Sample records for structural characterization magnetochemistry

  1. Health Monitoring for Airframe Structural Characterization

    NASA Technical Reports Server (NTRS)

    Munns, Thomas E.; Kent, Renee M.; Bartolini, Antony; Gause, Charles B.; Borinski, Jason W.; Dietz, Jason; Elster, Jennifer L.; Boyd, Clark; Vicari, Larry; Ray, Asok; hide

    2002-01-01

    This study established requirements for structural health monitoring systems, identified and characterized a prototype structural sensor system, developed sensor interpretation algorithms, and demonstrated the sensor systems on operationally realistic test articles. Fiber-optic corrosion sensors (i.e., moisture and metal ion sensors) and low-cycle fatigue sensors (i.e., strain and acoustic emission sensors) were evaluated to validate their suitability for monitoring aging degradation; characterize the sensor performance in aircraft environments; and demonstrate placement processes and multiplexing schemes. In addition, a unique micromachined multimeasure and sensor concept was developed and demonstrated. The results show that structural degradation of aircraft materials could be effectively detected and characterized using available and emerging sensors. A key component of the structural health monitoring capability is the ability to interpret the information provided by sensor system in order to characterize the structural condition. Novel deterministic and stochastic fatigue damage development and growth models were developed for this program. These models enable real time characterization and assessment of structural fatigue damage.

  2. EDITORIAL: (Nano)characterization of semiconductor materials and structures (Nano)characterization of semiconductor materials and structures

    NASA Astrophysics Data System (ADS)

    Bonanni, Alberta

    2011-06-01

    The latest impressive advancements in the epitaxial fabrication of semiconductors and in the refinement of characterization techniques have the potential to allow insight into the deep relation between materials' structural properties and their physical and chemical functionalities. Furthermore, while the comprehensive (nano)characterization of semiconductor materials and structures is becoming more and more necessary, a compendium of the currently available techniques is lacking. We are positive that an overview of the hurdles related to the specific methods, often leading to deceptive interpretations, will be most informative for the broad community working on semiconductors, and will help in shining some light onto a plethora of controversial reports found in the literature. From this perspective, with this special issue we address and highlight the challenges and misinterpretations related to complementary local (nanoscale) and more global experimental methods for the characterization of semiconductors. The six topical reviews and the three invited papers by leading experts in the specific fields collected in here are intended to provide the required broad overview on the possibilities of actual (nano)characterization methods, from the microscopy of single quantum structures, over the synchrotron-based absorption and diffraction of nano-objects, to the contentious detection of tiny magnetic signals by quantum interference and resonance techniques. We are grateful to all the authors for their valuable contributions. Moreover, I would like to thank the Editorial Board of the journal for supporting the realization of this special issue and for inviting me to serve as Guest Editor. We greatly appreciate the work of the reviewers, of the editorial staff of Semiconductor Science and Technology and of IOP Publishing. In particular, the efforts of Alice Malhador in coordinating this special issue are acknowledged.

  3. Structural Characterization of Sm(III)(EDTMP).

    PubMed

    Yang, Y; Pushie, M J; Cooper, D M L; Doschak, M R

    2015-11-02

    Samarium-153 ethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid) ((153)Sm-EDTMP, or samarium lexidronam), also known by its registered trademark name Quadramet, is an approved therapeutic radiopharmaceutical used in the palliative treatment of painful bone metastases. Typically, patients with prostate, breast, or lung cancer are most likely to go on to require bone pain palliation treatment due to bone metastases. Sm(EDTMP) is a bone-seeking drug which accumulates on rapidly growing bone, thereby delivering a highly region-specific dose of radiation, chiefly through β particle emission. Even with its widespread clinical use, the structure of Sm(EDTMP) has not yet been characterized at atomic resolution, despite attempts to crystallize the complex. Herein, we prepared a 1:1 complex of the cold (stable isotope) of Sm(EDTMP) under alkaline conditions and then isolated and characterized the complex using conventional spectroscopic techniques, as well as with extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional structure calculations, using natural abundance Sm. We present the atomic resolution structure of [Sm(III)(EDTMP)-8H](5-) for the first time, supported by the EXAFS data and complementary spectroscopic techniques, which demonstrate that the samarium coordination environment in solution is in agreement with the structure that has long been conjectured.

  4. Nondestructive Structural Damage Detection in Flexible Space Structures Using Vibration Characterization

    NASA Technical Reports Server (NTRS)

    Ricles, James M.

    1991-01-01

    Spacecraft are susceptible to structural damage over their operating life from impact, environmental loads, and fatigue. Structural damage that is not detected and not corrected may potentially cause more damage and eventually catastrophic structural failure. NASA's current fleet of reusable spacecraft, namely the Space Shuttle, has been flown on several missions. In addition, configurations of future NASA space structures, e.g. Space Station Freedom, are larger and more complex than current structures, making them more susceptible to damage as well as being more difficult to inspect. Consequently, a reliable structural damage detection capability is essential to maintain the flight safety of these structures. Visual inspections alone can not locate impending material failure (fatigue cracks, yielding); it can only observe post-failure situations. An alternative approach is to develop an inspection and monitoring system based on vibration characterization that assesses the integrity of structural and mechanical components. A methodology for detecting structural damage is presented. This methodology is based on utilizing modal test data in conjunction with a correlated analytical model of the structure to: (1) identify the structural dynamic characteristics (resonant frequencies and mode shapes) from measurements of ambient motions and/or force excitation; (2) calculate modal residual force vectors to identify the location of structural damage; and (3) conduct a weighted sensitivity analysis in order to assess the extent of mass and stiffness variations, where structural damage is characterized by stiffness reductions. The approach is unique from other existing approaches in that varying system mass and stiffness, mass center locations, the perturbation of both the natural frequencies and mode shapes, and statistical confidence factors for structural parameters and experimental instrumentation are all accounted for directly.

  5. Experiments In Characterizing Vibrations Of A Structure

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Hadaegh, Fred Y.; Bayard, David S.

    1993-01-01

    Report discusses experiments conducted to test methods of identification of vibrational and coupled rotational/vibrational modes of flexible structure. Report one in series that chronicle development of integrated system of methods, sensors, actuators, analog and digital signal-processing equipment, and algorithms to suppress vibrations in large, flexible structure even when dynamics of structure partly unknown and/or changing. Two prior articles describing aspects of research, "Autonomous Frequency-Domain Indentification" (NPO-18099), and "Automated Characterization Of Vibrations Of A Structure" (NPO-18141).

  6. Instrumentation for the Characterization of Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith

    2012-01-01

    Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will

  7. Fluorescence microscopy for the characterization of structural integrity

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Leonhardt, Todd A.

    1991-01-01

    The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.

  8. Novel biosynthesis of Ag-hydroxyapatite: Structural and spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Ruíz-Baltazar, Álvaro de Jesús; Reyes-López, Simón Yobanny; Silva-Holguin, Pamela Nair; Larrañaga, Daniel; Estévez, Miriam; Pérez, Ramiro

    2018-06-01

    Silver-doped hydroxyapatite (Ag-HAP) was obtained by green synthesis route. The dopant silver nanoparticles (AgNPs) were obtained by biosynthesis based on Melissa officinalis extract. This research is focused on the characterization and the use of the nontoxic and environment-friendly Ag-HAP nanocomposite. The structural and morphological characterization of Ag-HAP nanocomposite was carried out by scanning electron microscopy (SEM), X-ray diffraction, Fourier-transform infrared (FT-IR) and Raman spectroscopy. The obtained nanoparticles exhibited a great interaction with the HAP matrix, performing an Ag-HAP nanocomposite. Changes in the structure of the Ag-HAP nanocomposite were corroborated by the different characterization techniques. Additionally, a homogeneous distribution of the AgNPs on the HAP structure was observed. The heterogeneous nucleation process employed to doping the HAP, offer a functional route to obtain a green composite with potentials applications in multiple fields, such as tissue engineering, bone repair as well as protein. These properties can be evaluated in subsequent studies.

  9. Structured light imaging system for structural and optical characterization of 3D tissue-simulating phantoms

    NASA Astrophysics Data System (ADS)

    Liu, Songde; Smith, Zach; Xu, Ronald X.

    2016-10-01

    There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.

  10. Structural characterization of thioether-bridged bacteriocins.

    PubMed

    Lohans, Christopher T; Vederas, John C

    2014-01-01

    Bacteriocins are a group of ribosomally synthesized antimicrobial peptides produced by bacteria, some of which are extensively post-translationally modified. Some bacteriocins, namely the lantibiotics and sactibiotics, contain one or more thioether bridges. However, these modifications complicate the structural elucidation of these bacteriocins using conventional techniques. This review will discuss the techniques and strategies that have been applied to determine the primary structures of lantibiotics and sactibiotics. A major challenge is to identify the topology of thioether bridges in these peptides (i.e., which amino-acid residues are involved in which bridges). Edman degradation, NMR spectroscopy and tandem MS have all been commonly applied to characterize these bacteriocins, but can be incompatible with the post-translational modifications present. Chemical modifications to the modified residues, such as desulfurization and reduction, make the treated bacteriocins more compatible to analysis by these standard peptide analytical techniques. Despite their differences in structure, similar strategies have proved useful to study the structures of both lantibiotics and sactibiotics.

  11. Characterization of Structure and Damage in Materials in Four Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, I. M.; Schuh, C. A.; Vetrano, J. S.

    2010-09-30

    The materials characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when materials scientists can quantify material structure across orders of magnitude in length and time scales (i.e., in four dimensions) completely. This paper presents a viewpoint on the materials characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom-probe tomography; X-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Particular attention is paid to studies that havemore » pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the state-of-the-art in characterization, and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving materials damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.« less

  12. Characterizing Sleep Structure Using the Hypnogram

    PubMed Central

    Swihart, Bruce J.; Caffo, Brian; Bandeen-Roche, Karen; Punjabi, Naresh M.

    2008-01-01

    Objectives: Research on the effects of sleep-disordered breathing (SDB) on sleep structure has traditionally been based on composite sleep-stage summaries. The primary objective of this investigation was to demonstrate the utility of log-linear and multistate analysis of the sleep hypnogram in evaluating differences in nocturnal sleep structure in subjects with and without SDB. Methods: A community-based sample of middle-aged and older adults with and without SDB matched on age, sex, race, and body mass index was identified from the Sleep Heart Health Study. Sleep was assessed with home polysomnography and categorized into rapid eye movement (REM) and non-REM (NREM) sleep. Log-linear and multistate survival analysis models were used to quantify the frequency and hazard rates of transitioning, respectively, between wakefulness, NREM sleep, and REM sleep. Results: Whereas composite sleep-stage summaries were similar between the two groups, subjects with SDB had higher frequencies and hazard rates for transitioning between the three states. Specifically, log-linear models showed that subjects with SDB had more wake-to-NREM sleep and NREM sleep-to-wake transitions, compared with subjects without SDB. Multistate survival models revealed that subjects with SDB transitioned more quickly from wake-to-NREM sleep and NREM sleep-to-wake than did subjects without SDB. Conclusions: The description of sleep continuity with log-linear and multistate analysis of the sleep hypnogram suggests that such methods can identify differences in sleep structure that are not evident with conventional sleep-stage summaries. Detailed characterization of nocturnal sleep evolution with event history methods provides additional means for testing hypotheses on how specific conditions impact sleep continuity and whether sleep disruption is associated with adverse health outcomes. Citation: Swihart BJ; Caffo B; Bandeen-Roche K; Punjabi NM. Characterizing sleep structure using the hypnogram. J Clin

  13. Structural Characterization of β-Agostic Bonds in Pd-Catalyzed Polymerization

    DOE PAGES

    Xu, Hongwei; Hu, Chunhua Tony; Wang, Xiaoping; ...

    2017-10-23

    β-agostic Pd complexes are critical intermediates in catalytic reactions, such as olefin polymerization and Heck reactions. Pd β-agostic complexes, however, have eluded structural characterization, due to the fact that these highly unstable molecules are difficult to isolate. In this paper, we report the single-crystal X-ray and neutron diffraction characterization of β-agostic (α-diimine)Pd–ethyl intermediates in polymerization. Short C α–C β distances and acute Pd–C α–C β bond angles combined serve as unambiguous evidence for the β-agostic interaction. Finally, characterization of the agostic structure and the kinetic barrier for β-H elimination offer important insight into the fundamental understanding of agostic bonds andmore » the mechanism of polymerization.« less

  14. Structural Characterization of β-Agostic Bonds in Pd-Catalyzed Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hongwei; Hu, Chunhua Tony; Wang, Xiaoping

    β-agostic Pd complexes are critical intermediates in catalytic reactions, such as olefin polymerization and Heck reactions. Pd β-agostic complexes, however, have eluded structural characterization, due to the fact that these highly unstable molecules are difficult to isolate. In this paper, we report the single-crystal X-ray and neutron diffraction characterization of β-agostic (α-diimine)Pd–ethyl intermediates in polymerization. Short C α–C β distances and acute Pd–C α–C β bond angles combined serve as unambiguous evidence for the β-agostic interaction. Finally, characterization of the agostic structure and the kinetic barrier for β-H elimination offer important insight into the fundamental understanding of agostic bonds andmore » the mechanism of polymerization.« less

  15. Mass Spectrometry Combinations for Structural Characterization of Sulfated-Steroid Metabolites

    NASA Astrophysics Data System (ADS)

    Yan, Yuetian; Rempel, Don L.; Holy, Timothy E.; Gross, Michael L.

    2014-05-01

    Steroid conjugates, which often occur as metabolites, are challenging to characterize. One application is female-mouse urine, where steroid conjugates serve as important ligands for the pheromone-sensing neurons. Although the two with the highest abundance in mouse urine were previously characterized with mass spectrometry (MS) and NMR to be sulfated steroids, many more exist but remain structurally unresolved. Given that their physical and chemical properties are similar, they are likely to have a sulfated steroid ring structure. Because these compounds occur in trace amounts in mouse urine and elsewhere, their characterization by NMR will be difficult. Thus, MS methods become the primary approach for determining structure. Here, we show that a combination of MS tools is effective for determining the structures of sulfated steroids. Using 4-pregnene analogs, we explored high-resolving power MS (HR-MS) to determine chemical formulae; HD exchange MS (HDX-MS) to determine number of active, exchangeable hydrogens (e.g., OH groups); methoxyamine hydrochloride (MOX) derivatization MS, or reactive desorption electrospray ionization with hydroxylamine to determine the number of carbonyl groups; and tandem MS (MSn), high-resolution tandem MS (HRMS/MS), and GC-MS to obtain structural details of the steroid ring. From the fragmentation studies, we deduced three major fragmentation rules for this class of sulfated steroids. We also show that a combined MS approach is effective for determining structure of steroid metabolites, with important implications for targeted metabolomics in general and for the study of mouse social communication in particular.

  16. Harnessing glycomics technologies: integrating structure with function for glycan characterization

    PubMed Central

    Robinson, Luke N.; Artpradit, Charlermchai; Raman, Rahul; Shriver, Zachary H.; Ruchirawat, Mathuros; Sasisekharan, Ram

    2013-01-01

    Glycans, or complex carbohydrates, are a ubiquitous class of biological molecules which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In comparison to DNA and proteins, glycans present unique challenges to the study of their structure and function owing to their complex and heterogeneous structures and the dominant role played by multivalency in their sequence-specific biological interactions. Arising from these challenges, there is a need to integrate information from multiple complementary methods to decode structure-function relationships. Focusing on acidic glycans, we describe here key glycomics technologies for characterizing their structural attributes, including linkage, modifications, and topology, as well as for elucidating their role in biological processes. Two cases studies, one involving sialylated branched glycans and the other sulfated glycosaminoglycans, are used to highlight how integration of orthogonal information from diverse datasets enables rapid convergence of glycan characterization for development of robust structure-function relationships. PMID:22522536

  17. Characterization of technical surfaces by structure function analysis

    NASA Astrophysics Data System (ADS)

    Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.

    2018-03-01

    The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.

  18. Mass spectrometry combinations for structural characterization of sulfated-steroid metabolites.

    PubMed

    Yan, Yuetian; Rempel, Don L; Holy, Timothy E; Gross, Michael L

    2014-05-01

    Steroid conjugates, which often occur as metabolites, are challenging to characterize. One application is female-mouse urine, where steroid conjugates serve as important ligands for the pheromone-sensing neurons. Although the two with the highest abundance in mouse urine were previously characterized with mass spectrometry (MS) and NMR to be sulfated steroids, many more exist but remain structurally unresolved. Given that their physical and chemical properties are similar, they are likely to have a sulfated steroid ring structure. Because these compounds occur in trace amounts in mouse urine and elsewhere, their characterization by NMR will be difficult. Thus, MS methods become the primary approach for determining structure. Here, we show that a combination of MS tools is effective for determining the structures of sulfated steroids. Using 4-pregnene analogs, we explored high-resolving power MS (HR-MS) to determine chemical formulae; HD exchange MS (HDX-MS) to determine number of active, exchangeable hydrogens (e.g., OH groups); methoxyamine hydrochloride (MOX) derivatization MS, or reactive desorption electrospray ionization with hydroxylamine to determine the number of carbonyl groups; and tandem MS (MS(n)), high-resolution tandem MS (HRMS/MS), and GC-MS to obtain structural details of the steroid ring. From the fragmentation studies, we deduced three major fragmentation rules for this class of sulfated steroids. We also show that a combined MS approach is effective for determining structure of steroid metabolites, with important implications for targeted metabolomics in general and for the study of mouse social communication in particular.

  19. Mass spectrometry combinations for structural characterization of sulfated-steroid metabolites

    PubMed Central

    Yan, Yuetian; Rempel, Don; Holy, Timothy E.; Gross, Michael L.

    2015-01-01

    Steroid conjugates, which often occur as metabolites, are challenging to characterize. One application is female-mouse urine, where steroid conjugates serve as important ligands for the pheromone-sensing neurons. Although the two with the highest abundance in mouse urine were previously characterized with mass spectrometry (MS) and NMR to be sulfated steroids, many more exist but remain structurally unresolved. Given that their physical and chemical properties are similar, they are likely to have a sulfated steroid ring structure. Because these compounds occur in trace amounts in mouse urine and elsewhere, their characterization by NMR will be difficult. Thus, MS methods become the primary approach for determining structure. Here, we show that a combination of MS tools is effective for determining the structures of sulfated steroids. Using 4-pregnene analogs, we explored high-resolving power MS (HR-MS) to determine chemical formulae; HD exchange MS (HDX-MS) to determine number of active, exchangeable hydrogens (e.g., OH groups); methoxyamine hydrochloride (MOX) derivatization MS, or reactive desorption electrospray ionization with hydroxylamine to determine the number of carbonyl groups; and tandem MS (MSn), high-resolution tandem MS (HRMS/MS), and GC-MS to obtain structural details of the steroid ring. From the fragmentation studies, we deduced three major fragmentation rules for this class of sulfated steroids. We also show that a combined MS approach is effective for determining structure of steroid metabolites, with important implications for targeted metabolomics in general and for the study of mouse social communication in particular. PMID:24658800

  20. An integrated approach using orthogonal analytical techniques to characterize heparan sulfate structure.

    PubMed

    Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Gunay, Nur Sibel; Wang, Jing; Sun, Elaine Y; Pradines, Joël R; Farutin, Victor; Shriver, Zachary; Kaundinya, Ganesh V; Capila, Ishan

    2017-02-01

    Heparan sulfate (HS), a glycosaminoglycan present on the surface of cells, has been postulated to have important roles in driving both normal and pathological physiologies. The chemical structure and sulfation pattern (domain structure) of HS is believed to determine its biological function, to vary across tissue types, and to be modified in the context of disease. Characterization of HS requires isolation and purification of cell surface HS as a complex mixture. This process may introduce additional chemical modification of the native residues. In this study, we describe an approach towards thorough characterization of bovine kidney heparan sulfate (BKHS) that utilizes a variety of orthogonal analytical techniques (e.g. NMR, IP-RPHPLC, LC-MS). These techniques are applied to characterize this mixture at various levels including composition, fragment level, and overall chain properties. The combination of these techniques in many instances provides orthogonal views into the fine structure of HS, and in other instances provides overlapping / confirmatory information from different perspectives. Specifically, this approach enables quantitative determination of natural and modified saccharide residues in the HS chains, and identifies unusual structures. Analysis of partially digested HS chains allows for a better understanding of the domain structures within this mixture, and yields specific insights into the non-reducing end and reducing end structures of the chains. This approach outlines a useful framework that can be applied to elucidate HS structure and thereby provides means to advance understanding of its biological role and potential involvement in disease progression. In addition, the techniques described here can be applied to characterization of heparin from different sources.

  1. Characterization of turbulent coherent structures in square duct flow

    NASA Astrophysics Data System (ADS)

    Atzori, Marco; Vinuesa, Ricardo; Lozano-Durán, Adrián; Schlatter, Philipp

    2018-04-01

    This work is aimed at a first characterization of coherent structures in turbulent square duct flows. Coherent structures are defined as connected components in the domain identified as places where a quantity of interest (such as Reynolds stress or vorticity) is larger than a prescribed non-uniform threshold. Firstly, we qualitatively discuss how a percolation analysis can be used to assess the effectiveness of the threshold function, and how it can be affected by statistical uncertainty. Secondly, various physical quantities that are expected to play an important role in the dynamics of the secondary flow of Prandtl’s second kind are studied. Furthermore, a characterization of intense Reynolds-stress events in square duct flow, together with a comparison of their shape for analogous events in channel flow at the same Reynolds number, is presented.

  2. Multiscale Persistent Functions for Biomolecular Structure Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Kelin; Li, Zhiming; Mu, Lin

    Here in this paper, we introduce multiscale persistent functions for biomolecular structure characterization. The essential idea is to combine our multiscale rigidity functions (MRFs) with persistent homology analysis, so as to construct a series of multiscale persistent functions, particularly multiscale persistent entropies, for structure characterization. To clarify the fundamental idea of our method, the multiscale persistent entropy (MPE) model is discussed in great detail. Mathematically, unlike the previous persistent entropy (Chintakunta et al. in Pattern Recognit 48(2):391–401, 2015; Merelli et al. in Entropy 17(10):6872–6892, 2015; Rucco et al. in: Proceedings of ECCS 2014, Springer, pp 117–128, 2016), a special resolutionmore » parameter is incorporated into our model. Various scales can be achieved by tuning its value. Physically, our MPE can be used in conformational entropy evaluation. More specifically, it is found that our method incorporates in it a natural classification scheme. This is achieved through a density filtration of an MRF built from angular distributions. To further validate our model, a systematical comparison with the traditional entropy evaluation model is done. Additionally, it is found that our model is able to preserve the intrinsic topological features of biomolecular data much better than traditional approaches, particularly for resolutions in the intermediate range. Moreover, by comparing with traditional entropies from various grid sizes, bond angle-based methods and a persistent homology-based support vector machine method (Cang et al. in Mol Based Math Biol 3:140–162, 2015), we find that our MPE method gives the best results in terms of average true positive rate in a classic protein structure classification test. More interestingly, all-alpha and all-beta protein classes can be clearly separated from each other with zero error only in our model. Finally, a special protein structure index (PSI) is proposed, for

  3. Synthesis and structural characterization of CZTS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydia, R.; Reddy, P. Sreedhara

    2013-06-03

    The CZTS nanoparticles were successfully synthesized by Chemical co-precipitation method with different pH values in the range of 6 to 8. The synthesized nanoparticles were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. XRD studies revealed that the CZTS nanoparticles exhibited Kesterite Structure with preferential orientation along the (112) direction. Sample at pH value of 7 reached the nearly stoichiometric ratio.

  4. Characterizing human activity induced impulse and slip-pulse excitations through structural vibration

    NASA Astrophysics Data System (ADS)

    Pan, Shijia; Mirshekari, Mostafa; Fagert, Jonathon; Ramirez, Ceferino Gabriel; Chung, Albert Jin; Hu, Chih Chi; Shen, John Paul; Zhang, Pei; Noh, Hae Young

    2018-02-01

    Many human activities induce excitations on ambient structures with various objects, causing the structures to vibrate. Accurate vibration excitation source detection and characterization enable human activity information inference, hence allowing human activity monitoring for various smart building applications. By utilizing structural vibrations, we can achieve sparse and non-intrusive sensing, unlike pressure- and vision-based methods. Many approaches have been presented on vibration-based source characterization, and they often either focus on one excitation type or have limited performance due to the dispersion and attenuation effects of the structures. In this paper, we present our method to characterize two main types of excitations induced by human activities (impulse and slip-pulse) on multiple structures. By understanding the physical properties of waves and their propagation, the system can achieve accurate excitation tracking on different structures without large-scale labeled training data. Specifically, our algorithm takes properties of surface waves generated by impulse and of body waves generated by slip-pulse into account to handle the dispersion and attenuation effects when different types of excitations happen on various structures. We then evaluate the algorithm through multiple scenarios. Our method achieves up to a six times improvement in impulse localization accuracy and a three times improvement in slip-pulse trajectory length estimation compared to existing methods that do not take wave properties into account.

  5. Characterizing core-periphery structure of complex network by h-core and fingerprint curve

    NASA Astrophysics Data System (ADS)

    Li, Simon S.; Ye, Adam Y.; Qi, Eric P.; Stanley, H. Eugene; Ye, Fred Y.

    2018-02-01

    It is proposed that the core-periphery structure of complex networks can be simulated by h-cores and fingerprint curves. While the features of core structure are characterized by h-core, the features of periphery structure are visualized by rose or spiral curve as the fingerprint curve linking to entire-network parameters. It is suggested that a complex network can be approached by h-core and rose curves as the first-order Fourier-approach, where the core-periphery structure is characterized by five parameters: network h-index, network radius, degree power, network density and average clustering coefficient. The simulation looks Fourier-like analysis.

  6. RF and structural characterization of new SRF films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.-M. Valente-Feliciano,H. L. Phillips,C. E. Reece,X. Zhao,D. Gu,R. Lukaszew,B. Xiao,K. Seo

    2009-09-01

    In the past years, energetic vacuum deposition methods have been developed in different laboratories to improve Nb/Cu technology for superconducting cavities. Jefferson Lab is pursuing energetic condensation deposition via Electron Cyclotron Resonance. As part of this study, the influence of the deposition energy on the material and RF properties of the Nb thin film is investigated. The film surface and structure analyses are conducted with various techniques like X-ray diffraction, Transmission Electron Microscopy, Auger Electron Spectroscopy and RHEED. The microwave properties of the films are characterized on 50 mm disk samples with a 7.5 GHz surface impedance characterization system. Thismore » paper presents surface impedance measurements in correlation with surface and material characterization for Nb films produced on copper substrates with different bias voltages and also highlights emerging opportunities for developing multilayer SRF films with a new deposition system.« less

  7. Thermodynamic and structural characterization of an antibody gel

    PubMed Central

    Esue, Osigwe; Xie, Anna X.; Kamerzell, Tim J.; Patapoff, Thomas W.

    2013-01-01

    Although extensively studied, protein–protein interactions remain highly elusive and are of increasing interest in drug development. We show the assembly of a monoclonal antibody, using multivalent carboxylate ions, into highly-ordered structures. While the presence and function of similar structures in vivo are not known, the results may present a possible unexplored area of antibody structure-function relationships. Using a variety of tools (e.g., mechanical rheology, electron microscopy, isothermal calorimetry, Fourier transform infrared spectroscopy), we characterized the physical, biochemical, and thermodynamic properties of these structures and found that citrate may interact directly with the amino acid residue histidine, after which the individual protein units assemble into a filamentous network gel exhibiting high elasticity and interfilament interactions. Citrate interacts exothermically with the monoclonal antibody with an association constant that is highly dependent on solution pH and temperature. Secondary structure analysis also reveals involvement of hydrophobic and aromatic residues. PMID:23425660

  8. Biophysical characterization of α-synuclein and its controversial structure

    PubMed Central

    Alderson, T Reid; Markley, John L

    2013-01-01

    α-synuclein, a presynaptic protein of poorly defined function, constitutes the main component of Parkinson disease-associated Lewy bodies. Extensive biophysical investigations have provided evidence that isolated α-synuclein is an intrinsically disordered protein (IDP) in vitro. Subsequently serving as a model IDP in numerous studies, α-synuclein has aided in the development of many technologies used to characterize IDPs and arguably represents the most thoroughly analyzed IDP to date. Recent reports, however, have challenged the disordered nature of α-synuclein inside cells and have instead proposed a physiologically relevant helical tetramer. Despite α-synuclein’s rich biophysical history, a single coherent picture has not yet emerged concerning its in vivo structure, dynamics, and physiological role(s). We present herein a review of the biophysical discoveries, developments, and models pertinent to the characterization of α-synuclein’s structure and analysis of the native tetramer controversy. PMID:24634806

  9. Structural and mechanical characterization of hybrid metallic-inorganic nanosprings

    NASA Astrophysics Data System (ADS)

    Habtoun, Sabrina; Houmadi, Said; Reig, Benjamin; Pouget, Emilie; Dedovets, Dmytro; Delville, Marie-Hélène; Oda, Reiko; Cristiano, Fuccio; Bergaud, Christian

    2017-10-01

    Silica nanosprings (NS) are fabricated by a sol-gel deposition of silica precursors onto a template made of self-assembled organic chiral nanostructures. They are deposited and assembled on microstructured silicon substrates, and then metallized and clamped in a single lithography-free step using a focused ion beam (FIB). The resulting suspended hybrid metallic/inorganic NS are then characterized with high-resolution transmission electron microscopy (HRTEM) and scanning TEM/energy-dispersive X-ray spectroscopy (STEM/EDX), showing the atomic structure of the metallic layer. Three-point bending tests are also carried out using an atomic force microscope (AFM) and supported by finite element method (FEM) simulation with COMSOL Multiphysics allowing the characterization of the mechanical behavior and the estimation of the stiffness of the resulting NS. The information obtained on the structural and mechanical properties of the NS is discussed for future nano-electro-mechanical system (NEMS) applications.

  10. Structural characterization of Co-Re superlattices

    NASA Astrophysics Data System (ADS)

    Melo, L. V.; Trindade, I.; From, M.; Freitas, P. P.; Teixeira, N.; da Silva, M. F.; Soares, J. C.

    1991-12-01

    Co-Re superlattices were prepared with nominal periodicities of 65-67 Å and varying bilayer composition. The structural characterization was made by x-ray diffraction and Rutherford backscattering spectrometry (RBS). First, second, and third order satellites are observed in the x-ray diffractogram at 2θ values and with intensities close to those predicted by simulation. This confirms the coherence of the superlattice. RBS measurements combined with RUMP simulations give information on interface sharpness and the absolute thicknesses of the Co and Re layers. Discrepancies between the experimental and simulated diffractograms are found for Co thicknesses below 18 Å.

  11. PREFACE: Symposium 1: Advanced Structure Analysis and Characterization of Ceramic Materials

    NASA Astrophysics Data System (ADS)

    Yashima, Masatomo

    2011-05-01

    Preface to Symposium 1 (Advanced Structure Analysis and Characterization of Ceramic Materials) of the International Congress of Ceramics III, held 14-18 November 2010 in Osaka, Japan Remarkable developments have been made recently in the structural analysis and characterization of inorganic crystalline and amorphous materials, such as x-ray, neutron, synchrotron and electron diffraction, x-ray/neutron scattering, IR/Raman scattering, NMR, XAFS, first-principle calculations, computer simulations, Rietveld analysis, the maximum-entropy method, in situ measurements at high temperatures/pressures and electron/nuclear density analysis. These techniques enable scientists to study not only static and long-range periodic structures but also dynamic and short-/intermediate-range structures. Multi-scale characterization from the electron to micrometer levels is becoming increasingly important as a means of understanding phenomena at the interfaces, grain boundaries and surfaces of ceramic materials. This symposium has discussed the structures and structure/property relationships of various ceramic materials (electro, magnetic and optical ceramics; energy and environment related ceramics; bio-ceramics; ceramics for reliability secure society; traditional ceramics) through 38 oral presentations including 8 invited lectures and 49 posters. Best poster awards were given to six excellent poster presentations (Y-C Chen, Tokyo Institute of Technology; C-Y Chung, Tohoku University; T Stawski, University of Twente; Y Hirano, Nagoya Institute of Technology; B Bittova, Charles University Prague; Y Onodera, Kyoto University). I have enjoyed working with my friends in the ICC3 conference. I would like to express special thanks to other organizers: Professor Scott T Misture, Alfred University, USA, Professor Xiaolong Chen, Institute of Physics, CAS, China, Professor Takashi Ida, Nagoya Institute of Technology, Japan, Professor Isao Tanaka, Kyoto University, Japan. I also acknowledge the

  12. Structural and optical characterization of NiSe film grown by screen-printing method

    NASA Astrophysics Data System (ADS)

    Sharma, Kapil; Sharma, D. K.; Dwivedi, D. K.; Kumar, Vipin

    2018-05-01

    In present investigation NiSe films were grown by economical screen-printing method. Optimum conditions for growing good quality screen-printed films were found. The films were characterized for their structural and optical properties. The polycrystalline nature of films with hexagonal structure was confirmed through XRD analysis. Direct type of optical band gap of 1.75 eV for the NiSe film was confirmed by optical characterization.

  13. Structural and optical characterization of the propolis films

    NASA Astrophysics Data System (ADS)

    Drapak, S. I.; Bakhtinov, A. P.; Gavrylyuk, S. V.; Drapak, I. T.; Kovalyuk, Z. D.

    2006-10-01

    We have performed structural and optical characterizations of the propolis (an organic entity of biological nature) films grown on various non-organic substrates. The films were grown from a propolis melt or a propolis alcohol solution. The crystal structure has been observed in the films precipitated from the solution onto substrates such as an amorphous glass and sapphire or semiconductor indium monoselenide. For any growth method, the propolis film is a semiconductor with the bandgap of 3.07 eV at 300 K that is confirmed by a maximum in photoluminescence spectra at 2.86 eV. We argue that propolis films might be used in various optoelectronic device applications.

  14. Electrochemical characterization of p(+)n and n(+)p diffused InP structures

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Faur, Maria; Faur, Mircea; Goradia, M.; Vargas-Aburto, Carlos

    1993-01-01

    The relatively well documented and widely used electrolytes for characterization and processing of Si and GaAs-related materials and structures by electrochemical methods are of little or no use with InP because the electrolytes presently used either dissolve the surface preferentially at the defect areas or form residual oxides and introduce a large density of surface states. Using an electrolyte which was newly developed for anodic dissolution of InP, and was named the 'FAP' electrolyte, accurate characterization of InP related structures including nature and density of surface states, defect density, and net majority carrier concentration, all as functions of depth was performed. A step-by-step optimization of n(+)p and p(+)n InP structures made by thermal diffusion was done using the electrochemical techniques, and resulted in high performance homojunction InP structures.

  15. Structural characterization of nonactive site, TrkA-selective kinase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hua-Poo; Rickert, Keith; Burlein, Christine

    Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residuesmore » from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of—but adjacent to—the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.« less

  16. Characterizing structures on borehole images and logging data of the Nankai trough accretionary prism: new insights

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose

    2016-04-01

    IODP has extensively used the D/V Chikyu to drill the Kumano portion of the Nankai Trough, including two well sites within the Kumano Basin. IODP Expeditions 338 and 348 drilled deep into the inner accretionary prism south of the Kii Peninsula collecting a suite of LWD data, including natural gamma ray, electrical resistivity logs and borehole images, suitable to characterize structures (fractures and faults) inside the accretionary prism. Structural interpretation and analysis of logging-while-drilling data in the deep inner prism revealed intense deformation of a generally homogenous lithology characterized by bedding that dips steeply (60-90°) to the NW, intersected by faults and fractures. Multiple phases of deformation are characterized. IODP Expedition borehole images and LWD data acquired in the last decade in previous and results of NantroSEIZE IODP Expeditions (314, 319) were also analyzed to investigate the internal geometries and structures of the Nankai Trough accretionary prism. This study focused mainly on the characterization of the different types of structures and their specific position within the accretionary prism structures. New structural constraints and methodologies as well as a new approach to the characterization of study of active structures inside the prism will be presented.

  17. Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Umalas, Madis; Polyakov, Boris

    2015-09-15

    We investigate the applicability of alumina nanofibers as a potential reinforcement material in ceramic matrix compounds by comparing the mechanical properties of individual nanofibers before and after annealing at 1400 °C. Mechanical testing is performed inside a scanning electron microscope (SEM), which enables observation in real time of the deformation and fracture of the fibers under loading, thereby providing a close-up inspection of the freshly fractured area in vacuum. Improvement of both the Young's modulus and the breaking strength for annealed nanofibers is demonstrated. Mechanical testing is supplemented with the structural characterization of the fibers before and after annealing usingmore » SEM, transmission electron microscopy and X-ray diffraction methods. - Highlights: • Mechanical properties of individual alumina nanofibers were measured using in situ SEM cantilevered beam bending technique. • Improvement of mechanical properties of the alumina fibers after annealing at 1400 °C is demonstrated. • Formation of branched structures is demonstrated and their mechanical properties are studied. • XRD and electron microscopy were used for structural characterization of untreated and annealed nanofibers.« less

  18. Multiscale Structure of UXO Site Characterization: Spatial Estimation and Uncertainty Quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrouchov, George; Doll, William E.; Beard, Les P.

    2009-01-01

    Unexploded ordnance (UXO) site characterization must consider both how the contamination is generated and how we observe that contamination. Within the generation and observation processes, dependence structures can be exploited at multiple scales. We describe a conceptual site characterization process, the dependence structures available at several scales, and consider their statistical estimation aspects. It is evident that most of the statistical methods that are needed to address the estimation problems are known but their application-specific implementation may not be available. We demonstrate estimation at one scale and propose a representation for site contamination intensity that takes full account of uncertainty,more » is flexible enough to answer regulatory requirements, and is a practical tool for managing detailed spatial site characterization and remediation. The representation is based on point process spatial estimation methods that require modern computational resources for practical application. These methods have provisions for including prior and covariate information.« less

  19. Characterizing Thematized Derivative Schema by the Underlying Emergent Structures

    ERIC Educational Resources Information Center

    Garcia, Mercedes; Llinares, Salvador; Sanchez-Matamoros, Gloria

    2011-01-01

    This paper reports on different underlying structures of the derivative schema of three undergraduate students that were considered to be at the trans level of development of the derivative schema (action-process-object-schema). The derivative schema is characterized in terms of the students' ability to explicitly transfer the relationship between…

  20. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arslan, Ilke; Dixon, David A.; Gates, Bruce C.

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-themore » art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to

  1. Structural Characterization of Bimetallic Nanocrystal Electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, David A

    2016-01-01

    Late transition metal nanocrystals find applications in heterogeneous catalysis such as plasmon-enhanced catalysis and as electrode materials for fuel cells, a zero-emission and sustainable energy technology. Their commercial viability for automotive transportation has steadily increased in recent years, almost exclusively due to the discovery of more efficient bimetallic nanocatalysts for the oxygen reduction reaction (ORR) at the cathode. Despite improvements to catalyst design, achieving high activity while maintaining durability is essential to further enhance their performance for this and other important applications in catalysis. Electronic effects arising from the generation of metal-metal interfaces, from plasmonic metals, and from lattice distortions,more » can vastly improve sorption properties at catalytic surfaces, while increasing durability.[1] Multimetallic lattice-strained nanoparticles are thus an interesting opportunity for fundamental research.[2,3] A colloidal synthesis approach is demonstrated to produce AuPd alloy and Pd@Au core-shell nanoicosahedra as catalysts for electro-oxidations. The nanoparticles are characterized using aberration-corrected scanning transmission electron microscopy (ac-STEM) and large solid angle energy dispersive X-ray spectroscopy (EDS) on an FEI Talos 4-detector STEM/EDS system. Figure 1 shows bright-field (BF) and high-angle annular dark-field (HAADF) ac-STEM images of the alloy and core-shell nanoicosahedra together with EDS line-scans and elemental maps. These structures are unique in that the presence of twin boundaries, alloying, and core-shell morphology could create highly strained surfaces and interfaces. The shell thickness of the core-shell structures observed in HAADF-STEM images is tuned by adjusting the ratio between metal precursors (Figure 2a-f) to produce shells ranging from a few to several monolayers. Specific activity was measured in ethanol electro-oxidation to examine the effect of shell

  2. Effect of crumb cellular structure characterized by image analysis on cake softness.

    PubMed

    Dewaest, Marine; Villemejane, Cindy; Berland, Sophie; Neron, Stéphane; Clement, Jérôme; Verel, Aliette; Michon, Camille

    2018-06-01

    Sponge cake is a cereal product characterized by an aerated crumb and appreciated for its softness. When formulating such product, it is interesting to be able to characterize the crumb structure using image analysis and to bring knowledge about the effects of the crumb cellular structure on its mechanical properties which contribute to softness. An image analysis method based on mathematical morphology was adapted from the one developed for bread crumb. In order to evaluate its ability to discriminate cellular structures, series of cakes were prepared using two rather similar emulsifiers but also using flours with different aging times before use. The mechanical properties of the crumbs of these different cakes were also characterized. It allowed a cell structure classification taking into account cell size and homogeneity, but also cell wall thickness and the number of holes in the walls. Interestingly, the cellular structure differences had a larger impact on the aerated crumb Young modulus than the wall firmness. Increasing the aging time of flour before use leads to the production of firmer crumbs due to coarser and inhomogeneous cellular structures. Changing the composition of the emulsifier may change the cellular structure and, depending on the type of the structural changes, have an impact on the firmness of the crumb. Cellular structure rather than cell wall firmness was found to impact cake crumb firmness. The new fast and automated tool for cake crumb structure analysis allows detecting quickly any change in cell size or homogeneity but also cell wall thickness and number of holes in the walls (openness degree). To obtain a softer crumb, it seems that options are to decrease the cell size and the cell wall thickness and/or to increase the openness degree. It is then possible to easily evaluate the effects of ingredients (flour composition, emulsifier …) or change in the process on the crumb structure and thus its softness. Moreover, this image

  3. Characterizing structural transitions using localized free energy landscape analysis.

    PubMed

    Banavali, Nilesh K; Mackerell, Alexander D

    2009-01-01

    Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes. Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined) base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom. The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.

  4. Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.

    PubMed

    Meroni, Alice; Lazzaro, Federico; Muzi-Falconi, Marco; Podestà, Alessandro

    2018-01-01

    We describe a method to extract quantitative information on DNA structural and configurational properties from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol can be also used to characterize other statistical parameters from AFM topographies.

  5. Electro-mechanical characterization of structural supercapacitors

    NASA Astrophysics Data System (ADS)

    Gallagher, T.; LaMaster, D.; Ciocanel, C.; Browder, C.

    2012-04-01

    The paper presents electrical and mechanical properties of structural supercapacitors and discusses limitations associated with the approach taken for the electrical properties evaluation. The structural supercapacitors characterized in this work had the electrodes made of carbon fiber weave, separator made of several cellulose based products, and the solid electrolyte made as PEGDGE based polymer blend. The reported electrical properties include capacitance and leakage resistance; the former was measured using cyclic voltammetry. Mechanical properties have been evaluated thorough tensile and three point bending tests performed on structural supercapacitor coupons. The results indicate that the separator material plays an important role on the electrical as well as mechanical properties of the structural capacitor, and that Celgard 3501 used as separator leads to most benefits for both mechanical and electrical properties. Specific capacitance and leakage resistance as high as 1.4kF/m3 and 380kΩ, respectively, were achieved. Two types of solid polymer electrolytes were used in fabrication, with one leading to higher and more consistent leakage resistance values at the expense of a slight decrease in specific capacitance when compared to the other SPE formulation. The ultimate tensile strength and modulus of elasticity of the developed power storage composite were evaluated at 466MPa and 18.9MPa, respectively. These values are 58% and 69% of the tensile strength and modulus of elasticity values measured for a single layer composite material made with the same type of carbon fiber and with a West System 105 epoxy instead of solid polymer electrolyte.

  6. Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE.

    PubMed

    Pidatala, Venkataramana R; Mahboubi, Amir; Mortimer, Jenny C

    2017-10-16

    Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharide fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.

  7. Characterization of seismic hazard and structural response by energy flux

    USGS Publications Warehouse

    Afak, E.

    2000-01-01

    Seismic safety of structures depends on the structure's ability to absorb the seismic energy that is transmitted from ground to structure. One parameter that can be used to characterize seismic energy is the energy flux. Energy flux is defined as the amount of energy transmitted per unit time through a cross-section of a medium, and is equal to kinetic energy multiplied by the propagation velocity of seismic waves. The peak or the integral of energy flux can be used to characterize ground motions. By definition, energy flux automatically accounts for site amplification. Energy flux in a structure can be studied by formulating the problem as a wave propagation problem. For buildings founded on layered soil media and subjected to vertically incident plane shear waves, energy flux equations are derived by modeling the buildings as an extension of the layered soil medium, and considering each story as another layer. The propagation of energy flux in the layers is described in terms of the upgoing and downgoing energy flux in each layer, and the energy reflection and transmission coefficients at each interface. The formulation results in a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. The upgoing and downgoing energy flux in the layers allows calculation of the energy demand and energy dissipation in each layer. The methodology is applicable to linear, as well as nonlinear structures. ?? 2000 Published by Elsevier Science Ltd.

  8. Magnetochemistry of the tetrahaloferrate (III) ions. 7. Crystal structure and magnetic ordering in (pyridinium){sub 3}Fe{sub 2}Br{sub 9}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, C.B.; Shaviv, R.; Carlin, R.L.

    1994-07-06

    A monoclinic crystal structure was found by X-ray diffraction for bis [pyridinium tetrabromferrate(III)]-pyridinium bromide. The double salt contains two slightly distorted [FeBr{sub 4}]{sup -} tetrahedra, three pyridinium rings, and an uncoordinated halide in each asymmetric unit, as is characteristic of the A{sub 3}Fe{sub 2}X{sub 9} series of compounds. Unit cell parameters, monoclinic space group P2{sub 1}, are a = 7.656(3) {angstrom}, b = 14.237(5) {angstrom}, c = 13.725(5) {angstrom}, {beta} = 93.42(3){degrees}, and V = 1493(1) {angstrom}{sup 3}, using Mo K{alpha} radiation {lambda} = 0.710 69 {angstrom}, {rho}{sub calc} = 2.38 g cm{sup -3}, and Z = 2. The tetrahedramore » are aligned with their 3-fold axes parallel to the crystallographic c axis. Bond lengths (Fe-Br) range from 2.271(9) {angstrom} to 2.379(9) {angstrom} for the two different slightly distorted tetrahedral units. Magnetic susceptibility studies show that the material orders three-dimensionally at 7.4 {+-} 0.2 K. The data are compared to a HTS expansion of 1/{sub {chi}} for the S = 5/2 three-dimensional Heisenberg model antiferromagnet for a sc lattice with g = 1.98 and J/k{sub B} = -0.43 K. The specific heat measurements indicate two odd-shaped {lambda} features, at 7.3 and 8 K.« less

  9. Characterization of Imposed Ordered Structures in MDPX

    NASA Astrophysics Data System (ADS)

    Hall, Taylor; Thomas, Edward; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    It is well understood that the microparticles in complex, or dusty, plasmas will form self-consistent crystalline patterns at the proper plasma parameters. In the Magnetized Dusty Plasma Experiment (MDPX) device, studies have been made of imposed, ordered structuring of the dust particles to a two dimensional grid. At high magnetic field (B >1 Tesla), the dust particles are shown to become spatially oriented to the structure of a wire mesh embedded in an electrically floating, upper electrode while the particles are suspended in a plasma that is generated by the powered, lower electrode in the experiment. With even higher magnetic field (B >2 Tesla), the particles become strongly confined to the mesh pattern with the particles constrained to a quasi-discreet motion that closely follows the mesh pattern. This presentation characterizes the structure of the potential energy well in which the dust particles are trapped through observation of particle motion and measurement of the thermal properties of the particles. This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  10. Characterization of electronic structure of periodically strained graphene

    DOE PAGES

    Aslani, Marjan; Garner, C. Michael; Kumar, Suhas; ...

