, and thalamus and frontal, temporal, and occipital WM was compared between structures and pregnancy trimesters using analysis of variance. Gestational age dependence of the macromolecular proton fraction was assessed using the Pearson correlation coefficient ( r ). The mean macromolecular proton fraction in the fetal brain structures varied between 2.3% and 4.3%, being 5-fold lower than macromolecular proton fraction in adult WM. The macromolecular proton fraction in the third trimester was higher compared with the second trimester in the brain stem, cerebellum, and thalamus. The highest macromolecular proton fraction was observed in the brain stem, followed by the thalamus, cerebellum, and cerebral WM. The macromolecular proton fraction in the brain stem, cerebellum, and thalamus strongly correlated with gestational age ( r = 0.88, 0.80, and 0.73; P < .001). No significant correlations were found for cerebral WM regions. Myelin is the main factor determining macromolecular proton fraction in brain tissues. Macromolecular proton fraction mapping is sensitive to the earliest stages of the fetal brain myelination and can be implemented in a clinical setting. © 2018 by American Journal of Neuroradiology.

  2. Making Brains run Faster: are they Becoming Smarter?

    PubMed

    Pahor, Anja; Jaušovec, Norbert

    2016-12-05

    A brief overview of structural and functional brain characteristics related to g is presented in the light of major neurobiological theories of intelligence: Neural Efficiency, P-FIT and Multiple-Demand system. These theories provide a framework to discuss the main objective of the paper: what is the relationship between individual alpha frequency (IAF) and g? Three studies were conducted in order to investigate this relationship: two correlational studies and a third study in which we experimentally induced changes in IAF by means of transcranial alternating current stimulation (tACS). (1) In a large scale study (n = 417), no significant correlations between IAF and IQ were observed. However, in males IAF positively correlated with mental rotation and shape manipulation and with an attentional focus on detail. (2) The second study showed sex-specific correlations between IAF (obtained during task performance) and scope of attention in males and between IAF and reaction time in females. (3) In the third study, individuals' IAF was increased with tACS. The induced changes in IAF had a disrupting effect on male performance on Raven's matrices, whereas a mild positive effect was observed for females. Neuro-electric activity after verum tACS showed increased desynchronization in the upper alpha band and dissociation between fronto-parietal and right temporal brain areas during performance on Raven's matrices. The results are discussed in the light of gender differences in brain structure and activity.

  3. Heritability of volumetric brain changes and height in children entering puberty.

    PubMed

    van Soelen, Inge L C; Brouwer, Rachel M; van Baal, G Caroline M; Schnack, Hugo G; Peper, Jiska S; Chen, Lei; Kahn, René S; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2013-03-01

    The human brain undergoes structural changes in children entering puberty, while simultaneously children increase in height. It is not known if brain changes are under genetic control, and whether they are related to genetic factors influencing the amount of overall increase in height. Twins underwent magnetic resonance imaging brain scans at age 9 (N = 190) and 12 (N = 125). High heritability estimates were found at both ages for height and brain volumes (49-96%), and high genetic correlation between ages were observed (r(g) > 0.89). With increasing age, whole brain (+1.1%), cerebellum (+4.2%), cerebral white matter (+5.1%), and lateral ventricle (+9.4%) volumes increased, and third ventricle (-4.0%) and cerebral gray matter (-1.6%) volumes decreased. Children increased on average 13.8 cm in height (9.9%). Genetic influences on individual difference in volumetric brain and height changes were estimated, both within and across traits. The same genetic factors influenced both cerebral (20% heritable) and cerebellar volumetric changes (45%). Thus, the extent to which changes in cerebral and cerebellar volumes are heritable in children entering puberty are due to the same genes that influence change in both structures. The increase in height was heritable (73%), and not associated with cerebral volumetric change, but positively associated with cerebellar volume change (r(p) = 0.24). This association was explained by a genetic correlation (r(g) = 0.48) between height and cerebellar change. Brain and body each expand at their own pace and through separate genetic pathways. There are distinct genetic processes acting on structural brain development, which cannot be explained by genetic increase in height. Copyright © 2011 Wiley Periodicals, Inc.

  4. Increased densities of monocarboxylate transport protein MCT1 after chronic administration of nicotine in rat brain.

    PubMed

    Canis, Martin; Mack, Brigitte; Gires, Olivier; Maurer, Martin H; Kuschinsky, Wolfgang; Duembgen, Lutz; Duelli, Roman

    2009-08-01

    Chronic administration of nicotine is followed by a general stimulation of brain metabolism that results in a distinct increase of glucose transport protein densities for Glut1 and Glu3, and local cerebral glucose utilization (LCGU). This increase of LCGU might be paralleled by an enhanced production of lactate. Therefore, the question arose as to whether chronic nicotine infusion is accompanied by increased local densities of monocarboxylate transporter MCT1 in the brain. Secondly, we inquired whether LCGU might be correlated with local densities of MCT1 during normal conditions and after chronic nicotine infusion. Nicotine was given subcutaneously for 1 week by osmotic mini-pumps and local densities of MCT1 were measured by immunoautoradiographic methods in cryosections of rat brains. MCT1 density was significantly increased in 21 of 32 brain structures investigated (median increase 15.0+/-3.6%). Immunohistochemical stainings of these substructures revealed an over-expression of MCT1 within endothelial cells and astrocytes of treated animals. A comparison of 23 MCT1 densities with LCGU measured in the same structures in a previous study revealed a partial correlation between both parameters under control conditions and after chronic nicotine infusion. 10 out of 23 brain areas, which showed a significant increase of MCT1 density due to chronic nicotine infusion, also showed a significant increase of LCGU. In summary, our data show that chronic nicotine infusion induces a moderate increase of local and global density of MCT1 in defined brain structures. However, in terms of brain topologies and substructures this phenomenon did partially match with increased LCGU. It is concluded that MCT1 transporters were upregulated during chronic nicotine infusion at the level of brain substructures and, at least partially, independently of LCGU.

  5. Effects of Long-Term Treatment on Brain Volume in Patients with Obstructive Sleep Apnea Syndrome

    PubMed Central

    Kim, Hosung; Joo, Eun Yeon; Suh, Sooyeon; Kim, Jae-Hun; Kim, Sung Tae; Hong, Seung Bong

    2015-01-01

    We assessed structural brain damage in obstructive sleep apnea syndrome (OSA) patients (21 males) and the effects of long-term continuous positive airway pressure (CPAP) treatment (18.2 ± 12.4 months; 8-44 months) on brain structures and investigated the relationship between severity of OSA and effects of treatment. Using deformation-based morphometry to measure local volume changes, we identified widespread neocortical and cerebellar atrophy in untreated patients compared to controls (59 males; Cohen's D = 0.6; FDR < 0.05). Analysis of longitudinally scanned magnetic resonance imaging (MRI) scans both before and after treatment showed increased brain volume following treatment (FDR < 0.05). Volume increase was correlated with longer treatment in the cortical areas that largely overlapped with the initial atrophy. The areas overlying the hippocampal dentate gyrus and the cerebellar dentate nucleus displayed a volume increase after treatment. Patients with very severe OSA (AHI > 64) presented with prefrontal atrophy and displayed an additional volume increase in this area following treatment. Higher impairment of working memory in patients prior to treatment correlated with prefrontal volume increase after treatment. The large overlap between the initial brain damage and the extent of recovery after treatment suggests partial recovery of non-permanent structural damage. Volume increases in the dentate gyrus and the dentate nucleus possibly likely indicate compensatory neurogenesis in response to diminishing oxidative stress. Such changes in other brain structures may explain gliosis, dendritic volume increase, or inflammation. This study provides neuroimaging evidence that revealed the positive effects of long-term CPAP treatment in patients with OSA. PMID:26503297

  6. Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions.

    PubMed

    Wiech, K; Jbabdi, S; Lin, C S; Andersson, J; Tracey, I

    2014-10-01

    Functional neuroimaging studies suggest that the anterior, mid, and posterior division of the insula subserve different functions in the perception of pain. The anterior insula (AI) has predominantly been associated with cognitive-affective aspects of pain, while the mid and posterior divisions have been implicated in sensory-discriminative processing. We examined whether this functional segregation is paralleled by differences in (1) structural and (2) resting state connectivity and (3) in correlations with pain-relevant psychological traits. Analyses were restricted to the 3 insular subdivisions and other pain-related brain regions. Both type of analyses revealed largely overlapping results. The AI division was predominantly connected to the ventrolateral prefrontal cortex (structural and resting state connectivity) and orbitofrontal cortex (structural connectivity). In contrast, the posterior insula showed strong connections to the primary somatosensory cortex (SI; structural connectivity) and secondary somatosensory cortex (SII; structural and resting state connectivity). The mid insula displayed a hybrid connectivity pattern with strong connections with the ventrolateral prefrontal cortex, SII (structural and resting state connectivity) and SI (structural connectivity). Moreover, resting state connectivity revealed strong connectivity of all 3 subdivisions with the thalamus. On the behavioural level, AI structural connectivity was related to the individual degree of pain vigilance and awareness that showed a positive correlation with AI-amygdala connectivity and a negative correlation with AI-rostral anterior cingulate cortex connectivity. In sum, our findings show a differential structural and resting state connectivity for the anterior, mid, and posterior insula with other pain-relevant brain regions, which might at least partly explain their different functional profiles in pain processing. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Structural and functional connectivity changes in the brain associated with shyness but not with social anxiety.

    PubMed

    Yang, Xun; Kendrick, Keith Maurice; Wu, Qizhu; Chen, Taolin; Lama, Sunima; Cheng, Bochao; Li, Shiguang; Huang, Xiaoqi; Gong, Qiyong

    2013-01-01

    Shyness and social anxiety are correlated to some extent and both are associated with hyper-responsivity to social stimuli in the frontal cortex and limbic system. However to date no studies have investigated whether common structural and functional connectivity differences in the brain may contribute to these traits. We addressed this issue in a cohort of 61 healthy adult subjects. Subjects were first assessed for their levels of shyness (Cheek and Buss Shyness scale) and social anxiety (Liebowitz Social Anxiety scale) and trait anxiety. They were then given MRI scans and voxel-based morphometry and seed-based, resting-state functional connectivity analysis investigated correlations with shyness and anxiety scores. Shyness scores were positively correlated with gray matter density in the cerebellum, bilateral superior temporal gyri and parahippocampal gyri and right insula. Functional connectivity correlations with shyness were found between the superior temporal gyrus, parahippocampal gyrus and the frontal gyri, between the insula and precentral gyrus and inferior parietal lobule, and between the cerebellum and precuneus. Additional correlations were found for amygdala connectivity with the medial frontal gyrus, superior frontal gyrus and inferior parietal lobule, despite the absence of any structural correlation. By contrast no structural or functional connectivity measures correlated with social or trait anxiety. Our findings show that shyness is specifically associated with structural and functional connectivity changes in cortical and limbic regions involved with processing social stimuli. These associations are not found with social or trait anxiety in healthy subjects despite some behavioral correlations with shyness.

  8. Increased gray matter density in the parietal cortex of mathematicians: a voxel-based morphometry study.

    PubMed

    Aydin, K; Ucar, A; Oguz, K K; Okur, O O; Agayev, A; Unal, Z; Yilmaz, S; Ozturk, C

    2007-01-01

    The training to acquire or practicing to perform a skill, which may lead to structural changes in the brain, is called experience-dependent structural plasticity. The main purpose of this cross-sectional study was to investigate the presence of experience-dependent structural plasticity in mathematicians' brains, which may develop after long-term practice of mathematic thinking. Twenty-six volunteer mathematicians, who have been working as academicians, were enrolled in the study. We applied an optimized method of voxel-based morphometry in the mathematicians and the age- and sex-matched control subjects. We assessed the gray and white matter density differences in mathematicians and the control subjects. Moreover, the correlation between the cortical density and the time spent as an academician was investigated. We found that cortical gray matter density in the left inferior frontal and bilateral inferior parietal lobules of the mathematicians were significantly increased compared with the control subjects. Furthermore, increase in gray matter density in the right inferior parietal lobule of the mathematicians was strongly correlated with the time spent as an academician (r = 0.84; P < .01). Left-inferior frontal and bilateral parietal regions are involved in arithmetic processing. Inferior parietal regions are also involved in high-level mathematic thinking, which requires visuospatial imagery, such as mental creation and manipulation of 3D objects. The voxel-based morphometric analysis of mathematicians' brains revealed increased gray matter density in the cortical regions related to mathematic thinking. The correlation between cortical density increase and the time spent as an academician suggests experience-dependent structural plasticity in mathematicians' brains.

  9. [An automatic system for anatomophysiological correlation in three planes simultaneously during functional neurosurgery].

    PubMed

    Teijeiro, E J; Macías, R J; Morales, J M; Guerra, E; López, G; Alvarez, L M; Fernández, F; Maragoto, C; Seijo, F; Alvarez, E

    The Neurosurgical Deep Recording System (NDRS) using a personal computer takes the place of complex electronic equipment for recording and processing deep cerebral electrical activity, as a guide in stereotaxic functional neurosurgery. It also permits increased possibilities of presenting information in direct graphic form with automatic management and sufficient flexibility to implement different analyses. This paper describes the possibilities of automatic simultaneous graphic representation in three almost orthogonal planes, available with the new 5.1 version of NDRS so as to facilitate the analysis of anatomophysiological correlation in the localization of deep structures of the brain during minimal access surgery. This new version can automatically show the spatial behaviour of signals registered throughout the path of the electrode inside the brain, superimposed simultaneously on sagittal, coronal and axial sections of an anatomical atlas of the brain, after adjusting the scale automatically according to the dimensions of the brain of each individual patient. This may also be shown in a tridimensional representation of the different planes themselves intercepting. The NDRS system has been successfully used in Spain and Cuba in over 300 functional neurosurgery operations. The new version further facilitates analysis of spatial anatomophysiological correlation for the localization of brain structures. This system has contributed to increase the precision and safety in selecting surgical targets in the control of Parkinson s disease and other disorders of movement.

  10. Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations.

    PubMed

    Wig, Gagan S; Laumann, Timothy O; Cohen, Alexander L; Power, Jonathan D; Nelson, Steven M; Glasser, Matthew F; Miezin, Francis M; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E

    2014-08-01

    We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability-reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units. © The Author 2013. Published by Oxford University Press.

  11. Corpus Callosum Area and Brain Volume in Autism Spectrum Disorder: Quantitative Analysis of Structural MRI from the ABIDE Database

    ERIC Educational Resources Information Center

    Kucharsky Hiess, R.; Alter, R.; Sojoudi, S.; Ardekani, B. A.; Kuzniecky, R.; Pardoe, H. R.

    2015-01-01

    Reduced corpus callosum area and increased brain volume are two commonly reported findings in autism spectrum disorder (ASD). We investigated these two correlates in ASD and healthy controls using T1-weighted MRI scans from the Autism Brain Imaging Data Exchange (ABIDE). Automated methods were used to segment the corpus callosum and intracranial…

  12. Structural correlates of Openness and Intellect: Implications for the contribution of personality to creativity.

    PubMed

    Vartanian, Oshin; Wertz, Christopher J; Flores, Ranee A; Beatty, Erin L; Smith, Ingrid; Blackler, Kristen; Lam, Quan; Jung, Rex E

    2018-04-15

    Openness/Intellect (i.e., openness to experience) is the Big Five personality factor most consistently associated with individual differences in creativity. Recent psychometric evidence has demonstrated that this factor consists of two distinct aspects-Intellect and Openness. Whereas Intellect reflects perceived intelligence and intellectual engagement, Openness reflects engagement with fantasy, perception, and aesthetics. We investigated the extent to which Openness and Intellect are associated with variations in brain structure as measured by cortical thickness, area, and volume (N = 185). Our results demonstrated that Openness was correlated inversely with cortical thickness and volume in left middle frontal gyrus (BA 6), middle temporal gyrus (MTG, BA 21), and superior temporal gyrus (BA 41), and exclusively with cortical thickness in left inferior parietal lobule (BA 40), right inferior frontal gyrus (IFG, BA 45), and MTG (BA 37). When age and sex were statistically controlled for, the inverse correlations between Openness and cortical thickness remained statistically significant for all regions except left MTG, whereas the correlations involving cortical volume remained statistically significant only for left middle frontal gyrus. There was no statistically significant correlation between Openness and cortical area, and no statistically significant correlation between Intellect and cortical thickness, area, or volume. Our results demonstrate that individual differences in Openness are correlated with variation in brain structure-particularly as indexed by cortical thickness. Given the involvement of the above regions in processes related to memory and cognitive control, we discuss the implications of our findings for the possible contribution of personality to creative cognition. © 2018 Her Majesty the Queen in Right of Canada 2018. Reproduced with permission of the Minister of Health, Canada. Human Brain Mapping.

  13. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents

    PubMed Central

    Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta

    2016-01-01

    A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific positive parenting behavior and brain structure in children. PMID:27101139

  14. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents.

    PubMed

    Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta

    2016-01-01

    A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific positive parenting behavior and brain structure in children.

  15. Atlas of neuroanatomy with radiologic correlation and pathologic illustration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dublin, A.B.; Dublin, W.B.

    1982-01-01

    This atlas correlates gross neuroanatomic specimens with radiographs and computed tomographic scans. Pathologic specimens and radiographs are displayed in a similar manner. The first chapter, on embryology, shows the development of the telencephalon, diencephalon, mesencephalon, and metencephalon through a series of overlays. The anatomical section shows the surface of the brain, the ventricles and their adjacent structures, and the vascular system. CT anatomy is demonstrated by correlating CT scans with pathologic brain specimens cut in the axial plane. Pathologic changes associated with congenital malformations, injections, injuries, tumors, and other causes are demonstrated in the last six chapters.

  16. The Behavioural Assessment of Self-Structuring (BASS): psychometric properties in a post-acute brain injury rehabilitation programme.

    PubMed

    Jackson, Howard F; Tunstall, Victoria; Hague, Gemma; Daniels, Leanne; Crompton, Stacey; Taplin, Kimberly

    2014-01-01

    Jackson et al. (this edition) argue that structure is an important component in reducing the handicaps caused by cognitive impairments following acquired brain injury and that post-acute neuropsychological brain injury rehabilitation programmes should not only endeavour to provide structure but also aim to develop self-structuring. However, at present there is no standardized device for assessing self-structuring. To provide preliminary analysis of the psychometric properties of the Behavioural Assessment of Self-Structuring (BASS) staff rating scale (a 26 item informant five point rating scale based on the degree of support client requires to achieve self-structuring item). BASS data was utilised for clients attending residential rehabilitation. Reliability (inter-rarer and intra-rater), validity (construct, concurrent and discriminate) and sensitivity to change were investigated. Initial results indicate that the BASS has reasonably good reliability, good construct validity (via principal components analysis), good discriminant validity, and good concurrent validity correlating well with a number of other outcome measures (HoNOS; NPDS, Supervision Rating Scale, MPAI, FIM and FAM). The BASS did not correlate well with the NPCNA. Finally, the BASS was shown to demonstrate sensitivity to change. Although some caution is required in drawing firm conclusions at the present time and further exploration of the psychometric properties of the BASS is required, initial results are encouraging for the use of the BASS in assessing rehabilitation progress. These findings are discussed in terms of the value of the concept of self-structuring to the rehabilitation process for individuals with neuropsychological impairments consequent on acquired brain injury.

  17. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  18. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  19. Structural Brain Connectivity Constrains within-a-Day Variability of Direct Functional Connectivity

    PubMed Central

    Park, Bumhee; Eo, Jinseok; Park, Hae-Jeong

    2017-01-01

    The idea that structural white matter connectivity constrains functional connectivity (interactions among brain regions) has widely been explored in studies of brain networks; studies have mostly focused on the “average” strength of functional connectivity. The question of how structural connectivity constrains the “variability” of functional connectivity remains unresolved. In this study, we investigated the variability of resting state functional connectivity that was acquired every 3 h within a single day from 12 participants (eight time sessions within a 24-h period, 165 scans per session). Three different types of functional connectivity (functional connectivity based on Pearson correlation, direct functional connectivity based on partial correlation, and the pseudo functional connectivity produced by their difference) were estimated from resting state functional magnetic resonance imaging data along with structural connectivity defined using fiber tractography of diffusion tensor imaging. Those types of functional connectivity were evaluated with regard to properties of structural connectivity (fiber streamline counts and lengths) and types of structural connectivity such as intra-/inter-hemispheric edges and topological edge types in the rich club organization. We observed that the structural connectivity constrained the variability of direct functional connectivity more than pseudo-functional connectivity and that the constraints depended strongly on structural connectivity types. The structural constraints were greater for intra-hemispheric and heterologous inter-hemispheric edges than homologous inter-hemispheric edges, and feeder and local edges than rich club edges in the rich club architecture. While each edge was highly variable, the multivariate patterns of edge involvement, especially the direct functional connectivity patterns among the rich club brain regions, showed low variability over time. This study suggests that structural connectivity not only constrains the strength of functional connectivity, but also the within-a-day variability of functional connectivity and connectivity patterns, particularly the direct functional connectivity among brain regions. PMID:28848416

  20. Preterm Infant Hippocampal Volumes Correlate with Later Working Memory Deficits

    ERIC Educational Resources Information Center

    Beauchamp, Miriam H.; Thompson, Deanne K.; Howard, Kelly; Doyle, Lex W.; Egan, Gary F.; Inder, Terrie E.; Anderson, Peter J.

    2008-01-01

    Children born preterm exhibit working memory deficits. These deficits may be associated with structural brain changes observed in the neonatal period. In this study, the relationship between neonatal regional brain volumes and working memory deficits at age 2 years were investigated, with a particular interest in the dorsolateral prefrontal…

  1. Extending Gurwitsch's field theory of consciousness.

    PubMed

    Yoshimi, Jeff; Vinson, David W

    2015-07-01

    Aron Gurwitsch's theory of the structure and dynamics of consciousness has much to offer contemporary theorizing about consciousness and its basis in the embodied brain. On Gurwitsch's account, as we develop it, the field of consciousness has a variable sized focus or "theme" of attention surrounded by a structured periphery of inattentional contents. As the field evolves, its contents change their status, sometimes smoothly, sometimes abruptly. Inner thoughts, a sense of one's body, and the physical environment are dominant field contents. These ideas can be linked with (and help unify) contemporary theories about the neural correlates of consciousness, inattention, the small world structure of the brain, meta-stable dynamics, embodied cognition, and predictive coding in the brain. Published by Elsevier Inc.

  2. Brain Metabolism Correlates of the Free and Cued Selective Reminding Test in Mild Cognitive Impairment.

    PubMed

    Caffarra, Paolo; Ghetti, Caterina; Ruffini, Livia; Spallazzi, Marco; Spotti, Annamaria; Barocco, Federica; Guzzo, Caterina; Marchi, Massimo; Gardini, Simona

    2016-01-01

    Free and Cued Selective Reminding Test (FCSRT) measures immediate and delayed episodic memory and cueing sensitivity and is suitable to detect prodromal Alzheimer's disease (AD). The present study aimed at investigating the segregation effect of FCSRT scores on brain metabolism of memory-related structures, usually affected by AD pathology, in the Mild Cognitive Impairment (MCI) stage. A cohort of forty-eight MCI patients underwent FCSRT and 18F-FDG-PET. Multiple regression analysis showed that Immediate Free Recall correlated with brain metabolism in the bilateral anterior cingulate and delayed free recall with the left anterior cingulate and medial frontal gyrus, whereas semantic cueing sensitivity with the left posterior cingulate. FCSRT in MCI is associated with neuro-functional activity of specific regions of memory-related structures connected to hippocampal formation, such as the cingulate cortex, usually damaged in AD.

  3. Inattention and Reaction Time Variability Are Linked to Ventromedial Prefrontal Volume in Adolescents.

    PubMed

    Albaugh, Matthew D; Orr, Catherine; Chaarani, Bader; Althoff, Robert R; Allgaier, Nicholas; D'Alberto, Nicholas; Hudson, Kelsey; Mackey, Scott; Spechler, Philip A; Banaschewski, Tobias; Brühl, Rüdiger; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Goodman, Robert; Gowland, Penny; Grimmer, Yvonne; Heinz, Andreas; Kappel, Viola; Martinot, Jean-Luc; Paillère Martinot, Marie-Laure; Nees, Frauke; Orfanos, Dimitri Papadopoulos; Penttila, Jani; Poustka, Luise; Paus, Tomáš; Smolka, Michael N; Struve, Maren; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Garavan, Hugh; Potter, Alexandra S

    2017-11-01

    Neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) have most commonly reported volumetric abnormalities in the basal ganglia, cerebellum, and prefrontal cortices. Few studies have examined the relationship between ADHD symptomatology and brain structure in population-based samples. We investigated the relationship between dimensional measures of ADHD symptomatology, brain structure, and reaction time variability-an index of lapses in attention. We also tested for associations between brain structural correlates of ADHD symptomatology and maps of dopaminergic gene expression. Psychopathology and imaging data were available for 1538 youths. Parent ratings of ADHD symptoms were obtained using the Development and Well-Being Assessment and the Strengths and Difficulties Questionnaire (SDQ). Self-reports of ADHD symptoms were assessed using the youth version of the SDQ. Reaction time variability was available in a subset of participants. For each measure, whole-brain voxelwise regressions with gray matter volume were calculated. Parent ratings of ADHD symptoms (Development and Well-Being Assessment and SDQ), adolescent self-reports of ADHD symptoms on the SDQ, and reaction time variability were each negatively associated with gray matter volume in an overlapping region of the ventromedial prefrontal cortex. Maps of DRD1 and DRD2 gene expression were associated with brain structural correlates of ADHD symptomatology. This is the first study to reveal relationships between ventromedial prefrontal cortex structure and multi-informant measures of ADHD symptoms in a large population-based sample of adolescents. Our results indicate that ventromedial prefrontal cortex structure is a biomarker for ADHD symptomatology. These findings extend previous research implicating the default mode network and dopaminergic dysfunction in ADHD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Abnormal brain synchrony in Down Syndrome☆

    PubMed Central

    Anderson, Jeffrey S.; Nielsen, Jared A.; Ferguson, Michael A.; Burback, Melissa C.; Cox, Elizabeth T.; Dai, Li; Gerig, Guido; Edgin, Jamie O.; Korenberg, Julie R.

    2013-01-01

    Down Syndrome is the most common genetic cause for intellectual disability, yet the pathophysiology of cognitive impairment in Down Syndrome is unknown. We compared fMRI scans of 15 individuals with Down Syndrome to 14 typically developing control subjects while they viewed 50 min of cartoon video clips. There was widespread increased synchrony between brain regions, with only a small subset of strong, distant connections showing underconnectivity in Down Syndrome. Brain regions showing negative correlations were less anticorrelated and were among the most strongly affected connections in the brain. Increased correlation was observed between all of the distributed brain networks studied, with the strongest internetwork correlation in subjects with the lowest performance IQ. A functional parcellation of the brain showed simplified network structure in Down Syndrome organized by local connectivity. Despite increased interregional synchrony, intersubject correlation to the cartoon stimuli was lower in Down Syndrome, indicating that increased synchrony had a temporal pattern that was not in response to environmental stimuli, but idiosyncratic to each Down Syndrome subject. Short-range, increased synchrony was not observed in a comparison sample of 447 autism vs. 517 control subjects from the Autism Brain Imaging Exchange (ABIDE) collection of resting state fMRI data, and increased internetwork synchrony was only observed between the default mode and attentional networks in autism. These findings suggest immature development of connectivity in Down Syndrome with impaired ability to integrate information from distant brain regions into coherent distributed networks. PMID:24179822

  5. Functional and Structural Signatures of the Anterior Insula are associated with Risk-taking Tendency of Analgesic Decision-making.

    PubMed

    Lin, Chia-Shu; Lin, Hsiao-Han; Wu, Shih-Yun

    2016-11-28

    In a medical context, decision-making is associated with complicated assessment of gains, losses and uncertainty of outcomes. We here provide novel evidence about the brain mechanisms underlying decision-making of analgesic treatment. Thirty-six healthy participants were recruited and completed the Analgesic Decision-making Task (ADT), which quantified individual tendency of risk-taking (RPI), as the frequency of choosing a riskier option to relieve pain. All the participants received resting-state (rs) functional magnetic resonance imaging (MRI) and structural MRI. On rs-functional connectome, degree centrality (DC) of the bilateral anterior insula (aINS) was positively correlated with the RPI. The functional connectivity between the aINS, the nucleus accumbens and multiple brain regions, predominantly the medial frontal cortex, was positively correlated with the RPI. On structural signatures, the RPI was positively correlated with grey matter volume at the right aINS, and such an association was mediated by DC of the left aINS. Regression analyses revealed that both DC of the left aINS and participants' imagined pain relief, as the utility of pain reduction, could predict the individual RPI. The findings suggest that the functional and structural brain signature of the aINS is associated with the individual differences of risk-taking tendency in the context of analgesic decision-making.

  6. Dermatoglyphics in relation to brain volumes in twins concordant and discordant for bipolar disorder.

    PubMed

    Vonk, R; van der Schot, A C; van Baal, G C M; van Oel, C J; Nolen, W A; Kahn, R S

    2014-12-01

    Palmar and finger dermatoglyphics are formed between the 10th and the 17th weeks of gestation and their morphology can be influenced by genetic or environmental factors, interfering with normal intrauterine development. As both the skin and the brain develop from the same embryonal ectoderm, dermatoglyphic alterations may be informative for early abnormal neurodevelopmental processes in the brain. We investigated whether dermatoglyphic alterations are related to structural brain abnormalities in bipolar disorder and to what extent they are of a genetic and of an environmental origin. Dermatoglyphics and volumetric data from structural MRI were obtained in 53 twin pairs concordant or discordant for bipolar disorder and 51 healthy matched control twin pairs. Structural equation modeling was used. Bipolar disorder was significantly positively associated with palmar a-b ridge count (ABRC), indicating higher ABRC in bipolar patients (rph=.17 (CI .04-.30)). Common genes appear to be involved because the genetic correlation with ABRC was significant (rph-A=.21 (CI .05-.36). Irrespective of disease, ABRC showed a genetically mediated association with brain volume, indicated by a significant genetic correlation rph-A of respectively -.36 (CI -.52 to -.22) for total brain, -.34 (CI -.51 to -.16) total cortical volume, -.27 (CI -.43 to -.08) cortical gray matter and -.23 (CI -.41 to -.04) cortical white matter. In conclusion, a genetically determined abnormal development of the foetal ectoderm between the 10th and 15th week of gestation appears related to smaller brain volumes in (subjects at risk for) bipolar disorder. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  7. Comprehensive cellular‐resolution atlas of the adult human brain

    PubMed Central

    Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce

    2016-01-01

    ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273

  8. Reading visually embodied meaning from the brain: Visually grounded computational models decode visual-object mental imagery induced by written text.

    PubMed

    Anderson, Andrew James; Bruni, Elia; Lopopolo, Alessandro; Poesio, Massimo; Baroni, Marco

    2015-10-15

    Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Structural and functional correlates for language efficiency in auditory word processing.

    PubMed

    Jung, JeYoung; Kim, Sunmi; Cho, Hyesuk; Nam, Kichun

    2017-01-01

    This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally.

  10. Structural and functional correlates for language efficiency in auditory word processing

    PubMed Central

    Kim, Sunmi; Cho, Hyesuk; Nam, Kichun

    2017-01-01

    This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally. PMID:28892503

  11. Structural and Maturational Covariance in Early Childhood Brain Development.

    PubMed

    Geng, Xiujuan; Li, Gang; Lu, Zhaohua; Gao, Wei; Wang, Li; Shen, Dinggang; Zhu, Hongtu; Gilmore, John H

    2017-03-01

    Brain structural covariance networks (SCNs) composed of regions with correlated variation are altered in neuropsychiatric disease and change with age. Little is known about the development of SCNs in early childhood, a period of rapid cortical growth. We investigated the development of structural and maturational covariance networks, including default, dorsal attention, primary visual and sensorimotor networks in a longitudinal population of 118 children after birth to 2 years old and compared them with intrinsic functional connectivity networks. We found that structural covariance of all networks exhibit strong correlations mostly limited to their seed regions. By Age 2, default and dorsal attention structural networks are much less distributed compared with their functional maps. The maturational covariance maps, however, revealed significant couplings in rates of change between distributed regions, which partially recapitulate their functional networks. The structural and maturational covariance of the primary visual and sensorimotor networks shows similar patterns to the corresponding functional networks. Results indicate that functional networks are in place prior to structural networks, that correlated structural patterns in adult may arise in part from coordinated cortical maturation, and that regional co-activation in functional networks may guide and refine the maturation of SCNs over childhood development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Cortical Dysconnectivity Measured by Structural Covariance Is Associated With the Presence of Psychotic Symptoms in 22q11.2 Deletion Syndrome.

    PubMed

    Sandini, Corrado; Scariati, Elisa; Padula, Maria Carmela; Schneider, Maude; Schaer, Marie; Van De Ville, Dimitri; Eliez, Stephan

    2018-05-01

    22q11.2 deletion syndrome (22q11DS) is the third-largest known genetic risk factor for the development of psychosis. Dysconnectivity has consistently been implicated in the physiopathology of psychosis. Structural covariance of cortical morphology is a method of exploring connectivity among brain regions that to date has not been employed in 22q11DS. In the present study we employed structural covariance of cortical thickness to explore connectivity alterations in a group of 108 patients with 22q11DS compared with 96 control subjects. We subsequently divided patients into two subgroups of 31 subjects each according to the presence of attenuated psychotic symptoms. FreeSurfer software was used to obtain the mean cortical thickness in 148 brain regions from T1-weighted 3T images. For each population we reconstructed a brain graph using Pearson correlation between the average thickness of each couple of brain regions, which we characterized in terms of mean correlation strength and in terms of network architecture using graph theory. Patients with 22q11DS presented increased mean correlation strength, but there was no difference in global architecture compared with control subjects. However, symptomatic patients presented increased mean correlation strength coupled with increased segregation and decreased integration compared with both control subjects and nonsymptomatic patients. They also presented increased centrality for a cluster of anterior cingulate and dorsomedial prefrontal regions. These results confirm the importance of cortical dysconnectivity in the physiopathology of psychosis. Moreover they support the significance of aberrant anterior cingulate connectivity. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Analysis of brain patterns using temporal measures

    DOEpatents

    Georgopoulos, Apostolos

    2015-08-11

    A set of brain data representing a time series of neurophysiologic activity acquired by spatially distributed sensors arranged to detect neural signaling of a brain (such as by the use of magnetoencephalography) is obtained. The set of brain data is processed to obtain a dynamic brain model based on a set of statistically-independent temporal measures, such as partial cross correlations, among groupings of different time series within the set of brain data. The dynamic brain model represents interactions between neural populations of the brain occurring close in time, such as with zero lag, for example. The dynamic brain model can be analyzed to obtain the neurophysiologic assessment of the brain. Data processing techniques may be used to assess structural or neurochemical brain pathologies.

  14. Comparison of Brain Activity Correlating with Self-Report versus Narrative Attachment Measures during Conscious Appraisal of an Attachment Figure

    PubMed Central

    Yaseen, Zimri S.; Zhang, Xian; Muran, J. Christopher; Winston, Arnold; Galynker, Igor I.

    2016-01-01

    Objectives: The Adult Attachment Interview (AAI) has been the gold standard of attachment assessment, but requires special training. The Relationship Scales Questionnaire (RSQ) is a widely used self-report measure. We investigate how each correlates with brain activity during appraisal of subjects’ mothers. Methods: Twenty-eight women were scored on the AAI, RSQ, and mood measures. During functional magnetic resonance imaging, subjects viewed their mothers in neutral-, valence-, and salience-rating conditions. We identified regions where contrasts in brain activity between appraisal and neutral viewing conditions correlated with each measure of attachment after covarying for mood. AAI and RSQ measures were then compared in terms of the extent to which regions of correlating brain activity overlapped with “default mode network” (DMN) vs. executive frontal network (EFN) masks and cortical vs. subcortical masks. Additionally, interactions with mood were examined. Results: Salience and valence processing associated with increased thalamo-striatal, posterior cingulate, and visual cortex activity. Salience processing decreased PFC activity, whereas valence processing increased left insula activity. Activity correlating with AAI vs. RSQ measures demonstrated significantly more DMN and subcortical involvement. Interactions with mood were observed in the middle temporal gyrus and precuneus for both measures. Conclusion: The AAI appears to disproportionately correlate with conscious appraisal associated activity in DMN and subcortical structures, while the RSQ appears to tap EFN structures more extensively. Thus, the AAI may assess more interoceptive, ‘core-self’-related processes, while the RSQ captures higher-order cognitions involved in attachment. Shared interaction effects between mood and AAI and RSQ-measures may suggest that processes tapped by each belong to a common system. PMID:27014022

  15. Comparison of Brain Activity Correlating with Self-Report versus Narrative Attachment Measures during Conscious Appraisal of an Attachment Figure.

    PubMed

    Yaseen, Zimri S; Zhang, Xian; Muran, J Christopher; Winston, Arnold; Galynker, Igor I

    2016-01-01

    The Adult Attachment Interview (AAI) has been the gold standard of attachment assessment, but requires special training. The Relationship Scales Questionnaire (RSQ) is a widely used self-report measure. We investigate how each correlates with brain activity during appraisal of subjects' mothers. Twenty-eight women were scored on the AAI, RSQ, and mood measures. During functional magnetic resonance imaging, subjects viewed their mothers in neutral-, valence-, and salience-rating conditions. We identified regions where contrasts in brain activity between appraisal and neutral viewing conditions correlated with each measure of attachment after covarying for mood. AAI and RSQ measures were then compared in terms of the extent to which regions of correlating brain activity overlapped with "default mode network" (DMN) vs. executive frontal network (EFN) masks and cortical vs. subcortical masks. Additionally, interactions with mood were examined. Salience and valence processing associated with increased thalamo-striatal, posterior cingulate, and visual cortex activity. Salience processing decreased PFC activity, whereas valence processing increased left insula activity. Activity correlating with AAI vs. RSQ measures demonstrated significantly more DMN and subcortical involvement. Interactions with mood were observed in the middle temporal gyrus and precuneus for both measures. The AAI appears to disproportionately correlate with conscious appraisal associated activity in DMN and subcortical structures, while the RSQ appears to tap EFN structures more extensively. Thus, the AAI may assess more interoceptive, 'core-self'-related processes, while the RSQ captures higher-order cognitions involved in attachment. Shared interaction effects between mood and AAI and RSQ-measures may suggest that processes tapped by each belong to a common system.

  16. Brain Morphometry using MRI in Schizophrenia Patients

    NASA Astrophysics Data System (ADS)

    Abanshina, I.; Pirogov, Yu.; Kupriyanov, D.; Orlova, V.

    2010-01-01

    Schizophrenia has been the focus of intense neuroimaging research. Although its fundamental pathobiology remains elusive, neuroimaging studies provide evidence of abnormalities of cerebral structure and function in patients with schizophrenia. We used morphometry as a quantitative method for estimation of volume of brain structures. Seventy eight right-handed subjects aged 18-45 years were exposed to MRI-examination. Patients were divided into 3 groups: patients with schizophrenia, their relatives and healthy controls. The volumes of interested structures (caudate nucleus, putamen, ventricles, frontal and temporal lobe) were measured using T2-weighted MR-images. Correlations between structural differences and functional deficit were evaluated.

  17. Beyond synergies. Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et al.

    NASA Astrophysics Data System (ADS)

    Schwartz, Andrew B.

    2016-07-01

    The target paper by Santello et al. [1] uses the observation that hand shape during grasping can be described by a small set of basic postures, or ;synergies,; to describe the possible neural basis of motor control during this complex behavior. In the literature, the term ;synergy; has been used with a number of different meanings and is still loosely defined, making it difficult to derive concrete analogs of corresponding neural structure. Here, I will define ;synergy; broadly, as a set of parameters bound together by a pattern of correlation. With this definition, it can be argued that behavioral synergies are just one facet of the correlational structuring used by the brain to generate behavior. As pointed out in the target article, the structure found in synergies is driven by the physical constraints of our bodies and our surroundings, combined with the behavioral control imparted by our nervous system. This control itself is based on correlational structure which is likely to be a fundamental property of brain function.

  18. Brain metabolism in patients with vegetative state after post-resuscitated hypoxic-ischemic brain injury: statistical parametric mapping analysis of F-18 fluorodeoxyglucose positron emission tomography.

    PubMed

    Kim, Yong Wook; Kim, Hyoung Seop; An, Young-sil

    2013-03-01

    Hypoxic-ischemic brain injury (HIBI) after cardiopulmonary resuscitation is one of the most devastating neurological conditions that causing the impaired consciousness. However, there were few studies investigated the changes of brain metabolism in patients with vegetative state (VS) after post-resuscitated HIBI. This study aimed to analyze the change of overall brain metabolism and elucidated the brain area correlated with the level of consciousness (LOC) in patients with VS after post-resuscitated HIBI. We consecutively enrolled 17 patients with VS after HIBI, who experienced cardiopulmonary resuscitation. Overall brain metabolism was measured by F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) and we compared regional brain metabolic patterns from 17 patients with those from 15 normal controls using voxel-by-voxel based statistical parametric mapping analysis. Additionally, we correlated the LOC measured by the JFK-coma recovery scale-revised of each patient with brain metabolism by covariance analysis. Compared with normal controls, the patients with VS after post-resuscitated HIBI revealed significantly decreased brain metabolism in bilateral precuneus, bilateral posterior cingulate gyrus, bilateral middle frontal gyri, bilateral superior parietal gyri, bilateral middle occipital gyri, bilateral precentral gyri (PFEW correctecd < 0.0001), and increased brain metabolism in bilateral insula, bilateral cerebella, and the brainstem (PFEW correctecd < 0.0001). In covariance analysis, the LOC was significantly correlated with brain metabolism in bilateral fusiform and superior temporal gyri (Puncorrected < 0.005). Our study demonstrated that the precuneus, the posterior cingulate area and the frontoparietal cortex, which is a component of neural correlate for consciousness, may be relevant structure for impaired consciousness in patient with VS after post-resuscitated HIBI. In post-resuscitated HIBI, measurement of brain metabolism using PET images may be helpful for investigating the brain function that cannot be obtained by morphological imaging and can be used to assess the brain area responsible for consciousness.

  19. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM)

    PubMed Central

    Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J.; Gunter, Jeffrey L.; Carmona, Susanna; Jaeggi, Susanne M.; Thompson, Paul M.

    2016-01-01

    Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. PMID:27477628

  20. Voxel-wise grey matter asymmetry analysis in left- and right-handers.

    PubMed

    Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan

    2016-10-28

    Handedness is thought to originate in the brain, but identifying its structural correlates in the cortex has yielded surprisingly incoherent results. One idea proclaimed by several authors is that structural grey matter asymmetries might underlie handedness. While some authors have found significant associations with handedness in different brain areas (e.g. in the central sulcus and precentral sulcus), others have failed to identify such associations. One method used by many researchers to determine structural grey matter asymmetries is voxel based morphometry (VBM). However, it has recently been suggested that the standard VBM protocol might not be ideal to assess structural grey matter asymmetries, as it establishes accurate voxel-wise correspondence across individuals but not across both hemispheres. This could potentially lead to biased and incoherent results. Recently, a new toolbox specifically geared at assessing structural asymmetries and involving accurate voxel-wise correspondence across hemispheres has been published [F. Kurth, C. Gaser, E. Luders. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM), Nat Protoc 10 (2015), 293-304]. Here, we used this new toolbox to re-assess grey matter asymmetry differences in left- vs. right-handers and linked them to quantitative measures of hand preference and hand skill. While we identified several significant left-right asymmetries in the overall sample, no difference between left- and right-handers reached significance after correction for multiple comparisons. These findings indicate that the structural brain correlates of handedness are unlikely to be rooted in macroscopic grey matter area differences that can be assessed with VBM. Future studies should focus on other potential structural correlates of handedness, e.g. structural white matter asymmetries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Toward a multifactorial model of Alzheimer disease

    PubMed Central

    Storandt, Martha; Head, Denise; Fagan, Anne M.; Holtzman, David M.; Morris, John C.

    2011-01-01

    Relations among antecedant biomarkers of AD were evaluated using causal modeling; although correlation cannot be equated to causation, causation does require correlation. Individuals aged 43 to 89 years (N = 220) enrolled as cognitively normal controls in longitudinal studies had clinical and psychometric assessment, structural magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) biomarkers, and brain amyloid imaging via positron emission tomography with Pittsburgh Compound B (PIB) obtained within 1 year. CSF levels of Aβ42 and tau were minimally correlated, indicating they represent independent processes. Aβ42, tau, and their interaction explained 60% of the variance in PIB. Effects of APOE genotype and age on PIB were indirect, operating through CSF markers. Only spurious relations via their common relation with age were found between the biomarkers and regional brain volumes or cognition. Hence, at least two independent hypothesized processes, one reflected by CSF Aβ42 and one by CSF tau, contribute to the development of fibrillar amyloid plaques preclinically. The lack of correlation between these two processes and brain volume in the regions most often affected in AD suggests the operation of a third process related to brain atrophy. PMID:22261556

  2. Delay discounting differences in brain activation, connectivity, and structure in individuals with addiction: a systematic review protocol.

    PubMed

    Owens, Max M; Amlung, Michael T; Beach, Steven R H; Sweet, Lawrence H; MacKillop, James

    2017-07-11

    Delayed reward discounting (DRD), the degree to which future rewards are discounted relative to immediate rewards, is used as an index of impulsive decision-making and has been associated with a number of problematic health behaviors. Given the robust behavioral association between DRD and addictive behavior, there is an expanding literature investigating the differences in the functional and structural correlates of DRD in the brain between addicted and healthy individuals. However, there has yet to be a systematic review which characterizes differences in regional brain activation, functional connectivity, and structure and places them in the larger context of the DRD literature. The objective of this systematic review is to summarize and critically appraise the existing literature examining differences between addicted and healthy individuals in the neural correlates of DRD using magnetic resonance imaging (MRI) or functional magnetic resonance imaging (fMRI). A systematic search strategy will be implemented that uses Boolean search terms in PubMed/MEDLINE and PsycINFO, as well as manual search methods, to identify the studies comprehensively. This review will include studies using MRI or fMRI in humans to directly compare brain activation, functional connectivity, or structure in relation to DRD between addicted and healthy individuals or continuously assess addiction severity in the context of DRD. Two independent reviewers will determine studies that meet the inclusion criteria for this review, extract data from included studies, and assess the quality of included studies using the Grading of Recommendations Assessment, Development and Evaluation framework. Then, narrative review will be used to explicate the differences in structural and functional correlates of DRD implicated by the literature and assess the strength of evidence for this conclusion. This review will provide a needed critical exegesis of the MRI studies that have been conducted investigating brain differences in addictive behavior in relation to healthy samples in the context of DRD. This will provide clarity on the elements of neural activation, connectivity, and structure that are most implicated in the differences in DRD seen in addicted individuals. PROSPERO CRD42017056857.

  3. Physical fitness and shapes of subcortical brain structures in children.

    PubMed

    Ortega, Francisco B; Campos, Daniel; Cadenas-Sanchez, Cristina; Altmäe, Signe; Martínez-Zaldívar, Cristina; Martín-Matillas, Miguel; Catena, Andrés; Campoy, Cristina

    2017-03-27

    A few studies have recently reported that higher cardiorespiratory fitness is associated with higher volumes of subcortical brain structures in children. It is, however, unknown how different fitness measures relate to shapes of subcortical brain nuclei. We aimed to examine the association of the main health-related physical fitness components with shapes of subcortical brain structures in a sample of forty-four Spanish children aged 9·7 (sd 0·2) years from the NUtraceuticals for a HEALthier life project. Cardiorespiratory fitness, muscular strength and speed agility were assessed using valid and reliable tests (ALPHA-fitness test battery). Shape of the subcortical brain structures was assessed by MRI, and its relationship with fitness was examined after controlling for a set of potential confounders using a partial correlation permutation approach. Our results showed that all physical fitness components studied were significantly related to the shapes of subcortical brain nuclei. These associations were both positive and negative, indicating that a higher level of fitness in childhood is related to both expansions and contractions in certain regions of the accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus. Cardiorespiratory fitness was mainly associated with expansions, whereas handgrip was mostly associated with contractions in the structures studied. Future randomised-controlled trials will confirm or contrast our findings, demonstrating whether changes in fitness modify the shapes of brain structures and the extent to which those changes influence cognitive function.

  4. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering

    PubMed Central

    Sitek, Kevin R.; Cai, Shanqing; Beal, Deryk S.; Perkell, Joseph S.; Guenther, Frank H.; Ghosh, Satrajit S.

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers. PMID:27199712

  5. Disrupted brain network functional dynamics and hyper-correlation of structural and functional connectome topology in patients with breast cancer prior to treatment.

    PubMed

    Kesler, Shelli R; Adams, Marjorie; Packer, Melissa; Rao, Vikram; Henneghan, Ashley M; Blayney, Douglas W; Palesh, Oxana

    2017-03-01

    Several previous studies have demonstrated that cancer chemotherapy is associated with brain injury and cognitive dysfunction. However, evidence suggests that cancer pathogenesis alone may play a role, even in non-CNS cancers. Using a multimodal neuroimaging approach, we measured structural and functional connectome topology as well as functional network dynamics in newly diagnosed patients with breast cancer. Our study involved a novel, pretreatment assessment that occurred prior to the initiation of any cancer therapies, including surgery with anesthesia. We enrolled 74 patients with breast cancer age 29-65 and 50 frequency-matched healthy female controls who underwent anatomic and resting-state functional MRI as well as cognitive testing. Compared to controls, patients with breast cancer demonstrated significantly lower functional network dynamics ( p  = .046) and cognitive functioning ( p  < .02, corrected). The breast cancer group also showed subtle alterations in structural local clustering and functional local clustering ( p  < .05, uncorrected) as well as significantly increased correlation between structural global clustering and functional global clustering compared to controls ( p  = .03). This hyper-correlation between structural and functional topologies was significantly associated with cognitive dysfunction ( p  = .005). Our findings could not be accounted for by psychological distress and suggest that non-CNS cancer may directly and/or indirectly affect the brain via mechanisms such as tumor-induced neurogenesis, inflammation, and/or vascular changes, for example. Our results also have broader implications concerning the importance of the balance between structural and functional connectome properties as a potential biomarker of general neurologic deficit.