    2015-11-03

    We induced periodic biaxial tensile strain in polycrystalline graphene by wrapping it over a substrate with repeating pillar-like structures with a periodicity of 600 nm. Using Raman spectroscopy, we determined to have introduced biaxial strains in graphene in the range of 0.4% to 0.7%. Its band structure was characterized using photoemission from valance bands, shifts in the secondary electron emission, and x-ray absorption from the carbon 1s levels to the unoccupied graphene conduction bands. It was observed that relative to unstrained graphene, strained graphene had a higher work function and higher density of states in the valence and conduction bands.more » Furthermore, we measured the conductivity of the strained and unstrained graphene in response to a gate voltage and correlated the changes in their behavior to the changes in the electronic structure. From these sets of data, we propose a simple band diagram representing graphene with periodic biaxial strain.« less

  11. Optical fiber sensors for materials and structures characterization

    NASA Technical Reports Server (NTRS)

    Lindner, D. K.; Claus, R. O.

    1991-01-01

    The final technical report on Optical Fiber Sensors for Materials and Structures Characterization, covering the period August 1990 through August 1991 is presented. Research programs in the following technical areas are described; sapphire optical fiber sensors; vibration analysis using two-mode elliptical core fibers and sensors; extrinsic Fabry-Perot interferometer development; and coatings for fluorescent-based sensor. Research progress in each of these areas was substantial, as evidenced by the technical publications which are included as appendices.

  12. Synthesis and structural characterization of oaklin-catechins.

    PubMed

    Sousa, André; Fernandes, Ana; Mateus, Nuno; De Freitas, Victor

    2012-02-15

    Condensation reactions of procyanidin dimer B4 with two representative oak wood cinnamic aldehydes (coniferaldehyde and sinapaldehyde) were conducted in winelike model solutions. Coniferaldehyde led to the formation of guaiacylcatechin-pyrylium-catechin (GCP-catechin, 737 m/z), whereas sinapaldehyde led to the formation of syringylcatechin-pyrylium-catechin (SCP-catechin, 767 m/z). The former was also structurally characterized by 1D and 2D NMR, allowing an elucidation of the formation mechanism of these oaklin-catechin adducts and demonstrating the importance of procyanidins in the formation of colored compounds through the reaction with cinnamic aldehydes extracted from oaks during storage.

  13. Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1985-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  14. Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pidatala, Venkataramana R.; Mahboubi, Amir; Mortimer, Jenny C.

    Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharidemore » fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.« less

  15. Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE

    DOE PAGES

    Pidatala, Venkataramana R.; Mahboubi, Amir; Mortimer, Jenny C.

    2017-10-16

    Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharidemore » fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.« less

  16. Structural and Functional Characterization of a Caenorhabditis elegans Genetic Interaction Network within Pathways

    PubMed Central

    Boucher, Benjamin; Lee, Anna Y.; Hallett, Michael; Jenna, Sarah

    2016-01-01

    A genetic interaction (GI) is defined when the mutation of one gene modifies the phenotypic expression associated with the mutation of a second gene. Genome-wide efforts to map GIs in yeast revealed structural and functional properties of a GI network. This provided insights into the mechanisms underlying the robustness of yeast to genetic and environmental insults, and also into the link existing between genotype and phenotype. While a significant conservation of GIs and GI network structure has been reported between distant yeast species, such a conservation is not clear between unicellular and multicellular organisms. Structural and functional characterization of a GI network in these latter organisms is consequently of high interest. In this study, we present an in-depth characterization of ~1.5K GIs in the nematode Caenorhabditis elegans. We identify and characterize six distinct classes of GIs by examining a wide-range of structural and functional properties of genes and network, including co-expression, phenotypical manifestations, relationship with protein-protein interaction dense subnetworks (PDS) and pathways, molecular and biological functions, gene essentiality and pleiotropy. Our study shows that GI classes link genes within pathways and display distinctive properties, specifically towards PDS. It suggests a model in which pathways are composed of PDS-centric and PDS-independent GIs coordinating molecular machines through two specific classes of GIs involving pleiotropic and non-pleiotropic connectors. Our study provides the first in-depth characterization of a GI network within pathways of a multicellular organism. It also suggests a model to understand better how GIs control system robustness and evolution. PMID:26871911

  17. Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.

    2016-01-01

    Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.

  18. Advances and unresolved challenges in the structural characterization of isomeric lipids.

    PubMed

    Hancock, Sarah E; Poad, Berwyck L J; Batarseh, Amani; Abbott, Sarah K; Mitchell, Todd W

    2017-05-01

    As the field of lipidomics grows and its application becomes wide and varied it is important that we don't forget its foundation, i.e. the identification and measurement of molecular lipids. Advances in liquid chromatography and the emergence of ion mobility as a useful tool in lipid analysis are allowing greater separation of lipid isomers than ever before. At the same time, novel ion activation techniques, such as ozone-induced dissociation, are pushing lipid structural characterization by mass spectrometry to new levels. Nevertheless, the quantitative capacity of these techniques is yet to be proven and further refinements are required to unravel the high level of lipid complexity found in biological samples. At present there is no one technique capable of providing full structural characterization of lipids from a biological sample. There are however, numerous techniques now available (as discussed in this review) that could be deployed in a targeted approach. Moving forward, the combination of advanced separation and ion activation techniques is likely to provide mass spectrometry-based lipidomics with its best opportunity to achieve complete molecular-level lipid characterization and measurement from complex mixtures. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  19. Non-destructive testing for the structures and civil infrastructures characterization

    NASA Astrophysics Data System (ADS)

    Capozzoli, L.; Rizzo, E.

    2012-04-01

    This work evaluates the ability of non-conventional NDT techniques such as GPR, geoelectrical method and conventional ones such as infrared thermography (IRT) and sonic test for the characterization of building structures in laboratory and in-situ. Moreover, the integration of the different techniques were evaluated in order to reduce the degree of uncertainties associated. The presence of electromagnetic, resistivity or thermal anomalies in the behavior may be related to the presence of defects, crack, decay or moisture. The research was conducted in two phases: the first phase was performed in laboratory and the second one mainly in the field work. The laboratory experiments proceeded to calibrate the geophysical techniques GPR and geoelectrical method on building structures. A multi-layer structure was reconstructed in laboratory, in order to simulate a back-bridge: asphalt, reinforced concrete, sand and gravel layers. In the deep sandy layer, PVC, aluminum and steel pipes were introduced. This structure has also been brought to crack in a predetermined area and hidden internal fractures were investigated. GPR has allowed to characterize the panel in a non-invasive mode; radar maps were developed using various algorithms during post-process about 2D maps and 3D models with aerial acquisition of 400 MHz, 900MHz, 1500MHz, 2000MHz. Geoelectrical testing was performed with a network of 25 electrodes spaced at mutual distance of 5 cm. Two different configurations were used dipole-dipole and pole-dipole approaches. In the second phase, we proceeded to the analysis of pre-tensioned concrete in order to detect the possible presence of criticality in the structure. For this purpose by GPR 2GHz antenna, a '70 years precast bridge characterized by a high state of decay was studied; then were also analyzed a pillar and a beam of recent production directly into the processing plant. Moreover, results obtained using GPR were compared with those obtained through the use of

  20. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review.

    PubMed

    Biniarz, Piotr; Łukaszewicz, Marcin; Janek, Tomasz

    2017-05-01

    Lipopeptide biosurfactants are surface active biomolecules that are produced by a variety of microorganisms. Microbial lipopeptides have gained the interest of microbiologists, chemists and biochemists for their high biodiversity as well as efficient action, low toxicity and good biodegradability in comparison to synthetic counterparts. In this report, we review methods for the production, isolation and screening, purification and structural characterization of microbial lipopeptides. Several techniques are currently available for each step, and we describe the most commonly utilized and recently developed techniques in this review. Investigations on lipopeptide biosurfactants in natural products require efficient isolation techniques for the characterization and evaluation of chemical and biological properties. A combination of chromatographic and spectroscopic techniques offer opportunities for a better characterization of lipopeptide structures, which in turn can lead to the application of lipopeptides in food, pharmaceutical, cosmetics, agricultural and bioremediation industries.

  1. Concept Definition Study for In-Space Structural Characterization of a Lightweight Solar Array

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pappa, Richard S.; Jones, Thomas W.; Spellman, Regina; Scott, Willis; Mockensturm, Eric M.; Liddle, Donn; Oshel, Ed; Snyder, Michael

    2002-01-01

    A Concept Definition Study (CDS) was conducted to develop a proposed "Lightweight High-Voltage Stretched-Lens Concentrator Solar Array Experiment" under NASA's New Millennium Program Space Technology-6 (NMP ST-6) activity. As part of a multi-organizational team, NASA Langley Research Center's role in this proposed experiment was to lead Structural Characterization of the solar array during the flight experiment. In support of this role, NASA LaRC participated in the CDS to de.ne an experiment for static, dynamic, and deployment characterization of the array. In this study, NASA LaRC traded state-of-the-art measurement approaches appropriate for an in-space, STS-based flight experiment, provided initial analysis and testing of the lightweight solar array and lens elements, performed a lighting and photogrammetric simulation in conjunction with JSC, and produced an experiment concept definition to meet structural characterization requirements.

  2. Modified ferrite core-shell nanoparticles magneto-structural characterization

    NASA Astrophysics Data System (ADS)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  3. Pre- and Post-Processing Tools to Create and Characterize Particle-Based Composite Model Structures

    DTIC Science & Technology

    2017-11-01

    ARL-TR-8213 ● NOV 2017 US Army Research Laboratory Pre- and Post -Processing Tools to Create and Characterize Particle-Based...ARL-TR-8213 ● NOV 2017 US Army Research Laboratory Pre- and Post -Processing Tools to Create and Characterize Particle-Based Composite...AND SUBTITLE Pre- and Post -Processing Tools to Create and Characterize Particle-Based Composite Model Structures 5a. CONTRACT NUMBER 5b. GRANT

  4. Computational Characterization of Electromagnetic Field Propagation in Complex Structures

    DTIC Science & Technology

    1998-04-10

    34Computational characterization of electromagnetic field propagation in complex structures", DAAH01-91-D-ROOS D.O. 59. Dr. Michael Scalora performed the...Development, and Engineering Center, Bldg. 7804, Room 242 Redstone Arsenal, Alabama 35898-5248 USA Dr. Michael Scalora Quantum Optics Group Tel:(205...scheduled to appear. They are: (1) M. Scalora , J.P. Dowling, A.S. Manka, CM. Bowden, and J.W. Haus, Pulse Propagation Near Highly Reflective

  5. Undefined freeform surfaces having deterministic structure: issues of their characterization for functionality and manufacture

    NASA Astrophysics Data System (ADS)

    Whitehouse, David J.

    2016-09-01

    There is an increasing use of surfaces which have structure, an increase in the use of freeform surfaces, and most importantly an increase in the number of surfaces having both characteristics. These can be called multi-function surfaces, where more than one function is helped by the geometrical features: the structure can help one, the freeform another. Alternatively, they can be complementary to optimize a single function, but in all cases both geometries are involved. This paper examines some of the problems posed by having such disparate geometries on one surface; in particular, the methods of characterization needed to help understand the functionality and also to some extent their manufacture. This involves investigating ways of expressing how local and global geometric features of undefined freeform surfaces might influence function and how surface structure on top of or in series with the freeform affects the nature of the characterization. Some methods have been found of identifying possible strategies for tackling the characterization problem, based in part on the principles of least action and on the way that nature has solved the marriage of flexible freeform geometry and structure on surfaces.

  6. Structural characterization of oxidized titanium surfaces

    NASA Astrophysics Data System (ADS)

    Jobin, M.; Taborelli, M.; Descouts, P.

    1995-05-01

    Oxidized titanium surfaces resulting from various processes have been structurally characterized by means of scanning force microscopy, x-ray photoemission spectroscopy (XPS), x-ray diffraction, and electron energy-loss spectroscopy (EELS) with losses in the 0-100 eV range. It has been found that the surface morphology has a granular structure for electropolished titanium and for titanium evaporated on mica at low substrate temperature (570 K), but changes to flat terraces for the films evaporated at higher temperature (770 K). Angular-dependent XPS has revealed the presence of a Ti2O3 suboxide at the Ti/TiO2 interface for electropolished titanium. Dry oxidation has been performed at 770 and 970 K on both weakly and highly crystallized evaporated titanium films oriented along (0001). In the case of underlying crystallized metallic titanium, the resulting TiO2 films are crystallized with the anatase (004) orientation for oxidation at 770 K and with rutile (200) orientation for oxidation at 970 K. EELS spectra interpreted in terms of the molecular orbitals of a (TiO6)8- cluster show that the local octahedral environment of titanium atoms is preserved on native oxides, even if these oxides are not crystallized.

  7. Solid state NMR: The essential technology for helical membrane protein structural characterization

    PubMed Central

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-01-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099

  8. Solid state NMR: The essential technology for helical membrane protein structural characterization

    NASA Astrophysics Data System (ADS)

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-02-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.

  9. Characterization of Novel Thin-Films and Structures for Integrated Circuit and Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao

    Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication. Novel rapid annealing methods, i.e. microwave annealing and laser annealing, are conducted to activate ion dopants and repair the damages, and then are compared with the conventional rapid thermal annealing (RTA). In terms of As+ and P+ implanted Si, the electrical and structural characterization confirms that the microwave and laser annealing can achieve more efficient dopant activation and recrystallization than conventional RTA. The efficient dopant activation in microwave annealing is attributed to ion hopping under microwave field, while the liquid phase growth in laser annealing provides its efficient dopant activation. The characterization of dopants diffusion shows no visible diffusion after microwave annealing, some extent of end range of diffusion after RTA, and significant dopant diffusion after laser annealing. For photovoltaic applications, an indium-free novel three-layer thin-film structure (transparent composited electrode (TCE)) is demonstrated as a promising transparent conductive electrode for solar cells. The characterization of TCE mainly focuses on its optical and electrical properties. Transfer matrix method for optical transmittance calculation is validated and proved to be a desirable method for predicting transmittance of TCE containing continuous metal layer, and can estimate the trend of transmittance as the layer thickness changes. TiO2/Ag/TiO2 (TAgT) electrode for organic solar cells (OSCs) is then designed using numerical simulation and shows much higher Haacke figure of merit than indium tin oxide (ITO). In addition, TAgT based OSC shows better performance than ITO based OSC when compatible hole transfer layer

  10. Biochemical and Structural Characterization of the Human TL1A Ectodomain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, C.; Yan, Q; Patskovsky, Y

    TNF-like 1A (TL1A) is a newly described member of the TNF superfamily that is directly implicated in the pathogenesis of autoimmune diseases, including inflammatory bowel disease, atherosclerosis, and rheumatoid arthritis. We report the crystal structure of the human TL1A extracellular domain at a resolution of 2.5 {angstrom}, which reveals a jelly-roll fold typical of the TNF superfamily. This structural information, in combination with complementary mutagenesis and biochemical characterization, provides insights into the binding interface and the specificity of the interactions between TL1A and the DcR3 and DR3 receptors. These studies suggest that the mode of interaction between TL1A and DcR3more » differs from other characterized TNF ligand/receptor complexes. In addition, we have generated functional TL1A mutants with altered disulfide bonding capability that exhibit enhanced solution properties, which will facilitate the production of materials for future cell-based and whole animal studies. In summary, these studies provide insights into the structure and function of TL1A and provide the basis for the rational manipulation of its interactions with cognate receptors.« less

  11. Native top-down mass spectrometry for the structural characterization of human hemoglobin

    DOE PAGES

    Zhang, Jiang; Malmirchegini, G. Reza; Clubb, Robert T.; ...

    2015-06-09

    Native mass spectrometry (MS) has become an invaluable tool for the characterization of proteins and non-covalent protein complexes under near physiological solution conditions. Here we report the structural characterization of human hemoglobin (Hb), a 64 kDa oxygen-transporting protein complex, by high resolution native top-down mass spectrometry using electrospray ionization (ESI) and a 15-Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Native MS preserves the non-covalent interactions between the globin subunits, and electron capture dissociation (ECD) produces fragments directly from the intact Hb complex without dissociating the subunits. Using activated ion ECD, we observe the gradual unfolding process of themore » Hb complex in the gas phase. Without protein ion activation, the native Hb shows very limited ECD fragmentation from the N-termini, suggesting a tightly packed structure of the native complex and therefore low fragmentation efficiency. Precursor ion activation allows steady increase of N-terminal fragment ions, while the C-terminal fragments remain limited (38 c ions and 4 z ions on the α chain; 36 c ions and 2 z ions on the β chain). This ECD fragmentation pattern suggests that upon activation, the Hb complex starts to unfold from the N-termini of both subunits, whereas the C-terminal regions and therefore the potential regions involved in the subunit binding interactions remain intact. ECD-MS of the Hb dimer show similar fragmentation patterns as the Hb tetramer, providing further evidence for the hypothesized unfolding process of the Hb complex in the gas phase. Native top-down ECD-MS allows efficient probing of the Hb complex structure and the subunit binding interactions in the gas phase. Finally, it may provide a fast and effective means to probe the structure of novel protein complexes that are intractable to traditional structural characterization tools.« less

  12. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  13. Damping characterization in large structures

    NASA Technical Reports Server (NTRS)

    Eke, Fidelis O.; Eke, Estelle M.

    1991-01-01

    This research project has as its main goal the development of methods for selecting the damping characteristics of components of a large structure or multibody system, in such a way as to produce some desired system damping characteristics. The main need for such an analytical device is in the simulation of the dynamics of multibody systems consisting, at least partially, of flexible components. The reason for this need is that all existing simulation codes for multibody systems require component-by-component characterization of complex systems, whereas requirements (including damping) often appear at the overall system level. The main goal was met in large part by the development of a method that will in fact synthesize component damping matrices from a given system damping matrix. The restrictions to the method are that the desired system damping matrix must be diagonal (which is almost always the case) and that interbody connections must be by simple hinges. In addition to the technical outcome, this project contributed positively to the educational and research infrastructure of Tuskegee University - a Historically Black Institution.

  14. Structural Characterization of Vapor-deposited Organic Glasses

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit

    Physical vapor deposition, a common route of thin film fabrication for organic electronic devices, has recently been shown to produce organic glassy films with enhanced kinetic stability and anisotropic structure. Anisotropic structures are of interest in the organic electronics community as it has been shown that certain structures lead to enhanced device performance, such as higher carrier mobility and better light outcoupling. A mechanism proposed to explain the origin of the stability and anisotropy of vapor-deposited glasses relies on two parameters: 1) enhanced molecular mobility at the free surface (vacuum interface) of a glass, and 2) anisotropic molecular packing at the free surface of the supercooled liquid of the glass-forming system. By vapor-depositing onto a substrate maintained at Tsubstrate < Tg (where Tg is the glass transition temperature), the enhanced molecular mobility at the free surface allows every molecule that lands on the surface to at least partially equilibrate to the preferred anisotropic molecular packing motifs before being buried by further deposition. The extent of equilibration depends on the mobility at the surface, controlled by Tsubstrate, and the residence time on the free surface, controlled by the rate of deposition. This body of work deals with the optimization of deposition conditions and system chemistry to prepare and characterize films with functional anisotropic structures. Here, we show that structural anisotropy can be attained for a variety of molecular systems including a rod-shaped non-mesogen, TPD, a rod-shaped smectic mesogen, itraconazole, two discotic mesogens, phenanthroperylene-ester and triphenylene-ester, and a disc-shaped non-mesogen, m-MTDATA. Experimental evidence is also provided of the anisotropic molecular packing at the free surface (vacuum interface) for the disc-shaped systems that are consistent with the expectations of the proposed mechanism and the final bulk state of the vapor

  15. A Model Comparison for Characterizing Protein Motions from Structure

    NASA Astrophysics Data System (ADS)

    David, Charles; Jacobs, Donald

    2011-10-01

    A comparative study is made using three computational models that characterize native state dynamics starting from known protein structures taken from four distinct SCOP classifications. A geometrical simulation is performed, and the results are compared to the elastic network model and molecular dynamics. The essential dynamics is quantified by a direct analysis of a mode subspace constructed from ANM and a principal component analysis on both the FRODA and MD trajectories using root mean square inner product and principal angles. Relative subspace sizes and overlaps are visualized using the projection of displacement vectors on the model modes. Additionally, a mode subspace is constructed from PCA on an exemplar set of X-ray crystal structures in order to determine similarly with respect to the generated ensembles. Quantitative analysis reveals there is significant overlap across the three model subspaces and the model independent subspace. These results indicate that structure is the key determinant for native state dynamics.

  16. Wet formation and structural characterization of quasi-hexagonal monolayers.

    PubMed

    Batys, Piotr; Weroński, Paweł; Nosek, Magdalena

    2016-01-01

    We have presented a simple and efficient method for producing dense particle monolayers with controlled surface coverage. The method is based on particle sedimentation, manipulation of the particle-substrate electrostatic interaction, and gentle mechanical vibration of the system. It allows for obtaining quasi-hexagonal structures under wet conditions. Using this method, we have produced a monolayer of 3 μm silica particles on a glassy carbon substrate. By optical microscopy, we have determined the coordinates of the particles and surface coverage of the obtained structure to be 0.82. We have characterized the monolayer structure by means of the pair-correlation function and power spectrum. We have also compared the results with those for a 2D hexagonal monolayer and monolayer generated by random sequential adsorption at the coverage 0.50. We have found the surface fractal dimension to be 2.5, independently of the monolayer surface coverage. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Structural characterization/correlation of calorimetric properties of coal fluids: Final report, September 1, 1985--August 31, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starling, K.E.; Mallinson, R.G.; Li, M.H.

    The objective of this research is to examine the relationship between the calorimetric properties of coal fluids and their molecular functional group composition. Coal fluid samples which have had their calorimetric properties measured are characterized using proton NMR, IR, and elemental analysis. These characterizations are then used in a chemical structural model to determine the composition of the coal fluid in terms of the important molecular functional groups. These functional groups are particularly important in determining the intramolecular based properties of a fluid, such as ideal gas heat capacities. Correlational frameworks for ideal gas heat capacities are then examined withinmore » an existing equation of state methodology to determine an optimal correlation. The optimal correlation for obtaining the characterization/chemical structure information and the sensitivity of the correlation to the characterization and structural model is examined. 8 refs.« less

  18. NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct.

    PubMed

    Thrane, Linn W; Berglund, Emily A; Wilking, James N; Vodak, David; Seymour, Joseph D

    2018-06-14

    Nuclear magnetic resonance (NMR) frequency spectra and T 2 relaxation time measurements, using a high-power radio frequency probe, are shown to characterize the presence of an amorphous drug in a porous silica construct. The results indicate the ability of non-solid-state NMR methods to characterize crystalline and amorphous solid structural phases in drugs. Two-dimensional T 1 - T 2 magnetic relaxation time correlation experiments are shown to monitor the impact of relative humidity on the drug in a porous silica tablet.

  19. Structural characterization of sol-gel derived oxide nanostuctures using synchrotron x-ray techniques

    NASA Astrophysics Data System (ADS)

    Sun, Tao

    Ceramic oxides possess extraordinarily rich functionalities. With the advent of nanofabrication techniques, it is now possible to grow nanostructured oxides with precise control of composition, morphology, and microstructure, which has re-vitalized the research in the field of traditional ceramics. The unexpected behavior and enhanced properties of oxide nanostructures have been extensively reported. However, knowledge about the underlying mechanisms as well as structural implications is still quite limited. Therefore, it is imperative to develop and employ sophisticated characterization tools for unraveling the structure-property relationships for oxide nanostructures. The present thesis work aims at addressing the critical issues associated with fabrication, and more importantly, structural characterization of functional oxide nanostructures. The dissertation starts with introducing the strategy for synthesizing phase-pure and highly controlled oxide nanostructures using sol-gel deposition and an innovative approach called "soft" electron beam lithography. Some specific oxides are chosen for the present study, such as BiFeO3, CoFe2O4, and SnO2, because of their scientific and technological significance. Subsequent to fabrication of tailored oxide nanostructures, advanced synchrotron x-ray scattering techniques have been applied for structural characterization. The nucleation and growth behavior of BiFeO3 thin film was investigated using in situ grazing-incidence small-angle x-ray scattering (GISAXS) technique. The results reveal that the kinetics for early-stage nuclei growth are governed by the oriented-attachment model. Moreover, the porous structures of undoped and Pd-doped semiconducting SnOx thin films were quantitatively characterized using GISAXS. By correlating the structural parameters with H2 sensitivity of SnOx films, it is found out that the microstructure of doped film is favorable for gas sensing, but it is not the major reason for the overall

  20. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Andrew Loyd

    Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the δ-Al-ε activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a βαβ-βαβ patternmore » of secondary structure, with the two helices packed against a 4-stranded anti-parallel β-sheet. In addition 15N T 1, T 2, and 15N/ 1H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone 1H, 13C, and 15N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and 15N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.« less

  1. Potential and Limitations of the Modal Characterization of a Spacecraft Bus Structure by Means of Active Structure Elements

    NASA Technical Reports Server (NTRS)

    Grillenbeck, Anton M.; Dillinger, Stephan A.; Elliott, Kenny B.

    1998-01-01

    Theoretical and experimental studies have been performed to investigate the potential and limitations of the modal characterization of a typical spacecraft bus structure by means of active structure elements. The aim of these studies has been test and advance tools for performing an accurate on-orbit modal identification which may be characterized by the availability of a generally very limited test instrumentation, autonomous excitation capabilities by active structure elements and a zero-g environment. The NASA LARC CSI Evolutionary Testbed provided an excellent object for the experimental part of this study program. The main subjects of investigation were: (1) the selection of optimum excitation and measurement to unambiguously identify modes of interest; (2) the applicability of different types of excitation means with focus on active structure elements; and (3) the assessment of the modal identification potential of different types of excitation functions and modal analysis tools. Conventional as well as dedicated modal analysis tools were applied to determine modal parameters and mode shapes. The results will be presented and discussed based on orthogonality checks as well as on suitable indicators for the quality of the acquired modes with respect to modal purity. In particular, the suitability for modal analysis of the acquired frequency response functions as obtained by excitation with active structure elements will be demonstrated with the help of reciprocity checks. Finally, the results will be summarized in a procedure to perform an on-orbit modal identification, including an indication of limitation to be observed.

  2. Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation.

    PubMed

    Benmore, Chris J; Weber, J K R; Tailor, Amit N; Cherry, Brian R; Yarger, Jeffery L; Mou, Qiushi; Weber, Warner; Neuefeind, Joerg; Byrn, Stephen R

    2013-04-01

    Here, we report the structural characterization of several amorphous drugs made using the method of quenching molten droplets suspended in an acoustic levitator. (13) C NMR, X-ray, and neutron diffraction results are discussed for glassy cinnarizine, carbamazepine, miconazole nitrate, probucol, and clotrimazole. The (13) C NMR results did not find any change in chemical bonding induced by the amorphization process. High-energy X-ray diffraction results were used to characterize the ratio of crystalline to amorphous material present in the glasses over a period of 8 months. All the glasses were stable for at least 6 months except carbamazepine, which has a strong tendency to crystallize within a few months. Neutron and X-ray pair distribution function analyses were applied to the glassy materials, and the results were compared with their crystalline counterparts. The two diffraction techniques yielded similar results in most cases and identified distinct intramolecular and intermolecular correlations. The intramolecular scattering was calculated based on the crystal structure and fit to the measured X-ray structure factor. The resulting intermolecular pair distribution functions revealed broad-nearest and next-nearest neighbor molecule-molecule correlations. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1290-1300, 2013. Copyright © 2013 Wiley Periodicals, Inc.

  3. Characterizing the graded structure of false killer whale (Pseudorca crassidens) vocalizations.

    PubMed

    Murray, S O; Mercado, E; Roitblat, H L

    1998-09-01

    The vocalizations from two, captive false killer whales (Pseudorca crassidens) were analyzed. The structure of the vocalizations was best modeled as lying along a continuum with trains of discrete, exponentially damped sinusoidal pulses at one end and continuous sinusoidal signals at the other end. Pulse trains were graded as a function of the interval between pulses where the minimum interval between pulses could be zero milliseconds. The transition from a pulse train with no inter-pulse interval to a whistle could be modeled by gradations in the degree of damping. There were many examples of vocalizations that were gradually modulated from pulse trains to whistles. There were also vocalizations that showed rapid shifts in signal type--for example, switching immediately from a whistle to a pulse train. These data have implications when considering both the possible function(s) of the vocalizations and the potential sound production mechanism(s). A short-time duty cycle measure was developed to characterize the graded structure of the vocalizations. A random sample of 500 vocalizations was characterized by combining the duty cycle measure with peak frequency measurements. The analysis method proved to be an effective metric for describing the graded structure of false killer whale vocalizations.

  4. Characterization of iron-phosphate-silicate chemical garden structures.

    PubMed

    Barge, Laura M; Doloboff, Ivria J; White, Lauren M; Stucky, Galen D; Russell, Michael J; Kanik, Isik

    2012-02-28

    Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled by the internal osmotic pressure, fluid buoyancy, and membrane strength. Additionally, rapid bubble-led growth is observed when silicate concentrations are high. ESEM/EDX analysis confirms compositional gradients within the membranes, and voltage measurements across the membranes during growth show a final potential of around 150-200 mV, indicating that electrochemical gradients are maintained across the membranes as growth proceeds. The characterization of chemical gardens formed with iron, silicate, and phosphate, three important components of an early earth prebiotic hydrothermal system, can help us understand the properties of analogous structures that likely formed at submarine alkaline hydrothermal vents in the Hadean-structures offering themselves as the hatchery of life. © 2011 American Chemical Society

  5. Amyloid oligomer structure characterization from simulations: A general method

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong H.; Li, Mai Suan; Derreumaux, Philippe

    2014-03-01

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ9-40, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  6. Structural and functional characterization of two alpha-synuclein strains

    NASA Astrophysics Data System (ADS)

    Bousset, Luc; Pieri, Laura; Ruiz-Arlandis, Gemma; Gath, Julia; Jensen, Poul Henning; Habenstein, Birgit; Madiona, Karine; Olieric, Vincent; Böckmann, Anja; Meier, Beat H.; Melki, Ronald

    2013-10-01

    α-synuclein aggregation is implicated in a variety of diseases including Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. The association of protein aggregates made of a single protein with a variety of clinical phenotypes has been explained for prion diseases by the existence of different strains that propagate through the infection pathway. Here we structurally and functionally characterize two polymorphs of α-synuclein. We present evidence that the two forms indeed fulfil the molecular criteria to be identified as two strains of α-synuclein. Specifically, we show that the two strains have different structures, levels of toxicity, and in vitro and in vivo seeding and propagation properties. Such strain differences may account for differences in disease progression in different individuals/cell types and/or types of synucleinopathies.

  7. Test method development for structural characterization of fiber composites at high temperatures

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.; Edwards, B.

    1985-01-01

    Test methods used for structural characterization of polymer matrix composites can be applied to glass and ceramic matrix composites only at low temperatures. New test methods are required for tensile, compressive, and shear properties of fiber composites at high temperatures. A tensile test which should be useful to at least 1000 C has been developed and used to characterize the properties of a Nicalon/glass composite up to the matrix limiting temperature of 600 C. Longitudinal and transverse unidirectional composite data are presented and discussed.

  8. Structural Characterization of the Low-Molecular-Weight Heparin Dalteparin by Combining Different Analytical Strategies.

    PubMed

    Bisio, Antonella; Urso, Elena; Guerrini, Marco; de Wit, Pauline; Torri, Giangiacomo; Naggi, Annamaria

    2017-06-24

    A number of low molecular weight heparin (LMWH) products are available for clinical use and although all share a similar mechanism of action, they are classified as distinct drugs because of the different depolymerisation processes of the native heparin resulting in substantial pharmacokinetic and pharmacodynamics differences. While enoxaparin has been extensively investigated, little information is available regarding the LMWH dalteparin. The present study is focused on the detailed structural characterization of Fragmin ® by LC-MS and NMR applied both to the whole drug and to its enzymatic products. For a more in-depth approach, size homogeneous octasaccharide and decasaccharide components together with their fractions endowed with high or no affinity toward antithrombin were also isolated and their structural profiles characterized. The combination of different analytical strategies here described represents a useful tool for the assessment of batch-to-batch structural variability and for comparative evaluation of structural features of biosimilar products.

  9. 3D soil structure characterization of Biological Soil Crusts from Alpine Tarfala Valley

    NASA Astrophysics Data System (ADS)

    Mele, Giacomo; Gargiulo, Laura; Zucconi, Laura; D'Acqui, Luigi; Ventura, Stefano

    2017-04-01

    Cyanobacteria filaments, microfungal hyphae, lichen rhizinae and anchoring rhizoids of bryophytes all together contribute to induce formation of structure in the thin soil layer beneath the Biological Soil Crusts (BSCs). Quantitative assessment of the soil structure beneath the BSCs is primarily hindered by the fragile nature of the crusts. Therefore, the role of BSCs in affecting such soil physical property has been rarely addressed using direct measurements. In this work we applied non-destructive X-ray microtomography imaging on five different samples of BSCs collected in the Alpine Tarfala Valley (northern Sweden), which have already been characterized in terms of fungal biodiversity in a previous work. We obtained images of the 3D spatial organization of the soil underneath the BSCs and characterized its structure by applying procedures of image analysis allowing to determine pore size distribution, pore connectivity and aggregate size distribution. Results has then been correlated with the different fungal assemblages of the samples.

  10. Multiscale tomography of buried magnetic structures: its use in the localization and characterization of archaeological structures

    NASA Astrophysics Data System (ADS)

    Saracco, Ginette; Moreau, Frédérique; Mathé, Pierre-Etienne; Hermitte, Daniel; Michel, Jean-Marie

    2007-10-01

    We have previously developed a method for characterizing and localizing `homogeneous' buried sources, from the measure of potential anomalies at a fixed height above ground (magnetic, electric and gravity). This method is based on potential theory and uses the properties of the Poisson kernel (real by definition) and the continuous wavelet theory. Here, we relax the assumption on sources and introduce a method that we call the `multiscale tomography'. Our approach is based on the harmonic extension of the observed magnetic field to produce a complex source by use of a complex Poisson kernel solution of the Laplace equation for complex potential field. A phase and modulus are defined. We show that the phase provides additional information on the total magnetic inclination and the structure of sources, while the modulus allows us to characterize its spatial location, depth and `effective degree'. This method is compared to the `complex dipolar tomography', extension of the Patella method that we previously developed. We applied both methods and a classical electrical resistivity tomography to detect and localize buried archaeological structures like antique ovens from magnetic measurements on the Fox-Amphoux site (France). The estimates are then compared with the results of excavations.

  11. Pore- and micro-structural characterization of a novel structural binder based on iron carbonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sumanta, E-mail: Sumanta.Das@asu.edu; Stone, David, E-mail: dajstone@gmail.com; Convey, Diana, E-mail: Diana.Convey@asu.edu

    2014-12-15

    The pore- and micro-structural features of a novel binding material based on the carbonation of waste metallic iron powder are reported in this paper. The binder contains metallic iron powder as the major ingredient, followed by additives containing silica and alumina to facilitate favorable reaction product formation. Compressive strengths sufficient for a majority of concrete applications are attained. The material pore structure is investigated primarily through mercury intrusion porosimetry whereas electron microscopy is used for microstructural characterization. Reduction in the overall porosity and the average pore size with an increase in carbonation duration from 1 day to 4 days ismore » noticed. The pore structure features are used in predictive models for gas and moisture transport (water vapor diffusivity and moisture permeability) through the porous medium which dictates its long-term durability when used in structural applications. Comparisons of the pore structure with those of a Portland cement paste are also provided. The morphology of the reaction products in the iron-based binder, and the distribution of constituent elements in the microstructure are also reported. - Highlights: • Carbonation of iron produces a dense microstructure. • Pore volume in iron carbonate lower, critical size higher than those in OPC pastes • Reaction product contains iron, carbon, silicon, aluminum and calcium. • Power-law for porosity-moisture permeability relationship was established.« less

  12. Genome-wide characterization of genetic diversity and population structure in Secale

    PubMed Central

    2014-01-01

    Background Numerous rye accessions are stored in ex situ genebanks worldwide. Little is known about the extent of genetic diversity contained in any of them and its relation to contemporary varieties, since to date rye genetic diversity studies had a very limited scope, analyzing few loci and/ or few accessions. Development of high throughput genotyping methods for rye opened the possibility for genome wide characterizations of large accessions sets. In this study we used 1054 Diversity Array Technology (DArT) markers with defined chromosomal location to characterize genetic diversity and population structure in a collection of 379 rye accessions including wild species, landraces, cultivated materials, historical and contemporary rye varieties. Results Average genetic similarity (GS) coefficients and average polymorphic information content (PIC) values varied among chromosomes. Comparison of chromosome specific average GS within and between germplasm sub-groups indicated regions of chromosomes 1R and 4R as being targeted by selection in current breeding programs. Bayesian clustering, principal coordinate analysis and Neighbor Joining clustering demonstrated that source and improvement status contributed significantly to the structure observed in the analyzed set of Secale germplasm. We revealed a relatively limited diversity in improved rye accessions, both historical and contemporary, as well as lack of correlation between clustering of improved accessions and geographic origin, suggesting common genetic background of rye accessions from diverse geographic regions and extensive germplasm exchange. Moreover, contemporary varieties were distinct from the remaining accessions. Conclusions Our results point to an influence of reproduction methods on the observed diversity patterns and indicate potential of ex situ collections for broadening the genetic diversity in rye breeding programs. Obtained data show that DArT markers provide a realistic picture of the genetic

  13. Biophysical characterization and structure of the Fab fragment from the NIST reference antibody, RM 8671.

    PubMed

    Karageorgos, Ioannis; Gallagher, Elyssia S; Galvin, Connor; Gallagher, D Travis; Hudgens, Jeffrey W

    2017-11-01

    Monoclonal antibody pharmaceuticals are the fastest-growing class of therapeutics, with a wide range of clinical applications. To assure their safety, these protein drugs must demonstrate highly consistent purity and stability. Key to these objectives is higher order structure measurements validated by calibration to reference materials. We describe preparation, characterization, and crystal structure of the Fab fragment prepared from the NIST Reference Antibody RM 8671 (NISTmAb). NISTmAb is a humanized IgG1κ antibody, produced in murine cell culture and purified by standard biopharmaceutical production methods, developed at the National Institute of Standards and Technology (NIST) to serve as a reference material. The Fab fragment was derived from NISTmAb through papain cleavage followed by protein A based purification. The purified Fab fragment was characterized by SDS-PAGE, capillary gel electrophoresis, multi-angle light scattering, size exclusion chromatography, mass spectrometry, and x-ray crystallography. The crystal structure at 0.2 nm resolution includes four independent Fab molecules with complete light chains and heavy chains through Cys 223, enabling assessment of conformational variability and providing a well-characterized reference structure for research and engineering applications. This nonproprietary, publically available reference material of known higher-order structure can support metrology in biopharmaceutical applications, and it is a suitable platform for validation of molecular modeling studies. Published by Elsevier Ltd.

  14. Characterization of a Novel Water Pocket Inside the Human Cx26 Hemichannel Structure

    PubMed Central

    Araya-Secchi, Raul; Perez-Acle, Tomas; Kang, Seung-gu; Huynh, Tien; Bernardin, Alejandro; Escalona, Yerko; Garate, Jose-Antonio; Martínez, Agustin D.; García, Isaac E.; Sáez, Juan C.; Zhou, Ruhong

    2014-01-01

    Connexins (Cxs) are a family of vertebrate proteins constituents of gap junction channels (GJCs) that connect the cytoplasm of adjacent cells by the end-to-end docking of two Cx hemichannels. The intercellular transfer through GJCs occurs by passive diffusion allowing the exchange of water, ions, and small molecules. Despite the broad interest to understand, at the molecular level, the functional state of Cx-based channels, there are still many unanswered questions regarding structure-function relationships, perm-selectivity, and gating mechanisms. In particular, the ordering, structure, and dynamics of water inside Cx GJCs and hemichannels remains largely unexplored. In this work, we describe the identification and characterization of a believed novel water pocket—termed the IC pocket—located in-between the four transmembrane helices of each human Cx26 (hCx26) monomer at the intracellular (IC) side. Using molecular dynamics (MD) simulations to characterize hCx26 internal water structure and dynamics, six IC pockets were identified per hemichannel. A detailed characterization of the dynamics and ordering of water including conformational variability of residues forming the IC pockets, together with multiple sequence alignments, allowed us to propose a functional role for this cavity. An in vitro assessment of tracer uptake suggests that the IC pocket residue Arg-143 plays an essential role on the modulation of the hCx26 hemichannel permeability. PMID:25099799

  15. Structural characterization of hydrothermally synthesized MnO2 nanorods

    NASA Astrophysics Data System (ADS)

    A'yuni, D. Q.; Alkian, I.; Sya'diyah, F. K.; Kadarisman; Darari, A.; Gunawan, V.; Subagio, A.

    2017-11-01

    We prepared the hydrothermal method to synthesize MnO2 nanorods with controlled structure. KMnO4 and HCl with the various molar ratio (1:2,1:6,1:8) reacted at 160°C for three hours to form MnO2 nanorods. The study found that changing the molar ratio can control the structure and morphology of MnO2. The result revealed that MnO2 formed in nanorod microstructures with different crystallographic structure and phase composition of each molar ratio. The diffraction peaks observed at 2θ values of 28.9°, 37.8°, 40.9°, 49.7° and 60.5° respectively indexed to (110), (101), (200), (411) and (521) plane reflections of a tetragonal phase of β-MnO2 and α-MnO2. The characterization of the morphology showed that the diameters of nanorod microstructures of MnO2 ranging from 30 to 145 nm with length ranging from 0.5 to 3 μm. These MnO2 nanorods product would be potentially used in energy storage devices.

  16. Biochemical and Structural Characterization of the Human TL1A Ectodomain†¶

    PubMed Central

    Zhan, Chenyang; Yan, Qingrong; Patskovsky, Yury; Li, Zhenhong; Toro, Rafael; Meyer, Amanda; Cheng, Huiyong; Brenowitz, Michael; Nathenson, Stanley G; Almo, Steven C

    2009-01-01

    TNF-like 1A (TL1A) is a newly described member of the TNF superfamily that is directly implicated in the pathogenesis of autoimmune diseases, including inflammatory bowel disease, atherosclerosis and rheumatoid arthritis. We report the crystal structure of the human TL1A extracellular domain at a resolution of 2.5 Å, which reveals a jelly-roll fold typical of the TNF superfamily. This structural information, in combination with complementary mutagenesis and biochemical characterization, provides insights into the binding interface and the specificity of the interactions between TL1A and the DcR3 and DR3 receptors. These studies suggest that the mode of interaction between TL1A and DcR3 differs from other characterized TNF ligand/receptor complexes. In addition, we have generated functional TL1A mutants with altered disulfide bonding capability that exhibit enhanced solution properties, which will facilitate the production of materials for future cell-based and whole animal studies. In summary, these studies provide insights into the structure and function of TL1A and provide the basis for the rational manipulation of its interactions with cognate receptors. PMID:19522538

  17. Hierarchical structures of amorphous solids characterized by persistent homology

    PubMed Central

    Hiraoka, Yasuaki; Nakamura, Takenobu; Hirata, Akihiko; Escolar, Emerson G.; Matsue, Kaname; Nishiura, Yasumasa

    2016-01-01

    This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods. PMID:27298351

  18. Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure

    NASA Astrophysics Data System (ADS)

    Jia, Tianxia

    2011-12-01

    This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located

  19. Structural characterization/correlation of calorimetric properties of coal fluids: Second annual report, September 1, 1986-August 31, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starling, K.E.; Mallinson, R.G.; Li, M.H.

    The objective of this research is to examine the relationship between the calorimetric properties of coal fluids and their molecular functional group composition. Coal fluid samples which have had their calorimetric properties measured are characterized using proton NMR, ir, and elemental analysis. These characterizations are then used in a chemical structural model to determine the composition of the coal fluid in terms of the important molecular functional groups. These functional groups are particularly important in determining the intramolecular based properties of a fluid, such as ideal gas heat capacities. Correlational frameworks for ideal gas heat capacities are then examined withinmore » an existing equation of state methodology to determine an optimal correlation. The optimal correlation for obtaining the characterization/chemical structure information and the sensitivity of the correlation to the characterization and structural model is examined.« less

  20. Structural and functional characterization of two alpha-synuclein strains

    PubMed Central

    Bousset, Luc; Pieri, Laura; Ruiz-Arlandis, Gemma; Gath, Julia; Jensen, Poul Henning; Habenstein, Birgit; Madiona, Karine; Olieric, Vincent; Böckmann, Anja; Meier, Beat H.; Melki, Ronald

    2013-01-01

    α-synuclein aggregation is implicated in a variety of diseases including Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. The association of protein aggregates made of a single protein with a variety of clinical phenotypes has been explained for prion diseases by the existence of different strains that propagate through the infection pathway. Here we structurally and functionally characterize two polymorphs of α-synuclein. We present evidence that the two forms indeed fulfil the molecular criteria to be identified as two strains of α-synuclein. Specifically, we show that the two strains have different structures, levels of toxicity, and in vitro and in vivo seeding and propagation properties. Such strain differences may account for differences in disease progression in different individuals/cell types and/or types of synucleinopathies. PMID:24108358

  1. Materials-by-design: computation, synthesis, and characterization from atoms to structures

    NASA Astrophysics Data System (ADS)

    Yeo, Jingjie; Jung, Gang Seob; Martín-Martínez, Francisco J.; Ling, Shengjie; Gu, Grace X.; Qin, Zhao; Buehler, Markus J.

    2018-05-01

    In the 50 years that succeeded Richard Feynman’s exposition of the idea that there is ‘plenty of room at the bottom’ for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

  2. Design, Fabrication and Characterization of Thin Film Structures through Oxidation Kinetics

    NASA Astrophysics Data System (ADS)

    Diaz Leon, Juan Jose

    Materials science and engineering is devoted to the understanding of the physics and chemistry of materials at the mesoscale and to applying that knowledge into real-life applications. In this work, different oxide materials and different oxidation methods are studied from a materials science point of view and for specific applications. First, the deposition of complex metal oxides is explored for solar energy concentration. This requires a number of multi-cation oxide structures such as thin-film dielectric barriers, low loss waveguides or the use of continuously graded composition oxides for antireflection coatings and light concentration. Then, oxidation via Joule heating is used for the self-alignment of a selector on top of a memristor structure on a nanovia. Simulations are used to explore the necessary voltage for the insulator-to-metal transition temperature of NbO2 using finite element analysis, followed by the fabrication and the characterization of such a device. Finally, long-term copper oxidation at room temperature and pressure is studied using optical techniques. Alternative characterization techniques are used to confirm the growth rate and phase change, and an application of copper oxide as a volatile conductive bridge is shown. All these examples show how the combination of novel simulation, fabrication and characterization techniques can be used to understand physical mechanisms and enable disruptive technologies in fields such as solar cells, light emitting diodes, photodetectors or memory devices.

  3. Reflection spectra and magnetochemistry of iron oxides and natural surfaces

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1978-01-01

    The magnetic properties and spectral characteristics of iron oxides are distinctive. Diagnostic features in reflectance spectra (0.5 to 2.4 micron) for alpha Fe2O3, gamma Fe2O3, and FeOOH include location of Fe3(+) absorption features, intensity ratios at various wavelengths, and the curve shape between 1.2 micron and 2.4 micron. The reflection spectrum of natural rock surfaces are seldom those of the bulk rock because of weathering effects. Coatings are found to be dominated by iron oxides and clay. A simple macroscopic model of rock spectra (based on concepts of stains and coatings) is considered adequate for interpretation of LANDSAT data. The magnetic properties of materials associated with specific spectral types and systematic changes in both spectra and magnetic properties are considered.

  4. Structural and Biochemical Characterization of AidC, a Quorum-Quenching Lactonase With Atypical Selectivity

    PubMed Central

    Mascarenhas, Romila; Thomas, Pei W.; Wu, Chun-Xiang; Nocek, Boguslaw P.; Hoang, Quyen Q.; Liu, Dali; Fast, Walter

    2015-01-01

    Quorum-quenching catalysts are of interest for potential application as biochemical tools to interrogate interbacterial communication pathways, as anti-biofouling agents, and as anti-infective agents in plants and animals. Herein, the structure and function of AidC, an N-acyl-L-homoserine (AHL) lactonase from Chryseobacterium, is characterized. Steady-state kinetics show that zinc-supplemented AidC is one of the most efficient wild-type quorum-quenching enzymes characterized to date, with a kcat/KM value of approximately 2 × 106 M−1s−1 for N-heptanoyl-L-homoserine lactone. The enzyme has stricter substrate selectivity and significantly lower KM values (ca. 50 μM for preferred substrates) than typical AHL lactonases (ca. > 1 mM). X-ray crystal structures of AidC alone, and with the product N-hexanoyl-L-homoserine were determined at resolutions of 1.09 and 1.67 Å, respectively. Each structure displays as a dimer, and dimeric oligiomerization was also observed in solution by size-exclusion chromatography coupled with multi-angle light scattering. The structures reveal two atypical features as compared to previously characterized AHL lactonases: a ‘kinked’ α-helix that forms part of a closed binding pocket which provides affinity and enforces selectivity for AHL substrates, and an active-site His substitution that is usually found in a homologous family of phosphodiesterases. Implications for the catalytic mechanism of AHL lactonases are discussed. PMID:26115006

  5. Structural and biochemical characterization of AidC, a quorum-quenching lactonase with atypical selectivity

    DOE PAGES

    Mascarenhas, Romila; Thomas, Pei W.; Wu, Chun -Xiang; ...

    2015-06-26

    Quorum-quenching catalysts are of interest for potential application as biochemical tools for interrogating interbacterial communication pathways, as antibiofouling agents, and as anti-infective agents in plants and animals. Herein, the structure and function of AidC, an N-acyl-l-homoserine lactone (AHL) lactonase from Chryseobacterium, is characterized. Steady-state kinetics show that zinc-supplemented AidC is the most efficient wild-type quorum-quenching enzymes characterized to date, with a k cat/K M value of approximately 2 × 10 6 M -1 s -1 for N-heptanoyl-l-homoserine lactone. The enzyme has stricter substrate selectivity and significantly lower KM values (ca. 50 μM for preferred substrates) compared to those of typicalmore » AHL lactonases (ca. >1 mM). X-ray crystal structures of AidC alone and with the product N-hexanoyl-l-homoserine were determined at resolutions of 1.09 and 1.67 Å, respectively. Each structure displays as a dimer, and dimeric oligiomerization was also observed in solution by size-exclusion chromatography coupled with multiangle light scattering. Lastly, the structures reveal two atypical features as compared to previously characterized AHL lactonases: a "kinked" α-helix that forms part of a closed binding pocket that provides affinity and enforces selectivity for AHL substrates and an active-site His substitution that is usually found in a homologous family of phosphodiesterases. We discuss implications for the catalytic mechanism of AHL lactonases.« less

  6. Structural and biochemical characterization of AidC, a quorum-quenching lactonase with atypical selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascarenhas, Romila; Thomas, Pei W.; Wu, Chun -Xiang

    Quorum-quenching catalysts are of interest for potential application as biochemical tools for interrogating interbacterial communication pathways, as antibiofouling agents, and as anti-infective agents in plants and animals. Herein, the structure and function of AidC, an N-acyl-l-homoserine lactone (AHL) lactonase from Chryseobacterium, is characterized. Steady-state kinetics show that zinc-supplemented AidC is the most efficient wild-type quorum-quenching enzymes characterized to date, with a k cat/K M value of approximately 2 × 10 6 M -1 s -1 for N-heptanoyl-l-homoserine lactone. The enzyme has stricter substrate selectivity and significantly lower KM values (ca. 50 μM for preferred substrates) compared to those of typicalmore » AHL lactonases (ca. >1 mM). X-ray crystal structures of AidC alone and with the product N-hexanoyl-l-homoserine were determined at resolutions of 1.09 and 1.67 Å, respectively. Each structure displays as a dimer, and dimeric oligiomerization was also observed in solution by size-exclusion chromatography coupled with multiangle light scattering. Lastly, the structures reveal two atypical features as compared to previously characterized AHL lactonases: a "kinked" α-helix that forms part of a closed binding pocket that provides affinity and enforces selectivity for AHL substrates and an active-site His substitution that is usually found in a homologous family of phosphodiesterases. We discuss implications for the catalytic mechanism of AHL lactonases.« less

  7. Synthesis and structural characterization of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Kotkata, M. F.; Masoud, A. E.; Mohamed, M. B.; Mahmoud, E. A.

    2009-08-01

    Amorphous CdS nanoparticles capped with cetyltrimethyl ammonium bromide (CTAB) were synthesised under various conditions using a coprecipitation method. A blue shift in the band gap was observed in the UV-visible absorption spectra indicating the formation of nanoparticles of an approximate size of 8 nm. The recorded transmission electron micrographs confirmed this result. The phase-nature, phase transformation as well as the structure of the synthesised CdS nanoparticles have been extensively characterized using X-ray diffraction (XRD), radial distribution function (RDF), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Raman scattering (RS) and/or heat stage X-ray diffraction (HSXRD). Analysis of the obtained results revealed that the synthesised amorphous CdS nanoparticles could be transformed into CdS nanocrystals having a zinc blende or a wurtzite structure, relying on the applied heat treatment scheme. The rate of nanocrystal growth depends on the aging period, prior filtering the reacted materials, and its relation to the quality of the capping process. Five days aging period tends to enhance the stability of the grown phase with a remarkable surface stability.

  8. Structural characterization/correlation of calorimetric properties of coal fluids. First annual report, September 1, 1985-August 31, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starling, K.E.; Mallinson, R.G.; Li, M.H.

    The objective of this research is to examine the relationship between the calorimetric properties of coal liquids and their molecular functional group composition. Coal liquid samples which have had their calorimetric properties measured are characterized using proton NMR, ir and elemental analysis. These characterizations are then used in a chemical structural model to determine the composition of the coal liquid in terms of the important molecular functional groups. These functional groups are particularly important in determining the intramolecular based properties of a fluid, such as ideal gas heat capacities. Correlational frameworks for heat capacities will then be examined within anmore » existing equation of state methodology to determine an optimal correlation. Also, the optimal recipe for obtaining the characterization/chemical structure information and the sensitivity of the correlation to the characterization and structural model will be examined and determined. 7 refs.« less

  9. Characterization of topological structure on complex networks.

    PubMed

    Nakamura, Ikuo

    2003-10-01

    Characterizing the topological structure of complex networks is a significant problem especially from the viewpoint of data mining on the World Wide Web. "Page rank" used in the commercial search engine Google is such a measure of authority to rank all the nodes matching a given query. We have investigated the page-rank distribution of the real Web and a growing network model, both of which have directed links and exhibit a power law distributions of in-degree (the number of incoming links to the node) and out-degree (the number of outgoing links from the node), respectively. We find a concentration of page rank on a small number of nodes and low page rank on high degree regimes in the real Web, which can be explained by topological properties of the network, e.g., network motifs, and connectivities of nearest neighbors.

  10. Characterizing the structure of topological insulator thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardella, Anthony; Kandala, Abhinav; Lee, Joon Sue

    2015-08-01

    We describe the characterization of structural defects that occur during molecular beam epitaxy of topological insulator thin films on commonly used substrates. Twinned domains are ubiquitous but can be reduced by growth on smooth InP (111)A substrates, depending on details of the oxide desorption. Even with a low density of twins, the lattice mismatch between (Bi, Sb){sub 2}Te{sub 3} and InP can cause tilts in the film with respect to the substrate. We also briefly discuss transport in simultaneously top and back electrically gated devices using SrTiO{sub 3} and the use of capping layers to protect topological insulator films frommore » oxidation and exposure.« less

  11. Structural Characterization of Apomyoglobin Self-Associated Species in Aqueous Buffer and Urea Solution

    PubMed Central

    Chow, Charles; Kurt, Neşe; Murphy, Regina M.; Cavagnero, Silvia

    2006-01-01

    The biophysical characterization of nonfunctional protein aggregates at physiologically relevant temperatures is much needed to gain deeper insights into the kinetic and thermodynamic relationships between protein folding and misfolding. Dynamic and static laser light scattering have been employed for the detection and detailed characterization of apomyoglobin (apoMb) soluble aggregates populated at room temperature upon dissolving the purified protein in buffer at pH 6.0, both in the presence and absence of high concentrations of urea. Unlike the β-sheet self-associated aggregates previously reported for this protein at high temperatures, the soluble aggregates detected here have either α-helical or random coil secondary structure, depending on solvent and solution conditions. Hydrodynamic diameters range from 80 to 130 nm, with semiflexible chain-like morphology. The combined use of low pH and high urea concentration leads to structural unfolding and complete elimination of the large aggregates. Even upon starting from this virtually monomeric unfolded state, however, protein refolding leads to the formation of severely self-associated species with native-like secondary structure. Under these conditions, kinetic apoMb refolding proceeds via two parallel routes: one leading to native monomer, and the other leading to a misfolded and heavily self-associated state bearing native-like secondary structure. PMID:16214860

  12. Characterization of adhesive from oysters: A structural and compositional study

    NASA Astrophysics Data System (ADS)

    Alberts, Erik

    The inability for man-made adhesives to set in wet or humid environments is an ongoing challenging the design of biomedical and marine adhesive materials. However, we see that nature has already overcome this challenge. Mussels, barnacles, oysters and sandcastle worms all have unique mechanisms by which they attach themselves to surfaces. By understanding what evolution has already spent millions of years perfecting, we can design novel adhesive materials inspired by nature's elegant designs. The well-studied mussel is currently the standard for design of marine inspired biomimetic polymers. In the work presented here, we aim to provide new insights into the adhesive produced by the eastern oyster, Crassostrea virginica. Unlike the mussel, which produces thread-like plaques comprised of DOPA containing-protein, the oyster secretes an organic-inorganic hybrid adhesive as it settles and grows onto a surface. This form of adhesion renders the oyster to be permanently fixed in place. Over time, hundreds of thousands of oyster grow and agglomerate to form extensive reef structures. These reefs are not only essential to survival of the oyster, but are also vital to intertidal ecosystems. While the shell of the oyster has been extensively studied, curiously, only a few conflicting insights have been made into the nature of the adhesive and contact zone between shell and substrate, and even lesfs information has been ascertained on organic and inorganic composition. In this work, we provide microscopy and histochemical studies to characterize the structure and composition of the adhesive, using oyster in the adult and juvenile stages of life. Preliminary work on extracting and characterizing organic components through collaborative help with solid-state NMR (SSNMR) and proteomics are also detailed here. We aim to provide a full, comprehensive characterization of oyster adhesive so that in the future, we may apply what we learn to the design of new materials.

  13. Using the structure-function linkage database to characterize functional domains in enzymes.

    PubMed

    Brown, Shoshana; Babbitt, Patricia

    2014-12-12

    The Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu/) is a Web-accessible database designed to link enzyme sequence, structure, and functional information. This unit describes the protocols by which a user may query the database to predict the function of uncharacterized enzymes and to correct misannotated functional assignments. The information in this unit is especially useful in helping a user discriminate functional capabilities of a sequence that is only distantly related to characterized sequences in publicly available databases. Copyright © 2014 John Wiley & Sons, Inc.

  14. Dynamic characterization of contact interactions of micro-robotic leg structures

    NASA Astrophysics Data System (ADS)

    Ryou, Jeong Hoon; Oldham, Kenn Richard

    2014-05-01

    Contact dynamics of microelectromechanical systems (MEMS) are typically complicated and it is consequently difficult to model all dynamic characteristics observed in time-domain responses involving impact. This issue becomes worse when a device, such as a mobile micro-robot, is not clamped to a substrate and has a complex mechanical structure. To characterize such a contact interaction situation, two walking micro-robot prototypes are tested having intentionally simple structures with different dimensions (21.2 mm × 16.3 mm × 0.75 mm and 32 mm × 25.4 mm × 4.1 mm) and weights (0.16 and 2.7 g). Contact interaction behaviors are characterized by analyzing experimental data under various excitation signals. A numerical approach was used to derive a novel contact model consisting of a coefficient of restitution matrix that uses modal vibration information. Experimental validation of the simulation model shows that it captures various dynamic features of the contact interaction when simulating leg behavior more accurately than previous contact models, such as single-point coefficient of restitution or compliant ground models. In addition, this paper shows that small-scale forces can be added to the simulation to improve model accuracy, resulting in average errors across driving conditions on the order of 2-6% for bounce frequency, maximum foot height, and average foot height, although there is substantial variation from case to case.

  15. Characterizing 3D Vegetation Structure from Space: Mission Requirements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Bergen, Kathleen; Blair, James B.; Dubayah, Ralph; Houghton, Richard; Hurtt, George; Kellndorfer, Josef; Lefsky, Michael; Ranson, Jon; Saatchi, Sasan; hide

    2012-01-01

    Human and natural forces are rapidly modifying the global distribution and structure of terrestrial ecosystems on which all of life depends, altering the global carbon cycle, affecting our climate now and for the foreseeable future, causing steep reductions in species diversity, and endangering Earth s sustainability. To understand changes and trends in terrestrial ecosystems and their functioning as carbon sources and sinks, and to characterize the impact of their changes on climate, habitat and biodiversity, new space assets are urgently needed to produce high spatial resolution global maps of the three-dimensional (3D) structure of vegetation, its biomass above ground, the carbon stored within and the implications for atmospheric green house gas concentrations and climate. These needs were articulated in a 2007 National Research Council (NRC) report (NRC, 2007) recommending a new satellite mission, DESDynI, carrying an L-band Polarized Synthetic Aperture Radar (Pol-SAR) and a multi-beam lidar (Light RAnging And Detection) operating at 1064 nm. The objectives of this paper are to articulate the importance of these new, multi-year, 3D vegetation structure and biomass measurements, to briefly review the feasibility of radar and lidar remote sensing technology to meet these requirements, to define the data products and measurement requirements, and to consider implications of mission durations. The paper addresses these objectives by synthesizing research results and other input from a broad community of terrestrial ecology, carbon cycle, and remote sensing scientists and working groups. We conclude that: (1) current global biomass and 3-D vegetation structure information is unsuitable for both science and management and policy. The only existing global datasets of biomass are approximations based on combining land cover type and representative carbon values, instead of measurements of actual biomass. Current measurement attempts based on radar and multispectral

  16. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    NASA Astrophysics Data System (ADS)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  17. Preparation, characterization and crystal structures of three salts of the quaterpyridine ligand

    NASA Astrophysics Data System (ADS)

    Ciesielski, Artur; Stefankiewicz, Artur R.; Patroniak, Violetta; Kubicki, Maciej

    2009-07-01

    As a result of a reaction between 6,6'''-dimethyl-2,2':6',2'':6'',2'''-quaterpyridine C 22H 18N 4 and lanthanide(III) salts, compounds, [C 22H 20N 4] 2+·2(CF 3SO 3) - ( 1) and [C 22H 20N 4] 2+·2(ClO 4) - ( 2), have been obtained. They were characterized by spectroscopic techniques (ESI-MS, NMR, IR), elemental analysis, and their formulae were confirmed on the basis of X-ray crystallography. It turned out that the perchlorate crystallizes as two solvates: with acetonitrile and disordered water molecules. These are the first structural characterization of a 6,6'″-dimethyl-2,2':6',2″:6″,2'″-quaterpyridinium dication. Due to the intramolecular hydrogen bond it adopts the previously unobserved cis/trans/cis conformation. In all three crystals the dications have C i symmetry, they occupy the special positions in their respective space groups. In the crystal structures the π-π stacking and weak hydrogen bonds add directionality to the dominating electrostatic interactions between cations and anions.

  18. Magnetic nanocomposites based on phosphorus-containing polymers—structural characterization and thermal analysis

    NASA Astrophysics Data System (ADS)

    Alosmanov, R. M.; Szuwarzyński, M.; Schnelle-Kreis, J.; Matuschek, G.; Magerramov, A. M.; Azizov, A. A.; Zimmermann, R.; Zapotoczny, S.

    2018-04-01

    Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).

  19. Size-dependent characterization of embedded Ge nanocrystals: Structural and thermal properties

    NASA Astrophysics Data System (ADS)

    Araujo, L. L.; Giulian, R.; Sprouster, D. J.; Schnohr, C. S.; Llewellyn, D. J.; Kluth, P.; Cookson, D. J.; Foran, G. J.; Ridgway, M. C.

    2008-09-01

    A combination of conventional and synchrotron-based techniques has been used to characterize the size-dependent structural and thermal properties of Ge nanocrystals (NCs) embedded in a silica (a-SiO2) matrix. Ge NC size distributions with four different diameters ranging from 4.0 to 9.0 nm were produced by ion implantation and thermal annealing as characterized with small-angle x-ray scattering and transmission electron microscopy. The NCs were well represented by the superposition of bulklike crystalline and amorphous environments, suggesting the formation of an amorphous layer separating the crystalline NC core and the a-SiO2 matrix. The amorphous fraction was quantified with x-ray-absorption near-edge spectroscopy and increased as the NC diameter decreased, consistent with the increase in surface-to-volume ratio. The structural parameters of the first three nearest-neighbor shells were determined with extended x-ray-absorption fine-structure (EXAFS) spectroscopy and evolved linearly with inverse NC diameter. Specifically, increases in total disorder, interatomic distance, and the asymmetry in the distribution of distances were observed as the NC size decreased, demonstrating that finite-size effects govern the structural properties of embedded Ge NCs. Temperature-dependent EXAFS measurements in the range of 15-300 K were employed to probe the mean vibrational frequency and the variation of the interatomic distance distribution (mean value, variance, and asymmetry) with temperature for all NC distributions. A clear trend of increased stiffness (higher vibrational frequency) and decreased thermal expansion with decreasing NC size was evident, confirming the close relationship between the variation of structural and thermal/vibrational properties with size for embedded Ge NCs. The increase in surface-to-volume ratio and the presence of an amorphous Ge layer separating the matrix and crystalline NC core are identified as the main factors responsible for the observed

  20. Influence of the segmentation on the characterization of cerebral networks of structural damage for patients with disorders of consciousness

    NASA Astrophysics Data System (ADS)

    Martínez, Darwin; Mahalingam, Jamuna J.; Soddu, Andrea; Franco, Hugo; Lepore, Natasha; Laureys, Steven; Gómez, Francisco

    2015-01-01

    Disorders of consciousness (DOC) are a consequence of a variety of severe brain injuries. DOC commonly results in anatomical brain modifications, which can affect cortical and sub-cortical brain structures. Postmortem studies suggest that severity of brain damage correlates with level of impairment in DOC. In-vivo studies in neuroimaging mainly focus in alterations on single structures. Recent evidence suggests that rather than one, multiple brain regions can be simultaneously affected by this condition. In other words, DOC may be linked to an underlying cerebral network of structural damage. Recently, geometrical spatial relationships among key sub-cortical brain regions, such as left and right thalamus and brain stem, have been used for the characterization of this network. This approach is strongly supported on automatic segmentation processes, which aim to extract regions of interests without human intervention. Nevertheless, patients with DOC usually present massive structural brain changes. Therefore, segmentation methods may highly influence the characterization of the underlying cerebral network structure. In this work, we evaluate the level of characterization obtained by using the spatial relationships as descriptor of a sub-cortical cerebral network (left and right thalamus) in patients with DOC, when different segmentation approaches are used (FSL, Free-surfer and manual segmentation). Our results suggest that segmentation process may play a critical role for the construction of robust and reliable structural characterization of DOC conditions.

  1. Structural and Biochemical Characterization of a Novel Aminopeptidase from Human Intestine

    DOE PAGES

    Tykvart, Jan; Bařinka, Cyril; Svoboda, Michal; ...

    2015-03-09

    N-acetylated α-linked acidic dipeptidase-like protein (NAALADase L), encoded by the NAALADL1 gene, is a close homolog of glutamate carboxypeptidase II, a metallopeptidase that has been intensively studied as a target for imaging and therapy of solid malignancies and neuropathologies. However, neither the physiological functions nor structural features of NAALADase L are known at present. In this paper, we report a thorough characterization of the protein product of the human NAALADL1 gene, including heterologous overexpression and purification, structural and biochemical characterization, and analysis of its expression profile. By solving the NAALADase L x-ray structure, we provide the first experimental evidence thatmore » it is a zinc-dependent metallopeptidase with a catalytic mechanism similar to that of glutamate carboxypeptidase II yet distinct substrate specificity. A proteome-based assay revealed that the NAALADL1 gene product possesses previously unrecognized aminopeptidase activity but no carboxy- or endopeptidase activity. These findings were corroborated by site-directed mutagenesis and identification of bestatin as a potent inhibitor of the enzyme. Analysis of NAALADL1 gene expression at both the mRNA and protein levels revealed the small intestine as the major site of protein expression and points toward extensive alternative splicing of the NAALADL1 gene transcript. Taken together, our data imply that the NAALADL1 gene product's primary physiological function is associated with the final stages of protein/peptide digestion and absorption in the human digestive system. Finally, based on these results, we suggest a new name for this enzyme: human ileal aminopeptidase (HILAP).« less

  2. Nonlinear characterization of a bolted, industrial structure using a modal framework

    NASA Astrophysics Data System (ADS)

    Roettgen, Daniel R.; Allen, Matthew S.

    2017-02-01

    This article presents measurements from a sub assembly of an off-the-shelf automotive exhaust system containing a bolted-flange connection and uses a recently proposed modal framework to develop a nonlinear dynamic model for the structure. The nonlinear identification and characterization methods used are reviewed to highlight the strengths of the current approach and the areas where further development is needed. This marks the first use of these new testing and nonlinear identification tools, and the associated modal framework, on production hardware with a realistic joint and realistic torque levels. To screen the measurements for nonlinearities, we make use of a time frequency analysis routine designed for transient responses called the zeroed early-time fast Fourier transform (ZEFFT). This tool typically reveals the small frequency shifts and distortions that tend to occur near each mode that is affected by the nonlinearity. The damping in this structure is found to be significantly nonlinear and a Hilbert transform is used to characterize the damping versus amplitude behavior. A model is presented that captures these effects for each mode individually (e.g. assuming negligible nonlinear coupling between modes), treating each mode as a single degree-of-freedom oscillator with a spring and viscous damping element in parallel with a four parameter Iwan model. The parameters of this model are identified for each of the structure's modes that exhibited nonlinearity and the resulting nonlinear model is shown to capture the stiffness and damping accurately over a large range of response amplitudes.

  3. Structural characterization of metal binding to a cold-adapted frataxin.

    PubMed

    Noguera, Martín E; Roman, Ernesto A; Rigal, Juan B; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2015-06-01

    Frataxin is an evolutionary conserved protein that participates in iron metabolism. Deficiency of this small protein in humans causes a severe neurodegenerative disease known as Friedreich's ataxia. A number of studies indicate that frataxin binds iron and regulates Fe-S cluster biosynthesis. Previous structural studies showed that metal binding occurs mainly in a region of high density of negative charge. However, a comprehensive characterization of the binding sites is required to gain further insights into the mechanistic details of frataxin function. In this work, we have solved the X-ray crystal structures of a cold-adapted frataxin from a psychrophilic bacterium in the presence of cobalt or europium ions. We have identified a number of metal-binding sites, mainly solvent exposed, several of which had not been observed in previous studies on mesophilic homologues. No major structural changes were detected upon metal binding, although the structures exhibit significant changes in crystallographic B-factors. The analysis of these B-factors, in combination with crystal packing and RMSD among structures, suggests the existence of localized changes in the internal motions. Based on these results, we propose that bacterial frataxins possess binding sites of moderate affinity for a quick capture and transfer of iron to other proteins and for the regulation of Fe-S cluster biosynthesis, modulating interactions with partner proteins.

  4. Structural characterization and IgE epitope analysis of arginine kinase from Scylla paramamosain

    USDA-ARS?s Scientific Manuscript database

    Arginine kinase (AK) has been reported as the pan-allergen of shellfish, however, there is limited information about its IgE epitopes and structural characteristics. In this study, AK from Scylla paramamosain was purified and characterized. The purified AK was a glycoprotein with the molecular weigh...

  5. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Structural characterization and antimicrobial activities of transition metal complexes of a hydrazone ligand

    NASA Astrophysics Data System (ADS)

    Bakale, Raghavendra P.; Naik, Ganesh N.; Machakanur, Shrinath S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.

    2018-02-01

    A hydrazone ligand has been synthesized by the condensation of 2-nitrobenzaldehyde and hydralazine, and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. Structural characterization of the ligand and its metal complexes has been performed by various spectroscopic [IR, NMR, UV-Vis, Mass], thermal and other physicochemical methods. The structure of the ligand and its Ni(II) complex has been characterized by single crystal X-ray diffraction studies. All the synthesized compounds have been screened for in vitro antimicrobial activity. The antibacterial activity is tested against Gram-positive strains Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus and Gram-negative strains Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae using ciprofloxacin as the reference standard. Antifungal activity is tested against Candida albicans, Aspergillus fumigatus and Aspergillus niger using ketoconazole as the reference standard. The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standard. Ligand, Cu(II) and Zn(II) complexes have shown excellent activity against Candida albicans.

  7. Characterization of structure and thermophysical properties of three ESR slags

    NASA Astrophysics Data System (ADS)

    Plotkowski, A.; deBarbadillo, J.; Krane, Matthew J. M.

    2016-07-01

    The structure and properties of electroslag remelting (ESR) slags were characterized. Slags samples of three compositions were obtained from industrial remelting processes at Special Metals Corporation and from casting in a laboratory vacuum induction melter. The structure of the slag samples was observed using optical and electron microscopy, and phases were identified and their relative amounts quantified using X-ray diffraction. Laser flash thermal diffusivity, density, and differential scanning calorimetry measurements for specific heat were performed to determine the bulk thermal conductivity of the samples. Sample porosity was measured as a function of depth using a serial sectioning technique, and a onedimensional computational model was developed to estimate the thermal conductivity of the fully dense slags. These results are discussed in context with previous studies, and opportunities for future research are identified. AFRL Case Number: 88ABW-2015-1871.

  8. Deployment, Foam Rigidization, and Structural Characterization of Inflatable Thin-Film Booms

    NASA Technical Reports Server (NTRS)

    Schnell, Andrew R.; Leigh, Larry M., Jr.; Tinker, Michael L.; McConnaughey, Paul R. (Technical Monitor)

    2002-01-01

    Detailed investigation of the construction, packaging/deployment, foam rigidization, and structural characterization of polyimide film inflatable booms is described. These structures have considerable potential for use in space with solar concentrators, solar sails, space power systems including solar arrays, and other future missions. Numerous thin-film booms or struts were successfully constructed, inflated, injected with foam, and rigidized. Both solid-section and annular test articles were fabricated, using Kapton polyimide film, various adhesives, Styrofoam end plugs, and polyurethane pressurized foam. Numerous inflation/deployment experiments were conducted and compared to computer simulations using the MSC/DYTRAN code. Finite element models were developed for several foam-rigidized struts and compared to model test results. Several problems encountered in the construction, deployment, and foam injection/rigidization process are described. Areas of difficulty included inadequate adhesive strength, cracking of the film arid leakage, excessive bending of the structure during deployment, problems with foam distribution and curing properties, and control of foam leakage following injection into the structure. Many of these problems were overcome in the course of the research.

  9. Characterization and Quantification of the Pore Structures of the Shale Oil Reservoir Formations in Multiscale

    NASA Astrophysics Data System (ADS)

    Liu, K.; Ostadhassan, M.

    2016-12-01

    Due to the fast development of hydraulic fracturing and horizontal drilling, shale formations now are one important resource of energy in North America. Characterizing the pore structure of these shale formations is of critical importance in understanding the original oil/gas in place and also the flow properties of the rock matrix. Pore with different properties such as pore size and pore shape can impact the physical, mechanical and chemical properties including strength, elastic modulus, permeability and conductivity. Nowadays, image analysis has been a robust method to quantify the pore information from the porous medium.SEM has been one of the most useful tools to study the pore microstructures due to its high depth of focus which can provide detailed topographical information about the surface. The suitable difference between solid matrix and pores due to the different gray level pixels can be used to study the pore structures.In this paper, we characterized and quantified the pore structures of rock samples from Middle Bakken Formation which is a typical unconventional reservoir in North America. High resolution SEM images of five samples we chose based on the gamma logs were derived after sample preparation. After determining the threshold of the images, we extracted the pore spaces. Then we analyzed the pore structures properties such as pore size distributions and pore shape distributions of the five samples and compared based on their mineral compositions. After that, we analyzed their heterogeneity and isotropy properties which have been identified as an important factor affecting reservoir productivity. Finally, we studied the impact of scale effect on the pore structures characterization.

  10. [Spectrum characterization and fine structure of copper phthalocyanine-doped TiO2 microcavities].

    PubMed

    Liu, Cheng-lin; Zhang, Xin-yi; Zhong, Ju-hua; Zhu, Yi-hua; He, Bo; Wei, Shi-qiang

    2007-10-01

    Copper phthalocyanine-doped TiO2 microcavities were fabricated by chemistry method. Their spectrum characterization was studied by Fourier transform infrared (FTIR) and Raman spectroscopy, and their fine structure was analyzed by X-ray absorption fine structure (XAFS). The results show that there is interaction of copper phthalocyanine (CuPc) and TiO2 microcavities after TiO2 microcavities was doped with CuPc. For example, there is absorption at 900.76 cm(-1) in FTIR spectra, and the "red shift" of both OH vibration at 3392.75 cm(-1) and CH vibration at 2848.83 cm(-1). There exist definite peak shifts and intensity changes in infrared absorption in the C-C or C-N vibration in the planar phthalocyanine ring, the winding vibration of C-H inside and C-N outside plane of benzene ring. In Raman spectrum, there are 403.4, 592.1 and 679.1 cm(-1) characterized peaks of TiO2 in CuPc-doped TiO2 microcavities, but their wave-numbers show shifts to anatase TiO2. The vibration peaks at 1586.8 and 1525.6 cm(-1) show that there exists the composite material of CuPc and TiO2. These changes are related to the plane tropism of the molecule structure of copper phthalocyanine. XAFS showed tetrahedron TiO4 structure of Ti in TiO2 microcavities doped with copper phthalocyanine, and the changes of inner "medial distances" and the surface structure of TiO2 microcavities.

  11. Characterization, Modeling, and Failure Analysis of Composite Structure Materials under Static and Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Werner, Brian Thomas

    Composite structures have long been used in many industries where it is advantageous to reduce weight while maintaining high stiffness and strength. Composites can now be found in an ever broadening range of applications: sporting equipment, automobiles, marine and aerospace structures, and energy production. These structures are typically sandwich panels composed of fiber reinforced polymer composite (FRPC) facesheets which provide the stiffness and the strength and a low density polymeric foam core that adds bending rigidity with little additional weight. The expanding use of composite structures exposes them to high energy, high velocity dynamic loadings which produce multi-axial dynamic states of stress. This circumstance can present quite a challenge to designers, as composite structures are highly anisotropic and display properties that are sensitive to loading rates. Computer codes are continually in development to assist designers in the creation of safe, efficient structures. While the design of an optimal composite structure is more complex, engineers can take advantage of the effect of enhanced energy dissipation displayed by a composite when loaded at high strain rates. In order to build and verify effective computer codes, the underlying assumptions must be verified by laboratory experiments. Many of these codes look to use a micromechanical approach to determine the response of the structure. For this, the material properties of the constituent materials must be verified, three-dimensional constitutive laws must be developed, and failure of these materials must be investigated under static and dynamic loading conditions. In this study, simple models are sought not only to ease their implementation into such codes, but to allow for efficient characterization of new materials that may be developed. Characterization of composite materials and sandwich structures is a costly, time intensive process. A constituent based design approach evaluates potential

  12. Structural, Mechanistic, and Antigenic Characterization of the Human Astrovirus Capsid

    PubMed Central

    York, Royce L.; Yousefi, Payam A.; Bogdanoff, Walter; Haile, Sara; Tripathi, Sarvind

    2015-01-01

    ABSTRACT Human astroviruses (HAstVs) are nonenveloped, positive-sense, single-stranded RNA viruses that are a leading cause of viral gastroenteritis. HAstV particles display T=3 icosahedral symmetry formed by 180 copies of the capsid protein (CP), which undergoes proteolytic maturation to generate infectious HAstV particles. Little is known about the molecular features that govern HAstV particle assembly, maturation, infectivity, and immunogenicity. Here we report the crystal structures of the two main structural domains of the HAstV CP: the core domain at 2.60-Å resolution and the spike domain at 0.95-Å resolution. Fitting of these structures into the previously determined 25-Å-resolution electron cryomicroscopy density maps of HAstV allowed us to characterize the molecular features on the surfaces of immature and mature T=3 HAstV particles. The highly electropositive inner surface of HAstV supports a model in which interaction of the HAstV CP core with viral RNA is a driving force in T=3 HAstV particle formation. Additionally, mapping of conserved residues onto the HAstV CP core and spike domains in the context of the immature and mature HAstV particles revealed dramatic changes to the exposure of conserved residues during virus maturation. Indeed, we show that antibodies raised against mature HAstV have reactivity to both the HAstV CP core and spike domains, revealing for the first time that the CP core domain is antigenic. Together, these data provide new molecular insights into HAstV that have practical applications for the development of vaccines and antiviral therapies. IMPORTANCE Astroviruses are a leading cause of viral diarrhea in young children, immunocompromised individuals, and the elderly. Despite the prevalence of astroviruses, little is known at the molecular level about how the astrovirus particle assembles and is converted into an infectious, mature virus. In this paper, we describe the high-resolution structures of the two main astrovirus

  13. Characterizing monoclonal antibody structure by carbodiimide/GEE footprinting

    PubMed Central

    Kaur, Parminder; Tomechko, Sara; Kiselar, Janna; Shi, Wuxian; Deperalta, Galahad; Wecksler, Aaron T; Gokulrangan, Giridharan; Ling, Victor; Chance, Mark R

    2014-01-01

    Amino acid-specific covalent labeling is well suited to probe protein structure and macromolecular interactions, especially for macromolecules and their complexes that are difficult to examine by alternative means, due to size, complexity, or instability. Here we present a detailed account of carbodiimide-based covalent labeling (with GEE tagging) applied to a glycosylated monoclonal antibody therapeutic, which represents an important class of biologic drugs. Characterization of such proteins and their antigen complexes is essential to development of new biologic-based medicines. In this study, the experiments were optimized to preserve the structural integrity of the protein, and experimental conditions were varied and replicated to establish the reproducibility and precision of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include D, E, and the C-terminus, against the experimental surface accessibility data in order to understand the accuracy of the approach in providing an unbiased assessment of structure. Data from the protein were also compared to reactivity measures of several model peptides to explain sequence or structure-based variations in reactivity. The results highlight several advantages of this approach. These include: the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling (indicating that the label does not significantly perturb the structure of the protein), the high reproducibility of replicate experiments (<2 % variation in modification extent), the similar reactivity of the 3 target probe residues (as suggested by analysis of model peptides), and the overall positive and significant correlation of reactivity and solvent accessible surface area (the latter values predicted by the homology modeling). Attenuation of reactivity, in otherwise solvent accessible probes, is documented as arising from the effects of positive

  14. Structural characterization of a first-generation articulated-truss joint for space crane application

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey; Riutort, Kevin T.; Laufer, Joseph B.; Phelps, James E.

    1992-01-01

    A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program.

  15. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.

    PubMed

    Kelly, Cambre N; Miller, Andrew T; Hollister, Scott J; Guldberg, Robert E; Gall, Ken

    2018-04-01

    3D printing is now adopted for use in a variety of industries and functions. In biomedical engineering, 3D printing has prevailed over more traditional manufacturing methods in tissue engineering due to its high degree of control over both macro- and microarchitecture of porous tissue scaffolds. However, with the improved flexibility in design come new challenges in characterizing the structure-function relationships between various architectures and both mechanical and biological properties in an assortment of clinical applications. Presently, the field of tissue engineering lacks a comprehensive body of literature that is capable of drawing meaningful relationships between the designed structure and resulting function of 3D printed porous biomaterial scaffolds. This work first discusses the role of design on 3D printed porous scaffold function and then reviews characterization of these structure-function relationships for 3D printed synthetic metallic, polymeric, and ceramic biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thermal Analysis by Structural Characterization as a Method for Assessing Heterogeneity in Complex Solid Pharmaceutical Dosage Forms.

    PubMed

    Alhijjaj, Muqdad; Reading, Mike; Belton, Peter; Qi, Sheng

    2015-11-03

    Characterizing inter- and intrasample heterogeneity of solid and semisolid pharmaceutical products is important both for rational design of dosage forms and subsequent quality control during manufacture; however, most pharmaceutical products are multicomponent formulations that are challenging in this regard. Thermal analysis, in particular differential scanning calorimetry, is commonly used to obtain structural information, such as degree of crystallinity, or identify the presence of a particular polymorph, but the results are an average over the whole sample; it cannot directly provide information about the spatial distribution of phases. This study demonstrates the use of a new thermo-optical technique, thermal analysis by structural characterization (TASC), that can provide spatially resolved information on thermal transitions by applying a novel algorithm to images acquired by hot stage microscopy. We determined that TASC can be a low cost, relatively rapid method of characterizing heterogeneity and other aspects of structure. In the examples studied, it was found that high heating rates enabled screening times of 3-5 min per sample. In addition, this study demonstrated the higher sensitivity of TASC for detecting the metastable form of polyethylene glycol (PEG) compared to conventional differential scanning calorimetry (DSC). This preliminary work suggests that TASC will be a worthwhile additional tool for characterizing a broad range of materials.

  17. Characterizing the Atomic Structure in Low Concentrations of Weakly Ordered, Weakly Scattering Materials Using the Pair Distribution Function

    NASA Astrophysics Data System (ADS)

    Terban, Maxwell W.

    Nanoscale structural characterization is critical to understanding the physical underpinnings of properties and behavior in materials with technological applications. The work herein shows how the pair distribution function technique can be applied to x-ray total scattering data for material systems which weakly scatter x-rays, a typically difficult task due to the poor signal-to-noise obtained from the structures of interest. Characterization and structural modeling are demonstrated for a variety of molecular and porous systems, along with the detection and characterization of disordered, minority phases and components. In particular, reliable detection and quantitative analysis are demonstrated for nanocrystals of an active pharmaceutical ingredient suspended in dilute solution down to a concentration of 0.25 wt. %, giving a practical limit of detection for ordered nanoscale phases within a disordered matrix. Further work shows that minority nanocrystalline phases can be detected, fingerprinted, and modeled for mixed crystalline and amorphous systems of small molecules and polymers. The crystallization of amorphous lactose is followed under accelerated aging conditions. Melt quenching is shown to produce a different local structure than spray drying or freeze drying, along with increased resistance to crystallization. The initial phases which form in the spray dried formulation are identified as a mixture of polymorphs different from the final alpha-lactose monohydrate form. Hard domain formation in thermoplastic polyurethanes is also characterized as a function of methylene diphenyl diisocyanate and butanediol component ratio, showing that distinct and different hard phase structures can form and are solved by indexing with structures derived from molecular dynamics relaxation. In both cases, phase fractions can be quantified in the mixed crystalline and amorphous systems by fitting with both standards or structure models. Later chapters, demonstrate pair

  18. Structural characterization of Papilio kotzebuea (Eschscholtz 1821) butterfly wings

    NASA Astrophysics Data System (ADS)

    Sackey, J.; Nuru, Z. Y.; Berthier, S.; Maaza, M.

    2018-05-01

    The `plain black' forewings and black with `red spot' hindwings of the Papilio kotzebuea (Eschscholtz, 1821) were characterized by Scanning Electron Microscopy (SEM), Energy-Dispersive x-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), Fourier transform Infrared spectroscopy (FT-IR), UV-Vis spectrophometer and NIRQuest spectrometer. SEM images showed that the two sections of wings have different structures. The black with `red spot' hindwings have `hair-like' structures attached to the ridges and connected to the lamellae. On the contrary, the `plain black' forewings have holes that separate the ridges. AFM analysis unveiled that the `plain black' forewings have higher average surfaces roughness values as compared with the black with `red spot' hindwing. EDS and FT-IR results confirmed the presence of naturally hydrophobic materials on the wings. The `plain black' forewing exhibited strong absorptance (97%) throughout the solar spectrum range, which is attributed to the high melanin concentration as well as to the presence of holes in the scales. Biomimicking this wing could serves as equivalent solar absorber material.

  19. Structural characterization of agonist and antagonist-bound acetylcholine-binding protein from Aplysia californica.

    PubMed

    Hansen, Scott B; Sulzenbacher, Gerlind; Huxford, Tom; Marchot, Pascale; Bourne, Yves; Taylor, Palmer

    2006-01-01

    Nicotinic acetylcholine receptors (nAChRs) are well-characterized allosteric transmembrane proteins involved in the rapid gating of ions elicited by ACh. These receptors belong to the Cys-loop superfamily of ligand-gated ion channels, which also includes GABAA and GABAC, 5-HT3, and glycine receptors. The nAChRs are homo- or heteromeric pentamers of structurally related subunits that encompass an extracellular N-terminal ligand-binding domain, four transmembrane-spanning regions that form the ion channel, and an extended intracellular region between spans 3 and 4. Ligand binding triggers conformational changes that are transmitted to the transmembrane-spanning region, leading to gating and changes in membrane potential. The four transmembrane spans on each of the five subunits create a substantial region of hydrophobicity that precludes facile crystallization of this protein. However the freshwater snail, Lymnaea stagnalis, produces a soluble homopentameric protein, termed the ACh-binding protein (AChBP), which binds ACh (Smit et al., 2001). Its structure was determined recently (Brejc et al., 2001) at high resolution, revealing the structural scaffold for nAChR, and has become a functional and structural surrogate of the nAChR ligand-binding domain. We have characterized an AChBP from Aplysia californica and determined distinct ligand-binding properties when compared to those of L. stagnalis, including ligand specificity for the nAChR alpha7 subtype-specific alpha-conotoxin ImI (Hansen et al., 2004).

  20. Structural and physicochemical characterization of thermoplastic corn starch films containing microalgae.

    PubMed

    Fabra, María José; Martínez-Sanz, Marta; Gómez-Mascaraque, L G; Gavara, Rafael; López-Rubio, Amparo

    2018-04-15

    This work provides an in-depth analysis on how the addition of different microalgae species (Nannochloropsis, Spirulina and Scenedesmus) affected the structural and physicochemical properties of thermoplastic corn starch biocomposites. Structural characterization was conducted by combined SAXS/WAXS experiments and it was correlated with mechanical and barrier properties of the biocomposites. A water vapour permeability drop of ca. 54% was observed upon addition of the different microalgae species. The oxygen permeability and the mechanical properties of biocomposites containing Spirulina or Scenedesmus were not improved since the presence of microalgae hindered the re-arrangement and packing of the lamellar structure of starch polymeric chains, according to the SAXS results. Nannochloropsis caused a great reduction of the matrix rigidity and, the oxygen permeability was also improved. Therefore, all of these features make the Nannochloropsis biocomposites an alternative to generate biodegradable food packaging materials with the additional advantage that they can be easily scaled-up. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Inflight Characterization of the Cassini Spacecraft Propellant Slosh and Structural Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Stupik, Joan

    2015-01-01

    While there has been extensive theoretical and analytical research regarding the characterization of spacecraft propellant slosh and structural frequencies, there have been limited studies to compare the analytical predictions with measured flight data. This paper uses flight telemetry from the Cassini spacecraft to get estimates of high-g propellant slosh frequencies and the magnetometer boom frequency characteristics, and compares these values with those predicted by theoretical works. Most Cassini attitude control data are available at a telemetry frequency of 0.5 Hz. Moreover, liquid sloshing is attenuated by propellant management device and attitude controllers. Identification of slosh and structural frequency are made on a best-effort basis. This paper reviews the analytical approaches that were used to predict the Cassini propellant slosh frequencies. The predicted frequencies are then compared with those estimated using telemetry from selected Cassini burns where propellant sloshing was observed (such as the Saturn Orbit Insertion burn). Determination of the magnetometer boom structural frequency is also discussed.

  2. Characterization of Structural and Pigmentary Colors in Common Emigrant (Catopsilia Pomona) Butterfly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghate, Ekata; Kulkarni, G. R.; Bhoraskar, S. V.