  6. Role of local network oscillations in resting-state functional connectivity.

    PubMed

    Cabral, Joana; Hugues, Etienne; Sporns, Olaf; Deco, Gustavo

    2011-07-01

    Spatio-temporally organized low-frequency fluctuations (<0.1 Hz), observed in BOLD fMRI signal during rest, suggest the existence of underlying network dynamics that emerge spontaneously from intrinsic brain processes. Furthermore, significant correlations between distinct anatomical regions-or functional connectivity (FC)-have led to the identification of several widely distributed resting-state networks (RSNs). This slow dynamics seems to be highly structured by anatomical connectivity but the mechanism behind it and its relationship with neural activity, particularly in the gamma frequency range, remains largely unknown. Indeed, direct measurements of neuronal activity have revealed similar large-scale correlations, particularly in slow power fluctuations of local field potential gamma frequency range oscillations. To address these questions, we investigated neural dynamics in a large-scale model of the human brain's neural activity. A key ingredient of the model was a structural brain network defined by empirically derived long-range brain connectivity together with the corresponding conduction delays. A neural population, assumed to spontaneously oscillate in the gamma frequency range, was placed at each network node. When these oscillatory units are integrated in the network, they behave as weakly coupled oscillators. The time-delayed interaction between nodes is described by the Kuramoto model of phase oscillators, a biologically-based model of coupled oscillatory systems. For a realistic setting of axonal conduction speed, we show that time-delayed network interaction leads to the emergence of slow neural activity fluctuations, whose patterns correlate significantly with the empirically measured FC. The best agreement of the simulated FC with the empirically measured FC is found for a set of parameters where subsets of nodes tend to synchronize although the network is not globally synchronized. Inside such clusters, the simulated BOLD signal between nodes is found to be correlated, instantiating the empirically observed RSNs. Between clusters, patterns of positive and negative correlations are observed, as described in experimental studies. These results are found to be robust with respect to a biologically plausible range of model parameters. In conclusion, our model suggests how resting-state neural activity can originate from the interplay between the local neural dynamics and the large-scale structure of the brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Multivariate pattern analysis reveals subtle brain anomalies relevant to the cognitive phenotype in neurofibromatosis type 1.

    PubMed

    Duarte, João V; Ribeiro, Maria J; Violante, Inês R; Cunha, Gil; Silva, Eduardo; Castelo-Branco, Miguel

    2014-01-01

    Neurofibromatosis Type 1 (NF1) is a common genetic condition associated with cognitive dysfunction. However, the pathophysiology of the NF1 cognitive deficits is not well understood. Abnormal brain structure, including increased total brain volume, white matter (WM) and grey matter (GM) abnormalities have been reported in the NF1 brain. These previous studies employed univariate model-driven methods preventing detection of subtle and spatially distributed differences in brain anatomy. Multivariate pattern analysis allows the combination of information from multiple spatial locations yielding a discriminative power beyond that of single voxels. Here we investigated for the first time subtle anomalies in the NF1 brain, using a multivariate data-driven classification approach. We used support vector machines (SVM) to classify whole-brain GM and WM segments of structural T1 -weighted MRI scans from 39 participants with NF1 and 60 non-affected individuals, divided in children/adolescents and adults groups. We also employed voxel-based morphometry (VBM) as a univariate gold standard to study brain structural differences. SVM classifiers correctly classified 94% of cases (sensitivity 92%; specificity 96%) revealing the existence of brain structural anomalies that discriminate NF1 individuals from controls. Accordingly, VBM analysis revealed structural differences in agreement with the SVM weight maps representing the most relevant brain regions for group discrimination. These included the hippocampus, basal ganglia, thalamus, and visual cortex. This multivariate data-driven analysis thus identified subtle anomalies in brain structure in the absence of visible pathology. Our results provide further insight into the neuroanatomical correlates of known features of the cognitive phenotype of NF1. Copyright © 2012 Wiley Periodicals, Inc.

  8. The correlation between brain gray matter volume and empathizing and systemizing quotients in healthy children.

    PubMed

    Sassa, Yuko; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Asano, Michiko; Asano, Kohei; Wakabayashi, Akio; Kawashima, Ryuta

    2012-05-01

    The abilities to empathize and to systemize, two fundamental dimensions of cognitive style, are characterized by apparent individual differences. These abilities are typically measured using an empathizing quotient (EQ) and a systemizing quotient (SQ) questionnaire, respectively. The purpose of this study was to reveal any correlations between EQ and SQ scores and regional gray matter volumes in healthy children by applying voxel-based morphometry to magnetic resonance images. We collected MRIs of brain structure and administered children's versions of the EQ and SQ questionnaires (EQ-C and SQ-C, respectively) to 261 healthy children aged 5-15 years. Structural MRI data were segmented, normalized, and smoothed using an optimized voxel-based morphometric analysis. Next, we analyzed the correlation between regional gray matter volume and EQ-C and SQ-C scores adjusting for age, sex, and intracranial volume. The EQ-C scores showed significant positive correlations with the regional gray matter volumes of the left fronto-opercular and superior temporal cortices, including the precentral gyrus, the inferior frontal gyrus, the superior temporal gyrus, and the insula, which are functionally related to empathic processing. Additionally, SQ-C scores showed a significant negative correlation with the regional gray matter volume of the left posterior parietal cortex, which is functionally involved in selective attention processing. Our findings suggest that individual differences in cognitive style pertaining to empathizing or systemizing abilities could be explained by differences in the volume of brain structures that are functionally relevant to empathizing and systemizing. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Neural correlates of motor-cognitive dual-tasking in young and old adults

    PubMed Central

    Papegaaij, Selma; Hortobágyi, Tibor; Godde, Ben; Kaan, Wim A.; Erhard, Peter; Voelcker-Rehage, Claudia

    2017-01-01

    When two tasks are performed simultaneously, performance often declines in one or both tasks. These so-called dual-task costs are more pronounced in old than in young adults. One proposed neurological mechanism of the dual-task costs is that old compared with young adults tend to execute single-tasks with higher brain activation. In the brain regions that are needed for both tasks, the reduced residual capacity may interfere with performance of the dual-task. This competition for shared brain regions has been called structural interference. The purpose of the study was to determine whether structural interference indeed plays a role in the age-related decrease in dual-task performance. Functional magnetic resonance imaging (fMRI) was used to investigate 23 young adults (20–29 years) and 32 old adults (66–89 years) performing a calculation (serial subtraction by seven) and balance-simulation (plantar flexion force control) task separately or simultaneously. Behavioral performance decreased during the dual-task compared with the single-tasks in both age groups, with greater dual-task costs in old compared with young adults. Brain activation was significantly higher in old than young adults during all conditions. Region of interest analyses were performed on brain regions that were active in both tasks. Structural interference was apparent in the right insula, as quantified by an age-related reduction in upregulation of brain activity from single- to dual-task. However, the magnitude of upregulation did not correlate with dual-task costs. Therefore, we conclude that the greater dual-task costs in old adults were probably not due to increased structural interference. PMID:29220349

  10. Child overweight and obesity are associated with reduced executive cognitive performance and brain alterations: a magnetic resonance imaging study in Mexican children.

    PubMed

    Bauer, C C C; Moreno, B; González-Santos, L; Concha, L; Barquera, S; Barrios, F A

    2015-06-01

    Overweight and obesity in childhood is associated with negative physical and psychological effects. It has been proposed that obesity increase the risk for developing cognitive deficits, dementia and Alzheimer's disease and that it may be associated with marked differences in specific brain structure volumes. The purpose of this study was a neurobiopsychological approach to examine the association between overweight and obesity, brain structure and a paediatric neuropsychological assessment in Mexican children between 6 and 8 years of age. We investigated the relation between the body mass index (BMI), brain volumetric segmentation of subcortical gray and white matter regions obtained with magnetic resonance imaging and the Neuropsychological Assessment of Children standardized for Latin America. Thirty-three healthy Mexican children between 6 and 8 years of age, divided into normal weight (18 children) and overweight/obese (15 children) groups. Overweight/obese children showed reduced executive cognitive performance on neuropsychological evaluations (i.e. verbal fluidity, P = 0.03) and presented differences in brain structures related to learning and memory (reduced left hippocampal volumes, P = 0.04) and executive functions (larger white matter volumes in the left cerebellum, P = 0.04 and mid-posterior corpus callosum, P = 0.03). Additionally, we found a positive correlation between BMI and left globulus pallidus (P = 0.012, ρ = 0.43) volume and a negative correlation between BMI and neuropsychological evaluation scores (P = 0.033, ρ = -0.37). The findings contribute to the idea that there is a relationship between BMI, executive cognitive performance and brain structure that may underlie the causal chain that leads to obesity in adulthood. © 2014 The Authors. Pediatric Obesity © 2014 World Obesity.

  11. Examining brain structures associated with the motive to achieve success and the motive to avoid failure: A voxel-based morphometry study.

    PubMed

    Ming, Dan; Chen, Qunlin; Yang, Wenjing; Chen, Rui; Wei, Dongtao; Li, Wenfu; Qiu, Jiang; Xu, Zhan; Zhang, Qinglin

    2016-01-01

    The motive to achieve success (MAS) and motive to avoid failure (MAF) are two different but classical kinds of achievement motivation. Though many functional magnetic resonance imaging studies have explored functional activation in motivation-related conditions, research has been silent as to the brain structures associated with individual differences in achievement motivation, especially with respect to MAS and MAF. In this study, the voxel-based morphometry method was used to uncover focal differences in brain structures related to MAS and MAF measured by the Mehrabian Achieving Tendency Scale in 353 healthy young Chinese adults. The results showed that the brain structures associated with individual differences in MAS and MAF were distinct. MAS was negatively correlated with regional gray matter volume (rGMV) in the medial prefrontal cortex (mPFC)/orbitofrontal cortex while MAF was negatively correlated with rGMV in the mPFC/subgenual cingulate gyrus. After controlling for mutual influences of MAS and MAF scores, MAS scores were found to be related to rGMV in the mPFC/orbitofrontal cortex and another cluster containing the parahippocampal gyrus and precuneus. These results may predict that compared with MAF, the generation process of MAS may be more complex and rational, thus in the real world, perhaps MAS is more beneficial to personal growth and guaranteeing the quality of task performance.

  12. Longitudinal assessment of chemotherapy-induced changes in brain and cognitive functioning: A systematic review.

    PubMed

    Li, Mingmei; Caeyenberghs, Karen

    2018-05-20

    In addition to the burden of a life-threatening diagnosis, cancer patients are struggling with adverse side-effects from cancer treatment. Chemotherapy has been linked to an array of cognitive impairments and alterations in brain structure and function ("chemobrain"). In this review, we summarized the existing evidence that evaluate the changes in cognitive functioning and brain with chemotherapy, as assessed using structural and functional MRI-based techniques in a longitudinal design. This review followed the latest PRISMA guidelines using Embase, Medline, PsychINFO, Scopus, and Web of Science databases with date restrictions from 2012-2017. Fourteen research articles met the key inclusion criteria: (i) the studies involved adult cancer patients (mean age≥18); (ii) the use of chemotherapy in the treatment of cancer; (iii) pre-post assessment of behavioral and brain-based outcomes; and (iv) abstracts written in English. Effect sizes of subjective and objective cognitive impairments from the reviewed studies were estimated using Cohen's d or z-scores. We calculated percentage of mean change or effect sizes for main neuroimaging findings when data were available. Strength of the correlations between brain alterations and cognitive changes was obtained using squared correlation coefficients. We showed small to medium effect sizes on individual tests of attention, processing speed, verbal memory, and executive control; and medium effect sizes on self-report questionnaires. Neuroimaging data showed reduced grey matter density in cancer patients in frontal, parietal, and temporal regions. Changes in brain function (brain activation and cerebral blood flow) were observed with cancer across functional networks involving (pre)frontal, parietal, occipital, temporal, and cerebellar regions. Data from diffusion-weighted MRI suggested reduced white matter integrity involving the superior longitudinal fasciculus, corpus callosum, forceps major, and corona radiate, and altered structural connectivity across the whole brain network. Finally, we observed moderate-to-strong correlations between worsening cognitive function and morphological changes in frontal brain regions. While MRI is a powerful tool for detection of longitudinal brain changes in the 'chemobrain', the underlying biological mechanisms are still unclear. Continued work in this field will hopefully detect MRI metrics to be used as biomarkers to help guide cognitive treatment at the individual cancer patient level. Copyright © 2018. Published by Elsevier Ltd.

  13. Maternal-fetal unit interactions and eutherian neocortical development and evolution

    PubMed Central

    Montiel, Juan F.; Kaune, Heidy; Maliqueo, Manuel

    2013-01-01

    The conserved brain design that primates inherited from early mammals differs from the variable adult brain size and species-specific brain dominances observed across mammals. This variability relies on the emergence of specialized cerebral cortical regions and sub-compartments, triggering an increase in brain size, areal interconnectivity and histological complexity that ultimately lies on the activation of developmental programs. Structural placental features are not well correlated with brain enlargement; however, several endocrine pathways could be tuned with the activation of neuronal progenitors in the proliferative neocortical compartments. In this article, we reviewed some mechanisms of eutherians maternal–fetal unit interactions associated with brain development and evolution. We propose a hypothesis of brain evolution where proliferative compartments in primates become activated by “non-classical” endocrine placental signals participating in different steps of corticogenesis. Changes in the inner placental structure, along with placenta endocrine stimuli over the cortical proliferative activity would allow mammalian brain enlargement with a concomitant shorter gestation span, as an evolutionary strategy to escape from parent-offspring conflict. PMID:23882189

  14. A Complex Interplay of Vitamin B1 and B6 Metabolism with Cognition, Brain Structure, and Functional Connectivity in Older Adults.

    PubMed

    Jannusch, Kai; Jockwitz, Christiane; Bidmon, Hans-Jürgen; Moebus, Susanne; Amunts, Katrin; Caspers, Svenja

    2017-01-01

    Aging is associated with brain atrophy, functional brain network reorganization and decline of cognitive performance, albeit characterized by high interindividual variability. Among environmental influencing factors accounting for this variability, nutrition and particularly vitamin supply is thought to play an important role. While evidence exists that supplementation of vitamins B6 and B1 might be beneficial for cognition and brain structure, at least in deficient states and neurodegenerative diseases, little is known about this relation during healthy aging and in relation to reorganization of functional brain networks. We thus assessed the relation between blood levels of vitamins B1 and B6 and cognitive performance, cortical folding, and functional resting-state connectivity in a large sample of older adults ( N > 600; age: 55-85 years), drawn from the population-based 1000BRAINS study. In addition to blood sampling, subjects underwent structural and functional resting-state neuroimaging as well as extensive neuropsychological testing in the domains of executive functions, (working) memory, attention, and language. Brain regions showing changes in the local gyrification index as calculated using FreeSurfer in relation to vitamin levels were used for subsequent seed-based resting-state functional connectivity analysis. For B6, a positive correlation with local cortical folding was found throughout the brain, while only slight changes in functional connectivity were observed. Contrarily, for B1, a negative correlation with cortical folding as well as problem solving and visuo-spatial working memory performance was found, which was accompanied by pronounced increases of interhemispheric and decreases of intrahemispheric functional connectivity. While the effects for B6 expand previous knowledge on beneficial effects of B6 supplementation on brain structure, they also showed that additional effects on cognition might not be recognizable in healthy older subjects with normal B6 blood levels. The cortical atrophy and pronounced functional reorganization associated with B1, contrarily, was more in line with the theory of a disturbed B1 metabolism in older adults, leading to B1 utilization deficits, and thus, an effective B1 deficiency in the brain, despite normal to high-normal blood levels.

  15. A Complex Interplay of Vitamin B1 and B6 Metabolism with Cognition, Brain Structure, and Functional Connectivity in Older Adults

    PubMed Central

    Jannusch, Kai; Jockwitz, Christiane; Bidmon, Hans-Jürgen; Moebus, Susanne; Amunts, Katrin; Caspers, Svenja

    2017-01-01

    Aging is associated with brain atrophy, functional brain network reorganization and decline of cognitive performance, albeit characterized by high interindividual variability. Among environmental influencing factors accounting for this variability, nutrition and particularly vitamin supply is thought to play an important role. While evidence exists that supplementation of vitamins B6 and B1 might be beneficial for cognition and brain structure, at least in deficient states and neurodegenerative diseases, little is known about this relation during healthy aging and in relation to reorganization of functional brain networks. We thus assessed the relation between blood levels of vitamins B1 and B6 and cognitive performance, cortical folding, and functional resting-state connectivity in a large sample of older adults (N > 600; age: 55–85 years), drawn from the population-based 1000BRAINS study. In addition to blood sampling, subjects underwent structural and functional resting-state neuroimaging as well as extensive neuropsychological testing in the domains of executive functions, (working) memory, attention, and language. Brain regions showing changes in the local gyrification index as calculated using FreeSurfer in relation to vitamin levels were used for subsequent seed-based resting-state functional connectivity analysis. For B6, a positive correlation with local cortical folding was found throughout the brain, while only slight changes in functional connectivity were observed. Contrarily, for B1, a negative correlation with cortical folding as well as problem solving and visuo-spatial working memory performance was found, which was accompanied by pronounced increases of interhemispheric and decreases of intrahemispheric functional connectivity. While the effects for B6 expand previous knowledge on beneficial effects of B6 supplementation on brain structure, they also showed that additional effects on cognition might not be recognizable in healthy older subjects with normal B6 blood levels. The cortical atrophy and pronounced functional reorganization associated with B1, contrarily, was more in line with the theory of a disturbed B1 metabolism in older adults, leading to B1 utilization deficits, and thus, an effective B1 deficiency in the brain, despite normal to high-normal blood levels. PMID:29163003

  16. Psychological and neural correlates of embitterment in old age.

    PubMed

    Kühn, Simone; Düzel, Sandra; Drewelies, Johanna; Gerstorf, Denis; Lindenberger, Ulman; Gallinat, Jürgen

    2018-01-01

    Posttraumatic embitterment disorder (PTED) comprises a stress-related response to a negative life event that violates the belief system of the individual. Characteristic symptoms involve repeated intrusive thoughts, emotional arousal when reminded of the event, and decreases in well-being. Within the scope of the present study, embitterment was treated as a continuous rather than categorical concept, and we investigated its psychological and brain structural correlates in a sample of healthy older adults. We found a negative association between the PTED self-rating score and self-reported well-being, life satisfaction, and future time perspective and a positive association with loneliness, perceived stress, chronic strain, and external control beliefs. We found no significant association between embitterment and brain regions that have been associated with stress exposure and posttraumatic stress disorder (PTSD)-hippocampus and the medial prefrontal cortex. This may emphasize the fundamental difference between PTED and PTSD. In a whole-brain analysis, we found a positive correlation between embitterment and gray matter volume in the precuneus and white matter volume in the bilateral uncinate fasciculus. The precuneus and uncinate fasciculus are brain regions that have been related to episodic memory retrieval, matching well to the symptoms of intrusive thoughts and an overwhelming preoccupation with the event that caused the PTED. Further longitudinal research is needed to unravel whether these structural correlates represent preconditions or rather the consequence of embitterment. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys

    PubMed Central

    O’Reilly, Jill X.; Croxson, Paula L.; Jbabdi, Saad; Sallet, Jerome; Noonan, MaryAnn P.; Mars, Rogier B.; Browning, Philip G.F.; Wilson, Charles R. E.; Mitchell, Anna S.; Miller, Karla L.; Rushworth, Matthew F. S.; Baxter, Mark G.

    2013-01-01

    In the absence of external stimuli or task demands, correlations in spontaneous brain activity (functional connectivity) reflect patterns of anatomical connectivity. Hence, resting-state functional connectivity has been used as a proxy measure for structural connectivity and as a biomarker for brain changes in disease. To relate changes in functional connectivity to physiological changes in the brain, it is important to understand how correlations in functional connectivity depend on the physical integrity of brain tissue. The causal nature of this relationship has been called into question by patient data suggesting that decreased structural connectivity does not necessarily lead to decreased functional connectivity. Here we provide evidence for a causal but complex relationship between structural connectivity and functional connectivity: we tested interhemispheric functional connectivity before and after corpus callosum section in rhesus monkeys. We found that forebrain commissurotomy severely reduced interhemispheric functional connectivity, but surprisingly, this effect was greatly mitigated if the anterior commissure was left intact. Furthermore, intact structural connections increased their functional connectivity in line with the hypothesis that the inputs to each node are normalized. We conclude that functional connectivity is likely driven by corticocortical white matter connections but with complex network interactions such that a near-normal pattern of functional connectivity can be maintained by just a few indirect structural connections. These surprising results highlight the importance of network-level interactions in functional connectivity and may cast light on various paradoxical findings concerning changes in functional connectivity in disease states. PMID:23924609

  18. Structural and functional differences in the cingulate cortex relate to disease severity in anorexia nervosa

    PubMed Central

    Bär, Karl-Jürgen; de la Cruz, Feliberto; Berger, Sandy; Schultz, Carl Christoph; Wagner, Gerd

    2015-01-01

    Background The dysfunction of specific brain areas might account for the distortion of body image in patients with anorexia nervosa. The present study was designed to reveal brain regions that are abnormal in structure and function in patients with this disorder. We hypothesized, based on brain areas of altered activity in patients with anorexia nervosa and regions involved in pain processing, an interrelation of structural aberrations in the frontoparietal–cingulate network and aberrant functional activation during thermal pain processing in patients with the disorder. Methods We determined pain thresholds outside the MRI scanner in patients with anorexia nervosa and matched healthy controls. Thereafter, thermal pain stimuli were applied during fMRI imaging. Structural analyses with high-resolution structural T1-weighted volumes were performed using voxel-based morphometry and a surface-based approach. Results Twenty-six patients and 26 controls participated in our study, and owing to technical difficulties, 15 participants in each group were included in our fMRI analysis. Structural analyses revealed significantly decreased grey matter volume and cortical thickness in the frontoparietal–cingulate network in patients with anorexia nervosa. We detected an increased blood oxygen level–dependent signal in patients during the painful 45°C condition in the midcingulate and posterior cingulate cortex, which positively correlated with increased pain thresholds. Decreased grey matter and cortical thickness correlated negatively with pain thresholds, symptom severity and illness duration, but not with body mass index. Limitations The lack of a specific quantification of body image distortion is a limitation of our study. Conclusion This study provides further evidence for confined structural and functional brain abnormalities in patients with anorexia nervosa in brain regions that are involved in perception and integration of bodily stimuli. The association of structural and functional deviations with thermal thresholds as well as with clinical characteristics might indicate a common neuronal origin. PMID:25825813

  19. [Correlation of brain electrical activity and motivation in healthy people].

    PubMed

    Bogovin, L V; Nakhamchen, D L; Kolosov, V P; Perel'man, Iu M

    2014-01-01

    Motivation dominates in the structure of the personality and is one of the basic notions which explains the dynamics of the behavior. The literature has little data about neurophysiology of motivation. The aim of the research was to study the correlation between the motivational sphere and electrical activity of the brain at the influence of different provocations. 24 healthy people at the age of 26-36 years were examined. The results of motivation tests turned out to be uniform (the motivation to success was of a moderate or high level, there were mean values of readiness to risk and low motivation to achievement and approval). Multiple correlations between different types of motivation and electrical activity of the brain at rest, at hyperventilation with room temperature air and at isocapnic cold air hyperventilation were revealed.

  20. The impact of brain size on pilot performance varies with aviation training and years of education

    PubMed Central

    Adamson, Maheen M.; Samarina, Viktoriya; Xiangyan, Xu; Huynh, Virginia; Kennedy, Quinn; Weiner, Michael; Yesavage, Jerome; Taylor, Joy L.

    2010-01-01

    Previous studies have consistently reported age-related changes in cognitive abilities and brain structure. Previous studies also suggest compensatory roles for specialized training, skill, and years of education in the age-related decline of cognitive function. The Stanford/VA Aviation Study examines the influence of specialized training and skill level (expertise) on age-related changes in cognition and brain structure. This preliminary report examines the effect of aviation expertise, years of education, age, and brain size on flight simulator performance in pilots aged 45–68 years. Fifty-one pilots were studied with structural magnetic resonance imaging, flight simulator, and processing speed tasks. There were significant main effects of age (p < .01) and expertise (p < .01), but not of whole brain size (p > .1) or education (p > .1), on flight simulator performance. However, even though age and brain size were correlated (r = −0.41), age differences in flight simulator performance were not explained by brain size. Both aviation expertise and education were involved in an interaction with brain size in predicting flight simulator performance (p < .05). These results point to the importance of examining measures of expertise and their interactions to assess age-related cognitive changes. PMID:20193103

  1. The mind as a process.

    PubMed

    Bruhn, John G; Wolf, Stewart

    2003-01-01

    Essentially all behavior is regulated by the brain in response to information received from within the body or from the environment. The tangible structures of the brain serve as devices for processing thoughts and emotions as well as information. Stored among the interacting neural structures are memories of past experiences and responses to them. These intangibles participate in determining the decisions made and the actions performed by the brain's structures. There are valuable studies of the clinical and neurological effects of environmental stimuli, but we need to learn more about the processes that lead to these effects. More definitive correlations could be made between environmental stimuli and the neurological pathways they create by studying individual's real life experiences rather than laboratory simulations alone.

  2. Sparse dictionary learning of resting state fMRI networks.

    PubMed

    Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C

    2012-07-02

    Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.

  3. Eye/Brain/Task Testbed And Software

    NASA Technical Reports Server (NTRS)

    Janiszewski, Thomas; Mainland, Nora; Roden, Joseph C.; Rothenheber, Edward H.; Ryan, Arthur M.; Stokes, James M.

    1994-01-01

    Eye/brain/task (EBT) testbed records electroencephalograms, movements of eyes, and structures of tasks to provide comprehensive data on neurophysiological experiments. Intended to serve continuing effort to develop means for interactions between human brain waves and computers. Software library associated with testbed provides capabilities to recall collected data, to process data on movements of eyes, to correlate eye-movement data with electroencephalographic data, and to present data graphically. Cognitive processes investigated in ways not previously possible.

  4. Effect of SOHAM meditation on human brain: a voxel-based morphometry study.

    PubMed

    Kumar, Uttam; Guleria, Anupam; Kishan, Sadguru Sri Kunal; Khetrapal, C L

    2014-01-01

    The anatomical correlates of long-term meditators involved in practice of "SOHAM" meditation have been studied using voxel-based morphometry (VBM). The VBM analysis indicates significantly higher gray matter density in brain stem, ventral pallidum, and supplementary motor area in the meditators as compared with age-matched nonmeditators. The observed changes in brain structure are compared with other forms of meditation. Copyright © 2013 by the American Society of Neuroimaging.

  5. Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain.

    PubMed

    Avraham, Hava Karsenty; Jiang, Shuxian; Fu, Yigong; Nakshatri, Harikrishna; Ovadia, Haim; Avraham, Shalom

    2014-02-01

    Although the incidence of breast cancer metastasis (BCM) in brain has increased significantly in triple-negative breast cancer (TNBC), the mechanisms remain elusive. Using in vivo mouse models for BCM in brain, we observed that TNBC cells crossed the blood-brain barrier (BBB), lodged in the brain microvasculature and remained adjacent to brain microvascular endothelial cells (BMECs). Breaching of the BBB in vivo by TNBCs resulted in increased BBB permeability and changes in ZO-1 and claudin-5 tight junction (TJ) protein structures. Angiopoietin-2 expression was elevated in BMECs and was correlated with BBB disruption. Secreted Ang-2 impaired TJ structures and increased BBB permeability. Treatment of mice with the neutralizing Ang-2 peptibody trebananib prevented changes in the BBB integrity and BMEC destabilization, resulting in inhibition of TNBC colonization in brain. Thus, Ang-2 is involved in initial steps of brain metastasis cascade, and inhibitors for Ang-2 may serve as potential therapeutics for brain metastasis. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Age of language learning shapes brain structure: a cortical thickness study of bilingual and monolingual individuals.

    PubMed

    Klein, Denise; Mok, Kelvin; Chen, Jen-Kai; Watkins, Kate E

    2014-04-01

    We examined the effects of learning a second language (L2) on brain structure. Cortical thickness was measured in the MRI datasets of 22 monolinguals and 66 bilinguals. Some bilingual subjects had learned both languages simultaneously (0-3 years) while some had learned their L2 after achieving proficiency in their first language during either early (4-7 years) or late childhood (8-13 years). Later acquisition of L2 was associated with significantly thicker cortex in the left inferior frontal gyrus (IFG) and thinner cortex in the right IFG. These effects were seen in the group comparisons of monolinguals, simultaneous bilinguals and early and late bilinguals. Within the bilingual group, significant correlations between age of acquisition of L2 and cortical thickness were seen in the same regions: cortical thickness correlated with age of acquisition positively in the left IFG and negatively in the right IFG. Interestingly, the monolinguals and simultaneous bilinguals did not differ in cortical thickness in any region. Our results show that learning a second language after gaining proficiency in the first language modifies brain structure in an age-dependent manner whereas simultaneous acquisition of two languages has no additional effect on brain development. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Changes in Structural Connectivity Following a Cognitive Intervention in Children With Traumatic Brain Injury.

    PubMed

    Yuan, Weihong; Treble-Barna, Amery; Sohlberg, McKay M; Harn, Beth; Wade, Shari L

    2017-02-01

    Structural connectivity analysis based on graph theory and diffusion tensor imaging tractography is a novel method that quantifies the topological characteristics in the brain network. This study aimed to examine structural connectivity changes following the Attention Intervention and Management (AIM) program designed to improve attention and executive function (EF) in children with traumatic brain injury (TBI). Seventeen children with complicated mild to severe TBI (13.66 ± 2.68 years; >12 months postinjury) completed magnetic resonance imaging (MRI) and neurobehavioral measures at time 1, 10 of whom completed AIM and assessment at time 2. Eleven matched healthy comparison (HC) children (13.37 ± 2.08 years) completed MRI and neurobehavioral assessment at both time points, but did not complete AIM. Network characteristics were analyzed to quantify the structural connectivity before and after the intervention. Mixed model analyses showed that small-worldness was significantly higher in the TBI group than the HC group at time 1, and both small-worldness and normalized clustering coefficient decreased significantly at time 2 in the TBI group whereas the HC group remained relatively unchanged. Reductions in mean local efficiency were significantly correlated with improvements in verbal inhibition and both parent- and child-reported EF. Increased normalized characteristic path length was significantly correlated with improved sustained attention. The results provide preliminary evidence suggesting that graph theoretical analysis may be a sensitive tool in pediatric TBI for detecting ( a) abnormalities of structural connectivity in brain network and ( b) structural neuroplasticity associated with neurobehavioral improvement following a short-term intervention for attention and EF.

  8. Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia.

    PubMed

    Tomelleri, Luisa; Jogia, Jigar; Perlini, Cinzia; Bellani, Marcella; Ferro, Adele; Rambaldelli, Gianluca; Tansella, Michele; Frangou, Sophia; Brambilla, Paolo

    2009-12-01

    Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology.

  9. Higher Media Multi-Tasking Activity Is Associated with Smaller Gray-Matter Density in the Anterior Cingulate Cortex

    PubMed Central

    Loh, Kep Kee; Kanai, Ryota

    2014-01-01

    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences. PMID:25250778

  10. Born with an ear for dialects? Structural plasticity in the expert phonetician brain.

    PubMed

    Golestani, Narly; Price, Cathy J; Scott, Sophie K

    2011-03-16

    Are experts born with particular predispositions, or are they made through experience? We examined brain structure in expert phoneticians, individuals who are highly trained to analyze and transcribe speech. We found a positive correlation between the size of left pars opercularis and years of phonetic transcription training experience, illustrating how learning may affect brain structure. Phoneticians were also more likely to have multiple or split left transverse gyri in the auditory cortex than nonexpert controls, and the amount of phonetic transcription training did not predict auditory cortex morphology. The transverse gyri are thought to be established in utero; our results thus suggest that this gross morphological difference may have existed before the onset of phonetic training, and that its presence confers an advantage of sufficient magnitude to affect career choices. These results suggest complementary influences of domain-specific predispositions and experience-dependent brain malleability, influences that likely interact in determining not only how experience shapes the human brain but also why some individuals become engaged by certain fields of expertise.

  11. Cerebral Blood Flow during Rest Associates with General Intelligence and Creativity

    PubMed Central

    Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Nagase, Tomomi; Nouchi, Rui; Kawashima, Ryuta

    2011-01-01

    Recently, much scientific attention has been focused on resting brain activity and its investigation through such methods as the analysis of functional connectivity during rest (the temporal correlation of brain activities in different regions). However, investigation of the magnitude of brain activity during rest has focused on the relative decrease of brain activity during a task, rather than on the absolute resting brain activity. It is thus necessary to investigate the association between cognitive factors and measures of absolute resting brain activity, such as cerebral blood flow (CBF), during rest (rest-CBF). In this study, we examined this association using multiple regression analyses. Rest-CBF was the dependent variable and the independent variables included two essential components of cognitive functions, psychometric general intelligence and creativity. CBF was measured using arterial spin labeling and there were three analyses for rest-CBF; namely mean gray matter rest-CBF, mean white matter rest-CBF, and regional rest-CBF. The results showed that mean gray and white matter rest-CBF were significantly and positively correlated with individual psychometric intelligence. Furthermore, mean white matter rest-CBF was significantly and positively correlated with creativity. After correcting the effect of mean gray matter rest-CBF the significant and positive correlation between regional rest-CBF in the perisylvian anatomical cluster that includes the left superior temporal gyrus and insula and individual psychometric intelligence was found. Also, regional rest-CBF in the precuneus was significantly and negatively correlated with individual creativity. Significance of these results of regional rest-CBF did not change when the effect of regional gray matter density was corrected. The findings showed mean and regional rest-CBF in healthy young subjects to be correlated with cognitive functions. The findings also suggest that, even in young cognitively intact subjects, resting brain activity (possibly underlain by default cognitive activity or metabolic demand from developed brain structures) is associated with cognitive functions. PMID:21980485

  12. Networks of myelin covariance.

    PubMed

    Melie-Garcia, Lester; Slater, David; Ruef, Anne; Sanabria-Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine

    2018-04-01

    Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, ). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these "networks of myelin covariance" (Myelin-Nets). The Myelin-Nets were built from quantitative Magnetization Transfer data-an in-vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin-Nets. We therefore selected two age groups: Young-Age (20-31 years old) and Old-Age (60-71 years old) and a pool of participants from 48 to 87 years old for a Myelin-Nets aging trajectory study. We found that the topological organization of the Myelin-Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin-Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  13. Networks of myelin covariance

    PubMed Central

    Slater, David; Ruef, Anne; Sanabria‐Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine

    2017-01-01

    Abstract Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, 2013). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these “networks of myelin covariance” (Myelin‐Nets). The Myelin‐Nets were built from quantitative Magnetization Transfer data—an in‐vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin‐Nets. We therefore selected two age groups: Young‐Age (20–31 years old) and Old‐Age (60–71 years old) and a pool of participants from 48 to 87 years old for a Myelin‐Nets aging trajectory study. We found that the topological organization of the Myelin‐Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin‐Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. PMID:29271053

  14. Problematic internet use is associated with structural alterations in the brain reward system in females.

    PubMed

    Altbäcker, Anna; Plózer, Enikő; Darnai, Gergely; Perlaki, Gábor; Horváth, Réka; Orsi, Gergely; Nagy, Szilvia Anett; Bogner, Péter; Schwarcz, Attila; Kovács, Norbert; Komoly, Sámuel; Clemens, Zsófia; Janszky, József

    2016-12-01

    Neuroimaging findings suggest that excessive Internet use shows functional and structural brain changes similar to substance addiction. Even though it is still under debate whether there are gender differences in case of problematic use, previous studies by-passed this question by focusing on males only or by using gender matched approach without controlling for potential gender effects. We designed our study to find out whether there are structural correlates in the brain reward system of problematic Internet use in habitual Internet user females. T1-weighted Magnetic Resonance (MR) images were collected in 82 healthy habitual Internet user females. Structural brain measures were investigated using both automated MR volumetry and voxel based morphometry (VBM). Self-reported measures of problematic Internet use and hours spent online were also assessed. According to MR volumetry, problematic Internet use was associated with increased grey matter volume of bilateral putamen and right nucleus accumbens while decreased grey matter volume of orbitofrontal cortex (OFC). Similarly, VBM analysis revealed a significant negative association between the absolute amount of grey matter OFC and problematic Internet use. Our findings suggest structural brain alterations in the reward system usually related to addictions are present in problematic Internet use.

  15. Brain Volumetric Correlates of Autism Spectrum Disorder Symptoms in Attention Deficit/Hyperactivity Disorder

    PubMed Central

    O’Dwyer, Laurence; Tanner, Colby; van Dongen, Eelco V.; Greven, Corina U.; Bralten, Janita; Zwiers, Marcel P.; Franke, Barbara; Oosterlaan, Jaap; Heslenfeld, Dirk; Hoekstra, Pieter; Hartman, Catharina A.; Rommelse, Nanda; Buitelaar, Jan K.

    2014-01-01

    Autism spectrum disorder (ASD) symptoms frequently occur in subjects with attention deficit/hyperactivity disorder (ADHD). While there is evidence that both ADHD and ASD have differential structural correlates, no study to date has investigated these structural correlates within a framework that robustly accounts for the phenotypic overlap between the two disorders. The presence of ASD symptoms was measured by the parent-reported Children’s Social and Behavioural Questionnaire (CSBQ) in ADHD subjects (n = 180), their unaffected siblings (n = 118) and healthy controls (n = 146). ADHD symptoms were assessed by a structured interview (K-SADS-PL) and the Conners’ ADHD questionnaires. Whole brain T1-weighted MPRAGE images were acquired and the structural MRI correlates of ASD symptom scores were analysed by modelling ASD symptom scores against white matter (WM) and grey matter (GM) volumes using mixed effects models which controlled for ADHD symptom levels. ASD symptoms were significantly elevated in ADHD subjects relative to both controls and unaffected siblings. ASD scores were predicted by the interaction between WM and GM volumes. Increasing ASD score was associated with greater GM volume. Equivocal results from previous structural studies in ADHD and ASD may be due to the fact that comorbidity has not been taken into account in studies to date. The current findings stress the need to account for issues of ASD comorbidity in ADHD. PMID:24979066

  16. Brain hyperintensity location determines outcome in the triad of impaired cognition, physical health and depressive symptoms: A cohort study in late life.

    PubMed

    Murray, Alison; McNeil, Chris; Salarirad, Sima; Deary, Ian; Phillips, Louise; Whalley, Lawrence; Staff, Roger

    2016-01-01

    Brain hyperintensities, detectable with MRI, increase with age. They are associated with a triad of impairment in cognitive ability, depression and physical health. Here we test the hypothesis that the association between hyperintensities and cognitive ability, physical health and depressive symptoms depends on lesion location. 244 members of the Aberdeen 1936 Birth Cohort were recruited to this study. 227 participants completed brain MRI and their hyperintensities were scored using Scheltens's scale. 205 had complete imaging, cognitive, physical health and depressive symptom score data. The relationships between hyperintensity location and depressive symptoms, cognitive ability and physical health were examined by correlation and structural equation analysis. We found that depressive symptoms correlated with hyperintensity burden in the grey matter (r=0.14, p=0.04) and infratentorial regions (r=0.17, p=0.01). Infratentorial hyperintensities correlated with reduced peak expiratory flow rate (r=-0.26, p<0.001) and impaired gait (r=0.13, p=0.05). No relationship was found between white matter and periventricular (supratentoral) hyperintensities and depressive symptoms. Hyperintensities in the supratentorial and infratentorial regions were associated with reduced cognitive performance. Using structural equation modelling we found that the association between hyperintensities and depressive symptoms was mediated by negative effects on physical health and cognitive ability. Hyperintensities in deep brain structures are associated with depressive symptoms, mediated via impaired physical health and cognitive ability. Participants with higher cognitive ability and better physical health are at lower risk of depressive symptoms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.

    PubMed

    Fan, Lingzhong; Li, Hai; Zhuo, Junjie; Zhang, Yu; Wang, Jiaojian; Chen, Liangfu; Yang, Zhengyi; Chu, Congying; Xie, Sangma; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B; Yu, Chunshui; Jiang, Tianzi

    2016-08-01

    The human brain atlases that allow correlating brain anatomy with psychological and cognitive functions are in transition from ex vivo histology-based printed atlases to digital brain maps providing multimodal in vivo information. Many current human brain atlases cover only specific structures, lack fine-grained parcellations, and fail to provide functionally important connectivity information. Using noninvasive multimodal neuroimaging techniques, we designed a connectivity-based parcellation framework that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity architecture. The resulting human Brainnetome Atlas, with 210 cortical and 36 subcortical subregions, provides a fine-grained, cross-validated atlas and contains information on both anatomical and functional connections. Additionally, we further mapped the delineated structures to mental processes by reference to the BrainMap database. It thus provides an objective and stable starting point from which to explore the complex relationships between structure, connectivity, and function, and eventually improves understanding of how the human brain works. The human Brainnetome Atlas will be made freely available for download at http://atlas.brainnetome.org, so that whole brain parcellations, connections, and functional data will be readily available for researchers to use in their investigations into healthy and pathological states. © The Author 2016. Published by Oxford University Press.

  18. Cognitive function and brain structure in females with a history of adolescent-onset anorexia nervosa.

    PubMed

    Chui, Harold T; Christensen, Bruce K; Zipursky, Robert B; Richards, Blake A; Hanratty, M Katherine; Kabani, Noor J; Mikulis, David J; Katzman, Debra K

    2008-08-01

    Abnormalities in cognitive function and brain structure have been reported in acutely ill adolescents with anorexia nervosa, but whether these abnormalities persist or are reversible in the context of weight restoration remains unclear. Brain structure and cognitive function in female subjects with adolescent-onset anorexia nervosa assessed at long-term follow-up were studied in comparison with healthy female subjects, and associations with clinical outcome were investigated. Sixty-six female subjects (aged 21.3 +/- 2.3 years) who had a diagnosis of adolescent-onset anorexia nervosa and treated 6.5 +/- 1.7 years earlier in a tertiary care hospital and 42 healthy female control subjects (aged 20.7 +/- 2.5 years) were assessed. All participants underwent a clinical examination, magnetic resonance brain scan, and cognitive evaluation. Clinical data were analyzed first as a function of weight recovery (n = 14, <85% ideal body weight; n = 52, >or=85% ideal body weight) and as a function of menstrual status (n = 18, absent/irregular menses; n = 29, oral contraceptive pill; n = 19, regular menses). Group comparisons were made across structural brain volumes and cognitive scores. Compared with control subjects, participants with anorexia nervosa who remained at low weight had larger lateral ventricles. Twenty-four-hour urinary free-cortisol levels were positively correlated with volumes of the temporal horns of the lateral ventricles and negatively correlated with volumes of the hippocampi in clinical participants. Participants who were amenorrheic or had irregular menses showed significant cognitive deficits across a broad range of many domains. Female subjects with adolescent-onset anorexia nervosa showed abnormal cognitive function and brain structure compared with healthy individuals despite an extended period since diagnosis. To our knowledge, this is the first study to report a specific relationship between menstrual function and cognitive function in this patient population. Possible mechanisms underlying neural and cognitive deficits with anorexia nervosa are discussed. Additional examination of the effects of estrogen on cognitive function in female subjects with anorexia nervosa is necessary.

  19. Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study

    PubMed Central

    Holschneider, Daniel P.; Wang, Zhuo; Pang, Raina D.

    2014-01-01

    Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [14C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas–findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture. PMID:24966831

  20. Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study.

    PubMed

    Holschneider, Daniel P; Wang, Zhuo; Pang, Raina D

    2014-01-01

    Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [(14)C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas-findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture.

  1. Similar Neural Correlates for Language and Sequential Learning: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Christiansen, Morten H.; Conway, Christopher M.; Onnis, Luca

    2012-01-01

    We used event-related potentials (ERPs) to investigate the time course and distribution of brain activity while adults performed (1) a sequential learning task involving complex structured sequences and (2) a language processing task. The same positive ERP deflection, the P600 effect, typically linked to difficult or ungrammatical syntactic…

  2. Brain functional connectivity changes in children that differ in impulsivity temperamental trait

    PubMed Central

    Inuggi, Alberto; Sanz-Arigita, Ernesto; González-Salinas, Carmen; Valero-García, Ana V.; García-Santos, Jose M.; Fuentes, Luis J.

    2014-01-01

    Impulsivity is a core personality trait forming part of normal behavior and contributing to adaptive functioning. However, in typically developing children, altered patterns of impulsivity constitute a risk factor for the development of behavioral problems. Since both pathological and non-pathological states are commonly characterized by continuous transitions, we used a correlative approach to investigate the potential link between personality and brain dynamics. We related brain functional connectivity of typically developing children, measured with magnetic resonance imaging at rest, with their impulsivity scores obtained from a questionnaire completed by their parents. We first looked for areas within the default mode network (DMN) whose functional connectivity might be modulated by trait impulsivity. Then, we calculated the functional connectivity among these regions and the rest of the brain in order to assess if impulsivity trait altered their relationships. We found two DMN clusters located at the posterior cingulate cortex and the right angular gyrus which were negatively correlated with impulsivity scores. The whole-brain correlation analysis revealed the classic network of correlating and anti-correlating areas with respect to the DMN. The impulsivity trait modulated such pattern showing that the canonical anti-phasic relation between DMN and action-related network was reduced in high impulsive children. These results represent the first evidence that the impulsivity, measured as personality trait assessed through parents' report, exerts a modulatory influence over the functional connectivity of resting state brain networks in typically developing children. The present study goes further to connect developmental approaches, mainly based on data collected through the use of questionnaires, and behavioral neuroscience, interested in how differences in brain structure and functions reflect in differences in behavior. PMID:24834038

  3. Brain functional connectivity changes in children that differ in impulsivity temperamental trait.

    PubMed

    Inuggi, Alberto; Sanz-Arigita, Ernesto; González-Salinas, Carmen; Valero-García, Ana V; García-Santos, Jose M; Fuentes, Luis J

    2014-01-01

    Impulsivity is a core personality trait forming part of normal behavior and contributing to adaptive functioning. However, in typically developing children, altered patterns of impulsivity constitute a risk factor for the development of behavioral problems. Since both pathological and non-pathological states are commonly characterized by continuous transitions, we used a correlative approach to investigate the potential link between personality and brain dynamics. We related brain functional connectivity of typically developing children, measured with magnetic resonance imaging at rest, with their impulsivity scores obtained from a questionnaire completed by their parents. We first looked for areas within the default mode network (DMN) whose functional connectivity might be modulated by trait impulsivity. Then, we calculated the functional connectivity among these regions and the rest of the brain in order to assess if impulsivity trait altered their relationships. We found two DMN clusters located at the posterior cingulate cortex and the right angular gyrus which were negatively correlated with impulsivity scores. The whole-brain correlation analysis revealed the classic network of correlating and anti-correlating areas with respect to the DMN. The impulsivity trait modulated such pattern showing that the canonical anti-phasic relation between DMN and action-related network was reduced in high impulsive children. These results represent the first evidence that the impulsivity, measured as personality trait assessed through parents' report, exerts a modulatory influence over the functional connectivity of resting state brain networks in typically developing children. The present study goes further to connect developmental approaches, mainly based on data collected through the use of questionnaires, and behavioral neuroscience, interested in how differences in brain structure and functions reflect in differences in behavior.

  4. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM).

    PubMed

    Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J; Gunter, Jeffrey L; Carmona, Susanna; Jaeggi, Susanne M; Thompson, Paul M

    2016-10-01

    Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Gray matter volume correlates of global positive alcohol expectancy in non-dependent adult drinkers

    PubMed Central

    Ide, Jaime S.; Zhang, Sheng; Hu, Sien; Matuskey, David; Bednarski, Sarah R.; Erdman, Emily; Farr, Olivia M.; Li, Chiang-shan R.

    2013-01-01

    Alcohol use and misuse is known to involve structural brain changes. Numerous imaging studies have examined changes in gray matter (GM) volumes in dependent drinkers, but there is little information on whether non-dependent drinking is associated with structural changes and whether these changes are related to psychological factors – such as alcohol expectancy – that influence drinking behavior. We used voxel based morphometry (VBM) to examine whether the global positive scale of alcohol expectancy, as measured by the Alcohol Expectancy Questionnaire AEQ-3, is associated with specific structural markers and whether such markers are associated with drinking behavior in 113 adult non-dependent drinkers (66 women). Alcohol expectancy is positively correlated with GM volume of left precentrral gyrus (PCG) in men and women combined and bilateral superior frontal gyri (SFG) in women, and negatively correlated with GM volume of the right ventral putamen in men. Furthermore, mediation analyses showed that the GM volume of PCG mediate the correlation of alcohol expectancy and the average number of drinks consumed per occasion and monthly total number of drinks in the past year. When recent drinking was directly accounted for in multiple regressions, GM volume of bilateral dorsolateral prefrontal cortices (DLPFC) correlated positively with alcohol expectancy in the combined sample. To our knowledge, these results are the first to identify the structural brain correlates of alcohol expectancy and its mediation of drinking behaviors. These findings suggest that more studies are needed to investigate increased GM volume in the frontal cortices as a neural correlate of alcohol expectancy. PMID:23461484

  6. Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants.