    2011-10-20

    Study of structural colors in case of insects and butterflies is important for their biomimic and biophotonics applications. Structural color is the color which is produced by physical structures and their interaction with light while pigmentary color is produced by absorption of light by pigments. Common Emigrant butterfly is widely distributed in India. It is of moderate size with wing span of about 60-80 mm. The wings are broadly white with yellow or sulphur yellow coloration at places as well as few dark black patches. It belongs to family Pieridae. A study of structural color in case of Common Emigrantmore » butterfly has been carried out in the present work. The characterization of wing color was performed using absorption spectroscopy. Scanning electron microscopic study of the wings of Common Emigrant butterfly showed that three different types of scales are present on the wing surface dorsally. Diffracting structures are present in certain parts of the surfaces of the various scales. Bead like structures are embedded in the intricate structures of the scales. Absorption spectra revealed that a strong absorption peak is seen in the UV-range. Crystalline structure of beads was confirmed by the X-ray diffraction analysis.« less

  3. Structural Characterization of a Thrombin-Aptamer Complex by High Resolution Native Top-Down Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2017-09-01

    Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. [Figure not available: see fulltext.

  4. Analysis of sulfates on low molecular weight heparin using mass spectrometry: structural characterization of enoxaparin.

    PubMed

    Gupta, Rohitesh; Ponnusamy, Moorthy P

    2018-05-31

    Structural characterization of low molecular weight heparin (LMWH) is critical to meet biosimilarity standards. In this context, the review focuses on structural analysis of labile sulfates attached to the side-groups of LMWH using mass spectrometry. A comprehensive review of this topic will help readers to identify key strategies for tackling the problem related to sulfate loss. At the same time, various mass spectrometry techniques are presented to facilitate compositional analysis of LMWH, mainly enoxaparin. Areas covered: This review summarizes findings on mass spectrometry application for LMWH, including modulation of sulfates, using enzymology and sample preparation approaches. Furthermore, popular open-source software packages for automated spectral data interpretation are also discussed. Successful use of LC/MS can decipher structural composition for LMWH and help evaluate their sameness or biosimilarity with the innovator molecule. Overall, the literature has been searched using PubMed by typing various search queries such as 'enoxaparin', 'mass spectrometry', 'low molecular weight heparin', 'structural characterization', etc. Expert commentary: This section highlights clinically relevant areas that need improvement to achieve satisfactory commercialization of LMWHs. It also primarily emphasizes the advancements in instrumentation related to mass spectrometry, and discusses building automated software for data interpretation and analysis.

  5. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell

    NASA Astrophysics Data System (ADS)

    Song, Jingru; Fan, Cuncai; Ma, Hansong; Wei, Yueguang

    2015-06-01

    In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variation-section pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.

  6. Norharmane rhenium(I) polypyridyl complexes: synthesis, structural and spectroscopic characterization.

    PubMed

    Maisuls, Iván; Wolcan, Ezequiel; Piro, Oscar E; Etcheverría, Gustavo A; Petroselli, Gabriela; Erra-Ballsels, Rosa; Cabrerizo, Franco M; Ruiz, Gustavo T

    2015-10-21

    Two novel Re(i) complexes with the general formula fac-[Re(CO)3(L)(nHo)]CF3SO3, where L = 2,2'-bipyridine (bpy) or 1,10 phenanthroline (phen) and nHo (9H-pyrido[3,4-b]indole; norharmane) have been synthesized. The Re(i)-nHo complexes were characterized by structural X-ray diffraction, (1)H and (13)C NMR, UV-vis absorption and FT-IR spectroscopy, and by a combination of two mass spectrometry techniques, namely ESI-MS and UV-MALDI-MS. All characterizations showed that nHo is coordinated to the metal atom by the pyridine nitrogen of the molecule. X-ray structural analysis revealed that the crystal lattices for both complexes are further stabilized by a strong >N-HO bond between the pyrrole NH group of the pyridoindole ligand and one oxygen atom of the trifluoromethanesulfonate counter-ion. Ground state geometry optimization by DFT calculations showed that in fluid solution the nHo ligand may rotate freely. The nature of the electronic transitions of Re(CO)3(bpy)(nHo)(+) were established by TD-DFT calculations. The set of the most important electronic transitions present in this complex are comprised of π→π* electronic transitions centered on bpy and nHo moieties, LLCTnHo→COs, MLLCTRe(CO)3→bpy and LLCTnHo→bpy transitions. Additionally, TD-DFT calculations predict the existence of another two intense MLLCTRe(CO)3→nHo electronic transitions. Calculated UV-vis absorption spectra are in good agreement with the corresponding experimental data for the bpy-containing complex.

  7. Synthesis and structural characterization of betaine- and imidazoline-based organoclays

    NASA Astrophysics Data System (ADS)

    Lazorenko, Georgy; Kasprzhitskii, Anton; Yavna, Victor

    2018-01-01

    The samples of organic-modified clays based on a Wyoming SWy-2 sodium montmorillonite (Na+-Mt) with the cationic surfactant hydroxyethylalkyl imidazoline (HEAI) and the amphoteric surfactant oleylamidopropyl betaine (OAPB) were synthesized via a cation exchange process. The obtained materials were characterized using XRD analysis, ATR-FTIR spectroscopy, SEM, BET and Water contact angle measurements. The potential sites of binding of OAPB and HEAI to the mineral surface were determined by the DFT calculations. For the variants of the structure of the complex, DFT calculations is performed and the interaction energy of the surfactant and clay mineral is estimated.

  8. Characterizing Woody Vegetation Spectral and Structural Parameters with a 3-D Scene Model

    NASA Astrophysics Data System (ADS)

    Qin, W.; Yang, L.

    2004-05-01

    Quantification of structural and biophysical parameters of woody vegetation is of great significance in understanding vegetation condition, dynamics and functionality. Such information over a landscape scale is crucial for global and regional land cover characterization, global carbon-cycle research, forest resource inventories, and fire fuel estimation. While great efforts and progress have been made in mapping general land cover types over large area, at present, the ability to quantify regional woody vegetation structural and biophysical parameters is limited. One approach to address this research issue is through an integration of physically based 3-D scene model with multiangle and multispectral remote sensing data and in-situ measurements. The first step of this work is to model woody vegetation structure and its radiation regime using a physically based 3-D scene model and field data, before a robust operational algorithm can be developed for retrieval of important woody vegetation structural/biophysical parameters. In this study, we use an advanced 3-D scene model recently developed by Qin and Gerstl (2000), based on L-systems and radiosity theories. This 3-D scene model has been successfully applied to semi-arid shrubland to study structure and radiation regime at a regional scale. We apply this 3-D scene model to a more complicated and heterogeneous forest environment dominated by deciduous and coniferous trees. The data used in this study are from a field campaign conducted by NASA in a portion of the Superior National Forest (SNF) near Ely, Minnesota during the summers of 1983 and 1984, and supplement data collected during our revisit to the same area of SNF in summer of 2003. The model is first validated with reflectance measurements at different scales (ground observations, helicopter, aircraft, and satellite). Then its ability to characterize the structural and spectral parameters of the forest scene is evaluated. Based on the results from this study

  9. Characterization and analysis of Porous, Brittle solid structures by X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Lin, C. L.; Videla, A. R.; Yu, Q.; Miller, J. D.

    2010-12-01

    The internal structure of porous, brittle solid structures, such as porous rock, foam metal and wallboard, is extremely complex. For example, in the case of wallboard, the air bubble size and the thickness/composition of the wall structure are spatial parameters that vary significantly and influence mechanical, thermal, and acoustical properties. In this regard, the complex geometry and the internal texture of material, such as wallboard, is characterized and analyzed in 3-D using cone beam x-ray micro computed tomography. Geometrical features of the porous brittle structure are quantitatively analyzed based on calibration of the x-ray linear attenuation coefficient, use of a 3-D watershed algorithm, and use of a 3-D skeletonization procedure. Several examples of the 3-D analysis for porous, wallboard structures are presented and the results discussed.

  10. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering.

    PubMed

    Hsieh, Wen-Chuan; Chang, Chih-Pong; Lin, Shang-Ming

    2007-06-15

    This research studies the morphology and characterization of three-dimensional (3D) micro-porous structures produced from biodegradable chitosan for use as scaffolds for cells culture. The chitosan 3D micro-porous structures were produced by a simple liquid hardening method, which includes the processes of foaming by mechanical stirring without any chemical foaming agent added, and hardening by NaOH cross linking. The pore size and porosity were controlled with mechanical stirring strength. This study includes the morphology of chitosan scaffolds, the characterization of mechanical properties, water absorption properties and in vitro enzymatic degradation of the 3D micro-porous structures. The results show that chitosan 3D micro-porous structures were successfully produced. Better formation samples were obtained when chitosan concentration is at 1-3%, and concentration of NaOH is at 5%. Faster stirring rate would produce samples of smaller pore diameter, but when rotation speed reaches 4000 rpm and higher the changes in pore size is minimal. Water absorption would reduce along with the decrease of chitosan scaffolds' pore diameter. From stress-strain analysis, chitosan scaffolds' mechanical properties are improved when it has smaller pore diameter. From in vitro enzymatic degradation results, it shows that the disintegration rate of chitosan scaffolds would increase along with the processing time increase, but approaching equilibrium when the disintegration rate reaches about 20%.

  11. Structural characterization of nano-oxide layers in PtMn based specular spin valves

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming

    2005-05-01

    A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.

  12. Characterization of structural and electrical properties of ZnO tetrapods

    NASA Astrophysics Data System (ADS)

    Gu, Yu-Dong; Mai, Wen-Jie; Jiang, Peng

    2011-12-01

    ZnO tetrapods were synthesized by a typical thermal vapor-solid deposition method in a horizontal tube furnace. Structural characterization was carried out by transmission electron microscopy (TEM) and select-area electron diffraction (SAED), which shows the presence of zinc blende nucleus in the center of tetrapods while the four branches taking hexagonal wurtzite structure. The electrical transport property of ZnO tetrapods was investigated through an in-situ nanoprobe system. The three branches of a tetrapod serve as source, drain, and "gate", respectively; while the fourth branch pointing upward works as the force trigger by vertically applying external force downward. The conductivity of each branch of ZnO-tetrapods increases 3-4 times under pressure. In such situation, the electrical current through the branches of ZnO tetrapods can be tuned by external force, and therefore a simple force sensor based on ZnO tetrapods has been demonstrated for the first time.

  13. Analytical characterization and structure elucidation of metabolites from Aspergillus ochraceus MP2 fungi.

    PubMed

    Meenupriya, J; Thangaraj, M

    2011-10-01

    To isolate and characterize the bioactive secondary metabolites from Aspergillus ochraceus (A. ochraceus) MP2 fungi. The anti bacterial activity of marine sponge derived fungi A. ochraceus MP2 was thoroughly investigated against antagonistic human pathogens. The optimum inhibitory concentration of the fungi in the elite solvent was also determined. The promising extracts that showed good antimicrobial activity were subjected to further analytical separation to get individual distinct metabolites and the eluants were further identified by GC MS instrumental analysis. The molecular characterization of the elite fungal strains were done by isolating their genomic DNA and amplify the internal transcribed spacer (ITS) region of 5.8s rRNA using specific ITS primer. The novelty of the strain was proved by homology search tools and elite sequences was submitted to GENBANK. Three bioactive compounds were characterized to reveal their identity, chemical formula and structure. The first elutant was identified asα- Campholene aldehyde with chemical formula C10 H16 O and molecular weight 152 Da. The second elutant was identified as Lucenin-2 and chemical formula C27 H30 O16 and molecular weight 610 Da. The third elutant was identified as 6-Ethyloct- 3-yl- 2- ethylhexyl ester with Chemical formula C26 H42 O4 with molecular weight 418 Da. The isolated compounds showed significant antimicrobial activity against potential human pathogens. Microbial secondary metabolites represent a large source of compounds endowed with ingenious structures and potent biological activities.

  14. Characterization of multifunctional structural capacitors for embedded energy storage

    NASA Astrophysics Data System (ADS)

    Lin, Yirong; Sodano, Henry A.

    2009-12-01

    Multifunctional composites are a class of materials that combine structural and other functionalities such as sensing, actuation, energy harvesting, and vibration control in order to maximize structural performance while minimizing weight and complexity. Among all the multifunctional composites developed so far, piezoelectric composites have been widely studied due to the high coupling of energy between the electrical and mechanical domains and the inherently high dielectric constant. Several piezoelectric fiber composites have been developed for sensing and actuation applications; however, none of the previously studied composites fully embed all components of an energy storage device as load bearing members of the structure. A multifunctional fiber that can be embedded in a composite material to perform sensing and actuation has been recently developed [Y. Lin and H. A. Sodano, Adv. Funct. Mater. 18, 592 (2008)], in addition to providing load bearing functionality. The design was achieved by coating a common structural fiber, silicon carbide, with a barium titanate piezoelectric shell, and poling the active material radically by employing the structural fiber as one of the electrodes. The silicon carbide core fiber also carries external mechanical loading to protect the brittle barium titanate shell from fracture. The excellent piezoelectric and dielectric properties of the barium titanate material make the active structural fiber an outstanding candidate for converting and storing ambient mechanical energy into electrical energy to power other electric devices in the system. This paper focuses on the characterization of energy storage capability of the multifunctional fiber provided by the dielectric properties of the barium titanate shell. The capacitances of the multifunctional fibers with four different aspect ratios are tested and compared with the theoretical expressions for the cylindrical capacitor, while the breakdown voltages of the multifunctional

  15. Characterizing spatial structure of sediment E. coli populations to inform sampling design.

    PubMed

    Piorkowski, Gregory S; Jamieson, Rob C; Hansen, Lisbeth Truelstrup; Bezanson, Greg S; Yost, Chris K

    2014-01-01

    Escherichia coli can persist in streambed sediments and influence water quality monitoring programs through their resuspension into overlying waters. This study examined the spatial patterns in E. coli concentration and population structure within streambed morphological features during baseflow and following stormflow to inform sampling strategies for representative characterization of E. coli populations within a stream reach. E. coli concentrations in bed sediments were significantly different (p = 0.002) among monitoring sites during baseflow, and significant interactive effects (p = 0.002) occurred among monitoring sites and morphological features following stormflow. Least absolute shrinkage and selection operator (LASSO) regression revealed that water velocity and effective particle size (D 10) explained E. coli concentration during baseflow, whereas sediment organic carbon, water velocity and median particle diameter (D 50) were important explanatory variables following stormflow. Principle Coordinate Analysis illustrated the site-scale differences in sediment E. coli populations between disconnected stream segments. Also, E. coli populations were similar among depositional features within a reach, but differed in relation to high velocity features (e.g., riffles). Canonical correspondence analysis resolved that E. coli population structure was primarily explained by spatial (26.9–31.7 %) over environmental variables (9.2–13.1 %). Spatial autocorrelation existed among monitoring sites and morphological features for both sampling events, and gradients in mean particle diameter and water velocity influenced E. coli population structure for the baseflow and stormflow sampling events, respectively. Representative characterization of streambed E. coli requires sampling of depositional and high velocity environments to accommodate strain selectivity among these features owing to sediment and water velocity heterogeneity.

  16. Production and Structural Characterization of Lactobacillus helveticus Derived Biosurfactant

    PubMed Central

    Sharma, Deepansh; Saharan, Baljeet Singh; Chauhan, Nikhil; Bansal, Anshul; Procha, Suresh

    2014-01-01

    A probiotic strain of lactobacilli was isolated from traditional soft Churpi cheese of Yak milk and found positive for biosurfactant production. Lactobacilli reduced the surface tension of phosphate buffer saline (PBS) from 72.0 to 39.5 mNm−1 pH 7.2 and its critical micelle concentration (CMC) was found to be 2.5 mg mL−1. Low cost production of Lactobacilli derived biosurfactant was carried out at lab scale fermenter which yields 0.8 mg mL−1 biosurfactant. The biosurfactant was found least phytotoxic and cytotoxic as compared to the rhamnolipid and sodium dodecyl sulphate (SDS) at different concentration. Structural attributes of biosurfactant were determined by FTIR, NMR (1H and 13C), UPLC-MS, and fatty acid analysis by GCMS which confirmed the presence of glycolipid type of biosurfactant closely similar to xylolipids. Biosurfactant is mainly constituted by lipid and sugar fractions. The present study outcomes provide valuable information on structural characterization of the biosurfactant produced by L. helveticus MRTL91. These findings are encouraging for the application of Lactobacilli derived biosurfactant as nontoxic surface active agents in the emerging field of biomedical applications. PMID:25506070

  17. The influence of cross-order terms in interface mobilities for structure-borne sound source characterization

    NASA Astrophysics Data System (ADS)

    Bonhoff, H. A.; Petersson, B. A. T.

    2010-08-01

    For the characterization of structure-borne sound sources with multi-point or continuous interfaces, substantial simplifications and physical insight can be obtained by incorporating the concept of interface mobilities. The applicability of interface mobilities, however, relies upon the admissibility of neglecting the so-called cross-order terms. Hence, the objective of the present paper is to clarify the importance and significance of cross-order terms for the characterization of vibrational sources. From previous studies, four conditions have been identified for which the cross-order terms can become more influential. Such are non-circular interface geometries, structures with distinctively differing transfer paths as well as a suppression of the zero-order motion and cases where the contact forces are either in phase or out of phase. In a theoretical study, the former four conditions are investigated regarding the frequency range and magnitude of a possible strengthening of the cross-order terms. For an experimental analysis, two source-receiver installations are selected, suitably designed to obtain strong cross-order terms. The transmitted power and the source descriptors are predicted by the approximations of the interface mobility approach and compared with the complete calculations. Neglecting the cross-order terms can result in large misinterpretations at certain frequencies. On average, however, the cross-order terms are found to be insignificant and can be neglected with good approximation. The general applicability of interface mobilities for structure-borne sound source characterization and the description of the transmission process thereby is confirmed.

  18. Integrated Surface and Mechanical Characterization of Freestanding Biological and Other Nano-Structures Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xin

    This dissertation is focused on surface and mechanical characterization of freestanding biological and other nano-structures using atomic force microscopy including two parts: cell mechanics and nano-structure mechanics. The main purpose of this work is to investigate how the nano- / micro-scale mechanical properties affect macro-scale function. In cancer cells, efficacy of drug delivery is oftentimes declined due to the thick dendritic network of oligosaccharide mucin chains on the cell surface. AFM is used to measure the force needed to pierce the mucin layer to reach the cell surface. A pool of ovarian, pancreatic, lung, colorectal and breast cancer cells are characterized. The studies offer additional support for the development of clinical and pharmaceutical approaches to combat mucin over-expression in tumors during cancer chemotherapy. Macroscopic adhesion-aggregation and subsequent transportation of microorganisms in porous medium are closely related to the microscopic deformation and adhesion mechanical properties. The classical Tabor's parameter is modified. Multiple bacterial strains are characterized in terms of aggregates size, aggregation index and transportation kinetics. AFM is employed to obtain the microscopic coupled adhesion-deformation properties. The strong correlation between Tabor's parameter and aggregation-deposition-transportation suggests the AFM characterization is capable of making reliable predication of macroscopic behavior. A novel "nano-cheese-cutter" is fabricated on tipless AFM cantilever to measure elastic modulus and interfacial adhesion of a 1-D freestanding nano-structure. A single electrospun fiber is attached to the free end of AFM cantilever, while another fiber is similarly prepared on a mica substrate in an orthogonal direction. An external load is applied to deform the two fibers into complementary V-shapes. This work is extended to investigate the interfacial adhesion energy between dissimilar materials. SWCNT thin

  19. Characterization of mechanical properties of lamellar structure of the aortic wall: Effect of aging.

    PubMed

    Taghizadeh, Hadi; Tafazzoli-Shadpour, Mohammad

    2017-01-01

    Arterial wall tissues are sensitive to their mechanical surroundings and remodel their structure and mechanical properties when subjected to mechanical stimuli such as increased arterial pressure. Such remodeling is evident in hypertension and aging. Aging is characterized by stiffening of the artery wall which is assigned to disturbed elastin function and increased collagen content. To better understand and provide new insight on microstructural changes induced by aging, the lamellar model of the aortic media was utilized to characterize and compare wall structure and mechanical behavior of the young and old human thoracic aortic samples. Such model regards arterial media as two sets of alternating concentric layers, namely sheets of elastin and interlamellar layers. Histological and biaxial tests were performed and microstructural features and stress-strain curves of media were evaluated in young and old age groups. Then using optimization algorithms and hyperelastic constitutive equations the stress-strain curves of layers were evaluated for both age groups. Results indicated slight elevation in the volume fraction of interlamellar layer among old subjects most probably due to age related collagen deposition. Aging indicated substantial stiffening of interlamellar layers accompanied by noticeable softening of elastic lamellae. The general significant stiffening of old samples were attributed to both increase of volume fraction of interlamellar layers and earlier recruitment of collagen fibers during load bearing due to functional loss of elastin within wall lamellae. Mechanical characterization of lamellar structure of wall media is beneficial in study of arterial remodeling in response to alternated mechanical environment in aging and clinical conditions through coupling of wall microstructure and mechanical behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Automated wind load characterization of wind turbine structures by embedded model updating

    NASA Astrophysics Data System (ADS)

    Swartz, R. Andrew; Zimmerman, Andrew T.; Lynch, Jerome P.

    2010-04-01

    The continued development of renewable energy resources is for the nation to limit its carbon footprint and to enjoy independence in energy production. Key to that effort are reliable generators of renewable energy sources that are economically competitive with legacy sources. In the area of wind energy, a major contributor to the cost of implementation is large uncertainty regarding the condition of wind turbines in the field due to lack of information about loading, dynamic response, and fatigue life of the structure expended. Under favorable circumstances, this uncertainty leads to overly conservative designs and maintenance schedules. Under unfavorable circumstances, it leads to inadequate maintenance schedules, damage to electrical systems, or even structural failure. Low-cost wireless sensors can provide more certainty for stakeholders by measuring the dynamic response of the structure to loading, estimating the fatigue state of the structure, and extracting loading information from the structural response without the need of an upwind instrumentation tower. This study presents a method for using wireless sensor networks to estimate the spectral properties of a wind turbine tower loading based on its measured response and some rudimentary knowledge of its structure. Structural parameters are estimated via model-updating in the frequency domain to produce an identification of the system. The updated structural model and the measured output spectra are then used to estimate the input spectra. Laboratory results are presented indicating accurate load characterization.

  1. Ligand-Assisted Protein Structure (LAPS): An Experimental Paradigm for Characterizing Cannabinoid-Receptor Ligand-Binding Domains.

    PubMed

    Janero, David R; Korde, Anisha; Makriyannis, Alexandros

    2017-01-01

    Detailed characterization of the ligand-binding motifs and structure-function correlates of the principal GPCRs of the endocannabinoid-signaling system, the cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors, is essential to inform the rational design of drugs that modulate CB1R- and CB2R-dependent biosignaling for therapeutic gain. We discuss herein an experimental paradigm termed "ligand-assisted protein structure" (LAPS) that affords a means of characterizing, at the amino acid level, CB1R and CB2R structural features key to ligand engagement and receptor-dependent information transmission. For this purpose, LAPS integrates three key disciplines and methodologies: (a) medicinal chemistry: design and synthesis of high-affinity, pharmacologically active probes as reporters capable of reacting irreversibly with particular amino acids at (or in the immediate vicinity of) the ligand-binding domain of the functionally active receptor; (b) molecular and cellular biology: introduction of discrete, conservative point mutations into the target GPCR and determination of their effect on probe binding and pharmacological activity; (c) analytical chemistry: identification of the site(s) of probe-GPCR interaction through focused, bottom-up, amino acid-level proteomic identification of the probe-receptor complex using liquid chromatography tandem mass spectrometry. Subsequent in silico methods including ligand docking and computational modeling provide supplementary data on the probe-receptor interaction as defined by LAPS. Examples of LAPS as applied to human CB2R orthosteric binding site characterization for a biarylpyrazole antagonist/inverse agonist and a classical cannabinoid agonist belonging to distinct chemical classes of cannabinergic compounds are given as paradigms for further application of this methodology to other therapeutic protein targets. LAPS is well positioned to complement other experimental and in silico methods in contemporary structural biology such

  2. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    NASA Astrophysics Data System (ADS)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is

  3. [Structural characterization of Astragalus polysaccharides using partial acid hydrolysis-hydrophilic interaction liquid chromatography-mass spectrometry].

    PubMed

    Liang, Tu; Fu, Qing; Xin, Huaxia; Li, Fangbing; Jin, Yu; Liang, Xinmiao

    2014-12-01

    Water-soluble polysaccharides from traditional Chinese medicine (TCM) have properties of broad-spectrum treatment and low toxicity, making them as important components in natural medicines and health products. In order to solve the problem of polysaccharides characterization caused by their complex structures, a "bottom-up" approach was developed to complete the characterization of polysaccharides from Astragalus. Firstly, Astragalus pieces were extracted with hot water and then were precipitated by ethanol to obtain Astragalus polysaccharides. Secondly, a partial acid hydrolysis method was carried out and the effects of time, acid concentration and temperature on hydrolysis were investigated. The degree of hydrolysis increased along with the increase of hydrolysis time and acid concentration. The temperature played a great role in the hydrolysis process. No hydrolysis of the polysaccharides occurred at low temperature, while the polysaccharides were almost hydrolyzed to monosaccharide at high temperature. Under the optimum hydrolysis conditions (4 h, 1.5 mol/L trifluoroacetic acid, and 80 °C), Astragalus polysaccharides were hydrolyzed to characteristic oligosaccharide fragments. At last, a hydrophilic liquid chromatography-mass spectrometry method was used for the separation and structural characterization of the polysaccharide hydrolysates. The results showed that the resulting polysaccharides were mainly 1--> 4 linear glucan, and gluco-oligosaccharides with the degrees of polymerization (DP) of 4 - 11 were obtained after partial acid hydrolysis. The significance of this study is that it is the guidance for the characterization of other TCM polysaccharides.

  4. Structure, functional characterization, and evolution of the dihydroorotase domain of human CAD.

    PubMed

    Grande-García, Araceli; Lallous, Nada; Díaz-Tejada, Celsa; Ramón-Maiques, Santiago

    2014-02-04

    Upregulation of CAD, the multifunctional protein that initiates and controls the de novo biosynthesis of pyrimidines in animals, is essential for cell proliferation. Deciphering the architecture and functioning of CAD is of interest for its potential usage as an antitumoral target. However, there is no detailed structural information about CAD other than that it self-assembles into hexamers of ∼1.5 MDa. Here we report the crystal structure and functional characterization of the dihydroorotase domain of human CAD. Contradicting all assumptions, the structure reveals an active site enclosed by a flexible loop with two Zn²⁺ ions bridged by a carboxylated lysine and a third Zn coordinating a rare histidinate ion. Site-directed mutagenesis and functional assays prove the involvement of the Zn and flexible loop in catalysis. Comparison with homologous bacterial enzymes supports a reclassification of the DHOase family and provides strong evidence against current models of the architecture of CAD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Characterization of Effect of Support Structures in Laser Additive Manufacturing of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Järvinen, Jukka-Pekka; Matilainen, Ville; Li, Xiaoyun; Piili, Heidi; Salminen, Antti; Mäkelä, Ismo; Nyrhilä, Olli

    Laser additive manufacturing (LAM) of stainless steel is a layer wisetechnology for fabricating 3D parts from metal powder via selectively melting powder with laser beam. Support structures play a significant role in LAM process as they help to remove heat away from the process and on the other hand hold the work piece in its place. A successful design of support structures can help to achievea building process fast and inexpensive with high quality. Aimof this study was to characterize the usability of two types of support structures: web and tube supports. Purpose of this studywas also to analyze how suitable they are in two industrial application cases: case for dental application and case for jewelry application. It was concluded that the removability of web supports was much better than tube supports. It was noticed that support structures are an important part of LAM process and they strongly affect the manufacturability and the end quality of the part.

  6. Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola

    NASA Astrophysics Data System (ADS)

    Dhakshnamoorthy, Balasundaresan; Rohaim, Ahmed; Rui, Huan; Blachowicz, Lydia; Roux, Benoît

    2016-09-01

    The selectivity filter is an essential functional element of K+ channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca2+ concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca2+ ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca2+ ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel.

  7. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE PAGES

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; ...

    2014-11-20

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  8. Structure-guided functional characterization of DUF1460 reveals a highly specific NlpC/P60 amidase family.

    PubMed

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; Grant, Joanna C; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W; Godzik, Adam; Lesley, Scott A; Elsliger, Marc-André; Deacon, Ashley M; Wilson, Ian A

    2014-12-02

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predicted in silico based on structural and bioinformatics data, and subsequently were characterized experimentally. Further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines another amidase family. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  10. Inflight Characterization of the Cassini Spacecraft Propellant Slosh and Structural Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Stupik, Joan

    2015-01-01

    While there has been extensive theoretical and analytical research regarding the characterization of spacecraft propellant slosh and structural frequencies, there have been limited studies to compare the analytical predictions with measured flight data. This paper uses flight telemetry from the Cassini spacecraft to get estimates of high-g propellant slosh frequencies and the magnetometer boom frequency characteristics, and compares these values with those predicted by theoretical works. Most Cassini attitude control data are available at a telemetry frequency of 0.5 Hz. Moreover, liquid sloshing is attenuated by propellant management device and attitude controllers. Identification of slosh and structural frequency are made on a best-effort basis. This paper reviews the analytical approaches that were used to predict the Cassini propellant slosh frequencies. The predicted frequencies are then compared with those estimated using telemetry from selected Cassini burns where propellant sloshing was observed (such as the Saturn Orbit Insertion burn).

  11. Structural characterization of nanoscale intermetallic precipitates in highly neutron irradiated reactor pressure vessel steels

    DOE PAGES

    Sprouster, D. J.; Sinsheimer, J.; Dooryhee, E.; ...

    2015-10-21

    Here, massive, thick-walled pressure vessels are permanent nuclear reactor structures that are exposed to a damaging flux of neutrons from the adjacent core. The neutrons cause embrittlement of the vessel steel that increases with dose (fluence or service time), as manifested by an increasing temperature transition from ductile-to-brittle fracture. Moreover, extending reactor life requires demonstrating that large safety margins against brittle fracture are maintained at the higher neutron fluence associated with 60 to 80 years of service. Here synchrotron-based x-ray diffraction and small angle x-ray scattering measurements are used to characterize a new class of highly embrittling nm-scale Mn-Ni-Si precipitatesmore » that develop in the irradiated steels at high fluence. Furthermore, these precipitates can lead to severe embrittlement that is not accounted for in current regulatory models. Application of the complementarity techniques has, for the very first time, successfully characterized the crystal structures of the nanoprecipitates, while also yielding self-consistent compositions, volume fractions and size distributions.« less

  12. Object-based semi-automatic approach for forest structure characterization using lidar data in heterogeneous Pinus sylvestris stands

    Treesearch

    C. Pascual; A. Garcia-Abril; L.G. Garcia-Montero; S. Martin-Fernandez; W.B. Cohen

    2008-01-01

    In this paper, we present a two-stage approach for characterizing the structure of Pinus sylvestris L. stands in forests of central Spain. The first stage was to delimit forest stands using eCognition and a digital canopy height model (DCHM) derived from lidar data. The polygons were then clustered into forest structure types based on the DCHM data...

  13. Comparison of nitrogen adsorption and transmission electron microscopy analyses for structural characterization of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abbaslou, Reza Malek; Vosoughi, Vahid; Dalai, Ajay K.

    2017-10-01

    Carbon nanotubes (CNTs) are different from other porous substrates such as activated carbon due to their high external surfaces. This structural feature can lead in some uncertainties in the results of nitrogen adsorption analysis for characterization of CNTs. In this paper, the results of microscopic analyses and nitrogen adsorption method for characterization of carbon nanotubes were compared. Five different types of CNTs with different structures were either synthesized or purchased. The CNT samples were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and N2 adsorption analysis. The comparisons between the results from the microscopic analyses and N2 adsorption showed that the total pore volume and BET surface measurements include the internal and external porosity of CNTs. Therefore, the interpretation of N2 adsorption data required accurate TEM analysis. In addition, the evaluation of pore size distribution curves from all CNT samples in this study and several instances in the literature revealed the presence of a common peak in the range of 2-5 nm. This peak does not explain the inner pore size distribution. The presence of this common peak can be attributed to the strong adsorption of N2 on the junction of touched and crossed nanotubes.

  14. Characterization of Thermal and Mechanical Impact on Aluminum Honeycomb Structures

    NASA Technical Reports Server (NTRS)

    Robinson, Christen M.

    2013-01-01

    This study supports NASA Kennedy Space Center's research in the area of intelligent thermal management systems and multifunctional thermal systems. This project addresses the evaluation of the mechanical and thermal properties of metallic cellular solid (MCS) materials; those that are lightweight; high strength, tunable, multifunctional and affordable. A portion of the work includes understanding the mechanical properties of honeycomb structured cellular solids upon impact testing under ambient, water-immersed, liquid nitrogen-cooled, and liquid nitrogen-immersed conditions. Additionally, this study will address characterization techniques of the aluminum honeycomb's ability to resist multiple high-rate loadings or impacts in varying environmental conditions, using various techniques for the quantitative and qualitative determination for commercial applicability.

  15. On the role of magnetic field intensity for better micro-structural characterization during Barkhausen Noise analysis

    NASA Astrophysics Data System (ADS)

    Yusufzai, Mohd Zaheer Khan; Vashista, M.

    2018-04-01

    Barkhausen Noise analysis is a popular and preferred technique for micro-structural characterization. The root mean square value and peak value of Barkhausen Noise burst are important parameters to assess the micro-hardness and residual stress. Barkhausen Noise burst can be enveloped using a curve known as Barkhausen Noise profile. Peak position of profile changes with change in micro-structure. In the present work, raw signal of Barkhausen Noise burst was obtained from Ni based sample at various magnetic field intensity to observe the effect of variation in field intensity on Barkhausen Noise burst. Raw signal was opened using MATLAB to further process for microstructure analysis. Barkhausen Noise analysis parameters such as magnetizing frequency, number of burst, high pass and low pass filter frequency were kept constant and magnetizing field was varied in wide range between 200 Oe to 1200 Oe. The processed profiles of Barkhausen Noise burst obtained at various magnetizing field intensity clearly reveals requirement of optimum magnetic field strength for better characterization of micro-structure.

  16. Solvate Structures and Computational/Spectroscopic Characterization of LiPF6 Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang D.; Yun, Sung-Hyun; Borodin, Oleg

    2015-04-23

    Raman spectroscopy is a powerful method for identifying ion-ion interactions, but only if the vibrational band signature for the anion coordination modes can be accurately deciphered. The present study characterizes the PF6- anion P-F Raman symmetric stretching vibrational band for evaluating the PF6-...Li+ cation interactions within LiPF6 crystalline solvates to create a characterization tool for liquid electrolytes. To facilitate this, the crystal structures for two new solvates—(G3)1:LiPF6 and (DEC)2:LiPF6 with triglyme and diethyl carbonate, respectively—are reported. The information obtained from this analysis provides key guidance about the ionic association information which may be obtained from a Raman spectroscopic evaluation ofmore » electrolytes containing the LiPF6 salt and aprotic solvents. Of particular note is the overlap of the Raman bands for both solvent-separated ion pair (SSIP) and contact ion pair (CIP) coordination in which the PF6- anions are uncoordinated or coordinated to a single Li+ cation, respectively.« less

  17. Structural characterization and mechanical performance of calcium phosphate scaffolds and natural bones: a comparative study.

    PubMed

    Fuentes, Elena; Sáenz de Viteri, Virginia; Igartua, Amaya; Martinetti, Roberta; Dolcini, Laura; Barandika, Gotzone

    2010-01-01

    The knowledge of the mechanical response of bones and their substitutes is pertinent to numerous medical problems. Understanding the effects of mechanical influence on the body is the first step toward developing innovative treatment and rehabilitation concepts for orthopedic disorders. This was a comparative study of 5 synthetic scaffolds based on porous calcium phosphates and natural bones, with regard to their microstructural, chemical, and mechanical characterizations. The structural and chemical characterizations of the scaffolds were examined by means of X-ray diffraction, scanning electron microscopy, and X-ray spectroscopy analysis. The mechanical characterization of bones and bone graft biomaterials was carried out through compression tests using samples with noncomplex geometry. Analysis of the chemical composition, surface features, porosity, and compressive strength indicates that hydroxyapatite-based materials and trabecular bone have similar properties.

  18. Characterizing complex structural variation in germline and somatic genomes

    PubMed Central

    Quinlan, Aaron R.; Hall, Ira M.

    2011-01-01

    Genome structural variation (SV) is a major source of genetic diversity in mammals and a hallmark of cancer. While SV is typically defined by its canonical forms – duplication, deletion, insertion, inversion and translocation – recent breakpoint mapping studies have revealed a surprising number of “complex” variants that evade simple classification. Complex SVs are defined by clustered breakpoints that arose through a single mutation but cannot be explained by one simple end-joining or recombination event. Some complex variants exhibit profoundly complicated rearrangements between distinct loci from multiple chromosomes, while others involve more subtle alterations at a single locus. These diverse and unpredictable features present a challenge for SV mapping experiments. Here, we review current knowledge of complex SV in mammals, and outline techniques for identifying and characterizing complex variants using next-generation DNA sequencing. PMID:22094265

  19. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G.

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeastmore » and parasitic protozoa.« less

  20. Evaluation of multiple-scale 3D characterization for coal physical structure with DCM method and synchrotron X-ray CT.

    PubMed

    Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

  1. Structural characterization of purine nucleoside phosphorylase from human pathogen Helicobacter pylori.

    PubMed

    Štefanić, Zoran; Mikleušević, Goran; Luić, Marija; Bzowska, Agnieszka; Leščić Ašler, Ivana

    2017-08-01

    Microaerophilic bacterium Helicobacer pylori is a well known human pathogen involved in the development of many diseases. Due to the evergrowing infection rate and increase of H. pylori antibiotic resistence, it is of utmost importance to find a new way to attack and eradicate H. pylori. The purine metabolism in H. pylori is solely dependant on the salvage pathway and one of the key enzymes in this pathway is purine nucleoside phosphorylase (PNP). In this timely context, we report here the basic biochemical and structural characterization of recombinant PNP from the H. pylori clinical isolate expressed in Escherichia coli. Structure of H. pylori PNP is typical for high molecular mass PNPs. However, its activity towards adenosine is very low, thus resembling more that of low molecular mass PNPs. Understanding the molecular mechanism of this key enzyme may lead to the development of new drug strategies and help in the eradication of H. pylori. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Crystal Structure and Functional Characterization of an Esterase (EaEST) from Exiguobacterium antarcticum.

    PubMed

    Lee, Chang Woo; Kwon, Sena; Park, Sun-Ha; Kim, Boo-Young; Yoo, Wanki; Ryu, Bum Han; Kim, Han-Woo; Shin, Seung Chul; Kim, Sunghwan; Park, Hyun; Kim, T Doohun; Lee, Jun Hyuck

    2017-01-01

    A novel microbial esterase, EaEST, from a psychrophilic bacterium Exiguobacterium antarcticum B7, was identified and characterized. To our knowledge, this is the first report describing structural analysis and biochemical characterization of an esterase isolated from the genus Exiguobacterium. Crystal structure of EaEST, determined at a resolution of 1.9 Å, showed that the enzyme has a canonical α/β hydrolase fold with an α-helical cap domain and a catalytic triad consisting of Ser96, Asp220, and His248. Interestingly, the active site of the structure of EaEST is occupied by a peracetate molecule, which is the product of perhydrolysis of acetate. This result suggests that EaEST may have perhydrolase activity. The activity assay showed that EaEST has significant perhydrolase and esterase activity with respect to short-chain p-nitrophenyl esters (≤C8), naphthyl derivatives, phenyl acetate, and glyceryl tributyrate. However, the S96A single mutant had low esterase and perhydrolase activity. Moreover, the L27A mutant showed low levels of protein expression and solubility as well as preference for different substrates. On conducting an enantioselectivity analysis using R- and S-methyl-3-hydroxy-2-methylpropionate, a preference for R-enantiomers was observed. Surprisingly, immobilized EaEST was found to not only retain 200% of its initial activity after incubation for 1 h at 80°C, but also retained more than 60% of its initial activity after 20 cycles of reutilization. This research will serve as basis for future engineering of this esterase for biotechnological and industrial applications.

  3. Silver sulfadoxinate: Synthesis, structural and spectroscopic characterizations, and preliminary antibacterial assays in vitro

    NASA Astrophysics Data System (ADS)

    Zanvettor, Nina T.; Abbehausen, Camilla; Lustri, Wilton R.; Cuin, Alexandre; Masciocchi, Norberto; Corbi, Pedro P.

    2015-02-01

    The sulfa drug sulfadoxine (SFX) reacted with Ag+ ions in aqueous solution, affording a new silver(I) complex (AgSFX), which was fully characterized by chemical, spectroscopic and structural methods. Elemental, ESI-TOF mass spectrometric and thermal analyses of AgSFX suggested a [Ag(C12H13N4O2S)] empirical formula. Infrared spectroscopic measurements indicated ligand coordination to Ag(I) through the nitrogen atoms of the (deprotonated) sulfonamide group and by the pyrimidine ring, as well as through oxygen atom(s) of the sulfonamide group. These hypotheses were corroborated by 13C and 15N SS-NMR spectroscopy and by an unconventional structural characterization based on X-ray powder diffraction data. The latter showed that AgSFX crystallizes as centrosymmetric dimers with a strong Ag⋯Ag interaction of 2.7435(6) Å, induced by the presence of exo-bidentate N,N‧ bridging ligands and the formation of an eight-membered ring of [AgNCN]2 sequence, nearly planar. Participation of oxygen atoms of the sulfonamide residues generates in the crystal a 1D coordination polymer, likely responsible for its very limited solubility in all common solvents. Besides the analytical, spectroscopic and structural description, the antibacterial properties of AgSFX were assayed using disc diffusion methods against Escherichia coli and Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) bacterial strains. The AgSFX complex showed to be active against Gram-positive and Gram-negative bacterial strains, being comparable to the activities of silver sulfadiazine.

  4. An Integrated Approach Linking Process to Structural Modeling With Microstructural Characterization for Injections-Molded Long-Fiber Thermoplastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Smith, Mark T.

    2008-09-01

    The objective of our work is to enable the optimum design of lightweight automotive structural components using injection-molded long fiber thermoplastics (LFTs). To this end, an integrated approach that links process modeling to structural analysis with experimental microstructural characterization and validation is developed. First, process models for LFTs are developed and implemented into processing codes (e.g. ORIENT, Moldflow) to predict the microstructure of the as-formed composite (i.e. fiber length and orientation distributions). In parallel, characterization and testing methods are developed to obtain necessary microstructural data to validate process modeling predictions. Second, the predicted LFT composite microstructure is imported into amore » structural finite element analysis by ABAQUS to determine the response of the as-formed composite to given boundary conditions. At this stage, constitutive models accounting for the composite microstructure are developed to predict various types of behaviors (i.e. thermoelastic, viscoelastic, elastic-plastic, damage, fatigue, and impact) of LFTs. Experimental methods are also developed to determine material parameters and to validate constitutive models. Such a process-linked-structural modeling approach allows an LFT composite structure to be designed with confidence through numerical simulations. Some recent results of our collaborative research will be illustrated to show the usefulness and applications of this integrated approach.« less

  5. Impedance measures in analysis and characterization of multistable structures subjected to harmonic excitation

    NASA Astrophysics Data System (ADS)

    Harne, Ryan L.; Goodpaster, Benjamin A.

    2018-01-01

    Structural components susceptible to adverse, post-buckled dynamic behaviors have long challenged the success of applications requiring lightweight, slender curved structures, while researchers have begun to leverage such bistable systems in emerging applications for novel energy attenuation and shape-changing properties. To expedite development and deployment of these built-up platforms containing post-buckled constituents, efficient approaches are required to complement time-consuming full-field models in the prediction of the near- and far-from-equilibrium dynamics. This research meets the need by introducing a semi-analytical model framework to enable the characterization of steady-state responses in multi degree-of-freedom (DOF) and multistable structural systems subjected to harmonic excitation. In so doing, the pathway for assessing impedance measures is created here so as to identify how energy travels and returns within built-up multistable structures. Verified by simulations and qualitatively validated by experiments, the analysis is shown to accurately reproduce both near- and far-from-equilibrium responses including different classes of energetic snap-through dynamics that only exist in such multistable structures. A first look at the impedance measures of different dynamic regimes reveals a connection between damping in multistable structures and the sustainability of far-from-equilibrium oscillations.

  6. Synthesis and Structural Characterization of New High-Valent Inorganic Fluorine Compounds and their Oxidizing Properties. Volume 3

    DTIC Science & Technology

    1992-02-01

    COMPOUNDS AND T•EIR OXIDIZING PROPERTIES: VOLUME 3. Prof. G.J. Schrobilgen DTI.DTIC_* Mc Mastf-• University f ELECTE Department of Chemistry JUN 16...STRUCTURAL CHARACTERIZATION OF NEW HIGH- C - F49620-87-C-0049 VALENT INORGANIC FLUORINE COMPOUNDS AND THEIR OXIDIZING PR- 5730 PROPERTIES TA- 007C S6...fluorine, oxidizers of Neon, Krypton. Argon, and Xenon have been synthesized and characterized. KrF+ and ),eF+ caticmns have been made with neutral

  7. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    NASA Astrophysics Data System (ADS)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  8. Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal-Peretz, Tamar; Winterstein, Jonathan; Doxastakis, Manolis

    Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD) based technique for enhancing the contrast of BCPs in transmission electron microscopy (TEM) together with scanning TEM (STEM) tomography reveals and characterizes the three-dimensional structures of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films with great clarity. Sequential infiltration synthesis (SIS), a block-selective technique for growing inorganic materials in BCPs films in ALD, and an emerging tool for enhancing the etch contrast ofmore » BCPs, was harnessed to significantly enhance the high-angle scattering from the polar domains of BCP films in the TEM. The power of combining SIS and STEM tomography for three dimensional (3D) characterization of BCPs films was demonstrated with the following cases: self-assembled cylindrical, lamellar, and spherical PS-PMMA thin films. In all cases, STEM tomography has revealed 3D structures that were hidden underneath the surface, including: 1) the 3D structure of defects in cylindrical and lamellar phases, 2) non-perpendicular 3D surface of grain boundaries in the cylindrical phase, and 3) the 3D arrangement of spheres in body centered cubic (BCC) and hexagonal closed pack (HCP) morphologies in the spherical phase. The 3D data of the spherical morphologies was compared to coarse-grained simulations and assisted in validating the simulations’ parameters. STEM tomography of SIS-treated BCP films enables the characterization of the exact structure used for pattern transfer, and can lead to better understating of the physics which is utilized in BCP lithography.« less

  9. Synthesis, structure, and characterization of two Zn(II) complex containing two-dimensional bilayer structure

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Ren, Yixia; Chen, Xiaoli

    2014-10-01

    Two new Zn(II) complexes, [Zn2(L)(H2O)3]ṡH2O (1) and [Zn3(HL)2(bpp)2(Hbpp)2]ṡ10H2Oṡ2ClO4 (2) (H4L = cis,cis,cis,cis-1,2,3,4-cyclopentanetracarboxylic acid, bpp = 1,3-bis(4-pyridyl)propane), have been synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction techniques. The structure indicates that the complex 1 crystallizes in triclinic, space group Pī, in which, the four carboxylate groups of L ligand adopt μ2-η1:η0, μ2-η1:η1, μ1-η1:η1 coordination modes, respectively, bridging Zn(II) atoms to generate a (4,6)-connected 2D bilayer network. The structure indicates that the complex 2 crystallizes in monoclinic, space group C2/c, in which, three deprotonated carboxylate groups of L ligand adopt uniform μ1-η1:η0 coordination mode linking Zn(II) atoms to form a 1D polymeric ribbon, the bpp ligands further extend such ribbon giving rised to a (3,4)-connected 2D bilayer network. The most striking feature of 1 and 2 is that both of bilayer networks contain 1D solvent channel, where water molecules are located. In additional, luminescent properties of two complexes have also been studied.

  10. Characterization of structural relaxation in inorganic glasses using length dilatometry

    NASA Astrophysics Data System (ADS)

    Koontz, Erick

    The processes that govern how a glass relaxes towards its thermodynamic quasi-equilibrium state are major factors in understanding glass behavior near the glass transition region, as characterized by the glass transition temperature (Tg). Intrinsic glass properties such as specific volume, enthalpy, entropy, density, etc. are used to map the behavior of the glass network below in and near the transition region. The question of whether a true thermodynamic second order phase transition takes place in the glass transition region is another pending question. Linking viscosity behavior to entropy, or viewing the glass configuration as an energy landscape are just a couple of the most prevalent methods used for attempting to understand the glass transition. The structural relaxation behavior of inorganic glasses is important for more than scientific reasons, many commercial glass processing operations including glass melting and certain forms of optical fabrication include significant time spent in the glass transition region. For this reason knowledge of structural relaxation processes can, at a minimum, provide information for annealing duration of melt-quenched glasses. The development of a predictive model for annealing time prescription has the potential to save glass manufacturers significant time and money as well as increasing volume throughput. In optical hot forming processes such as precision glass molding, molded optical components can significantly change in shape upon cooling through the glass transition. This change in shape is not scientifically predictable as of yet though manufacturers typically use empirical rules developed in house. The classification of glass behavior in the glass transition region would allow molds to be accurately designed and save money for the producers. The work discussed in this dissertation is comprised of the development of a dilatometric measurement and characterization method of structural relaxation. The measurement and

  11. Structural Characterization of Laboratory Made Tholins by IRMPD Action Spectroscopy and Ultrahigh Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Thissen, R.; Somogyi, A.; Vuitton, V.; Bégué, D.; Lemaire, J.; Steinmetz, V.

    2011-10-01

    The complex organic material that is found on the surface and within the haze layer of Titan is attributed to chemistry occurring in its thick N2/CH4 atmosphere. Although several groups are producing in various laboratory setting the socalled tholins which have been investigated by using analytical methods including UV/Vis, fluorescence, IR, and MS1-5, these very complex organic mixtures still hold many unanswered questions, especially related to the potentiality for their prebiotic chemistry. In addition to tholins characterization and analysis, we recently investigated quantitatively the hydrolysis kinetics of tholins in pure and NH3 containing water at different temperatures.7-8 Our groups at UJF (Grenoble) and at U of Arizona (Tucson) have been collaborating on mass spectral analyses of tholins samples for several years.9 Here, we report our most recent results on the structural characterization of tholins by infrared multiphoton dissociation (IRMPD) action spectroscopy10 and ultrahigh resolution MS. IRMPD action spectroscopy is a recently developed technique that uses IR photons of variable wavelengths to activate ions trapped inside an ion trap. When photons are absorbed at a given wavelength, the selected ion fragments and this fragmentation is monitored as a function of wavelength, analog to an absorption spectrum (impossible to record otherwise because of the much reduced density). This technique can, therefore, be used to determine IR spectra of ions in the gas phase, and provides with very acute structural information. IRMPD action spectroscopy is often used to distinguish between structural isomers of isobaric ions. The drawback is that it requests for high power lasers. Only two Free Electron Lasers (FEL) are available in the world and allow to record spectra with reasonable resolution (20-25 cm-1). IRMPD action spectra of selected ions from tholins will be presented and discussed together with observed fragmentation processes that reveal structural

  12. Characterizing unknown systematics in large scale structure surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Nishant; Ho, Shirley; Myers, Adam D.

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data,more » we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.« less

  13. Characterizing monoclonal antibody structure by carboxyl group footprinting

    PubMed Central

    Kaur, Parminder; Tomechko, Sara E; Kiselar, Janna; Shi, Wuxian; Deperalta, Galahad; Wecksler, Aaron T; Gokulrangan, Giridharan; Ling, Victor; Chance, Mark R

    2015-01-01

    Structural characterization of proteins and their antigen complexes is essential to the development of new biologic-based medicines. Amino acid-specific covalent labeling (CL) is well suited to probe such structures, especially for cases that are difficult to examine by alternative means due to size, complexity, or instability. We present here a detailed account of carboxyl group labeling (with glycine ethyl ester (GEE) tagging) applied to a glycosylated monoclonal antibody therapeutic (mAb). The experiments were optimized to preserve the structural integrity of the mAb, and experimental conditions were varied and replicated to establish the reproducibility of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include aspartic acid (D), glutamic acid (E), and the C-terminus (i.e., the target probes), with the experimental data in order to understand the accuracy of the approach. Data from the mAb were compared to reactivity measures of several model peptides to explain observed variations in reactivity. Attenuation of reactivity in otherwise solvent accessible probes is documented as arising from the effects of positive charge or bond formation between adjacent amine and carboxyl groups, the latter accompanied by observed water loss. A comparison of results with previously published data by Deperalta et al using hydroxyl radical footprinting showed that 55% (32/58) of target residues were GEE labeled in this study whereas the previous study reported 21% of the targets were labeled. Although the number of target residues in GEE labeling is fewer, the two approaches provide complementary information. The results highlight advantages of this approach, such as the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling, reproducibility of replicate experiments (<2% variation in modification extent), the similar reactivity of the three target probes

  14. Structure-Based Characterization of Multiprotein Complexes

    PubMed Central

    Wiederstein, Markus; Gruber, Markus; Frank, Karl; Melo, Francisco; Sippl, Manfred J.

    2014-01-01

    Summary Multiprotein complexes govern virtually all cellular processes. Their 3D structures provide important clues to their biological roles, especially through structural correlations among protein molecules and complexes. The detection of such correlations generally requires comprehensive searches in databases of known protein structures by means of appropriate structure-matching techniques. Here, we present a high-speed structure search engine capable of instantly matching large protein oligomers against the complete and up-to-date database of biologically functional assemblies of protein molecules. We use this tool to reveal unseen structural correlations on the level of protein quaternary structure and demonstrate its general usefulness for efficiently exploring complex structural relationships among known protein assemblies. PMID:24954616

  15. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    PubMed Central

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  16. Distorted tetrahedral nickel-nitrosyl complexes: spectroscopic characterization and electronic structure.

    PubMed

    Soma, Shoko; Van Stappen, Casey; Kiss, Mercedesz; Szilagyi, Robert K; Lehnert, Nicolai; Fujisawa, Kiyoshi

    2016-09-01

    The linear nickel-nitrosyl complex [Ni(NO)(L3)] supported by a highly hindered tridentate nitrogen-based ligand, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (denoted as L3), was prepared by the reaction of the potassium salt of the ligand with the nickel-nitrosyl precursor [Ni(NO)(Br)(PPh 3 ) 2 ]. The obtained nitrosyl complexes as well as the corresponding chlorido complexes [Ni(NO)(Cl)(PPh 3 ) 2 ] and [Ni(Cl)(L3)] were characterized by X-ray crystallography and different spectroscopic methods including IR/far-IR, UV-Vis, NMR, and multi-edge X-ray absorption spectroscopy at the Ni K-, Ni L-, Cl K-, and P K-edges. For comparative electronic structure analysis we also performed DFT calculations to further elucidate the electronic structure of [Ni(NO)(L3)]. These results provide the nickel oxidation state and the character of the Ni-NO bond. The complex [Ni(NO)(L3)] is best described as [Ni (II) (NO (-) )(L3)], and the spectroscopic results indicate that the phosphane complexes have a similar [Ni (II) (NO (-) )(X)(PPh 3 ) 2 ] ground state.

  17. Characterization and structure of hypomania in a British nonclinical adolescent sample.

    PubMed

    Hosang, Georgina M; Cardno, Alastair G; Freeman, Daniel; Ronald, Angelica

    2017-01-01

    This study aimed to test the validity of using the Hypomania Checklist-16 [HCL-16] to measure hypomania in a British adolescent community sample. Limited research is available concerning the characterization of hypomania among community adolescent samples, particularly in the UK, despite its potential importance for early intervention policy development. To explore the structure and characterization of hypomania in a British adolescent nonclinical cohort, over 1400 17 year olds (Mean=17.05 years; SD=0.88) completed the HCL-16 along with measures of different psychological and psychopathological dimensions. Principal components analysis revealed a 2-component solution for the HCL-16, described as active-elated and irritable/risk-taking. Hypomanic symptoms were significantly correlated with many psychopathological dimensions. There were distinct correlation patterns for the two HCL-16 subscales, with the irritability/risk-taking subscale showing significantly stronger associations with psychotic-like experiences, internalizing and externalizing problems, and reduced life satisfaction relative to the active-elated dimension. Adolescents at 'high-risk' for bipolar disorder reported more psychopathology relative to the comparison group. Absence of the clinical diagnosis of bipolar disorder in the sample means that the classification of the 'high-risk' group cannot be confirmed. The structure of the HCL-16 in this UK adolescent sample mirrored that observed in adult and clinical cohorts. The observed links between the HCL-16 and psychopathological dimensions that have been previously associated with both hypomania and bipolar disorder lend support to the HCL-16's validity as a hypomania instrument for adolescents. Better understanding of hypomania prior to adulthood has considerable potential for informing early intervention approaches. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Structure-based characterization of multiprotein complexes.

    PubMed

    Wiederstein, Markus; Gruber, Markus; Frank, Karl; Melo, Francisco; Sippl, Manfred J

    2014-07-08

    Multiprotein complexes govern virtually all cellular processes. Their 3D structures provide important clues to their biological roles, especially through structural correlations among protein molecules and complexes. The detection of such correlations generally requires comprehensive searches in databases of known protein structures by means of appropriate structure-matching techniques. Here, we present a high-speed structure search engine capable of instantly matching large protein oligomers against the complete and up-to-date database of biologically functional assemblies of protein molecules. We use this tool to reveal unseen structural correlations on the level of protein quaternary structure and demonstrate its general usefulness for efficiently exploring complex structural relationships among known protein assemblies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from Enterococcus faecium.

    PubMed

    Himeno, Kohei; Rosengren, K Johan; Inoue, Tomoko; Perez, Rodney H; Colgrave, Michelle L; Lee, Han Siean; Chan, Lai Y; Henriques, Sónia Troeira; Fujita, Koji; Ishibashi, Naoki; Zendo, Takeshi; Wilaipun, Pongtep; Nakayama, Jiro; Leelawatcharamas, Vichien; Jikuya, Hiroyuki; Craik, David J; Sonomoto, Kenji

    2015-08-11

    Enterocin NKR-5-3B, one of the multiple bacteriocins produced by Enterococcus faecium NKR-5-3, is a 64-amino acid novel circular bacteriocin that displays broad-spectrum antimicrobial activity. Here we report the identification, characterization, and three-dimensional nuclear magnetic resonance solution structure determination of enterocin NKR-5-3B. Enterocin NKR-5-3B is characterized by four helical segments that enclose a compact hydrophobic core, which together with its circular backbone impart high stability and structural integrity. We also report the corresponding structural gene, enkB, that encodes an 87-amino acid precursor peptide that undergoes a yet to be described enzymatic processing that involves adjacent cleavage and ligation of Leu(24) and Trp(87) to yield the mature (circular) enterocin NKR-5-3B.

  20. Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide.

    PubMed

    Casillo, Angela; Ziaco, Marcello; Lindner, Buko; Merino, Susana; Mendoza-Barberá, Elena; Tomás, Juan M; Corsaro, Maria Michela

    2017-03-04

    Erwinia amylovora ( E. amylovora ) is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae . In this study, we reported the lipopolysaccharide (LPS) core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core), wabH and wabG (outer-LPS core mutants). The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR) spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR) mass spectrometry.

  1. Metalloproteomics: Forward and Reverse Approaches in Metalloprotein Structural and Functional Characterization

    PubMed Central

    Shi, Wuxian; Chance, Mark R.

    2010-01-01

    About one-third of all proteins are associated with a metal. Metalloproteomics is defined as the structural and functional characterization of metalloproteins on a genome-wide scale. The methodologies utilized in metalloproteomics, including both forward (bottom-up) and reverse (top-down) technologies, to provide information on the identity, quantity and function of metalloproteins are discussed. Important techniques frequently employed in metalloproteomics include classical proteomics tools such as mass spectrometry and 2-D gels, immobilized-metal affinity chromatography, bioinformatics sequence analysis and homology modeling, X-ray absorption spectroscopy and other synchrotron radiation based tools. Combinative applications of these techniques provide a powerful approach to understand the function of metalloproteins. PMID:21130021

  2. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, M.; Suzuki, S.; Kimura, M.

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, {alpha}-FeOOH and {gamma}-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The twomore » rust components were found to be the network structure formed by FeO{sub 6} octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces.« less

  3. Structural Characterization of Melanin Pigments from Commercial Preparations of the Edible Mushroom Auricularia auricula

    PubMed Central

    Prados-Rosales, Rafael; Toriola, Stacy; Nakouzi, Antonio; Chatterjee, Subhasish; Stark, Ruth; Gerfen, Gary; Tumpowsky, Paul; Dadachova, Ekaterina; Casadevall, Arturo

    2016-01-01

    Many of the most widely consumed edible mushrooms are pigmented, and these have been associated with some beneficial health effects. Nevertheless, the majority of the reported compounds associated with these desirable properties are non-pigmented. We have previously reported that melanin pigment from the edible mushroom Auricularia auricula can protect mice against ionizing radiation, although no physicochemical characterization was reported. Consequently, in this study we have characterized commercial A. auricula mushroom preparations for melanin content and carried out structural characterization of isolated insoluble melanin materials using a panel of sophisticated spectroscopic and physical/imaging techniques. Our results show that approximately 10% of the dry mass of A. auricula is melanin and that the pigment has physicochemical properties consistent with those of eumelanins, including hosting a stable free radical population. Electron microscopy studies show that melanin is associated with the mushroom cell wall in a manner similar to that of melanin from the model fungus C. neoformans. Elemental analysis of melanin indicated C, H, and N ratios consistent with 5,6-dihydroxyindole-2-carboxylic acid/5,6-dihydroxyindole and 1,8-dihydroxynaphthalene eumelanin. Validation of the identity of the isolated product as melanin was achieved by EPR analysis. A. auricula melanin manifested structural differences, relative to the C. neoformans melanin, with regard to the variable proportions of alkyl chains or oxygenated carbons. Given the necessity for new oral and inexpensive radioprotective materials coupled with the commercial availability of A. auricula mushrooms, this product may represent an excellent source of edible melanin. PMID:26244793

  4. Characterization of dermal plates from armored catfish Pterygoplichthys pardalis reveals sandwich-like nanocomposite structure.

    PubMed

    Ebenstein, Donna; Calderon, Carlos; Troncoso, Omar P; Torres, Fernando G

    2015-05-01

    Dermal plates from armored catfish are bony structures that cover their body. In this paper we characterized structural, chemical, and nanomechanical properties of the dermal plates from the Amazonian fish Pterygoplichthys pardalis. Analysis of the morphology of the plates using scanning electron microscopy (SEM) revealed that the dermal plates have a sandwich-like structure composed of an inner porous matrix surrounded by two external dense layers. This is different from the plywood-like laminated structure of elasmoid fish scales but similar to the structure of osteoderms found in the dermal armour of some reptiles and mammals. Chemical analysis performed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed similarities between the composition of P. pardalis plates and the elasmoid fish scales of Arapaima gigas. Reduced moduli of P. pardalis plates measured using nanoindentation were also consistent with reported values for A. gigas scales, but further revealed that the dermal plate is an anisotropic and heterogeneous material, similar to many other fish scales and osteoderms. It is postulated that the sandwich-like structure of the dermal plates provides a lightweight and tough protective layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Characterization of Structural Rebuilding and Shear Migration in Cementitious Materials in Consideration of Thixotropy

    NASA Astrophysics Data System (ADS)

    Qian, Ye

    Characterization of structural rebuilding and shear migration in cementitious materials in consideration of thixotropy Ye Qian From initial contact with water until hardening, and deterioration, cement and concrete materials are subjected to various chemical and physical transformations and environmental impacts. This thesis focuses on the properties during the fresh state, shortly after mixing until the induction period. During this period flow history, including shearing and resting, and hydration both play big roles in determining the rheological properties. The rheological properties of cement and concrete not only affect the casting and pumping process, but also very critical for harden properties and durability properties. Compared with conventional concrete, self-consolidating concrete (SCC) can introduce many advantages in construction application. These include readiness to apply, decreasing labor necessary for casting, and enhancing hardened properties. However, challenges still remain, such as issues relating to formwork pressure and multi-layer casting. Each of these issues is closely related to the property of thixotropy. From the microstructural point of view, thixotropy is described as structural buildup (flocculation) under rest and breakdown (deflocculation) under flow. For SCC, as well as other concrete systems, it is about balancing sufficient flowability during casting and rate of structural buildup after placement for the application at hand. For instance, relating to the issue of SCC formwork, it is ideal for the material to be highly flowable to achieve rapid casting, but then exhibit high rate of structural buildup to reduce formwork pressure. This can reduce the cost of formwork and reduce the risk of formwork failure. It is apparent that accurately quantifying the two aspects of thixotropy, i.e. structuration and destructuration, is key to tackling these challenges in field application. Thus, the overall objective of my doctoral study is

  6. Structural characterization of anion-calcium-humate complexes in phosphate-based fertilizers.

    PubMed

    Baigorri, Roberto; Urrutia, Oscar; Erro, Javier; Mandado, Marcos; Pérez-Juste, Ignacio; Garcia-Mina, José María

    2013-07-01

    Fertilizers based on phosphate-metal-humate complexes are a new family of compounds that represents a more sustainable and bioavailable phosphorus source. The characterization of this type of complex by using solid (31)P NMR in several fertilizers, based on single superphosphate (SSP) and triple superphosphate (TSP) matrices, yielded surprising and unexpected trends in the intensity and fine structure of the (31)P NMR peaks. Computational chemistry methods allowed the characterization of phosphate-calcium-humate complexes in both SSP and TSP matrices, but also predicted the formation of a stable sulfate-calcium-humate complex in the SSP fertilizers, which has not been described previously. The stability of this complex has been confirmed by using ultrafiltration techniques. Preference towards the humic substance for the sulfate-metal phase in SSP allowed the explanation of the opposing trends that were observed in the experimental (31)P NMR spectra of SSP and TSP samples. Additionally, computational chemistry has provided an assignment of the (31)P NMR signals to different phosphate ligands as well as valuable information about the relative strength of the phosphate-calcium interactions within the crystals. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, Radhika; Viola, Ronald E.

    2010-10-28

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 {angstrom} resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg{sup 2+} and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identificationmore » of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.« less

  8. Chemical and structural characterization of boron carbide powders and ceramics

    NASA Astrophysics Data System (ADS)

    Kuwelkar, Kanak Anant

    Boron carbide is the material of choice for lightweight armor applications due to its extreme hardness, high Young's modulus and low specific weight. The homogeneity range in boron carbide extends from 9 to 20 at% carbon with the solubility limits not uniquely defined in literature. Over the homogeneity range, the exact lattice positions of boron and carbon atoms have not been unambiguously established, and this topic has been the consideration of significant debate over the last 60 years. The atomic configuration and positions of the boron and carbon atoms play a key role in the crystal structure of the boron carbide phases. Depending on the atomic structure, boron carbide exhibits different mechanical properties which may alter its ballistic performance under extreme dynamic conditions. This work focusses on refinement and development of analytical and chemical methods for an accurate determination of the boron carbide stoichiometry. These methods were then utilized to link structural changes of boron carbide across the solubility range to variations in mechanical properties. After an extensive assessment of the currently employed characterization techniques, it was discerned that the largest source of uncertainty in the determination of the boron carbide stoichiometry was found to arise from the method utilized to evaluate the free carbon concentration. To this end, a modified spiking technique was introduced for free carbon determination where curve fitting techniques were employed to model the asymmetry of the 002 free carbon diffraction peak based on the amorphous, disordered and graphitic nature of carbon. A relationship was then established between the relative intensities of the carbon and boron carbide peaks to the percentage of added carbon and the free-carbon content was obtained by extrapolation. Samples with varying chemistry and high purity were synthesized across the solubility range by hot pressing mixtures of amorphous boron and boron carbide

  9. Characterizing Exterior and Interior Tropical Forest Structure Variability with Full-Waveform Airborne LIDAR Data in Lopé, Gabon

    NASA Astrophysics Data System (ADS)

    Marselis, S.; Tang, H.; Blair, J. B.; Hofton, M. A.; Armston, J.; Dubayah, R.

    2017-12-01

    Terrestrial ecotones, transition zones between ecological systems, have been identified as important regions to monitor the effects of environmental and human pressures on ecosystems. To observe such changes, the variability in vegetation horizontal and vertical structure must be characterized. The objective of this study is to quantify changes in vegetation structure in a tropical forest-savanna mosaic using airborne waveform lidar data. The study area is located in the northern part of the Lopé National Park in Gabon and is comprised of the vegetation types: savanna, colonizing forest, monodominant Okoumé forest, young Marantaceae forest and mixed Marantaceae forest. The lidar data were collected by the Land Vegetation and Ice Sensor (LVIS) in early March 2016, during the AfriSAR campaign. Metrics derived from the LVIS waveforms were then used to classify the five main vegetation types and characterize observed structural variability within types and across ecotones. Several supervised and unsupervised classification alogrithms, in combination with statistical analysis, were applied. The investigated methods are promising in their use to directly describe the structural variability within and between different vegetation types, map these vegetation types and the extent and location of their transition zones, and to characterize, among other attributes, the sharpness and width of such ecotones. These results provide important information in ecosystem studies as these methods can be used to study changes in vegetation structure, species-specific habitat, or the effects of deforestation and other human and natural pressures on the exterior and interior forest structure. These methods thus provide ample opportunity to assess the vegetation structure in degraded and second growth tropical forests to explore effects of e.g. grazing, logging or fragmentation. From this study we can conclude that lidar waveform remote sensing is highly useful in distinguishing

  10. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  11. Structural and compositional characterization of the adhesive produced by reef building oysters.

    PubMed

    Alberts, Erik M; Taylor, Stephen D; Edwards, Stephanie L; Sherman, Debra M; Huang, Chia-Ping; Kenny, Paul; Wilker, Jonathan J

    2015-04-29

    Oysters have an impressive ability to overcome difficulties of life within the stressful intertidal zone. These shellfish produce an adhesive for attaching to each other and building protective reef communities. With their reefs often exceeding kilometers in length, oysters play a major role in balancing the health of coastal marine ecosystems. Few details are available to describe oyster adhesive composition or structure. Here several characterization methods were applied to describe the nature of this material. Microscopy studies indicated that the glue is comprised of organic fiber-like and sheet-like structures surrounded by an inorganic matrix. Phospholipids, cross-linking chemistry, and conjugated organics were found to differentiate this adhesive from the shell. Symbiosis in material synthesis could also be present, with oysters incorporating bacterial polysaccharides into their adhesive. Oyster glue shows that an organic-inorganic composite material can provide adhesion, a property especially important when constructing a marine ecosystem.

  12. Characterization of Polyimide Foams for Ultra-Lightweight Space Structures

    NASA Technical Reports Server (NTRS)

    Meador, Michael (Technical Monitor); Hillman, Keithan; Veazie, David R.

    2003-01-01

    Ultra-lightweight materials have played a significant role in nearly every area of human activity ranging from magnetic tapes and artificial organs to atmospheric balloons and space inflatables. The application range of ultra-lightweight materials in past decades has expanded dramatically due to their unsurpassed efficiency in terms of low weight and high compliance properties. A new generation of ultra-lightweight materials involving advanced polymeric materials, such as TEEK (TM) polyimide foams, is beginning to emerge to produce novel performance from ultra-lightweight systems for space applications. As a result, they require that special conditions be fulfilled to ensure adequate structural performance, shape retention, and thermal stability. It is therefore important and essential to develop methodologies for predicting the complex properties of ultra-lightweight foams. To support NASA programs such as the Reusable Launch Vehicle (RLV), Clark Atlanta University, along with SORDAL, Inc., has initiated projects for commercial process development of polyimide foams for the proposed cryogenic tank integrated structure (see figure 1). Fabrication and characterization of high temperature, advanced aerospace-grade polyimide foams and filled foam sandwich composites for specified lifetimes in NASA space applications, as well as quantifying the lifetime of components, are immensely attractive goals. In order to improve the development, durability, safety, and life cycle performance of ultra-lightweight polymeric foams, test methods for the properties are constant concerns in terms of timeliness, reliability, and cost. A major challenge is to identify the mechanisms of failures (i.e., core failure, interfacial debonding, and crack development) that are reflected in the measured properties. The long-term goal of the this research is to develop the tools and capabilities necessary to successfully engineer ultra-lightweight polymeric foams. The desire is to reduce density

  13. Characterizing the structure and content of nurse handoffs: A Sequential Conversational Analysis approach.

    PubMed

    Abraham, Joanna; Kannampallil, Thomas; Brenner, Corinne; Lopez, Karen D; Almoosa, Khalid F; Patel, Bela; Patel, Vimla L

    2016-02-01

    Effective communication during nurse handoffs is instrumental in ensuring safe and quality patient care. Much of the prior research on nurse handoffs has utilized retrospective methods such as interviews, surveys and questionnaires. While extremely useful, an in-depth understanding of the structure and content of conversations, and the inherent relationships within the content is paramount to designing effective nurse handoff interventions. In this paper, we present a methodological framework-Sequential Conversational Analysis (SCA)-a mixed-method approach that integrates qualitative conversational analysis with quantitative sequential pattern analysis. We describe the SCA approach and provide a detailed example as a proof of concept of its use for the analysis of nurse handoff communication in a medical intensive care unit. This novel approach allows us to characterize the conversational structure, clinical content, disruptions in the conversation, and the inherently phasic nature of nurse handoff communication. The characterization of communication patterns highlights the relationships underlying the verbal content of nurse handoffs with specific emphasis on: the interactive nature of conversation, relevance of role-based (incoming, outgoing) communication requirements, clinical content focus on critical patient-related events, and discussion of pending patient management tasks. We also discuss the applicability of the SCA approach as a method for providing in-depth understanding of the dynamics of communication in other settings and domains. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Structural Characterization of Myotoxic Ecarpholin S From Echis carinatus Venom

    PubMed Central

    Zhou, Xingding; Tan, Tien-Chye; Valiyaveettil, S.; Go, Mei Lin; Kini, R. Manjunatha; Velazquez-Campoy, Adrian; Sivaraman, J.

    2008-01-01

    Phospholipase A2 (PLA2), a common toxic component of snake venom, has been implicated in various pharmacological effects. Ecarpholin S, isolated from the venom of the snake Echis carinatus sochureki, is a phospholipase A2 (PLA2) belonging to the Ser49-PLA2 subgroup. It has been characterized as having low enzymatic but potent myotoxic activities. The crystal structures of native ecarpholin S and its complexes with lauric acid, and its inhibitor suramin, were elucidated. This is the first report of the structure of a member of the Ser49-PLA2 subgroup. We also examined interactions of ecarpholin S with phosphatidylglycerol and lauric acid, using surface plasmon resonance, and of suramin with isothermal titration calorimetry. Most Ca2+-dependent PLA2 enzymes have Asp in position 49, which plays a crucial role in Ca2+ binding. The three-dimensional structure of ecarpholin S reveals a unique conformation of the Ca2+-binding loop that is not favorable for Ca2+ coordination. Furthermore, the endogenously bound fatty acid (lauric acid) in the hydrophobic channel may also interrupt the catalytic cycle. These two observations may account for the low enzymatic activity of ecarpholin S, despite full retention of the catalytic machinery. These observations may also be applicable to other non-Asp49-PLA2 enzymes. The interaction of suramin in its complex with ecarpholin S is quite different from that reported for the Lys49-PLA2/suramin complex, where the interfacial recognition face (i-face), C-terminal region, and N-terminal region of ecarpholin S play important roles. This study provides significant structural and functional insights into the myotoxic activity of ecarpholin S and, in general, of non-Asp49-PLA2 enzymes. PMID:18586854

  15. Structural Characterization of Myotoxic Ecarpholin S From Echis carinatus Venom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X.; Tan, T; Valiyaveettil, S

    2008-01-01

    Phospholipase A2 (PLA2), a common toxic component of snake venom, has been implicated in various pharmacological effects. Ecarpholin S, isolated from the venom of the snake Echis carinatus sochureki, is a phospholipase A2 (PLA2) belonging to the Ser49-PLA2 subgroup. It has been characterized as having low enzymatic but potent myotoxic activities. The crystal structures of native ecarpholin S and its complexes with lauric acid, and its inhibitor suramin, were elucidated. This is the first report of the structure of a member of the Ser49-PLA2 subgroup. We also examined interactions of ecarpholin S with phosphatidylglycerol and lauric acid, using surface plasmonmore » resonance, and of suramin with isothermal titration calorimetry. Most Ca2+-dependent PLA2 enzymes have Asp in position 49, which plays a crucial role in Ca2+ binding. The three-dimensional structure of ecarpholin S reveals a unique conformation of the Ca2+-binding loop that is not favorable for Ca2+ coordination. Furthermore, the endogenously bound fatty acid (lauric acid) in the hydrophobic channel may also interrupt the catalytic cycle. These two observations may account for the low enzymatic activity of ecarpholin S, despite full retention of the catalytic machinery. These observations may also be applicable to other non-Asp49-PLA2 enzymes. The interaction of suramin in its complex with ecarpholin S is quite different from that reported for the Lys49-PLA2/suramin complex, where the interfacial recognition face (i-face), C-terminal region, and N-terminal region of ecarpholin S play important roles. This study provides significant structural and functional insights into the myotoxic activity of ecarpholin S and, in general, of non-Asp49-PLA2 enzymes.« less

  16. Ferrocenylaniline based amide analogs of methoxybenzoic acids: Synthesis, structural characterization and butyrylcholinesterase (BChE) inhibition studies

    NASA Astrophysics Data System (ADS)

    Altaf, Ataf Ali; Kausar, Samia; Hamayun, Muhammad; Lal, Bhajan; Tahir, Muhammad Nawaz; Badshah, Amin

    2017-10-01

    Three new ferrocene based amides were synthesized with slight structural difference. The general formula of the amides is C5H5FeC5H4C6H4NHCOC6H4(OCH3). The synthesized compounds were characterized by instrumental techniques like elemental analysis, FTIR and NMR spectroscopy. Structure of the two compounds was also studied by single crystal X-rays diffraction analysis. Structural studies provide the evidence that pMeO (one of the synthesized compounds) is an example of amides having no intermolecular hydrogen bonding in solid structure. In the BChE inhibition assay, compound (oMeO) having strong intermolecular force in the solid structure is less active than the compound (pMeO) with weak intermolecular forces in the solid structure. The docking studies proved that hydrogen bonding between inhibitor and BChE enzyme is of more importance for the activity, rather than intermolecular hydrogen bonding in the solid structure of inhibitor.

  17. Durability predictions of adhesively bonded composite structures using accelerated characterization methods

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.

    1985-01-01

    The utilization of adhesive bonding for composite structures is briefly assessed. The need for a method to determine damage initiation and propagation for such joints is outlined. Methods currently in use to analyze both adhesive joints and fiber reinforced plastics is mentioned and it is indicated that all methods require the input of the mechanical properties of the polymeric adhesive and composite matrix material. The mechanical properties of polymers are indicated to be viscoelastic and sensitive to environmental effects. A method to analytically characterize environmentally dependent linear and nonlinear viscoelastic properties is given. It is indicated that the methodology can be used to extrapolate short term data to long term design lifetimes. That is, the method can be used for long term durability predictions. Experimental results for near adhesive resins, polymers used as composite matrices and unidirectional composite laminates is given. The data is fitted well with the analytical durability methodology. Finally, suggestions are outlined for the development of an analytical methodology for the durability predictions of adhesively bonded composite structures.

  18. Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis.

    PubMed

    Morehouse, Benjamin R; Kumar, Ramasamy P; Matos, Jason O; Olsen, Sarah Naomi; Entova, Sonya; Oprian, Daniel D

    2017-03-28

    Terpenes make up the largest and most diverse class of natural compounds and have important commercial and medical applications. Limonene is a cyclic monoterpene (C 10 ) present in nature as two enantiomers, (+) and (-), which are produced by different enzymes. The mechanism of production of the (-)-enantiomer has been studied in great detail, but to understand how enantiomeric selectivity is achieved in this class of enzymes, it is important to develop a thorough biochemical description of enzymes that generate (+)-limonene, as well. Here we report the first cloning and biochemical characterization of a (+)-limonene synthase from navel orange (Citrus sinensis). The enzyme obeys classical Michaelis-Menten kinetics and produces exclusively the (+)-enantiomer. We have determined the crystal structure of the apoprotein in an "open" conformation at 2.3 Å resolution. Comparison with the structure of (-)-limonene synthase (Mentha spicata), which is representative of a fully closed conformation (Protein Data Bank entry 2ONG ), reveals that the short H-α1 helix moves nearly 5 Å inward upon substrate binding, and a conserved Tyr flips to point its hydroxyl group into the active site.

  19. Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers.

    PubMed

    Rencoret, Jorge; Ralph, John; Marques, Gisela; Gutiérrez, Ana; Martínez, Ángel T; del Río, José C

    2013-03-13

    The structure of the isolated milled "wood" lignin from coconut coir has been characterized using different analytical methods, including Py-GC/MS, 2D NMR, DFRC, and thioacidolysis. The analyses demonstrated that it is a p-hydroxyphenyl-guaiacyl-syringyl (H-G-S) lignin, with a predominance of G units (S/G ratio 0.23) and considerable amounts of associated p-hydroxybenzoates. Two-dimensional NMR indicated that the main substructures present in this lignin include β-O-4' alkyl aryl ethers followed by phenylcoumarans and resinols. Two-dimensional NMR spectra also indicated that coir lignin is partially acylated at the γ-carbon of the side chain with p-hydroxybenzoates and acetates. DFRC analysis showed that acetates preferentially acylate the γ-OH in S rather than in G units. Despite coir lignin's being highly enriched in G-units, thioacidolysis indicated that β-β' resinol structures are mostly derived from sinapyl alcohol. Finally, we find evidence that the flavone tricin is incorporated into the coconut coir lignin, as has been recently noted for various grasses.

  20. Structure of dehaloperoxidase B at 1.58 Å resolution and structural characterization of the AB dimer from Amphitrite ornata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Serrano, Vesna; D; Antonio, Jennifer

    2012-04-18

    As members of the globin superfamily, dehaloperoxidase (DHP) isoenzymes A and B from the marine annelid Amphitrite ornata possess hemoglobin function, but they also exhibit a biologically relevant peroxidase activity that is capable of converting 2,4,6-trihalophenols to the corresponding 2,6-dihaloquinones in the presence of hydrogen peroxide. Here, a comprehensive structural study of recombinant DHP B, both by itself and cocrystallized with isoenzyme A, using X-ray diffraction is presented. The structure of DHP B refined to 1.58 {angstrom} resolution exhibits the same distal histidine (His55) conformational flexibility as that observed in isoenzyme A, as well as additional changes to the distalmore » and proximal hydrogen-bonding networks. Furthermore, preliminary characterization of the DHP AB heterodimer is presented, which exhibits differences in the AB interface that are not observed in the A-only or B-only homodimers. These structural investigations of DHP B provide insights that may relate to the mechanistic details of the H{sub 2}O{sub 2}-dependent oxidative dehalogenation reaction catalyzed by dehaloperoxidase, present a clearer description of the function of specific residues in DHP at the molecular level and lead to a better understanding of the paradigms of globin structure-function relationships.« less

  1. Structural and biomechanical characterizations of porcine myocardial extracellular matrix

    PubMed Central

    Wang, Bo; Tedder, Mary E.; Perez, Clara E.; Wang, Guangjun; de Jongh Curry, Amy L.; To, Filip; Elder, Steven H.; Williams, Lakiesha N.; Simionescu, Dan T.; Liao, Jun

    2012-01-01

    Extracellular matrix (ECM) of myocardium plays an important role to maintain a multilayered helical architecture of cardiomyocytes. In this study, we have characterized the structural and biomechanical properties of porcine myocardial ECM. Fresh myocardium were decellularized in a rotating bioreactor using 0.1 % sodium dodecyl sulfate solution. Masson’s trichrome staining and SEM demonstrated the removal of cells and preservation of the interconnected 3D cardiomyocyte lacunae. Movat’s pentachrome staining showed the preservation of cardiac elastin ultrastructure and vascular elastin distribution/alignment. DNA assay result confirmed a 98.59 % reduction in DNA content; the acellular myocardial scaffolds were found completely lack of staining for the porcine α-Gal antigen; and the accelerating enzymatic degradation assessment showed a constant degradation rate. Tensile and shear properties of the acellular myocardial scaffolds were also evaluated. Our observations showed that the acellular myocardial ECM possessed important traits of biodegradable scaffolds, indicating the potentials in cardiac regeneration and whole heart tissue engineering. PMID:22584822

  2. Structural Characterization of Sputter-Deposited 304 Stainless Steel+10 wt pct Al Coatings

    NASA Astrophysics Data System (ADS)

    Seelam, Uma Maheswara Rao; Suryanarayana, C.; Heinrich, Helge; Ohkubo, Tadakatsu; Hono, Kazuhiro; Cheruvu, N. S.

    2012-08-01

    An SS304 + 10 wt pct Al (with a nominal composition of Fe-18Cr-8Ni-10Al by wt pct and corresponding to Fe-17Cr-6Ni-17Al by at. pct) coating was deposited on a 304-type austenitic stainless steel (Fe-18Cr-8Ni by wt pct) substrate by the magnetron sputter-deposition technique using two targets: 304-type stainless steel (SS304) and Al. The as-deposited coatings were characterized by X-ray diffraction, transmission electron microscopy, and three-dimensional (3-D) atom probe techniques. The coating consists of columnar grains with α ferrite with the body-centered cubic (bcc) (A2) structure and precipitates with a B2 structure. It also has a deposition-induced layered structure with two alternative layers (of 3.2 nm wavelength): one rich in Fe and Cr, and the other enriched with Al and Ni. The layer with high Ni and Al contents has a B2 structure. Direct confirmation of the presence of B2 phase in the coating was obtained by electron diffraction and 3-D atom probe techniques.

  3. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures

    NASA Astrophysics Data System (ADS)

    Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin

    2017-07-01

    The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).

  4. The Preparation and Structural Characterization of Three Structural Types of Gallium Compounds Derived from Gallium (II) Chloride

    NASA Technical Reports Server (NTRS)

    Gordon, Edward M.; Hepp, Aloysius F.; Duraj. Stan A.; Habash, Tuhfeh S.; Fanwick, Phillip E.; Schupp, John D.; Eckles, William E.; Long, Shawn

    1997-01-01

    The three compounds Ga2Cl4(4-mepy)2 (1),[GaCl2(4-mepy)4]GaCl4x1/2(4-mepy); (2) and GaCl2(4-mepy)2(S2CNEt2); (3) (4-mepy= 4-methylpyridine) have been prepared from reactions of gallium (II) chloride in 4-methylpyridine and characterized by single-crystal X-ray analysis. Small variations in the reaction conditions for gallium(II) chloride can produce crystals with substantially different structural properties. The three compounds described here encompass a neutral gallium(II) dimer in which each gallium is four-coordinate, an ionic compound containing both anionic and cationic gallium complex ions with different coordination numbers and a neutral six-coordinate heteroleptic

  5. Surface Structure Spread Single Crystals (S4C): Preparation and characterization

    NASA Astrophysics Data System (ADS)

    de Alwis, A.; Holsclaw, B.; Pushkarev, V. V.; Reinicker, A.; Lawton, T. J.; Blecher, M. E.; Sykes, E. C. H.; Gellman, A. J.

    2013-02-01

    A set of six spherically curved Cu single crystals referred to as Surface Structure Spread Single Crystals (S4Cs) has been prepared in such a way that their exposed surfaces collectively span all possible crystallographic surface orientations that can be cleaved from the face centered cubic Cu lattice. The method for preparing these S4Cs and for finding the high symmetry pole point is described. Optical profilometry has been used to determine the true shapes of the S4Cs and show that over the majority of the surface, the shape is extremely close to that of a perfect sphere. The local orientations of the surfaces lie within ± 1° of the orientation expected on the basis of the spherical shape; their orientation is as good as that of many commercially prepared single crystals. STM imaging has been used to characterize the atomic level structure of the Cu(111) ± 11°-S4C. This has shown that the average step densities and the average step orientations match those expected based on the spherical shape. In other words, although there is some distribution of step-step spacing and step orientations, there is no evidence of large scale reconstruction or faceting. The Cu S4Cs have local structures based on the ideal termination of the face centered cubic Cu lattice in the direction of termination. The set of Cu S4Cs will serve as the basis for high throughput investigations of structure sensitive surface chemistry on Cu.

  6. Direct characterization of the native structure and mechanics of cyanobacterial carboxysomes.

    PubMed

    Faulkner, Matthew; Rodriguez-Ramos, Jorge; Dykes, Gregory F; Owen, Siân V; Casella, Selene; Simpson, Deborah M; Beynon, Robert J; Liu, Lu-Ning

    2017-08-03

    Carboxysomes are proteinaceous organelles that play essential roles in enhancing carbon fixation in cyanobacteria and some proteobacteria. These self-assembling organelles encapsulate Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase using a protein shell structurally resembling an icosahedral viral capsid. The protein shell serves as a physical barrier to protect enzymes from the cytosol and a selectively permeable membrane to mediate transport of enzyme substrates and products. The structural and mechanical nature of native carboxysomes remain unclear. Here, we isolate functional β-carboxysomes from the cyanobacterium Synechococcus elongatus PCC7942 and perform the first characterization of the macromolecular architecture and inherent physical mechanics of single β-carboxysomes using electron microscopy, atomic force microscopy (AFM) and proteomics. Our results illustrate that the intact β-carboxysome comprises three structural domains, a single-layered icosahedral shell, an inner layer and paracrystalline arrays of interior Rubisco. We also observe the protein organization of the shell and partial β-carboxysomes that likely serve as the β-carboxysome assembly intermediates. Furthermore, the topography and intrinsic mechanics of functional β-carboxysomes are determined in native conditions using AFM and AFM-based nanoindentation, revealing the flexible organization and soft mechanical properties of β-carboxysomes compared to rigid viruses. Our study provides new insights into the natural characteristics of β-carboxysome organization and nanomechanics, which can be extended to diverse bacterial microcompartments and are important considerations for the design and engineering of functional carboxysomes in other organisms to supercharge photosynthesis. It offers an approach for inspecting the structural and mechanical features of synthetic metabolic organelles and protein scaffolds in bioengineering.

  7. Reflection characterization of nano-sized dielectric structure in Morpho butterfly wings

    NASA Astrophysics Data System (ADS)

    Zhu, Dong

    2017-10-01

    Morpho butterflies living in Central and South America are well-known for their structural-colored blue wings. The blue coloring originates from the interaction of light with nano-sized dielectric structures that are equipped on the external surface of scales covering over their wings. The high-accuracy nonstandard finite-difference time domain (NS-FDTD) method is used to investigate the reflection characterization from the nanostructures. In the NS-FDTD calculation, a computational model is built to mimic the actual tree-like multilayered structures wherever possible using the hyperbolic tangent functions. It is generally known that both multilayer interference and diffraction grating phenomena can occur when light enters the nano-sized multilayered structure. To answer the question that which phenomenon is mainly responsible for the blue coloring, the NS-FDTD calculation is performed under various incidence angles at wavelengths from 360 to 500 nm. The calculated results at one incident wavelength under different incidence angles are visualized in a two-dimensional mapping image, where horizontal and vertical axes are incidence and reflection angles, respectively. The images demonstrate a remarkable transition from a ring-like pattern at shorter wavelengths to a retro-reflection pattern at longer wavelengths. To clarify the origin of the pattern transition, the model is separated into several simpler parts and compared their mapping images with the theoretical diffraction calculations. It can be concluded that the blue coloring at longer wavelengths is mainly caused by the cooperation of multilayer interference and retro-reflection while the effect of diffraction grating is predominant at shorter wavelengths.

  8. SDSL-ESR-based protein structure characterization.

    PubMed

    Strancar, Janez; Kavalenka, Aleh; Urbancic, Iztok; Ljubetic, Ajasja; Hemminga, Marcus A

    2010-03-01

    As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be seen in the number of protein structures published in the Protein Data Bank. This is especially the case for less-ordered, more hydrophobic and more flexible protein systems. The lack of efficient methods for structure determination calls for urgent development of a new class of biophysical techniques. This work attempts to address this problem with a novel combination of site-directed spin labelling electron spin resonance spectroscopy (SDSL-ESR) and protein structure modelling, which is coupled by restriction of the conformational spaces of the amino acid side chains. Comparison of the application to four different protein systems enables us to generalize the new method and to establish a general procedure for determination of protein structure.

  9. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration.

    PubMed

    Boufi, Sami; Bel Haaj, Sihem; Magnin, Albert; Pignon, Frédéric; Impéror-Clerc, Marianne; Mortha, Gérard

    2018-03-01

    In this paper, the disintegration of starch (waxy and standard starch) granules into nanosized particles under the sole effect of high power ultrasonication treatment in water/isopropanol is investigated, by using wide methods of analysis. The present work aims at a fully characterization of the starch nanoparticles produced by ultrasonication, in terms of size, morphology and structural properties, and the proposition of a possible mechanism explaining the top-down generation of starch nanoparticles (SNPs) via high intensity ultrasonication. Dynamic light scattering measurements have indicated a leveling of the particle size to about 40nm after 75min of ultrasonication. The WAXD, DSC and Raman have revealed the amorphous character of the SNPs. FE-SEM. AFM observations have confirmed the size measured by DLS and suggested that SNPs exhibited 2D morphology of platelet-like shapes. This morphology is further supported by SAXS. On the basis of data collected from the different characterization techniques, a possible mechanism explaining the disintegration process of starch granules into NPs is proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Analytical and Experimental Characterization of Gravity Induced Deformations In Subscale Gossamer Structures

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Blandino, Joseph R.; McEvoy, Kiley C.