    PubMed

    Rose, Jessica; Vassar, Rachel; Cahill-Rowley, Katelyn; Stecher Guzman, Ximena; Hintz, Susan R; Stevenson, David K; Barnea-Goraly, Naama

    2014-01-01

    Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. Structural brain MRI, diffusion-weighted scans, and neonatal physiological risk factors were analyzed in a cross-sectional sample of 102 VLBW preterm infants (BW ≤ 1500 g, gestational age (GA) ≤ 32 weeks), who were admitted to the Lucile Packard Children's Hospital, Stanford NICU and recruited to participate prior to routine near-term brain MRI conducted at 36.6 ± 1.8 weeks postmenstrual age (PMA) from 2010 to 2011; 66/102 also underwent a diffusion-weighted scan. Brain abnormalities were assessed qualitatively on structural MRI, and white matter (WM) microstructure was analyzed quantitatively on DTI in six subcortical regions defined by DiffeoMap neonatal brain atlas. Specific regions of interest included the genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, the thalamus, and the globus pallidus. Regional fractional anisotropy (FA) and mean diffusivity (MD) were calculated using DTI data and examined in relation to neonatal physiological risk factors including gestational age (GA), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), and sepsis, as well as serum levels of C-reactive protein (CRP), glucose, albumin, and total bilirubin. Brain abnormalities were observed on structural MRI in 38/102 infants including 35% of females and 40% of males. Infants with brain abnormalities observed on MRI had higher incidence of BPD (42% vs. 25%) and sepsis (21% vs. 6%) and higher mean and peak serum CRP levels, respectively, (0.64 vs. 0.34 mg/dL, p = .008; 1.57 vs. 0.67 mg/dL, p= .006) compared to those without. The number of signal abnormalities observed on structural MRI correlated to mean and peak CRP (rho = .316, p = .002; rho = .318, p= .002). The number of signal abnormalities observed on MRI correlated with thalamus MD (left: r= .382, p= .002; right: r= .400, p= .001), controlling for PMA-at-scan. Thalamus WM microstructure demonstrated the strongest associations with neonatal risk factors. Higher thalamus MD on the left and right, respectively, was associated with lower GA (r = -.322, p = .009; r= -.381, p= .002), lower mean albumin (r = -.276, p= .029; r= -.385, p= .002), and lower mean bilirubin (r = -.293, p= .020; r= -.337 p= .007). Results suggest that at near-term age, thalamus WM microstructure may be particularly vulnerable to certain neonatal risk factors. Interactions between albumin, bilirubin, phototherapy, and brain development warrant further investigation. Identification of physiological risk factors associated with selective vulnerability of certain brain regions at near-term age may clarify the etiology of neurodevelopmental impairment and inform neuroprotective treatment for VLBW preterm infants.

  7. Brain Structural Differences between Normal and Obese Adults and their Links with Lack of Perseverance, Negative Urgency, and Sensation Seeking.

    PubMed

    Wang, Haifeng; Wen, Baohong; Cheng, Jingliang; Li, Hongpeng

    2017-01-16

    In order to examine the difference in brain structure between obese and normal weight individuals, and to explore the relationship between the neuroanatomical changes and impulsivity traits, this study used a voxel-based morphometry method to examine gray matter (GM) volume alterations related to impulsive personality traits in obese individuals relative to normal weight. Eighty adults that completed the UPPS-P Impulsive Behavior Scale were analyzed. Possible GM volume alterations were first analyzed at the whole brain level, and then the relationship between regional GM volume differences and UPPS-P scores were examined in selected regions of interest. Reduced GM volumes were found in the frontal and limbic regions in the obese group compared to normal weight individuals. In the normal weight group, lack of perseverance was negatively correlated with GM volume in the anterior cingulate cortex, and negative urgency was negatively correlated with GM volume in the insula. In the obese group, sensation seeking was negatively correlated with GM volume in the left amygdala and right pallidum. These findings might improve our understanding of the relationship between lack of perseverance, negative urgency, and sensation seeking and body weight fluctuations.

  8. Brain Structural Differences between Normal and Obese Adults and their Links with Lack of Perseverance, Negative Urgency, and Sensation Seeking

    PubMed Central

    Wang, Haifeng; Wen, Baohong; Cheng, Jingliang; Li, Hongpeng

    2017-01-01

    In order to examine the difference in brain structure between obese and normal weight individuals, and to explore the relationship between the neuroanatomical changes and impulsivity traits, this study used a voxel-based morphometry method to examine gray matter (GM) volume alterations related to impulsive personality traits in obese individuals relative to normal weight. Eighty adults that completed the UPPS-P Impulsive Behavior Scale were analyzed. Possible GM volume alterations were first analyzed at the whole brain level, and then the relationship between regional GM volume differences and UPPS-P scores were examined in selected regions of interest. Reduced GM volumes were found in the frontal and limbic regions in the obese group compared to normal weight individuals. In the normal weight group, lack of perseverance was negatively correlated with GM volume in the anterior cingulate cortex, and negative urgency was negatively correlated with GM volume in the insula. In the obese group, sensation seeking was negatively correlated with GM volume in the left amygdala and right pallidum. These findings might improve our understanding of the relationship between lack of perseverance, negative urgency, and sensation seeking and body weight fluctuations. PMID:28091559

  9. Examining Neural Correlates of Psychopathology Using a Lesion-Based Approach.

    PubMed

    Calamia, Matthew; Markon, Kristian E; Sutterer, Matthew J; Tranel, Daniel

    2018-06-22

    Studies of individuals with focal brain damage have long been used to expand understanding of the neural basis of psychopathology. However, most previous studies were conducted using small sample sizes and relatively coarse methods for measuring psychopathology or mapping brain-behavior relationships. Here, we examined the factor structure and neural correlates of psychopathology in 232 individuals with focal brain damage, using their responses to the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF). Factor analysis and voxel-based lesion symptom mapping were used to examine the structure and neural correlates of psychopathology in this sample. Consistent with existing MMPI-2-RF literature, separate internalizing, externalizing, and psychotic symptom dimensions were found. In addition, a somatic dimension likely reflecting neurological symptoms was identified. Damage to the medial temporal lobe, including the hippocampus, was associated with scales related to both internalizing problems and psychoticism. Damage to the medial temporal lobe and orbitofrontal cortex was associated with both a general distrust of others and beliefs that one is being personally targeted by others. These findings provide evidence for the critical role of dysfunction in specific frontal and temporal regions in the development of psychopathology. Copyright © 2018. Published by Elsevier Ltd.

  10. Neurological soft signs are not "soft" in brain structure and functional networks: evidence from ALE meta-analysis.

    PubMed

    Zhao, Qing; Li, Zhi; Huang, Jia; Yan, Chao; Dazzan, Paola; Pantelis, Christos; Cheung, Eric F C; Lui, Simon S Y; Chan, Raymond C K

    2014-05-01

    Neurological soft signs (NSS) are associated with schizophrenia and related psychotic disorders. NSS have been conventionally considered as clinical neurological signs without localized brain regions. However, recent brain imaging studies suggest that NSS are partly localizable and may be associated with deficits in specific brain areas. We conducted an activation likelihood estimation meta-analysis to quantitatively review structural and functional imaging studies that evaluated the brain correlates of NSS in patients with schizophrenia and other psychotic disorders. Six structural magnetic resonance imaging (sMRI) and 15 functional magnetic resonance imaging (fMRI) studies were included. The results from meta-analysis of the sMRI studies indicated that NSS were associated with atrophy of the precentral gyrus, the cerebellum, the inferior frontal gyrus, and the thalamus. The results from meta-analysis of the fMRI studies demonstrated that the NSS-related task was significantly associated with altered brain activation in the inferior frontal gyrus, bilateral putamen, the cerebellum, and the superior temporal gyrus. Our findings from both sMRI and fMRI meta-analyses further support the conceptualization of NSS as a manifestation of the "cerebello-thalamo-prefrontal" brain network model of schizophrenia and related psychotic disorders.

  11. Interpretation of the Precision Matrix and Its Application in Estimating Sparse Brain Connectivity during Sleep Spindles from Human Electrocorticography Recordings

    PubMed Central

    Das, Anup; Sampson, Aaron L.; Lainscsek, Claudia; Muller, Lyle; Lin, Wutu; Doyle, John C.; Cash, Sydney S.; Halgren, Eric; Sejnowski, Terrence J.

    2017-01-01

    The correlation method from brain imaging has been used to estimate functional connectivity in the human brain. However, brain regions might show very high correlation even when the two regions are not directly connected due to the strong interaction of the two regions with common input from a third region. One previously proposed solution to this problem is to use a sparse regularized inverse covariance matrix or precision matrix (SRPM) assuming that the connectivity structure is sparse. This method yields partial correlations to measure strong direct interactions between pairs of regions while simultaneously removing the influence of the rest of the regions, thus identifying regions that are conditionally independent. To test our methods, we first demonstrated conditions under which the SRPM method could indeed find the true physical connection between a pair of nodes for a spring-mass example and an RC circuit example. The recovery of the connectivity structure using the SRPM method can be explained by energy models using the Boltzmann distribution. We then demonstrated the application of the SRPM method for estimating brain connectivity during stage 2 sleep spindles from human electrocorticography (ECoG) recordings using an 8 × 8 electrode array. The ECoG recordings that we analyzed were from a 32-year-old male patient with long-standing pharmaco-resistant left temporal lobe complex partial epilepsy. Sleep spindles were automatically detected using delay differential analysis and then analyzed with SRPM and the Louvain method for community detection. We found spatially localized brain networks within and between neighboring cortical areas during spindles, in contrast to the case when sleep spindles were not present. PMID:28095202

  12. Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study.

    PubMed

    Koutsouleris, Nikolaos; Gaser, Christian; Jäger, Markus; Bottlender, Ronald; Frodl, Thomas; Holzinger, Silvia; Schmitt, Gisela J E; Zetzsche, Thomas; Burgermeister, Bernhard; Scheuerecker, Johanna; Born, Christine; Reiser, Maximilian; Möller, Hans-Jürgen; Meisenzahl, Eva M

    2008-02-15

    Structural neuroimaging has substantially advanced the neurobiological research of schizophrenia by describing a range of focal brain alterations as possible neuroanatomical underpinnings of the disease. Despite this progress, a considerable heterogeneity of structural findings persists that may reflect the phenomenological diversity of schizophrenia. It is unclear whether the range of possible clinical disease manifestations relates to a core structural brain deficit or to distinct structural correlates. Therefore, gray matter density (GMD) differences between 175 schizophrenic patients (SZ) and 177 matched healthy control subjects (HC) were examined in a three-step approach using cross-sectional and conjunctional voxel-based morphometry (VBM): (1) analysis of structural alterations irrespective of symptomatology; (2) subdivision of the patient sample according to a three-dimensional factor model of the PANSS and investigation of structural differences between these subsamples and healthy controls; (3) analysis of a common pattern of structural alterations present in all patient subsamples compared to healthy controls. Significant GMD reductions in patients compared to controls were identified within the prefrontal, limbic, paralimbic, temporal and thalamic regions. The disorganized symptom dimension was associated with bilateral alterations in temporal, insular and medial prefrontal cortices. Positive symptoms were associated with left-pronounced alterations in perisylvian regions and extended thalamic GMD losses. Negative symptoms were linked to the most extended alterations within orbitofrontal, medial prefrontal, lateral prefrontal and temporal cortices as well as limbic and subcortical structures. Thus, structural heterogeneity in schizophrenia may relate to specific patterns of GMD reductions that possibly share a common prefrontal-perisylvian pattern of structural brain alterations.

  13. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback.

    PubMed

    Ramot, Michal; Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex

    2017-09-16

    The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants' awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns.

  14. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    NASA Astrophysics Data System (ADS)

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-12-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.

  15. Possible involvement of rumination in gray matter abnormalities in persistent symptoms of major depression: an exploratory magnetic resonance imaging voxel-based morphometry study.

    PubMed

    Machino, Akihiko; Kunisato, Yoshihiko; Matsumoto, Tomoya; Yoshimura, Shinpei; Ueda, Kazutaka; Yamawaki, Yosuke; Okada, Go; Okamoto, Yasumasa; Yamawaki, Shigeto

    2014-10-01

    A recent meta-analysis of many magnetic resonance imaging (MRI) studies has identified brain regions with gray matter (GM) abnormalities in patients with major depressive disorder (MDD). A few studies addressing GM abnormalities in patients with treatment-resistant depression (TRD) have yielded inconsistent results. Moreover, although TRD patients tend to exhibit ruminative thoughts, it remains unclear whether rumination is related to GM abnormalities in such patients or not. We conducted structural MRI scans and voxel-based morphometry (VBM) to identify GM differences among 29 TRD patients and 29 healthy age-matched and sex-matched controls. A response style questionnaire was used to assess the respective degrees of rumination in TRD patients. Structural correlates of rumination were examined. TRD patients showed several regions with smaller GM volume than in healthy subjects: the left dorsal anterior cingulate cortex (ACC), right ventral ACC, right superior frontal gyrus, right cerebellum (Crus I), and cerebellar vermis. GM volumes in these regions did not correlate to rumination. However, whole-brain analysis revealed that rumination was positively correlated with the GM volume in the right superior temporal gyrus in TRD patients. Structural correlates of rumination were examined only in TRD patients. Our data provide additional evidence supporting the hypothesis that TRD patients show GM abnormalities compared with healthy subjects. Furthermore, this report is the first to describe a study identifying brain regions for which the GM volume is correlated with rumination in TRD patients. These results improve our understanding of the anatomical characteristics of TRD. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Correlative STED and Atomic Force Microscopy on Live Astrocytes Reveals Plasticity of Cytoskeletal Structure and Membrane Physical Properties during Polarized Migration

    PubMed Central

    Curry, Nathan; Ghézali, Grégory; Kaminski Schierle, Gabriele S.; Rouach, Nathalie; Kaminski, Clemens F.

    2017-01-01

    The plasticity of the cytoskeleton architecture and membrane properties is important for the establishment of cell polarity, adhesion and migration. Here, we present a method which combines stimulated emission depletion (STED) super-resolution imaging and atomic force microscopy (AFM) to correlate cytoskeletal structural information with membrane physical properties in live astrocytes. Using STED compatible dyes for live cell imaging of the cytoskeleton, and simultaneously mapping the cell surface topology with AFM, we obtain unprecedented detail of highly organized networks of actin and microtubules in astrocytes. Combining mechanical data from AFM with optical imaging of actin and tubulin further reveals links between cytoskeleton organization and membrane properties. Using this methodology we illustrate that scratch-induced migration induces cytoskeleton remodeling. The latter is caused by a polarization of actin and microtubule elements within astroglial cell processes, which correlates strongly with changes in cell stiffness. The method opens new avenues for the dynamic probing of the membrane structural and functional plasticity of living brain cells. It is a powerful tool for providing new insights into mechanisms of cell structural remodeling during physiological or pathological processes, such as brain development or tumorigenesis. PMID:28469559

  17. The Amsterdam Resting-State Questionnaire reveals multiple phenotypes of resting-state cognition

    PubMed Central

    Diaz, B. Alexander; Van Der Sluis, Sophie; Moens, Sarah; Benjamins, Jeroen S.; Migliorati, Filippo; Stoffers, Diederick; Den Braber, Anouk; Poil, Simon-Shlomo; Hardstone, Richard; Van't Ent, Dennis; Boomsma, Dorret I.; De Geus, Eco; Mansvelder, Huibert D.; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus

    2013-01-01

    Resting-state neuroimaging is a dominant paradigm for studying brain function in health and disease. It is attractive for clinical research because of its simplicity for patients, straightforward standardization, and sensitivity to brain disorders. Importantly, non-sensory experiences like mind wandering may arise from ongoing brain activity. However, little is known about the link between ongoing brain activity and cognition, as phenotypes of resting-state cognition—and tools to quantify them—have been lacking. To facilitate rapid and structured measurements of resting-state cognition we developed a 50-item self-report survey, the Amsterdam Resting-State Questionnaire (ARSQ). Based on ARSQ data from 813 participants assessed after 5 min eyes-closed rest in their home, we identified seven dimensions of resting-state cognition using factor analysis: Discontinuity of Mind, Theory of Mind, Self, Planning, Sleepiness, Comfort, and Somatic Awareness. Further, we showed that the structure of cognition was similar during resting-state fMRI and EEG, and that the test-retest correlations were remarkably high for all dimensions. To explore whether inter-individual variation of resting-state cognition is related to health status, we correlated ARSQ-derived factor scores with psychometric scales measuring depression, anxiety, and sleep quality. Mental health correlated positively with Comfort and negatively with Discontinuity of Mind. Finally, we show that sleepiness may partially explain a resting-state EEG profile previously associated with Alzheimer's disease. These findings indicate that the ARSQ readily provides information about cognitive phenotypes and that it is a promising tool for research on the neural correlates of resting-state cognition in health and disease. PMID:23964225

  18. Structural Similarities between Brain and Linguistic Data Provide Evidence of Semantic Relations in the Brain

    PubMed Central

    Crangle, Colleen E.; Perreau-Guimaraes, Marcos; Suppes, Patrick

    2013-01-01

    This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA), which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG) recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model. PMID:23799009

  19. In vivo correlation between axon diameter and conduction velocity in the human brain.

    PubMed

    Horowitz, Assaf; Barazany, Daniel; Tavor, Ido; Bernstein, Moran; Yovel, Galit; Assaf, Yaniv

    2015-01-01

    The understanding of the relationship between structure and function has always characterized biology in general and neurobiology in particular. One such fundamental relationship is that between axon diameter and the axon's conduction velocity (ACV). Measurement of these neuronal properties, however, requires invasive procedures that preclude direct elucidation of this relationship in vivo. Here we demonstrate that diffusion-based MRI is sensitive to the fine microstructural elements of brain wiring and can be used to quantify axon diameter in vivo. Moreover, we demonstrate the in vivo correlation between the diameter of an axon and its conduction velocity in the human brain. Using AxCaliber, a novel magnetic resonance imaging technique that enables us to estimate in vivo axon diameter distribution (ADD) and by measuring the interhemispheric transfer time (IHTT) by electroencephalography, we found significant linear correlation, across a cohort of subjects, between brain microstructure morphology (ADD) and its physiology (ACV) in the tactile and visual sensory domains. The ability to make a quantitative assessment of a fundamental physiological property in the human brain from in vivo measurements of ADD may shed new light on neurological processes occurring in neuroplasticity as well as in neurological disorders and neurodegenerative diseases.

  20. MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction

    NASA Astrophysics Data System (ADS)

    Yin, Xi; Yang, Jing; Xiao, Feng; Yang, Yang; Shen, Hong-Bin

    2018-03-01

    Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels, transporters, receptors. Because it is difficult to determinate the membrane protein's structure by wet-lab experiments, accurate and fast amino acid sequence-based computational methods are highly desired. In this paper, we report an online prediction tool called MemBrain, whose input is the amino acid sequence. MemBrain consists of specialized modules for predicting transmembrane helices, residue-residue contacts and relative accessible surface area of α-helical membrane proteins. MemBrain achieves a prediction accuracy of 97.9% of A TMH, 87.1% of A P, 3.2 ± 3.0 of N-score, 3.1 ± 2.8 of C-score. MemBrain-Contact obtains 62%/64.1% prediction accuracy on training and independent dataset on top L/5 contact prediction, respectively. And MemBrain-Rasa achieves Pearson correlation coefficient of 0.733 and its mean absolute error of 13.593. These prediction results provide valuable hints for revealing the structure and function of membrane proteins. MemBrain web server is free for academic use and available at www.csbio.sjtu.edu.cn/bioinf/MemBrain/. [Figure not available: see fulltext.

  1. Structural brain MRI trait polygenic score prediction of cognitive abilities

    PubMed Central

    Luciano, Michelle; Marioni, Riccardo E; Hernández, Maria Valdés; Maniega, Susana Munoz; Hamilton, Iona F; Royle, Natalie A.; Scotland, Generation; Chauhan, Ganesh; Bis, Joshua C.; Debette, Stephanie; DeCarli, Charles; Fornage, Myriam; Schmidt, Reinhold; Ikram, M. Arfan; Launer, Lenore J.; Seshadri, Sudha; Bastin, Mark E.; Porteous, David J.; Wardlaw, Joanna; Deary, Ian J

    2016-01-01

    Structural brain magnetic resonance imaging (MRI) traits share part of their genetic variance with cognitive traits. Here, we use genetic association results from large meta-analytic studies of genome-wide association for brain infarcts, white matter hyperintensities, intracranial, hippocampal and total brain volumes to estimate polygenic scores for these traits in three Scottish samples: Generation Scotland: Scottish Family Health Study (GS:SFHS), and the Lothian Birth Cohorts of 1936 (LBC1936) and 1921 (LBC1921). These five brain MRI trait polygenic scores were then used to 1) predict corresponding MRI traits in the LBC1936 (numbers ranged 573 to 630 across traits) and 2) predict cognitive traits in all three cohorts (in 8,115 to 8,250 persons). In the LBC1936, all MRI phenotypic traits were correlated with at least one cognitive measure; and polygenic prediction of MRI traits was observed for intracranial volume. Meta-analysis of the correlations between MRI polygenic scores and cognitive traits revealed a significant negative correlation (maximal r=0.08) between the hippocampal volume polygenic score and measures of global cognitive ability collected in childhood and in old age in the Lothian Birth Cohorts. The lack of association to a related general cognitive measure when including the GS:SFHS points to either type 1 error or the importance of using prediction samples that closely match the demographics of the genome-wide association samples from which prediction is based. Ideally, these analyses should be repeated in larger samples with data on both MRI and cognition, and using MRI GWA results from even larger meta-analysis studies. PMID:26427786

  2. A Systematic and Meta-analytic Review of Neural Correlates of Functional Outcome in Schizophrenia.

    PubMed

    Wojtalik, Jessica A; Smith, Matthew J; Keshavan, Matcheri S; Eack, Shaun M

    2017-10-21

    Individuals with schizophrenia are burdened with impairments in functional outcome, despite existing interventions. The lack of understanding of the neurobiological correlates supporting adaptive function in the disorder is a significant barrier to developing more effective treatments. This research conducted a systematic and meta-analytic review of all peer-reviewed studies examining brain-functional outcome relationships in schizophrenia. A total of 53 (37 structural and 16 functional) brain imaging studies examining the neural correlates of functional outcome across 1631 individuals with schizophrenia were identified from literature searches in relevant databases occurring between January, 1968 and December, 2016. Study characteristics and results representing brain-functional outcome relationships were systematically extracted, reviewed, and meta-analyzed. Results indicated that better functional outcome was associated with greater fronto-limbic and whole brain volumes, smaller ventricles, and greater activation, especially during social cognitive processing. Thematic observations revealed that the dorsolateral prefrontal cortex, anterior cingulate, posterior cingulate, parahippocampal gyrus, superior temporal sulcus, and cerebellum may have role in functioning. The neural basis of functional outcome and disability is infrequently studied in schizophrenia. While existing evidence is limited and heterogeneous, these findings suggest that the structural and functional integrity of fronto-limbic brain regions is consistently related to functional outcome in individuals with schizophrenia. Further research is needed to understand the mechanisms and directionality of these relationships, and the potential for identifying neural targets to support functional improvement. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Mutagenicity, anticancer activity and blood brain barrier: similarity and dissimilarity of molecular alerts.

    PubMed

    Toropov, Andrey A; Toropova, Alla P; Benfenati, Emilio; Salmona, Mario

    2018-06-01

    The aim of the present work is an attempt to define computable measure of similarity between different endpoints. The similarity of structural alerts of different biochemical endpoints can be used to solve tasks of medicinal chemistry. Optimal descriptors are a tool to build up models for different endpoints. The optimal descriptor is calculated with simplified molecular input-line entry system (SMILES). A group of elements (single symbol or pair of symbols) can represent any SMILES. Each element of SMILES can be represented by so-called correlation weight i.e. coefficient that should be used to calculate descriptor. Numerical data on the correlation weights are calculated by the Monte Carlo method, i.e. by optimization procedure, which gives maximal correlation coefficient between the optimal descriptor and endpoint for the training set. Statistically stable correlation weights observed in several runs of the optimization can be examined as structural alerts, which are promoters of the increase or the decrease of a biochemical activity of a substance. Having data on several runs of the optimization correlation weights, one can extract list of promoters of increase and list of promoters of decrease for an endpoint. The study of similarity and dissimilarity of the above lists has been carried out for the following pairs of endpoints: (i) mutagenicity and anticancer activity; (ii) mutagenicity and blood brain barrier; and (iii) blood brain barrier and anticancer activity. The computational experiment confirms that similarity and dissimilarity for pairs of endpoints can be measured.

  4. Recent neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  5. Psychophysiological correlates of aggression and violence: an integrative review.

    PubMed

    Patrick, Christopher J

    2008-08-12

    This paper reviews existing psychophysiological studies of aggression and violent behaviour including research employing autonomic, electrocortical and neuroimaging measures. Robust physiological correlates of persistent aggressive behaviour evident in this literature include low baseline heart rate, enhanced autonomic reactivity to stressful or aversive stimuli, enhanced EEG slow wave activity, reduced P300 brain potential response and indications from structural and functional neuroimaging studies of dysfunction in frontocortical and limbic brain regions that mediate emotional processing and regulation. The findings are interpreted within a conceptual framework that draws on two integrative models in the literature. The first is a recently developed hierarchical model of impulse control (externalizing) problems, in which various disinhibitory syndromes including aggressive and addictive behaviours of different kinds are seen as arising from common as well as distinctive aetiologic factors. This model represents an approach to organizing these various interrelated phenotypes and investigating their common and distinctive aetiologic substrates. The other is a neurobiological model that posits impairments in affective regulatory circuits in the brain as a key mechanism for impulsive aggressive behaviour. This model provides a perspective for integrating findings from studies employing different measures that have implicated varying brain structures and physiological systems in violent and aggressive behaviour.

  6. A probabilistic framework to infer brain functional connectivity from anatomical connections.

    PubMed

    Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel

    2011-01-01

    We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.

  7. Resting State Brain Entropy Alterations in Relapsing Remitting Multiple Sclerosis.

    PubMed

    Zhou, Fuqing; Zhuang, Ying; Gong, Honghan; Zhan, Jie; Grossman, Murray; Wang, Ze

    2016-01-01

    Brain entropy (BEN) mapping provides a novel approach to characterize brain temporal dynamics, a key feature of human brain. Using resting state functional magnetic resonance imaging (rsfMRI), reliable and spatially distributed BEN patterns have been identified in normal brain, suggesting a potential use in clinical populations since temporal brain dynamics and entropy may be altered in disease conditions. The purpose of this study was to characterize BEN in multiple sclerosis (MS), a neurodegenerative disease that affects millions of people. Since currently there is no cure for MS, developing treatment or medication that can slow down its progression represents a high research priority, for which validating a brain marker sensitive to disease and the related functional impairments is essential. Because MS can start long time before any measurable symptoms and structural deficits, assessing the dynamic brain activity and correspondingly BEN may provide a critical way to study MS and its progression. Because BEN is new to MS, we aimed to assess BEN alterations in the relapsing-remitting MS (RRMS) patients using a patient versus control design, to examine the correlation of BEN to clinical measurements, and to check the correlation of BEN to structural brain measures which have been more often used in MS studies. As compared to controls, RRMS patients showed increased BEN in motor areas, executive control area, spatial coordinating area, and memory system. Increased BEN was related to greater disease severity as measured by the expanded disability status scale (EDSS) and greater tissue damage as indicated by the mean diffusivity. Patients also showed decreased BEN in other places, which was associated with less disability or fatigue, indicating a disease-related BEN re-distribution. Our results suggest BEN as a novel and useful tool for characterizing RRMS.

  8. Decreased integration and information capacity in stroke measured by whole brain models of resting state activity.

    PubMed

    Adhikari, Mohit H; Hacker, Carl D; Siegel, Josh S; Griffa, Alessandra; Hagmann, Patric; Deco, Gustavo; Corbetta, Maurizio

    2017-04-01

    While several studies have shown that focal lesions affect the communication between structurally normal regions of the brain, and that these changes may correlate with behavioural deficits, their impact on brain's information processing capacity is currently unknown. Here we test the hypothesis that focal lesions decrease the brain's information processing capacity, of which changes in functional connectivity may be a measurable correlate. To measure processing capacity, we turned to whole brain computational modelling to estimate the integration and segregation of information in brain networks. First, we measured functional connectivity between different brain areas with resting state functional magnetic resonance imaging in healthy subjects (n = 26), and subjects who had suffered a cortical stroke (n = 36). We then used a whole-brain network model that coupled average excitatory activities of local regions via anatomical connectivity. Model parameters were optimized in each healthy or stroke participant to maximize correlation between model and empirical functional connectivity, so that the model's effective connectivity was a veridical representation of healthy or lesioned brain networks. Subsequently, we calculated two model-based measures: 'integration', a graph theoretical measure obtained from functional connectivity, which measures the connectedness of brain networks, and 'information capacity', an information theoretical measure that cannot be obtained empirically, representative of the segregative ability of brain networks to encode distinct stimuli. We found that both measures were decreased in stroke patients, as compared to healthy controls, particularly at the level of resting-state networks. Furthermore, we found that these measures, especially information capacity, correlate with measures of behavioural impairment and the segregation of resting-state networks empirically measured. This study shows that focal lesions affect the brain's ability to represent stimuli and task states, and that information capacity measured through whole brain models is a theory-driven measure of processing capacity that could be used as a biomarker of injury for outcome prediction or target for rehabilitation intervention. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. ONTOGENETIC ALTERATIONS IN MOLECULAR AND STRUCTURAL CORRELATES OF DENDRITIC GROWTH FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYLS.

    EPA Science Inventory

    This is the first report showing both molecular and structural changes in brain following developmental exposure to a neurotoxicant. It is known that perinatal exposure to a neurotoxicant, polychlorinated biphenyls (PCBs), is associated with decreased IQ scores, impaired learnin...

  10. Gray and white matter correlates of the Big Five personality traits.

    PubMed

    Privado, Jesús; Román, Francisco J; Saénz-Urturi, Carlota; Burgaleta, Miguel; Colom, Roberto

    2017-05-04

    Personality neuroscience defines the scientific study of the neurobiological basis of personality. This field assumes that individual differences in personality traits are related with structural and functional variations of the human brain. Gray and white matters are structural properties considered separately in previous research. Available findings in this regard are largely disparate. Here we analyze the relationships between gray matter (cortical thickness (CT), cortical surface area (CSA), and cortical volume) and integrity scores obtained after several white matter tracts connecting different brain regions, with individual differences in the personality traits comprised by the Five-Factor Model (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience). These psychological and biological data were obtained from young healthy women. The main findings showed statistically significant associations between occipital CSA variations and extraversion, as well as between parietal CT variations and neuroticism. Regarding white matter integrity, openness showed positive correlations with tracts connecting posterior and anterior brain regions. Therefore, variations in discrete gray matter clusters were associated with temperamental traits (extraversion and neuroticism), whereas long-distance structural connections were related with the dimension of personality that has been associated with high-level cognitive processes (openness). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Human brain structure predicts individual differences in preconscious evaluation of facial dominance and trustworthiness

    PubMed Central

    Kanai, Ryota; Bahrami, Bahador; Rees, Geraint

    2015-01-01

    Social cues conveyed by the human face, such as eye gaze direction, are evaluated even before they are consciously perceived. While there is substantial individual variability in such evaluation, its neural basis is unknown. Here we asked whether individual differences in preconscious evaluation of social face traits were associated with local variability in brain structure. Adult human participants (n = 36) monocularly viewed faces varying in dominance and trustworthiness, which were suppressed from awareness by a dynamic noise pattern shown to the other eye. The time taken for faces to emerge from suppression and become visible (t2e) was used as a measure of potency in competing for visual awareness. Both dominant and untrustworthy faces resulted in slower t2e than neutral faces, with substantial individual variability in these effects. Individual differences in t2e were correlated with gray matter volume in right insula for dominant faces, and with gray matter volume in medial prefrontal cortex, right temporoparietal junction and bilateral fusiform face area for untrustworthy faces. Thus, individual differences in preconscious social processing can be predicted from local brain structure, and separable correlates for facial dominance and untrustworthiness suggest distinct mechanisms of preconscious processing. PMID:25193945

  12. Neuropsychiatry and White Matter Microstructure in Huntington's Disease.

    PubMed

    Gregory, Sarah; Scahill, Rachael I; Seunarine, Kiran K; Stopford, Cheryl; Zhang, Hui; Zhang, Jiaying; Orth, Michael; Durr, Alexandra; Roos, Raymund A C; Langbehn, Douglas R; Long, Jeffrey D; Johnson, Hans; Rees, Geraint; Tabrizi, Sarah J; Craufurd, David

    2015-01-01

    Neuropsychiatric symptoms in Huntington's disease (HD) are often evident prior to clinical diagnosis. Apathy is highly correlated with disease progression, while depression and irritability occur at different stages of the disease, both before and after clinical onset. Little is understood about the neural bases of these neuropsychiatric symptoms and to what extent those neural bases are analogous to neuropsychiatric disorders in the general population. We used Diffusion Tensor Imaging (DTI) to investigate structural connectivity between brain regions and any putative microstructural changes associated with depression, apathy and irritability in HD. DTI data were collected from 39 premanifest and 45 early-HD participants in the Track-HD study and analysed using whole-brain Tract-Based Spatial Statistics. We used regression analyses to identify white matter tracts whose structural integrity (as measured by fractional anisotropy, FA) was correlated with HADS-depression, PBA-apathy or PBA-irritability scores in gene-carriers and related to cumulative probability to onset (CPO). For those with the highest CPO, we found significant correlations between depression scores and reduced FA in the splenium of the corpus callosum. In contrast, those with lowest CPO demonstrated significant correlations between irritability scores and widespread FA reductions. There was no significant relationship between apathy and FA throughout the whole brain. We demonstrate that white matter changes associated with both depression and irritability in HD occur at different stages of disease progression concomitant with their clinical presentation.

  13. Structural brain aging and speech production: a surface-based brain morphometry study.

    PubMed

    Tremblay, Pascale; Deschamps, Isabelle

    2016-07-01

    While there has been a growing number of studies examining the neurofunctional correlates of speech production over the past decade, the neurostructural correlates of this immensely important human behaviour remain less well understood, despite the fact that previous studies have established links between brain structure and behaviour, including speech and language. In the present study, we thus examined, for the first time, the relationship between surface-based cortical thickness (CT) and three different behavioural indexes of sublexical speech production: response duration, reaction times and articulatory accuracy, in healthy young and older adults during the production of simple and complex meaningless sequences of syllables (e.g., /pa-pa-pa/ vs. /pa-ta-ka/). The results show that each behavioural speech measure was sensitive to the complexity of the sequences, as indicated by slower reaction times, longer response durations and decreased articulatory accuracy in both groups for the complex sequences. Older adults produced longer speech responses, particularly during the production of complex sequence. Unique age-independent and age-dependent relationships between brain structure and each of these behavioural measures were found in several cortical and subcortical regions known for their involvement in speech production, including the bilateral anterior insula, the left primary motor area, the rostral supramarginal gyrus, the right inferior frontal sulcus, the bilateral putamen and caudate, and in some region less typically associated with speech production, such as the posterior cingulate cortex.

  14. Gray matter volume is associated with rate of subsequent skill learning after a long term training intervention

    PubMed Central

    Sampaio-Baptista, Cassandra; Scholz, Jan; Jenkinson, Mark; Thomas, Adam G.; Filippini, Nicola; Smit, Gabrielle; Douaud, Gwenaëlle; Johansen-Berg, Heidi

    2014-01-01

    The ability to predict learning performance from brain imaging data has implications for selecting individuals for training or rehabilitation interventions. Here, we used structural MRI to test whether baseline variations in gray matter (GM) volume correlated with subsequent performance after a long-term training of a complex whole-body task. 44 naïve participants were scanned before undertaking daily juggling practice for 6 weeks, following either a high intensity or a low intensity training regime. To assess performance across the training period participants' practice sessions were filmed. Greater GM volume in medial occipito-parietal areas at baseline correlated with steeper learning slopes. We also tested whether practice time or performance outcomes modulated the degree of structural brain change detected between the baseline scan and additional scans performed immediately after training and following a further 4 weeks without training. Participants with better performance had higher increases in GM volume during the period following training (i.e., between scans 2 and 3) in dorsal parietal cortex and M1. When contrasting brain changes between the practice intensity groups, we did not find any straightforward effects of practice time though practice modulated the relationship between performance and GM volume change in dorsolateral prefrontal cortex. These results suggest that practice time and performance modulate the degree of structural brain change evoked by long-term training regimes. PMID:24680712

  15. Olfaction evaluation and correlation with brain atrophy in Bardet-Biedl syndrome.

    PubMed

    Braun, J-J; Noblet, V; Durand, M; Scheidecker, S; Zinetti-Bertschy, A; Foucher, J; Marion, V; Muller, J; Riehm, S; Dollfus, H; Kremer, S

    2014-12-01

    Bardet-Biedl syndrome (BBS) is a well-recognized ciliopathy characterized by cardinal features namely: early onset retinitis pigmentosa, polydactyly, obesity, hypogonadism, renal and cognitive impairment. Recently, disorders of olfaction (anosmia, hyposmia) have been also described in BBS patients. Moreover, morphological brain anomalies have been reported and prompt for further investigations to determine whether they are primary or secondary to peripheral organ involvement (i.e. visual or olfactory neuronal tissue). The objective of this article is to evaluate olfactory disorders in BBS patients and to investigate putative correlation with morphological cerebral anomalies. To this end, 20 BBS patients were recruited and evaluated for olfaction using the University of Pennsylvania Smell Identification Test (UPSIT). All of them underwent a structural magnetic resonance imaging (MRI) scan. We first investigated brain morphological differences between BBS subjects and 14 healthy volunteers. Then, we showed objective olfaction disorders in BBS patients and highlight correlation between gray matter volume reduction and olfaction dysfunction in several brain areas. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. A Four-Dimensional Probabilistic Atlas of the Human Brain

    PubMed Central

    Mazziotta, John; Toga, Arthur; Evans, Alan; Fox, Peter; Lancaster, Jack; Zilles, Karl; Woods, Roger; Paus, Tomas; Simpson, Gregory; Pike, Bruce; Holmes, Colin; Collins, Louis; Thompson, Paul; MacDonald, David; Iacoboni, Marco; Schormann, Thorsten; Amunts, Katrin; Palomero-Gallagher, Nicola; Geyer, Stefan; Parsons, Larry; Narr, Katherine; Kabani, Noor; Le Goualher, Georges; Feidler, Jordan; Smith, Kenneth; Boomsma, Dorret; Pol, Hilleke Hulshoff; Cannon, Tyrone; Kawashima, Ryuta; Mazoyer, Bernard

    2001-01-01

    The authors describe the development of a four-dimensional atlas and reference system that includes both macroscopic and microscopic information on structure and function of the human brain in persons between the ages of 18 and 90 years. Given the presumed large but previously unquantified degree of structural and functional variance among normal persons in the human population, the basis for this atlas and reference system is probabilistic. Through the efforts of the International Consortium for Brain Mapping (ICBM), 7,000 subjects will be included in the initial phase of database and atlas development. For each subject, detailed demographic, clinical, behavioral, and imaging information is being collected. In addition, 5,800 subjects will contribute DNA for the purpose of determining genotype– phenotype–behavioral correlations. The process of developing the strategies, algorithms, data collection methods, validation approaches, database structures, and distribution of results is described in this report. Examples of applications of the approach are described for the normal brain in both adults and children as well as in patients with schizophrenia. This project should provide new insights into the relationship between microscopic and macroscopic structure and function in the human brain and should have important implications in basic neuroscience, clinical diagnostics, and cerebral disorders. PMID:11522763

  17. Fractal dimension assessment of brain white matter structural complexity post stroke in relation to upper-extremity motor function

    PubMed Central

    Zhang, Luduan; Butler, Andrew J.; Sun, Chang-Kai; Sahgal, Vinod; Wittenberg, George F.; Yue, Guang H.

    2008-01-01

    Little is known about the association between brain white matter (WM) structure and motor function in humans. This study investigated complexity of brain WM interior shape as determined by magnetic resonance imaging (MRI) and its relationship with upper-extremity (UE) motor function in patients post stroke. We hypothesized that (1) the WM complexity would decrease following stroke, and (2) higher WM complexity in non-affected cortical areas would be related to greater UE motor function. Thirty-eight stroke patients (16 with left-hemisphere lesions) underwent MRI anatomical brain scans. Fractal dimension (FD), a quantitative shape metric, was applied onto skeletonized brain WM images to evaluate WM internal structural complexity. Wolf Motor Function Test (WMFT) and Fugl-Meyer Motor Assessment (FM) scores were measured to assess motor function of the affected limb. The WM complexity was lower in the stroke-affected hemisphere. The FD was associated with better motor function in two subgroups: with left-subcortical lesions, FD values of the lesion-free areas of the left hemisphere were associated with better FM scores; with right-cortical lesions, FD values of lesion-free regions were robustly associated with better WMFT scores. These findings suggest that greater residual WM complexity is associated with less impaired UE motor function, which is more robust in patients with right-hemisphere lesions. No correlations were found between lesion volume and WMFT or FM scores. This study addressed WM complexity in stroke patients and its relationship with UE motor function. Measurement of brain WM reorganization may be a sensitive correlate of UE function in people recovering from stroke. PMID:18590710

  18. Sleep duration and age-related changes in brain structure and cognitive performance.

    PubMed

    Lo, June C; Loh, Kep Kee; Zheng, Hui; Sim, Sam K Y; Chee, Michael W L

    2014-07-01

    To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Community-based longitudinal brain and cognitive aging study using a convenience sample. Participants were studied in a research laboratory. Relatively healthy adults aged 55 y and older at study commencement. N/A. Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance.

  19. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.

    PubMed

    Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R

    2012-01-01

    In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.

  20. Correspondence Between Aberrant Intrinsic Network Connectivity and Gray-Matter Volume in the Ventral Brain of Preterm Born Adults.

    PubMed

    Bäuml, Josef G; Daamen, Marcel; Meng, Chun; Neitzel, Julia; Scheef, Lukas; Jaekel, Julia; Busch, Barbara; Baumann, Nicole; Bartmann, Peter; Wolke, Dieter; Boecker, Henning; Wohlschläger, Afra M; Sorg, Christian

    2015-11-01

    Widespread brain changes are present in preterm born infants, adolescents, and even adults. While neurobiological models of prematurity facilitate powerful explanations for the adverse effects of preterm birth on the developing brain at microscale, convincing linking principles at large-scale level to explain the widespread nature of brain changes are still missing. We investigated effects of preterm birth on the brain's large-scale intrinsic networks and their relation to brain structure in preterm born adults. In 95 preterm and 83 full-term born adults, structural and functional magnetic resonance imaging at-rest was used to analyze both voxel-based morphometry and spatial patterns of functional connectivity in ongoing blood oxygenation level-dependent activity. Differences in intrinsic functional connectivity (iFC) were found in cortical and subcortical networks. Structural differences were located in subcortical, temporal, and cingulate areas. Critically, for preterm born adults, iFC-network differences were overlapping and correlating with aberrant regional gray-matter (GM) volume specifically in subcortical and temporal areas. Overlapping changes were predicted by prematurity and in particular by neonatal medical complications. These results provide evidence that preterm birth has long-lasting effects on functional connectivity of intrinsic networks, and these changes are specifically related to structural alterations in ventral brain GM. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Structural covariance networks in the mouse brain.

    PubMed

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Developmental changes in organization of structural brain networks.

    PubMed

    Khundrakpam, Budhachandra S; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C

    2013-09-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.

  3. Individual structural differences in left inferior parietal area are associated with schoolchildrens' arithmetic scores

    PubMed Central

    Li, Yongxin; Hu, Yuzheng; Wang, Yunqi; Weng, Jian; Chen, Feiyan

    2013-01-01

    Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM) for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI) to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the gray matter (GM) volume in the left intraparietal sulcus (IPS). Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF), bilateral inferior longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus (IFOF) were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA) values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children's arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren. PMID:24367320

  4. Spatial analysis and high resolution mapping of the human whole-brain transcriptome for integrative analysis in neuroimaging.

    PubMed

    Gryglewski, Gregor; Seiger, René; James, Gregory Miles; Godbersen, Godber Mathis; Komorowski, Arkadiusz; Unterholzner, Jakob; Michenthaler, Paul; Hahn, Andreas; Wadsak, Wolfgang; Mitterhauser, Markus; Kasper, Siegfried; Lanzenberger, Rupert

    2018-08-01

    The quantification of big pools of diverse molecules provides important insights on brain function, but is often restricted to a limited number of observations, which impairs integration with other modalities. To resolve this issue, a method allowing for the prediction of mRNA expression in the entire brain based on microarray data provided in the Allen Human Brain Atlas was developed. Microarray data of 3702 samples from 6 brain donors was registered to MNI and cortical surface space using FreeSurfer. For each of 18,686 genes, spatial dependence of transcription was assessed using variogram modelling. Variogram models were employed in Gaussian process regression to calculate best linear unbiased predictions for gene expression at all locations represented in well-established imaging atlases for cortex, subcortical structures and cerebellum. For validation, predicted whole-brain transcription of the HTR1A gene was correlated with [carbonyl- 11 C]WAY-100635 positron emission tomography data collected from 30 healthy subjects. Prediction results showed minimal bias ranging within ±0.016 (cortical surface), ±0.12 (subcortical regions) and ±0.14 (cerebellum) in units of log2 expression intensity for all genes. Across genes, the correlation of predicted and observed mRNA expression in leave-one-out cross-validation correlated with the strength of spatial dependence (cortical surface: r = 0.91, subcortical regions: r = 0.85, cerebellum: r = 0.84). 816 out of 18,686 genes exhibited a high spatial dependence accounting for more than 50% of variance in the difference of gene expression on the cortical surface. In subcortical regions and cerebellum, different sets of genes were implicated by high spatially structured variability. For the serotonin 1A receptor, correlation between PET binding potentials and predicted comprehensive mRNA expression was markedly higher (Spearman ρ = 0.72 for cortical surface, ρ = 0.84 for subcortical regions) than correlation of PET and discrete samples only (ρ = 0.55 and ρ = 0.63, respectively). Prediction of mRNA expression in the entire human brain allows for intuitive visualization of gene transcription and seamless integration in multimodal analysis without bias arising from non-uniform distribution of available samples. Extension of this methodology promises to facilitate translation of omics research and enable investigation of human brain function at a systems level. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A comprehensive visual rating scale of brain magnetic resonance imaging: application in elderly subjects with Alzheimer's disease, mild cognitive impairment, and normal cognition.

    PubMed

    Jang, Jae-Won; Park, So Young; Park, Young Ho; Baek, Min Jae; Lim, Jae-Sung; Youn, Young Chul; Kim, SangYun

    2015-01-01

    Brain magnetic resonance imaging (MRI) shows cerebral structural changes. However, a unified comprehensive visual rating scale (CVRS) has seldom been studied. Thus, we combined brain atrophy and small vessel disease scales and used an MRI template as a CVRS. The aims of this study were to design a simple and reliable CVRS, validate it by investigating cerebral structural changes in clinical groups, and made comparison to the volumetric measurements. Elderly subjects (n = 260) with normal cognition (NC, n = 65), mild cognitive impairment (MCI, n = 101), or Alzheimer's disease (AD, n = 94) were evaluated with brain MRI according to the CVRS of brain atrophy and small vessel disease. Validation of the CVRS with structural changes, neuropsychological tests, and volumetric analyses was performed. The CVRS revealed a high intra-rater and inter-rater agreement and it reflected the structural changes of subjects with NC, MCI, and AD better than volumetric measures (CVRS-coronal: F = 13.5, p < 0.001; CVRS-axial: F = 19.9, p < 0.001). The area under the receiver operation curve (aROC) of the CVRS showed higher accuracy than volumetric analyses. (NC versus MCI aROC: CVRS-coronal, 0.777; CVRS-axial, 0.773; MCI versus AD aROC: CVRS-coronal, 0.680; CVRS-axial, 0.681). The CVRS can be used clinically to conveniently measure structural changes of brain. It reflected cerebral structural changes of clinical groups and correlated with the age better than volumetric measures.

  6. Brain structure variation in great apes, with attention to the mountain gorilla (Gorilla beringei beringei).

    PubMed

    Sherwood, Chet C; Cranfield, Michael R; Mehlman, Patrick T; Lilly, Alecia A; Garbe, Jo Anne L; Whittier, Christopher A; Nutter, Felicia B; Rein, Thomas R; Bruner, Harlan J; Holloway, Ralph L; Tang, Cheuk Y; Naidich, Thomas P; Delman, Bradley N; Steklis, H Dieter; Erwin, Joseph M; Hof, Patrick R

    2004-07-01

    This report presents data regarding the brain structure of mountain gorillas (Gorilla beringei beringei) in comparison with other great apes. Magnetic resonance (MR) images of three mountain gorilla brains were obtained with a 3T scanner, and the volume of major neuroanatomical structures (neocortical gray matter, hippocampus, thalamus, striatum, and cerebellum) was measured. These data were included with our existing database that includes 23 chimpanzees, three western lowland gorillas, and six orangutans. We defined a multidimensional space by calculating the principal components (PCs) from the correlation matrix of brain structure fractions in the well-represented sample of chimpanzees. We then plotted data from all of the taxa in this space to examine phyletic variation in neural organization. Most of the variance in mountain gorillas, as well as other great apes, was contained within the chimpanzee range along the first two PCs, which accounted for 61.73% of the total variance. Thus, the majority of interspecific variation in brain structure observed among these ape taxa was no greater than the within-species variation seen in chimpanzees. The loadings on PCs indicated that the brain structure of great apes differs among taxa mostly in the relative sizes of the striatum, cerebellum, and hippocampus. These findings suggest possible functional differences among taxa in terms of neural adaptations for ecological and locomotor capacities. Importantly, these results fill a critical gap in current knowledge regarding great ape neuroanatomical diversity.

  7. Concerted and mosaic evolution of functional modules in songbird brains

    PubMed Central

    DeVoogd, Timothy J.

    2017-01-01

    Vertebrate brains differ in overall size, composition and functional capacities, but the evolutionary processes linking these traits are unclear. Two leading models offer opposing views: the concerted model ascribes major dimensions of covariation in brain structures to developmental events, whereas the mosaic model relates divergent structures to functional capabilities. The models are often cast as incompatible, but they must be unified to explain how adaptive changes in brain structure arise from pre-existing architectures and developmental mechanisms. Here we show that variation in the sizes of discrete neural systems in songbirds, a species-rich group exhibiting diverse behavioural and ecological specializations, supports major elements of both models. In accordance with the concerted model, most variation in nucleus volumes is shared across functional domains and allometry is related to developmental sequence. Per the mosaic model, residual variation in nucleus volumes is correlated within functional systems and predicts specific behavioural capabilities. These comparisons indicate that oscine brains evolved primarily as a coordinated whole but also experienced significant, independent modifications to dedicated systems from specific selection pressures. Finally, patterns of covariation between species and brain areas hint at underlying developmental mechanisms. PMID:28490627

  8. Brain structural covariance network centrality in maltreated youth with PTSD and in maltreated youth resilient to PTSD.

    PubMed

    Sun, Delin; Haswell, Courtney C; Morey, Rajendra A; De Bellis, Michael D

    2018-04-10

    Child maltreatment is a major cause of pediatric posttraumatic stress disorder (PTSD). Previous studies have not investigated potential differences in network architecture in maltreated youth with PTSD and those resilient to PTSD. High-resolution magnetic resonance imaging brain scans at 3 T were completed in maltreated youth with PTSD (n = 31), without PTSD (n = 32), and nonmaltreated controls (n = 57). Structural covariance network architecture was derived from between-subject intraregional correlations in measures of cortical thickness in 148 cortical regions (nodes). Interregional positive partial correlations controlling for demographic variables were assessed, and those correlations that exceeded specified thresholds constituted connections in cortical brain networks. Four measures of network centrality characterized topology, and the importance of cortical regions (nodes) within the network architecture were calculated for each group. Permutation testing and principle component analysis method were employed to calculate between-group differences. Principle component analysis is a methodological improvement to methods used in previous brain structural covariance network studies. Differences in centrality were observed between groups. Larger centrality was found in maltreated youth with PTSD in the right posterior cingulate cortex; smaller centrality was detected in the right inferior frontal cortex compared to youth resilient to PTSD and controls, demonstrating network characteristics unique to pediatric maltreatment-related PTSD. Larger centrality was detected in right frontal pole in maltreated youth resilient to PTSD compared to youth with PTSD and controls, demonstrating structural covariance network differences in youth resilience to PTSD following maltreatment. Smaller centrality was found in the left posterior cingulate cortex and in the right inferior frontal cortex in maltreated youth compared to controls, demonstrating attributes of structural covariance network topology that is unique to experiencing maltreatment. This work is the first to identify cortical thickness-based structural covariance network differences between maltreated youth with and without PTSD. We demonstrated network differences in both networks unique to maltreated youth with PTSD and those resilient to PTSD. The networks identified are important for the successful attainment of age-appropriate social cognition, attention, emotional processing, and inhibitory control. Our findings in maltreated youth with PTSD versus those without PTSD suggest vulnerability mechanisms for developing PTSD.

  9. Neuropsychiatric subsyndromes and brain metabolic network dysfunctions in early onset Alzheimer's disease.

    PubMed

    Ballarini, Tommaso; Iaccarino, Leonardo; Magnani, Giuseppe; Ayakta, Nagehan; Miller, Bruce L; Jagust, William J; Gorno-Tempini, Maria Luisa; Rabinovici, Gil D; Perani, Daniela

    2016-12-01

    Neuropsychiatric symptoms (NPSs) often occur in early-age-of-onset Alzheimer's disease (EOAD) and cluster into sub-syndromes (SSy). The aim of this study was to investigate the association between 18 F-FDG-PET regional and connectivity-based brain metabolic dysfunctions and neuropsychiatric SSy. NPSs were assessed in 27 EOAD using the Neuropsychiatric Inventory and further clustered into four SSy (apathetic, hyperactivity, affective, and psychotic SSy). Eighty-five percent of EOAD showed at least one NPS. Voxel-wise correlations between SSy scores and brain glucose metabolism (assessed with 18 F-FDG positron emission tomography) were studied. Interregional correlation analysis was used to explore metabolic connectivity in the salience (aSN) and default mode networks (DMN) in a larger sample of EOAD (N = 51) and Healthy Controls (N = 57). The apathetic, hyperactivity, and affective SSy were highly prevalent (>60%) as compared to the psychotic SSy (33%). The hyperactivity SSy scores were associated with increase of glucose metabolism in frontal and limbic structures, implicated in behavioral control. A comparable positive correlation with part of the same network was found for the affective SSy scores. On the other hand, the apathetic SSy scores were negatively correlated with metabolism in the bilateral orbitofrontal and dorsolateral frontal cortex known to be involved in motivation and decision-making processes. Consistent with these SSy regional correlations with brain metabolic dysfunction, the connectivity analysis showed increases in the aSN and decreases in the DMN. Behavioral abnormalities in EOAD are associated with specific dysfunctional changes in brain metabolic activity, in particular in the aSN that seems to play a crucial role in NPSs in EOAD. Hum Brain Mapp 37:4234-4247, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Hedging Your Bets by Learning Reward Correlations in the Human Brain

    PubMed Central

    Wunderlich, Klaus; Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.

    2011-01-01

    Summary Human subjects are proficient at tracking the mean and variance of rewards and updating these via prediction errors. Here, we addressed whether humans can also learn about higher-order relationships between distinct environmental outcomes, a defining ecological feature of contexts where multiple sources of rewards are available. By manipulating the degree to which distinct outcomes are correlated, we show that subjects implemented an explicit model-based strategy to learn the associated outcome correlations and were adept in using that information to dynamically adjust their choices in a task that required a minimization of outcome variance. Importantly, the experimentally generated outcome correlations were explicitly represented neuronally in right midinsula with a learning prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show that the human brain represents higher-order correlation structures between rewards, a core adaptive ability whose immediate benefit is optimized sampling. PMID:21943609

  11. Drawing on the right side of the brain: a voxel-based morphometry analysis of observational drawing.

    PubMed

    Chamberlain, Rebecca; McManus, I Chris; Brunswick, Nicola; Rankin, Qona; Riley, Howard; Kanai, Ryota

    2014-08-01

    Structural brain differences in relation to expertise have been demonstrated in a number of domains including visual perception, spatial navigation, complex motor skills and musical ability. However no studies have assessed the structural differences associated with representational skills in visual art. As training artists are inclined to be a heterogeneous group in terms of their subject matter and chosen media, it was of interest to investigate whether there would be any consistent changes in neural structure in response to increasing representational drawing skill. In the current study a cohort of 44 graduate and post-graduate art students and non-art students completed drawing tasks. Scores on these tasks were then correlated with the regional grey and white matter volume in cortical and subcortical structures. An increase in grey matter density in the left anterior cerebellum and the right medial frontal gyrus was observed in relation to observational drawing ability, whereas artistic training (art students vs. non-art students) was correlated with increased grey matter density in the right precuneus. This suggests that observational drawing ability relates to changes in structures pertaining to fine motor control and procedural memory, and that artistic training in addition is associated with enhancement of structures pertaining to visual imagery. The findings corroborate the findings of small-scale fMRI studies and provide insights into the properties of the developing artistic brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Brain Structure and Function Associated with a History of Sport Concussion: A Multi-Modal Magnetic Resonance Imaging Study.

    PubMed

    Churchill, Nathan; Hutchison, Michael; Richards, Doug; Leung, General; Graham, Simon; Schweizer, Tom A

    2017-02-15

    There is growing concern about the potential long-term consequences of sport concussion for young, currently active athletes. However, there remains limited information about brain abnormalities associated with a history of concussion and how they relate to clinical factors. In this study, advanced MRI was used to comprehensively describe abnormalities in brain structure and function associated with a history of sport concussion. Forty-three athletes (21 male, 22 female) were recruited from interuniversity teams at the beginning of the season, including 21 with a history of concussion and 22 without prior concussion; both groups also contained a balanced sample of contact and noncontact sports. Multi-modal MRI was used to evaluate abnormalities in brain structure and function. Athletes with a history of concussion showed frontal decreases in brain volume and blood flow. However, they also demonstrated increased posterior cortical volume and elevated markers of white matter microstructure. A greater number of prior concussions was associated with more extensive decreases in cerebral blood flow and insular volume, whereas recovery time from most recent concussion was correlated with reduced frontotemporal volume. White matter showed limited correlations with clinical factors, predominantly in the anterior corona radiata. This study provides the first evidence of the long-term effects of concussion on gray matter volume, blood flow, and white matter microstructure within a single athlete cohort. This was examined for a mixture of male and female athletes in both contact and noncontact sports, demonstrating the relevance of these findings for the overall sporting community.

  13. Synaptogenesis and heritable aspects of executive attention.

    PubMed

    Fossella, John A; Sommer, Tobias; Fan, Jin; Pfaff, Don; Posner, Michael I

    2003-01-01

    In humans, changes in brain structure and function can be measured non-invasively during postnatal development. In animals, advanced optical imaging measures can track the formation of synapses during learning and behavior. With the recent progress in these technologies, it is appropriate to begin to assess how the physiological processes of synapse, circuit, and neural network formation relate to the process of cognitive development. Of particular interest is the development of executive function, which develops more gradually in humans. One approach that has shown promise is molecular genetics. The completion of the human genome project and the human genome diversity project make it straightforward to ask whether variation in a particular gene correlates with variation in behavior, brain structure, brain activity, or all of the above. Strategies that unify the wealth of biochemical knowledge pertaining to synapse formation with the functional measures of brain structure and activity may lead to new insights in developmental cognitive psychology. Copyright 2003 Wiley-Liss, Inc.

  14. Emotional face processing and flat affect in schizophrenia: functional and structural neural correlates.

    PubMed

    Lepage, M; Sergerie, K; Benoit, A; Czechowska, Y; Dickie, E; Armony, J L

    2011-09-01

    There is a general consensus in the literature that schizophrenia causes difficulties with facial emotion perception and discrimination. Functional brain imaging studies have observed reduced limbic activity during facial emotion perception but few studies have examined the relation to flat affect severity. A total of 26 people with schizophrenia and 26 healthy controls took part in this event-related functional magnetic resonance imaging study. Sad, happy and neutral faces were presented in a pseudo-random order and participants indicated the gender of the face presented. Manual segmentation of the amygdala was performed on a structural T1 image. Both the schizophrenia group and the healthy control group rated the emotional valence of facial expressions similarly. Both groups exhibited increased brain activity during the perception of emotional faces relative to neutral ones in multiple brain regions, including multiple prefrontal regions bilaterally, the right amygdala, right cingulate cortex and cuneus. Group comparisons, however, revealed increased activity in the healthy group in the anterior cingulate, right parahippocampal gyrus and multiple visual areas. In schizophrenia, the severity of flat affect correlated significantly with neural activity in several brain areas including the amygdala and parahippocampal region bilaterally. These results suggest that many of the brain regions involved in emotional face perception, including the amygdala, are equally recruited in both schizophrenia and controls, but flat affect can also moderate activity in some other brain regions, notably in the left amygdala and parahippocampal gyrus bilaterally. There were no significant group differences in the volume of the amygdala.

  15. Sex-dependent association of common variants of microcephaly genes with brain structure.

    PubMed

    Rimol, Lars M; Agartz, Ingrid; Djurovic, Srdjan; Brown, Andrew A; Roddey, J Cooper; Kähler, Anna K; Mattingsdal, Morten; Athanasiu, Lavinia; Joyner, Alexander H; Schork, Nicholas J; Halgren, Eric; Sundet, Kjetil; Melle, Ingrid; Dale, Anders M; Andreassen, Ole A

    2010-01-05

    Loss-of-function mutations in the genes associated with primary microcephaly (MCPH) reduce human brain size by about two-thirds, without producing gross abnormalities in brain organization or physiology and leaving other organs largely unaffected [Woods CG, et al. (2005) Am J Hum Genet 76:717-728]. There is also evidence suggesting that MCPH genes have evolved rapidly in primates and humans and have been subjected to selection in recent human evolution [Vallender EJ, et al. (2008) Trends Neurosci 31:637-644]. Here, we show that common variants of MCPH genes account for some of the common variation in brain structure in humans, independently of disease status. We investigated the correlations of SNPs from four MCPH genes with brain morphometry phenotypes obtained with MRI. We found significant, sex-specific associations between common, nonexonic, SNPs of the genes CDK5RAP2, MCPH1, and ASPM, with brain volume or cortical surface area in an ethnically homogenous Norwegian discovery sample (n = 287), including patients with mental illness. The most strongly associated SNP findings were replicated in an independent North American sample (n = 656), which included patients with dementia. These results are consistent with the view that common variation in brain structure is associated with genetic variants located in nonexonic, presumably regulatory, regions.

  16. Family functioning in severe brain injuries: correlations with caregivers' burden, perceived social support and quality of life.

    PubMed

    Tramonti, Francesco; Bonfiglio, Luca; Di Bernardo, Carolina; Ulivi, Chiara; Virgillito, Alessandra; Rossi, Bruno; Carboncini, Maria Chiara

    2015-01-01

    Severe brain injuries have long-term consequences on functional status and psychosocial functioning. Family life can be greatly influenced as well, and features of high caregiver burden can emerge. Although the data on caregivers' distress are constantly increasing, less information is available about the role of family functioning. Thirty caregivers of hospitalised patients with severe brain injuries received questionnaires for the evaluation of caregiver burden, family functioning and perceived social support. A semi-structured interview was performed for the evaluation of quality of life. Family cohesion and adaptability positively correlated with caregivers' quality of life and perceived social support. Partner caregivers' scores were significantly higher on the time-dependent burden than those of sons and daughters, whereas the latter scored higher on the emotional burden.

  17. Locomotor activity and tissue levels following acute ...

    EPA Pesticide Factsheets

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavage dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administ

  18. Trail making test performance in youth varies as a function of anatomical coupling between the prefrontal cortex and distributed cortical regions

    PubMed Central

    Lee, Nancy Raitano; Wallace, Gregory L.; Raznahan, Armin; Clasen, Liv S.; Giedd, Jay N.

    2014-01-01

    While researchers have gained a richer understanding of the neural correlates of executive function in adulthood, much less is known about how these abilities are represented in the developing brain and what structural brain networks underlie them. Thus, the current study examined how individual differences in executive function, as measured by the Trail Making Test (TMT), relate to structural covariance in the pediatric brain. The sample included 146 unrelated, typically developing youth (80 females), ages 9–14 years, who completed a structural MRI scan of the brain and the Halstead-Reitan TMT (intermediate form). TMT scores used to index executive function included those that evaluated set-shifting ability: Trails B time (number-letter sequencing) and the difference in time between Trails B and A (number sequencing only). Anatomical coupling was measured by examining correlations between mean cortical thickness (MCT) across the entire cortical ribbon and individual vertex thickness measured at ~81,000 vertices. To examine how TMT scores related to anatomical coupling strength, linear regression was utilized and the interaction between age-normed TMT scores and both age and sex-normed MCT was used to predict vertex thickness. Results revealed that stronger Trails B scores were associated with greater anatomical coupling between a large swath of prefrontal cortex and the rest of cortex. For the difference between Trails B and A, a network of regions in the frontal, temporal, and parietal lobes was found to be more tightly coupled with the rest of cortex in stronger performers. This study is the first to highlight the importance of structural covariance in in the prediction of individual differences in executive function skills in youth. Thus, it adds to the growing literature on the neural correlates of childhood executive functions and identifies neuroanatomic coupling as a biological substrate that may contribute to executive function and dysfunction in childhood. PMID:25071613

  19. Structure-activity correlations for interactions of bicyclophosphorus esters and some polychlorocycloalkane and pyrethroid insecticides with the brain-specific t-butylbicyclophosphorothionate receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casida, J.E.; Lawrence, L.J.

    1985-09-01

    (/sup 35/S)t-Butylbicyclophosphorothionate or (/sup 35/S)TBPS is an improved radioligand for the picrotoxinin binding site in rat brain synaptic membranes. The toxic isomers of the hexachlorocyclohexanes, polychlorobornanes, and chlorinated cyclodienes displace (/sup 35/S)TBPS with a stereospecificity and potency generally correlated with their mammalian toxicity. In a few cases this correlation is improved by correction for metabolic activation or detoxification on using a coupled brain receptor/liver microsomal oxidase system. The alpha-cyano-3-phenoxybenzyl pyrethroids, although less potent, inhibit (/sup 35/S)TBPS binding in a stereospecific manner correlated with their toxicity. Scatchard analyses indicate that these three classes of polychlorocycloalkane insecticides act at the TBPS bindingmore » site within the gamma-aminobutyric acid (GABA) receptor-ionophore complex whereas the alpha-cyano pyrethroids interact with a closely associated site. These insecticides and TBPS analogs may serve as useful probes further to elucidate the topography of the TBPS binding site and its relationship to the chloride channel. 46 references.« less

  20. Clustering Coefficients for Correlation Networks.

    PubMed

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly correlated with and therefore may be confounded by the node's connectivity. The proposed methods are expected to help us to understand clustering and lack thereof in correlational brain networks, such as those derived from functional time series and across-participant correlation in neuroanatomical properties.

  1. Clustering Coefficients for Correlation Networks

    PubMed Central

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly correlated with and therefore may be confounded by the node's connectivity. The proposed methods are expected to help us to understand clustering and lack thereof in correlational brain networks, such as those derived from functional time series and across-participant correlation in neuroanatomical properties. PMID:29599714

  2. Reduced rich-club connectivity is related to disability in primary progressive MS

    PubMed Central

    Hodecker, Sibylle; Cheng, Bastian; Wanke, Nadine; Young, Kim Lea; Hilgetag, Claus; Gerloff, Christian; Heesen, Christoph; Thomalla, Götz; Siemonsen, Susanne

    2017-01-01

    Objective: To investigate whether the structural connectivity of the brain's rich-club organization is altered in patients with primary progressive MS and whether such changes to this fundamental network feature are associated with disability measures. Methods: We recruited 37 patients with primary progressive MS and 21 healthy controls for an observational cohort study. Structural connectomes were reconstructed based on diffusion-weighted imaging data using probabilistic tractography and analyzed with graph theory. Results: We observed the same topological organization of brain networks in patients and controls. Consistent with the originally defined rich-club regions, we identified superior frontal, precuneus, superior parietal, and insular cortex in both hemispheres as rich-club nodes. Connectivity within the rich club was significantly reduced in patients with MS (p = 0.039). The extent of reduced rich-club connectivity correlated with clinical measurements of mobility (Kendall rank correlation coefficient τ = −0.20, p = 0.047), hand function (τ = −0.26, p = 0.014), and information processing speed (τ = −0.20, p = 0.049). Conclusions: In patients with primary progressive MS, the fundamental organization of the structural connectome in rich-club and peripheral nodes was preserved and did not differ from healthy controls. The proportion of rich-club connections was altered and correlated with disability measures. Thus, the rich-club organization of the brain may be a promising network phenotype for understanding the patterns and mechanisms of neurodegeneration in MS. PMID:28804744

  3. Individual differences in verbal creative thinking are reflected in the precuneus.

    PubMed

    Chen, Qun-Lin; Xu, Ting; Yang, Wen-Jing; Li, Ya-Dan; Sun, Jiang-Zhou; Wang, Kang-Cheng; Beaty, Roger E; Zhang, Qing-Lin; Zuo, Xi-Nian; Qiu, Jiang

    2015-08-01

    There have been many structural and functional imaging studies of creative thinking, but combining structural and functional magnetic resonance imaging (MRI) investigations with respect to creative thinking is still lacking. Thus, the aim of the present study was to explore the associations among inter-individual verbal creative thinking and both regional homogeneity and cortical morphology of the brain surface. We related the local functional homogeneity of spontaneous brain activity to verbal creative thinking and its dimensions--fluency, originality, and flexibility--by examining these inter-individual differences in a large sample of 268 healthy college students. Results revealed that people with high verbal creative ability and high scores for the three dimensions of creativity exhibited lower regional functional homogeneity in the right precuneus. Both cortical volume and thickness of the right precuneus were positively associated with individual verbal creativity and its dimensions. Moreover, originality was negatively correlated with functional homogeneity in the left superior frontal gyrus and positively correlated with functional homogeneity in the right occipito-temporal gyrus. In contrast, flexibility was positively correlated with functional homogeneity in the left superior and middle occipital gyrus. These findings provide additional evidence of a link between verbal creative thinking and brain structure in the right precuneus--a region involved in internally--focused attention and effective semantic retrieval-and further suggest that local functional homogeneity of verbal creative thinking has neurobiological relevance that is likely based on anatomical substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Pattern of structural brain changes in social anxiety disorder after cognitive behavioral group therapy: a longitudinal multimodal MRI study.

    PubMed

    Steiger, V R; Brühl, A B; Weidt, S; Delsignore, A; Rufer, M; Jäncke, L; Herwig, U; Hänggi, J

    2017-08-01

    Social anxiety disorder (SAD) is characterized by fears of social and performance situations. Cognitive behavioral group therapy (CBGT) has in general positive effects on symptoms, distress and avoidance in SAD. Prior studies found increased cortical volumes and decreased fractional anisotropy (FA) in SAD compared with healthy controls (HCs). Thirty-three participants diagnosed with SAD attended in a 10-week CBGT and were scanned before and after therapy. We applied three neuroimaging methods-surface-based morphometry, diffusion tensor imaging and network-based statistics-each with specific longitudinal processing protocols, to investigate CBGT-induced structural brain alterations of the gray and white matter (WM). Surface-based morphometry revealed a significant cortical volume reduction (pre- to post-treatment) in the left inferior parietal cortex, as well as a positive partial correlation between treatment success (indexed by reductions in Liebowitz Social Anxiety Scale) and reductions in cortical volume in bilateral dorsomedial prefrontal cortex. Diffusion tensor imaging analysis revealed a significant increase in FA in bilateral uncinate fasciculus and right inferior longitudinal fasciculus. Network-based statistics revealed a significant increase of structural connectivity in a frontolimbic network. No partial correlations with treatment success have been found in WM analyses. For, we believe, the first time, we present a distinctive pattern of longitudinal structural brain changes after CBGT measured with three established magnetic resonance imaging analyzing techniques. Our findings are in line with previous cross-sectional, unimodal SAD studies and extent them by highlighting anatomical brain alterations that point toward the level of HCs in parallel with a reduction in SAD symptomatology.

  5. Brain and behaviour phenotyping of a mouse model of neurofibromatosis type-1: an MRI/DTI study on social cognition.

    PubMed

    Petrella, L I; Cai, Y; Sereno, J V; Gonçalves, S I; Silva, A J; Castelo-Branco, M

    2016-09-01

    Neurofibromatosis type-1 (NF1) is a common neurogenetic disorder and an important cause of intellectual disability. Brain-behaviour associations can be examined in vivo using morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to study brain structure. Here, we studied structural and behavioural phenotypes in heterozygous Nf1 mice (Nf1(+/-) ) using T2-weighted imaging MRI and DTI, with a focus on social recognition deficits. We found that Nf1(+/-) mice have larger volumes than wild-type (WT) mice in regions of interest involved in social cognition, the prefrontal cortex (PFC) and the caudate-putamen (CPu). Higher diffusivity was found across a distributed network of cortical and subcortical brain regions, within and beyond these regions. Significant differences were observed for the social recognition test. Most importantly, significant structure-function correlations were identified concerning social recognition performance and PFC volumes in Nf1(+/-) mice. Analyses of spatial learning corroborated the previously known deficits in the mutant mice, as corroborated by platform crossings, training quadrant time and average proximity measures. Moreover, linear discriminant analysis of spatial performance identified 2 separate sub-groups in Nf1(+/-) mice. A significant correlation between quadrant time and CPu volumes was found specifically for the sub-group of Nf1(+/-) mice with lower spatial learning performance, suggesting additional evidence for reorganization of this region. We found strong evidence that social and spatial cognition deficits can be associated with PFC/CPu structural changes and reorganization in NF1. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  6. Morphological brain measures of cortico-limbic inhibition related to resilience.

    PubMed

    Gupta, Arpana; Love, Aubrey; Kilpatrick, Lisa A; Labus, Jennifer S; Bhatt, Ravi; Chang, Lin; Tillisch, Kirsten; Naliboff, Bruce; Mayer, Emeran A

    2017-09-01

    Resilience is the ability to adequately adapt and respond to homeostatic perturbations. Although resilience has been associated with positive health outcomes, the neuro-biological basis of resilience is poorly understood. The aim of the study was to identify associations between regional brain morphology and trait resilience with a focus on resilience-related morphological differences in brain regions involved in cortico-limbic inhibition. The relationship between resilience and measures of affect were also investigated. Forty-eight healthy subjects completed structural MRI scans. Self-reported resilience was measured using the Connor and Davidson Resilience Scale. Segmentation and regional parcellation of images was performed to yield a total of 165 regions. Gray matter volume (GMV), cortical thickness, surface area, and mean curvature were calculated for each region. Regression models were used to identify associations between morphology of regions belonging to executive control and emotional arousal brain networks and trait resilience (total and subscales) while controlling for age, sex, and total GMV. Correlations were also conducted between resilience scores and affect scores. Significant associations were found between GM changes in hypothesized brain regions (subparietal sulcus, intraparietal sulcus, amygdala, anterior mid cingulate cortex, and subgenual cingulate cortex) and resilience scores. There were significant positive correlations between resilience and positive affect and negative correlations with negative affect. Resilience was associated with brain morphology of regions involved in cognitive and affective processes related to cortico-limbic inhibition. Brain signatures associated with resilience may be a biomarker of vulnerability to disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Brain Structural Correlates of Subclinical Obsessive-Compulsive Symptoms in Healthy Children.

    PubMed

    Suñol, Maria; Contreras-Rodríguez, Oren; Macià, Dídac; Martínez-Vilavella, Gerard; Martínez-Zalacaín, Ignacio; Subirà, Marta; Pujol, Jesús; Sunyer, Jordi; Soriano-Mas, Carles

    2018-01-01

    Subclinical obsessive-compulsive (OC) symptoms are frequently observed in children and have been reported to predict a subsequent diagnosis of OC disorder (OCD). Therefore, identifying the putative neurobiological signatures of such risk is crucial, because it would allow for the characterization of the underpinnings of OCD without the interfering effects of chronicity, medication, or comorbidities, especially when interpreted within the context of OCD clinical heterogeneity and taking into account normal neurodevelopmental changes. The present study aimed to identify the brain volumetric features associated with subclinical OC symptoms and the potential modulatory effects of sex and age in a large sample of healthy children. Two hundred fifty-five healthy children were assessed using the Obsessive-Compulsive Inventory-Child Version and underwent a brain structural magnetic resonance examination. The relation between total and symptom-specific scores and regional gray and white matter (GM and WM) volumes was evaluated. Participants were grouped according to sex and age (younger versus older) to assess the effect of these factors on symptom-brain morphometry associations. Ordering symptoms were negatively related to GM volumes in the ventral caudate. Hoarding symptoms were positively associated with GM and WM volumes in the left inferior frontal gyrus, and obsessing symptoms correlated negatively with GM and WM volumes in the right temporal pole. Doubt-checking symptoms correlated positively with WM volumes in the right inferior fronto-occipital fasciculus and the corpus callosum. Sex and age modulated some of these associations. Subclinical OC symptoms are associated with specific brain volumetric features, which could be considered potential neural signatures of increased risk for OCD. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Negative correlation of cortical thickness with the severity and duration of abdominal pain in Asian women with irritable bowel syndrome.

    PubMed

    Chua, Chian Sem; Bai, Chyi-Huey; Shiao, Chen-Yu; Hsu, Chien-Yeh; Cheng, Chiao-Wen; Yang, Kuo-Ching; Chiu, Hung-Wen; Hsu, Jung-Lung

    2017-01-01

    Irritable bowel syndrome (IBS) manifests as chronic abdominal pain. One pathophysiological theory states that the brain-gut axis is responsible for pain control in the intestine. Although several studies have discussed the structural changes in the brain of IBS patients, most of these studies have been conducted in Western populations. Different cultures and sexes experience different pain sensations and have different pain responses. Accordingly, we aimed to identify the specific changes in the cortical thickness of Asian women with IBS and to compare these data to those of non-Asian women with IBS. Thirty Asian female IBS patients (IBS group) and 39 healthy individuals (control group) were included in this study. Brain structural magnetic resonance imaging was performed. We used FreeSurfer to analyze the differences in the cortical thickness and their correlations with patient characteristics. The left cuneus, left rostral middle frontal cortex, left supramarginal cortex, right caudal anterior cingulate cortex, and bilateral insula exhibited cortical thinning in the IBS group compared with those in the controls. Furthermore, the brain cortical thickness correlated negatively the severity as well as duration of abdominal pain. Some of our findings differ from those of Western studies. In our study, all of the significant brain regions in the IBS group exhibited cortical thinning compared with those in the controls. The differences in cortical thickness between the IBS patients and controls may provide useful information to facilitate regulating abdominal pain in IBS patients. These findings offer insights into the association of different cultures and sexes with differences in cortical thinning in patients with IBS.

  9. Three-way parallel independent component analysis for imaging genetics using multi-objective optimization.

    PubMed

    Ulloa, Alvaro; Jingyu Liu; Vergara, Victor; Jiayu Chen; Calhoun, Vince; Pattichis, Marios

    2014-01-01

    In the biomedical field, current technology allows for the collection of multiple data modalities from the same subject. In consequence, there is an increasing interest for methods to analyze multi-modal data sets. Methods based on independent component analysis have proven to be effective in jointly analyzing multiple modalities, including brain imaging and genetic data. This paper describes a new algorithm, three-way parallel independent component analysis (3pICA), for jointly identifying genomic loci associated with brain function and structure. The proposed algorithm relies on the use of multi-objective optimization methods to identify correlations among the modalities and maximally independent sources within modality. We test the robustness of the proposed approach by varying the effect size, cross-modality correlation, noise level, and dimensionality of the data. Simulation results suggest that 3p-ICA is robust to data with SNR levels from 0 to 10 dB and effect-sizes from 0 to 3, while presenting its best performance with high cross-modality correlations, and more than one subject per 1,000 variables. In an experimental study with 112 human subjects, the method identified links between a genetic component (pointing to brain function and mental disorder associated genes, including PPP3CC, KCNQ5, and CYP7B1), a functional component related to signal decreases in the default mode network during the task, and a brain structure component indicating increases of gray matter in brain regions of the default mode region. Although such findings need further replication, the simulation and in-vivo results validate the three-way parallel ICA algorithm presented here as a useful tool in biomedical data decomposition applications.

  10. Structural Correlates for Lexical Efficiency and Number of Languages in Non-Native Speakers of English

    ERIC Educational Resources Information Center

    Grogan, A.; Parker Jones, O.; Ali, N.; Crinion, J.; Orabona, S.; Mechias, M. L.; Ramsden, S.; Green, D. W.; Price, C. J.

    2012-01-01

    We used structural magnetic resonance imaging (MRI) and voxel based morphometry (VBM) to investigate whether the efficiency of word processing in the non-native language (lexical efficiency) and the number of non-native languages spoken (2+ versus 1) were related to local differences in the brain structure of bilingual and multilingual speakers.…

  11. Correlating Cognitive Decline with White Matter Lesion and Brain Atrophy MRI Measurements in Alzheimer’s Disease

    PubMed Central

    Bilello, Michel; Doshi, Jimit; Nabavizadeh, S. Ali; Toledo, Jon B.; Erus, Guray; Xie, Sharon X.; Trojanowski, John Q.; Han, Xiaoyan; Davatzikos, Christos

    2015-01-01

    Background Vascular risk factors are increasingly recognized as risks factors for Alzheimer’s disease (AD) and early conversion from mild cognitive impairment (MCI) to dementia. While neuroimaging research in AD has focused on brain atrophy, metabolic function or amyloid deposition, little attention has been paid to the effect of cerebrovascular disease to cognitive decline. Objective To investigate the correlation of brain atrophy and white matter lesions with cognitive decline in AD, MCI, and control subjects. Methods Patients with AD and MCI, and healthy subjects were included in this study. Subjects had a baseline MRI scan, and baseline and follow-up neuropsychological battery (CERAD). Regional volumes were measured, and white matter lesion segmentation was performed. Correlations between rate of CERAD score decline and white matter lesion load and brain structure volume were evaluated. In addition, voxel-based correlations between baseline CERAD scores and atrophy and white matter lesion measures were computed. Results CERAD rate of decline was most significantly associated with lesion loads located in the fornices. Several temporal lobe ROI volumes were significantly associated with CERAD decline. Voxel-based analysis demonstrated strong correlation between baseline CERAD scores and atrophy measures in the anterior temporal lobes. Correlation of baseline CERAD scores with white matter lesion volumes achieved significance in multilobar subcortical white matter. Conclusion Both baseline and declines in CERAD scores correlate with white matter lesion load and gray matter atrophy. Results of this study highlight the dominant effect of volume loss, and underscore the importance of small vessel disease as a contributor to cognitive decline in the elderly. PMID:26402108

  12. Correlating Cognitive Decline with White Matter Lesion and Brain Atrophy Magnetic Resonance Imaging Measurements in Alzheimer's Disease.

    PubMed

    Bilello, Michel; Doshi, Jimit; Nabavizadeh, S Ali; Toledo, Jon B; Erus, Guray; Xie, Sharon X; Trojanowski, John Q; Han, Xiaoyan; Davatzikos, Christos

    2015-01-01

    Vascular risk factors are increasingly recognized as risks factors for Alzheimer's disease (AD) and early conversion from mild cognitive impairment (MCI) to dementia. While neuroimaging research in AD has focused on brain atrophy, metabolic function, or amyloid deposition, little attention has been paid to the effect of cerebrovascular disease to cognitive decline. To investigate the correlation of brain atrophy and white matter lesions with cognitive decline in AD, MCI, and control subjects. Patients with AD and MCI, and healthy subjects were included in this study. Subjects had a baseline MRI scan, and baseline and follow-up neuropsychological battery (CERAD). Regional volumes were measured, and white matter lesion segmentation was performed. Correlations between rate of CERAD score decline and white matter lesion load and brain structure volume were evaluated. In addition, voxel-based correlations between baseline CERAD scores and atrophy and white matter lesion measures were computed. CERAD rate of decline was most significantly associated with lesion loads located in the fornices. Several temporal lobe ROI volumes were significantly associated with CERAD decline. Voxel-based analysis demonstrated strong correlation between baseline CERAD scores and atrophy measures in the anterior temporal lobes. Correlation of baseline CERAD scores with white matter lesion volumes achieved significance in multilobar subcortical white matter. Both baseline and declines in CERAD scores correlate with white matter lesion load and gray matter atrophy. Results of this study highlight the dominant effect of volume loss, and underscore the importance of small vessel disease as a contributor to cognitive decline in the elderly.

  13. Prediction of blood-brain partitioning: a model based on molecular electronegativity distance vector descriptors.

    PubMed

    Zhang, Yong-Hong; Xia, Zhi-Ning; Qin, Li-Tang; Liu, Shu-Shen

    2010-09-01

    The objective of this paper is to build a reliable model based on the molecular electronegativity distance vector (MEDV) descriptors for predicting the blood-brain barrier (BBB) permeability and to reveal the effects of the molecular structural segments on the BBB permeability. Using 70 structurally diverse compounds, the partial least squares regression (PLSR) models between the BBB permeability and the MEDV descriptors were developed and validated by the variable selection and modeling based on prediction (VSMP) technique. The estimation ability, stability, and predictive power of a model are evaluated by the estimated correlation coefficient (r), leave-one-out (LOO) cross-validation correlation coefficient (q), and predictive correlation coefficient (R(p)). It has been found that PLSR model has good quality, r=0.9202, q=0.7956, and R(p)=0.6649 for M1 model based on the training set of 57 samples. To search the most important structural factors affecting the BBB permeability of compounds, we performed the values of the variable importance in projection (VIP) analysis for MEDV descriptors. It was found that some structural fragments in compounds, such as -CH(3), -CH(2)-, =CH-, =C, triple bond C-, -CH<, =C<, =N-, -NH-, =O, and -OH, are the most important factors affecting the BBB permeability. (c) 2010. Published by Elsevier Inc.

  14. GFAP-immunopositive structures in spiny dogfish, Squalus acanthias, and little skate, Raia erinacea, brains: differences have evolutionary implications.

    PubMed

    Kálmán, M; Gould, R M

    2001-07-01

    GFAP expression patterns were compared between the brains of a spiny dogfish (Squalus acanthias) and a little skate (Raia erinacea). After anesthesia, the animals were perfused with paraformaldehyde. Serial vibratome sections were immunostained against GFAP using the avidin-biotin method. Spiny dogfish brain contained mainly uniformly-distributed, radially arranged ependymoglia. From GFAP distribution, the layered organization in both the telencephalon and the tectum were visible. In the cerebellum, the molecular and granular layers displayed conspicuously different glial structures; in the former a Bergmann glia-like population was found. No true astrocytes (i.e., stellate-shaped cells) were found. Radial glial endfeet lined all meningeal surfaces. Radial fibers also seemed to form endfeet and en passant contacts on the vessels. Plexuses of fine perivascular glial fibers also contributed to the perivascular glia. Compared with spiny dogfish brain, GFAP expression in the little skate brain was confined. Radial glia were limited to a few areas, e.g., segments of the ventricular surface of the telencephalon, and the midline of the diencephalon and mesencephalon. Scarce astrocytes occurred in every brain part, but only the optic chiasm, and the junction of the tegmentum and optic tectum contained large numbers of astrocytes. Astrocytes formed the meningeal glia limitans and the perivascular glia. No GFAP-immunopositive Bergmann glia-like structure was found. Astrocytes seen in the little skate were clearly different from the mammalian and avian ones; they had a different process system - extra large forms were frequently seen, and the meningeal and perivascular cells were spread along the surface instead of forming endfeet by processes. The differences between Squalus and Raia astroglia were much like those found between reptiles versus mammals and birds. It suggests independent and parallel glial evolutionary processes in amniotes and chondrichthyans, seemingly correlated with the thickening of the brain wall, and the growing complexity of the brain. There is no strict correlation, however, between the replacement of radial ependymoglia with astrocytes, and the local thickness of the brain wall.

  15. Impaired fear recognition and attentional set-shifting is associated with brain structural changes in alcoholic patients

    PubMed Central

    Trick, Leanne; Kempton, Matthew J; Williams, Steven C R; Duka, Theodora

    2014-01-01

    Alcoholic patients with multiple detoxifications/relapses show cognitive and emotional deficits. We performed structural magnetic resonance imaging and examined performance on a cognitive flexibility task (intra-extradimensional set shift and reversal; IED). We also presented subjects with fearful, disgust and anger facial emotional expressions. Participants were abstaining, multiply detoxified (MDTx; n = 12) or singly detoxified patients (SDTx; n = 17) and social drinker controls (n = 31). Alcoholic patients were less able than controls to change their behavior in accordance with the changing of the rules in the IED and they were less accurate in recognizing fearful expressions in particular. They also showed lower gray matter volume compared with controls in frontal brain areas, including inferior frontal cortex (IFC) and insula that mediate emotional processing, inferior parietal lobule and medial frontal cortex that mediate attentional and motor planning processes, respectively. Impairments in performance and some of the regional decreases in gray matter were greater in MDTx. Gray matter volume in IFC in patients was negatively correlated with the number of detoxifications, whereas inferior parietal lobule was negatively correlated with the control over drinking score (impaired control over drinking questionnaire). Performance in IED was also negatively correlated with gray matter volume in IFC/BA47, whereas recognition of fearful faces was positively correlated with the IFC gray matter. Repeated episodes of detoxification from alcohol, related to severity of dependency, are coupled with altered brain structure in areas of emotional regulation, attention and motor planning. Such changes may confer increased inability to switch behavior according to environmental demands and social incompetence, contributing to relapse. PMID:25123156

  16. [Changes in Spatial Organization of Cortical Rhythm Vibrations in Children uner the Influence of Music].

    PubMed

    Shepovalnikov, A N; Egorov, M V

    2015-01-01

    Changes is systemic brain activity under influence of classical music (minor and major music) were studied at two groups of healthy children aged 5-6 years (n = 53). In 25 of studied children the Luscher test showed increased level of anxiety which significantly decreased after music therapy sessions. Bioelectrical cortical activity registered from 20 unipolar leads was subjected to correlation, coherence and factor analysis. Also the dynamics of the power spectrum for each of the EEG was studied. According to EEG all children after listening to both minor and major tones showed reorganization of brain rhythm structure accompanied by a decrease in the level of coherence and correlation of EEG; also was found significant and almost universal decrease in the EEG power spectrum. Registered EEG changes under the influence of classical music seems to reflect a decrease in excess of "internal tension" and weakening degree of "stiffness" to ensure the activity of cerebral structures responsible for mechanisms of "basic integration" which maintain constant readiness of brain to rapid and complete inclusion in action.

  17. Distinct cortical correlates of autistic versus antisocial traits in a longitudinal sample of typically developing youth

    PubMed Central

    Wallace, Gregory L.; Shaw, Philip; Lee, Nancy Raitano; Clasen, Liv S.; Raznahan, Armin; Lenroot, Rhoshel K.; Martin, Alex; Giedd, Jay N.

    2012-01-01

    In humans, behaviors associated with autism and antisociality, disorders characterized by distinct social impairments, can be viewed as quantitative traits that range from frank impairment to normal variation, as found in the general population. Neuroimaging investigations of autism and antisociality demonstrate diagnostically specific aberrant cortical brain structure. However, little is known about structural brain correlates of social behavior in non-clinical populations. Therefore, we sought to determine if autistic and antisocial traits exhibit dissociable cortical correlates and whether these associations are stable across development among typically developing youth. 323 typically developing youth (age at first scan: mean=10.63, SD=3.71 years) underwent anatomic magnetic resonance imaging (1–6 scans each; total=742 scans), and provided ratings of autistic and antisocial traits. Higher autistic trait ratings were associated with thinner cortex most prominently in right superior temporal sulcus while higher antisocial trait ratings were associated with thinner cortex in primarily bilateral anterior prefrontal cortices. There was no interaction with age, indicating that these brain-behavior associations were stable across development. Using assessments of both subclinical autistic and subclinical antisocial traits within a large longitudinal sample of typically developing youth, we demonstrate dissociable neuroanatomic correlations that parallel those found in the frank clinical disorders of autism (e.g., superior temporal cortex) and antisociality (e.g., anterior prefrontal cortex). Moreover, these correlations appear to be established in early childhood and remain fixed into early adulthood. These results support the dimensional view of psychopathology and provide neural signatures that can serve as informative endophenotypes for future genetic studies. PMID:22492041

  18. Distinct cortical correlates of autistic versus antisocial traits in a longitudinal sample of typically developing youth.

    PubMed

    Wallace, Gregory L; Shaw, Philip; Lee, Nancy Raitano; Clasen, Liv S; Raznahan, Armin; Lenroot, Rhoshel K; Martin, Alex; Giedd, Jay N

    2012-04-04

    In humans, behaviors associated with autism and antisociality, disorders characterized by distinct social impairments, can be viewed as quantitative traits that range from frank impairment to normal variation, as found in the general population. Neuroimaging investigations of autism and antisociality demonstrate diagnostically specific aberrant cortical brain structure. However, little is known about structural brain correlates of social behavior in nonclinical populations. Therefore, we sought to determine whether autistic and antisocial traits exhibit dissociable cortical correlates and whether these associations are stable across development among typically developing youth. Three hundred twenty-three typically developing youth (age at first scan: mean = 10.63, SD = 3.71 years) underwent anatomic magnetic resonance imaging (1-6 scans each; total = 742 scans), and provided ratings of autistic and antisocial traits. Higher autistic trait ratings were associated with thinner cortex most prominently in right superior temporal sulcus while higher antisocial trait ratings were associated with thinner cortex in primarily bilateral anterior prefrontal cortices. There was no interaction with age, indicating that these brain-behavior associations were stable across development. Using assessments of both subclinical autistic and subclinical antisocial traits within a large longitudinal sample of typically developing youth, we demonstrate dissociable neuroanatomic correlations that parallel those found in the frank clinical disorders of autism (e.g., superior temporal cortex) and antisociality (e.g., anterior prefrontal cortex). Moreover, these correlations appear to be established in early childhood and remain fixed into early adulthood. These results support the dimensional view of psychopathology and provide neural signatures that can serve as informative endophenotypes for future genetic studies.

  19. Brain structural, functional, and cognitive correlates of recent versus remote autobiographical memories in amnestic Mild Cognitive Impairment

    PubMed Central

    Tomadesso, Clémence; Perrotin, Audrey; Mutlu, Justine; Mézenge, Florence; Landeau, Brigitte; Egret, Stéphanie; de la Sayette, Vincent; Jonin, Pierre-Yves; Eustache, Francis; Desgranges, Béatrice; Chételat, Gaël

    2015-01-01

    Deficits in autobiographical memory appear earlier for recent than for remote life periods over the course of Alzheimer's disease (AD). The present study aims to further our understanding of this graded effect by investigating the cognitive and neural substrates of recent versus remote autobiographical memories in patients with amnestic Mild Cognitive Impairment (aMCI) thanks to an autobiographical fluency task. 20 aMCI patients and 25 Healthy elderly Controls (HC) underwent neuropsychological tests assessing remote (20-to-30 years old) and recent (the ten last years) autobiographical memory as well as episodic and semantic memory, executive function and global cognition. All patients also had a structural MRI and an FDG-PET scan. Correlations were assessed between each autobiographical memory score and the other tests as well as grey matter volume and metabolism. Within the aMCI, performances for the remote period correlated with personal semantic memory and episodic memory retrieval whereas performances for the recent period only correlated with episodic memory retrieval. Neuroimaging analyses revealed significant correlations between performances for the remote period and temporal pole and temporo-parietal cortex volumes and anterior cingulate gyrus metabolism, while performances for the recent period correlated with hippocampal volume and posterior cingulate, medial prefrontal and hippocampus metabolism. The brain regions related with the retrieval of events from the recent period showed greater atrophy/hypometabolism in aMCI patients compared to HC than those involved in remote memories. Recall of recent memories essentially relies on episodic memory processes and brain network while remote memories also involve other processes such as semantic memory. This is consistent with the semanticization of memories with time and may explain the better resistance of remote memory in AD. PMID:26106572

  20. Associations between cortical thickness and general intelligence in children, adolescents and young adults

    PubMed Central

    Menary, Kyle; Collins, Paul F.; Porter, James N.; Muetzel, Ryan; Olson, Elizabeth A.; Kumar, Vipin; Steinbach, Michael; Lim, Kelvin O.; Luciana, Monica

    2013-01-01

    Neuroimaging research indicates that human intellectual ability is related to brain structure including the thickness of the cerebral cortex. Most studies indicate that general intelligence is positively associated with cortical thickness in areas of association cortex distributed throughout both brain hemispheres. In this study, we performed a cortical thickness mapping analysis on data from 182 healthy typically developing males and females ages 9 to 24 years to identify correlates of general intelligence (g) scores. To determine if these correlates also mediate associations of specific cognitive abilities with cortical thickness, we regressed specific cognitive test scores on g scores and analyzed the residuals with respect to cortical thickness. The effect of age on the association between cortical thickness and intelligence was examined. We found a widely distributed pattern of positive associations between cortical thickness and g scores, as derived from the first unrotated principal factor of a factor analysis of Wechsler Abbreviated Scale of Intelligence (WASI) subtest scores. After WASI specific cognitive subtest scores were regressed on g factor scores, the residual score variances did not correlate significantly with cortical thickness in the full sample with age covaried. When participants were grouped at the age median, significant positive associations of cortical thickness were obtained in the older group for g-residualized scores on Block Design (a measure of visual-motor integrative processing) while significant negative associations of cortical thickness were observed in the younger group for g-residualized Vocabulary scores. These results regarding correlates of general intelligence are concordant with the existing literature, while the findings from younger versus older subgroups have implications for future research on brain structural correlates of specific cognitive abilities, as well as the cognitive domain specificity of behavioral performance correlates of normative gray matter thinning during adolescence. PMID:24744452

  1. Gross morphology and morphometric sequelae in the hippocampus, fornix, and corpus callosum of patients with severe non-missile traumatic brain injury without macroscopically detectable lesions: a T1 weighted MRI study

    PubMed Central

    Tomaiuolo, F; Carlesimo, G; Di, P; Petrides, M; Fera, F; Bonanni, R; Formisano, R; Pasqualetti, P; Caltagirone, C

    2004-01-01

    Objective: The gross morphology and morphometry of the hippocampus, fornix, and corpus callosum in patients with severe non-missile traumatic brain injury (nmTBI) without obvious neuroradiological lesions was examined and the volumes of these structures were correlated with performance on memory tests. In addition, the predictability of the length of coma from the selected anatomical volumes was examined. Method: High spatial resolution T1 weighted MRI scans of the brain (1 mm3) and neuropsychological evaluations with standardised tests were performed at least 3 months after trauma in 19 patients. Results: In comparison with control subjects matched in terms of gender and age, volume reduction in the hippocampus, fornix, and corpus callosum of the nmTBI patients was quantitatively significant. The length of coma correlated with the volume reduction in the corpus callosum. Immediate free recall of word lists correlated with the volume of the fornix and the corpus callosum. Delayed recall of word lists and immediate recall of the Rey figure both correlated with the volume of the fornix. Delayed recall of the Rey figure correlated with the volume of the fornix and the right hippocampus. Conclusion: These findings demonstrate that in severe nmTBI without obvious neuroradiological lesions there is a clear hippocampal, fornix, and callosal volume reduction. The length of coma predicts the callosal volume reduction, which could be considered a marker of the severity of axonal loss. A few memory test scores correlated with the volumes of the selected anatomical structures. This relationship with memory performance may reflect the diffuse nature of the damage, leading to the disruption of neural circuits at multiple levels and the progressive neural degeneration occurring in TBI. PMID:15314123

  2. Brain structural, functional, and cognitive correlates of recent versus remote autobiographical memories in amnestic Mild Cognitive Impairment.