    2004-01-01

    The development of gossamer space structures such as solar sails and sunshields presents many challenges due to their large size and extreme flexibility. The post-deployment structural geometry exhibited during ground testing may significantly depart from the in-space configuration due to the presence of gravity-induced deformations (gravity sag) of lightly preloaded membranes. This paper describes a study carried out to characterize gravity sag in two subscale gossamer structures: a single quadrant from a 2 m, 4 quadrant square solar sail and a 1.7 m membrane layer from a multi-layer sunshield The behavior of the test articles was studied over a range of preloads and in several orientations with respect to gravity. An experimental study was carried out to measure the global surface profiles using photogrammetry, and nonlinear finite element analysis was used to predict the behavior of the test articles. Comparison of measured and predicted surface profiles shows that the finite dement analysis qualitatively predicts deformed shapes comparable to those observed in the laboratory. Quantitatively, finite element analysis predictions for peak gravity-induced deformations in both test articles were within 10% of measured values. Results from this study provide increased insight into gravity sag behavior in gossamer structures, and demonstrates the potential to analytically predict gravity-induced deformations to within reasonable accuracy.

  11. Characterization of Large Structural Genetic Mosaicism in Human Autosomes

    PubMed Central

    Machiela, Mitchell J.; Zhou, Weiyin; Sampson, Joshua N.; Dean, Michael C.; Jacobs, Kevin B.; Black, Amanda; Brinton, Louise A.; Chang, I-Shou; Chen, Chu; Chen, Constance; Chen, Kexin; Cook, Linda S.; Crous Bou, Marta; De Vivo, Immaculata; Doherty, Jennifer; Friedenreich, Christine M.; Gaudet, Mia M.; Haiman, Christopher A.; Hankinson, Susan E.; Hartge, Patricia; Henderson, Brian E.; Hong, Yun-Chul; Hosgood, H. Dean; Hsiung, Chao A.; Hu, Wei; Hunter, David J.; Jessop, Lea; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Robert; Kraft, Peter; Lan, Qing; Lin, Dongxin; Liu, Jianjun; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Matsuo, Keitaro; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Risch, Harvey A.; Schumacher, Fredrick; Seow, Adeline; Setiawan, Veronica Wendy; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; VanDen Berg, David; Wang, Jiu-Cun; Wentzensen, Nicolas; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Yi-Long; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Zheng, Wei; Zhou, Baosen; Abnet, Christian C.; Albanes, Demetrius; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Berndt, Sonja I.; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Carreón, Tania; Chatterjee, Nilanjan; Chung, Charles C.; Cook, Michael B.; Cullen, Michael; Davis, Faith G.; Ding, Ti; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Freedman, Neal D.; Fuchs, Charles S.; Gao, Yu-Tang; Gapstur, Susan M.; Patiño-Garcia, Ana; Garcia-Closas, Montserrat; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Greene, Mark H.; Hallmans, Goran; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hoover, Robert N.; Hu, Nan; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Landgren, Annelie; Landi, Maria Teresa; Li, Donghui; Liao, Linda M.; Malats, Nuria; McGlynn, Katherine A.; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Prokunina-Olsson, Ludmila; Purdue, Mark; Qiao, You-Lin; Rabe, Kari G.; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Rodríguez-Santiago, Benjamín; Rothman, Nathaniel; Ruder, Avima M.; Savage, Sharon A.; Schwartz, Ann G.; Schwartz, Kendra L.; Sesso, Howard D.; Severi, Gianluca; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Viswanathan, Kala; Wacholder, Sholom; Wang, Zhaoming; Weinstein, Stephanie J.; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wu, Xifeng; Wunder, Jay S.; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Ziegler, Regina G.; de Andrade, Mariza; Barnes, Kathleen C.; Beaty, Terri H.; Bierut, Laura J.; Desch, Karl C.; Doheny, Kimberly F.; Feenstra, Bjarke; Ginsburg, David; Heit, John A.; Kang, Jae H.; Laurie, Cecilia A.; Li, Jun Z.; Lowe, William L.; Marazita, Mary L.; Melbye, Mads; Mirel, Daniel B.; Murray, Jeffrey C.; Nelson, Sarah C.; Pasquale, Louis R.; Rice, Kenneth; Wiggs, Janey L.; Wise, Anastasia; Tucker, Margaret; Pérez-Jurado, Luis A.; Laurie, Cathy C.; Caporaso, Neil E.; Yeager, Meredith; Chanock, Stephen J.

    2015-01-01

    Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10−31) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population. PMID:25748358

  12. Structural characterization and evolutionary analysis of fish-specific TLR27.

    PubMed

    Wang, Jinlan; Zhang, Zheng; Liu, Jing; Li, Fang; Chang, Fen; Fu, Hui; Zhao, Jing; Yin, Deling

    2015-08-01

    Toll-like receptors (TLRs) are critical components of the innate immune response of fish. In a phylogenetic analysis, TLR27 from three fish species, which belongs to TLR family 1, clustered with TLR14/18 and TLR25 on the evolutionary tree. The ectodomain of TLR27 is predicted to include 19 leucine-rich repeat (LRR) modules. Structural modeling showed that the TLR27 ectodomain can be divided into three distinctive sections. The lack of conserved asparagines on the concave surface of the central subdomain causes a structural transition in the middle of the ectodomain, forming a distinct hydrophobic pocket at the border between the central subdomain and the C-terminal subdomain. We infer that, like other functionally characterized TLRs in family 1, the hydrophobic pocket located between LRR11 and LRR12 participates in ligand recognition by TLR27. An evolutionary analysis showed that the dN/dS value at the TLR27 locus was very low. Approximately one quarter of the total number of TLR27 sites are under significant negatively selection pressure, whereas only two sites are under positive selection. Consequently, TLR27 is highly evolutionarily conserved and probably plays an extremely important role in the innate immune systems of fishes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    NASA Technical Reports Server (NTRS)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  14. Crystal Structure Characterization of Thin Layer Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Doyan, Aris; Susilawati; Azizatul Fitri, Siti; Ahzan, Sukainil

    2017-05-01

    In this research the characterization of the crystal structure of a thin layer of ZnO (zinc oxide) were synthesized by sol - gel method and spin coating deposited on a glass substrate. The samples were divided into three sol concentrations of 0.1, 0.3, 0.5 Molar and two deposition temperature is 350 °C, and 550 °C. UV-Vis. spectrophotometer results showed that in the spectrum of visible light (wavelength range 300-800 nm) has a transmittance value of which increases with increasing concentration and temperature deposition of zinc oxide, otherwise the value of the absorption and the band gap energy decreases with the addition of concentration and deposition temperature. The transmittances value of the highest and lowest absorption was 93.5% and 0.03 is at a concentration of 0.1 M and zinc oxide deposition temperature of 550 °C, with a value of band gap energy of 2.98 eV. The XRD results showed that the zinc oxide crystal orientation in the field of 013 with a crystal grain size 14.4472 nm. SEM results showed the surface morphology of zinc oxide such as rod-like.

  15. Syntheses, Structural Characterization and Thermoanalysis of Transition-Metal Compounds Derived from 3,5-Dinitropyridone

    PubMed Central

    Fan, Rong; Zhou, Qiu-Ping; Zhang, Guo-Fang; Cai, Mei-Yu; Li, Ping; Gan, Li-Hua; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng

    2010-01-01

    Nine metal compounds of Mn(II), Zn(II) and Cd(II) derived from dinitropyridone ligands (3,5-dinitro-pyrid-2-one, 2HDNP; 3,5-dinitropyrid-4-one, 4HDNP and 3,5-dinitropyrid-4-one-N- hydroxide, 4HDNPO) were characterized by elemental analysis, FT-IR and partly by TG-DSC. Three of which were further structurally characterized by X-ray single-crystal diffraction analysis. The structures of the three compounds, Mn(4DNP)2(H2O)4, 4, Zn(4DNPO)2(H2O)4, 8, and Cd(4DNPO)2(H2O)4, 9, crystallize in the monoclinic space group P2(1)/n and Z = 2, with a = 8.9281(9), b = 9.1053(9), c = 10.6881(11) Å, β = 97.9840(10)° for 4; a = 8.4154(7), b = 9.9806(8), c = 10.5695(8) Å, β = 97.3500(10)° for 8; a = 8.5072(7), b = 10.2254(8), c = 10.5075(8) Å, β 96.6500(10)° for 9. All three complexes are octahedral consisting of four equatorial water molecules, and two nitrogen or oxygen donor ligands (DNP or DNPO). The abundant hydrogen-bonding and π-π stacking interactions seem to contribute to stabilization of the crystal structures of the compounds. The TG-DTG results revealed that the complexes showed a weight loss sequence corresponding to all coordinated water molecules, nitro groups, the breaking of the pyridine rings and finally the formation of metal oxides. PMID:20526459

  16. Syntheses, Structural Characterization and Thermoanalysis of Transition-Metal Compounds Derived from 3,5-Dinitropyridone.

    PubMed

    Fan, Rong; Zhou, Qiu-Ping; Zhang, Guo-Fang; Cai, Mei-Yu; Li, Ping; Gan, Li-Hua; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng

    2009-09-28

    Nine metal compounds of Mn(II), Zn(II) and Cd(II) derived from dinitropyridone ligands (3,5-dinitro-pyrid-2-one, 2HDNP; 3,5-dinitropyrid-4-one, 4HDNP and 3,5-dinitropyrid-4-one-N- hydroxide, 4HDNPO) were characterized by elemental analysis, FT-IR and partly by TG-DSC. Three of which were further structurally characterized by X-ray single-crystal diffraction analysis. The structures of the three compounds, Mn(4DNP)(2)(H(2)O)(4), 4, Zn(4DNPO)(2)(H(2)O)(4), 8, and Cd(4DNPO)(2)(H(2)O)(4), 9, crystallize in the monoclinic space group P2(1)/n and Z = 2, with a = 8.9281(9), b = 9.1053(9), c = 10.6881(11) A, beta = 97.9840(10) degrees for 4; a = 8.4154(7), b = 9.9806(8), c = 10.5695(8) A, beta = 97.3500(10) degrees for 8; a = 8.5072(7), b = 10.2254(8), c = 10.5075(8) A, beta 96.6500(10) degrees for 9. All three complexes are octahedral consisting of four equatorial water molecules, and two nitrogen or oxygen donor ligands (DNP or DNPO). The abundant hydrogen-bonding and pi-pi stacking interactions seem to contribute to stabilization of the crystal structures of the compounds. The TG-DTG results revealed that the complexes showed a weight loss sequence corresponding to all coordinated water molecules, nitro groups, the breaking of the pyridine rings and finally the formation of metal oxides.

  17. NMR spectroscopic structural characterization of a water-soluble β-(1→3, 1→6)-glucan from Aureobasidium pullulans.

    PubMed

    Kono, Hiroyuki; Kondo, Nobuhiro; Hirabayashi, Katsuki; Ogata, Makoto; Totani, Kazuhide; Ikematsu, Shinya; Osada, Mitsumasa

    2017-10-15

    An unambiguous structural characterization of the water-soluble Aureobasidium pullulans β-(1→3, 1→6)-glucan is yet to be achieved, although this β-(1→3, 1→6)-glucan is expected to exhibit excellent biofunctional properties. Thus, we herein report the elucidation of the primary structure of the A. pullulans β-(1→3, 1→6)-glucan using nuclear magnetic resonance spectroscopy, followed by comparison of the obtained structure with that of schizophyllan (SPG). Structural characterization of the A. pullulans β-(1→3, 1→6)-glucan revealed that the structural units are a β-(1→3)-d-glucan backbone with four β-(1→6)-d-glucosyl side branching units every six residues. In addition, circular dichroism spectroscopic analysis revealed that the β-(1→3, 1→6)-glucan interacted with polyadenylic acid (poly(A)) chains in DMSO solution to form a complex similar to that obtained in the complexation of SPG/poly(A). This finding indicates that β-(1→3, 1→6)-glucan forms a triple-helical conformation in aqueous solution but exhibits a random coil structure in DMSO solution, which is similar to the behavior of SPG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ

    USGS Publications Warehouse

    Bargar, J.R.; Fuller, C.C.; Marcus, M.A.; Brearley, A.J.; Perez De la Rosa, M.; Webb, S.M.; Caldwell, W.A.

    2009-01-01

    The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick ?? 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-?? basal-plane spacing and turbostratic disorder. EXAFS analyses suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn-Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mn oxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments. ?? 2008 Elsevier Ltd.

  19. Robust estimation of fractal measures for characterizing the structural complexity of the human brain: optimization and reproducibility

    PubMed Central

    Goñi, Joaquín; Sporns, Olaf; Cheng, Hu; Aznárez-Sanado, Maite; Wang, Yang; Josa, Santiago; Arrondo, Gonzalo; Mathews, Vincent P; Hummer, Tom A; Kronenberger, William G; Avena-Koenigsberger, Andrea; Saykin, Andrew J.; Pastor, María A.

    2013-01-01

    High-resolution isotropic three-dimensional reconstructions of human brain gray and white matter structures can be characterized to quantify aspects of their shape, volume and topological complexity. In particular, methods based on fractal analysis have been applied in neuroimaging studies to quantify the structural complexity of the brain in both healthy and impaired conditions. The usefulness of such measures for characterizing individual differences in brain structure critically depends on their within-subject reproducibility in order to allow the robust detection of between-subject differences. This study analyzes key analytic parameters of three fractal-based methods that rely on the box-counting algorithm with the aim to maximize within-subject reproducibility of the fractal characterizations of different brain objects, including the pial surface, the cortical ribbon volume, the white matter volume and the grey matter/white matter boundary. Two separate datasets originating from different imaging centers were analyzed, comprising, 50 subjects with three and 24 subjects with four successive scanning sessions per subject, respectively. The reproducibility of fractal measures was statistically assessed by computing their intra-class correlations. Results reveal differences between different fractal estimators and allow the identification of several parameters that are critical for high reproducibility. Highest reproducibility with intra-class correlations in the range of 0.9–0.95 is achieved with the correlation dimension. Further analyses of the fractal dimensions of parcellated cortical and subcortical gray matter regions suggest robustly estimated and region-specific patterns of individual variability. These results are valuable for defining appropriate parameter configurations when studying changes in fractal descriptors of human brain structure, for instance in studies of neurological diseases that do not allow repeated measurements or for disease

  20. Characterization and crystal structure of lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase (cDHDPS) protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, E.A.; Bannon, G.A.; Glenn, K.C.

    2008-11-21

    The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysinemore » revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.« less

  1. Smart Fluids in Hydrology: Use of Non-Newtonian Fluids for Pore Structure Characterization

    NASA Astrophysics Data System (ADS)

    Abou Najm, M. R.; Atallah, N. M.; Selker, J. S.; Roques, C.; Stewart, R. D.; Rupp, D. E.; Saad, G.; El-Fadel, M.

    2015-12-01

    Classic porous media characterization relies on typical infiltration experiments with Newtonian fluids (i.e., water) to estimate hydraulic conductivity. However, such experiments are generally not able to discern important characteristics such as pore size distribution or pore structure. We show that introducing non-Newtonian fluids provides additional unique flow signatures that can be used for improved pore structure characterization while still representing the functional hydraulic behavior of real porous media. We present a new method for experimentally estimating the pore structure of porous media using a combination of Newtonian and non-Newtonian fluids. The proposed method transforms results of N infiltration experiments using water and N-1 non-Newtonian solutions into a system of equations that yields N representative radii (Ri) and their corresponding percent contribution to flow (wi). This method allows for estimating the soil retention curve using only saturated experiments. Experimental and numerical validation comparing the functional flow behavior of different soils to their modeled flow with N representative radii revealed the ability of the proposed method to represent the water retention and infiltration behavior of real soils. The experimental results showed the ability of such fluids to outsmart Newtonian fluids and infer pore size distribution and unsaturated behavior using simple saturated experiments. Specifically, we demonstrate using synthetic porous media that the use of different non-Newtonian fluids enables the definition of the radii and corresponding percent contribution to flow of multiple representative pores, thus improving the ability of pore-scale models to mimic the functional behavior of real porous media in terms of flow and porosity. The results advance the knowledge towards conceptualizing the complexity of porous media and can potentially impact applications in fields like irrigation efficiencies, vadose zone hydrology, soil

  2. Structural characterization of bovine beta-lactoglobulin-galactose/tagatose Maillard complexes by electrophoretic, chromatographic, and spectroscopic methods.

    PubMed

    Corzo-Martínez, Marta; Moreno, F Javier; Olano, Agustín; Villamiel, Mar

    2008-06-11

    To investigate the influence of the type of carbonyl group of the sugar on the structural changes of proteins during glycation, an exhaustive structural characterization of glycated beta-lactoglobulin with galactose (aldose) and tagatose (ketose) has been carried out. Conjugates were prepared via Maillard reaction at 40 and 50 degrees C, pH 7, and a w = 0.44. The progress of the Maillard reaction was followed by indirect formation of Amadori and Heyns compounds, advanced glycation end products, and brown polymers. The structural characterization of glycoconjugates was conducted by using a number of analytical techniques such as RP-HPLC, isoelectric focusing, MALDI-ToF, SDS-PAGE, size exclusion chromatography, and spectrofluorimetry (tryptophan fluorescence). In addition, the surface hydrophobicity of the beta-lactoglobulin glycoconjugates was also assessed. The results showed a higher reactivity of galactose than tagatose to form the glycoconjugates, probably due to the higher electrophilicity of the aldehyde group. At 40 degrees C, more aggregation was produced when beta-lactoglobulin was conjugated with tagatose as compared to galactose. However, at 50 degrees C hardly any difference was observed in the aggregation produced by galactose and tagatose. These results afford more insight into the importance of the functional group of the carbohydrate moiety during the formation of protein-carbohydrate conjugates via Maillard reaction.

  3. Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone.

    PubMed

    Fürst, David; Senck, Sascha; Hollensteiner, Marianne; Esterer, Benjamin; Augat, Peter; Eckstein, Felix; Schrempf, Andreas

    2017-07-01

    Artificial materials reflecting the mechanical properties of human bone are essential for valid and reliable implant testing and design. They also are of great benefit for realistic simulation of surgical procedures. The objective of this study was therefore to characterize two groups of self-developed synthetic foam structures by static compressive testing and by microcomputed tomography. Two mineral fillers and varying amounts of a blowing agent were used to create different expansion behavior of the synthetic open-cell foams. The resulting compressive and morphometric properties thus differed within and also slightly between both groups. Apart from the structural anisotropy, the compressive and morphometric properties of the synthetic foam materials were shown to mirror the respective characteristics of human vertebral trabecular bone in good approximation. In conclusion, the artificial materials created can be used to manufacture valid synthetic bones for surgical training. Further, they provide novel possibilities for studying the relationship between trabecular bone microstructure and biomechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Characterization of Microgravity Effects on Bone Structure and Strength Using Fractal Analysis

    NASA Technical Reports Server (NTRS)

    Acharya, Raj S.; Shackelford, Linda

    1996-01-01

    Protecting humans against extreme environmental conditions requires a thorough understanding of the pathophysiological changes resulting from the exposure to those extreme conditions. Knowledge of the degree of medical risk associated with the exposure is of paramount importance in the design of effective prophylactic and therapeutic measures for space exploration. Major health hazards due o musculoskeletal systems include the signs and symptoms of hypercalciuria, lengthy recovery of lost bone tissue after flight, the possibility of irreversible trabecular bone loss, the possible effect of calcification in the soft tissues, and the possible increase in fracture potential. In this research, we characterize the trabecular structure with the aid of fractal analysis. Our research to relate local trabecular structural information to microgravity conditions is an important initial step in understanding the effect of microgravity and countermeasures on bone condition and strength. The proposed research is also closely linked with Osteoporosis and will benefit the general population.

  5. Structural and Functional Characterization of Aerobactin Synthetase IucA from a Hypervirulent Pathotype of Klebsiella pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Daniel C.; Drake, Eric J.; Grant, Thomas D.

    Iron is a vital mineral nutrient required by virtually all life forms to prosper; pathogenic bacteria are no exception. Despite the abundance of iron within the human host, highly regulated iron physiology can result in exceedingly low levels of iron bioavailable to prospective invading bacteria. To combat this scarcity of iron, many pathogenic bacteria have acquired specific and efficient iron acquisition systems, which allow them to thrive in iron-deficient host environments. One of the more prominent bacterial iron acquisition systems involves the synthesis, secretion, and reuptake of small-molecule iron chelators known as siderophores. Aerobactin, a citrate-hydroxamate siderophore originally isolated nearlymore » 50 years ago, is produced by a number of pathogenic Gram-negative bacteria. Aerobactin has recently been demonstrated to play a pivotal role in mediating the enhanced virulence of a particularly invasive pathotype of Klebsiella pneumoniae (hvKP). Toward further understanding of this key virulence factor, we report the structural and functional characterization of aerobactin synthetase IucA from a strain of hvKP. The X-ray crystal structures of unliganded and ATP-bound forms of IucA were solved, forming the foundation of our structural analysis. Small angle X-ray scattering (SAXS) data suggest that, unlike its closest structurally characterized homologues, IucA adopts a tetrameric assembly in solution. Finally, we employed activity assays to investigate the substrate specificity and determine the apparent steady-state kinetic parameters of IucA.« less

  6. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction.

    PubMed

    Yang, Yuedong; Li, Xiaomei; Zhao, Huiying; Zhan, Jian; Wang, Jihua; Zhou, Yaoqi

    2017-01-01

    As most RNA structures are elusive to structure determination, obtaining solvent accessible surface areas (ASAs) of nucleotides in an RNA structure is an important first step to characterize potential functional sites and core structural regions. Here, we developed RNAsnap, the first machine-learning method trained on protein-bound RNA structures for solvent accessibility prediction. Built on sequence profiles from multiple sequence alignment (RNAsnap-prof), the method provided robust prediction in fivefold cross-validation and an independent test (Pearson correlation coefficients, r, between predicted and actual ASA values are 0.66 and 0.63, respectively). Application of the method to 6178 mRNAs revealed its positive correlation to mRNA accessibility by dimethyl sulphate (DMS) experimentally measured in vivo (r = 0.37) but not in vitro (r = 0.07), despite the lack of training on mRNAs and the fact that DMS accessibility is only an approximation to solvent accessibility. We further found strong association across coding and noncoding regions between predicted solvent accessibility of the mutation site of a single nucleotide variant (SNV) and the frequency of that variant in the population for 2.2 million SNVs obtained in the 1000 Genomes Project. Moreover, mapping solvent accessibility of RNAs to the human genome indicated that introns, 5' cap of 5' and 3' cap of 3' untranslated regions, are more solvent accessible, consistent with their respective functional roles. These results support conformational selections as the mechanism for the formation of RNA-protein complexes and highlight the utility of genome-scale characterization of RNA tertiary structures by RNAsnap. The server and its stand-alone downloadable version are available at http://sparks-lab.org. © 2016 Yang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. Chapter D. The Loma Prieta, California, Earthquake of October 17, 1989 - Earth Structures and Engineering Characterization of Ground Motion

    USGS Publications Warehouse

    Holzer, Thomas L.

    1998-01-01

    This chapter contains two papers that summarize the performance of engineered earth structures, dams and stabilized excavations in soil, and two papers that characterize for engineering purposes the attenuation of ground motion with distance during the Loma Prieta earthquake. Documenting the field performance of engineered structures and confirming empirically based predictions of ground motion are critical for safe and cost effective seismic design of future structures as well as the retrofitting of existing ones.

  8. A model based bayesian solution for characterization of complex damage scenarios in aerospace composite structures.

    PubMed

    Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J

    2018-01-01

    Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Structural and Immunological Activity Characterization of a Polysaccharide Isolated from Meretrix meretrix Linnaeus

    PubMed Central

    Li, Li; Li, Heng; Qian, Jianying; He, Yongfeng; Zheng, Jialin; Lu, Zhenming; Xu, Zhenghong; Shi, Jinsong

    2015-01-01

    Polysaccharides from marine clams perform various biological activities, whereas information on structure is scarce. Here, a water-soluble polysaccharide MMPX-B2 was isolated from Meretrix meretrix Linnaeus. The proposed structure was deduced through characterization and its immunological activity was investigated. MMPX-B2 consisted of d-glucose and d-galctose residues at a molar ratio of 3.51:1.00. The average molecular weight of MMPX-B2 was 510 kDa. This polysaccharide possessed a main chain of (1→4)-linked-α-d-glucopyranosyl residues, partially substituted at the C-6 position by a few terminal β-d-galactose residues or branched chains consisting of (1→3)-linked β-d-galactose residues. Preliminary immunological tests in vitro showed that MMPX-B2 could stimulate the murine macrophages to release various cytokines, and the structure-activity relationship was then established. The present study demonstrated the potential immunological activity of MMPX-B2, and provided references for studying the active ingredients in M. meretrix. PMID:26729136

  10. N-2-Hydroxy-4-methoxyacetophenone- N'-4-nitrobenzoyl hydrazine: Synthesis and structural characterization

    NASA Astrophysics Data System (ADS)

    Bessy Raj, B. N.; Kurup, M. R. Prathapachandra

    2007-04-01

    A new aroyl hydrazone, N-2-hydroxy-4-methoxyacetophenone- N'-4-nitrobenzoyl hydrazine was prepared by the condensation reaction of 2-hydroxy-4-methoxyacetophenone and 4-nitrobenzoyl hydrazine. Characterization of the compound was done by elemental analysis and electronic, infrared and NMR spectral analyses. The complete structural assignment of the compound was done by NMR studies by using COSY homonuclear and HSQC heteronuclear techniques. The crystal and molecular structure was determined by single crystal X-ray diffraction studies: crystallized in the monoclinic system, space group P2 1/ n, Z = 4, a = 7.3343(9) Å, b = 20.3517(9) Å, c = 10.1375(5) Å, α = 90.00°, β = 95.735(7)° and γ = 90.00°. From the crystal structure, it is concluded that the compound exists as the keto isomer in the solid state. There is a completely extended conformation in the central part of the molecule C5 sbnd C8 dbnd N1 sbnd N2 sbnd C10 dbnd O2 with an E configuration at the double bond of the hydrazinic bridge.

  11. Synthesis and structure characterization of chromium oxide prepared by solid thermal decomposition reaction.

    PubMed

    Li, Li; Yan, Zi F; Lu, Gao Q; Zhu, Zhong H

    2006-01-12

    Mesoporous chromium oxide (Cr2O3) nanocrystals were first synthesized by the thermal decomposition reaction of Cr(NO3)3.9H2O using citric acid monohydrate (CA) as the mesoporous template agent. The texture and chemistry of chromium oxide nanocrystals were characterized by N2 adsorption-desorption isotherms, FTIR, X-ray diffraction (XRD), UV-vis, and thermoanalytical methods. It was shown that the hydrate water and CA are the crucial factors in influencing the formation of mesoporous Cr2O3 nanocrystals in the mixture system. The decomposition of CA results in the formation of a mesoporous structure with wormlike pores. The hydrate water of the mixture provides surface hydroxyls that act as binders, making the nanocrystals aggregate. The pore structures and phases of chromium oxide are affected by the ratio of precursor-to-CA, thermal temperature, and time.

  12. Micro-CT Characterization on the Meso-Structure of Three-Dimensional Full Five-Directional Braided Composite

    NASA Astrophysics Data System (ADS)

    Ya, Jixuan; Liu, Zhenguo; Wang, Yuanhang

    2017-06-01

    The meso-structure is important in predicting mechanical properties of the three-dimensional (3D) braided composite. In this paper, the internal structure and porosity of three-dimensional full five-directional (3DF5D) braided composite is characterized at mesoscopic scale (the scale of the yarns) using micro-computed tomography (micro-CT) non-destructively. Glass fiber yarns as tracer are added into the sample made of carbon fiber to enhance the contrast in the sectional images. The model of tracer yarns is established with 3D reconstruction method to analyze the cross-section and path of yarns. The porosities are reconstructed and characterized in the end. The results demonstrate that the cross sections of braiding yarns and axial yarns change with the regions and the heights in one pitch of 3DF5D braided composites. The path of braiding yarns are various in the different regions while the axial yarns are always straight. Helical indentations appear on the surfaces of the axial yarns because of the squeeze from braiding yarns. Moreover, the porosities in different shapes and sizes are almost located in the matrix and between the yarns.

  13. Gravity Data from the Teboursouk Area ("Diapirs Zone", Northern Tunisia): Characterization of Deep Structures and Updated Tectonic Pattern

    NASA Astrophysics Data System (ADS)

    Hachani, Fatma; Balti, Hadhemi; Kadri, Ali; Gasmi, Mohamed

    2016-04-01

    Located between eastern segments of the Atlas and Tell-Rif oro-genic belts, the "Dome zone" of northern Tunisia is characterized by the juxtaposition of various structures that mainly controlled the long geody-namic history of this part of the south-Tethyan Margin. To better understand the organization and deep extension of these structures, gravity data from the Teboursouk key area are proposed. These data include the plotting of Bouguer anomaly map and related parameters such as vertical and horizontal gradients, upward continuation and Euler solution. Compared to geological and structural maps available, they allow the identification of new deep structures and greater precision regarding the characteristics and organization of known ones; consequently, an updated structural pattern is proposed.

  14. Experimental Investigation on Pore Structure Characterization of Concrete Exposed to Water and Chlorides

    PubMed Central

    Liu, Jun; Tang, Kaifeng; Qiu, Qiwen; Pan, Dong; Lei, Zongru; Xing, Feng

    2014-01-01

    In this paper, the pore structure characterization of concrete exposed to deionised water and 5% NaCl solution was evaluated using mercury intrusion porosity (MIP), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of calcium leaching, fly ash incorporation, and chloride ions on the evolution of pore structure characteristics were investigated. The results demonstrate that: (i) in ordinary concrete without any fly ash, the leaching effect of the cement products is more evident than the cement hydration effect. From the experimental data, Ca(OH)2 is leached considerably with the increase in immersion time. The pore structure of concrete can also be affected by the formation of an oriented structure of water in concrete materials; (ii) incorporation of fly ash makes a difference for the performance of concrete submersed in solutions as the total porosity and the pore connectivity can be lower. Especially when the dosage of fly ash is up to 30%, the pores with the diameter of larger than 100 nm show significant decrease. It demonstrates that the pore properties are improved by fly ash, which enhances the resistance against the calcium leaching; (iii) chlorides have a significant impact on microstructure of concrete materials because of the chemical interactions between the chlorides and cement hydrates. PMID:28788204

  15. Monocrystalline Heusler Co2FeSi alloy glass-coated microwires: Fabrication and magneto-structural characterization

    NASA Astrophysics Data System (ADS)

    Galdun, L.; Ryba, T.; Prida, V. M.; Zhukova, V.; Zhukov, A.; Diko, P.; Kavečanský, V.; Vargova, Z.; Varga, R.

    2018-05-01

    Large scale production of single crystalline phase of Heusler Co2FeSi alloy microwire is reported. The long microwire (∼1 km) with the metallic nucleus diameter of about 2 μm is characterized by well oriented monocrystalline structure (B2 phase, with the lattice parameter a = 5.615 Å). Moreover, the crystallographic direction [1 0 1] is parallel to the wire's axis along the entire length. Additionally, the wire is characterized by exhibiting a high Curie temperature (Tc > 800 K) and well-defined magnetic anisotropy mainly governed by shape. Electrical resistivity measurement reveals the exponential suppression of the electron-magnon scattering which provides strong evidence on the half-metallic behaviour of this material in the low temperature range.

  16. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    PubMed

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Purification and structural characterization of Chinese yam polysaccharide and its activities.

    PubMed

    Yang, Weifang; Wang, Ying; Li, Xiuping; Yu, Ping

    2015-03-06

    Purification and structural characterization of Chinese yam polysaccharide were investigated and its activities were analyzed. Results indicated that a single component polysaccharide with a molecular weight of 16,619 Da was obtained after hot water extraction with sequential sevage deproteinization, HSCCC and Sephadex G-100 size-exclusion chromatography. The FTIR analysis showed that it had characteristic absorptive peaks and contained uronic acid. The methylation and GC-MS analysis showed that it comprised of glucose and galactose with a molar ratio of 1.52:1, and that it mainly contained 1,3-linked-glc, 1-linked-gal and 1,6-linked-gal glycosidic bonds. (1)H NMR and (13)C NMR spectra analysis showed that there were two α-configurations and one β-configuration, and that β-1,3-glucose, α-1-galactose, α-1,6-galactose might exist in the structure of the purified polysaccharide. The determination of the antioxidative activity showed that it could scavenge hydroxyl and superoxide radicals. The purified polysaccharide displayed a certain inhibitory activity against Escherichia coli, with a MIC of 2.5 mg/mL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Structural characterization of viral epitopes recognized by broadly cross-reactive antibodies.

    PubMed

    Lee, Peter S; Wilson, Ian A

    2015-01-01

    Influenza hemagglutinin (HA) is the major surface glycoprotein on influenza viruses and mediates viral attachment and subsequent fusion with host cells. The HA is the major target of the immune response, but due to its high level of variability, as evidenced by substantial antigenic diversity, it had been historically considered to elicit only a narrow, strain-specific antibody response. However, a recent explosion in the discovery of broadly neutralizing antibodies (bnAbs) to influenza virus has identified two major supersites of vulnerability on the HA through structural characterization of HA-antibody complexes. These commonly targeted epitopes are involved with receptor binding as well as the fusion machinery and, hence, are functionally conserved and less prone to mutation. These bnAbs can neutralize viruses by blocking infection or the spread of infection by preventing progeny release. Structural analyses of these bnAbs show they exhibit striking similarities and trends in recognition of the HA and use recurring recognition motifs, despite substantial differences in their germline genes. This information can be utilized in design of novel therapeutics as well as in immunogens for improved vaccines with greater breadth and efficacy.

  19. Got Point Clouds: Characterizing Canopy Structure With Active and Passive Sensors

    NASA Astrophysics Data System (ADS)

    Popescu, S. C.; Malambo, L.; Sheridan, R.; Putman, E.; Murray, S.; Rooney, W.; Rajan, N.

    2016-12-01

    Unmanned Aerial Systems (UAS) provide the means to acquire highly customized aerial data at local scale with a multitude of sensors. UAS allow us to obtain affordably repeated observations of canopy structure for agricultural and natural resources applications by using passive optical sensors, such as cameras and photogrammetric techniques, and active sensors, such as lidar (Light Detection and Ranging). The objectives of this presentation are to: (1) offer a brief overview of UAS used for agriculture and natural resources studies, (2) describe experiences in conducting agriculture phenotyping and forest vegetation measurements, and (3) give details on the methodology developed for image and lidar data processing for characterizing the three dimensional structure of plant canopies. The UAS types used for this purpose included rotary platforms, such as quadcopters, hexacopters, and octocopters, with a payload capacity of up to 19 lbs. The sensors that collected data over two crop seasons include multispectral cameras in the visible color spectrum and near infrared, and UAS-lidar. For ground reference data we used terrestrial lidar scanners and field measurements. Results comparing UAS and terrestrial measurements show high correlation and open new areas of scientific investigation of crop canopies previously not possible with affordable techniques.

  20. Characterization of an acoustic cavitation bubble structure at 230 kHz.

    PubMed

    Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2011-03-01

    A generic bubble structure in a 230 kHz ultrasonic field is observed in a partly developed standing wave field in water. It is characterized by high-speed imaging, sonoluminescence recordings, and surface cleaning tests. The structure has two distinct bubble populations. Bigger bubbles (much larger than linear resonance size) group on rings in planes parallel to the transducer surface, apparently in locations of driving pressure minima. They slowly rise in a jittering, but synchronous way, and they can have smaller satellite bubbles, thus resembling the arrays of bubbles observed by Miller [D. Miller, Stable arrays of resonant bubbles in a 1-MHz standing-wave acoustic field, J. Acoust. Soc. Am. 62 (1977) 12]. Smaller bubbles (below and near linear resonance size) show a fast "streamer" motion perpendicular to and away from the transducer surface. While the bigger bubbles do not emit light, the smaller bubbles in the streamers show sonoluminescence when they pass the planes of high driving pressure. Both bubble populations exhibit cleaning potential with respect to micro-particles attached to a glass substrate. The respective mechanisms of particle removal, though, might be different. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Using Multispectral False Color Imaging to Characterize Tropical Cyclone Structure and Environment

    NASA Astrophysics Data System (ADS)

    Cossuth, J.; Bankert, R.; Richardson, K.; Surratt, M. L.

    2016-12-01

    The Naval Research Laboratory's (NRL) tropical cyclone (TC) web page (http://www.nrlmry.navy.mil/TC.html) has provided nearly two decades of near real-time access to TC-centric images and products by TC forecasters and enthusiasts around the world. Particularly, microwave imager and sounder information that is featured on this site provides crucial internal storm structure information by allowing users to perceive hydrometeor structure, providing key details beyond cloud top information provided by visible and infrared channels. Towards improving TC analysis techniques and helping advance the utility of the NRL TC webpage resource, new research efforts are presented. This work demonstrates results as well as the methodology used to develop new automated, objective satellite-based TC structure and intensity guidance and enhanced data fusion imagery products that aim to bolster and streamline TC forecast operations. This presentation focuses on the creation and interpretation of false color RGB composite imagery that leverages the different emissive and scattering properties of atmospheric ice, liquid, and vapor water as well as ocean surface roughness as seen by microwave radiometers. Specifically, a combination of near-realtime data and a standardized digital database of global TCs in microwave imagery from 1987-2012 is employed as a climatology of TC structures. The broad range of TC structures, from pinhole eyes through multiple eyewall configurations, is characterized as resolved by passive microwave sensors. The extraction of these characteristic features from historical data also lends itself to statistical analysis. For example, histograms of brightness temperature distributions allows a rigorous examination of how structural features are conveyed in image products, allowing a better representation of colors and breakpoints as they relate to physical features. Such climatological work also suggests steps to better inform the near-real time application of

  2. Characterization and modeling of ionic polymeric smart materials as artificial muscles and robotic swimming structures

    NASA Astrophysics Data System (ADS)

    Mojarrad, Mehran

    2001-07-01

    In this dissertation document, a thorough review and investigation of works in connection with the ionic polymeric gels as artificial muscles and electrically controllable polymeric network structures were performed. Where possible, comparisons were made with biological muscles and applications in marine propulsion using such polymeric materials were investigated. Furthermore, methods of fabrication of several chemically active ionic polymeric gel muscles such as PolyAcryloNitrile (PAN), Poly(2-Acrylamido-2-Methyl-1-PropaneSulfonic) acid (PAMPS), and PolyAcrylic-acid-bis-AcrylaMide (PAAM) as well as a new class of electrically active composite muscle such as Ion-Exchange-Metal-Composites (IEMC) or Ionic Polymer Metal Composites (IPMC) materials are introduced and investigated that resulted in two US patents regarding their fabrication and application capabilities as actuators and sensors. In this research, various forms of the IPMC fabrication were explored and reported. In addition, characterization of PAN muscles, bundling and encapsulation were investigated. Conversion of chemical to electrical artificial muscles were also investigated using chemical plating techniques as well as physical vapor deposition methods of the pH-activated muscles like PAN fibers. Experimental methods were devised to characterize contraction, expansion, and bending of various actuators using isometric, isoionic, and isotonic characterization methods. Several apparatuses for modeling and testing of the various artificial muscles were built to show the viability of the application of both chemoactive and electroactive muscles. Furthermore PAN fiber muscles in different configurations such as spring-loaded fiber bundles, biceps, triceps, ribbon type muscles, and segmented fiber bundles were fabricated to make a variety of actuators. Additionally, swimming robotic structures and associated hardware were built to incorporate IPMC as biomimetic propulsion fin actuators. In addition, various

  3. Characterization of large structural genetic mosaicism in human autosomes.

    PubMed

    Machiela, Mitchell J; Zhou, Weiyin; Sampson, Joshua N; Dean, Michael C; Jacobs, Kevin B; Black, Amanda; Brinton, Louise A; Chang, I-Shou; Chen, Chu; Chen, Constance; Chen, Kexin; Cook, Linda S; Crous Bou, Marta; De Vivo, Immaculata; Doherty, Jennifer; Friedenreich, Christine M; Gaudet, Mia M; Haiman, Christopher A; Hankinson, Susan E; Hartge, Patricia; Henderson, Brian E; Hong, Yun-Chul; Hosgood, H Dean; Hsiung, Chao A; Hu, Wei; Hunter, David J; Jessop, Lea; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Robert; Kraft, Peter; Lan, Qing; Lin, Dongxin; Liu, Jianjun; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M; Matsuo, Keitaro; Olson, Sara H; Orlow, Irene; Park, Jae Yong; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Risch, Harvey A; Schumacher, Fredrick; Seow, Adeline; Setiawan, Veronica Wendy; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; VanDen Berg, David; Wang, Jiu-Cun; Wentzensen, Nicolas; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Yi-Long; Xia, Lucy; Yang, Hannah P; Yang, Pan-Chyr; Zheng, Wei; Zhou, Baosen; Abnet, Christian C; Albanes, Demetrius; Aldrich, Melinda C; Amos, Christopher; Amundadottir, Laufey T; Berndt, Sonja I; Blot, William J; Bock, Cathryn H; Bracci, Paige M; Burdett, Laurie; Buring, Julie E; Butler, Mary A; Carreón, Tania; Chatterjee, Nilanjan; Chung, Charles C; Cook, Michael B; Cullen, Michael; Davis, Faith G; Ding, Ti; Duell, Eric J; Epstein, Caroline G; Fan, Jin-Hu; Figueroa, Jonine D; Fraumeni, Joseph F; Freedman, Neal D; Fuchs, Charles S; Gao, Yu-Tang; Gapstur, Susan M; Patiño-Garcia, Ana; Garcia-Closas, Montserrat; Gaziano, J Michael; Giles, Graham G; Gillanders, Elizabeth M; Giovannucci, Edward L; Goldin, Lynn; Goldstein, Alisa M; Greene, Mark H; Hallmans, Goran; Harris, Curtis C; Henriksson, Roger; Holly, Elizabeth A; Hoover, Robert N; Hu, Nan; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Koh, Woon-Puay; Kolonel, Laurence N; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C; LaCroix, Andrea; Landgren, Annelie; Landi, Maria Teresa; Li, Donghui; Liao, Linda M; Malats, Nuria; McGlynn, Katherine A; McNeill, Lorna H; McWilliams, Robert R; Melin, Beatrice S; Mirabello, Lisa; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M; Prokunina-Olsson, Ludmila; Purdue, Mark; Qiao, You-Lin; Rabe, Kari G; Rajaraman, Preetha; Real, Francisco X; Riboli, Elio; Rodríguez-Santiago, Benjamín; Rothman, Nathaniel; Ruder, Avima M; Savage, Sharon A; Schwartz, Ann G; Schwartz, Kendra L; Sesso, Howard D; Severi, Gianluca; Silverman, Debra T; Spitz, Margaret R; Stevens, Victoria L; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R; Teras, Lauren R; Tobias, Geoffrey S; Viswanathan, Kala; Wacholder, Sholom; Wang, Zhaoming; Weinstein, Stephanie J; Wheeler, William; White, Emily; Wiencke, John K; Wolpin, Brian M; Wu, Xifeng; Wunder, Jay S; Yu, Kai; Zanetti, Krista A; Zeleniuch-Jacquotte, Anne; Ziegler, Regina G; de Andrade, Mariza; Barnes, Kathleen C; Beaty, Terri H; Bierut, Laura J; Desch, Karl C; Doheny, Kimberly F; Feenstra, Bjarke; Ginsburg, David; Heit, John A; Kang, Jae H; Laurie, Cecilia A; Li, Jun Z; Lowe, William L; Marazita, Mary L; Melbye, Mads; Mirel, Daniel B; Murray, Jeffrey C; Nelson, Sarah C; Pasquale, Louis R; Rice, Kenneth; Wiggs, Janey L; Wise, Anastasia; Tucker, Margaret; Pérez-Jurado, Luis A; Laurie, Cathy C; Caporaso, Neil E; Yeager, Meredith; Chanock, Stephen J

    2015-03-05

    Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Structural Characterization of the Fla2 Flagellum of Rhodobacter sphaeroides

    PubMed Central

    de la Mora, Javier; Uchida, Kaoru; del Campo, Ana Martínez; Camarena, Laura; Aizawa, Shin-Ichi

    2015-01-01

    ABSTRACT Rhodobacter sphaeroides is a free-living alphaproteobacterium that contains two clusters of functional flagellar genes in its genome: one acquired by horizontal gene transfer (fla1) and one that is endogenous (fla2). We have shown that the Fla2 system is normally quiescent and under certain conditions produces polar flagella, while the Fla1 system is always active and produces a single flagellum at a nonpolar position. In this work we purified and characterized the structure and analyzed the composition of the Fla2 flagellum. The number of polar filaments per cell is 4.6 on average. By comparison with the Fla1 flagellum, the prominent features of the ultra structure of the Fla2 HBB are the absence of an H ring, thick and long hooks, and a smoother zone at the hook-filament junction. The Fla2 helical filaments have a pitch of 2.64 μm and a diameter of 1.4 μm, which are smaller than those of the Fla1 filaments. Fla2 filaments undergo polymorphic transitions in vitro and showed two polymorphs: curly (right-handed) and coiled. However, in vivo in free-swimming cells, we observed only a bundle of filaments, which should probably be left-handed. Together, our results indicate that Fla2 cell produces multiple right-handed polar flagella, which are not conventional but exceptional. IMPORTANCE R. sphaeroides possesses two functional sets of flagellar genes. The fla1 genes are normally expressed in the laboratory and were acquired by horizontal transfer. The fla2 genes are endogenous and are expressed in a Fla1− mutant grown phototrophically and in the absence of organic acids. The Fla1 system produces a single lateral or subpolar flagellum, and the Fla2 system produces multiple polar flagella. The two kinds of flagella are never expressed simultaneously, and both are used for swimming in liquid media. The two sets of genes are certainly ready for responding to specific environmental conditions. The characterization of the Fla2 system will help us to understand

  5. A comparative study of theoretical graph models for characterizing structural networks of human brain.

    PubMed

    Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang

    2013-01-01

    Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  6. Three-Dimensional Structure and Biophysical Characterization of Staphylococcus aureus Cell Surface Antigen-Manganese Transporter MntC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gribenko, Alexey; Mosyak, Lidia; Ghosh, Sharmistha

    MntC is a metal-binding protein component of the Mn 2 +-specific mntABC transporter from the pathogen Staphylococcus aureus. The protein is expressed during the early stages of infection and was proven to be effective at reducing both S. aureus and Staphylococcus epidermidis infections in a murine animal model when used as a vaccine antigen. MntC is currently being tested in human clinical trials as a component of a multiantigen vaccine for the prevention of S. aureus infections. To better understand the biological function of MntC, we are providing structural and biophysical characterization of the protein in this work. The three-dimensionalmore » structure of the protein was solved by X-ray crystallography at 2.2 Å resolution and suggests two potential metal binding modes, which may lead to reversible as well as irreversible metal binding. Precise Mn 2 +-binding affinity of the protein was determined from the isothermal titration calorimetry experiments using a competition approach. Differential scanning calorimetry experiments confirmed that divalent metals can indeed bind to MntC reversibly as well as irreversibly. Finally, Mn 2 +-induced structural and dynamics changes have been characterized using spectroscopic methods and deuterium–hydrogen exchange mass spectroscopy. Results of the experiments show that these changes are minimal and are largely restricted to the structural elements involved in metal coordination. Therefore, it is unlikely that antibody binding to this antigen will be affected by the occupancy of the metal-binding site by Mn 2 +.« less

  7. Structural characterization of Co100-xFex nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Endo, Hiroaki; Doi, Masaaki; Hasegawa, Naoya; Sahashi, Masashi

    2006-04-01

    For the structural characterization of a Co100-xFex nano-oxide layer (NOL), the exchange bias properties of the Co100-xFex-natural oxidized NOL in the specular spin-valve (SPSV) system were investigated. The exchange bias energy (Jex) increased monotonically with the increasing Fe content for the Co100-xFex-NOL. The enhancement of both the magnetoresistance ratio and the exchange bias field (Hex) was realized by increasing the Fe content in the Co100-xFex-NOL. It should be mentioned that Hex more than 800 Oe is obtained by the insertion of Co30Fe70-NOL, even in NOL-SPSV, which is a remarkably higher pinning field than that ever reported on IrMn-SV. This high exchange bias field is considered to be realized by the formation of an Fe-rich fcc phase at the interface of IrMn.