    PubMed

    Tomadesso, Clémence; Perrotin, Audrey; Mutlu, Justine; Mézenge, Florence; Landeau, Brigitte; Egret, Stéphanie; de la Sayette, Vincent; Jonin, Pierre-Yves; Eustache, Francis; Desgranges, Béatrice; Chételat, Gaël

    2015-01-01

    Deficits in autobiographical memory appear earlier for recent than for remote life periods over the course of Alzheimer's disease (AD). The present study aims to further our understanding of this graded effect by investigating the cognitive and neural substrates of recent versus remote autobiographical memories in patients with amnestic Mild Cognitive Impairment (aMCI) thanks to an autobiographical fluency task. 20 aMCI patients and 25 Healthy elderly Controls (HC) underwent neuropsychological tests assessing remote (20-to-30 years old) and recent (the ten last years) autobiographical memory as well as episodic and semantic memory, executive function and global cognition. All patients also had a structural MRI and an FDG-PET scan. Correlations were assessed between each autobiographical memory score and the other tests as well as grey matter volume and metabolism. Within the aMCI, performances for the remote period correlated with personal semantic memory and episodic memory retrieval whereas performances for the recent period only correlated with episodic memory retrieval. Neuroimaging analyses revealed significant correlations between performances for the remote period and temporal pole and temporo-parietal cortex volumes and anterior cingulate gyrus metabolism, while performances for the recent period correlated with hippocampal volume and posterior cingulate, medial prefrontal and hippocampus metabolism. The brain regions related with the retrieval of events from the recent period showed greater atrophy/hypometabolism in aMCI patients compared to HC than those involved in remote memories. Recall of recent memories essentially relies on episodic memory processes and brain network while remote memories also involve other processes such as semantic memory. This is consistent with the semanticization of memories with time and may explain the better resistance of remote memory in AD.

  3. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback

    PubMed Central

    Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex

    2017-01-01

    The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants’ awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns. PMID:28917059

  4. Early parental care is important for hippocampal maturation: evidence from brain morphology in humans.

    PubMed

    Rao, Hengyi; Betancourt, Laura; Giannetta, Joan M; Brodsky, Nancy L; Korczykowski, Marc; Avants, Brian B; Gee, James C; Wang, Jiongjiong; Hurt, Hallam; Detre, John A; Farah, Martha J

    2010-01-01

    The effects of early life experience on later brain structure and function have been studied extensively in animals, yet the relationship between childhood experience and normal brain development in humans remains largely unknown. Using a unique longitudinal data set including ecologically valid in-home measures of early experience during childhood (at age 4 and 8 years) and high-resolution structural brain imaging during adolescence (mean age 14 years), we examined the effects on later brain morphology of two dimensions of early experience: parental nurturance and environmental stimulation. Parental nurturance at age 4 predicts the volume of the left hippocampus in adolescence, with better nurturance associated with smaller hippocampal volume. In contrast, environmental stimulation did not correlate with hippocampal volume. Moreover, the association between hippocampal volume and parental nurturance disappears at age 8, supporting the existence of a sensitive developmental period for brain maturation. These findings indicate that variation in normal childhood experience is associated with differences in brain morphology, and hippocampal volume is specifically associated with early parental nurturance. Our results provide neuroimaging evidence supporting the important role of warm parental care during early childhood for brain maturation.

  5. Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers.

    PubMed

    London, Edythe D; Berman, Steven M; Voytek, Bradley; Simon, Sara L; Mandelkern, Mark A; Monterosso, John; Thompson, Paul M; Brody, Arthur L; Geaga, Jennifer A; Hong, Michael S; Hayashi, Kiralee M; Rawson, Richard A; Ling, Walter

    2005-11-15

    Methamphetamine (MA) abusers have cognitive deficits, abnormal metabolic activity and structural deficits in limbic and paralimbic cortices, and reduced hippocampal volume. The links between cognitive impairment and these cerebral abnormalities are not established. We assessed cerebral glucose metabolism with [F-18]fluorodeoxyglucose positron emission tomography in 17 abstinent (4 to 7 days) methamphetamine users and 16 control subjects performing an auditory vigilance task and obtained structural magnetic resonance brain scans. Regional brain radioactivity served as a marker for relative glucose metabolism. Error rates on the task were related to regional radioactivity and hippocampal morphology. Methamphetamine users had higher error rates than control subjects on the vigilance task. The groups showed different relationships between error rates and relative activity in the anterior and middle cingulate gyrus and the insula. Whereas the MA user group showed negative correlations involving these regions, the control group showed positive correlations involving the cingulate cortex. Across groups, hippocampal metabolic and structural measures were negatively correlated with error rates. Dysfunction in the cingulate and insular cortices of recently abstinent MA abusers contribute to impaired vigilance and other cognitive functions requiring sustained attention. Hippocampal integrity predicts task performance in methamphetamine users as well as control subjects.

  6. VBM-DTI correlates of verbal intelligence: a potential link to Broca's area.

    PubMed

    Konrad, Andreas; Vucurevic, Goran; Musso, Francesco; Winterer, Georg

    2012-04-01

    Human brain lesion studies first investigated the biological roots of cognitive functions including language in the late 1800s. Neuroimaging studies have reported correlation findings with general intelligence predominantly in fronto-parietal cortical areas. However, there is still little evidence about the relationship between verbal intelligence and structural properties of the brain. We predicted that verbal performance is related to language regions of Broca's and Wernicke's areas. Verbal intelligence quotient (vIQ) was assessed in 30 healthy young subjects. T1-weighted MRI and diffusion tensor imaging data sets were acquired. Voxel-wise regression analyses were used to correlate fractional anisotropy (FA) and mean diffusivity values with vIQ. Moreover, regression analyses of regional brain volume with vIQ were performed adopting voxel-based morphometry (VBM) and ROI methodology. Our analyses revealed a significant negative correlation between vIQ and FA and a significant positive correlation between vIQ and mean diffusivity in the left-hemispheric Broca's area. VBM regression analyses did not show significant results, whereas a subsequent ROI analysis of Broca's area FA peak cluster demonstrated a positive correlation of gray matter volume and vIQ. These findings suggest that cortical thickness in Broca's area contributes to verbal intelligence. Diffusion parameters predicted gray matter ratio in Broca's area more sensitive than VBM methodology.

  7. Limbic correlates of fearlessness and disinhibition in incarcerated youth: Exploring the brain-behavior relationship with the Hare Psychopathy Checklist: Youth Version.

    PubMed

    Walters, Glenn D; Kiehl, Kent A

    2015-12-15

    The purpose of this study was to determine whether scores on two temperament dimensions (fearlessness and disinhibition) correlated differentially with gray matter volumes in two limbic regions (amygdala and hippocampus). It was predicted that the fearlessness dimension would correlate with low gray matter volumes in the amygdala and the disinhibition dimension would correlate with low gray matter volumes in the hippocampus after controlling for age, IQ, regular substance use, and total brain volume. Participants were 191 male adolescents (age range=13-19 years) incarcerated in a maximum-security juvenile facility. Structural magnetic resonance imaging (MRI) analysis of the limbic and paralimbic regions of the brain was conducted. The temperament dimensions were estimated with items from the Psychopathy Checklist: Youth Version (PCL: YV: Forth et al., 2003). Analyses showed that the fearlessness dimension correlated negatively with gray matter volumes in the amygdala and the disinhibition dimension correlated negatively with gray matter volumes in the hippocampus but not vice versa. These findings provide preliminary support for the construct validity of the fearlessness and disinhibition temperament dimensions and offer confirmatory evidence for involvement of the amygdala and hippocampus in fear conditioning and behavioral inhibition, respectively. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    PubMed

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-06-17

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.

  9. Brain-behaviour relationships in people at high genetic risk of schizophrenia.

    PubMed

    Lymer, G Katherine S; Job, Dominic E; William, T; Moorhead, J; McIntosh, Andrew M; Owens, David G C; Johnstone, Eve C; Lawrie, Stephen M

    2006-10-15

    The brain is known to be structurally abnormal in schizophrenia, with replicated findings between anatomical deficits and some dysfunctions. These structure-function associations have, however, only very rarely been studied in relatives at risk of schizophrenia. We studied the relationships between structure and schizotypal features (assessed using RISC and SIS) and verbal learning and memory (measured using RAVLT) in relatives at high risk of developing schizophrenia and normal controls. Since these behavioural test scores are strong predictors of schizophrenia in the Edinburgh High Risk Study, we hypothesised that these relationships would differ between those high-risk subjects who will develop schizophrenia from those who will not. We performed multiple regressions of the grey matter segments of the subjects and controls, produced using grey matter optimised, voxel-based morphometry, with their RAVLT, SIS and RISC scores in SPM. Where significant relationships were found, we used SPSS to test for subject group by behavioural score interactions. In those high-risk subjects who became ill, grey matter density (GMD) was significantly correlated with RISC in the left superior temporal gyrus. In subjects who remained well, SIS was significantly correlated with GMD in the right pulvinar. Across the whole HR group, GMD in the right medial dorsal thalamic nucleus was significantly correlated with RAVLT. In those subjects who developed symptoms, RAVLT significantly correlated with GMD in right parahippocampal gyrus whereas in those who became ill, significant correlations existed bilaterally in the pulvinar. These results suggest complex and changing patterns of structural-functional relationships in those subjects at high-risk of schizophrenia.

  10. Anatomical analysis of an aye-aye brain (Daubentonia madagascariensis, primates: Prosimii) combining histology, structural magnetic resonance imaging, and diffusion-tensor imaging.

    PubMed

    Kaufman, Jason A; Ahrens, Eric T; Laidlaw, David H; Zhang, Song; Allman, John M

    2005-11-01

    This report presents initial results of a multimodal analysis of tissue volume and microstructure in the brain of an aye-aye (Daubentonia madagascariensis). The left hemisphere of an aye-aye brain was scanned using T2-weighted structural magnetic resonance imaging (MRI) and diffusion-tensor imaging (DTI) prior to histological processing and staining for Nissl substance and myelinated fibers. The objectives of the experiment were to estimate the volume of gross brain regions for comparison with published data on other prosimians and to validate DTI data on fiber anisotropy with histological measurements of fiber spread. Measurements of brain structure volumes in the specimen are consistent with those reported in the literature: the aye-aye has a very large brain for its body size, a reduced volume of visual structures (V1 and LGN), and an increased volume of the olfactory lobe. This trade-off between visual and olfactory reliance is likely a reflection of the nocturnal extractive foraging behavior practiced by Daubentonia. Additionally, frontal cortex volume is large in the aye-aye, a feature that may also be related to its complex foraging behavior and sensorimotor demands. Analysis of DTI data in the anterior cingulum bundle demonstrates a strong correlation between fiber spread as measured from histological sections and fiber spread as measured from DTI. These results represent the first quantitative comparison of DTI data and fiber-stained histology in the brain. (c) 2005 Wiley-Liss, Inc.

  11. Sleep Duration and Age-Related Changes in Brain Structure and Cognitive Performance

    PubMed Central

    Lo, June C.; Loh, Kep Kee; Zheng, Hui; Sim, Sam K.Y.; Chee, Michael W.L.

    2014-01-01

    Study Objectives: To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Design: Community-based longitudinal brain and cognitive aging study using a convenience sample. Setting: Participants were studied in a research laboratory. Participants: Relatively healthy adults aged 55 y and older at study commencement. Interventions: N/A. Measurements and Results: Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. Conclusions: In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Citation: Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance. SLEEP 2014;37(7):1171-1178. PMID:25061245

  12. Correlates across the Structural, Functional, and Molecular Phenotypes of Fragile X Syndrome

    ERIC Educational Resources Information Center

    Beckel-Mitchener, Andrea; Greenough, William T.

    2004-01-01

    Fragile X syndrome (FXS) is characterized by a pattern of morphological, functional, and molecular characteristics with, in at least some cases, apparent relationships among phenotypic features at different levels. Gross morphology differences in the sizes of some human brain regions are accompanied by fine structural alterations in the shapes and…

  13. Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma

    NASA Astrophysics Data System (ADS)

    Yashin, Konstantin S.; Kiseleva, Elena B.; Gubarkova, Ekaterina V.; Matveev, Lev A.; Karabut, Maria M.; Elagin, Vadim V.; Sirotkina, Marina A.; Medyanik, Igor A.; Kravets, L. Y.; Gladkova, Natalia D.

    2017-02-01

    In the case of infiltrative brain tumors the surgeon faces difficulties in determining their boundaries to achieve total resection. The aim of the investigation was to evaluate the performance of multimodal OCT (MM OCT) for differential diagnostics of normal brain tissue and glioma using an experimental model of glioblastoma. The spectral domain OCT device that was used for the study provides simultaneously two modes: cross-polarization and microangiographic OCT. The comparative analysis of the both OCT modalities images from tumorous and normal brain tissue areas concurrently with histologic correlation shows certain difference between when accordingly to morphological and microvascular tissue features.

  14. Experimental methods and transport models for drug delivery across the blood-brain barrier.

    PubMed

    Fu, Bingmei M

    2012-06-01

    The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed.

  15. Experimental Methods and Transport Models for Drug Delivery across the Blood-Brain Barrier

    PubMed Central

    Fu, Bingmei M

    2017-01-01

    The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed. PMID:22201587

  16. Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia

    PubMed Central

    Guo, Christine C.; Sturm, Virginia E.; Zhou, Juan; Gennatas, Efstathios D.; Trujillo, Andrew J.; Hua, Alice Y.; Crawford, Richard; Stables, Lara; Kramer, Joel H.; Rankin, Katherine; Levenson, Robert W.; Rosen, Howard J.; Miller, Bruce L.; Seeley, William W.

    2016-01-01

    The brain continuously influences and perceives the physiological condition of the body. Related cortical representations have been proposed to shape emotional experience and guide behavior. Although previous studies have identified brain regions recruited during autonomic processing, neurological lesion studies have yet to delineate the regions critical for maintaining autonomic outflow. Even greater controversy surrounds hemispheric lateralization along the parasympathetic–sympathetic axis. The behavioral variant of frontotemporal dementia (bvFTD), featuring progressive and often asymmetric degeneration that includes the frontoinsular and cingulate cortices, provides a unique lesion model for elucidating brain structures that control autonomic tone. Here, we show that bvFTD is associated with reduced baseline cardiac vagal tone and that this reduction correlates with left-lateralized functional and structural frontoinsular and cingulate cortex deficits and with reduced agreeableness. Our results suggest that networked brain regions in the dominant hemisphere are critical for maintaining an adaptive level of baseline parasympathetic outflow. PMID:27071080

  17. Fluid intelligence and brain functional organization in aging yoga and meditation practitioners

    PubMed Central

    Gard, Tim; Taquet, Maxime; Dixit, Rohan; Hölzel, Britta K.; de Montjoye, Yves-Alexandre; Brach, Narayan; Salat, David H.; Dickerson, Bradford C.; Gray, Jeremy R.; Lazar, Sara W.

    2014-01-01

    Numerous studies have documented the normal age-related decline of neural structure, function, and cognitive performance. Preliminary evidence suggests that meditation may reduce decline in specific cognitive domains and in brain structure. Here we extended this research by investigating the relation between age and fluid intelligence and resting state brain functional network architecture using graph theory, in middle-aged yoga and meditation practitioners, and matched controls. Fluid intelligence declined slower in yoga practitioners and meditators combined than in controls. Resting state functional networks of yoga practitioners and meditators combined were more integrated and more resilient to damage than those of controls. Furthermore, mindfulness was positively correlated with fluid intelligence, resilience, and global network efficiency. These findings reveal the possibility to increase resilience and to slow the decline of fluid intelligence and brain functional architecture and suggest that mindfulness plays a mechanistic role in this preservation. PMID:24795629

  18. A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee

    PubMed Central

    Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R.

    2017-01-01

    Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee (Bombus terrestris) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. PMID:28978727

  19. A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee.

    PubMed

    Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R; Chittka, Lars; Perry, Clint J

    2017-10-11

    Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee ( Bombus terrestris ) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. © 2017 The Authors.

  20. Structural Brain Changes Following Left Temporal Low-Frequency rTMS in Patients with Subjective Tinnitus

    PubMed Central

    Langguth, Berthold; Poeppl, Timm B.; Rupprecht, Rainer; Hajak, Göran; Landgrebe, Michael; Schecklmann, Martin

    2014-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the temporal cortex has been used to treat patients with subjective tinnitus. While rTMS is known to induce morphological changes in healthy subjects, no study has investigated yet whether rTMS treatment induces grey matter (GM) changes in tinnitus patients as well, whether these changes are correlated with treatment success, and whether GM at baseline is a useful predictor for treatment outcome. Therefore, we examined magnetic resonance images of 77 tinnitus patients who were treated with rTMS of the left temporal cortex (10 days, 2000 stimuli/day, 1 Hz). At baseline and after the last treatment session high-resolution structural images of the brain were acquired and tinnitus severity was assessed. For a subgroup of 41 patients, additional brain scans were done after a follow-up period of 90 days. GM changes were analysed by means of voxel based morphometry. Transient GM decreases were detectable in several brain regions, especially in the insula and the inferior frontal cortex. These changes were not related to treatment outcome though. Baseline images correlated with change in tinnitus severity in the frontal cortex and the lingual gyrus, suggesting that GM at baseline might hold potential as a possible predictor for treatment outcome. PMID:24991438

  1. Neuropsychiatry and White Matter Microstructure in Huntington’s Disease

    PubMed Central

    Gregory, Sarah; Scahill, Rachael I.; Seunarine, Kiran K.; Stopford, Cheryl; Zhang, Hui; Zhang, Jiaying; Orth, Michael; Durr, Alexandra; Roos, Raymund A.C.; Langbehn, Douglas R.; Long, Jeffrey D.; Johnson, Hans; Rees, Geraint; Tabrizi, Sarah J.; Craufurd, David

    2015-01-01

    Abstract Background: Neuropsychiatric symptoms in Huntington’s disease (HD) are often evident prior to clinical diagnosis. Apathy is highly correlated with disease progression, while depression and irritability occur at different stages of the disease, both before and after clinical onset. Little is understood about the neural bases of these neuropsychiatric symptoms and to what extent those neural bases are analogous to neuropsychiatric disorders in the general population. Objective: We used Diffusion Tensor Imaging (DTI) to investigate structural connectivity between brain regions and any putative microstructural changes associated with depression, apathy and irritability in HD. Methods: DTI data were collected from 39 premanifest and 45 early-HD participants in the Track-HD study and analysed using whole-brain Tract-Based Spatial Statistics. We used regression analyses to identify white matter tracts whose structural integrity (as measured by fractional anisotropy, FA) was correlated with HADS-depression, PBA-apathy or PBA-irritability scores in gene-carriers and related to cumulative probability to onset (CPO). Results: For those with the highest CPO, we found significant correlations between depression scores and reduced FA in the splenium of the corpus callosum. In contrast, those with lowest CPO demonstrated significant correlations between irritability scores and widespread FA reductions. There was no significant relationship between apathy and FA throughout the whole brain. Conclusions: We demonstrate that white matter changes associated with both depression and irritability in HD occur at different stages of disease progression concomitant with their clinical presentation. PMID:26443926

  2. Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology.

    PubMed

    Schultz, Wolfram

    2004-04-01

    Neurons in a small number of brain structures detect rewards and reward-predicting stimuli and are active during the expectation of predictable food and liquid rewards. These neurons code the reward information according to basic terms of various behavioural theories that seek to explain reward-directed learning, approach behaviour and decision-making. The involved brain structures include groups of dopamine neurons, the striatum including the nucleus accumbens, the orbitofrontal cortex and the amygdala. The reward information is fed to brain structures involved in decision-making and organisation of behaviour, such as the dorsolateral prefrontal cortex and possibly the parietal cortex. The neural coding of basic reward terms derived from formal theories puts the neurophysiological investigation of reward mechanisms on firm conceptual grounds and provides neural correlates for the function of rewards in learning, approach behaviour and decision-making.

  3. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabral, Joana; Department of Psychiatry, University of Oxford, Oxford OX3 7JX; Fernandes, Henrique M.

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the rolemore » of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.« less

  4. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    NASA Astrophysics Data System (ADS)

    Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; James, Anthony C.; Kringelbach, Morten L.; Deco, Gustavo

    2013-12-01

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.

  5. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.

    PubMed

    Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong

    2014-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.

  6. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel

    2014-12-01

    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic studies.

  7. Developmental Changes in Organization of Structural Brain Networks

    PubMed Central

    Khundrakpam, Budhachandra S.; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C.; Ball, William S.; Byars, Anna Weber; Schapiro, Mark; Bommer, Wendy; Carr, April; German, April; Dunn, Scott; Rivkin, Michael J.; Waber, Deborah; Mulkern, Robert; Vajapeyam, Sridhar; Chiverton, Abigail; Davis, Peter; Koo, Julie; Marmor, Jacki; Mrakotsky, Christine; Robertson, Richard; McAnulty, Gloria; Brandt, Michael E.; Fletcher, Jack M.; Kramer, Larry A.; Yang, Grace; McCormack, Cara; Hebert, Kathleen M.; Volero, Hilda; Botteron, Kelly; McKinstry, Robert C.; Warren, William; Nishino, Tomoyuki; Robert Almli, C.; Todd, Richard; Constantino, John; McCracken, James T.; Levitt, Jennifer; Alger, Jeffrey; O'Neil, Joseph; Toga, Arthur; Asarnow, Robert; Fadale, David; Heinichen, Laura; Ireland, Cedric; Wang, Dah-Jyuu; Moss, Edward; Zimmerman, Robert A.; Bintliff, Brooke; Bradford, Ruth; Newman, Janice; Evans, Alan C.; Arnaoutelis, Rozalia; Bruce Pike, G.; Louis Collins, D.; Leonard, Gabriel; Paus, Tomas; Zijdenbos, Alex; Das, Samir; Fonov, Vladimir; Fu, Luke; Harlap, Jonathan; Leppert, Ilana; Milovan, Denise; Vins, Dario; Zeffiro, Thomas; Van Meter, John; Lange, Nicholas; Froimowitz, Michael P.; Botteron, Kelly; Robert Almli, C.; Rainey, Cheryl; Henderson, Stan; Nishino, Tomoyuki; Warren, William; Edwards, Jennifer L.; Dubois, Diane; Smith, Karla; Singer, Tish; Wilber, Aaron A.; Pierpaoli, Carlo; Basser, Peter J.; Chang, Lin-Ching; Koay, Chen Guan; Walker, Lindsay; Freund, Lisa; Rumsey, Judith; Baskir, Lauren; Stanford, Laurence; Sirocco, Karen; Gwinn-Hardy, Katrina; Spinella, Giovanna; McCracken, James T.; Alger, Jeffry R.; Levitt, Jennifer; O'Neill, Joseph

    2013-01-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8–8.4 year; late childhood: 8.5–11.3 year; early adolescence: 11.4–14.7 year; late adolescence: 14.8–18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces. PMID:22784607

  8. Spaceflight Effects on Neurocognitive Performance: Extent, Longevity and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Kofman, I. S.; Cassady, K.; Yuan, P.; De Dios, Y. E.; Gadd, N.; Riascos, R. F.; Wood, S. J.; hide

    2017-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that are conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. We have collected data on several crewmembers and preliminary findings will be presented. Eventual comparison to results from our parallel bed rest study will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe.

  9. Are event-related potentials to dynamic facial expressions of emotion related to individual differences in the accuracy of processing facial expressions and identity?

    PubMed

    Recio, Guillermo; Wilhelm, Oliver; Sommer, Werner; Hildebrandt, Andrea

    2017-04-01

    Despite a wealth of knowledge about the neural mechanisms behind emotional facial expression processing, little is known about how they relate to individual differences in social cognition abilities. We studied individual differences in the event-related potentials (ERPs) elicited by dynamic facial expressions. First, we assessed the latent structure of the ERPs, reflecting structural face processing in the N170, and the allocation of processing resources and reflexive attention to emotionally salient stimuli, in the early posterior negativity (EPN) and the late positive complex (LPC). Then we estimated brain-behavior relationships between the ERP factors and behavioral indicators of facial identity and emotion-processing abilities. Structural models revealed that the participants who formed faster structural representations of neutral faces (i.e., shorter N170 latencies) performed better at face perception (r = -.51) and memory (r = -.42). The N170 amplitude was not related to individual differences in face cognition or emotion processing. The latent EPN factor correlated with emotion perception (r = .47) and memory (r = .32), and also with face perception abilities (r = .41). Interestingly, the latent factor representing the difference in EPN amplitudes between the two neutral control conditions (chewing and blinking movements) also correlated with emotion perception (r = .51), highlighting the importance of tracking facial changes in the perception of emotional facial expressions. The LPC factor for negative expressions correlated with the memory for emotional facial expressions. The links revealed between the latency and strength of activations of brain systems and individual differences in processing socio-emotional information provide new insights into the brain mechanisms involved in social communication.

  10. Neurobiology of Schizophrenia: Search for the Elusive Correlation with Symptoms

    PubMed Central

    Mathalon, Daniel H.; Ford, Judith M.

    2012-01-01

    In the last half-century, human neuroscience methods provided a way to study schizophrenia in vivo, and established that it is associated with subtle abnormalities in brain structure and function. However, efforts to understand the neurobiological bases of the clinical symptoms that the diagnosis is based on have been largely unsuccessful. In this paper, we provide an overview of the conceptual and methodological obstacles that undermine efforts to link the severity of specific symptoms to specific neurobiological measures. These obstacles include small samples, questionable reliability and validity of measurements, medication confounds, failure to distinguish state and trait effects, correlation–causation ambiguity, and the absence of compelling animal models of specific symptoms to test mechanistic hypotheses derived from brain-symptom correlations. We conclude with recommendations to promote progress in establishing brain-symptom relationships. PMID:22654745

  11. Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion

    PubMed Central

    Ma, Da; Cardoso, Manuel J.; Modat, Marc; Powell, Nick; Wells, Jack; Holmes, Holly; Wiseman, Frances; Tybulewicz, Victor; Fisher, Elizabeth; Lythgoe, Mark F.; Ourselin, Sébastien

    2014-01-01

    Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework. PMID:24475148

  12. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  13. First trimester size charts of embryonic brain structures.

    PubMed

    Gijtenbeek, M; Bogers, H; Groenenberg, I A L; Exalto, N; Willemsen, S P; Steegers, E A P; Eilers, P H C; Steegers-Theunissen, R P M

    2014-02-01

    Can reliable size charts of human embryonic brain structures be created from three-dimensional ultrasound (3D-US) visualizations? Reliable size charts of human embryonic brain structures can be created from high-quality images. Previous studies on the visualization of both the cavities and the walls of the brain compartments were performed using 2D-US, 3D-US or invasive intrauterine sonography. However, the walls of the diencephalon, mesencephalon and telencephalon have not been measured non-invasively before. Last-decade improvements in transvaginal ultrasound techniques allow a better visualization and offer the tools to measure these human embryonic brain structures with precision. This study is embedded in a prospective periconceptional cohort study. A total of 141 pregnancies were included before the sixth week of gestation and were monitored until delivery to assess complications and adverse outcomes. For the analysis of embryonic growth, 596 3D-US scans encompassing the entire embryo were obtained from 106 singleton non-malformed live birth pregnancies between 7(+0) and 12(+6) weeks' gestational age (GA). Using 4D View (3D software) the measured embryonic brain structures comprised thickness of the diencephalon, mesencephalon and telencephalon, and the total diameter of the diencephalon and mesencephalon. Of 596 3D scans, 161 (27%) high-quality scans of 79 pregnancies were eligible for analysis. The reliability of all embryonic brain structure measurements, based on the intra-class correlation coefficients (ICCs) (all above 0.98), was excellent. Bland-Altman plots showed moderate agreement for measurements of the telencephalon, but for all other measurements the agreement was good. Size charts were constructed according to crown-rump length (CRL). The percentage of high-quality scans suitable for analysis of these brain structures was low (27%).  The size charts of human embryonic brain structures can be used to study normal and abnormal development of brain development in future. Also, the effects of periconceptional maternal exposures, such as folic acid supplement use and smoking, on human embryonic brain development can be a topic of future research. This study was supported by the Department of Obstetrics and Gynaecology of the Erasmus University Medical Center. M.G. was supported by an additional grant from the Sophia Foundation for Medical Research (SSWO grant number 644). No competing interests are declared.

  14. Biomarkers for Musculoskeletal Pain Conditions: Use of Brain Imaging and Machine Learning.

    PubMed

    Boissoneault, Jeff; Sevel, Landrew; Letzen, Janelle; Robinson, Michael; Staud, Roland

    2017-01-01

    Chronic musculoskeletal pain condition often shows poor correlations between tissue abnormalities and clinical pain. Therefore, classification of pain conditions like chronic low back pain, osteoarthritis, and fibromyalgia depends mostly on self report and less on objective findings like X-ray or magnetic resonance imaging (MRI) changes. However, recent advances in structural and functional brain imaging have identified brain abnormalities in chronic pain conditions that can be used for illness classification. Because the analysis of complex and multivariate brain imaging data is challenging, machine learning techniques have been increasingly utilized for this purpose. The goal of machine learning is to train specific classifiers to best identify variables of interest on brain MRIs (i.e., biomarkers). This report describes classification techniques capable of separating MRI-based brain biomarkers of chronic pain patients from healthy controls with high accuracy (70-92%) using machine learning, as well as critical scientific, practical, and ethical considerations related to their potential clinical application. Although self-report remains the gold standard for pain assessment, machine learning may aid in the classification of chronic pain disorders like chronic back pain and fibromyalgia as well as provide mechanistic information regarding their neural correlates.

  15. Brain metabolism in patients with freezing of gait after hypoxic-ischemic brain injury: A pilot study.

    PubMed

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Na Young; An, Young-Sil; Kim, Yong Wook

    2017-11-01

    Movement disorders are 1 of the long-term neurological complications that can occur after hypoxic-ischemic brain injury (HIBI). However, freezing of gait (FOG) after HIBI is rare. The aim of this study was to examine the brain metabolism of patients with FOG after HIBI using F-18 fluoro-2-deoxy-D-glucose positron emission tomography (F-18 FDG PET).We consecutively enrolled 11 patients with FOG after HIBI. The patients' overall brain metabolism was measured by F-18 FDG PET, and we compared their regional brain metabolic activity with that from 15 healthy controls using a voxel-by-voxel-based statistical mapping analysis. Additionally, we correlated each patient's FOG severity with the brain metabolism using a covariance analysis.Patients with FOG had significantly decreased brain glucose metabolism in the midbrain, bilateral thalamus, bilateral cingulate gyri, right supramarginal gyrus, right angular gyrus, right paracentral lobule, and left precentral gyrus (PFDR-corrected < .01, k = 50). No significant increases in brain metabolism were noted in patients with FOG. The covariance analysis identified significant correlations between the FOG severity and the brain metabolism in the right lingual gyrus, left fusiform gyrus, and bilateral cerebellar crus I (Puncorrected < 0.001, k = 50).Our data suggest that brain regions in the gait-related neural network, including the cerebral cortex, subcortical structures, brainstem, and cerebellum, may significantly contribute to the development of FOG in HIBI. Moreover, the FOG severity may be associated with the visual cortex and cerebellar regions.

  16. Age-related differences in the topological efficiency of the brain structural connectome in amnestic mild cognitive impairment.

    PubMed

    Zhao, Tengda; Sheng, Can; Bi, Qiuhui; Niu, Weili; Shu, Ni; Han, Ying

    2017-11-01

    Amnestic mild cognitive impairment (aMCI) is accompanied by the accelerated cognitive decline and rapid brain degeneration with aging. However, the age-related alterations of the topological organization of the brain connectome in aMCI patients remained largely unknown. In this study, we constructed the brain structural connectome in 51 aMCI patients and 51 healthy controls by diffusion magnetic resonance imaging and deterministic tractography. The different age-related alteration patterns of the global and regional network metrics between aMCI patients and healthy controls were assessed by a linear regression model. Compared with healthy controls, significantly decreased global and local network efficiency in aMCI patients were found. When correlating network efficiency with age, we observed a significant decline in network efficiency with aging in the aMCI patients, while not in the healthy controls. The age-related decreases of nodal efficiency in aMCI patients were mainly distributed in the key regions of the default-mode network, such as precuneus, anterior cingulate gyrus, and parahippocampal gyrus. In addition, age-related decreases in the connection strength of the edges between peripheral nodes were observed in aMCI patients. Moreover, the decreased regional efficiency of the parahippocampal gyrus was correlated with impaired memory performances in patients. The present study suggests an age-related disruption of the topological organization of the brain structural connectome in aMCI patients, which may provide evidence for different neural mechanisms underlying aging in aMCI and may serve as a potential imaging marker for the early diagnosis of Alzheimer's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Structural connectivity of right frontal hyperactive areas scales with stuttering severity.

    PubMed

    Neef, Nicole E; Anwander, Alfred; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2018-01-01

    A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain-behaviour and structure-function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI-diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in persistent developmental stuttering. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  18. Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain.

    PubMed

    Lopopolo, Alessandro; Frank, Stefan L; van den Bosch, Antal; Willems, Roel M

    2017-01-01

    Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.

  19. Potential predictors for the amount of intra-operative brain shift during deep brain stimulation surgery

    NASA Astrophysics Data System (ADS)

    Datteri, Ryan; Pallavaram, Srivatsan; Konrad, Peter E.; Neimat, Joseph S.; D'Haese, Pierre-François; Dawant, Benoit M.

    2011-03-01

    A number of groups have reported on the occurrence of intra-operative brain shift during deep brain stimulation (DBS) surgery. This has a number of implications for the procedure including an increased chance of intra-cranial bleeding and complications due to the need for more exploratory electrodes to account for the brain shift. It has been reported that the amount of pneumocephalus or air invasion into the cranial cavity due to the opening of the dura correlates with intraoperative brain shift. Therefore, pre-operatively predicting the amount of pneumocephalus expected during surgery is of interest toward accounting for brain shift. In this study, we used 64 DBS patients who received bilateral electrode implantations and had a post-operative CT scan acquired immediately after surgery (CT-PI). For each patient, the volumes of the pneumocephalus, left ventricle, right ventricle, third ventricle, white matter, grey matter, and cerebral spinal fluid were calculated. The pneumocephalus was calculated from the CT-PI utilizing a region growing technique that was initialized with an atlas-based image registration method. A multi-atlas-based image segmentation method was used to segment out the ventricles of each patient. The Statistical Parametric Mapping (SPM) software package was utilized to calculate the volumes of the cerebral spinal fluid (CSF), white matter and grey matter. The volume of individual structures had a moderate correlation with pneumocephalus. Utilizing a multi-linear regression between the volume of the pneumocephalus and the statistically relevant individual structures a Pearson's coefficient of r = 0.4123 (p = 0.0103) was found. This study shows preliminary results that could be used to develop a method to predict the amount of pneumocephalus ahead of the surgery.

  20. Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect.

    PubMed

    Welborn, B Locke; Papademetris, Xenophon; Reis, Deidre L; Rajeevan, Nallakkandi; Bloise, Suzanne M; Gray, Jeremy R

    2009-12-01

    Sex differences in brain structure have been examined extensively but are not completely understood, especially in relation to possible functional correlates. Our two aims in this study were to investigate sex differences in brain structure, and to investigate a possible relation between orbitofrontal cortex subregions and affective individual differences. We used tensor-based morphometry to estimate local brain volume from MPRAGE images in 117 healthy right-handed adults (58 female), age 18-40 years. We entered estimates of local brain volume as the dependent variable in a GLM, controlling for age, intelligence and whole-brain volume. Men had larger left planum temporale. Women had larger ventromedial prefrontal cortex (vmPFC), right lateral orbitofrontal (rlOFC), cerebellum, and bilateral basal ganglia and nearby white matter. vmPFC but not rlOFC volume covaried with self-reported emotion regulation strategies (reappraisal, suppression), expressivity of positive emotions (but not of negative), strength of emotional impulses, and cognitive but not somatic anxiety. vmPFC volume statistically mediated sex differences in emotion suppression. The results confirm prior reports of sex differences in orbitofrontal cortex structure, and are the first to show that normal variation in vmPFC volume is systematically related to emotion regulation and affective individual differences.

  1. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.

    PubMed

    Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-02-07

    Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks have not yet been detected. Structural and functional network metrics of regions related to reward, memory, and sensory performance were strongly correlated with the cognitive outcome. The use of animal models is essential for the early identification of these alterations and can contribute to the development of early biomarkers of the disease based on MRI connectomics.

  2. Aberrant brain stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease.

    PubMed

    Lee, Ji Han; Jung, Won Sang; Choi, Woo Hee; Lim, Hyun Kook

    2016-01-01

    Among patients with Alzheimer's disease (AD), sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD. In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology. Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group. This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings.

  3. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  4. Individual differences in the dominance of interhemispheric connections predict cognitive ability beyond sex and brain size.

    PubMed

    Martínez, Kenia; Janssen, Joost; Pineda-Pardo, José Ángel; Carmona, Susanna; Román, Francisco Javier; Alemán-Gómez, Yasser; Garcia-Garcia, David; Escorial, Sergio; Quiroga, María Ángeles; Santarnecchi, Emiliano; Navas-Sánchez, Francisco Javier; Desco, Manuel; Arango, Celso; Colom, Roberto

    2017-07-15

    Global structural brain connectivity has been reported to be sex-dependent with women having increased interhemispheric connectivity (InterHc) and men having greater intrahemispheric connectivity (IntraHc). However, (a) smaller brains show greater InterHc, (b) larger brains show greater IntraHc, and (c) women have, on average, smaller brains than men. Therefore, sex differences in brain size may modulate sex differences in global brain connectivity. At the behavioural level, sex-dependent differences in connectivity are thought to contribute to men-women differences in spatial and verbal abilities. But this has never been tested at the individual level. The current study assessed whether individual differences in global structural connectome measures (InterHc, IntraHc and the ratio of InterHc relative to IntraHc) predict spatial and verbal ability while accounting for the effect of sex and brain size. The sample included forty men and forty women, who did neither differ in age nor in verbal and spatial latent components defined by a broad battery of tests and tasks. High-resolution T 1 -weighted and diffusion-weighted images were obtained for computing brain size and reconstructing the structural connectome. Results showed that men had higher IntraHc than women, while women had an increased ratio InterHc/IntraHc. However, these sex differences were modulated by brain size. Increased InterHc relative to IntraHc predicted higher spatial and verbal ability irrespective of sex and brain size. The positive correlations between the ratio InterHc/IntraHc and the spatial and verbal abilities were confirmed in 1000 random samples generated by bootstrapping. Therefore, sex differences in global structural connectome connectivity were modulated by brain size and did not underlie sex differences in verbal and spatial abilities. Rather, the level of dominance of InterHc over IntraHc may be associated with individual differences in verbal and spatial abilities in both men and women. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function.

    PubMed

    Reimann, Michael W; Nolte, Max; Scolamiero, Martina; Turner, Katharine; Perin, Rodrigo; Chindemi, Giuseppe; Dłotko, Paweł; Levi, Ran; Hess, Kathryn; Markram, Henry

    2017-01-01

    The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity. The synaptic network contains an abundance of cliques of neurons bound into cavities that guide the emergence of correlated activity. In response to stimuli, correlated activity binds synaptically connected neurons into functional cliques and cavities that evolve in a stereotypical sequence toward peak complexity. We propose that the brain processes stimuli by forming increasingly complex functional cliques and cavities.

  6. Algebraic Topology of Multi-Brain Connectivity Networks Reveals Dissimilarity in Functional Patterns during Spoken Communications

    PubMed Central

    Tadić, Bosiljka; Andjelković, Miroslav; Boshkoska, Biljana Mileva; Levnajić, Zoran

    2016-01-01

    Human behaviour in various circumstances mirrors the corresponding brain connectivity patterns, which are suitably represented by functional brain networks. While the objective analysis of these networks by graph theory tools deepened our understanding of brain functions, the multi-brain structures and connections underlying human social behaviour remain largely unexplored. In this study, we analyse the aggregate graph that maps coordination of EEG signals previously recorded during spoken communications in two groups of six listeners and two speakers. Applying an innovative approach based on the algebraic topology of graphs, we analyse higher-order topological complexes consisting of mutually interwoven cliques of a high order to which the identified functional connections organise. Our results reveal that the topological quantifiers provide new suitable measures for differences in the brain activity patterns and inter-brain synchronisation between speakers and listeners. Moreover, the higher topological complexity correlates with the listener’s concentration to the story, confirmed by self-rating, and closeness to the speaker’s brain activity pattern, which is measured by network-to-network distance. The connectivity structures of the frontal and parietal lobe consistently constitute distinct clusters, which extend across the listener’s group. Formally, the topology quantifiers of the multi-brain communities exceed the sum of those of the participating individuals and also reflect the listener’s rated attributes of the speaker and the narrated subject. In the broader context, the presented study exposes the relevance of higher topological structures (besides standard graph measures) for characterising functional brain networks under different stimuli. PMID:27880802

  7. Neuronal correlates of the five factor model (FFM) of human personality: Multimodal imaging in a large healthy sample.

    PubMed

    Bjørnebekk, Astrid; Fjell, Anders M; Walhovd, Kristine B; Grydeland, Håkon; Torgersen, Svenn; Westlye, Lars T

    2013-01-15

    Advances in neuroimaging techniques have recently provided glimpse into the neurobiology of complex traits of human personality. Whereas some intriguing findings have connected aspects of personality to variations in brain morphology, the relations are complex and our current understanding is incomplete. Therefore, we aimed to provide a comprehensive investigation of brain-personality relations using a multimodal neuroimaging approach in a large sample comprising 265 healthy individuals. The NEO Personality Inventory was used to provide measures of core aspects of human personality, and imaging phenotypes included measures of total and regional brain volumes, regional cortical thickness and arealization, and diffusion tensor imaging indices of white matter (WM) microstructure. Neuroticism was the trait most clearly linked to brain structure. Higher neuroticism including facets reflecting anxiety, depression and vulnerability to stress was associated with smaller total brain volume, widespread decrease in WM microstructure, and smaller frontotemporal surface area. Higher scores on extraversion were associated with thinner inferior frontal gyrus, and conscientiousness was negatively associated with arealization of the temporoparietal junction. No reliable associations between brain structure and agreeableness and openness, respectively, were found. The results provide novel evidence of the associations between brain structure and variations in human personality, and corroborate previous findings of a consistent neuroanatomical basis of negative emotionality. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Mind Operational Semantics and Brain Operational Architectonics: A Putative Correspondence

    PubMed Central

    Benedetti, Giulio; Marchetti, Giorgio; Fingelkurts, Alexander A; Fingelkurts, Andrew A

    2010-01-01

    Despite allowing for the unprecedented visualization of brain functional activity, modern neurobiological techniques have not yet been able to provide satisfactory answers to important questions about the relationship between brain and mind. The aim of this paper is to show how two different but complementary approaches, Mind Operational Semantics (OS) and Brain Operational Architectonics (OA), can help bridge the gap between a specific kind of mental activity—the higher-order reflective thought or linguistic thought—and brain. The fundamental notion that allows the two different approaches to be jointly used under a common framework is that of operation. According to OS, which is based on introspection and linguistic data, the meanings of words can be analyzed in terms of elemental mental operations (EOMC), amongst which those of attention play a key role. Linguistic thought is made possible by special kinds of elements, which OS calls “correlators”, which have the function of tying together the other elements of thought, which OS calls “correlata” (a "correlational network” that is, a sentence, is so formed). Therefore, OS conceives of linguistic thought as a hierarchy of operations of increasing complexity. Likewise, according to OA, which is based on the joint analysis of cognitive and electromagnetic data (EEG and MEG), every conscious phenomenon is brought to existence by the joint operations of many functional and transient neuronal assemblies in the brain. According to OA, the functioning of the brain is always operational (made up of operations), and its structure is characterized by a hierarchy of operations of increasing complexity: single neurons, single assemblies of neurons, synchronized neuronal assemblies or Operational Modules (OM), integrated or complex OMs. The authors put forward the hypothesis that the whole level of OS’s description (EOMC, correlators, and correlational networks) corresponds to the level of OMs (or set of them) of different complexity within OA’s theory: EOMC could correspond to simple OMs, correlators to complex OMs and the correlational network to a set of simple and complex OMs. Finally, a set of experiments is proposed to verify the putative correspondence between OS and OA and prove the existence of an integrated continuum between brain and mind. PMID:21113277

  9. Similar cortical but not subcortical gray matter abnormalities in women with posttraumatic stress disorder with versus without dissociative identity disorder.

    PubMed

    Chalavi, Sima; Vissia, Eline M; Giesen, Mechteld E; Nijenhuis, Ellert R S; Draijer, Nel; Barker, Gareth J; Veltman, Dick J; Reinders, Antje A T S

    2015-03-30

    Neuroanatomical evidence on the relationship between posttraumatic stress disorder (PTSD) and dissociative disorders is still lacking. We acquired brain structural magnetic resonance imaging (MRI) scans from 17 patients with dissociative identity disorder (DID) and co-morbid PTSD (DID-PTSD) and 16 patients with PTSD but without DID (PTSD-only), and 32 healthy controls (HC), and compared their whole-brain cortical and subcortical gray matter (GM) morphological measurements. Associations between GM measurements and severity of dissociative and depersonalization/derealization symptoms or lifetime traumatizing events were evaluated in the patient groups. DID-PTSD and PTSD-only patients, compared with HC, had similarly smaller cortical GM volumes of the whole brain and of frontal, temporal and insular cortices. DID-PTSD patients additionally showed smaller hippocampal and larger pallidum volumes relative to HC, and larger putamen and pallidum volumes relative to PTSD-only. Severity of lifetime traumatizing events and volume of the hippocampus were negatively correlated. Severity of dissociative and depersonalization/derealization symptoms correlated positively with volume of the putamen and pallidum, and negatively with volume of the inferior parietal cortex. Shared abnormal brain structures in DID-PTSD and PTSD-only, small hippocampal volume in DID-PTSD, more severe lifetime traumatizing events in DID-PTSD compared with PTSD-only, and negative correlations between lifetime traumatizing events and hippocampal volume suggest a trauma-related etiology for DID. Our results provide neurobiological evidence for the side-by-side nosological classification of PTSD and DID in the DSM-5. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Changes in Gray Matter Density, Regional Homogeneity, and Functional Connectivity in Methamphetamine-Associated Psychosis: A Resting-State Functional Magnetic Resonance Imaging (fMRI) Study.

    PubMed

    Zhang, Shengyu; Hu, Qiang; Tang, Tao; Liu, Chao; Li, Chengchong; Zang, Yin-Yin; Cai, Wei-Xiong

    2018-06-13

    BACKGROUND Using regional homogeneity (ReHo) blood oxygen level-dependent functional MR (BOLD-fMRI), we investigated the structural and functional alterations of brain regions among patients with methamphetamine-associated psychosis (MAP). MATERIAL AND METHODS This retrospective study included 17 MAP patients, 16 schizophrenia (SCZ) patients, and 18 healthy controls. Informed consent was obtained from all patients before the clinical assessment, the severity of clinical symptoms was evaluated prior to the fMRI scanning, and then images were acquired and preprocessed after each participant received 6-min fRMI scanning. The participants all underwent BOLD-fMRI scanning. Voxel-based morphometry was used to measure gray matter density (GMD). Resting-state fMRI (rs-fMRI) was conducted to analyze functional MR, ReHo, and functional connectivity (FC). RESULTS GMD analysis results suggest that MAP patients, SCZ patients, and healthy volunteers show different GMDs within different brain regions. Similarly, the ReHo analysis results suggest that MAP patients, SCZ patients, and healthy volunteers have different GMDs within different brain regions. Negative correlations were found between ReHo- and the PANSS-positive scores within the left orbital interior frontal gyrus (L-orb-IFG) of MAP patients. ReHo- and PANSS-negative scores of R-SFG were negatively correlated among SCZ patients. The abnormal FC of R-MFG showed a negative correlation with the PANSS score among MAP patients. CONCLUSIONS The abnormalities in brain structure and FC were associated with the development of MAP.

  11. Characterizing Focused-Ultrasound Mediated Drug Delivery to the Heterogeneous Primate Brain In Vivo with Acoustic Monitoring

    NASA Astrophysics Data System (ADS)

    Wu, Shih-Ying; Sanchez, Carlos Sierra; Samiotaki, Gesthimani; Buch, Amanda; Ferrera, Vincent P.; Konofagou, Elisa E.

    2016-11-01

    Focused ultrasound with microbubbles has been used to noninvasively and selectively deliver pharmacological agents across the blood-brain barrier (BBB) for treating brain diseases. Acoustic cavitation monitoring could serve as an on-line tool to assess and control the treatment. While it demonstrated a strong correlation in small animals, its translation to primates remains in question due to the anatomically different and highly heterogeneous brain structures with gray and white matteras well as dense vasculature. In addition, the drug delivery efficiency and the BBB opening volume have never been shown to be predictable through cavitation monitoring in primates. This study aimed at determining how cavitation activity is correlated with the amount and concentration of gadolinium delivered through the BBB and its associated delivery efficiency as well as the BBB opening volume in non-human primates. Another important finding entails the effect of heterogeneous brain anatomy and vasculature of a primate brain, i.e., presence of large cerebral vessels, gray and white matter that will also affect the cavitation activity associated with variation of BBB opening in different tissue types, which is not typically observed in small animals. Both these new findings are critical in the primate brain and provide essential information for clinical applications.

  12. Characterizing Focused-Ultrasound Mediated Drug Delivery to the Heterogeneous Primate Brain In Vivo with Acoustic Monitoring

    PubMed Central

    Wu, Shih-Ying; Sanchez, Carlos Sierra; Samiotaki, Gesthimani; Buch, Amanda; Ferrera, Vincent P.; Konofagou, Elisa E.

    2016-01-01

    Focused ultrasound with microbubbles has been used to noninvasively and selectively deliver pharmacological agents across the blood-brain barrier (BBB) for treating brain diseases. Acoustic cavitation monitoring could serve as an on-line tool to assess and control the treatment. While it demonstrated a strong correlation in small animals, its translation to primates remains in question due to the anatomically different and highly heterogeneous brain structures with gray and white matteras well as dense vasculature. In addition, the drug delivery efficiency and the BBB opening volume have never been shown to be predictable through cavitation monitoring in primates. This study aimed at determining how cavitation activity is correlated with the amount and concentration of gadolinium delivered through the BBB and its associated delivery efficiency as well as the BBB opening volume in non-human primates. Another important finding entails the effect of heterogeneous brain anatomy and vasculature of a primate brain, i.e., presence of large cerebral vessels, gray and white matter that will also affect the cavitation activity associated with variation of BBB opening in different tissue types, which is not typically observed in small animals. Both these new findings are critical in the primate brain and provide essential information for clinical applications. PMID:27853267

  13. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Virginia C., E-mail: Moser.ginger@epa.gov

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavagemore » dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administered dose, the differences based on internal concentrations were less, with γ-cyhalothrin being 1.3- to 1.6-fold more potent than λ-cyhalothrin. These potency differences are consistent with the purity of the λ-isomer (approximately 43%) compared to the enriched isomer γ-cyhalothrin (approximately 98%). Thus, administered dose as well as differences in cyhalothrin isomers is a good predictor of behavioral effects. - Highlights: • Acute changes in locomotor activity were produced by λ- and γ-cyhalothrin. • γ-Cyhalothrin was about 2-fold more potent than λ-cyhalothrin. • Brain and plasma levels were tightly correlated across doses. • Activity changes correlated well with brain and plasma concentrations.« less

  14. Cortical and subcortical mapping of language areas: correlation of functional MRI and tractography in a 3T scanner with intraoperative cortical and subcortical stimulation in patients with brain tumors located in eloquent areas.

    PubMed

    Jiménez de la Peña, M; Gil Robles, S; Recio Rodríguez, M; Ruiz Ocaña, C; Martínez de Vega, V

    2013-01-01

    To describe the detection of cortical areas and subcortical pathways involved in language observed in MRI activation studies and tractography in a 3T MRI scanner and to correlate the findings of these functional studies with direct intraoperative cortical and subcortical stimulation. We present a series of 14 patients with focal brain tumors adjacent to eloquent brain areas. All patients underwent neuropsychological evaluation before and after surgery. All patients underwent MRI examination including structural sequences, perfusion imaging, spectroscopy, functional imaging to determine activation of motor and language areas, and 3D tractography. All patients underwent cortical mapping through cortical and subcortical stimulation during the operation to resect the tumor. Postoperative follow-up studies were done 24 hours after surgery. The correlation of motor function and of the corticospinal tract determined by functional MRI and tractography with intraoperative mapping of cortical and subcortical motor areas was complete. The eloquent brain areas of language expression and reception were strongly correlated with intraoperative cortical mapping in all but two cases (a high grade infiltrating glioma and a low grade glioma located in the frontal lobe). 3D tractography identified the arcuate fasciculus, the lateral part of the superior longitudinal fasciculus, the subcallosal fasciculus, the inferior fronto-occipital fasciculus, and the optic radiations, which made it possible to mark the limits of the resection. The correlation with the subcortical mapping of the anatomic arrangement of the fasciculi with respect to the lesions was complete. The best treatment for brain tumors is maximum resection without associated deficits, so high quality functional studies are necessary for preoperative planning. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  15. Neuropsychiatric Subsyndromes and Brain Metabolic Network Dysfunctions in Early Onset Alzheimer’s Disease

    PubMed Central

    Tommaso, Ballarini; Leonardo, Iaccarino; Giuseppe, Magnani; Nagehan, Ayakta; Bruce L, Miller; William J, Jagust; Luisa, Gorno-Tempini Maria; Gil D, Rabinovici; Daniela, Perani

    2017-01-01

    Neuropsychiatric symptoms (NPSs) often occur in early-age-of-onset Alzheimer’s disease (EOAD) and cluster into sub-syndromes (SSy). The aim of this study was to investigate the association between 18F-FDG-PET regional and connectivity-based brain metabolic dysfunctions and neuropsychiatric SSy. NPSs were assessed in 27 EOAD using the Neuropsychiatric Inventory and further clustered into four SSy (apathetic, hyperactivity, affective and psychotic SSy). 85% of EOAD showed at least one NPS. Voxel-wise correlations between SSy scores and brain glucose metabolism (assessed with 18F-FDG positron emission tomography) were studied. Interregional correlation analysis was used to explore metabolic connectivity in the salience (aSN) and default mode networks (DMN) in a larger sample of EOAD (N=51) and Healthy Controls (N=57). The apathetic, hyperactivity and affective SSy were highly prevalent (>60%) as compared to the psychotic SSy (33%). The hyperactivity SSy scores were associated with increase of glucose metabolism in frontal and limbic structures, implicated in behavioral control. A comparable positive correlation with part of the same network was found for the affective SSy scores. On the other hand, the apathetic SSy scores were negatively correlated with metabolism in the bilateral orbitofrontal and dorsolateral frontal cortex known to be involved in motivation and decision-making processes. Consistent with these SSy regional correlations with brain metabolic dysfunction, the connectivity analysis showed increases in the aSN and decreases in the DMN. Behavioral abnormalities in EOAD are associated with specific dysfunctional changes in brain metabolic activity, in particular in the aSN that seems to play a crucial role in NPSs in EOAD. PMID:27412866

  16. Syntactic structure building in the anterior temporal lobe during natural story listening.

    PubMed

    Brennan, Jonathan; Nir, Yuval; Hasson, Uri; Malach, Rafael; Heeger, David J; Pylkkänen, Liina

    2012-02-01

    The neural basis of syntax is a matter of substantial debate. In particular, the inferior frontal gyrus (IFG), or Broca's area, has been prominently linked to syntactic processing, but the anterior temporal lobe has been reported to be activated instead of IFG when manipulating the presence of syntactic structure. These findings are difficult to reconcile because they rely on different laboratory tasks which tap into distinct computations, and may only indirectly relate to natural sentence processing. Here we assessed neural correlates of syntactic structure building in natural language comprehension, free from artificial task demands. Subjects passively listened to Alice in Wonderland during functional magnetic resonance imaging and we correlated brain activity with a word-by-word measure of the amount syntactic structure analyzed. Syntactic structure building correlated with activity in the left anterior temporal lobe, but there was no evidence for a correlation between syntactic structure building and activity in inferior frontal areas. Our results suggest that the anterior temporal lobe computes syntactic structure under natural conditions. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Assessment of abnormal brain structures and networks in major depressive disorder using morphometric and connectome analyses.

    PubMed

    Chen, Vincent Chin-Hung; Shen, Chao-Yu; Liang, Sophie Hsin-Yi; Li, Zhen-Hui; Tyan, Yeu-Sheng; Liao, Yin-To; Huang, Yin-Chen; Lee, Yena; McIntyre, Roger S; Weng, Jun-Cheng

    2016-11-15

    It is hypothesized that the phenomenology of major depressive disorder (MDD) is subserved by disturbances in the structure and function of brain circuits; however, findings of structural abnormalities using MRI have been inconsistent. Generalized q-sampling imaging (GQI) methodology provides an opportunity to assess the functional integrity of white matter tracts in implicated circuits. The study population was comprised of 16 outpatients with MDD (mean age 44.81±2.2 years) and 30 age- and gender-matched healthy controls (mean age 45.03±1.88 years). We excluded participants with any other primary mental disorder, substance use disorder, or any neurological illnesses. We used T1-weighted 3D MRI with voxel-based morphometry (VBM) and vertex-wise shape analysis, and GQI with voxel-based statistical analysis (VBA), graph theoretical analysis (GTA) and network-based statistical (NBS) analysis to evaluate brain structure and connectivity abnormalities in MDD compared to healthy controls correlates with clinical measures of depressive symptom severity, Hamilton Depression Rating Scale 17-item (HAMD) and Hospital Anxiety and Depression Scale (HADS). Using VBM and vertex-wise shape analyses, we found significant volumetric decreases in the hippocampus and amygdala among subjects with MDD (p<0.001). Using GQI, we found decreases in diffusion anisotropy in the superior longitudinal fasciculus and increases in diffusion probability distribution in the frontal lobe among subjects with MDD (p<0.01). In GTA and NBS analyses, we found several disruptions in connectivity among subjects with MDD, particularly in the frontal lobes (p<0.05). In addition, structural alterations were correlated with depressive symptom severity (p<0.01). Small sample size; the cross-sectional design did not allow us to observe treatment effects in the MDD participants. Our results provide further evidence indicating that MDD may be conceptualized as a brain disorder with abnormal circuit structure and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Predicting Outcome after Pediatric Traumatic Brain Injury by Early Magnetic Resonance Imaging Lesion Location and Volume

    PubMed Central

    Smitherman, Emily; Hernandez, Ana; Stavinoha, Peter L.; Huang, Rong; Kernie, Steven G.; Diaz-Arrastia, Ramon

    2016-01-01

    Abstract Brain lesions after traumatic brain injury (TBI) are heterogeneous, rendering outcome prognostication difficult. The aim of this study is to investigate whether early magnetic resonance imaging (MRI) of lesion location and lesion volume within discrete brain anatomical zones can accurately predict long-term neurological outcome in children post-TBI. Fluid-attenuated inversion recovery (FLAIR) MRI hyperintense lesions in 63 children obtained 6.2±5.6 days postinjury were correlated with the Glasgow Outcome Scale Extended-Pediatrics (GOS-E Peds) score at 13.5±8.6 months. FLAIR lesion volume was expressed as hyperintensity lesion volume index (HLVI)=(hyperintensity lesion volume / whole brain volume)×100 measured within three brain zones: zone A (cortical structures); zone B (basal ganglia, corpus callosum, internal capsule, and thalamus); and zone C (brainstem). HLVI-total and HLVI-zone C predicted good and poor outcome groups (p<0.05). GOS-E Peds correlated with HLVI-total (r=0.39; p=0.002) and HLVI in all three zones: zone A (r=0.31; p<0.02); zone B (r=0.35; p=0.004); and zone C (r=0.37; p=0.003). In adolescents ages 13–17 years, HLVI-total correlated best with outcome (r=0.5; p=0.007), whereas in younger children under the age of 13, HLVI-zone B correlated best (r=0.52; p=0.001). Compared to patients with lesions in zone A alone or in zones A and B, patients with lesions in all three zones had a significantly higher odds ratio (4.38; 95% confidence interval, 1.19–16.0) for developing an unfavorable outcome. PMID:25808802

  19. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study

    PubMed Central

    Langkammer, Christian; Schweser, Ferdinand; Krebs, Nikolaus; Deistung, Andreas; Goessler, Walter; Scheurer, Eva; Sommer, Karsten; Reishofer, Gernot; Yen, Kathrin; Fazekas, Franz; Ropele, Stefan; Reichenbach, Jürgen R.

    2012-01-01

    Quantitative susceptibility mapping (QSM) is a novel technique which allows determining the bulk magnetic susceptibility distribution of tissue in vivo from gradient echo magnetic resonance phase images. It is commonly assumed that paramagnetic iron is the predominant source of susceptibility variations in gray matter as many studies have reported a reasonable correlation of magnetic susceptibility with brain iron concentrations in vivo. Instead of performing direct comparisons, however, all these studies used the putative iron concentrations reported in the hallmark study by Hallgren and Sourander (1958) for their analysis. Consequently, the extent to which QSM can serve to reliably assess brain iron levels is not yet fully clear. To provide such information we investigated the relation between bulk tissue magnetic susceptibility and brain iron concentration in unfixed (in situ) post mortem brains of 13 subjects using MRI and inductively coupled plasma mass spectrometry. A strong linear correlation between chemically determined iron concentration and bulk magnetic susceptibility was found in gray matter structures (r = 0.84, p < 0.001), whereas the correlation coefficient was much lower in white matter (r = 0.27, p < 0.001). The slope of the overall linear correlation was consistent with theoretical considerations of the magnetism of ferritin supporting that most of the iron in the brain is bound to ferritin proteins. In conclusion, iron is the dominant source of magnetic susceptibility in deep gray matter and can be assessed with QSM. In white matter regions the estimation of iron concentrations by QSM is less accurate and more complex because the counteracting contribution from diamagnetic myelinated neuronal fibers confounds the interpretation. PMID:22634862

  20. Very Early Brain Damage Leads to Remodeling of the Working Memory System in Adulthood: A Combined fMRI/Tractography Study

    PubMed Central

    Karolis, Vyacheslav; Caldinelli, Chiara; Brittain, Philip J.; Kroll, Jasmin; Rodríguez-Toscano, Elisa; Tesse, Marcello; Colquhoun, Matthew; Howes, Oliver; Dell'Acqua, Flavio; Thiebaut de Schotten, Michel; Murray, Robin M.; Williams, Steven C.R.; Nosarti, Chiara

    2015-01-01

    The human brain can adapt to overcome injury even years after an initial insult. One hypothesis states that early brain injury survivors, by taking advantage of critical periods of high plasticity during childhood, should recover more successfully than those who suffer injury later in life. This hypothesis has been challenged by recent studies showing worse cognitive outcome in individuals with early brain injury, compared with individuals with later brain injury, with working memory particularly affected. We invited individuals who suffered perinatal brain injury (PBI) for an fMRI/diffusion MRI tractography study of working memory and hypothesized that, 30 years after the initial injury, working memory deficits in the PBI group would remain, despite compensatory activation in areas outside the typical working memory network. Furthermore we hypothesized that the amount of functional reorganization would be related to the level of injury to the dorsal cingulum tract, which connects medial frontal and parietal working memory structures. We found that adults who suffered PBI did not significantly differ from controls in working memory performance. They exhibited less activation in classic frontoparietal working memory areas and a relative overactivation of bilateral perisylvian cortex compared with controls. Structurally, the dorsal cingulum volume and hindrance-modulated orientational anisotropy was significantly reduced in the PBI group. Furthermore there was uniquely in the PBI group a significant negative correlation between the volume of this tract and activation in the bilateral perisylvian cortex and a positive correlation between this activation and task performance. This provides the first evidence of compensatory plasticity of the working memory network following PBI. SIGNIFICANCE STATEMENT Here we used the example of perinatal brain injury (PBI) associated with very preterm birth to study the brain's ability to adapt to injury sustained early in life. In adulthood, individuals with PBI did not show significant deficits in working memory, but exhibited less activation in typical frontoparietal working memory areas. They also showed a relative overactivation of nontask-specific brain areas (perisylvian cortex) compared with controls, and such activation was negatively correlated with the size of white matter pathways involved in working memory (dorsal cingulum). Furthermore, this “extra” activation was associated with better working memory performance and could represent a novel compensatory mechanism following PBI. Such information could inform the development of neuroscience-based cognitive interventions following PBI. PMID:26631462

  1. Connectomic disturbances in attention-deficit/hyperactivity disorder: a whole-brain tractography analysis.

    PubMed

    Hong, Soon-Beom; Zalesky, Andrew; Fornito, Alex; Park, Subin; Yang, Young-Hui; Park, Min-Hyeon; Song, In-Chan; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bung-Nyun; Cho, Soo-Churl; Han, Doug Hyun; Cheong, Jae Hoon; Kim, Jae-Won

    2014-10-15

    Few studies have sought to identify, in a regionally unbiased way, the precise cortical and subcortical regions that are affected by white matter abnormalities in attention-deficit/hyperactivity disorder (ADHD). This study aimed to derive a comprehensive, whole-brain characterization of connectomic disturbances in ADHD. Using diffusion tensor imaging, whole-brain tractography, and an imaging connectomics approach, we characterized altered white matter connectivity in 71 children and adolescents with ADHD compared with 26 healthy control subjects. White matter differences were further delineated between patients with (n = 40) and without (n = 26) the predominantly hyperactive/impulsive subtype of ADHD. A significant network comprising 25 distinct fiber bundles linking 23 different brain regions spanning frontal, striatal, and cerebellar brain regions showed altered white matter structure in ADHD patients (p < .05, family-wise error-corrected). Moreover, fractional anisotropy in some of these fiber bundles correlated with attentional disturbances. Attention-deficit/hyperactivity disorder subtypes were differentiated by a right-lateralized network (p < .05, family-wise error-corrected) predominantly linking frontal, cingulate, and supplementary motor areas. Fractional anisotropy in this network was also correlated with continuous performance test scores. Using an unbiased, whole-brain, data-driven approach, we demonstrated abnormal white matter connectivity in ADHD. The correlations observed with measures of attentional performance underscore the functional importance of these connectomic disturbances for the clinical phenotype of ADHD. A distributed pattern of white matter microstructural integrity separately involving frontal, striatal, and cerebellar brain regions, rather than direct frontostriatal connectivity, appears to be disrupted in children and adolescents with ADHD. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study

    PubMed Central

    Samson, Andrea C.; Kirsch, Valerie; Blautzik, Janusch; Grothe, Michel; Erat, Okan; Hegenloh, Michael; Coates, Ute; Reiser, Maximilian F.; Hennig-Fast, Kristina; Meindl, Thomas

    2013-01-01

    Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA). We applied diffusion tensor imaging (DTI), voxel-based morphometry (VBM) and resting state functional connectivity magnetic resonance imaging (fcMRI) to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male) and 12 healthy controls (mean age 33.3, SD 9.0, 8 male). Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA) values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration. PMID:23825652

  3. White matter reorganization after surgical resection of brain tumors and vascular malformations.

    PubMed

    Lazar, M; Alexander, A L; Thottakara, P J; Badie, B; Field, A S

    2006-01-01

    Diffusion tensor imaging (DTI) and white matter tractography (WMT) are promising techniques for estimating the course, extent, and connectivity patterns of the white matter (WM) structures in the human brain. In this study, DTI and WMT were used to evaluate WM tract reorganization after the surgical resection of brain tumors and vascular malformations. Pre- and postoperative DTI data were obtained in 6 patients undergoing surgical resection of brain lesions. WMT using a tensor deflection algorithm was used to reconstruct WM tracts adjacent to the lesions. Reconstructed tracts included corticospinal tracts, the corona radiata, superior longitudinal and inferior fronto-occipital fasciculi, cingulum bundles, and the corpus callosum. WMT revealed a series of tract alteration patterns including deviation, deformation, infiltration, and apparent tract interruption. In general, the organization of WM tracts appeared more similar to normal anatomy after resection, with either disappearance or reduction of the deviation, deformation, or infiltration present preoperatively. In patients whose lesions were associated with corticospinal tract involvement, the WMT reconstructions showed that the tract was preserved during surgery and improved in position and appearance, and this finding correlated with improvement or preservation of motor function as determined by clinical assessment. WMT is useful for appreciating the complex relationships between specific WM structures and the anatomic distortions created by brain lesions. Further studies with intraoperative correlation are necessary to confirm these initial findings and to determine WMT utility for presurgical planning and evaluation of surgical treatments.

  4. Military deployment correlates with smaller prefrontal gray matter volume and psychological symptoms in a subclinical population.

    PubMed

    Butler, O; Adolf, J; Gleich, T; Willmund, G; Zimmermann, P; Lindenberger, U; Gallinat, J; Kühn, S

    2017-02-14

    Research investigating the effects of trauma exposure on brain structure and function in adults has mainly focused on post-traumatic stress disorder (PTSD), whereas trauma-exposed individuals without a clinical diagnoses often serve as controls. However, this assumes a dichotomy between clinical and subclinical populations that may not be supported at the neural level. In the current study we investigate whether the effects of repeated or long-term stress exposure on brain structure in a subclinical sample are similar to previous PTSD neuroimaging findings. We assessed 27 combat trauma-exposed individuals by means of whole-brain voxel-based morphometry on 3 T magnetic resonance imaging scans and identified a negative association between duration of military deployment and gray matter volumes in ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (ACC). We also found a negative relationship between deployment-related gray matter volumes and psychological symptoms, but not between military deployment and psychological symptoms. To our knowledge, this is the first whole-brain analysis showing that longer military deployment is associated with smaller regional brain volumes in combat-exposed individuals without PTSD. Notably, the observed gray matter associations resemble those previously identified in PTSD populations, and concern regions involved in emotional regulation and fear extinction. These findings question the current dichotomy between clinical and subclinical populations in PTSD neuroimaging research. Instead, neural correlates of both stress exposure and PTSD symptomatology may be more meaningfully investigated at a continuous level.

  5. Military deployment correlates with smaller prefrontal gray matter volume and psychological symptoms in a subclinical population

    PubMed Central

    Butler, O; Adolf, J; Gleich, T; Willmund, G; Zimmermann, P; Lindenberger, U; Gallinat, J; Kühn, S

    2017-01-01

    Research investigating the effects of trauma exposure on brain structure and function in adults has mainly focused on post-traumatic stress disorder (PTSD), whereas trauma-exposed individuals without a clinical diagnoses often serve as controls. However, this assumes a dichotomy between clinical and subclinical populations that may not be supported at the neural level. In the current study we investigate whether the effects of repeated or long-term stress exposure on brain structure in a subclinical sample are similar to previous PTSD neuroimaging findings. We assessed 27 combat trauma-exposed individuals by means of whole-brain voxel-based morphometry on 3 T magnetic resonance imaging scans and identified a negative association between duration of military deployment and gray matter volumes in ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (ACC). We also found a negative relationship between deployment-related gray matter volumes and psychological symptoms, but not between military deployment and psychological symptoms. To our knowledge, this is the first whole-brain analysis showing that longer military deployment is associated with smaller regional brain volumes in combat-exposed individuals without PTSD. Notably, the observed gray matter associations resemble those previously identified in PTSD populations, and concern regions involved in emotional regulation and fear extinction. These findings question the current dichotomy between clinical and subclinical populations in PTSD neuroimaging research. Instead, neural correlates of both stress exposure and PTSD symptomatology may be more meaningfully investigated at a continuous level. PMID:28195568

  6. The Importance of the Default Mode Network in Creativity--A Structural MRI Study

    ERIC Educational Resources Information Center

    Kühn, Simone; Ritter, Simone M.; Müller, Barbara C. N.; van Baaren, Rick B.; Brass, Marcel; Dijksterhuis, Ap

    2014-01-01

    Anecdotal reports as well as behavioral studies have suggested that creative performance benefits from unconscious processes. So far, however, little is known about how creative ideas arise from the brain. In the current study, we aimed to investigate the neural correlates of creativity by means of structural MRI research. Given that unconscious…

  7. Fragmentation of Thinking Structure's Students to Solving the Problem of Application Definite Integral in Area

    ERIC Educational Resources Information Center

    Wibawa, Kadek Adi; Nusantara, Toto; Subanji; Parta, I. Nengah

    2017-01-01

    This study aims to reveal the fragmentation of thinking structure's students in solving the problems of application definite integral in area. Fragmentation is a term on the computer (storage) that is highly relevant correlated with theoretical constructions that occur in the human brain (memory). Almost every student has a different way to…

  8. Brain Structure and Resting-State Functional Connectivity in University Professors with High Academic Achievement

    ERIC Educational Resources Information Center

    Li, Weiwei; Yang, Wenjing; Li, Wenfu; Li, Yadan; Wei, Dongtao; Li, Huimin; Qiu, Jiang; Zhang, Qinglin

    2015-01-01

    Creative persons play an important role in technical innovation and social progress. There is little research on the neural correlates with researchers with high academic achievement. We used a combined structural (regional gray matter volume, rGMV) and functional (resting-state functional connectivity analysis, rsFC) approach to examine the…

  9. Identifying with fictive characters: structural brain correlates of the personality trait ‘fantasy’

    PubMed Central

    Hänggi, Jürgen; Jancke, Lutz

    2014-01-01

    The perception of oneself as absorbed in the thoughts, feelings and happenings of a fictive character (e.g. in a novel or film) as if the character’s experiences were one’s own is referred to as identification. We investigated whether individual variation in the personality trait of identification is associated with individual variation in the structure of specific brain regions, using surface and volume-based morphometry. The hypothesized regions of interest were selected on the basis of their functional role in subserving the cognitive processing domains considered important for identification (i.e. mental imagery, empathy, theory of mind and merging) and for the immersive experience called ‘presence’. Controlling for age, sex, whole-brain volume and other traits, identification covaried significantly with the left hippocampal volume, cortical thickness in the right anterior insula and the left dorsal medial prefrontal cortex, and with gray matter volume in the dorsolateral prefrontal cortex. These findings show that trait identification is associated with structural variation in specific brain regions. The findings are discussed in relation to the potential functional contribution of these regions to identification. PMID:24464847

  10. The structure of creative cognition in the human brain

    PubMed Central

    Jung, Rex E.; Mead, Brittany S.; Carrasco, Jessica; Flores, Ranee A.

    2013-01-01

    Creativity is a vast construct, seemingly intractable to scientific inquiry—perhaps due to the vague concepts applied to the field of research. One attempt to limit the purview of creative cognition formulates the construct in terms of evolutionary constraints, namely that of blind variation and selective retention (BVSR). Behaviorally, one can limit the “blind variation” component to idea generation tests as manifested by measures of divergent thinking. The “selective retention” component can be represented by measures of convergent thinking, as represented by measures of remote associates. We summarize results from measures of creative cognition, correlated with structural neuroimaging measures including structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and proton magnetic resonance spectroscopy (1H-MRS). We also review lesion studies, considered to be the “gold standard” of brain-behavioral studies. What emerges is a picture consistent with theories of disinhibitory brain features subserving creative cognition, as described previously (Martindale, 1981). We provide a perspective, involving aspects of the default mode network (DMN), which might provide a “first approximation” regarding how creative cognition might map on to the human brain. PMID:23847503

  11. Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global - disturbed local network organization.

    PubMed

    Sidlauskaite, Justina; Caeyenberghs, Karen; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R

    2015-01-01

    Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD). However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics - small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.

  12. Brain Structure Linking Delay Discounting and Academic Performance.

    PubMed

    Wang, Song; Kong, Feng; Zhou, Ming; Chen, Taolin; Yang, Xun; Chen, Guangxiang; Gong, Qiyong

    2017-08-01

    As a component of self-discipline, delay discounting refers to the ability to wait longer for preferred rewards and plays a pivotal role in shaping students' academic performance. However, the neural basis of the association between delay discounting and academic performance remains largely unknown. Here, we examined the neuroanatomical substrates underlying delay discounting and academic performance in 214 adolescents via voxel-based morphometry (VBM) by performing structural magnetic resonance imaging (S-MRI). Behaviorally, we confirmed the significant correlation between delay discounting and academic performance. Neurally, whole-brain regression analyses indicated that regional gray matter volume (rGMV) of the left dorsolateral prefrontal cortex (DLPFC) was associated with both delay discounting and academic performance. Furthermore, delay discounting partly accounted for the association between academic performance and brain structure. Differences in the rGMV of the left DLPFC related to academic performance explained over one-third of the impact of delay discounting on academic performance. Overall, these results provide the first evidence for the common neural basis linking delay discounting and academic performance. Hum Brain Mapp 38:3917-3926, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Decreased Left Caudate Volume Is Associated with Increased Severity of Autistic-Like Symptoms in a Cohort of ADHD Patients and Their Unaffected Siblings

    PubMed Central

    O’Dwyer, Laurence; Tanner, Colby; van Dongen, Eelco V.; Greven, Corina U.; Bralten, Janita; Zwiers, Marcel P.; Franke, Barbara; Heslenfeld, Dirk; Oosterlaan, Jaap; Hoekstra, Pieter J.; Hartman, Catharina A.; Groen, Wouter; Rommelse, Nanda; Buitelaar, Jan K.

    2016-01-01

    Autism spectrum disorder (ASD) symptoms frequently occur in individuals with attention-deficit/hyperactivity disorder (ADHD). While there is evidence that both ADHD and ASD have differential structural brain correlates, knowledge of the structural brain profile of individuals with ADHD with raised ASD symptoms is limited. The presence of ASD-like symptoms was measured by the Children's Social Behavior Questionnaire (CSBQ) in a sample of typically developing controls (n = 154), participants with ADHD (n = 239), and their unaffected siblings (n = 144) between the ages of 8 and 29. Structural magnetic resonance imaging (MRI) correlates of ASD ratings were analysed by studying the relationship between ASD ratings and grey matter volumes using mixed effects models which controlled for ADHD symptom count and total brain volume. ASD ratings were significantly elevated in participants with ADHD relative to controls and unaffected siblings. For the entire group (participants with ADHD, unaffected siblings and TD controls), mixed effect models revealed that the left caudate nucleus volume was negatively correlated with ASD ratings (t = 2.83; P = 0.005). The current findings are consistent with the role of the caudate nucleus in executive function, including the selection of goals based on the evaluation of action outcomes and the use of social reward to update reward representations. There is a specific volumetric profile associated with subclinical ASD-like symptoms in participants with ADHD, unaffected siblings and controls with the caudate nucleus and globus pallidus being of critical importance in predicting the level of ASD-like symptoms in all three groups. PMID:27806078

  14. Decreased Left Caudate Volume Is Associated with Increased Severity of Autistic-Like Symptoms in a Cohort of ADHD Patients and Their Unaffected Siblings.

    PubMed

    O'Dwyer, Laurence; Tanner, Colby; van Dongen, Eelco V; Greven, Corina U; Bralten, Janita; Zwiers, Marcel P; Franke, Barbara; Heslenfeld, Dirk; Oosterlaan, Jaap; Hoekstra, Pieter J; Hartman, Catharina A; Groen, Wouter; Rommelse, Nanda; Buitelaar, Jan K

    2016-01-01

    Autism spectrum disorder (ASD) symptoms frequently occur in individuals with attention-deficit/hyperactivity disorder (ADHD). While there is evidence that both ADHD and ASD have differential structural brain correlates, knowledge of the structural brain profile of individuals with ADHD with raised ASD symptoms is limited. The presence of ASD-like symptoms was measured by the Children's Social Behavior Questionnaire (CSBQ) in a sample of typically developing controls (n = 154), participants with ADHD (n = 239), and their unaffected siblings (n = 144) between the ages of 8 and 29. Structural magnetic resonance imaging (MRI) correlates of ASD ratings were analysed by studying the relationship between ASD ratings and grey matter volumes using mixed effects models which controlled for ADHD symptom count and total brain volume. ASD ratings were significantly elevated in participants with ADHD relative to controls and unaffected siblings. For the entire group (participants with ADHD, unaffected siblings and TD controls), mixed effect models revealed that the left caudate nucleus volume was negatively correlated with ASD ratings (t = 2.83; P = 0.005). The current findings are consistent with the role of the caudate nucleus in executive function, including the selection of goals based on the evaluation of action outcomes and the use of social reward to update reward representations. There is a specific volumetric profile associated with subclinical ASD-like symptoms in participants with ADHD, unaffected siblings and controls with the caudate nucleus and globus pallidus being of critical importance in predicting the level of ASD-like symptoms in all three groups.

  15. Neuroimaging of child abuse: a critical review

    PubMed Central

    Hart, Heledd; Rubia, Katya

    2012-01-01

    Childhood maltreatment is a stressor that can lead to the development of behavior problems and affect brain structure and function. This review summarizes the current evidence for the effects of childhood maltreatment on behavior, cognition and the brain in adults and children. Neuropsychological studies suggest an association between child abuse and deficits in IQ, memory, working memory, attention, response inhibition and emotion discrimination. Structural neuroimaging studies provide evidence for deficits in brain volume, gray and white matter of several regions, most prominently the dorsolateral and ventromedial prefrontal cortex but also hippocampus, amygdala, and corpus callosum (CC). Diffusion tensor imaging (DTI) studies show evidence for deficits in structural interregional connectivity between these areas, suggesting neural network abnormalities. Functional imaging studies support this evidence by reporting atypical activation in the same brain regions during response inhibition, working memory, and emotion processing. There are, however, several limitations of the abuse research literature which are discussed, most prominently the lack of control for co-morbid psychiatric disorders, which make it difficult to disentangle which of the above effects are due to maltreatment, the associated psychiatric conditions or a combination or interaction between both. Overall, the better controlled studies that show a direct correlation between childhood abuse and brain measures suggest that the most prominent deficits associated with early childhood abuse are in the function and structure of lateral and ventromedial fronto-limbic brain areas and networks that mediate behavioral and affect control. Future, large scale multimodal neuroimaging studies in medication-naïve subjects, however, are needed that control for psychiatric co-morbidities in order to elucidate the structural and functional brain sequelae that are associated with early environmental adversity, independently of secondary co-morbid conditions. PMID:22457645

  16. Antidepressant Effects of Electroconvulsive Therapy Correlate With Subgenual Anterior Cingulate Activity and Connectivity in Depression

    PubMed Central

    Liu, Yi; Du, Lian; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; Fu, Yixiao; Qiu, Haitang; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua

    2015-01-01

    Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately before and then following 8 ECT sessions (brief-pulse square-wave apparatus, bitemporal). They also computed voxel-wise amplitude of low-frequency fluctuation (ALFF) as a measure of regional brain activity and selected the left subgenual anterior cingulate cortex (sgACC) to evaluate functional connectivity between the sgACC and other brain regions. Increased regional brain activity measured by ALFF mainly in the left sgACC following ECT. Functional connectivity of the left sgACC increased in the ipsilateral parahippocampal gyrus, pregenual ACC, contralateral middle temporal pole, and orbitofrontal cortex. Importantly, reduction in depressive symptoms were negatively correlated with increased ALFF in the left sgACC and left hippocampus, and with distant functional connectivity between the left sgACC and contralateral middle temporal pole. That is, across subjects, as depression improved, regional brain activity in sgACC and its functional connectivity increased in the brain. Eight ECT sessions in MDD patients modulated activity in the sgACC and its networks. The antidepressant effects of ECT were negatively correlated with sgACC brain activity and connectivity. These findings suggest that sgACC-associated prefrontal-limbic structures are associated with the therapeutic effects of ECT in MDD. PMID:26559309

  17. Spectral properties of the temporal evolution of brain network structure.

    PubMed

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  18. Spectral properties of the temporal evolution of brain network structure

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  19. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression.

    PubMed

    Saad, Ziad S; Gotts, Stephen J; Murphy, Kevin; Chen, Gang; Jo, Hang Joon; Martin, Alex; Cox, Robert W

    2012-01-01

    Resting-state functional magnetic resonance imaging (RS-FMRI) holds the promise of revealing brain functional connectivity without requiring specific tasks targeting particular brain systems. RS-FMRI is being used to find differences between populations even when a specific candidate target for traditional inferences is lacking. However, the problem with RS-FMRI is a lacking definition of what constitutes noise and signal. RS-FMRI is easy to acquire but is not easy to analyze or draw inferences from. In this commentary we discuss a problem that is still treated lightly despite its significant impact on RS-FMRI inferences; global signal regression (GSReg), the practice of projecting out signal averaged over the entire brain, can change resting-state correlations in ways that dramatically alter correlation patterns and hence conclusions about brain functional connectedness. Although Murphy et al. in 2009 demonstrated that GSReg negatively biases correlations, the approach remains in wide use. We revisit this issue to argue the problem that GSReg is more than negative bias or the interpretability of negative correlations. Its usage can fundamentally alter interregional correlations within a group, or their differences between groups. We used an illustrative model to clearly convey our objections and derived equations formalizing our conclusions. We hope this creates a clear context in which counterarguments can be made. We conclude that GSReg should not be used when studying RS-FMRI because GSReg biases correlations differently in different regions depending on the underlying true interregional correlation structure. GSReg can alter local and long-range correlations, potentially spreading underlying group differences to regions that may never have had any. Conclusions also apply to substitutions of GSReg for denoising with decompositions of signals aggregated over the network's regions to the extent they cannot separate signals of interest from noise. We touch on the need for careful accounting of nuisance parameters when making group comparisons of correlation maps.

  20. Medial temporal lobe structure and cognition in individuals with schizophrenia and in their non-psychotic siblings.

    PubMed

    Karnik-Henry, Meghana S; Wang, Lei; Barch, Deanna M; Harms, Michael P; Campanella, Carolina; Csernansky, John G

    2012-07-01

    Medial temporal lobe (MTL) structures play a central role in episodic memory. Prior studies suggest that individuals with schizophrenia have deficits in episodic memory as well as structural abnormalities of the medial temporal lobe (MTL). While correlations have been reported between MTL volume loss and episodic memory deficits in such individuals, it is not clear whether such correlations reflect the influence of the disease state or of underlying genetic influences that might contribute to risk. We used high resolution magnetic resonance imaging and probabilistic algorithms for image analysis to determine whether MTL structure, episodic memory performance and the relationship between the two differed among groups of 47 healthy control subjects, 50 control siblings, 39 schizophrenia subjects, and 33 siblings of schizophrenia subjects. High-dimensional large deformation brain mapping was used to obtain volume measures of the hippocampus. Cortical distance mapping was used to obtain volume and thickness measures of the parahippocampal gyrus (PHG) and its substructures: the entorhinal cortex (ERC), the perirhinal cortex (PRC), and the parahippocampal cortex (PHC). Neuropsychological data was used to establish an episodic memory domain score for each subject. Both schizophrenia subjects and their siblings displayed abnormalities in episodic memory performance. Siblings of individuals with schizophrenia, and to a lesser extent, individuals with schizophrenia themselves, displayed abnormalities in measures of MTL structure (volume loss or cortical thinning) as compared to control groups. Further, we observed correlations between structural measures and memory performance in both schizophrenia subjects and their siblings, but not in their respective control groups. These findings suggest that disease-specific genetic factors present in both patients and their relatives may be responsible for correlated abnormalities of MTL structure and memory impairment. The observed attenuated effect of such factors on MTL structure in individuals with schizophrenia may be due to non-genetic influences related to the development and progression of the disease on global brain structure and cognitive processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization.

    PubMed

    Brier, Matthew R; Mitra, Anish; McCarthy, John E; Ances, Beau M; Snyder, Abraham Z

    2015-11-01

    Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Functional MRI registration with tissue-specific patch-based functional correlation tensors.

    PubMed

    Zhou, Yujia; Zhang, Han; Zhang, Lichi; Cao, Xiaohuan; Yang, Ru; Feng, Qianjin; Yap, Pew-Thian; Shen, Dinggang

    2018-06-01

    Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) rely on accurate intersubject registration of functional areas. This is typically achieved through registration using high-resolution structural images with more spatial details and better tissue contrast. However, accumulating evidence has suggested that such strategy cannot align functional regions well because functional areas are not necessarily consistent with anatomical structures. To alleviate this problem, a number of registration algorithms based directly on rs-fMRI data have been developed, most of which utilize functional connectivity (FC) features for registration. However, most of these methods usually extract functional features only from the thin and highly curved cortical grey matter (GM), posing great challenges to accurate estimation of whole-brain deformation fields. In this article, we demonstrate that additional useful functional features can also be extracted from the whole brain, not restricted to the GM, particularly the white-matter (WM), for improving the overall functional registration. Specifically, we quantify local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals using tissue-specific patch-based functional correlation tensors (ts-PFCTs) in both GM and WM. Functional registration is then performed by integrating the features from different tissues using the multi-channel large deformation diffeomorphic metric mapping (mLDDMM) algorithm. Experimental results show that our method achieves superior functional registration performance, compared with conventional registration methods. © 2018 Wiley Periodicals, Inc.

  3. Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization

    PubMed Central

    Brier, Matthew R.; Mitra, Anish; McCarthy, John E.; Ances, Beau M.; Snyder, Abraham Z.

    2015-01-01

    Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. PMID:26208872

  4. Diffusion tractography and graph theory analysis reveal the disrupted rich-club organization of white matter structural networks in early Tourette Syndrome children

    NASA Astrophysics Data System (ADS)

    Wen, Hongwei; Liu, Yue; Wang, Shengpei; Zhang, Jishui; Peng, Yun; He, Huiguang

    2017-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. At present, the topological disruptions of the whole brain white matter (WM) structural networks remain poorly understood in TS children. Considering the unique position of the topologically central role of densely interconnected brain hubs, namely the rich club regions, therefore, we aimed to investigate whether the rich club regions and their related connections would be particularly vulnerable in early TS children. In our study, we used diffusion tractography and graph theoretical analyses to explore the rich club structures in 44 TS children and 48 healthy children. The structural networks of TS children exhibited significantly increased normalized rich club coefficient, suggesting that TS is characterized by increased structural integrity of this centrally embedded rich club backbone, potentially resulting in increased global communication capacity. In addition, TS children showed a reorganization of rich club regions, as well as significantly increased density and decreased number in feeder connections. Furthermore, the increased rich club coefficients and feeder connections density of TS children were significantly positively correlated to tic severity, indicating that TS may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher bridging with non-rich club regions, which may increase the integration among tic-related brain circuits with more excitability but less inhibition for information exchanges between highly centered brain regions and peripheral areas. In all, our results suggest the disrupted rich club organization in early TS children and provide structural insights into the brain networks.

  5. Neurobiological Substrates of Communicator Style.

    ERIC Educational Resources Information Center

    Bodary, David L.; Miller, Larry D.

    2000-01-01

    Investigates differences in brain structures, as reflected in hemispheric laterality, and sex on communicator style preferences. Combines handedness, familial sinistrality, and related correlates as a predictor of standard or anomalous hemispheric dominance. Finds data consistent with hypothesis that communication preferences have a…

  6. Cortical thickness, cortico-amygdalar networks, and externalizing behaviors in healthy children.

    PubMed

    Ameis, Stephanie H; Ducharme, Simon; Albaugh, Matthew D; Hudziak, James J; Botteron, Kelly N; Lepage, Claude; Zhao, Lu; Khundrakpam, Budhachandra; Collins, D Louis; Lerch, Jason P; Wheeler, Anne; Schachar, Russell; Evans, Alan C; Karama, Sherif

    2014-01-01

    Fronto-amygdalar networks are implicated in childhood psychiatric disorders characterized by high rates of externalizing (aggressive, noncompliant, oppositional) behavior. Although externalizing behaviors are distributed continuously across clinical and nonclinical samples, little is known about how brain variations may confer risk for problematic behavior. Here, we studied cortical thickness, amygdala volume, and cortico-amygdalar network correlates of externalizing behavior in a large sample of healthy children. Two hundred ninety-seven healthy children (6-18 years; mean = 12 ± 3 years), with 517 magnetic resonance imaging scans, from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development, were studied. Relationships between externalizing behaviors (measured with the Child Behavior Checklist) and cortical thickness, amygdala volume, and cortico-amygdalar structural networks were examined using first-order linear mixed-effects models, after controlling for age, sex, scanner, and total brain volume. Results significant at p ≤ .05, following multiple comparison correction, are reported. Left orbitofrontal, right retrosplenial cingulate, and medial temporal cortex thickness were negatively correlated with externalizing behaviors. Although amygdala volume alone was not correlated with externalizing behaviors, an orbitofrontal cortex-amygdala network predicted rates of externalizing behavior. Children with lower levels of externalizing behaviors exhibited positive correlations between orbitofrontal cortex and amygdala structure, while these regions were not correlated in children with higher levels of externalizing behavior. Our findings identify key cortical nodes in frontal, cingulate, and temporal cortex associated with externalizing behaviors in children; and indicate that orbitofrontal-amygdala network properties may influence externalizing behaviors, along a continuum and across healthy and clinical samples. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. A neural circuit covarying with social hierarchy in macaques.

    PubMed

    Noonan, MaryAnn P; Sallet, Jerome; Mars, Rogier B; Neubert, Franz X; O'Reilly, Jill X; Andersson, Jesper L; Mitchell, Anna S; Bell, Andrew H; Miller, Karla L; Rushworth, Matthew F S

    2014-09-01

    Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI), which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI) data in 25 group-living macaques. First, a deformation-based morphometric (DBM) approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status.

  8. A Neural Circuit Covarying with Social Hierarchy in Macaques

    PubMed Central

    Neubert, Franz X.; O'Reilly, Jill X.; Andersson, Jesper L.; Mitchell, Anna S.; Bell, Andrew H.; Miller, Karla L.; Rushworth, Matthew F. S.

    2014-01-01

    Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI), which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI) data in 25 group-living macaques. First, a deformation-based morphometric (DBM) approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status. PMID:25180883

  9. Is Traumatic and Non-Traumatic Neck Pain Associated with Brain Alterations? - A Systematic Review.

    PubMed

    DePauw, Robby; Coppieters, Iris; Meeus, Mira; Caeyenberghs, Karen; Danneels, Lieven; Cagnie, Barbara

    2017-05-01

    Chronic neck pain affects 50% - 85% of people who have experienced an acute episode. This transition and the persistence of chronic complaints are believed to be mediated by brain alterations among different central mechanisms. This study aimed to systematically review and critically appraise the current existing evidence regarding structural and functional brain alterations in patients with whiplash associated disorders (WAD) and idiopathic neck pain (INP). Additionally, associations between brain alterations and clinical symptoms reported in neck pain patients were evaluated. Systematic review. The present systematic review was performed according to the PRISMA guidelines. PubMed, Web of Science, and Cochrane databases were searched. First, the obtained articles were screened based on title and abstract. Secondly, the screening was based on the full text. Risk of bias in included studies was investigated. Twelve studies met the inclusion criteria. Alterations in brain morphology and function, including perfusion, neurotransmission, and blood oxygenation level dependent-signal, were demonstrated in chronic neck pain patients. There is some to moderate evidence for both structural and functional brain alterations in patients with chronic neck pain. In contrast, no evidence for structural brain alterations in acute neck pain patients was found. Only 12 articles were included, which allows only cautious conclusions to be drawn. Brain alterations were observed in both patients with chronic WAD and chronic INP. Furthermore, more evidence exists for brain alterations in chronic WAD, and different underlying mechanisms might be present in both pathologies. In addition, pain and disability were correlated with the observed brain alterations. Accordingly, morphological and functional brain alterations should be further investigated in patients with chronic WAD and chronic INP with newer and more sensitive techniques, and associative clinical measurements seem indispensable in future research.

  10. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    PubMed Central

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of executive dysfunction. We show for the first time that altered subcortical connectivity is associated with large-scale network disruption in traumatic brain injury and that this disruption is related to the cognitive impairments seen in these patients. PMID:29186356

  11. Diffusion spectral imaging modules correlate with EEG LORETA neuroimaging modules.

    PubMed

    Thatcher, Robert W; North, Duane M; Biver, Carl J

    2012-05-01

    The purpose of this study was to test the hypothesis that the highest temporal correlations between 3-dimensional EEG current source density corresponds to anatomical Modules of high synaptic connectivity. Eyes closed and eyes open EEG was recorded from 19 scalp locations with a linked ears reference from 71 subjects age 13-42 years. LORETA was computed from 1 to 30 Hz in 2,394 cortical gray matter voxels that were grouped into six anatomical Modules corresponding to the ROIs in the Hagmann et al.'s [2008] diffusion spectral imaging (DSI) study. All possible cross-correlations between voxels within a DSI Module were compared with the correlations between Modules. The Hagmann et al. [ 2008] Module correlation structure was replicated in the correlation structure of EEG three-dimensional current source density. EEG Temporal correlation between brain regions is related to synaptic density as measured by diffusion spectral imaging. Copyright © 2011 Wiley-Liss, Inc.

  12. Impact of personality on the cerebral processing of emotional prosody.

    PubMed

    Brück, Carolin; Kreifelts, Benjamin; Kaza, Evangelia; Lotze, Martin; Wildgruber, Dirk

    2011-09-01

    While several studies have focused on identifying common brain mechanisms governing the decoding of emotional speech melody, interindividual variations in the cerebral processing of prosodic information, in comparison, have received only little attention to date: Albeit, for instance, differences in personality among individuals have been shown to modulate emotional brain responses, personality influences on the neural basis of prosody decoding have not been investigated systematically yet. Thus, the present study aimed at delineating relationships between interindividual differences in personality and hemodynamic responses evoked by emotional speech melody. To determine personality-dependent modulations of brain reactivity, fMRI activation patterns during the processing of emotional speech cues were acquired from 24 healthy volunteers and subsequently correlated with individual trait measures of extraversion and neuroticism obtained for each participant. Whereas correlation analysis did not indicate any link between brain activation and extraversion, strong positive correlations between measures of neuroticism and hemodynamic responses of the right amygdala, the left postcentral gyrus as well as medial frontal structures including the right anterior cingulate cortex emerged, suggesting that brain mechanisms mediating the decoding of emotional speech melody may vary depending on differences in neuroticism among individuals. Observed trait-specific modulations are discussed in the light of processing biases as well as differences in emotion control or task strategies which may be associated with the personality trait of neuroticism. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. The evolution of cerebellum structure correlates with nest complexity.

    PubMed

    Hall, Zachary J; Street, Sally E; Healy, Susan D

    2013-01-01

    Across the brains of different bird species, the cerebellum varies greatly in the amount of surface folding (foliation). The degree of cerebellar foliation is thought to correlate positively with the processing capacity of the cerebellum, supporting complex motor abilities, particularly manipulative skills. Here, we tested this hypothesis by investigating the relationship between cerebellar foliation and species-typical nest structure in birds. Increasing complexity of nest structure is a measure of a bird's ability to manipulate nesting material into the required shape. Consistent with our hypothesis, avian cerebellar foliation increases as the complexity of the nest built increases, setting the scene for the exploration of nest building at the neural level.

  14. Microstructure abnormalities in adolescents with internet addiction disorder.

    PubMed

    Yuan, Kai; Qin, Wei; Wang, Guihong; Zeng, Fang; Zhao, Liyan; Yang, Xuejuan; Liu, Peng; Liu, Jixin; Sun, Jinbo; von Deneen, Karen M; Gong, Qiyong; Liu, Yijun; Tian, Jie

    2011-01-01

    Recent studies suggest that internet addiction disorder (IAD) is associated with structural abnormalities in brain gray matter. However, few studies have investigated the effects of internet addiction on the microstructural integrity of major neuronal fiber pathways, and almost no studies have assessed the microstructural changes with the duration of internet addiction. We investigated the morphology of the brain in adolescents with IAD (N = 18) using an optimized voxel-based morphometry (VBM) technique, and studied the white matter fractional anisotropy (FA) changes using the diffusion tensor imaging (DTI) method, linking these brain structural measures to the duration of IAD. We provided evidences demonstrating the multiple structural changes of the brain in IAD subjects. VBM results indicated the decreased gray matter volume in the bilateral dorsolateral prefrontal cortex (DLPFC), the supplementary motor area (SMA), the orbitofrontal cortex (OFC), the cerebellum and the left rostral ACC (rACC). DTI analysis revealed the enhanced FA value of the left posterior limb of the internal capsule (PLIC) and reduced FA value in the white matter within the right parahippocampal gyrus (PHG). Gray matter volumes of the DLPFC, rACC, SMA, and white matter FA changes of the PLIC were significantly correlated with the duration of internet addiction in the adolescents with IAD. Our results suggested that long-term internet addiction would result in brain structural alterations, which probably contributed to chronic dysfunction in subjects with IAD. The current study may shed further light on the potential brain effects of IAD.