  8. Structural and Functional Characterization of Reston Ebola Virus VP35 Interferon Inhibitory Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Daisy W.; Shabman, Reed S.; Farahbakhsh, Mina

    2010-09-21

    Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address thismore » question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-{angstrom} crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 {angstrom}, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for

  9. Structural and functional characterization of Reston Ebola virus VP35 interferon inhibitory domain.

    PubMed

    Leung, Daisy W; Shabman, Reed S; Farahbakhsh, Mina; Prins, Kathleen C; Borek, Dominika M; Wang, Tianjiao; Mühlberger, Elke; Basler, Christopher F; Amarasinghe, Gaya K

    2010-06-11

    Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address this question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-A crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 A, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for sequence variability, coupled

  10. A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids

    NASA Astrophysics Data System (ADS)

    Liang, Yingjie; Chen, Wen

    2018-03-01

    Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.

  11. Structural characterization of novel L-galactose-containing oligosaccharide subunits of jojoba seed xyloglucans.

    PubMed

    Hantus, S; Pauly, M; Darvill, A G; Albersheim, P; York, W S

    1997-10-28

    Jojoba seed xyloglucan was shown to be a convenient source of biologically active xyloglucan oligosaccharides that contain both L- and D-galactosyl residues [E. Zablackis et al., Science, 272 (1996) 1808-1810]. Oligosaccharides were isolated by liquid chromatography of the mixture of oligosaccharides generated by treating jojoba seed xyloglucan with a beta-(1-->4)-endoglucanase. The purified oligosaccharides were reduced with NaBH4, converting them to oligoglycosyl alditol derivatives that were structurally characterized by a combination of mass spectrometry and 2-dimensional NMR spectroscopy. This analysis established that jojoba xyloglucan oligosaccharides contain the novel side-chain [alpha-L-Gal p-(1-->2)-beta-D-Galp-(1-->2)-alpha-D-Xyl p-(1-->6)-], which is structurally homologous to the fucose-containing side-chain [alpha-L-Fucp-(1-->2)-beta-D-Galp-(1-->2)-alpha-D-Xyl p-(1-->6)-] found in other biologically active xyloglucan oligosaccharides.

  12. Molten Salt Synthesis and Structural Characterization of BaTiO3 Nanocrystal Ceramics

    NASA Astrophysics Data System (ADS)

    Ahda, S.; Misfadhila, S.; Parikin, P.; Putra, T. Y. S. P.

    2017-02-01

    A new synthesis route to obtain high-purity barium titanate powder, BaTiO3, using the molten salt method by reacting the raw materials (BaCO3 and TiO2) in an atmosphere of molten NaCl and KCl, has been developed. The synthesized BaTiO3 ceramic particles have been successfully carried out at the sintering temperature 950°C for 4 hours. The Rietveld refinement of the XRD diffraction patterns was employed to characterize the structural information of the nanocrystalline BaTiO3 ceramics. The lattice parameters (a=4.0043 Å, b=4.0308Å with space group P4mm) of tetragonal perovskite structure, as an indication of piezoelectric characteristics, have been successfully determined by the Rietveld refinement. While the crystallitte particle size and strains have been obtained for the values of 110.6 nm and 0.74 % respectively

  13. Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique.

    PubMed

    Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho

    2007-08-20

    In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.

  14. Crystal Structure and Biochemical Characterization of a Mycobacterium smegmatis AAA-Type Nucleoside Triphosphatase Phosphohydrolase (Msm0858).

    PubMed

    Unciuleac, Mihaela-Carmen; Smith, Paul C; Shuman, Stewart

    2016-05-15

    AAA proteins (ATPases associated with various cellular activities) use the energy of ATP hydrolysis to drive conformational changes in diverse macromolecular targets. Here, we report the biochemical characterization and 2.5-Å crystal structure of a Mycobacterium smegmatis AAA protein Msm0858, the ortholog of Mycobacterium tuberculosis Rv0435c. Msm0858 is a magnesium-dependent ATPase and is active with all nucleoside triphosphates (NTPs) and deoxynucleoside triphosphates (dNTPs) as substrates. The Msm0858 structure comprises (i) an N-terminal domain (amino acids [aa] 17 to 201) composed of two β-barrel modules and (ii) two AAA domains, D1 (aa 212 to 473) and D2 (aa 476 to 744), each of which has ADP in the active site. Msm0858-ADP is a monomer in solution and in crystallized form. Msm0858 domains are structurally homologous to the corresponding modules of mammalian p97. However, the position of the N-domain modules relative to the AAA domains in the Msm0858-ADP tertiary structure is different and would impede the formation of a p97-like hexameric quaternary structure. Mutational analysis of the A-box and B-box motifs indicated that the D1 and D2 AAA domains are both capable of ATP hydrolysis. Simultaneous mutations of the D1 and D2 active-site motifs were required to abolish ATPase activity. ATPase activity was effaced by mutation of the putative D2 arginine finger, suggesting that Msm0858 might oligomerize during the ATPase reaction cycle. A truncated variant Msm0858 (aa 212 to 745) that lacks the N domain was characterized as a catalytically active homodimer. Recent studies have underscored the importance of AAA proteins (ATPases associated with various cellular activities) in the physiology of mycobacteria. This study reports the ATPase activity and crystal structure of a previously uncharacterized mycobacterial AAA protein, Msm0858. Msm0858 consists of an N-terminal β-barrel domain and two AAA domains, each with ADP bound in the active site. Msm0858 is a

  15. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE PAGES

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi; ...

    2018-02-03

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  16. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  17. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D

    2017-05-01

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Structural Characterization of Two Metastable ATP-Bound States of P-Glycoprotein

    PubMed Central

    O’Mara, Megan L.; Mark, Alan E.

    2014-01-01

    ATP Binding Cassette (ABC) transporters couple the binding and hydrolysis of ATP to the transport of substrate molecules across the membrane. The mechanism by which ATP binding and/or hydrolysis drives the conformational changes associated with substrate transport has not yet been characterized fully. Here, changes in the conformation of the ABC export protein P-glycoprotein on ATP binding are examined in a series of molecular dynamics simulations. When one molecule of ATP is placed at the ATP binding site associated with each of the two nucleotide binding domains (NBDs), the membrane-embedded P-glycoprotein crystal structure adopts two distinct metastable conformations. In one, each ATP molecule interacts primarily with the Walker A motif of the corresponding NBD. In the other, the ATP molecules interacts with both Walker A motif of one NBD and the Signature motif of the opposite NBD inducing the partial dimerization of the NBDs. This interaction is more extensive in one of the two ATP binding site, leading to an asymmetric structure. The overall conformation of the transmembrane domains is not altered in either of these metastable states, indicating that the conformational changes associated with ATP binding observed in the simulations in the absence of substrate do not lead to the outward-facing conformation and thus would be insufficient in themselves to drive transport. Nevertheless, the metastable intermediate ATP-bound conformations observed are compatible with a wide range of experimental cross-linking data demonstrating the simulations do capture physiologically important conformations. Analysis of the interaction between ATP and its cofactor Mg2+ with each NBD indicates that the coordination of ATP and Mg2+ differs between the two NBDs. The role structural asymmetry may play in ATP binding and hydrolysis is discussed. Furthermore, we demonstrate that our results are not heavily influenced by the crystal structure chosen for initiation of the simulations

  19. Characterization of structural connections using free and forced response test data

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Huckelbridge, Arthur A.

    1989-01-01

    The accurate prediction of system dynamic response often has been limited by deficiencies in existing capabilities to characterize connections adequately. Connections between structural components often are complex mechanically, and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic preditions. A procedure for identifying physical connection properties from free and forced response test data is developed, then verified utilizing a system having both a linear and nonlinear connection. Connection properties are computed in terms of physical parameters so that the physical characteristics of the connections can better be understood, in addition to providing improved input for the system model. The identification procedure is applicable to multi-degree of freedom systems, and does not require that the test data be measured directly at the connection locations.

  20. Structure of dehaloperoxidase B at 1.58 Å resolution and structural characterization of the AB dimer from Amphitrite ornata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrano, Vesna de; D’Antonio, Jennifer; Franzen, Stefan

    2010-05-01

    The crystal structure of dehaloperoxidase (DHP) isoenzyme B from the terebellid polychaete A. ornata, which exhibits both hemoglobin and peroxidase functions, has been determined at 1.58 Å resolution. As members of the globin superfamily, dehaloperoxidase (DHP) isoenzymes A and B from the marine annelid Amphitrite ornata possess hemoglobin function, but they also exhibit a biologically relevant peroxidase activity that is capable of converting 2,4,6-trihalophenols to the corresponding 2,6-dihaloquinones in the presence of hydrogen peroxide. Here, a comprehensive structural study of recombinant DHP B, both by itself and cocrystallized with isoenzyme A, using X-ray diffraction is presented. The structure of DHPmore » B refined to 1.58 Å resolution exhibits the same distal histidine (His55) conformational flexibility as that observed in isoenzyme A, as well as additional changes to the distal and proximal hydrogen-bonding networks. Furthermore, preliminary characterization of the DHP AB heterodimer is presented, which exhibits differences in the AB interface that are not observed in the A-only or B-only homodimers. These structural investigations of DHP B provide insights that may relate to the mechanistic details of the H{sub 2}O{sub 2}-dependent oxidative dehalogenation reaction catalyzed by dehaloperoxidase, present a clearer description of the function of specific residues in DHP at the molecular level and lead to a better understanding of the paradigms of globin structure–function relationships.« less

  1. Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping

    USDA-ARS?s Scientific Manuscript database

    The application of genotyping by sequencing (GBS) approaches, combined with data imputation methodologies, is narrowing the genetic knowledge gap between major and understudied, minor crops. GBS is an excellent tool to characterize the genomic structure of recently domesticated (~200 years) and unde...

  2. Characterization of structures of the Nankai Trough accretionary prism from integrated analyses of LWD log response, resistivity images and clay mineralogy of cuttings: Expedition 338 Site C0002

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Schleicher, Anja

    2014-05-01

    The objective of our research is a detailed characterization of structures on the basis of LWD oriented images and logs,and clay mineralogy of cuttings from Hole C0002F of the Nankai Trough accretionary prism. Our results show an integrated interpretation of structures derived from borehole images, petrophysical characterization on LWD logs and cuttings mineralogy. The geometry of the structure intersected at Hole C0002F has been characterized by the interpretation of oriented borehole resistivity images acquired during IODP Expedition 338. The characterization of structural features, faults and fracture zones is based on a detailed post-cruise interpretation of bedding and fractures on borehole images and also on the analysis of Logging While Drilling (LWD) log response (gamma radioactivity, resistivity and sonic logs). The interpretation and complete characterization of structures (fractures, fracture zones, fault zones, folds) was achieved after detailed shorebased reprocessing of resistivity images, which allowed to enhance bedding and fracture's imaging for geometry and orientation interpretation. In order to characterize distinctive petrophysical properties based on LWD log response, it could be compared with compositional changes derived from cuttings analyses. Cuttings analyses were used to calibrate and to characterize log response and to verify interpretations in terms of changes in composition and texture at fractures and fault zones defined on borehole images. Cuttings were taken routinely every 5 m during Expedition 338, indicating a clay-dominated lithology of silty claystone with interbeds of weakly consolidated, fine sandstones. The main mineralogical components are clay minerals, quartz, feldspar and calcite. Selected cuttings were taken from areas of interest as defined on LWD logs and images. The clay mineralogy was investigated on the <2 micron clay-size fraction, with special focus on smectite and illite minerals. Based on X-ray diffraction

  3. Characterization of nephelium mutabile blume-like structure of carbon nanotubes prepared from palm oil by CVD method

    NASA Astrophysics Data System (ADS)

    Maryam, M.; Shamsudin, M. S.; Rusop, M.

    2017-09-01

    A new structure of carbon nanotube was produced from the Single furnace Aerosol-assisted Catalytic CVD (SFAACVD) method using Palm Oil (PO) as the precursor and Ferrocene (Fe) as the catalyst. A nephelium mutabile blume (rambutan)-like structure of CNTs was found from the black substance collected from the Alumina boat substrate placed inside the furnace. Temperature of furnace which was heated at 600 °C - 800 °C plays an important role in determining the formation of structure. The formation rambutan-like structure of CNTs was optimized at 700 °C and the samples collected were characterized by Field Emission Scanning Electron Microscope (FE-SEM) to obtain the surface morphologies. Raman Spectroscopy (RS) and Thermogravimetric Analysis (TGA) were then used to further study the Raman Spectra and purity of samples.

  4. Synthesis, Characterization, and Secondary Structure Determination of a Silk-Inspired, Self-Assembling Peptide: A Laboratory Exercise for Organic and Biochemistry Courses

    ERIC Educational Resources Information Center

    Albin, Tyler J.; Fry, Melany M.; Murphy, Amanda R.

    2014-01-01

    This laboratory experiment gives upper-division organic or biochemistry undergraduate students a comprehensive look at the synthesis, chemical characterization, self-assembly, and secondary structure determination of small, N-acylated peptides inspired by the protein structure of silkworm silk. All experiments can be completed in one 4 h lab…

  5. Structural characterization of a D-isomer specific 2-hydroxyacid dehydrogenase from Lactobacillus delbrueckii ssp. bulgaricus.

    PubMed

    Holton, Simon J; Anandhakrishnan, Madhankumar; Geerlof, Arie; Wilmanns, Matthias

    2013-02-01

    Hydroxyacid dehydrogenases, responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids in lactic acid producing bacteria, have a range of biotechnology applications including antibiotic synthesis, flavor development in dairy products and the production of valuable synthons. The genome of Lactobacillus delbrueckii ssp. bulgaricus, a member of the heterogeneous group of lactic acid bacteria, encodes multiple hydroxyacid dehydrogenases whose structural and functional properties remain poorly characterized. Here, we report the apo and coenzyme NAD⁺ complexed crystal structures of the L. bulgaricusD-isomer specific 2-hydroxyacid dehydrogenase, D2-HDH. Comparison with closely related members of the NAD-dependent dehydrogenase family reveals that whilst the D2-HDH core fold is structurally conserved, the substrate-binding site has a number of non-canonical features that may influence substrate selection and thus dictate the physiological function of the enzyme. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.

    2015-04-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d33 and d31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d33 coefficient of the composite to the achieved d33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d33 of 3.2 pC N-1. Moreover, the Young’s modulus of the composite structure has been characterized.

  7. Characterizing the Nano and Micro Structure of Concrete toImprove its Durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.

    2009-01-13

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali?silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools aremore » shown on this paper.« less

  8. Characterizing the nano and micro structure of concrete to improve its durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.

    2008-10-22

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images on ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools willmore » be shown on this paper.« less

  9. Structural Characterization of Poorly-Crystalline Scorodite, Iron (III)-arsenate Co-precipitates and Uranium Millneutralized Raffinate Solids using X-ray Absorption Fine Structure Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, N.; Jiang, D; Cutler, J

    X-ray absorption fine structure (XAFS) is used to characterize the mineralogy of the iron(III)-arsenate(V) precipitates produced during the raffinate (aqueous effluent) neutralization process at the McClean Lake uranium mill in northern Saskatchewan, Canada. To facilitate the structural characterization of the precipitated solids derived from the neutralized raffinate, a set of reference compounds were synthesized and analyzed. The reference compounds include crystalline scorodite, poorly-crystalline scorodite, iron(III)-arsenate co-precipitates obtained under different pH conditions, and arsenate-adsorbed on goethite. The poorly-crystalline scorodite (prepared at pH 4 with Fe/As = 1) has similar As local structure as that of crystalline scorodite. Both As and Femore » K-edge XAFS of poorly-crystalline scorodite yield consistent results on As-Fe (or Fe-As) shell. From As K-edge analysis the As-Fe shell has an inter-atomic distance of 3.33 {+-} 0.02 A and coordination number of 3.2; while from Fe K-edge analysis the Fe-As distance and coordination number are 3.31 {+-} 0.02 A and 3.8, respectively. These are in contrast with the typical arsenate adsorption on bidentate binuclear sites on goethite surfaces, where the As-Fe distance is 3.26 {+-} 0.03 A and coordination number is close to 2. A similar local structure identified in the poorly-crystalline scorodite is also found in co-precipitation solids (Fe(III)/As(V) = 3) when precipitated at the same pH (pH = 4): As-Fe distance 3.30 {+-} 0.03 A and coordination number 3.9; while at pH = 8 the co-precipitate has As-Fe distance of 3.27 {+-} 0.03 A and coordination number about 2, resembling more closely the adsorption case. The As local structure in the two neutralized raffinate solid series (precipitated at pH values up to 7) closely resembles that in the poorly-crystalline scorodite. All of the raffinate solids have the same As-Fe inter-atomic distance as that in the poorly-crystalline scorodite, and a systematic

  10. The quest to achieve the detailed structural and functional characterization of CymA.

    PubMed

    Louro, Ricardo O; Paquete, Catarina M

    2012-12-01

    Shewanella oneidensis MR-1 is a sediment organism capable of dissimilatory reduction of insoluble metal compounds such as those of Fe(II) and Mn(IV). This bacterium has been used as a model organism for potential applications in bioremediation of contaminated environments and in the production of energy in microbial fuel cells. The capacity of Shewanella to perform extracellular reduction of metals is linked to the action of several multihaem cytochromes that may be periplasmic or can be associated with the inner or outer membrane. One of these cytochromes is CymA, a membrane-bound tetrahaem cytochrome localized in the periplasm that mediates the electron transfer between the quinone pool in the cytoplasmic membrane and several periplasmic proteins. Although CymA has the capacity to regulate multiple anaerobic respiratory pathways, little is known about the structure and functional mechanisms of this focal protein. Understanding the structure and function of membrane proteins is hampered by inherent difficulties associated with their purification since the choice of the detergents play a critical role in the protein structure and stability. In the present mini-review, we detail the current state of the art in the characterization of CymA, and add recent information on haem structural behaviour for CymA solubilized in different detergents. These structural differences are deduced from NMR spectroscopy data that provide information on the geometry of the haem axial ligands. At least two different conformational forms of CymA are observed for different detergents, which seem to be related to the micelle size. These results provide guidance for the discovery of the most promising detergent that mimics the native lipid bilayer and is compatible with biochemical and structural studies.

  11. Characterization of structure and activity of garlic peroxidase (POX(1B)).

    PubMed

    El Ichi, Sarra; Miodek, Anna; Sauriat-Dorizon, Hélène; Mahy, Jean-Pierre; Henry, Céline; Marzouki, Mohamed Nejib; Korri-Youssoufi, Hafsa

    2011-01-01

    Structural characterization and study of the activity of new POX(1B) protein from garlic which has a high peroxidase activity and can be used as a biosensor for the detection of hydrogen peroxide and phenolic compounds were performed and compared with the findings for other heme peroxidases. The structure-function relationship was investigated by analysis of the spectroscopic properties and correlated to the structure determined by a new generation of high-performance hybrid mass spectrometers. The reactivity of the enzyme was analyzed by studies of the redox activity toward various ligands and the reactivity with various substrates. We demonstrated that, in the case of garlic peroxidase, the heme group is pentacoordinated, and has an histidine as a proximal ligand. POX(1B) exhibited a high affinity for hydrogen peroxide as well as various reducing cosubstrates. In addition, high enzyme specificity was demonstrated. The k(cat) and K(M) values were 411 and 400 mM(-1) s(-1) for 3,3',5,5'-tetramethylbenzidine and 2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), respectively. Furthermore, the reduction of nitro compounds in the presence of POX(1B) was demonstrated by iron(II) nitrosoalkane complex assay. In addition, POX(1B) showed a great potential for application for drug metabolism since its ability to react with 1-nitrohexane in the presence of sodium dithionite was demonstrated by the appearance of a characteristic Soret band at 411 nm. The high catalytic efficiency obtained in the case of the new garlic peroxidase (POX(1B)) is suitable for the monitoring of different analytes and biocatalysis.

  12. Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments

    PubMed Central

    He, Didi; Hughes, Sam; Vanden-Hehir, Sally; Georgiev, Atanas; Altenbach, Kirsten; Tarrant, Emma; Mackay, C Logan; Waldron, Kevin J; Clarke, David J; Marles-Wright, Jon

    2016-01-01

    Ferritins are ubiquitous proteins that oxidise and store iron within a protein shell to protect cells from oxidative damage. We have characterized the structure and function of a new member of the ferritin superfamily that is sequestered within an encapsulin capsid. We show that this encapsulated ferritin (EncFtn) has two main alpha helices, which assemble in a metal dependent manner to form a ferroxidase center at a dimer interface. EncFtn adopts an open decameric structure that is topologically distinct from other ferritins. While EncFtn acts as a ferroxidase, it cannot mineralize iron. Conversely, the encapsulin shell associates with iron, but is not enzymatically active, and we demonstrate that EncFtn must be housed within the encapsulin for iron storage. This encapsulin nanocompartment is widely distributed in bacteria and archaea and represents a distinct class of iron storage system, where the oxidation and mineralization of iron are distributed between two proteins. DOI: http://dx.doi.org/10.7554/eLife.18972.001 PMID:27529188

  13. Structural characterization of humic-like substances with conventional and surface-enhanced spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Carletti, Paolo; Roldán, Maria Lorena; Francioso, Ornella; Nardi, Serenella; Sanchez-Cortes, Santiago

    2010-10-01

    Emission-excitation, synchronous fluorescence spectroscopy and surface-enhanced Raman scattering (SERS) combined with surface-enhanced fluorescence (SEF) were applied to aqueous solutions of a humic-like substance (HLS) extracted from earthworm faeces. All measurements were acquired in a wide range of pH (4-12) and analysed by the linear regression analysis. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra were also acquired to assist in the structural characterization of this HLS. The emission and excitation spectra allowed the identification of two main fluorophores in the analysed sample. Moreover, a close correlation between fluorescence intensities of each fluorophore with pH variation was observed. SERS and SEF, in agreement with the fluorescence spectroscopy, showed that the HLS at low pH values exists in an aggregated and coiled molecular structure while it is dispersed and uncoiled at alkaline conditions. The obtained spectra also evidenced that different conditions modify the functional groups exposed to the surrounding aqueous environment.

  14. Optical and structural characterization of InAs/GaAs quantum wells

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; George, T.; Grunthaner, F. J.; Liu, J. K.; Rich, D. H.; Terhune, R. W.; Wilson, B. A.; Pollak, F. H.; Huang, Y.-S.

    1991-01-01

    Three InAs/GaAs single quantum wells of two-, three-, and four-monolayer thickness were characterized using optical and structural techniques. The results of high-resolution transmission electron (HRTEM) microscopy and optical studies which combine absorption, photoluminescence (PL), photoreflectance, and cathodoluminescence are presented. Using the polarization modulated absorptance technique, we observed two absorption features in our samples at 77 K. On the basis of their polarization properties and comparison with an envelope function calculation, these structures are assigned to transitions between the confined heavy-hole and confined and unconfined electron levels. Photoreflectance spectra of the three-monolayer sample in 77-300 K range show only the fundamental quantum well transition. The temperature dependence of this transition is approximately linear with a slope of 2.2 x 10 exp -4 eV/K, which is significantly lower than in both constituent materials. Comparison to the absorption data reveals that the PL spectra are affected by the carrier diffusion and therefore do not provide direct measure of the exciton density of states. The HRTEM images indicate that, while the interfaces of the two-monolayer sample are smooth and the well thickness is uniform, the four-monolayer sample has uneven interfaces and contains domains of two, three, and four monolayers.

  15. Syntheses and structural characterization of iron(II) and copper(II) coordination compounds with the neutral flexible bidentate N-donor ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2014-08-01

    Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.

  16. Synthesis, structure and characterization of two new organic template-directed gallium phosphate/phosphite-oxalates

    NASA Astrophysics Data System (ADS)

    Xue, Zhen-Zhen; Pan, Jie; Li, Jin-Hua; Wang, Zong-Hua; Wang, Guo-Ming

    2017-06-01

    Two new gallium phosphate/phosphite-oxalates hybrid solids, {[H2dmpip][Ga2(HPO4)2(PO4)(C2O4)0.5]·H2O} (1) and [H2apm][Ga2(H2PO3)2(HPO3)2(C2O4)] (2), where dmpip = 2,6-dimethyl-piperazine and apm = N-(3-aminopropyl)morpholine, have been synthesized and structurally characterized. Both of compounds 1 and 2 are formed by the connectivity of the Ga-based polyhedral, phosphite/phosphate groups as well as oxalate units. Compound 1 possesses a two-dimensional layer structure, in which the C2O4 units via an in-plane linkage connect two Ga center within the sheet. While in 2, the C2O4 units serve as bis-bidentates ligands bridging two GaO6 octahedra from two distinct gallium-phosphite chains to give rise to inorganic-organic hybrid layer with 8-membered rings. In these materials, the structure-directing amines reside in the interlayer region and interact with the layers by way of hydrogen-bonds.

  17. Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system.

    PubMed

    Ullah, Muhammad Wajid; Ul-Islam, Mazhar; Khan, Shaukat; Kim, Yeji; Park, Joong Kon

    2016-01-20

    This study was aimed to characterize the structural and physico-mechanical properties of bio-cellulose produced through cell-free system. Fourier transform-infrared spectrum illustrated exact matching of structural peaks with microbial cellulose, used as reference. Field-emission scanning electron microscopy revealed that fibrils of bio-cellulose were thicker and more compact than microbial cellulose. The specific positions of peaks in the X-ray diffraction and nuclear magnetic resonance spectra indicated that bio-cellulose possessed cellulose II polymorphic structure. Bio-cellulose presented superior physico-mechanical properties than microbial cellulose. The water holding capacity of bio-cellulose and microbial cellulose were found to be 188.6 ± 5.41 and 167.4 ± 4.32 times their dry-weights, respectively. Tensile strengths and degradation temperature of bio-cellulose were 17.63 MPa and 352 °C, respectively compared to 14.71 MPa and 327 °C of microbial cellulose. Overall, the results indicated successful synthesis and superior properties of bio-cellulose that advocate its effectiveness for various applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein

    NASA Astrophysics Data System (ADS)

    Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2016-06-01

    The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1.

  19. Structure and Functional Characterization of Human Aspartate Transcarbamoylase, the Target of the Anti-tumoral Drug PALA.

    PubMed

    Ruiz-Ramos, Alba; Velázquez-Campoy, Adrián; Grande-García, Araceli; Moreno-Morcillo, María; Ramón-Maiques, Santiago

    2016-07-06

    CAD, the multienzymatic protein that initiates and controls de novo synthesis of pyrimidines in animals, associates through its aspartate transcarbamoylase (ATCase) domain into particles of 1.5 MDa. Despite numerous structures of prokaryotic ATCases, we lack structural information on the ATCase domain of CAD. Here, we report the structure and functional characterization of human ATCase, confirming the overall similarity with bacterial homologs. Unexpectedly, human ATCase exhibits cooperativity effects that reduce the affinity for the anti-tumoral drug PALA. Combining structural, mutagenic, and biochemical analysis, we identified key elements for the necessary regulation and transmission of conformational changes leading to cooperativity between subunits. Mutation of one of these elements, R2024, was recently found to cause the first non-lethal CAD deficit. We reproduced this mutation in human ATCase and measured its effect, demonstrating that this arginine is part of a molecular switch that regulates the equilibrium between low- and high-affinity states for the ligands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations.

    PubMed

    Barradas-Bautista, Didier; Fernández-Recio, Juan

    2017-01-01

    Next-generation sequencing (NGS) technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.

  1. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations

    PubMed Central

    2017-01-01

    Next-generation sequencing (NGS) technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level. PMID:28841721

  2. A Lagrangian cylindrical coordinate system for characterizing dynamic surface geometry of tubular anatomic structures.

    PubMed

    Lundh, Torbjörn; Suh, Ga-Young; DiGiacomo, Phillip; Cheng, Christopher

    2018-03-03

    Vascular morphology characterization is useful for disease diagnosis, risk stratification, treatment planning, and prediction of treatment durability. To quantify the dynamic surface geometry of tubular-shaped anatomic structures, we propose a simple, rigorous Lagrangian cylindrical coordinate system to monitor well-defined surface points. Specifically, the proposed system enables quantification of surface curvature and cross-sectional eccentricity. Using idealized software phantom examples, we validate the method's ability to accurately quantify longitudinal and circumferential surface curvature, as well as eccentricity and orientation of eccentricity. We then apply the method to several medical imaging data sets of human vascular structures to exemplify the utility of this coordinate system for analyzing morphology and dynamic geometric changes in blood vessels throughout the body. Graphical abstract Pointwise longitudinal curvature of a thoracic aortic endograft surface for systole and diastole, with their absolute difference.

  3. Characterization of the transport properties of channel delta-doped structures by light-modulated Shubnikov-de Haas measurements

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Haugland, E. J.; Alterovitz, S. A.; Young, P. G.; Bibyk, S. B.; Ringel, S. A.

    1995-01-01

    The transport properties of channel delta-doped quantum well structures were characterized by conventional Hall effect and light-modulated Shubnikov-de Haas (SdH) effect measurements. The large number of carriers that become available due to the delta-doping of the channel, leads to an apparent degeneracy in the well. As a result of this degeneracy, the carrier mobility remains constant as a function of temperature from 300 K down to 1.4 K. The large amount of impurity scattering, associated with the overlap of the charge carriers and the dopants, resulted in low carrier mobilities and restricted the observation of the oscillatory magneto-resistance used to characterize the two-dimensional electron gas (2DEG) by conventional SdH measurements. By light-modulating the carriers, we were able to observe the SdH oscillation at low magnetic fields, below 1.4 tesla, and derive a value for the quantum scattering time. Our results for the ratio of the transport and quantum scattering times are lower than those previously measured for similar structures using much higher magnetic fields.

  4. Synthesis and structural characterization of two half-sandwich nickel(II) complexes with the scorpionate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.-F., E-mail: wgf1979@126.com, E-mail: s-shuwen@163.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Sun, S.-W.

    The synthesis and characterization of two new halfsandwich mononuclear nickel(II) complexes with the scorpionate ligands, [k{sup 3}-N, N',N''-Tp{sup t-Bu}, {sup Me}NiI] (1) and [k{sup 3}-N,N',N''-Tp{sup t-Bu}, {sup Me}NiNO{sub 3}] (2), are reported. These complexes have been fully characterized by elemental analyses and infrared spectra. Their molecular structures were determined by single crystal X-ray diffraction. The nickel(II) ion of complex 1 is in a four-coordinate environment, in which the donor atoms are provided by three nitrogen atoms of a hydrotris(pyrazolyl) borate ligand and one iodide atom, while that of complex 2 is in a five-coordinate environment with three nitrogen atoms frommore » a hydrotris(pyrazolyl)borate ligand and two oxygen atoms from a nitrate ion.« less

  5. New approach for extraction of cellulose from tucumã's endocarp and its structural characterization

    NASA Astrophysics Data System (ADS)

    Manzato, L.; Rabelo, L. C. A.; de Souza, S. M.; da Silva, C. G.; Sanches, E. A.; Rabelo, D.; Mariuba, L. A. M.; Simonsen, J.

    2017-09-01

    The recycling of plant wasted materials into useful products represents a green alternative to prevent environmental problems. Tucumã palm fruit (Astrocaryum aculeatum Meyer) is widely used in Amazon region for food and crafts. Due to the large amount of wasted Tucumã's endocarp, this work proposes a new approach for extraction of cellulose and its structural characterization. X-ray Diffraction (XRD), Rietveld Refinement, Scanning Electron Microscopy (SEM), Infrared-transform Fourier Spectroscopy (FTIR) and Thermal Analysis (TG/DSC) have been used for characterization of the extracted cellulose. XRD patterns of the in natura tucumã's endocarp has showed a natural crystalline content embedded in a non-crystalline matrix. Nanocrystals of cellulose have been observed in the XRD pattern of the extracted cellulose, showing a good agreement with type II. Rietveld refinement allowed the cell parameters obtainment (a = 8.43(1) Å, b = 9.50(1) Å, c = 9.39(3) Å and γ = 118.43(4)°). Apparent average crystallite size and microstrain were, respectively, 20.0 Å and 0.1%. Two different methods were applied for estimative of crystallinity percentage. In the first method the height ratio between the intensity of the crystalline peak and the total intensity after the subtraction of the non-crystalline content was applied, leading to 48.5%. The second approach was performed using the amorphous area and the total area of the (1 1 0) peak from the experimental diffractogram, leading to 31.5%. The difference in crystallinity percentage concerning these two used approaches may be explained due to the first method does not consider the broad peaks resulted from nanocrystals diffraction. FTIR spectroscopy has evidenced a cellulose type II structure. SEM images showed micrometric sized fibers with ranged thicknesses. However, a new morphology of spherical nanostructures was observed on the type II matrix fibers. Thermal analysis suggests that the extracted cellulose have low thermal

  6. Structural characterization of NRAS isoform 5

    PubMed Central

    Mal, Tapas K.; Yuan, Chunhua; Courtney, Nicholas B.; Patel, Mitra; Stiff, Andrew R.; Blachly, James; Walker, Christopher; Eisfeld, Ann‐Kathrin; de la Chapelle, Albert

    2016-01-01

    Abstract It was recently discovered that the NRAS isoform 5 (20 amino acids) is expressed in melanoma and results in a more aggressive cell phenotype. This novel isoform is responsible for increased phosphorylation of downstream targets such as AKT, MEK, and ERK as well as increased cellular proliferation. This structure report describes the NMR solution structure of NRAS isoform 5 to be used as a starting point to understand its biophysical interactions. The isoform is highly flexible in aqueous solution, but forms a helix‐turn‐coil structure in the presence of trifluoroethanol as determined by NMR and CD spectroscopy. PMID:26947772

  7. Structural properties and optical characterization of flower-like Mg doped NiO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allaedini, Ghazaleh, E-mail: jiny-ghazaleh@yahoo.com; Tasirin, Siti Masrinda; Aminayi, Payam

    In this study, un-doped and Mg doped NiO nanoparticles have been synthesized through a simple sol-gel method. To investigate the effect of Mg-doping on the structure of NiO, the obtained nanoparticles were characterized using scanning electron microscopy (SEM). Flower/star like morphology was clearly observed in the SEM micrographs. The BET (Brunauer-Emmett-Teller) nitrogen absorption isotherm exhibits high specific surface area (∼37 m{sup 2} /g) for the Mg doped NiO nanoparticles. X-Ray diffraction (XRD) of the prepared Mg-NiO nanoparticles showed a face-centered cubic (f.c.c) structure, and the average particle size was estimated to be 32 nm using Scherrer’s formula. Energy Dispersive X-Ray (EDX)more » confirms that the NiO particles are successfully doped with Mg. Photoluminescence (PL) and UV-Vis optical absorption characteristics of the prepared nanoparticles have also been investigated in this study. The PL emission response showed a blue shift when NiO was doped with Mg, which is indicative of interstitial oxygen. The UV-Vis results demonstrate a band gap increase as NiO nanoparticles are doped with Mg.« less

  8. Structural Characterization of Lignin during Pinus taeda Wood Treatment with Ceriporiopsis subvermispora

    PubMed Central

    Guerra, Anderson; Mendonça, Régis; Ferraz, André; Lu, Fachuang; Ralph, John

    2004-01-01

    Pinus taeda wood chips were biotreated with Ceriporiopsis subvermispora under solid-state fermentation for periods varying from 15 to 90 days. Milled wood lignins extracted from sound and biotreated wood samples were characterized by wet-chemical and spectroscopic techniques. Treatment of the lignins by derivatization followed by reductive cleavage (DFRC) made it possible to detect DFRC monomers and dimers that are diagnostic of the occurrence of arylglycerol-β-O-aryl and β-β, β-5, β-1, and 4-O-5 units in the lignin structure. Quantification of these DFRC products indicated that β-O-aryl cleavage was a significant route for lignin biodegradation but that β-β, β-5, β-1, and 4-O-5 linkages were more resistant to the biological attack. The amount of aromatic hydroxyls did not increase with the split of β-O-4 linkages, suggesting that the β-O-4 cleavage products remain as quinone-type structures as detected by UV and visible spectroscopy. Nuclear magnetic resonance techniques also indicated the formation of new substructures containing nonoxygenated, saturated aliphatic carbons (CH2 and CH3) in the side chains of lignins extracted from biotreated wood samples. PMID:15240285

  9. Detailed Structural Characterization of Sphingolipids via 193 nm Ultraviolet Photodissociation and Ultra High Resolution Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ryan, Eileen; Nguyen, Catherine Quynh Nhu; Shiea, Christopher; Reid, Gavin E.

    2017-07-01

    Sphingolipids serve not only as components of cellular membranes but also as bioactive mediators of numerous cellular functions. As the biological activities of these lipids are dependent on their structures, and due to the limitations of conventional ion activation methods employed during tandem mass spectrometry (MS/MS), there is a recognized need for the development of improved structure-specific methods for their comprehensive identification and characterization. Here, positive-ionization mode 193 nm ultraviolet photodissociation (UVPD)-MS/MS has been implemented for the detailed structural characterization of lipid species from a range of sphingolipid classes introduced to the mass spectrometer via electrospray ionization as their lithiated or protonated adducts. These include sphingosine d18:1(4E), dihydrosphingosine (sphinganine) d18:0, sphingadiene d18:2(4E,11Z), the isomeric sphingolipids ceramide d18:1(4E)/18:0 and dihydroceramide d18:0/18:1(9Z), ceramide-1-phosphate d18:1(4Z)/16:0, sphingomyelin d18:1(4E)/18:1(9Z) the glycosphingolipids galactosyl ceramide d18:1(4E)/24:1(15Z) and lactosyl ceramide d18:1(4E)/24:0, and several endogenous lipids present within a porcine brain total lipid extract. In addition to the product ions formed by higher energy collision dissociation (HCD), UVPD is shown to yield a series of novel structurally diagnostic product ions resulting from cleavage of both sphingosine carbon-carbon and acyl chain carbon-carbon double bonds for direct localization of site(s) of unsaturation, as well as via diagnostic cleavages of the sphingosine backbone and N-C amide bond linkages. With activation timescales and dissociation efficiencies similar to those found in conventional MS/MS strategies, this approach is therefore a promising new tool in the arsenal of ion activation techniques toward providing complete structural elucidation in automated, high-throughput lipid analysis workflows.

  10. Pore Structure Characterization of Sodium Hydroxide Activated Slag Using Mercury Intrusion Porosimetry, Nitrogen Adsorption, and Image Analysis.

    PubMed

    Zuo, Yibing; Ye, Guang

    2018-06-19

    The pore structure of alkali-activated slag has a significant influence on its performance. However, the literature shows insufficient studies regarding the suitability of different techniques for characterizing the pore structure and the influences of Na₂O and curing age on pore structure development. In pursuit of a better understanding, the pore structure of sodium hydroxide activated slag paste was characterized by multiple techniques, e.g., mercury intrusion porosimetry (MIP), nitrogen (N₂) adsorption, and scanning electron microscopy (SEM) image analysis. The sodium hydroxide activated slag pastes were prepared with three different contents of Na₂O (Na₂O/slag = 4, 6, and 8%) and cured for different times up to 360 days. The microstructure observation reveals that outer C⁻(N⁻)A⁻S⁻H and inner C⁻(N⁻)A⁻S⁻H grow successively around the reacting slag grains, along with crystalline reaction products which are formed in the empty coarse pore space. The increase of Na₂O content and curing age lead to a finer pore structure. The MIP measurements show that the total porosity drops about 70% within the first day, and that one peak at most, corresponding to gel pores, was identified in the differential curves of all the investigated samples from 1 to 360 days. On the contrary, only one peak, corresponding to capillary pores, was identified by SEM-image analysis. The differential curves derived from N₂ adsorption generally reveal two peaks, and the trend that the pore diameters of those two peaks vary with curing age depends on the content of Na₂O. Compared to Portland cement, sodium hydroxide activated slag has a higher pore space filling capacity ( χ , V products / V slag-reacted ), while the capacity decreases with increasing Na₂O content and curing age.

  11. Characterizing the propagation evolution of wave patterns and vortex structures in astigmatic transformations of Hermite-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Chen, Y. F.; Chang, C. C.; Lee, C. Y.; Tung, J. C.; Liang, H. C.; Huang, K. F.

    2018-01-01

    Theoretical wave functions are analytically derived to characterize the propagation evolution of the Hermite-Gaussian (HG) beams transformed by a single-lens astigmatic mode converter with arbitrary angle. The derived wave functions are related to the combination of the rotation transform and the antisymmetric fractional Fourier transform. The derived formula is systematically validated by using an off-axis diode-pumped solid-state laser to generate various high-order HG beams for mode conversions. In addition to validation, the creation and evolution of vortex structures in the transformed HG beams are numerically manifested. The present theoretical analyses can be used not only to characterize the evolution of the transformed beams but to design the optical vortex beams with various forms.

  12. Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams

    NASA Astrophysics Data System (ADS)

    Ries, S.; Spoerrer, A.; Altstaedt, V.

    2014-05-01

    Polymer foams play an important role caused by the steadily increasing demand to light weight design. In case of soft polymers, like thermoplastic elastomers (TPE), the haptic feeling of the surface is affected by the inner foam structure. Foam injection molding of TPEs leads to so called structural foam, consisting of two compact skin layers and a cellular core. The properties of soft structural foams like soft-touch, elastic and plastic behavior are affected by the resulting foam structure, e.g. thickness of the compact skins and the foam core or density. This inner structure can considerably be influenced by different processing parameters and the chosen blowing agent. This paper is focused on the selection and characterization of suitable blowing agents for foam injection molding of a TPE-blend. The aim was a high density reduction and a decent inner structure. Therefore DSC and TGA measurements were performed on different blowing agents to find out which one is appropriate for the used TPE. Moreover a new analyzing method for the description of processing characteristics by temperature dependent expansion measurements was developed. After choosing suitable blowing agents structural foams were molded with different types of blowing agents and combinations and with the breathing mold technology in order to get lower densities. The foam structure was analyzed to show the influence of the different blowing agents and combinations. Finally compression tests were performed to estimate the influence of the used blowing agent and the density reduction on the compression modulus.

  13. Characterizing structural association alterations within brain networks in normal aging using Gaussian Bayesian networks.

    PubMed

    Guo, Xiaojuan; Wang, Yan; Chen, Kewei; Wu, Xia; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li

    2014-01-01

    Recent multivariate neuroimaging studies have revealed aging-related alterations in brain structural networks. However, the sensory/motor networks such as the auditory, visual and motor networks, have obtained much less attention in normal aging research. In this study, we used Gaussian Bayesian networks (BN), an approach investigating possible inter-regional directed relationship, to characterize aging effects on structural associations between core brain regions within each of these structural sensory/motor networks using volumetric MRI data. We then further examined the discriminability of BN models for the young (N = 109; mean age =22.73 years, range 20-28) and old (N = 82; mean age =74.37 years, range 60-90) groups. The results of the BN modeling demonstrated that structural associations exist between two homotopic brain regions from the left and right hemispheres in each of the three networks. In particular, compared with the young group, the old group had significant connection reductions in each of the three networks and lesser connection numbers in the visual network. Moreover, it was found that the aging-related BN models could distinguish the young and old individuals with 90.05, 73.82, and 88.48% accuracy for the auditory, visual, and motor networks, respectively. Our findings suggest that BN models can be used to investigate the normal aging process with reliable statistical power. Moreover, these differences in structural inter-regional interactions may help elucidate the neuronal mechanism of anatomical changes in normal aging.

  14. Preparation and structural characterization of corn starch-aroma compound inclusion complexes.

    PubMed

    Zhang, Shu; Zhou, Yibin; Jin, Shanshan; Meng, Xin; Yang, Liping; Wang, Haisong

    2017-01-01

    Six corn starch inclusion complexes were synthesized using small nonpolar or weak polar aroma compounds (heptanolide, carvone and menthone) and small polar aroma compounds (linalool, heptanol and menthol). The objectives of this study were to (a) investigate the ability of corn starch to form inclusion complexes with these aroma compounds and (b) characterize the structure of the corn starch inclusion complexes. The resulting inclusion ratios were 75.6, 36.9, 43.8, 91.9, 67.2 and 54.7% for heptanolide, carvone, menthone, linalool, heptanol and menthol respectively. The inclusion complexes had laminated structures with a certain amount of holes or blocky constructions. Compared with gelatinized corn starch, the transition temperatures, peak temperatures and enthalpies of the inclusion complexes were significantly different. The major peak of CO at 1771 cm -1 and significant peak shifts revealed the formation of inclusion complexes. X-ray diffractometry (XRD) analyses revealed that the crystallinity of corn starch-polar aroma compound inclusion complexes increased. Based on cross-polarization magic angle spinning 13 C nuclear magnetic resonance (CP-MAS 13 C NMR) results, novel peaks and chemical shifts were attributed to the presence of small aroma compounds, thereby confirming the formation of corn starch inclusion complexes. Small nonpolar and polar aroma compounds can be complexed to corn starch. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Kinetic, Thermodynamic, and Structural Characterizations of the Association between Nrf2-DLGex Degron and Keap1

    PubMed Central

    Fukutomi, Toshiaki; Takagi, Kenji; Mizushima, Tsunehiro; Ohuchi, Noriaki

    2014-01-01

    Transcription factor Nrf2 (NF-E2-related factor 2) coordinately regulates cytoprotective gene expression, but under unstressed conditions, Nrf2 is degraded rapidly through Keap1 (Kelch-like ECH-associated protein 1)-mediated ubiquitination. Nrf2 harbors two Keap1-binding motifs, DLG and ETGE. Interactions between these two motifs and Keap1 constitute a key regulatory nexus for cellular Nrf2 activity through the formation of a two-site binding hinge-and-latch mechanism. In this study, we determined the minimum Keap1-binding sequence of the DLG motif, the low-affinity latch site, and defined a new DLGex motif that covers a sequence much longer than that previously defined. We have successfully clarified the crystal structure of the Keap1-DC-DLGex complex at 1.6 Å. DLGex possesses a complicated helix structure, which interprets well the human-cancer-derived loss-of-function mutations in DLGex. In thermodynamic analyses, Keap1-DLGex binding is characterized as enthalpy and entropy driven, while Keap1-ETGE binding is characterized as purely enthalpy driven. In kinetic analyses, Keap1-DLGex binding follows a fast-association and fast-dissociation model, while Keap1-ETGE binding contains a slow-reaction step that leads to a stable conformation. These results demonstrate that the mode of DLGex binding to Keap1 is distinct from that of ETGE structurally, thermodynamically, and kinetically and support our contention that the DLGex motif serves as a converter transmitting environmental stress to Nrf2 induction as the latch site. PMID:24366543

  16. Characterization of Chitin and Chitosan Molecular Structure in Aqueous Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franca, Eduardo D.; Lins, Roberto D.; Freitas, Luiz C.