  15. Neural substrate of the late positive potential in emotional processing

    PubMed Central

    Liu, Yuelu; Huang, Haiqing; McGinnis, Menton; Keil, Andreas; Ding, Mingzhou

    2012-01-01

    The late positive potential (LPP) is a reliable electrophysiological index of emotional perception in humans. Despite years of research the brain structures that contribute to the generation and modulation of LPP are not well understood. Recording EEG and fMRI simultaneously, and applying a recently proposed single-trial ERP analysis method, we addressed the problem by correlating the single-trial LPP amplitude evoked by affective pictures with the blood-oxygen-level-dependent (BOLD) activity. Three results were found. First, relative to neutral pictures, pleasant and unpleasant pictures elicited enhanced LPP, as well as heightened BOLD activity in both visual cortices and emotion-processing structures such as amygdala and prefrontal cortex, consistent with previous findings. Second, the LPP amplitude across three picture categories was significantly correlated with BOLD activity in visual cortices, temporal cortices, amygdala, orbitofrontal cortex, and insula. Third, within each picture category, LPP-BOLD coupling revealed category-specific differences. For pleasant pictures, the LPP amplitude was coupled with BOLD in occipitotemporal junction, medial prefrontal cortex, amygdala, and precuneus, whereas for unpleasant pictures, significant LPP-BOLD correlation was observed in ventrolateral prefrontal cortex, insula, and posterior cingulate cortex. These results suggest that LPP is generated and modulated by an extensive brain network comprised of both cortical and subcortical structures associated with visual and emotional processing and the degree of contribution by each of these structures to the LPP modulation is valence-specific. PMID:23077042

  16. The Effects of Spaceflight and a Spaceflight Analog on Neurocognitive Perfonnance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz, B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2014-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. With the bedrest study, we will be able to determine the neural and neurocognitive effects of extended duration unloading, reduced sensory inputs, and increased cephalic fluid distribution. This will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe in the flight study. In this presentation I will discuss preliminary results from six participants who have undergone the bed rest protocol. These individuals show decrements in balance and functional mobility, and alterations in brain structure and function, in association with extended bed rest.

  17. Brain Anatomical Network and Intelligence

    PubMed Central

    Li, Jun; Qin, Wen; Li, Kuncheng; Yu, Chunshui; Jiang, Tianzi

    2009-01-01

    Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. PMID:19492086

  18. FROM SELECTIVE VULNERABILITY TO CONNECTIVITY: INSIGHTS FROM NEWBORN BRAIN IMAGING

    PubMed Central

    Miller, Steven P.; Ferriero, Donna M

    2009-01-01

    The ability to image the newborn brain during development has provided new information regarding the effects of injury on brain development at different vulnerable time periods. Studies in animal models of brain injury correlate beautifully with what is now observed in the human newborn. We now know that injury at term results in a predilection for gray matter injury while injury in the premature brain results in a white matter predominant pattern although recent evidence suggests a blurring of this distinction. These injuries affect how the brain matures subsequently and again, imaging has led to new insights that allow us to match function and structure. This review will focus on these patterns of injury that are so critically determined by age at insult. In addition, this review will highlight how the brain responds to these insults with changes in connectivity that have profound functional consequences. PMID:19712981

  19. Age-related reduction of adaptive brain response during semantic integration is associated with gray matter reduction.

    PubMed

    Zhu, Zude; Yang, Fengjun; Li, Dongning; Zhou, Lianjun; Liu, Ying; Zhang, Ying; Chen, Xuezhi

    2017-01-01

    While aging is associated with increased knowledge, it is also associated with decreased semantic integration. To investigate brain activation changes during semantic integration, a sample of forty-eight 25-75 year-old adults read sentences with high cloze (HC) and low cloze (LC) probability while functional magnetic resonance imaging was conducted. Significant age-related reduction of cloze effect (LC vs. HC) was found in several regions, especially the left middle frontal gyrus (MFG) and right inferior frontal gyrus (IFG), which play an important role in semantic integration. Moreover, when accounting for global gray matter volume reduction, the age-cloze correlation in the left MFG and right IFG was absent. The results suggest that brain structural atrophy may disrupt brain response in aging brains, which then show less brain engagement in semantic integration.

  20. The difficulty with correlations: Energy expenditure and brain mass in bats.

    PubMed

    McNab, Brian K; Köhler, Meike

    2017-10-01

    Brain mass has been suggested to determine a mammal's energy expenditure. This potential dependence is examined in 48 species of bats. A correlation between characters may be direct or derived from shared correlations with intervening factors without a direct interaction. Basal rate of metabolism in these bats increases with brain mass: large brains are more expensive than small brains, and both brain mass and basal rate increase with body mass. Basal rate and brain mass also correlate with food habits in bats. Mass-independent basal rate weakly correlates with mass-independent brain mass, the correlation only accounting for 12% of the variation in basal rate, which disappears when the combined effects of body mass and food habits are deleted. The correlation between basal rate and brain mass seen in this and other studies usually accounts for <10% of the variation in basal rate and often <4%, even when statistically significant, a minimalist explanation for the level the basal rate. This correlation probably reflects the intermediacy of secondary factors, as occurred with food habits in bats. Most biological correlations are complicated and must be examined in detail before assurance can be given as to their bases. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Altered regional cortical thickness and subcortical volume in women with primary dysmenorrhoea.

    PubMed

    Liu, P; Yang, J; Wang, G; Liu, Y; Liu, X; Jin, L; Liang, F; Qin, W; Calhoun, V D

    2016-04-01

    There is emerging evidence that primary dysmenorrhoea (PDM) is associated with altered brain function and structure. However, few studies have investigated changes in regional cortical thickness and subcortical volumes in PDM patients. The purpose of this study was to characterize differences in both cortical thickness and subcortical volumes between PDM patients and healthy controls (HCs). T1-weighted magnetic resonance images were obtained from 44 PDM patients and 32 HCs matched for age and handedness. Cortical thickness was compared in multiple locations across the continuous cortical surface, and subcortical volumes were compared on a structure-by-structure basis. Correlation analysis was then used to evaluate relationships between the clinical symptoms and abnormal brain structure in PDM. PDM patients had significantly increased cortical thickness in the orbitofrontal cortex (OFC), insula (IN), primary/secondary sensory area (SI/SII), superior temporal cortex (STC), precuneus (pCUN) and posterior cingulate cortex (PCC). Meanwhile, significantly decreased subcortical volumes of the caudate, thalamus and amygdala were found in PDM patients. Moreover, there were significant positive correlations between the PDM-related duration and the OFC, SFC, STC and IN. The MPQ scores were positively correlated with the pCUN. These findings provide further evidence for grey matter changes in patients with PDM, and in addition, the results support relationships between the structural abnormalities and their role in symptom production. All these results are likely to be potential valuable to provide us with direct information about the neural basis of PDM. © 2015 European Pain Federation - EFIC®

  2. Association between brain structure and phenotypic characteristics in pedophilia.

    PubMed

    Poeppl, Timm B; Nitschke, Joachim; Santtila, Pekka; Schecklmann, Martin; Langguth, Berthold; Greenlee, Mark W; Osterheider, Michael; Mokros, Andreas

    2013-05-01

    Studies applying structural neuroimaging to pedophiles are scarce and have shown conflicting results. Although first findings suggested reduced volume of the amygdala, pronounced gray matter decreases in frontal regions were observed in another group of pedophilic offenders. When compared to non-sexual offenders instead of community controls, pedophiles revealed deficiencies in white matter only. The present study sought to test the hypotheses of structurally compromised prefrontal and limbic networks and whether structural brain abnormalities are related to phenotypic characteristics in pedophiles. We compared gray matter volume of male pedophilic offenders and non-sexual offenders from high-security forensic hospitals using voxel-based morphometry in cross-sectional and correlational whole-brain analyses. The significance threshold was set to p < .05, corrected for multiple comparisons. Compared to controls, pedophiles exhibited a volume reduction of the right amygdala (small volume corrected). Within the pedophilic group, pedosexual interest and sexual recidivism were correlated with gray matter decrease in the left dorsolateral prefrontal cortex (r = -.64) and insular cortex (r = -.45). Lower age of victims was strongly associated with gray matter reductions in the orbitofrontal cortex (r = .98) and angular gyri bilaterally (r = .70 and r = .93). Our findings of specifically impaired neural networks being related to certain phenotypic characteristics might account for the heterogeneous results in previous neuroimaging studies of pedophilia. The neuroanatomical abnormalities in pedophilia seem to be of a dimensional rather than a categorical nature, supporting the notion of a multifaceted disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Structural neuroplasticity in the sensorimotor network of professional female ballet dancers.

    PubMed

    Hänggi, Jürgen; Koeneke, Susan; Bezzola, Ladina; Jäncke, Lutz

    2010-08-01

    Evidence suggests that motor, sensory, and cognitive training modulates brain structures involved in a specific practice. Functional neuroimaging revealed key brain structures involved in dancing such as the putamen and the premotor cortex. Intensive ballet dance training was expected to modulate the structures of the sensorimotor network, for example, the putamen, premotor cortex, supplementary motor area (SMA), and the corticospinal tracts. We investigated gray (GM) and white matter (WM) volumes, fractional anisotropy (FA), and mean diffusivity (MD) using magnetic resonance-based morphometry and diffusion tensor imaging in 10 professional female ballet dancers compared with 10 nondancers. In dancers compared with nondancers, decreased GM volumes were observed in the left premotor cortex, SMA, putamen, and superior frontal gyrus, and decreased WM volumes in both corticospinal tracts, both internal capsules, corpus callosum, and left anterior cingulum. FA was lower in the WM underlying the dancers' left and right premotor cortex. There were no significant differences in MD between the groups. Age of dance commencement was negatively correlated with GM and WM volume in the right premotor cortex and internal capsule, respectively, and positively correlated with WM volume in the left precentral gyrus and corpus callosum. Results were not influenced by the significantly lower body mass index of the dancers. The present findings complement the results of functional imaging studies in experts that revealed reduced neural activity in skilled compared with nonskilled subjects. Reductions in brain activity are accompanied by local decreases in GM and WM volumes and decreased FA. 2009 Wiley-Liss, Inc.

  4. Only-child and non-only-child exhibit differences in creativity and agreeableness: evidence from behavioral and anatomical structural studies.

    PubMed

    Yang, Junyi; Hou, Xin; Wei, Dongtao; Wang, Kangcheng; Li, Yadan; Qiu, Jiang

    2017-04-01

    Different family composition and size inevitably make only-children different from non-only-children. Previous studies have focused on the differences in behaviors, such as cognitive function and personality traits, between the only-child and the non-only-child. However, there are few studies that have focused on the topic of whether different family environments influence children's brain structural development and whether behavior differentially has its neural basis between only-child and non-only-child status. Thus, in the present study, we investigated the differences in cognition (e.g., intelligence and creativity) and personality and the anatomical structural differences of gray matter volume (GMV) using voxel-based morphometry (VBM) between only-children and non-only-children. The behavioral results revealed that only-children exhibited higher flexibility scores (a dimension of creativity) and lower agreeableness scores (a dimension of personality traits) than non-only-children. Most importantly, the GMV results revealed that there were significant differences in the GMV between only-children and non-only-children that occurred mainly in the brain regions of the supramarginal gyrus, which was positively correlated with flexibility scores; the medial prefrontal cortex (mPFC), which was positively correlated with agreeableness scores; and the parahippocampal gyrus. These findings may suggest that family environment (i.e., only-child vs. non-only-child), may play important roles in the development of the behavior and brain structure of individuals.

  5. Detailed Magnetic Resonance Imaging (MRI) Analysis in Infantile Spasms.

    PubMed

    Harini, Chellamani; Sharda, Sonal; Bergin, Ann Marie; Poduri, Annapurna; Yuskaitis, Christopher J; Peters, Jurriaan M; Rakesh, Kshitiz; Kapur, Kush; Pearl, Phillip L; Prabhu, Sanjay P

    2018-05-01

    To evaluate initial magnetic resonance imaging (MRI) abnormalities in infantile spasms, correlate them to clinical characteristics, and describe repeat imaging findings. A retrospective review of infantile spasm patients was conducted, classifying abnormal MRI into developmental, acquired, and nonspecific subgroups. MRIs were abnormal in 52 of 71 infantile spasm patients (23 developmental, 23 acquired, and 6 nonspecific) with no correlation to the clinical infantile spasm characteristics. Both developmental and acquired subgroups exhibited cortical gray and/or white matter abnormalities. Additional abnormalities of deep gray structures, brain stem, callosum, and volume loss occurred in the structural acquired subgroup. Repeat MRI showed better definition of the extent of existing malformations. In structural infantile spasms, developmental/acquired subgroups showed differences in pattern of MRI abnormalities but did not correlate with clinical characteristics.

  6. Development of the brain's structural network efficiency in early adolescence: A longitudinal DTI twin study.

    PubMed

    Koenis, Marinka M G; Brouwer, Rachel M; van den Heuvel, Martijn P; Mandl, René C W; van Soelen, Inge L C; Kahn, René S; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2015-12-01

    The brain is a network and our intelligence depends in part on the efficiency of this network. The network of adolescents differs from that of adults suggesting developmental changes. However, whether the network changes over time at the individual level and, if so, how this relates to intelligence, is unresolved in adolescence. In addition, the influence of genetic factors in the developing network is not known. Therefore, in a longitudinal study of 162 healthy adolescent twins and their siblings (mean age at baseline 9.9 [range 9.0-15.0] years), we mapped local and global structural network efficiency of cerebral fiber pathways (weighted with mean FA and streamline count) and assessed intelligence over a three-year interval. We find that the efficiency of the brain's structural network is highly heritable (locally up to 74%). FA-based local and global efficiency increases during early adolescence. Streamline count based local efficiency both increases and decreases, and global efficiency reorganizes to a net decrease. Local FA-based efficiency was correlated to IQ. Moreover, increases in FA-based network efficiency (global and local) and decreases in streamline count based local efficiency are related to increases in intellectual functioning. Individual changes in intelligence and local FA-based efficiency appear to go hand in hand in frontal and temporal areas. More widespread local decreases in streamline count based efficiency (frontal cingulate and occipital) are correlated with increases in intelligence. We conclude that the teenage brain is a network in progress in which individual differences in maturation relate to level of intellectual functioning. © 2015 Wiley Periodicals, Inc.

  7. Decreased centrality of cortical volume covariance networks in autism spectrum disorders.

    PubMed

    Balardin, Joana Bisol; Comfort, William Edgar; Daly, Eileen; Murphy, Clodagh; Andrews, Derek; Murphy, Declan G M; Ecker, Christine; Sato, João Ricardo

    2015-10-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterized by atypical structural and functional brain connectivity. Complex network analysis has been mainly used to describe altered network-level organization for functional systems and white matter tracts in ASD. However, atypical functional and structural connectivity are likely to be also linked to abnormal development of the correlated structure of cortical gray matter. Such covariations of gray matter are particularly well suited to the investigation of the complex cortical pathology of ASD, which is not confined to isolated brain regions but instead acts at the systems level. In this study, we examined network centrality properties of gray matter networks in adults with ASD (n = 84) and neurotypical controls (n = 84) using graph theoretical analysis. We derived a structural covariance network for each group using interregional correlation matrices of cortical volumes extracted from a surface-based parcellation scheme containing 68 cortical regions. Differences between groups in closeness network centrality measures were evaluated using permutation testing. We identified several brain regions in the medial frontal, parietal and temporo-occipital cortices with reductions in closeness centrality in ASD compared to controls. We also found an association between an increased number of autistic traits and reduced centrality of visual nodes in neurotypicals. Our study shows that ASD are accompanied by atypical organization of structural covariance networks by means of a decreased centrality of regions relevant for social and sensorimotor processing. These findings provide further evidence for the altered network-level connectivity model of ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Acupuncture mobilizes the brain's default mode and its anti-correlated network in healthy subjects.

    PubMed

    Hui, Kathleen K S; Marina, Ovidiu; Claunch, Joshua D; Nixon, Erika E; Fang, Jiliang; Liu, Jing; Li, Ming; Napadow, Vitaly; Vangel, Mark; Makris, Nikos; Chan, Suk-Tak; Kwong, Kenneth K; Rosen, Bruce R

    2009-09-01

    Previous work has shown that acupuncture stimulation evokes deactivation of a limbic-paralimbic-neocortical network (LPNN) as well as activation of somatosensory brain regions. This study explores the activity and functional connectivity of these regions during acupuncture vs. tactile stimulation and vs. acupuncture associated with inadvertent sharp pain. Acupuncture during 201 scans and tactile stimulation during 74 scans for comparison at acupoints LI4, ST36 and LV3 was monitored with fMRI and psychophysical response in 48 healthy subjects. Clusters of deactivated regions in the medial prefrontal, medial parietal and medial temporal lobes as well as activated regions in the sensorimotor and a few paralimbic structures can be identified during acupuncture by general linear model analysis and seed-based cross correlation analysis. Importantly, these clusters showed virtual identity with the default mode network and the anti-correlated task-positive network in response to stimulation. In addition, the amygdala and hypothalamus, structures not routinely reported in the default mode literature, were frequently involved in acupuncture. When acupuncture induced sharp pain, the deactivation was attenuated or became activated instead. Tactile stimulation induced greater activation of the somatosensory regions but less extensive deactivation of the LPNN. These results indicate that the deactivation of the LPNN during acupuncture cannot be completely explained by the demand of attention that is commonly proposed in the default mode literature. Our results suggest that acupuncture mobilizes the anti-correlated functional networks of the brain to mediate its actions, and that the effect is dependent on the psychophysical response.

  9. Neural connections foster social connections: a diffusion-weighted imaging study of social networks

    PubMed Central

    Hampton, William H.; Unger, Ashley; Von Der Heide, Rebecca J.

    2016-01-01

    Although we know the transition from childhood to adulthood is marked by important social and neural development, little is known about how social network size might affect neurocognitive development or vice versa. Neuroimaging research has identified several brain regions, such as the amygdala, as key to this affiliative behavior. However, white matter connectivity among these regions, and its behavioral correlates, remain unclear. Here we tested two hypotheses: that an amygdalocentric structural white matter network governs social affiliative behavior and that this network changes during adolescence and young adulthood. We measured social network size behaviorally, and white matter microstructure using probabilistic diffusion tensor imaging in a sample of neurologically normal adolescents and young adults. Our results suggest amygdala white matter microstructure is key to understanding individual differences in social network size, with connectivity to other social brain regions such as the orbitofrontal cortex and anterior temporal lobe predicting much variation. In addition, participant age correlated with both network size and white matter variation in this network. These findings suggest the transition to adulthood may constitute a critical period for the optimization of structural brain networks underlying affiliative behavior. PMID:26755769

  10. Alterations in White Matter Integrity in Young Adults with Smartphone Dependence

    PubMed Central

    Hu, Yuanming; Long, Xiaojing; Lyu, Hanqing; Zhou, Yangyang; Chen, Jianxiang

    2017-01-01

    Smartphone dependence (SPD) is increasingly regarded as a psychological problem, however, the underlying neural substrates of SPD is still not clear. High resolution magnetic resonance imaging provides a useful tool to help understand and manage the disorder. In this study, a tract-based spatial statistics (TBSS) analysis on diffusion tensor imaging (DTI) was used to measure white matter integrity in young adults with SPD. A total of 49 subjects were recruited and categorized into SPD and control group based on their clinical behavioral tests. To localize regions with abnormal white matter integrity in SPD, the voxel-wise analysis of fractional anisotropy (FA) and mean diffusivity (MD) on the whole brain was performed by TBSS. The correlation between the quantitative variables of brain structures and the behavior measures were performed. Our result demonstrated that SPD had significantly lower white matter integrity than controls in superior longitudinal fasciculus (SLF), superior corona radiata (SCR), internal capsule, external capsule, sagittal stratum, fornix/stria terminalis and midbrain structures. Correlation analysis showed that the observed abnormalities in internal capsule and stria terminalis were correlated with the severity of dependence and behavioral assessments. Our finding facilitated a primary understanding of white matter characteristics in SPD and indicated that the structural deficits might link to behavioral impairments. PMID:29163108

  11. Abnormal Structure–Function Relationship in Spasmodic Dysphonia

    PubMed Central

    Ludlow, Christy L.

    2012-01-01

    Spasmodic dysphonia (SD) is a primary focal dystonia characterized by involuntary spasms in the laryngeal muscles during speech production. Although recent studies have found abnormal brain function and white matter organization in SD, the extent of gray matter alterations, their structure–function relationships, and correlations with symptoms remain unknown. We compared gray matter volume (GMV) and cortical thickness (CT) in 40 SD patients and 40 controls using voxel-based morphometry and cortical distance estimates. These measures were examined for relationships with blood oxygen level–dependent signal change during symptomatic syllable production in 15 of the same patients. SD patients had increased GMV, CT, and brain activation in key structures of the speech control system, including the laryngeal sensorimotor cortex, inferior frontal gyrus (IFG), superior/middle temporal and supramarginal gyri, and in a structure commonly abnormal in other primary dystonias, the cerebellum. Among these regions, GMV, CT and activation of the IFG and cerebellum showed positive relationships with SD severity, while CT of the IFG correlated with SD duration. The left anterior insula was the only region with decreased CT, which also correlated with SD symptom severity. These findings provide evidence for coupling between structural and functional abnormalities at different levels within the speech production system in SD. PMID:21666131

  12. Musical training induces functional and structural auditory-motor network plasticity in young adults.

    PubMed

    Li, Qiongling; Wang, Xuetong; Wang, Shaoyi; Xie, Yongqi; Li, Xinwei; Xie, Yachao; Li, Shuyu

    2018-05-01

    Playing music requires a strong coupling of perception and action mediated by multimodal integration of brain regions, which can be described as network connections measured by anatomical and functional correlations between regions. However, the structural and functional connectivities within and between the auditory and sensorimotor networks after long-term musical training remain largely uninvestigated. Here, we compared the structural connectivity (SC) and resting-state functional connectivity (rs-FC) within and between the two networks in 29 novice healthy young adults before and after musical training (piano) with those of another 27 novice participants who were evaluated longitudinally but with no intervention. In addition, a correlation analysis was performed between the changes in FC or SC with practice time in the training group. As expected, participants in the training group showed increased FC within the sensorimotor network and increased FC and SC of the auditory-motor network after musical training. Interestingly, we further found that the changes in FC within the sensorimotor network and SC of the auditory-motor network were positively correlated with practice time. Our results indicate that musical training could induce enhanced local interaction and global integration between musical performance-related regions, which provides insights into the mechanism of brain plasticity in young adults. © 2018 Wiley Periodicals, Inc.

  13. Psychoanalysis and the brain - why did freud abandon neuroscience?

    PubMed

    Northoff, Georg

    2012-01-01

    Sigmund Freud, the founder of psychoanalysis, was initially a neuroscientist but abandoned neuroscience completely after he made a last attempt to link both in his writing, "Project of a Scientific Psychology," in 1895. The reasons for his subsequent disregard of the brain remain unclear though. I here argue that one central reason may be that the approach to the brain during his time was simply not appealing to Freud. More specifically, Freud was interested in revealing the psychological predispositions of psychodynamic processes. However, he was not so much focused on the actual psychological functions themselves which though were the prime focus of the neuroscience at his time and also in current Cognitive Neuroscience. Instead, he probably would have been more interested in the brain's resting state and its constitution of a spatiotemporal structure. I here assume that the resting state activity constitutes a statistically based virtual structure extending and linking the different discrete points in time and space within the brain. That in turn may serve as template, schemata, or grid for all subsequent neural processing during stimulus-induced activity. As such the resting state' spatiotemporal structure may serve as the neural predisposition of what Freud described as "psychological structure." Hence, Freud and also current neuropsychoanalysis may want to focus more on neural predispositions, the necessary non-sufficient conditions, rather than the neural correlates, i.e., sufficient, conditions of psychodynamic processes.

  14. Altered Brain Network Segregation in Fragile X Syndrome Revealed by Structural Connectomics.

    PubMed

    Bruno, Jennifer Lynn; Hosseini, S M Hadi; Saggar, Manish; Quintin, Eve-Marie; Raman, Mira Michelle; Reiss, Allan L

    2017-03-01

    Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder, is associated with significant behavioral, social, and neurocognitive deficits. Understanding structural brain network topology in FXS provides an important link between neurobiological and behavioral/cognitive symptoms of this disorder. We investigated the connectome via whole-brain structural networks created from group-level morphological correlations. Participants included 100 individuals: 50 with FXS and 50 with typical development, age 11-23 years. Results indicated alterations in topological properties of structural brain networks in individuals with FXS. Significantly reduced small-world index indicates a shift in the balance between network segregation and integration and significantly reduced clustering coefficient suggests that reduced local segregation shifted this balance. Caudate and amygdala were less interactive in the FXS network further highlighting the importance of subcortical region alterations in the neurobiological signature of FXS. Modularity analysis indicates that FXS and typically developing groups' networks decompose into different sets of interconnected sub networks, potentially indicative of aberrant local interconnectivity in individuals with FXS. These findings advance our understanding of the effects of fragile X mental retardation protein on large-scale brain networks and could be used to develop a connectome-level biological signature for FXS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Beyond bilingualism: multilingual experience correlates with caudate volume.

    PubMed

    Hervais-Adelman, Alexis; Egorova, Natalia; Golestani, Narly

    2018-06-14

    The multilingual brain implements mechanisms that serve to select the appropriate language as a function of the communicative environment. Engaging these mechanisms on a regular basis appears to have consequences for brain structure and function. Studies have implicated the caudate nuclei as important nodes in polyglot language control processes, and have also shown structural differences in the caudate nuclei in bilingual compared to monolingual populations. However, the majority of published work has focused on the categorical differences between monolingual and bilingual individuals, and little is known about whether these findings extend to multilingual individuals, who have even greater language control demands. In the present paper, we present an analysis of the volume and morphology of the caudate nuclei, putamen, pallidum and thalami in 75 multilingual individuals who speak three or more languages. Volumetric analyses revealed a significant relationship between multilingual experience and right caudate volume, as well as a marginally significant relationship with left caudate volume. Vertex-wise analyses revealed a significant enlargement of dorsal and anterior portions of the left caudate nucleus, known to have connectivity with executive brain regions, as a function of multilingual expertise. These results suggest that multilingual expertise might exercise a continuous impact on brain structure, and that as additional languages beyond a second are acquired, the additional demands for linguistic and cognitive control result in modifications to brain structures associated with language management processes.

  16. The neural correlates of obsessive-compulsive disorder: a multimodal perspective.

    PubMed

    Moreira, P S; Marques, P; Soriano-Mas, C; Magalhães, R; Sousa, N; Soares, J M; Morgado, P

    2017-08-29

    Obsessive-compulsive disorder (OCD) is one of the most debilitating psychiatric conditions. An extensive body of the literature has described some of the neurobiological mechanisms underlying the core manifestations of the disorder. Nevertheless, most reports have focused on individual modalities of structural/functional brain alterations, mainly through targeted approaches, thus possibly precluding the power of unbiased exploratory approaches. Eighty subjects (40 OCD and 40 healthy controls) participated in a multimodal magnetic resonance imaging (MRI) investigation, integrating structural and functional data. Voxel-based morphometry analysis was conducted to compare between-group volumetric differences. The whole-brain functional connectome, derived from resting-state functional connectivity (FC), was analyzed with the network-based statistic methodology. Results from structural and functional analysis were integrated in mediation models. OCD patients revealed volumetric reductions in the right superior temporal sulcus. Patients had significantly decreased FC in two distinct subnetworks: the first, involving the orbitofrontal cortex, temporal poles and the subgenual anterior cingulate cortex; the second, comprising the lingual and postcentral gyri. On the opposite, a network formed by connections between thalamic and occipital regions had significantly increased FC in patients. Integrative models revealed direct and indirect associations between volumetric alterations and FC networks. This study suggests that OCD patients display alterations in brain structure and FC, involving complex networks of brain regions. Furthermore, we provided evidence for direct and indirect associations between structural and functional alterations representing complex patterns of interactions between separate brain regions, which may be of upmost relevance for explaining the pathophysiology of the disorder.

  17. Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity

    DOE PAGES

    Murugesan, Sugeerth; Bouchard, Kristopher; Brown, Jesse A.; ...

    2016-05-09

    Here, we present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views—such as heat maps, node link diagrams, and anatomical views—using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parametersmore » gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. In order to demonstrate the utility of our tool, we also present two case studies—exploring progressive supranuclear palsy, as well as memory encoding and retrieval« less

  18. Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murugesan, Sugeerth; Bouchard, Kristopher; Brown, Jesse A.

    Here, we present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views—such as heat maps, node link diagrams, and anatomical views—using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parametersmore » gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. In order to demonstrate the utility of our tool, we also present two case studies—exploring progressive supranuclear palsy, as well as memory encoding and retrieval« less

  19. Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind

    PubMed Central

    Datta, Ritobrato; Benson, Noah C.; Prasad, Sashank; Jacobson, Samuel G.; Cideciyan, Artur V.; Bridge, Holly; Watkins, Kate E.; Butt, Omar H.; Dain, Aleksandra S.; Brandes, Lauren; Gennatas, Efstathios D.

    2016-01-01

    Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that several of the structural and functional effects of blindness may be reduced to a smaller set of dimensions. It also seems that the changes in the brain that accompany blindness are on a continuum with normal variation found in the sighted. PMID:27812129

  20. Neonatal neuroimaging: going beyond the pictures.

    PubMed

    Ramenghi, Luca A; Rutherford, Mary; Fumagalli, Monica; Bassi, Laura; Messner, Hubert; Counsell, Serena; Mosca, Fabio

    2009-10-01

    The cerebral ultrasound has been used many years for the diagnosis of brain lesions in term and preterm newborns. Major improvements were obtained by the combination of different imaging modalities such as Magnetic Resonance Imaging with the Diffusion Weighted Imaging (DWI) and the new quantitative Diffusion Tensor Imaging (DTI). The clinical use of MRI has been validated over some years especially to depict the perinatal asphyxia lesions in term newborns, but its use in order to diagnose the typical diseases of preterm babies is very recent and useful in identifying a marker able to predict neurological outcome. The imaging correlates for motor impairment are well recognized (periventricular white matter cavitations), but no any imaging correlate for cognitive impairment and neurobehavioral disorders. While DWI has been used in term newborns to identify the ischemic areas with restricted diffusion, it may be also used to characterize brain development in preterm infants with the Apparent Diffusion Coefficient (ADC) and may allow us to detect abnormalities responsible for the non-motor impairments. Recent datas showed that in infants without focal lesions higher ADC values in WM were associated with poorer neurodevelopmental assessment at 2 years. The DTI also allows to detect the Fractional Anisotropy (FA) that measures the microstructure. DTI can also be used to map the WM tracts in the immature brain and may be applied to understand the normal development or the response of the brain to injury. Some WM regions in the preterm brain have a lower FA suggesting that widespread WM abnormalities are present in preterms even in the absence of focal lesions. The complexity of the developing brain can be explained by the new tractography that can assess the connectivity of different WM regions and the association between structure and function, such as optic radiations microstructure and visual assessment score. Technological advances in neonatal brain imaging have made a major contribution to understand the neurobehavioral disorders of the developing brain that have the origin in the early structural cerebral organization and maturation.

  1. Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals.

    PubMed

    Di, Xin; Gohel, Suril; Thielcke, Andre; Wehrl, Hans F; Biswal, Bharat B

    2017-11-01

    Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.

  2. Riemannian multi-manifold modeling and clustering in brain networks

    NASA Astrophysics Data System (ADS)

    Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.

    2017-08-01

    This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.

  3. Structural brain differences in emotional processing and regulation areas between male batterers and other criminals: A preliminary study.

    PubMed

    Verdejo-Román, Juan; Bueso-Izquierdo, Natalia; Daugherty, Julia C; Pérez-García, Miguel; Hidalgo-Ruzzante, Natalia

    2018-05-31

    Poor emotion processing is thought to influence violent behaviors among male batterers in abusive relationships. Nevertheless, little is known about the neural mechanisms of emotion processing in this population. With the objective of better understanding brain structure and its relation to emotion processing in male batterers, the present study compares the cortical grey matter thickness of male batterers to that of other criminals in brain areas related to emotion. Differences among these brain areas were also compared to an emotional perception task. An MRI study and an emotional perception assessment was conducted with 21 male batterers and 20 men convicted of crimes other than Intimate Partner Violence (IPV). Results demonstrated that batterers' had significantly thinner cortices in prefrontal (orbitofrontal), midline (anterior and posterior cingulate) and limbic (insula, parahipocampal) brain regions. The thickness of the dorsal posterior cingulate cortex in the batterer group correlated with scores on the emotional perception task. These findings shed light on a neuroscientific approach to analyzing violent behavior perpetrated by male batterers, leading to a better understanding of the underlying mechanisms involved in IPV.

  4. Structural abnormalities and altered regional brain activity in multiple sclerosis with simple spinal cord involvement.

    PubMed

    Yin, Ping; Liu, Yi; Xiong, Hua; Han, Yongliang; Sah, Shambhu Kumar; Zeng, Chun; Wang, Jingjie; Li, Yongmei

    2018-02-01

    To assess the changes of the structural and functional abnormalities in multiple sclerosis with simple spinal cord involvement (MS-SSCI) by using resting-state functional MRI (RS-fMRI), voxel based morphology (VBM) and diffusion tensor tractography. The amplitude of low-frequency fluctuation (ALFF) of 22 patients with MS-SSCI and 22 healthy controls (HCs) matched for age, gender and education were compared by using RS-fMRI. We also compared the volume, fractional anisotropy (FA) and apparent diffusion coefficient of the brain regions in baseline brain activity by using VBM and diffusion tensor imaging. The relationships between the expanded disability states scale (EDSS) scores, changed parameters of structure and function were further explored. (1) Compared with HCs, the ALFF of the bilateral hippocampus and right middle temporal gyrus in MS-SSCI decreased significantly. However, patients exhibited increased ALFF in the left middle frontal gyrus, left posterior cingulate gyrus and right middle occipital gyrus ( two-sample t-test, after AlphaSim correction, p < 0.01, voxel size > 40). The volume of right middle frontal gyrus reduced significantly (p < 0.01). The FA and ADC of right hippocampus, the FA of left hippocampus and right middle temporal gyrus were significantly different. (2) A significant correlation between EDSS scores and ALFF was noted only in the left posterior cingulate gyrus. Our results detected structural and functional abnormalities in MS-SSCI and functional parameters were associated with clinical abnormalities. Multimodal imaging plays an important role in detecting structural and functional abnormalities in MS-SSCI. Advances in knowledge: This is the first time to apply RS-fMRI, VBM and diffusion tensor tractography to study the structural and functional abnormalities in MS-SSCI, and to explore its correlation with EDSS score.

  5. Establishing a link between sex-related differences in the structural connectome and behaviour.

    PubMed

    Tunç, Birkan; Solmaz, Berkan; Parker, Drew; Satterthwaite, Theodore D; Elliott, Mark A; Calkins, Monica E; Ruparel, Kosha; Gur, Raquel E; Gur, Ruben C; Verma, Ragini

    2016-02-19

    Recent years have witnessed an increased attention to studies of sex differences, partly because such differences offer important considerations for personalized medicine. While the presence of sex differences in human behaviour is well documented, our knowledge of their anatomical foundations in the brain is still relatively limited. As a natural gateway to fathom the human mind and behaviour, studies concentrating on the human brain network constitute an important segment of the research effort to investigate sex differences. Using a large sample of healthy young individuals, each assessed with diffusion MRI and a computerized neurocognitive battery, we conducted a comprehensive set of experiments examining sex-related differences in the meso-scale structures of the human connectome and elucidated how these differences may relate to sex differences at the level of behaviour. Our results suggest that behavioural sex differences, which indicate complementarity of males and females, are accompanied by related differences in brain structure across development. When using subnetworks that are defined over functional and behavioural domains, we observed increased structural connectivity related to the motor, sensory and executive function subnetworks in males. In females, subnetworks associated with social motivation, attention and memory tasks had higher connectivity. Males showed higher modularity compared to females, with females having higher inter-modular connectivity. Applying multivariate analysis, we showed an increasing separation between males and females in the course of development, not only in behavioural patterns but also in brain structure. We also showed that these behavioural and structural patterns correlate with each other, establishing a reliable link between brain and behaviour. © 2016 The Author(s).

  6. Aberrant topological patterns of brain structural network in temporal lobe epilepsy.

    PubMed

    Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William

    2015-12-01

    Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of cortical/subcortical morphology. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  7. Imaging-based biomarkers of cognitive performance in older adults constructed via high-dimensional pattern regression applied to MRI and PET.

    PubMed

    Wang, Ying; Goh, Joshua O; Resnick, Susan M; Davatzikos, Christos

    2013-01-01

    In this study, we used high-dimensional pattern regression methods based on structural (gray and white matter; GM and WM) and functional (positron emission tomography of regional cerebral blood flow; PET) brain data to identify cross-sectional imaging biomarkers of cognitive performance in cognitively normal older adults from the Baltimore Longitudinal Study of Aging (BLSA). We focused on specific components of executive and memory domains known to decline with aging, including manipulation, semantic retrieval, long-term memory (LTM), and short-term memory (STM). For each imaging modality, brain regions associated with each cognitive domain were generated by adaptive regional clustering. A relevance vector machine was adopted to model the nonlinear continuous relationship between brain regions and cognitive performance, with cross-validation to select the most informative brain regions (using recursive feature elimination) as imaging biomarkers and optimize model parameters. Predicted cognitive scores using our regression algorithm based on the resulting brain regions correlated well with actual performance. Also, regression models obtained using combined GM, WM, and PET imaging modalities outperformed models based on single modalities. Imaging biomarkers related to memory performance included the orbito-frontal and medial temporal cortical regions with LTM showing stronger correlation with the temporal lobe than STM. Brain regions predicting executive performance included orbito-frontal, and occipito-temporal areas. The PET modality had higher contribution to most cognitive domains except manipulation, which had higher WM contribution from the superior longitudinal fasciculus and the genu of the corpus callosum. These findings based on machine-learning methods demonstrate the importance of combining structural and functional imaging data in understanding complex cognitive mechanisms and also their potential usage as biomarkers that predict cognitive status.

  8. Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington's disease.

    PubMed

    McColgan, Peter; Seunarine, Kiran K; Razi, Adeel; Cole, James H; Gregory, Sarah; Durr, Alexandra; Roos, Raymund A C; Stout, Julie C; Landwehrmeyer, Bernhard; Scahill, Rachael I; Clark, Chris A; Rees, Geraint; Tabrizi, Sarah J

    2015-11-01

    Huntington's disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic level. The 'rich club' is a pattern of organization established in healthy human brains, where specific hub 'rich club' brain regions are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington's disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study of 50 premanifest and 38 manifest Huntington's disease participants compared with 47 healthy controls. Consistent with our hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest Huntington's disease participants compared with controls. We found progressive network changes across controls, premanifest Huntington's disease and manifest Huntington's disease characterized by increased network segregation in the premanifest stage and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a potential mechanism that results in a characteristic pattern of structural connectivity loss targeting highly connected brain regions with high network traffic and low clustering of neighbouring regions. Our findings highlight the role of the rich club as a substrate for the structural connectivity loss seen in Huntington's disease and have broader implications for understanding the connection between molecular and systems level pathology in neurodegenerative disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  9. Discrete capacity limits and neuroanatomical correlates of visual short-term memory for objects and spatial locations.

    PubMed

    Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota

    2017-02-01

    Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. [Features of brain biopotentials' spatial organization in adolescents].

    PubMed

    Kruchinina, O V; Gal'perina, E I; Shepoval'nikov, A N

    2014-01-01

    Adolescence is characterized by an intensive formation of inter-regional cortical fields interaction, in this period significantly reorganized the activities of deep brain structures and cortical-subcortical interaction are enhanced. Our objectives were to evaluate the nature of changes in the spatial organization of brain bioelectric potentials with age and characteristics of such an organization in adolescents. For this purpose, EEG studies have been conducted in 230 subjects of both sexes aged 4 to 35 years. We estimated interdependent changes of biopotentials correlations fluctuations in 20-lead EEG, using the integral index Vol. Analyzed age-related changes of EEG correlations in rest condition and during verbal activity (Russian and English texts audition). Verbal tasks were sued in subjects over 8 years. It was found that the spatial synchronization of the EEG both in background and verbal activity increases with age, but after 20 years the rate of change is significantly reduced. In adolescence (12-17 years old), sex differences appear between the degree of EEG coherence processes occurring in the left and right hemispheres in subjects performing verbal tasks. In males 12 to 14 years nonlinear changes in overall correlation (indicators VOL) was observed, whereas in females of this age systemic reorganization of the brain interrelations occurs more smoothly, ahead of 1.5-2 years.

  11. Structural and Functional Correlates of Visual Field Asymmetry in the Human Brain by Diffusion Kurtosis MRI and Functional MRI

    PubMed Central

    O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.

    2016-01-01

    Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541

  12. Influence of cerebrovascular disease on brain networks in prodromal and clinical Alzheimer's disease.

    PubMed

    Chong, Joanna Su Xian; Liu, Siwei; Loke, Yng Miin; Hilal, Saima; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Chen, Christopher Li-Hsian; Zhou, Juan

    2017-11-01

    Network-sensitive neuroimaging methods have been used to characterize large-scale brain network degeneration in Alzheimer's disease and its prodrome. However, few studies have investigated the combined effect of Alzheimer's disease and cerebrovascular disease on brain network degeneration. Our study sought to examine the intrinsic functional connectivity and structural covariance network changes in 235 prodromal and clinical Alzheimer's disease patients with and without cerebrovascular disease. We focused particularly on two higher-order cognitive networks-the default mode network and the executive control network. We found divergent functional connectivity and structural covariance patterns in Alzheimer's disease patients with and without cerebrovascular disease. Alzheimer's disease patients without cerebrovascular disease, but not Alzheimer's disease patients with cerebrovascular disease, showed reductions in posterior default mode network functional connectivity. By comparison, while both groups exhibited parietal reductions in executive control network functional connectivity, only Alzheimer's disease patients with cerebrovascular disease showed increases in frontal executive control network connectivity. Importantly, these distinct executive control network changes were recapitulated in prodromal Alzheimer's disease patients with and without cerebrovascular disease. Across Alzheimer's disease patients with and without cerebrovascular disease, higher default mode network functional connectivity z-scores correlated with greater hippocampal volumes while higher executive control network functional connectivity z-scores correlated with greater white matter changes. In parallel, only Alzheimer's disease patients without cerebrovascular disease showed increased default mode network structural covariance, while only Alzheimer's disease patients with cerebrovascular disease showed increased executive control network structural covariance compared to controls. Our findings demonstrate the differential neural network structural and functional changes in Alzheimer's disease with and without cerebrovascular disease, suggesting that the underlying pathology of Alzheimer's disease patients with cerebrovascular disease might differ from those without cerebrovascular disease and reflect a combination of more severe cerebrovascular disease and less severe Alzheimer's disease network degeneration phenotype. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  13. Brain lesion correlates of fatigue in individuals with traumatic brain injury.

    PubMed

    Schönberger, Michael; Reutens, David; Beare, Richard; O'Sullivan, Richard; Rajaratnam, Shantha M W; Ponsford, Jennie

    2017-10-01

    The purpose of this study was to investigate the neurological correlates of both subjective fatigue as well as objective fatigability in individuals with traumatic brain injury (TBI). The study has a cross-sectional design. Participants (N = 53) with TBI (77% male, mean age at injury 38 years, mean time since injury 1.8 years) underwent a structural magnetic resonance imaging (MRI) scan and completed the Fatigue Severity Scale (FSS), while a subsample (N = 36) was also tested with a vigilance task. While subjective fatigue (FSS) was not related to measures of brain lesions, multilevel analyses showed that a change in the participants' decision time was significantly predicted by grey matter (GM) lesions in the right frontal lobe. The time-dependent development of the participants' error rate was predicted by total brain white matter (WM) lesion volumes, as well as right temporal GM and WM lesion volumes. These findings could be explained by decreased functional connectivity of attentional networks, which results in accelerated exhaustion during cognitive task performance. The disparate nature of objectively measurable fatigability on the one hand and the subjective experience of fatigue on the other needs further investigation.

  14. Topological Organization of Metabolic Brain Networks in Pre-Chemotherapy Cancer with Depression: A Resting-State PET Study

    PubMed Central

    An, Jianping; Chen, Xuejiao; Xie, Yuanwei; Zhao, Hui; Mao, Junfeng; Liang, Wangsheng; Ma, Xiangxing

    2016-01-01

    This study aimed to investigate the metabolic brain network and its relationship with depression symptoms using 18F-fluorodeoxyglucose positron emission tomography data in 78 pre-chemotherapy cancer patients with depression and 80 matched healthy subjects. Functional and structural imbalance or disruption of brain networks frequently occur following chemotherapy in cancer patients. However, few studies have focused on the topological organization of the metabolic brain network in cancer with depression, especially those without chemotherapy. The nodal and global parameters of the metabolic brain network were computed for cancer patients and healthy subjects. Significant decreases in metabolism were found in the frontal and temporal gyri in cancer patients compared with healthy subjects. Negative correlations between depression and metabolism were found predominantly in the inferior frontal and cuneus regions, whereas positive correlations were observed in several regions, primarily including the insula, hippocampus, amygdala, and middle temporal gyri. Furthermore, a higher clustering efficiency, longer path length, and fewer hubs were found in cancer patients compared with healthy subjects. The topological organization of the whole-brain metabolic networks may be disrupted in cancer. Finally, the present findings may provide a new avenue for exploring the neurobiological mechanism, which plays a key role in lessening the depression effects in pre-chemotherapy cancer patients. PMID:27832148

  15. Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baczko, K.; Liebert, U.G.; Billeter, M.

    1986-08-01

    The persistence of measles virus in selected areas of the brains of four patients with subacute sclerosing panencephalitis (SSPE) was characterized by immunohistological and biochemical techniques. The five measles virus structural proteins were never simultaneously detectable in any of the bran sections. Nucleocapsid proteins and phosphoproteins were found in every diseased brain area, whereas hemagglutinin protein was detected in two cases, fusion protein was detected in three cases, and matrix protein was detected in only one case. Also, it could be shown that the amounts of measles virus RNA in the brains differed from patient to patient and in themore » different regions investigated. In all patients, plus-strand RNAs specific for these five viral genes could be detected. However, the amounts of fusion and hemagglutinin mRNAs were low compared with the amounts in lytically infected cells. The presence of particular measles virus RNAs in SSPE-infected brains did not always correlate with mRNA activity. In in vitro translations, the matrix protein was produced in only one case, and the hemagglutinin protein was produced in none. These results indicate that measles virus persistence in SSPE is correlated with different defects of several genes which probably prevent assembly of viral particles in SSPE-infected brain tissue.« less

  16. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.

    PubMed

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.

  17. Topological Organization of Metabolic Brain Networks in Pre-Chemotherapy Cancer with Depression: A Resting-State PET Study.

    PubMed

    Fang, Lei; Yao, Zhijun; An, Jianping; Chen, Xuejiao; Xie, Yuanwei; Zhao, Hui; Mao, Junfeng; Liang, Wangsheng; Ma, Xiangxing

    2016-01-01

    This study aimed to investigate the metabolic brain network and its relationship with depression symptoms using 18F-fluorodeoxyglucose positron emission tomography data in 78 pre-chemotherapy cancer patients with depression and 80 matched healthy subjects. Functional and structural imbalance or disruption of brain networks frequently occur following chemotherapy in cancer patients. However, few studies have focused on the topological organization of the metabolic brain network in cancer with depression, especially those without chemotherapy. The nodal and global parameters of the metabolic brain network were computed for cancer patients and healthy subjects. Significant decreases in metabolism were found in the frontal and temporal gyri in cancer patients compared with healthy subjects. Negative correlations between depression and metabolism were found predominantly in the inferior frontal and cuneus regions, whereas positive correlations were observed in several regions, primarily including the insula, hippocampus, amygdala, and middle temporal gyri. Furthermore, a higher clustering efficiency, longer path length, and fewer hubs were found in cancer patients compared with healthy subjects. The topological organization of the whole-brain metabolic networks may be disrupted in cancer. Finally, the present findings may provide a new avenue for exploring the neurobiological mechanism, which plays a key role in lessening the depression effects in pre-chemotherapy cancer patients.

  18. Small-world bias of correlation networks: From brain to climate

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan

    2017-03-01

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

  19. Small-world bias of correlation networks: From brain to climate.

    PubMed

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan

    2017-03-01

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

  20. Social networking sites use and the morphology of a social-semantic brain network.

    PubMed

    Turel, Ofir; He, Qinghua; Brevers, Damien; Bechara, Antoine

    2017-09-30

    Social lives have shifted, at least in part, for large portions of the population to social networking sites. How such lifestyle changes may be associated with brain structures is still largely unknown. In this manuscript, we describe two preliminary studies aimed at exploring this issue. The first study (n = 276) showed that Facebook users reported on increased social-semantic and mentalizing demands, and that such increases were positively associated with people's level of Facebook use. The second study (n = 33) theorized on and examined likely anatomical correlates of such changes in demands on the brain. Findings indicated that the grey matter volumes of the posterior parts of the bilateral middle and superior temporal, and left fusiform gyri were positively associated with the level of Facebook use. These results provided preliminary evidence that grey matter volumes of brain structures involved in social-semantic and mentalizing tasks may be linked to the extent of social networking sites use.

  1. Anatomical Coupling between Distinct Metacognitive Systems for Memory and Visual Perception

    PubMed Central

    McCurdy, Li Yan; Maniscalco, Brian; Metcalfe, Janet; Liu, Ka Yuet; de Lange, Floris P.; Lau, Hakwan

    2015-01-01

    A recent study found that, across individuals, gray matter volume in the frontal polar region was correlated with visual metacognition capacity (i.e., how well one’s confidence ratings distinguish between correct and incorrect judgments). A question arises as to whether the putative metacognitive mechanisms in this region are also used in other metacognitive tasks involving, for example, memory. A novel psychophysical measure allowed us to assess metacognitive efficiency separately in a visual and a memory task, while taking variations in basic task performance capacity into account. We found that, across individuals, metacognitive efficiencies positively correlated between the two tasks. However, voxel-based morphometry analysis revealed distinct brain structures for the two kinds of metacognition. Replicating a previous finding, variation in visual metacognitive efficiency was correlated with volume of frontal polar regions. However, variation in memory metacognitive efficiency was correlated with volume of the precuneus. There was also a weak correlation between visual metacognitive efficiency and precuneus volume, which may account for the behavioral correlation between visual and memory metacognition (i.e., the precuneus may contain common mechanisms for both types of metacognition). However, we also found that gray matter volumes of the frontal polar and precuneus regions themselves correlated across individuals, and a formal model comparison analysis suggested that this structural covariation was sufficient to account for the behavioral correlation of metacognition in the two tasks. These results highlight the importance of the precuneus in higher-order memory processing and suggest that there may be functionally distinct metacognitive systems in the human brain. PMID:23365229

  2. Prenatal Exposure of Guinea Pigs to the Organophosphorus Pesticide Chlorpyrifos Disrupts the Structural and Functional Integrity of the Brain

    PubMed Central

    Mullins, Roger J.; Xu, Su; Pereira, Edna F.R.; Pescrille, Joseph D.; Todd, Spencer W.; Mamczarz, Jacek; Albuquerque, Edson X.; Gullapalli, Rao P.

    2015-01-01

    This study was designed to test the hypothesis that prenatal exposure of guinea pigs to the organophosphorus (OP) pesticide chlorpyrifos (CPF) disrupts the structural and functional integrity of the brain. Pregnant guinea pigs were injected with chlorpyrifos (20 mg/kg, s.c.) or vehicle (peanut oil) once per day for ten consecutive days, starting approximately on the 50th day of gestation. Cognitive behavior of female offspring was examined starting at 40–45 post-natal days (PND) using the Morris Water Maze (MWM), and brain structural integrity was analyzed at PND 70 using magnetic resonance imaging (MRI) methods, including T2-weighted anatomical scans and Diffusion Kurtosis Imaging (DKI). The offspring of exposed mothers had significantly decreased body weight and brain volume, particularly in the frontal regions of the brain including the striatum. Furthermore, the offspring demonstrated significant spatial learning deficits in MWM recall compared to the vehicle group. Diffusion measures revealed reduced white matter integrity within the striatum and amygdala that correlated with spatial learning performance. These findings reveal the lasting effect of pre-natal exposure to CPF as well as the danger of mother to child transmission of CPF in the environment. PMID:25704171

  3. Morphometric brain abnormalities in boys with conduct disorder.

    PubMed

    Huebner, Thomas; Vloet, Timo D; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R; Herpertz, Sabine C; Herpertz-Dahlmann, Beate

    2008-05-01

    Children with the early-onset type of conduct disorder (CD) are at high risk for developing an antisocial personality disorder. Although there have been several neuroimaging studies on morphometric differences in adults with antisocial personality disorder, little is known about structural brain aberrations in boys with CD. Magnetic resonance imaging and voxel-based morphometry were used to assess abnormalities in gray matter volumes in 23 boys ages 12 to 17 years with CD (17 comorbid for attention-deficit/hyperactivity disorder) in comparison with age- and IQ-matched controls. Compared with healthy controls, mean gray matter volume was 6% smaller in the clinical group. Compared with controls, reduced gray matter volumes were found in the left orbitofrontal region and bilaterally in the temporal lobes, including the amygdala and hippocampus on the left side in the CD group. Regression analyses in the clinical group indicated an inverse association of hyperactive/impulsive symptoms and widespread gray matter abnormalities in the frontoparietal and temporal cortices. By contrast, CD symptoms correlated primarily with gray matter reductions in limbic brain structures. The data suggest that boys with CD and comorbid attention-deficit/hyperactivity disorder show brain abnormalities in frontolimbic areas that resemble structural brain deficits, which are typically observed in adults with antisocial behavior.

  4. Brain Perfusion and Diffusion Abnormalities in Children Treated for Posterior Fossa Brain Tumors.

    PubMed

    Li, Matthew D; Forkert, Nils D; Kundu, Palak; Ambler, Cheryl; Lober, Robert M; Burns, Terry C; Barnes, Patrick D; Gibbs, Iris C; Grant, Gerald A; Fisher, Paul G; Cheshier, Samuel H; Campen, Cynthia J; Monje, Michelle; Yeom, Kristen W

    2017-06-01

    To compare cerebral perfusion and diffusion in survivors of childhood posterior fossa brain tumor with neurologically normal controls and correlate differences with cognitive dysfunction. We analyzed retrospectively arterial spin-labeled cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) in 21 patients with medulloblastoma (MB), 18 patients with pilocytic astrocytoma (PA), and 64 neurologically normal children. We generated ANCOVA models to evaluate treatment effects on the cerebral cortex, thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens, and cerebral white matter at time points an average of 5.7 years after original diagnosis. A retrospective review of patient charts identified 12 patients with neurocognitive data and in whom the relationship between IQ and magnetic resonance imaging variables was assessed for each brain structure. Patients with MB (all treated with surgery, chemotherapy, and radiation) had significantly lower global CBF relative to controls (10%-23% lower, varying by anatomic region, all adjusted P?

  5. Brain Lesions among Orally Fed and Gastrostomy-Fed Dysphagic Preterm Infants: Can Routine Qualitative or Volumetric Quantitative Magnetic Resonance Imaging Predict Feeding Outcomes?

    PubMed

    Kashou, Nasser H; Dar, Irfaan A; El-Mahdy, Mohamed A; Pluto, Charles; Smith, Mark; Gulati, Ish K; Lo, Warren; Jadcherla, Sudarshan R

    2017-01-01

    The usefulness of qualitative or quantitative volumetric magnetic resonance imaging (MRI) in early detection of brain structural changes and prediction of adverse outcomes in neonatal illnesses warrants further investigation. Our aim was to correlate certain brain injuries and the brain volume of feeding-related cortical and subcortical regions with feeding method at discharge among preterm dysphagic infants. Using a retrospective observational study design, we examined MRI data among 43 (22 male; born at 31.5 ± 0.8 week gestation) infants who went home on oral feeding or gastrostomy feeding (G-tube). MRI scans were segmented, and volumes of brainstem, cerebellum, cerebrum, basal ganglia, thalamus, and vermis were quantified, and correlations were made with discharge feeding outcomes. Chi-squared tests were used to evaluate MRI findings vs. feeding outcomes. ANCOVA was performed on the regression model to measure the association of maturity and brain volume between groups. Out of 43 infants, 44% were oral-fed and 56% were G-tube fed at hospital discharge (but not at time of the study). There was no relationship between qualitative brain lesions and feeding outcomes. Volumetric analysis revealed that cerebellum was greater ( p  < 0.05) in G-tube fed infants, whereas cerebrum volume was greater ( p  < 0.05) in oral-fed infants. Other brain regions did not show volumetric differences between groups. This study concludes that neither qualitative nor quantitative volumetric MRI findings correlate with feeding outcomes. Understanding the complexity of swallowing and feeding difficulties in infants warrants a comprehensive and in-depth functional neurological assessment.

  6. Structural and resting-state MRI detects regional brain differences in young and mid-age healthy APOE-e4 carriers compared with non-APOE-e4 carriers.

    PubMed

    Dowell, Nicholas G; Evans, Simon L; Tofts, Paul S; King, Sarah L; Tabet, Naji; Rusted, Jennifer M

    2016-05-01

    The presence of the e4 allele of the apolipoprotein E (APOE) gene is the best-known genetic risk factor for Alzheimer's disease. In this study, we investigated the link between functional and behavioural differences and regional brain volume and cortical thickness differences in those who carry the e4 allele (e4+) and those who only carry the e3 allele (e3/e3). We studied these genotype populations in two age groups: a young group (average age, 21 years) and a mid-age group (average age, 50 years). High-resolution T1 -weighted MRI scans were analysed with Freesurfer to measure regional white matter brain volume and cortical thickness differences between genotype groups at each age. These data were correlated with behavioural findings in the same cohort. Resting-state MRI was also conducted to identify differences in underlying brain functional connectivity. We found that there was a positive correlation between the thickness of the parahippocampal cortex in young e4+ individuals and performance on an episodic memory task. Young e4+ individuals also showed a positive correlation between white matter volume in the left anterior cingulate and performance on a covert attention task. At mid-age, e4+ individuals had structural differences relative to e3/e3 individuals in these areas: the parahippocampal cortex was thicker and white matter volume in the left anterior cingulate was greater than in e3/e3 individuals. We discuss the possibility that an over-engagement with these regions by e4+ individuals in youth may have a neurogenic effect that is observable later in life. The cuneus appears to be an important region for APOE-driven differences in the brain, with greater functional connectivity among young e3/e3 individuals and greater white matter volume in young e4+ individuals. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    PubMed

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  8. Structural and functional alterations in the brain during working memory in medication-naïve patients at clinical high-risk for psychosis.

    PubMed

    Gisselgård, Jens; Lebedev, Alexander V; Dæhli Kurz, Kathinka; Joa, Inge; Johannessen, Jan Olav; Brønnick, Kolbjørn

    2018-01-01

    Several previous studies suggest that clinical high risk for psychosis (CHR) is associated with prefrontal functional abnormalities and more widespread reduced grey matter in prefrontal, temporal and parietal areas. We investigated neural correlates to CHR in medication-naïve patients. 41 CHR patients and 37 healthy controls were examined with 1.5 Tesla MRI, yielding functional scans while performing an N-back task and structural T1-weighted brain images. Functional and structural data underwent automated preprocessing steps in SPM and Freesurfer, correspondingly. The groups were compared employing mass-univariate strategy within the generalized linear modelling framework. CHR demonstrated reduced suppression of the medial temporal lobe (MTL) regions during n-back task. We also found that, consistent with previous findings, CHR subjects demonstrated thinning in prefrontal, cingulate, insular and inferior temporal areas, as well as reduced hippocampal volumes. The present findings add to the growing evidence of specific structural and functional abnormalities in the brain as potential neuroimaging markers of psychosis vulnerability.

  9. Classification of mathematics deficiency using shape and scale analysis of 3D brain structures

    NASA Astrophysics Data System (ADS)

    Kurtek, Sebastian; Klassen, Eric; Gore, John C.; Ding, Zhaohua; Srivastava, Anuj

    2011-03-01

    We investigate the use of a recent technique for shape analysis of brain substructures in identifying learning disabilities in third-grade children. This Riemannian technique provides a quantification of differences in shapes of parameterized surfaces, using a distance that is invariant to rigid motions and re-parameterizations. Additionally, it provides an optimal registration across surfaces for improved matching and comparisons. We utilize an efficient gradient based method to obtain the optimal re-parameterizations of surfaces. In this study we consider 20 different substructures in the human brain and correlate the differences in their shapes with abnormalities manifested in deficiency of mathematical skills in 106 subjects. The selection of these structures is motivated in part by the past links between their shapes and cognitive skills, albeit in broader contexts. We have studied the use of both individual substructures and multiple structures jointly for disease classification. Using a leave-one-out nearest neighbor classifier, we obtained a 62.3% classification rate based on the shape of the left hippocampus. The use of multiple structures resulted in an improved classification rate of 71.4%.

  10. Serotonergic Psychedelics Temporarily Modify Information Transfer in Humans

    PubMed Central

    Alonso, Joan Francesc; Romero, Sergio; Mañanas, Miquel Àngel

    2015-01-01

    Background: Psychedelics induce intense modifications in the sensorium, the sense of “self,” and the experience of reality. Despite advances in our understanding of the molecular and cellular level mechanisms of these drugs, knowledge of their actions on global brain dynamics is still incomplete. Recent imaging studies have found changes in functional coupling between frontal and parietal brain structures, suggesting a modification in information flow between brain regions during acute effects. Methods: Here we assessed the psychedelic-induced changes in directionality of information flow during the acute effects of a psychedelic in humans. We measured modifications in connectivity of brain oscillations using transfer entropy, a nonlinear measure of directed functional connectivity based on information theory. Ten healthy male volunteers with prior experience with psychedelics participated in 2 experimental sessions. They received a placebo or a dose of ayahuasca, a psychedelic preparation containing the serotonergic 5-HT2A agonist N,N-dimethyltryptamine. Results: The analysis showed significant changes in the coupling of brain oscillations between anterior and posterior recording sites. Transfer entropy analysis showed that frontal sources decreased their influence over central, parietal, and occipital sites. Conversely, sources in posterior locations increased their influence over signals measured at anterior locations. Exploratory correlations found that anterior-to-posterior transfer entropy decreases were correlated with the intensity of subjective effects, while the imbalance between anterior-to-posterior and posterior-to-anterior transfer entropy correlated with the degree of incapacitation experienced. Conclusions: These results suggest that psychedelics induce a temporary disruption of neural hierarchies by reducing top-down control and increasing bottom-up information transfer in the human brain. PMID:25820842

  11. Physiological and psychological individual differences influence resting brain function measured by ASL perfusion.

    PubMed

    Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L

    2014-09-01

    Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p < 0.01, strong positive correlations were observed between extraversion and resting brain perfusion in the right caudate, brain stem, and cingulate gyrus. Significant negative correlations between neuroticism and regional cerebral perfusion were identified in the left amygdala, bilateral insula, ACC, and orbitofrontal cortex. These results suggest that individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.

  12. Food Web Structure Shapes the Morphology of Teleost Fish Brains.

    PubMed

    Edmunds, Nicholas B; McCann, Kevin S; Laberge, Frédéric

    2016-01-01

    Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology. © 2016 S. Karger AG, Basel.

  13. Brain structural anomalies in borderline and avoidant personality disorder patients and their associations with disorder-specific symptoms.

    PubMed

    Denny, Bryan T; Fan, Jin; Liu, Xun; Guerreri, Stephanie; Mayson, Sarah Jo; Rimsky, Liza; McMaster, Antonia; Alexander, Heather; New, Antonia S; Goodman, Marianne; Perez-Rodriguez, Mercedes; Siever, Larry J; Koenigsberg, Harold W

    2016-08-01

    Borderline personality disorder (BPD) and avoidant personality disorder (AvPD) are characterized by hyper-reactivity to negatively-perceived interpersonal cues, yet they differ in degree of affective instability. Recent work has begun to elucidate the neural (structural and functional) and cognitive-behavioral underpinnings of BPD, although some initial studies of brain structure have reached divergent conclusions. AvPD, however, has been almost unexamined in the cognitive neuroscience literature. In the present study we investigated group differences among 29 BPD patients, 27 AvPD patients, and 29 healthy controls (HC) in structural brain volumes using voxel-based morphometry (VBM) in five anatomically-defined regions of interest: amygdala, hippocampus, medial prefrontal cortex (MPFC), dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC). We also examined the relationship between individual differences in brain structure and self-reported anxiety and affective instability in each group. We observed reductions in MPFC and ACC volume in BPD relative to HC, with no significant difference among patient groups. No group differences in amygdala volume were found. However, BPD and AvPD patients each showed a positive relationship between right amygdala volume and state-related anxiety. By contrast, in HC there was an inverse relationship between MPFC volume and state and trait-related anxiety as well as between bilateral DLPFC volume and affective instability. Current sample sizes did not permit examination of gender effects upon structure-symptom correlations. These results shed light on potentially protective, or compensatory, aspects of brain structure in these populations-namely, relatively reduced amygdala volume or relatively enhanced MPFC and DLPFC volume. Published by Elsevier B.V.

  14. Estimating individual contribution from group-based structural correlation networks.

    PubMed

    Saggar, Manish; Hosseini, S M Hadi; Bruno, Jennifer L; Quintin, Eve-Marie; Raman, Mira M; Kesler, Shelli R; Reiss, Allan L

    2015-10-15

    Coordinated variations in brain morphology (e.g., cortical thickness) across individuals have been widely used to infer large-scale population brain networks. These structural correlation networks (SCNs) have been shown to reflect synchronized maturational changes in connected brain regions. Further, evidence suggests that SCNs, to some extent, reflect both anatomical and functional connectivity and hence provide a complementary measure of brain connectivity in addition to diffusion weighted networks and resting-state functional networks. Although widely used to study between-group differences in network properties, SCNs are inferred only at the group-level using brain morphology data from a set of participants, thereby not providing any knowledge regarding how the observed differences in SCNs are associated with individual behavioral, cognitive and disorder states. In the present study, we introduce two novel distance-based approaches to extract information regarding individual differences from the group-level SCNs. We applied the proposed approaches to a moderately large dataset (n=100) consisting of individuals with fragile X syndrome (FXS; n=50) and age-matched typically developing individuals (TD; n=50). We tested the stability of proposed approaches using permutation analysis. Lastly, to test the efficacy of our method, individual contributions extracted from the group-level SCNs were examined for associations with intelligence scores and genetic data. The extracted individual contributions were stable and were significantly related to both genetic and intelligence estimates, in both typically developing individuals and participants with FXS. We anticipate that the approaches developed in this work could be used as a putative biomarker for altered connectivity in individuals with neurodevelopmental disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Absence of age-related prefrontal NAA change in adults with autism spectrum disorders.

    PubMed

    Aoki, Y; Abe, O; Yahata, N; Kuwabara, H; Natsubori, T; Iwashiro, N; Takano, Y; Inoue, H; Kawakubo, Y; Gonoi, W; Sasaki, H; Murakami, M; Katsura, M; Nippashi, Y; Takao, H; Kunimatsu, A; Matsuzaki, H; Tsuchiya, K J; Kato, N; Kasai, K; Yamasue, H

    2012-10-23

    Atypical trajectory of brain growth in autism spectrum disorders (ASDs) has been recognized as a potential etiology of an atypical course of behavioral development. Numerous neuroimaging studies have focused on childhood to investigate atypical age-related change of brain structure and function, because it is a period of neuron and synapse maturation. Recent studies, however, have shown that the atypical age-related structural change of autistic brain expands beyond childhood and constitutes neural underpinnings for lifelong difficulty to behavioral adaptation. Thus, we examined effects of aging on neurochemical aspects of brain maturation using 3-T proton magnetic resonance spectroscopy ((1)H-MRS) with single voxel in the medial prefrontal cortex (PFC) in 24 adult men with non-medicated high-functioning ASDs and 25 age-, IQ- and parental-socioeconomic-background-matched men with typical development (TD). Multivariate analyses of covariance demonstrated significantly high N-acetylaspartate (NAA) level in the ASD subjects compared with the TD subjects (F=4.83, P=0.033). The low NAA level showed a significant positive correlation with advanced age in the TD group (r=-0.618, P=0.001), but was not evident among the ASD individuals (r=0.258, P=0.223). Fisher's r-to-z transformation showed a significant difference in the correlations between the ASD and TD groups (Z=-3.23, P=0.001), which indicated that the age-NAA relationship was significantly specific to people with TD. The current (1)H-MRS study provided new evidence that atypical age-related change of neurochemical aspects of brain maturation in ASD individuals expands beyond childhood and persists during adulthood.

  16. The link between callosal thickness and intelligence in healthy children and adolescents.

    PubMed

    Luders, Eileen; Thompson, Paul M; Narr, Katherine L; Zamanyan, Alen; Chou, Yi-Yu; Gutman, Boris; Dinov, Ivo D; Toga, Arthur W

    2011-02-01

    The link between brain structure and intelligence is a well-investigated topic, but existing analyses have mainly focused on adult samples. Studies in healthy children and adolescents are rare, and normative data specifically addressing the association between corpus callosum morphology and intellectual abilities are quite limited. To advance this field of research, we mapped the correlations between standardized intelligence measures and callosal thickness based on high-resolution magnetic resonance imaging (MRI) data. Our large and well-matched sample included 200 normally developing subjects (100 males, 100 females) ranging from 6 to 17 years of age. Although the strongest correlations were negative and confined to the splenium, the strength and the direction of intelligence-callosal thickness associations varied considerably. While significant correlations in females were mainly positive, significant correlations in males were exclusively negative. However, only the negative correlations in the overall sample (i.e., males and females combined) remained significant when controlling for multiple comparisons. The observed negative correlations between callosal thickness and intelligence in children and adolescents contrast with the positive correlations typically reported in adult samples. However, negative correlations are in line with reports from other pediatric studies relating cognitive measures to other brain attributes such as cortical thickness, gray matter volume, and gray matter density. Altogether, these findings suggest that relationships between callosal morphology and cognition are highly dynamic during brain maturation. Sex effects on links between callosal thickness and intelligence during childhood and adolescence are present but appear rather weak in general. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. The link between callosal thickness and intelligence in healthy children and adolescents

    PubMed Central

    Luders, Eileen; Thompson, Paul M.; Narr, Katherine L.; Zamanyan, Alen; Chou, Yi-Yu; Gutman, Boris; Dinov, Ivo D.; Toga, Arthur W.

    2010-01-01

    The link between brain structure and intelligence is a well-investigated topic, but existing analyses have mainly focused on adult samples. Studies in healthy children and adolescents are rare, and normative data specifically addressing the association between corpus callosum morphology and intellectual abilities is quite limited. To advance this field of research, we mapped the correlations between standardized intelligence measures and callosal thickness based on high-resolution magnetic resonance imaging (MRI) data. Our large and well-matched sample included 200 normally developing subjects (100 males, 100 females) ranging from 6 to 17 years of age. Although the strongest correlations were negative and confined to the splenium, the strength and the direction of intelligence-callosal thickness associations varied considerably with respect to age and sex. While significant correlations in females were mainly positive, significant correlations in males were exclusively negative. However, only the negative correlations in the overall sample (i.e., males and females combined) remained significant when controlling for multiple comparisons. The observed negative correlations between callosal thickness and intelligence in children and adolescents contrast with the positive correlations typically reported in adult samples. However, negative correlations are in line with reports from other pediatric studies relating cognitive measures to other brain attributes such as cortical thickness, gray matter volume, and gray matter density. Altogether, these findings suggest that relationships between callosal morphology and cognition are highly dynamic during brain maturation. Sex effects on links between callosal thickness and intelligence during childhood and adolescence are present but appear rather weak in general. PMID:20932920

  18. Regional gray matter density associated with emotional conflict resolution: evidence from voxel-based morphometry.

    PubMed

    Deng, Z; Wei, D; Xue, S; Du, X; Hitchman, G; Qiu, J

    2014-09-05

    Successful emotion regulation is a fundamental prerequisite for well-being and dysregulation may lead to psychopathology. The ability to inhibit spontaneous emotions while behaving in accordance with desired goals is an important dimension of emotion regulation and can be measured using emotional conflict resolution tasks. Few studies have investigated the gray matter correlates underlying successful emotional conflict resolution at the whole-brain level. We had 190 adults complete an emotional conflict resolution task (face-word task) and examined the brain regions significantly correlated with successful emotional conflict resolution using voxel-based morphometry. We found successful emotional conflict resolution was associated with increased regional gray matter density in widely distributed brain regions. These regions included the dorsal anterior cingulate/dorsal medial prefrontal cortex, ventral medial prefrontal cortex, supplementary motor area, amygdala, ventral striatum, precuneus, posterior cingulate cortex, inferior parietal lobule, superior temporal gyrus and fusiform face area. Together, our results indicate that individual differences in emotional conflict resolution ability may be attributed to regional structural differences across widely distributed brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Assessment of blood-brain barrier penetration: in silico, in vitro and in vivo.

    PubMed

    Feng, Meihua Rose

    2002-12-01

    The amount of drug achieved and maintained in the brain after systemic administration is determined by the agent's permeability at blood-brain barrier (BBB), potential involvement of transport systems, and the distribution, metabolism and elimination properties. Passive diffusion permeability may be predicted by an in silico method based on a molecule's structure property. In vitro cell culture is another useful tool for the assessment of passive permeability and BBB transports (e.g. PGP, MRP). In situ or in vivo techniques like carotid artery single injection or perfusion, brain microdialysis, autoradiography, and others are used at various stages of drug discovery and development to estimate CNS penetration and PK/PD correlation. Each technique has its own application with specific advantages and limitations.

  20. Organization and hierarchy of the human functional brain network lead to a chain-like core.

    PubMed

    Mastrandrea, Rossana; Gabrielli, Andrea; Piras, Fabrizio; Spalletta, Gianfranco; Caldarelli, Guido; Gili, Tommaso

    2017-07-07

    The brain is a paradigmatic example of a complex system: its functionality emerges as a global property of local mesoscopic and microscopic interactions. Complex network theory allows to elicit the functional architecture of the brain in terms of links (correlations) between nodes (grey matter regions) and to extract information out of the noise. Here we present the analysis of functional magnetic resonance imaging data from forty healthy humans at rest for the investigation of the basal scaffold of the functional brain network organization. We show how brain regions tend to coordinate by forming a highly hierarchical chain-like structure of homogeneously clustered anatomical areas. A maximum spanning tree approach revealed the centrality of the occipital cortex and the peculiar aggregation of cerebellar regions to form a closed core. We also report the hierarchy of network segregation and the level of clusters integration as a function of the connectivity strength between brain regions.

  1. Orbitofrontal Gray Matter Relates to Early Morning Awakening: A Neural Correlate of Insomnia Complaints?

    PubMed Central

    Stoffers, Diederick; Moens, Sarah; Benjamins, Jeroen; van Tol, Marie-José; Penninx, Brenda W. J. H.; Veltman, Dick J.; Van der Wee, Nic J. A.; Van Someren, Eus J. W.

    2012-01-01

    Sleep complaints increase profoundly with age; prevalence estimates of insomnia in the elderly reach up to 37%. The three major types of nocturnal complaints are difficulties initiating (DIS) and maintaining (DMS) sleep and early morning awakening (EMA), of which the latter appears most characteristic for aging. The neural correlates associated with these complaints have hardly been investigated, hampering the development of rational treatment and prevention. A recent study on structural brain correlates of insomnia showed that overall severity, but not duration, of insomnia complaints is associated with lower gray matter (GM) density in part of the left orbitofrontal cortex (OFC). Following up on this, we investigated, in an independent sample of people not diagnosed with insomnia, whether individual differences in GM density are associated with differences in DIS, DMS, and EMA. Sixty five healthy participants (mean age = 41 years, range 18–56) filled out questionnaires and underwent structural magnetic resonance imaging. Three compound Z-scores were computed for questionnaire items relating to DIS, DMS, and EMA. Whole-brain voxel-based morphometry was used to investigate their association with GM density. Results show that participants with lower GM density in a region where the left inferior OFC borders the insula report more EMA, but not DIS or DMS. This is the first study to investigate structural brain correlates of specific sleep characteristics that can translate into complaints in insomniacs. The selective association of EMA with orbitofrontal GM density makes our findings particularly relevant to elderly people, where EMA represents the most characteristic complaint. It is hypothesized that low GM density in aforementioned orbitofrontal area affects its role in sensing comfort. An intact ability to evaluate comfort may be crucial to maintain sleep, especially at the end of the night when sleep is vulnerable because homeostatic sleep propensity has dissipated. PMID:23060850

  2. A Testosterone-Related Structural Brain Phenotype Predicts Aggressive Behavior From Childhood to Adulthood

    PubMed Central

    Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N.; Hudziak, James J; Ducharme, Simon

    2015-01-01

    Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6 to 22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. PMID:26431805

  3. A testosterone-related structural brain phenotype predicts aggressive behavior from childhood to adulthood.

    PubMed

    Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Ducharme, Simon

    2016-01-01

    Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here, we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6-22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Strength of Structural and Functional Frontostriatal Connectivity Predicts Self-Control in the Healthy Elderly

    PubMed Central

    Hänggi, Jürgen; Lohrey, Corinna; Drobetz, Reinhard; Baetschmann, Hansruedi; Forstmeier, Simon; Maercker, Andreas; Jäncke, Lutz

    2016-01-01

    Self-regulation refers to the successful use of executive functions and initiation of top-down processes to control one's thoughts, behavior, and emotions, and it is crucial to perform self-control. Self-control is needed to overcome impulses and can be assessed by delay of gratification (DoG) and delay discounting (DD) paradigms. In children/adolescents, good DoG/DD ability depends on the maturity of frontostriatal connectivity, and its decline in strength with advancing age might adversely affect self-control because prefrontal brain regions are more prone to normal age-related atrophy than other regions. Here, we aimed at highlighting the relationship between frontostriatal connectivity strength and DoG performance in advanced age. We recruited 40 healthy elderly individuals (mean age 74.0 ± 7.7 years) and assessed the DoG ability using the German version of the DoG test for adults in addition to the delay discounting (DD) paradigm. Based on diffusion-weighted and resting-state functional magnetic resonance imaging data, respectively, the structural and functional whole-brain connectome were reconstructed based on 90 different brain regions of interest in addition to a 12-node frontostriatal DoG-specific network and the resulting connectivity matrices were subjected to network-based statistics. The 90-nodes whole-brain connectome analyses revealed subnetworks significantly associated with DoG and DD with a preponderance of frontostriatal nodes involved suggesting a high specificity of the findings. Structural and functional connectivity strengths between the putamen, caudate nucleus, and nucleus accumbens on the one hand and orbitofrontal, dorsal, and ventral lateral prefrontal cortices on the other hand showed strong positive correlations with DoG and negative correlations with DD corrected for age, sex, intracranial volume, and head motion parameters. These associations cannot be explained by differences in impulsivity and executive functioning. This pattern of correlations between structural or functional frontostriatal connectivity strength and self-control suggests that, in addition to the importance of the frontostriatal nodes itself, the structural and functional properties of different connections within the frontostriatal network are crucial for self-controlled behaviors in the healthy elderly. Because high DoG/low DD is a significant predictor of willpower and wellbeing in the elderly population, interventions aiming at strengthening frontostriatal connectivity to strengthen self-controlled behavior are needed in the future. PMID:28105013

  5. Structural brain correlates of executive engagement in working memory: children's inter-individual differences are reflected in the anterior insular cortex.

    PubMed

    Rossi, Sandrine; Lubin, Amélie; Simon, Grégory; Lanoë, Céline; Poirel, Nicolas; Cachia, Arnaud; Pineau, Arlette; Houdé, Olivier

    2013-06-01

    Although the development of executive functions has been extensively investigated at a neurofunctional level, studies of the structural relationships between executive functions and brain anatomy are still scarce. Based on our previous meta-analysis of functional neuroimaging studies examining executive functions in children (Houdé, Rossi, Lubin, and Joliot, (2010). Developmental Science, 13, 876-885), we investigated six a priori regions of interest: the left anterior insular cortex (AIC), the left and the right supplementary motor areas, the right middle and superior frontal gyri, and the left precentral gyrus. Structural magnetic resonance imaging scans were acquired from 22 to 10-year-old children. Local gray matter volumes, assessed automatically using a standard voxel-based morphometry approach, were correlated with executive and storage working memory capacities evaluated using backward and forward digit span tasks, respectively. We found an association between smaller gray matter volume--i.e., an index of neural maturation--in the left AIC and high backward memory span while gray matter volumes in the a priori selected regions of interest were not linked with forward memory span. These results were corroborated by a whole-brain a priori free analysis that revealed a significant negative correlation in the frontal and prefrontal regions, including the left AIC, with the backward memory span, and in the right inferior parietal lobe, with the forward memory span. Taken together, these results suggest a distinct and specific association between regional gray matter volume and the executive component vs. the storage component of working memory. Moreover, they support a key role for the AIC in the executive network of children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Abnormal brain structure as a potential biomarker for venous erectile dysfunction: evidence from multimodal MRI and machine learning.

    PubMed

    Li, Lingli; Fan, Wenliang; Li, Jun; Li, Quanlin; Wang, Jin; Fan, Yang; Ye, Tianhe; Guo, Jialun; Li, Sen; Zhang, Youpeng; Cheng, Yongbiao; Tang, Yong; Zeng, Hanqing; Yang, Lian; Zhu, Zhaohui

    2018-03-29

    To investigate the cerebral structural changes related to venous erectile dysfunction (VED) and the relationship of these changes to clinical symptoms and disorder duration and distinguish patients with VED from healthy controls using a machine learning classification. 45 VED patients and 50 healthy controls were included. Voxel-based morphometry (VBM), tract-based spatial statistics (TBSS) and correlation analyses of VED patients and clinical variables were performed. The machine learning classification method was adopted to confirm its effectiveness in distinguishing VED patients from healthy controls. Compared to healthy control subjects, VED patients showed significantly decreased cortical volumes in the left postcentral gyrus and precentral gyrus, while only the right middle temporal gyrus showed a significant increase in cortical volume. Increased axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) values were observed in widespread brain regions. Certain regions of these alterations related to VED patients showed significant correlations with clinical symptoms and disorder durations. Machine learning analyses discriminated patients from controls with overall accuracy 96.7%, sensitivity 93.3% and specificity 99.0%. Cortical volume and white matter (WM) microstructural changes were observed in VED patients, and showed significant correlations with clinical symptoms and dysfunction durations. Various DTI-derived indices of some brain regions could be regarded as reliable discriminating features between VED patients and healthy control subjects, as shown by machine learning analyses. • Multimodal magnetic resonance imaging helps clinicians to assess patients with VED. • VED patients show cerebral structural alterations related to their clinical symptoms. • Machine learning analyses discriminated VED patients from controls with an excellent performance. • Machine learning classification provided a preliminary demonstration of DTI's clinical use.

  7. A Deep Learning Approach to Neuroanatomical Characterisation of Alzheimer's Disease.

    PubMed

    Ambastha, Abhinit Kumar; Leong, Tze-Yun

    2017-01-01

    Alzheimer's disease (AD) is a neurological degenerative disorder that leads to progressive mental deterioration. This work introduces a computational approach to improve our understanding of the progression of AD. We use ensemble learning methods and deep neural networks to identify salient structural correlations among brain regions that degenerate together in AD; this provides an understanding of how AD progresses in the brain. The proposed technique has a classification accuracy of 81.79% for AD against healthy subjects using a single modality imaging dataset.

  8. State dependence of noise correlations in macaque primary visual cortex

    PubMed Central

    Ecker, Alexander S.; Berens, Philipp; Cotton, R. James; Subramaniyan, Manivannan; Denfield, George H.; Cadwell, Cathryn R.; Smirnakis, Stelios M.; Bethge, Matthias; Tolias, Andreas S.

    2014-01-01

    Shared, trial-to-trial variability in neuronal populations has a strong impact on the accuracy of information processing in the brain. Estimates of the level of such noise correlations are diverse, ranging from 0.01 to 0.4, with little consensus on which factors account for these differences. Here we addressed one important factor that varied across studies, asking how anesthesia affects the population activity structure in macaque primary visual cortex. We found that under opioid anesthesia, activity was dominated by strong coordinated fluctuations on a timescale of 1–2 Hz, which were mostly absent in awake, fixating monkeys. Accounting for these global fluctuations markedly reduced correlations under anesthesia, matching those observed during wakefulness and reconciling earlier studies conducted under anesthesia and in awake animals. Our results show that internal signals, such as brain state transitions under anesthesia, can induce noise correlations, but can also be estimated and accounted for based on neuronal population activity. PMID:24698278

  9. State dependence of noise correlations in macaque primary visual cortex.

    PubMed

    Ecker, Alexander S; Berens, Philipp; Cotton, R James; Subramaniyan, Manivannan; Denfield, George H; Cadwell, Cathryn R; Smirnakis, Stelios M; Bethge, Matthias; Tolias, Andreas S

    2014-04-02

    Shared, trial-to-trial variability in neuronal populations has a strong impact on the accuracy of information processing in the brain. Estimates of the level of such noise correlations are diverse, ranging from 0.01 to 0.4, with little consensus on which factors account for these differences. Here we addressed one important factor that varied across studies, asking how anesthesia affects the population activity structure in macaque primary visual cortex. We found that under opioid anesthesia, activity was dominated by strong coordinated fluctuations on a timescale of 1-2 Hz, which were mostly absent in awake, fixating monkeys. Accounting for these global fluctuations markedly reduced correlations under anesthesia, matching those observed during wakefulness and reconciling earlier studies conducted under anesthesia and in awake animals. Our results show that internal signals, such as brain state transitions under anesthesia, can induce noise correlations but can also be estimated and accounted for based on neuronal population activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS.

    PubMed

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W; Gras, Vincent; Eickhoff, Simon B; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M; Sturma, Dieter; Bauer, Andreas; Jon Shah, N; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  11. An architecture for a brain-image database

    NASA Technical Reports Server (NTRS)

    Herskovits, E. H.

    2000-01-01

    The widespread availability of methods for noninvasive assessment of brain structure has enabled researchers to investigate neuroimaging correlates of normal aging, cerebrovascular disease, and other processes; we designate such studies as image-based clinical trials (IBCTs). We propose an architecture for a brain-image database, which integrates image processing and statistical operators, and thus supports the implementation and analysis of IBCTs. The implementation of this architecture is described and results from the analysis of image and clinical data from two IBCTs are presented. We expect that systems such as this will play a central role in the management and analysis of complex research data sets.

  12. Neuroimaging of Narcolepsy and Kleine-Levin Syndrome.

    PubMed

    Hong, Seung Bong

    2017-09-01

    Narcolepsy is a chronic neurologic disorder with the abnormal regulation of the sleep-wake cycle, resulting in excessive daytime sleepiness, disturbed nocturnal sleep, and manifestations related to rapid eye movement sleep, such as cataplexy, sleep paralysis, and hypnagogic hallucination. Over the past decade, numerous neuroimaging studies have been performed to characterize the pathophysiology and various clinical features of narcolepsy. This article reviews structural and functional brain imaging findings in narcolepsy and Kleine-Levin syndrome. Based on the current state of research, brain imaging is a useful tool to investigate and understand the neuroanatomic correlates and brain abnormalities of narcolepsy and other hypersomnia. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Dose-volume metrics and their relation to memory performance in pediatric brain tumor patients: A preliminary study.

    PubMed

    Raghubar, Kimberly P; Lamba, Michael; Cecil, Kim M; Yeates, Keith Owen; Mahone, E Mark; Limke, Christina; Grosshans, David; Beckwith, Travis J; Ris, M Douglas

    2018-06-01

    Advances in radiation treatment (RT), specifically volumetric planning with detailed dose and volumetric data for specific brain structures, have provided new opportunities to study neurobehavioral outcomes of RT in children treated for brain tumor. The present study examined the relationship between biophysical and physical dose metrics and neurocognitive ability, namely learning and memory, 2 years post-RT in pediatric brain tumor patients. The sample consisted of 26 pediatric patients with brain tumor, 14 of whom completed neuropsychological evaluations on average 24 months post-RT. Prescribed dose and dose-volume metrics for specific brain regions were calculated including physical metrics (i.e., mean dose and maximum dose) and biophysical metrics (i.e., integral biological effective dose and generalized equivalent uniform dose). We examined the associations between dose-volume metrics (whole brain, right and left hippocampus), and performance on measures of learning and memory (Children's Memory Scale). Biophysical dose metrics were highly correlated with the physical metric of mean dose but not with prescribed dose. Biophysical metrics and mean dose, but not prescribed dose, correlated with measures of learning and memory. These preliminary findings call into question the value of prescribed dose for characterizing treatment intensity; they also suggest that biophysical dose has only a limited advantage compared to physical dose when calculated for specific regions of the brain. We discuss the implications of the findings for evaluating and understanding the relation between RT and neurocognitive functioning. © 2018 Wiley Periodicals, Inc.

  14. In-vivo imaging of the morphology and blood perfusion of brain tumours in rats with UHR-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka; Tan, Bingyao; Fisher, Carl J.; Mason, Erik; Lilge, Lothar D.

    2017-02-01

    Brain tumors are characterized with morphological changes at cellular level such as enlarged, non-spherical nuclei, microcalcifications, cysts, etc., and are highly vascularized. In this study, two research-grade optical coherence tomography (OCT) systems operating at 800 nm and 1060 nm with axial resolution of 0.95 µm and 3.5 µm in biological tissue respectively, were used to image in vivo and ex vivo the structure of brain tumours in rats. Female Fischer 344 rats were used for this study, which has received ethics clearance by the Animal Research Ethics Committees of the University of Waterloo and the University Health Network, Toronto. Brain tumours were induced by injection of rat brain cancer cell line (RG2 glioma) through a small craniotomy. Presence of brain tumours was verified by MRI imaging on day 7 post tumour cells injection. The in vivo OCT imaging session was conducted on day 14 of the study with the 1060 nm OCT system and both morphological OCT, Doppler OCT and OMAG images were acquired from the brain tumour and the surrounding healthy brain tissue. After completion of the imaging procedure, the brains were harvested, fixed in formalin and reimaged after 2 weeks with the 800 nm OCT system. The in vivo and ex vivo OCT morphological images were correlated with H and E histology. Results from this study demonstrate that UHR-OCT can distinguish between healthy and cancerous brain tissue based on differences in structural and vascular pattern.

  15. Anatomically related gray and white matter alterations in the brains of functional dyspepsia patients.

    PubMed

    Nan, J; Liu, J; Mu, J; Zhang, Y; Zhang, M; Tian, J; Liang, F; Zeng, F

    2015-06-01

    Previous studies summarized altered brain functional patterns in functional dyspepsia (FD) patients, but how the brain structural patterns are related to FD remains largely unclear. The objective of this study was to determine the brain structural characteristics in FD patients. Optimized voxel-based morphometry and tract-based spatial statistics were employed to investigate the changes in gray matter (GM) and white matter (WM) respectively in 34 FD patients with postprandial distress syndrome and 33 healthy controls based on T1-weighted and diffusion-weighted imaging. The Pearson's correlation evaluated the link among GM alterations, WM abnormalities, and clinical variables in FD patients. The optimal brain structural parameters for identifying FD were explored using the receiver operating characteristic curve. Compared to controls, FD patients exhibited a decrease in GM density (GMD) in the right posterior insula/temporal superior cortex (marked as pINS), right inferior frontal cortex (IFC), and left middle cingulate cortex, and an increase in fractional anisotropy (FA) in the posterior limb of the internal capsule, posterior thalamic radiation, and external capsule (EC). Interestingly, the GMD in the pINS was significantly associated with GMD in the IFC and FA in the EC. Moreover, the EC adjacent to the pINS provided the best performance for distinguishing FD patients from controls. Our results showed pINS-related structural abnormalities in FD patients, indicating that GM and WM parameters were not affected independently. These findings would lay the foundation for probing an efficient target in the brain for treating FD. © 2015 John Wiley & Sons Ltd.

  16. The Effects of Long Duration Head Down Tilt Bed Rest on Neurocognitive Performance: The Effects of Exercise Interventions

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz. B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2014-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. Our ongoing bed rest participants are also engaging in exercise studies directed by Dr. Lori Ploutz Snyder. In this presentation, I will briefly highlight the existing literature linking exercise and fitness to brain and behavioral functions. I will also overview the metrics from my study that could be investigated in relation to the exercise and control subgroups.

  17. Positron emission tomography reveals correlations between brain metabolism and mood changes in hyperthyroidism.

    PubMed

    Schreckenberger, M F; Egle, U T; Drecker, S; Buchholz, H G; Weber, M M; Bartenstein, P; Kahaly, G J

    2006-12-01

    Hyperthyroidism is frequently associated with emotional distress. The underlying cerebral processes of the endocrine-induced mood changes are unclear. The objective of this study was to investigate, for the first time, the neuronal correlates of thyrotoxicosis-associated psychic symptoms using positron emission tomography (PET). The study was designed as a cross-sectional trial. The study was performed at joint nuclear medicine and thyroid clinics. Twelve patients with untreated Graves' hyperthyroidism were evaluated. Levels of emotional distress were self-rated by means of the Hospital Anxiety and Depression Scale. Both patients and 20 age- and gender-matched euthyroid controls underwent a brain fluorodeoxyglucose PET scan. Subsequently, the functional relationship between brain metabolism and the psychometric scores was analyzed. Compared with controls and visualized by fluorodeoxyglucose PET, hyperthyroid patients showed a decreased (P < 0.0001) glucose metabolism in the limbic system (uncus and inferior temporal gyrus). Activation foci in the posterior cingulate and in the inferior parietal lobe were correlated with both anxiety and depression scales (P < 0.001). Compared with patients with normal anxiety levels, those with increased anxiety yielded an enhanced glucose metabolism (P < 0.001) in the bilateral sensory association cortex. Serum free T3/free T4 levels negatively correlated with regional glucose metabolism in the medial posterior cingulate. Thyrotoxicosis and associated psychic symptoms are correlated to regional metabolic changes in the main structures of the limbic/paralimbic system.

  18. Improving Functional MRI Registration Using Whole-Brain Functional Correlation Tensors.

    PubMed

    Zhou, Yujia; Yap, Pew-Thian; Zhang, Han; Zhang, Lichi; Feng, Qianjin; Shen, Dinggang

    2017-09-01

    Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically achieved through registration of the corresponding T1-weighted MR images with more structural details. However, accumulating evidence has suggested that such strategy cannot well-align functional regions which are not necessarily confined by the anatomical boundaries defined by the T1-weighted MR images. To mitigate this problem, various registration algorithms based directly on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as features for registration. However, most of the FC-based registration methods usually extract the functional features only from the thin and highly curved cortical grey matter (GM), posing a great challenge in accurately estimating the whole-brain deformation field. In this paper, we demonstrate that the additional useful functional features can be extracted from brain regions beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall functional registration. Specifically, we quantify the local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors (FCTs), in both GM and WM. Functional registration is then performed based on multiple components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method achieves superior functional registration performance, compared with other conventional registration methods.

  19. Longitudinal and cross-sectional structural magnetic resonance imaging correlates of AV-1451 uptake.

    PubMed

    Das, Sandhitsu R; Xie, Long; Wisse, Laura E M; Ittyerah, Ranjit; Tustison, Nicholas J; Dickerson, Bradford C; Yushkevich, Paul A; Wolk, David A

    2018-06-01

    We examined the relationship between in vivo estimates of tau deposition as measured by 18 F-AV-1451 tau positron emission tomography imaging and cross-sectional cortical thickness, as well as rates of antecedent cortical thinning measured from magnetic resonance imaging in individuals with and without evidence of cerebral amyloid in 63 participants from the Alzheimer's Disease Neuroimaging Initiative study, including 32 cognitively normal individuals (mean age 74 years), 27 patients with mild cognitive impairment (mean age 76.8 years), and 4 patients diagnosed with Alzheimer's disease (mean age 80 years). We hypothesized that structural measures would correlate with 18 F-AV-1451 in a spatially local manner and that this correlation would be stronger for longitudinal compared to cross-sectional measures of cortical thickness and in those with cerebral amyloid versus those without. Cross-sectional and longitudinal estimates of voxelwise atrophy were made from whole brain maps of cortical thickness and rates of thickness change. In amyloid-β-positive individuals, the correlation of voxelwise atrophy across the whole brain with a summary measure of medial temporal lobe (MTL) 18 F-AV-1451 uptake demonstrated strong local correlations in the MTL with longitudinal atrophy that was weaker in cross-sectional analysis. Similar effects were seen in correlations between 31 bilateral cortical regions of interest. In addition, several nonlocal correlations between atrophy and 18 F-AV-1451 uptake were observed, including association between MTL atrophy and 18 F-AV-1451 uptake in parietal lobe regions of interest such as the precuneus. Amyloid-β-negative individuals only showed weaker correlations in data uncorrected for multiple comparisons. While these data replicate previous reports of associations between 18 F-AV-1451 uptake and cross-sectional structural measures, the current results demonstrate a strong relationship with longitudinal measures of atrophy. These data support the notion that in vivo measures of tau pathology are tightly linked to the rate of neurodegenerative change. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Imaging Predictors of Improvement From a Motor Learning-Based Intervention for Children With Unilateral Cerebral Palsy.

    PubMed

    Schertz, Mitchell; Shiran, Shelly I; Myers, Vicki; Weinstein, Maya; Fattal-Valevski, Aviva; Artzi, Moran; Ben Bashat, Dafna; Gordon, Andrew M; Green, Dido

    2016-08-01

    Background Motor-learning interventions may improve hand function in children with unilateral cerebral palsy (UCP) but with inconsistent outcomes across participants. Objective To examine if pre-intervention brain imaging predicts benefit from bimanual intervention. Method Twenty children with UCP with Manual Ability Classification System levels I to III, aged 7-16 years, participated in an intensive bimanual intervention. Assessments included the Assisting Hand Assessment (AHA), Jebsen Taylor Test of Hand Function (JTTHF) and Children's Hand Experience Questionnaire (CHEQ) at baseline (T1), completion (T2) and 8-10 weeks post-intervention (T3). Imaging at baseline included conventional structural (radiological score), functional (fMRI) and diffusion tensor imaging (DTI). Results Improvements were seen across assessments; AHA (P = 0.04), JTTHF (P < .001) and CHEQ (P < 0.001). Radiological score significantly correlated with improvement at T2; AHA (r = .475) and CHEQ (r = .632), but negatively with improvement on unimanual measures at T3 (JTTFH r = -.514). fMRI showed negative correlations between contralesional brain activation when moving the affected hand and AHA improvements (T2: r = -.562, T3: r = -0.479). Fractional Anisotropy in the affected posterior limb of the internal capsule correlated negatively with increased bimanual use on CHEQ at T2 (r = -547) and AHA at T3 (r = -.656). Conclusions Children with greater structural, functional and connective brain damage showed enhanced responses to bimanual intervention. Baseline imaging may identify parameters predicting response to intervention in children with UCP. © The Author(s) 2015.

Top