    Molecular dynamics simulations have been used to characterize the structure of chitin and chitosan fibers in aqueous solutions. Chitin fibers, whether isolated or in the form of a β-chitin nanoparticle, adopt the so-called 2-fold helix with Φ and φ values similar to its crystalline state. In solution, the intramolecular hydrogen bond HO3(n)•••O5(n+1) responsible for the 2-fold helical motif is stabilized by hydrogen bonds with water molecules in a well-defined orientation. On the other hand, chitosan can adopt five distinct helical motifs and its conformational equilibrium is highly dependent on pH. The hydrogen bond pattern and solvation around the O3 atommore » of insoluble chitosan (basic pH) are nearly identical to these quantities in chitin. Our findings suggest that the solubility and conformation of these polysaccharides are related to the stability of the intrachain HO3(n)•••O5(n+1) hydrogen bond, which is affect by the water exchange around the O3-HO3 hydroxyl group.« less

  17. Pore Structure Characterization in Concrete Prepared with Carbonated Fly Ash

    NASA Astrophysics Data System (ADS)

    Sahoo, Sanjukta

    2018-03-01

    Carbon dioxide capture and storage (CCS) is a technique to address the global concern of continuously rising CO2 level in the atmosphere. Fly ash is considered as a suitable medium for CCS due to presence of metal oxides. The fly ash which has already sequestered carbon dioxide is referred to as carbonated fly ash. Recent research reveals better durability of concretes using carbonated fly ash as part replacement of cement. In the present research pore structure characterization of the carbonated fly ash concrete has been carried out. Mercury Intrusion porosimetry test has been conducted on control concrete and concrete specimens using fly ash and carbonated fly ash at replacement levels of 25% and 40%. The specimens have been water cured for 28 days and 90 days. It is observed that porosity reduction rate is more pronounced in carbonated fly ash concrete compared to control concrete at higher water curing age. Correlation analysis is also carried out which indicates moderately linear relationship between porosity % and pore distribution with particle size and water curing.

  18. Quantitative methods for structural characterization of proteins based on deep UV resonance Raman spectroscopy.

    PubMed

    Shashilov, Victor A; Sikirzhytski, Vitali; Popova, Ludmila A; Lednev, Igor K

    2010-09-01

    Here we report on novel quantitative approaches for protein structural characterization using deep UV resonance Raman (DUVRR) spectroscopy. Specifically, we propose a new method combining hydrogen-deuterium (HD) exchange and Bayesian source separation for extracting the DUVRR signatures of various structural elements of aggregated proteins including the cross-beta core and unordered parts of amyloid fibrils. The proposed method is demonstrated using the set of DUVRR spectra of hen egg white lysozyme acquired at various stages of HD exchange. Prior information about the concentration matrix and the spectral features of the individual components was incorporated into the Bayesian equation to eliminate the ill-conditioning of the problem caused by 100% correlation of the concentration profiles of protonated and deuterated species. Secondary structure fractions obtained by partial least squares (PLS) and least squares support vector machines (LS-SVMs) were used as the initial guess for the Bayessian source separation. Advantages of the PLS and LS-SVMs methods over the classical least squares calibration (CLSC) are discussed and illustrated using the DUVRR data of the prion protein in its native and aggregated forms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  19. Human SLC26A4/Pendrin STAS domain is a nucleotide-binding protein: Refolding and characterization for structural studies.

    PubMed

    Sharma, Alok K; Krieger, Tobias; Rigby, Alan C; Zelikovic, Israel; Alper, Seth L

    2016-12-01

    Mutations in the human SLC26A4/Pendrin polypeptide (hPDS) cause Pendred Syndrome /DFNB4, syndromic deafness with enlargement of the vestibular aqueduct and low-penetrance goiter. Here we present data on cloning, protein overexpression and purification, refolding, and biophysical characterization of the recombinant hPDS STAS domain lacking its intrinsic variable sequence (STAS-ΔIVS). We report a reproducible protein refolding protocol enabling milligram scale expression and purification of uniformly 15 N- and 13 C /15 N-enriched hPDS STAS-ΔIVS domain suitable for structural characterization by solution NMR. Circular dichroism, one-dimensional 1 H, two-dimensional 1 H- 15 N HSQC, and 1 H- 13 C HSQC NMR spectra confirmed the well-folded state of purified hPDS STAS-ΔIVS in solution. Heteronuclear NMR chemical shift perturbation of select STAS-ΔIVS residues by GDP was observed at fast-to-intermediate NMR time scales. Intrinsic tryptophan fluorescence quench experiments demonstrated GDP binding to hPDS STAS-ΔIVS with K d of 178 μM. These results are useful for structure/function characterization of hPDS STAS, the cytoplasmic subdomain of the congenital deafness protein, pendrin, as well as for studies of other mammalian STAS domains.

  20. Two radars for the AIM mission to characterize the regolith and deep interior structure of the asteroid

    NASA Astrophysics Data System (ADS)

    Ciarletti, V.; Herique, A.; Plettemeier, D.

    2015-12-01

    Very little is known till now about the interior of asteroids. The information available has been so far mainly obtained through remote observations of the surface and inferred from theoretical modeling. Observations of asteroids deep interior and regolith structure are needed to better understand the asteroid accretion and dynamical evolution, and to provide answers that will directly improve our ability to understand and model the mechanisms driving Near Earth Asteroids (NEA) deflection and other risk mitigation techniques. Radar operating from a spacecraft is the only technique capable of characterizing the internal structure and heterogeneity from submetric to global scale for the benefit of science as well as for planetary defence or exploration. Access to the deep interior structure requires a low-frequency radar (LFR) that is able to penetrate and propagate throughout the complete body. The LFR will be a bi-static radar similar to the CONSERT radar designed for the Rosetta mission and will perform a tomography of the asteroid. On the other hand, the characterization of the first tens of meters of the subsurface with a submetric resolution will be achieved by a monostatic radar operating at higher frequencies (HFR). It will allow the identification of the layering and the reconnection of the surface features to the internal structure. Its design will be based on the design of the WISDOM radar developped for the ExoMars mission. This presentation reviews, in the context of the AIDA/AIM mission, the benefits of radar measurements performed from a spacecraft. The concept of both HFR and LFR are presented as well as the expected performances of the instruments.

  1. Structural characterization and immunomodulatory activity of a pectic polysaccharide (CALB-4) from Fructus aurantii.

    PubMed

    Shu, Zunpeng; Yang, Yanni; Xing, Na; Wang, Yi; Wang, Qiuhong; Kuang, Haixue

    2018-02-01

    A purified polysaccharide, designated CALB-4, was acquired from Fructus aurantii that is the traditional edible/medicina plant in China. The present study was performed to characterize the CALB-4 and to evaluate its immunomodulatory activities on human peripheral blood mononuclear cells (PBMCs). The structure of CALB-4 was characterized by partial acid hydrolysis, periodate oxidation, Smith degradation, and methylation analysis combined with gas chromatography-mass spectrometry (GC-MS), Infrared Spectroscopy (IR) and scanning electron microscopy (SEM). The results indicated that CALB-4 was elucidated as a pectic polysaccharide and its main chain is composed of Man, Gal UA and Gal, interspersed with Ara, Rha, Man and Gal. Furthermore, immunological tests showed that CALB-4 exhibits the immunoenhancement effects. The mechanism for this action might be attributed to the increase of the cytoplasmic concentration of pro-IL-1 via the up-regulation of several mitogen-activated protein kinases (MAPKs) and the nuclear translocation of p65. This study clarified that CALB-4 could be as an efficacious biological response modifier in immunotherapy. Copyright © 2018. Published by Elsevier B.V.

  2. Structural characterization of semicrystalline polymer morphologies by imaging-SANS

    NASA Astrophysics Data System (ADS)

    Radulescu, A.; Fetters, L. J.; Richter, D.

    2012-02-01

    Control and optimization of polymer properties require the global knowledge of the constitutive microstructures of polymer morphologies in various conditions. The microstructural features can be typically explored over a wide length scale by combining pinhole-, focusing- and ultra-small-angle neutron scattering (SANS) techniques. Though it proved to be a successful approach, this involves major efforts related to the use of various scattering instruments and large amount of samples and the need to ensure the same crystallization kinetics for the samples investigated at various facilities, in different sample cell geometries and at different time intervals. With the installation and commissioning of the MgF2 neutron lenses at the KWS-2 SANS diffractometer installed at the Heinz Maier-Leibnitz neutron source (FRMII reactor) in Garching, a wide Q-range, between 10-4Å-1 and 0.5Å-1, can be covered at a single instrument. This enables investigation of polymer microstructures over a length scale from lnm up to 1μm, while the overall polymer morphology can be further examined up to 100μm by optical microscopy (including crossed polarizers). The study of different semi-crystalline polypropylene-based polymers in solution is discussed and the new imaging-SANS approach allowing for an unambiguous and complete structural characterization of polymer morphologies is presented.

  3. Structural Characterization of the Interaction of the Fibroblast Growth Factor Receptor with a Small Molecule Allosteric Inhibitor.

    PubMed

    Kappert, Franziska; Sreeramulu, Sridhar; Jonker, Hendrik R A; Richter, Christian; Rogov, Vladimir V; Proschak, Ewgenij; Hargittay, Bruno; Saxena, Krishna; Schwalbe, Harald

    2018-06-04

    The interaction of fibroblast growth factors (FGFs) with their fibroblast growth factor receptors (FGFRs) are important in the signaling network of cell growth and development. SSR128129E (SSR), a ligand of small molecular weight with potential anti-cancer properties, acts allosterically on the extracellular domains of FGFRs. Up to now, the structural basis of SSR binding to the D3 domain of FGFR remained elusive. This work reports the structural characterization of the interaction of SSR with one specific receptor, FGFR3, by NMR spectroscopy. This information provides a basis for rational drug design for allosteric FGFR inhibitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrical Characterization of Amorphous Silicon MIS-Based Structures for HIT Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    García, Héctor; Castán, Helena; Dueñas, Salvador; Bailón, Luis; García-Hernansanz, Rodrigo; Olea, Javier; del Prado, Álvaro; Mártil, Ignacio

    2016-07-01

    A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100-150 °C) might be the best choice.

  5. Characterization of Microbial Population Structures in Recreational Waters and Primary Sources of Fecal Pollution with a Next-Generation Sequencing Approach

    EPA Science Inventory

    The invention of new approaches to DNA sequencing commonly referred to as next generation sequencing technologies is revolutionizing the study of microbial diversity. In this chapter, we discuss the characterization of microbial population structures in recreational waters and p...

  6. Label-free nanoscale characterization of red blood cell structure and dynamics using single-shot transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Poola, Praveen Kumar; John, Renu

    2017-10-01

    We report the results of characterization of red blood cell (RBC) structure and its dynamics with nanometric sensitivity using transport of intensity equation microscopy (TIEM). Conventional transport of intensity technique requires three intensity images and hence is not suitable for studying real-time dynamics of live biological samples. However, assuming the sample to be homogeneous, phase retrieval using transport of intensity equation has been demonstrated with single defocused measurement with x-rays. We adopt this technique for quantitative phase light microscopy of homogenous cells like RBCs. The main merits of this technique are its simplicity, cost-effectiveness, and ease of implementation on a conventional microscope. The phase information can be easily merged with regular bright-field and fluorescence images to provide multidimensional (three-dimensional spatial and temporal) information without any extra complexity in the setup. The phase measurement from the TIEM has been characterized using polymeric microbeads and the noise stability of the system has been analyzed. We explore the structure and real-time dynamics of RBCs and the subdomain membrane fluctuations using this technique.

  7. Purification, biochemical, and structural characterization of a novel fibrinolytic enzyme from Mucor subtilissimus UCP 1262.

    PubMed

    Nascimento, Thiago Pajeú; Sales, Amanda Emmanuelle; Porto, Tatiana Souza; Costa, Romero Marcos Pedrosa Brandão; Breydo, Leonid; Uversky, Vladimir N; Porto, Ana Lúcia Figueiredo; Converti, Attilio

    2017-08-01

    Fibrinolytic proteases are enzymes that degrade fibrin. They provide a promising alternative to existing drugs for thrombolytic therapy. A protease isolated from the filamentous fungus Mucor subtilissimus UCP 1262 was purified in three steps by ammonium sulfate fractionation, ion exchange, and molecular exclusion chromatographies, and characterized biochemically and structurally. The purified protease exhibited a molecular mass of 20 kDa, an apparent isoelectric point of 4.94 and a secondary structure composed mainly of α-helices. Selectivity for N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as substrate suggests that this enzyme is a chymotrypsin-like serine protease, whose activity was enhanced by the addition of Cu 2+ , Mg 2+ , and Fe 2+ . The enzyme showed a fibrinolytic activity of 22.53 U/mL at 40 °C and its contact with polyethylene glycol did not lead to any significant alteration of its secondary structure. This protein represents an important example of a novel fibrinolytic enzyme with potential use in the treatment of thromboembolic disorders such as strokes, pulmonary emboli, and deep vein thrombosis.

  8. Characterization, Microbial Community Structure, and Pathogen Occurrence in Urban Faucet Biofilms in South China

    PubMed Central

    Lin, Huirong; Zhang, Shuting; Gong, Song; Zhang, Shenghua; Yu, Xin

    2015-01-01

    The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope) results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid) were observed. CLSM (confocal laser scanning microscope) revealed different distributions of attached cells, extracellular proteins, α-polysaccharides, and β-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales) and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence. PMID:26273617

  9. Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation

    PubMed Central

    Chen, Serene W.; Drakulic, Srdja; Deas, Emma; Ouberai, Myriam; Aprile, Francesco A.; Arranz, Rocío; Ness, Samuel; Roodveldt, Cintia; Guilliams, Tim; De-Genst, Erwin J.; Klenerman, David; Wood, Nicholas W.; Knowles, Tuomas P.J.; Alfonso, Carlos; Rivas, Germán; Abramov, Andrey Y.; Valpuesta, José María; Dobson, Christopher M.; Cremades, Nunilo

    2015-01-01

    We describe the isolation and detailed structural characterization of stable toxic oligomers of α-synuclein that have accumulated during the process of amyloid formation. Our approach has allowed us to identify distinct subgroups of oligomers and to probe their molecular architectures by using cryo-electron microscopy (cryoEM) image reconstruction techniques. Although the oligomers exist in a range of sizes, with different extents and nature of β-sheet content and exposed hydrophobicity, they all possess a hollow cylindrical architecture with similarities to certain types of amyloid fibril, suggesting that the accumulation of at least some forms of amyloid oligomers is likely to be a consequence of very slow rates of rearrangement of their β-sheet structures. Our findings reveal the inherent multiplicity of the process of protein misfolding and the key role the β-sheet geometry acquired in the early stages of the self-assembly process plays in dictating the kinetic stability and the pathological nature of individual oligomeric species. PMID:25855634

  10. Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA.

    PubMed

    Zubieta, Chloe; Joseph, Rosanne; Krishna, S Sri; McMullan, Daniel; Kapoor, Mili; Axelrod, Herbert L; Miller, Mitchell D; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C; Duan, Lian; Elias, Ylva; Elsliger, Marc-André; Feuerhelm, Julie; Grzechnik, Slawomir K; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Kumar, Abhinav; Marciano, David; Morse, Andrew T; Murphy, Kevin D; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L; Schimmel, Paul; Trout, Christina V; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2007-11-01

    TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 A. TyrA is a dimer, with each monomer exhibiting a two-domain, alpha/beta ferredoxin-like fold. Both domains contribute to the heme-binding site. Co-crystallization in the presence of an excess of iron protoporphyrin (IX) chloride allowed for the unambiguous location of the active site and the specific residues involved in heme binding. The structure reveals a Fe-His-Asp triad essential for heme positioning, as well as a novel conformation of one of the heme propionate moieties compared to plant peroxidases. Structural comparison to the canonical DyP family member, DyP from Thanatephorus cucumeris (Dec 1), demonstrates conservation of this novel heme conformation, as well as residues important for heme binding. Structural comparisons with representative members from all classes of the plant, bacterial, and fungal peroxidase superfamily demonstrate that TyrA, and by extension the DyP family, adopts a fold different from all other structurally characterized heme peroxidases. We propose that a new superfamily be added to the peroxidase classification scheme to encompass the DyP family of heme peroxidases. (c) 2007 Wiley-Liss, Inc.

  11. Needs assessment for nondestructive testing and materials characterization for improved reliability in structural ceramics for heat engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.; McClung, R.W.; Janney, M.A.

    1987-08-01

    A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less

  12. Functional and Structural Characterization of a Receptor-Like Kinase Involved in Germination and Cell Expansion in Arabidopsis

    PubMed Central

    Wu, Zhen; Liang, Shan; Song, Wen; Lin, Guangzhong; Wang, Weiguang; Zhang, Heqiao; Han, Zhifu; Chai, Jijie

    2017-01-01

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) are widespread in different plant species and play important roles in growth and development. Germination inhibition is vital for the completion of seed maturation and cell expansion is a fundamental cellular process driving plant growth. Here, we report genetic and structural characterizations of a functionally uncharacterized LRR-RLK, named GRACE (Germination Repression and Cell Expansion receptor-like kinase). Overexpression of GRACE in Arabidopsis exhibited delayed germination, enlarged cotyledons, rosette leaves and stubbier petioles. Conversely, these phenotypes were reversed in the T-DNA insertion knock-down mutant grace-1 plants. A crystal structure of the extracellular domain of GRACE (GRACE-LRR) determined at the resolution of 3.0 Å revealed that GRACE-LRR assumed a right-handed super-helical structure with an island domain (ID). Structural comparison showed that structure of the ID in GRACE-LRR is strikingly different from those observed in other LRR-RLKs. This structural observation implies that GRACE might perceive a new ligand for signaling. Collectively, our data support roles of GRACE in repressing seed germination and promoting cell expansion of Arabidopsis, presumably by perception of unknown ligand(s). PMID:29213277

  13. Functional and Structural Characterization of a Receptor-Like Kinase Involved in Germination and Cell Expansion in Arabidopsis.

    PubMed

    Wu, Zhen; Liang, Shan; Song, Wen; Lin, Guangzhong; Wang, Weiguang; Zhang, Heqiao; Han, Zhifu; Chai, Jijie

    2017-01-01

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) are widespread in different plant species and play important roles in growth and development. Germination inhibition is vital for the completion of seed maturation and cell expansion is a fundamental cellular process driving plant growth. Here, we report genetic and structural characterizations of a functionally uncharacterized LRR-RLK, named GRACE (Germination Repression and Cell Expansion receptor-like kinase). Overexpression of GRACE in Arabidopsis exhibited delayed germination, enlarged cotyledons, rosette leaves and stubbier petioles. Conversely, these phenotypes were reversed in the T-DNA insertion knock-down mutant grace-1 plants. A crystal structure of the extracellular domain of GRACE (GRACE-LRR) determined at the resolution of 3.0 Å revealed that GRACE-LRR assumed a right-handed super-helical structure with an island domain (ID). Structural comparison showed that structure of the ID in GRACE-LRR is strikingly different from those observed in other LRR-RLKs. This structural observation implies that GRACE might perceive a new ligand for signaling. Collectively, our data support roles of GRACE in repressing seed germination and promoting cell expansion of Arabidopsis , presumably by perception of unknown ligand(s).

  14. Structural characterization of multimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mukundan, Vineetha

    Bimetallic and trimetallic alloy nanoparticles have enhanced catalytic activities due to their unique structural properties. Using in situ time-resolved synchrotron based x-ray diffraction, we investigated the structural properties of nanoscale catalysts undergoing various heat treatments. Thermal treatment brings about changes in particle size, morphology, dispersion of metals on support, alloying, surface electronic properties, etc. First, the mechanisms of coalescence and grain growth in PtNiCo nanoparticles supported on planar silica on silicon were examined in detail in the temperature range 400-900°C. The sintering process in PtNiCo nanoparticles was found to be accompanied by lattice contraction and L10 chemical ordering. The mass transport involved in sintering is attributed to grain boundary diffusion and its corresponding activation energy is estimated from the data analysis. Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles were also investigated in real time with in situ synchrotron based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. PdCu nanoparticles are interesting because they are found to be more efficient as catalysts in ethanol oxidation reaction (EOR) than monometallic Pd catalysts. The combination of metal support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. The composition of the as prepared Pd:Cu mixture in this study was 34% Pd and 66% Cu. At 300°C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (>450°C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals

  15. Biochemical and structural characterization of Klebsiella pneumoniae oxamate amidohydrolase in the uric acid degradation pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, Katherine A.; Ealick, Steven E.

    HpxW from the ubiquitous pathogenKlebsiella pneumoniaeis involved in a novel uric acid degradation pathway downstream from the formation of oxalurate. Specifically, HpxW is an oxamate amidohydrolase which catalyzes the conversion of oxamate to oxalate and is a member of the Ntn-hydrolase superfamily. HpxW is autoprocessed from an inactive precursor to form a heterodimer, resulting in a 35.5 kDa α subunit and a 20 kDa β subunit. Here, the structure of HpxW is presented and the substrate complex is modeled. In addition, the steady-state kinetics of this enzyme and two active-site variants were characterized. These structural and biochemical studies provide furthermore » insight into this class of enzymes and allow a mechanism for catalysis consistent with other members of the Ntn-hydrolase superfamily to be proposed.« less

  16. Structural characterization of new Schiff bases of sulfamethoxazole and sulfathiazole, their antibacterial activity and docking computation with DHPS protein structure.

    PubMed

    Mondal, Sudipa; Mandal, Santi M; Mondal, Tapan Kumar; Sinha, Chittaranjan

    2015-01-01

    New Schiff bases (1, 2) of substituted salicylaldehydes and sulfamethoxazole (SMX)/sulfathiazole (STZ) are synthesized and characterized by elemental analysis and spectroscopic data. Single crystal X-ray structure of one of the compounds (E)-4-((3,5-dichloro-2-hydroxybenzylidene)amino)-N-(5-methylisoxazol-3-yl)benzenesulfonamide (1c) has been determined. Antimicrobial activities of the Schiff bases and parent sulfonamides (SMX, STZ) have been examined against several Gram-positive and Gram-negative bacteria and sulfonamide resistant pathogens; the lowest MIC is observed for (E)-4-((3,5-dichloro-2-hydroxybenzylidene)amino)-N-(thiazol-2-yl)benzene sulfonamide (2c) (8.0 μg mL(-1)) and (E)-4-((3,5-dichloro-2-hydroxybenzylidene)amino)-N-(5-methylisoxazol-3-yl)benzene sulfonamide (1c) (16.0 μg mL(-1)) against sulfonamide resistant pathogens. DFT optimized structures of the Schiff bases have been used to carry out molecular docking studies with DHPS (dihydropteroate synthase) protein structure (downloaded from Protein Data Bank) using Discovery Studio 3.5 to find the most preferred binding mode of the ligand inside the protein cavity. The theoretical data have been well correlated with the experimental results. Cell viability assay and ADMET studies predict that 1c and 2c have good drug like characters. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Investigation on the structural characterization of pulsed p-type porous silicon

    NASA Astrophysics Data System (ADS)

    Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.

    2017-08-01

    P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.

  18. Maltose conjugation to PCL: Advanced structural characterization and preliminary biological properties

    NASA Astrophysics Data System (ADS)

    Secchi, Valeria; Guizzardi, Roberto; Russo, Laura; Pastori, Valentina; Lecchi, Marzia; Franchi, Stefano; Iucci, Giovanna; Battocchio, Chiara; Cipolla, Laura

    2018-05-01

    The emerging trends in regenerative medicine rely among others on biomaterial-based therapies, with the use of biomaterials as a central delivery system for biochemical and physical cues to manipulate transplanted or ingrowth cells and to orchestrate tissue regeneration. Cell adhesion properties of a biomaterial strongly depend on its surface characteristics. Among others poly(ε-caprolactone) (PCL) is a biocompatible and biodegradable material with low cytotoxicity that is widely adopted as synthetic polymer in several applications. However, it is hydrophobic, which limits its use in tissue engineering. In order to improve its hydrophilicity and cellular compatibility, PCL surface was grafted with maltose through a two-step procedure in which controlled aminolysis of PCL ester bonds by hexanediamine was followed by reductive amination with the carbohydrate reducing end. The modified PCL surface was then characterized in detail by x-ray Photoelectron Spectroscopy (XPS) and Near Edge x-ray Absorption Fine Structure (NEXAFS) spectroscopies. In addition, the biocompatibility of the proposed biomaterial was investigated in preliminary biological assays.

  19. Sulfaguanidine cocrystals: Synthesis, structural characterization and their antibacterial and hemolytic analysis.

    PubMed

    Abidi, Syed Sibte Asghar; Azim, Yasser; Khan, Shahper Nazeer; Khan, Asad U

    2018-02-05

    Sulfaguanidine (SG), belongs to the class of sulfonamide drug used as an effective antibiotic. In the present work, using crystal engineering approach two novel cocrystals of SG were synthesized (SG-TBA and SG-PT) with thiobarbutaric acid (TBA) and 1,10-phenanthroline (PT), characterized by solid state techniques viz., powder X-ray diffraction (PXRD), fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and the crystal structures were determined by single crystal X-ray diffraction studies. A comparative antibacterial activity and hemolytic potential was done on SG drug, coformers and their cocrystals. The tested cocrystals formulations showed almost two fold higher antibacterial activity against the tested strains of bacteria Gram-positive bacteria (S. mutans and E. faecalis) and Gram-negative bacteria (E. coli, K. pneumonia and E. clocae) over SG alone and their coformers. Cocrystal SG-TBA showed better antibacterial activity and reduced hemolysis, thereby, reduced cytotoxicity than SG-PT. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Structure Characterization and Immunomodulating Effects of Polysaccharides Isolated from Dendrobium officinale.

    PubMed

    Wei, Wei; Feng, Lei; Bao, Wan-Rong; Ma, Dik-Lung; Leung, Chung-Hang; Nie, Shao-Ping; Han, Quan-Bin

    2016-02-03

    A crude polysaccharide fraction (cDOP) has been determined to be the characteristic marker of Dendrobium officinale, an expensive tea material in Asia, but its chemistry and bioactivity have not been studied. In work reported here, cDOP was destarched (DOP, 90% yield) and separated into two subfraction polysaccharides, DOPa and DOPb, which were characterized by monosaccharide composition and methylation analyses and spectral analyses (FT-IR and (1)H and (13)C NMR). Both are composed of mannose and glucose at similar ratios and have a similar structure with a backbone of 1,4-linked β-D-mannopyranosyl and β-D-glucopyranosyl residues. Significant differences were observed only in their molecular weights. Bioassay using mouse macrophage cell line RAW264.7 indicated that DOP and its two subfractions enhance cell proliferation, TNF-α secretion, and phagocytosis in a dose-dependent manner. They also induced the proliferation of lymphocytes alone and with mitogens. DOPa and DOPb are thus proven to be major, active polysaccharide markers of D. officinale.

  1. Structural and functional characterization of the Mycobacterium tuberculosis uridine monophosphate kinase: insights into the allosteric regulation.

    PubMed

    Labesse, Gilles; Benkali, Khaled; Salard-Arnaud, Isabelle; Gilles, Anne-Marie; Munier-Lehmann, Hélène

    2011-04-01

    Nucleoside Monophosphate Kinases (NMPKs) family are key enzymes in nucleotide metabolism. Bacterial UMPKs depart from the main superfamily of NMPKs. Having no eukaryotic counterparts they represent attractive therapeutic targets. They are regulated by GTP and UTP, while showing different mechanisms in Gram(+), Gram(-) and archaeal bacteria. In this work, we have characterized the mycobacterial UMPK (UMPKmt) combining enzymatic and structural investigations with site-directed mutagenesis. UMPKmt exhibits cooperativity toward ATP and an allosteric regulation by GTP and UTP. The crystal structure of the complex of UMPKmt with GTP solved at 2.5 Å, was merely identical to the modelled apo-form, in agreement with SAXS experiments. Only a small stretch of residues was affected upon nucleotide binding, pointing out the role of macromolecular dynamics rather than major structural changes in the allosteric regulation of bacterial UMPKs. We further probe allosteric regulation by site-directed mutagenesis. In particular, a key residue involved in the allosteric regulation of this enzyme was identified.

  2. Characterization of tumor microvascular structure and permeability: comparison between magnetic resonance imaging and intravital confocal imaging

    NASA Astrophysics Data System (ADS)

    Reitan, Nina Kristine; Thuen, Marte; Goa, Pa˚L. Erik; de Lange Davies, Catharina

    2010-05-01

    Solid tumors are characterized by abnormal blood vessel organization, structure, and function. These abnormalities give rise to enhanced vascular permeability and may predict therapeutic responses. The permeability and architecture of the microvasculature in human osteosarcoma tumors growing in dorsal window chambers in athymic mice were measured by confocal laser scanning microscopy (CLSM) and dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Dextran (40 kDa) and Gadomer were used as molecular tracers for CLSM and DCE-MRI, respectively. A significant correlation was found between permeability indicators. The extravasation rate Ki as measured by CLSM correlated positively with DCE-MRI parameters, such as the volume transfer constant Ktrans and the initial slope of the contrast agent concentration-time curve. This demonstrates that these two techniques give complementary information. Extravasation was further related to microvascular structure and was found to correlate with the fractal dimension and vascular density. The structural parameter values that were obtained from CLSM images were higher for abnormal tumor vasculature than for normal vessels.

  3. Nanoscale structural and electronic characterization of α-RuCl3 layered compound

    NASA Astrophysics Data System (ADS)

    Ziatdinov, Maxim; Maksov, Artem; Banerjee, Arnab; Zhou, Wu; Berlijn, Tom; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Baddorf, Arthur; Kalinin, Sergei

    The exceptional interplay of spin-orbit effects, Coulomb interaction, and electron-lattice coupling is expected to produce an elaborate phase space of α-RuCl3 layered compound, which to date remains largely unexplored. Here we employ a combination of scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) for detailed evaluation of the system's microscopic structural and electronic orders with a sub-nanometer precision. The STM and STEM measurements are further supported by neutron scattering, X-Ray diffraction, density functional theory (DFT), and multivariate statistical analysis. Our results show a trigonal distortion of Cl octahedral ligand cage along the C3 symmetry axes in each RuCl3 layer. The lattice distortion is limited mainly to the Cl subsystem leaving the Ru honeycomb lattice nearly intact. The STM topographic and spectroscopic characterization reveals an intra unit cell electronic symmetry breaking in a spin-orbit coupled Mott insulating phase on the Cl-terminated surface of α-RuCl3. The associated long-range charge order (CO) pattern is linked to a surface component of Cl cage distortion. We finally discuss a fine structure of CO and its potential relation to variations of average unit cell geometries found in multivariate analysis of STEM data. The research was sponsored by the U.S. Department of Energy.

  4. Structural characterization of anti-complementary polysaccharides from the leaves of Artemisia princeps.

    PubMed

    Yamada, H; Otsuka, Y; Omura, S

    1986-08-01

    Structural characterizations of the anti-complementary acidic heteroglycans, AAF IIb-2 and IIb-3, obtained from the leaves of Artemisia princeps pamp have been studied. AAF IIb-2 consists of rhamnose, xylose, arabinose, galactose, glucose and uronic acids (glucuronic acid and galacturonic acid) in the molar ratio of 7.6:7.6:13.0:10.9:3.0:57.9, and AAF IIb-3 consists of the same sugars in the ratio of 3.9:2.6:24.7:19.7:2.6:46.5. Methylation analysis including carboxyl-reduction and also selective enzymolysis using EXO-alpha- L-arabinofuranosidase suggested that AAF IIb-3 has a main chain consisting of (1-->4)-linked galacturonic acid and (1-->2)-linked rhamnose mostly substituted at the O-4 position. AAF IIb-3 also contained arabino-3,6-galactan moiety and most of the arabinose was present as an alpha- L-furanosyl residue in the non-reducing terminals and highly branched side chains which mostly attached to the O-3 position of (1-->6)-linked galactopyranosyl residue. The basic structure of AAF IIb-2 is similar to that of AAF IIb-3, but IIb-3 has a higher arabinogalactan content than IIb-2.

  5. Characterization of microgravity effects on bone structure and strength using fractal analysis

    NASA Technical Reports Server (NTRS)

    Acharya, Raj S.; Shackelford, Linda

    1995-01-01

    The effect of micro-gravity on the musculoskeletal system has been well studied. Significant changes in bone and muscle have been shown after long term space flight. Similar changes have been demonstrated due to bed rest. Bone demineralization is particularly profound in weight bearing bones. Much of the current techniques to monitor bone condition use bone mass measurements. However, bone mass measurements are not reliable to distinguish Osteoporotic and Normal subjects. It has been shown that the overlap between normals and osteoporosis is found for all of the bone mass measurement technologies: single and dual photon absorptiometry, quantitative computed tomography and direct measurement of bone area/volume on biopsy as well as radiogrammetry. A similar discordance is noted in the fact that it has not been regularly possible to find the expected correlation between severity of osteoporosis and degree of bone loss. Structural parameters such as trabecular connectivity have been proposed as features for assessing bone conditions. In this report, we use fractal analysis to characterize bone structure. We show that the fractal dimension computed with MRI images and X-Ray images of the patella are the same. Preliminary experimental results show that the fractal dimension computed from MRI images of vertebrae of human subjects before bedrest is higher than during bedrest.

  6. Active and passive infrared thermography applied to the detection and characterization of hidden defects in structure

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean

    2013-04-01

    Infrared thermography for Non Destructive Testing (NDT) has encountered a wide spreading this last 2 decades, in particular thanks to emergence on the market of low cost uncooled infrared camera. So, infrared thermography is not anymore a measurement technique limited to laboratory application. It has been more and more involved in civil engineering and cultural heritage applications, but also in many other domains, as indicated by numerous papers in the literature. Nevertheless, laboratory, measurements are done as much as possible in quite ideal conditions (good atmosphere conditions, known properties of materials, etc.), while measurement on real site requires to consider the influence of not controlled environmental parameters and additional unknown thermal properties. So, dedicated protocol and additional sensors are required for measurement data correction. Furthermore, thermal excitation is required to enhance the signature of defects in materials. Post-processing of data requires to take into account the protocol used for the thermal excitation and sometimes its nature to avoid false detection. This analysis step is based on signal and image processing tool and allows to carry out the detection. Characterization of anomalies detected at the previous step can be done by additional signal processing in particular for manufactured objects. The use of thermal modelling and inverse method allows to determine properties of the defective area. The present paper will first address a review of some protocols currently in use for field measurement with passive and/or active infrared measurements. Illustrations in various experiments carried out on civil engineering structure will be shown and discussed. In a second part, different post-processing approaches will be presented and discussed. In particular, a review of the most standard processing methods like Fast Fourier Analysis, Principal Components Analysis, Polynomial Decomposition, defect characterization using

  7. Structural and Biochemical Characterization of Acinetobacter spp. Aminoglycoside Acetyltransferases Highlights Functional and Evolutionary Variation among Antibiotic Resistance Enzymes.

    PubMed

    Stogios, Peter J; Kuhn, Misty L; Evdokimova, Elena; Law, Melissa; Courvalin, Patrice; Savchenko, Alexei

    2017-02-10

    Modification of aminoglycosides by N-acetyltransferases (AACs) is one of the major mechanisms of resistance to these antibiotics in human bacterial pathogens. More than 50 enzymes belonging to the AAC(6') subfamily have been identified in Gram-negative and Gram-positive clinical isolates. Our understanding of the molecular function and evolutionary origin of these resistance enzymes remains incomplete. Here we report the structural and enzymatic characterization of AAC(6')-Ig and AAC(6')-Ih from Acinetobacter spp. The crystal structure of AAC(6')-Ig in complex with tobramycin revealed a large substrate-binding cleft remaining partially unoccupied by the substrate, which is in stark contrast with the previously characterized AAC(6')-Ib enzyme. Enzymatic analysis indicated that AAC(6')-Ig and -Ih possess a broad specificity against aminoglycosides but with significantly lower turnover rates as compared to other AAC(6') enzymes. Structure- and function-informed phylogenetic analysis of AAC(6') enzymes led to identification of at least three distinct subfamilies varying in oligomeric state, active site composition, and drug recognition mode. Our data support the concept of AAC(6') functionality originating through convergent evolution from diverse Gcn5-related-N-acetyltransferase (GNAT) ancestral enzymes, with AAC(6')-Ig and -Ih representing enzymes that may still retain ancestral nonresistance functions in the cell as provided by their particular active site properties.

  8. Synthesis, structural characterization, DFT studies and in-vitro antidiabetic activity of new mixed ligand oxovanadium(IV) complex with tridentate Schiff base

    NASA Astrophysics Data System (ADS)

    Patel, R. N.; Singh, Yogendra Pratap

    2018-02-01

    The mixed ligand oxovanadium(IV) complex [VO(L1)(L2)] [L1 = N'-[(Z)-phenyl(pyridin-2-yl)methylidene]benzohydrazide and L2 = Benzohydrazide] has been synthesized in aerobic condition. The complex was characterized by elemental analysis spectroscopic (UV-vis, IR, epr) and electrochemical methods. X-ray diffraction pattern was also used to characterize this complex, which has a distorted octahedral structure. Single crystal diffraction analysis reveals that Csbnd H⋯π (aryl/metal chelate rings) interactions contribute to the stabilization of the crystal structure in given dimension. The room temperature magnetic susceptibility data shows paramagnetic nature of the complex. The complex was also tested for in-vitro antidiabetic activity. Moderate α-glucosidase inhibition is shown by this complex, which may be considered as α-glucosidase inhibitors.

  9. High resolution Talbot self-imaging applied to structural characterization of self-assembled monolayers of microspheres.

    PubMed

    Garcia-Sucerquia, J; Alvarez-Palacio, D C; Kreuzer, H J

    2008-09-10

    We report the observation of the Talbot self-imaging effect in high resolution digital in-line holographic microscopy (DIHM) and its application to structural characterization of periodic samples. Holograms of self-assembled monolayers of micron-sized polystyrene spheres are reconstructed at different image planes. The point-source method of DIHM and the consequent high lateral resolution allows the true image (object) plane to be identified. The Talbot effect is then exploited to improve the evaluation of the pitch of the assembly and to examine defects in its periodicity.

  10. Dynamic characterization, monitoring and control of rotating flexible beam-mass structures via piezo-embedded techniques

    NASA Technical Reports Server (NTRS)

    Lai, Steven H.-Y.

    1992-01-01

    A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.

  11. Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of Disease Transmission in a Large Network

    PubMed Central

    Eggo, Rosalind M; Lenczner, Michael

    2015-01-01

    Background Multiple waves of transmission during infectious disease epidemics represent a major public health challenge, but the ecological and behavioral drivers of epidemic resurgence are poorly understood. In theory, community structure—aggregation into highly intraconnected and loosely interconnected social groups—within human populations may lead to punctuated outbreaks as diseases progress from one community to the next. However, this explanation has been largely overlooked in favor of temporal shifts in environmental conditions and human behavior and because of the difficulties associated with estimating large-scale contact patterns. Objective The aim was to characterize naturally arising patterns of human contact that are capable of producing simulated epidemics with multiple wave structures. Methods We used an extensive dataset of proximal physical contacts between users of a public Wi-Fi Internet system to evaluate the epidemiological implications of an empirical urban contact network. We characterized the modularity (community structure) of the network and then estimated epidemic dynamics under a percolation-based model of infectious disease spread on the network. We classified simulated epidemics as multiwave using a novel metric and we identified network structures that were critical to the network’s ability to produce multiwave epidemics. Results We identified robust community structure in a large, empirical urban contact network from which multiwave epidemics may emerge naturally. This pattern was fueled by a special kind of insularity in which locally popular individuals were not the ones forging contacts with more distant social groups. Conclusions Our results suggest that ordinary contact patterns can produce multiwave epidemics at the scale of a single urban area without the temporal shifts that are usually assumed to be responsible. Understanding the role of community structure in epidemic dynamics allows officials to anticipate epidemic

  12. Structural characterization of ribosome recruitment and translocation by type IV IRES.

    PubMed

    Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S

    2016-05-09

    Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts tvhe otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation.

  13. Structural characterization of ribosome recruitment and translocation by type IV IRES

    PubMed Central

    Murray, Jason; Savva, Christos G; Shin, Byung-Sik; Dever, Thomas E; Ramakrishnan, V; Fernández, Israel S

    2016-01-01

    Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts the otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation. DOI: http://dx.doi.org/10.7554/eLife.13567.001 PMID:27159451

  14. Two new supramolecular metal diphosphonates: Synthesis, characterization, crystal structure and inhibiting effects on metallic corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholivand, Khodayar, E-mail: gholi_kh@modares.ac.ir; Yaghoubi, Rouhollah; Farrokhi, Alireza

    Two new divalent metal(II) aminodiphosphonates with layered structure, namely, Cu(H{sub 3}L{sup 1}){sub 2}·2H{sub 2}O (1), [H4L{sup 1}=methyl-N(CH{sub 2}PO{sub 3}H{sub 2}){sub 2}] and Cd{sub 2}(H{sub 2}L{sup 2}){sub 4}(2), [H{sub 4}L{sup 2}=n-propyl-N(CH{sub 2}PO{sub 3}H{sub 2}){sub 2}] were synthesized and characterized. The Cu(II) ions in complex 1 are octahedrally coordinated by four oxygen atoms from two chelating ligands and two phosphonate oxygen atoms from two neighboring Cu(H{sub 3}L{sup 1}){sub 2} units. The Cu(H{sub 3}L{sup 1}){sub 2} units are interconnected by bridging phosphonate groups, forming a 2-D metal phosphonate layer. The structure of complex 2 contains two unique Cd(II) ions octahedrally-coordinated by six phosphonatemore » oxygen atoms from four H{sub 2}L{sup 2} diphosphonate anions. Corrosion inhibition performances of 1 and 2 were also compared with each other in order to study the effect of combinations of externally added Cd/H{sub 4}L{sup 2} and Cu/H{sub 4}L{sup 1} (1:1 ratio) on corrosion rates of carbon steel. It was found that at pH 3.0, Cd/H{sub 4}L{sup 2} or Cu/H{sub 4}L{sup 1} combinations do not have noticeable corrosion inhibition efficiency for carbon steel. In contrast, at pH 7.0, higher corrosion inhibition efficiency was achieved for Cd/H{sub 4}L{sup 2}. Physical characterizations such as scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were applied to study the corrosion specimens and film material. - Graphical abstract: Two new metal phosphonates have been synthesized and characterized by single-crystal X-ray diffraction and thermogravimetric analysis. corrosion inhibition performances 1 and 2 are also compared.« less

  15. Structural and functional characterization of TRI3 trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, Graeme S.; McCormick, Susan P.; Alexander, Nancy J.

    2009-08-14

    Fusarium head blight is a devastating disease of cereal crops whose worldwide incidence is increasing and at present there is no satisfactory way of combating this pathogen or its associated toxins. There is a wide variety of trichothecene mycotoxins and they all contain a 12,13-epoxytrichothecene skeleton but differ in their substitutions. Indeed, there is considerable variation in the toxin profile across the numerous Fusarium species that has been ascribed to differences in the presence or absence of biosynthetic enzymes and their relative activity. This article addresses the source of differences in acetylation at the C15 position of the trichothecene molecule.more » Here, we present the in vitro structural and biochemical characterization of TRI3, a 15-O-trichothecene acetyltransferase isolated from F. sporotrichioides and the 'in vivo' characterization of Deltatri3 mutants of deoxynivalenol (DON) producing F. graminearum strains. A kinetic analysis shows that TRI3 is an efficient enzyme with the native substrate, 15-decalonectrin, but is inactive with either DON or nivalenol. The structure of TRI3 complexed with 15-decalonectrin provides an explanation for this specificity and shows that Tri3 and Tri101 (3-O-trichothecene acetyltransferase) are evolutionarily related. The active site residues are conserved across all sequences for TRI3 orthologs, suggesting that differences in acetylation at C15 are not due to differences in Tri3. The tri3 deletion mutant shows that acetylation at C15 is required for DON biosynthesis even though DON lacks a C15 acetyl group. The enzyme(s) responsible for deacetylation at the 15 position of the trichothecene mycotoxins have not been identified.« less

  16. Structural and Functional Characterization of an Ancient Bacterial Transglutaminase Sheds Light on the Minimal Requirements for Protein Cross-Linking.

    PubMed

    Fernandes, Catarina G; Plácido, Diana; Lousa, Diana; Brito, José A; Isidro, Anabela; Soares, Cláudio M; Pohl, Jan; Carrondo, Maria A; Archer, Margarida; Henriques, Adriano O

    2015-09-22

    Transglutaminases are best known for their ability to catalyze protein cross-linking reactions that impart chemical and physical resilience to cellular structures. Here, we report the crystal structure and characterization of Tgl, a transglutaminase from the bacterium Bacillus subtilis. Tgl is produced during sporulation and cross-links the surface of the highly resilient spore. Tgl-like proteins are found only in spore-forming bacteria of the Bacillus and Clostridia classes, indicating an ancient origin. Tgl is a single-domain protein, produced in active form, and the smallest transglutaminase characterized to date. We show that Tgl is structurally similar to bacterial cell wall endopeptidases and has an NlpC/P60 catalytic core, thought to represent the ancestral unit of the cysteine protease fold. We show that Tgl functions through a unique partially redundant catalytic dyad formed by Cys116 and Glu187 or Glu115. Strikingly, the catalytic Cys is insulated within a hydrophobic tunnel that traverses the molecule from side to side. The lack of similarity of Tgl to other transglutaminases together with its small size suggests that an NlpC/P60 catalytic core and insulation of the active site during catalysis may be essential requirements for protein cross-linking.

  17. Structural characterization of poorly-crystalline scorodite, iron(III)-arsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, N; Jiang, D T; Cutler, J

    X-ray absorption fine structure (XAFS) is used to characterize the mineralogy of the iron(III)-arsenate(V) precipitates produced during the raffinate (aqueous effluent) neutralization process at the McClean Lake uranium mill in northern Saskatchewan, Canada. To facilitate the structural characterization of the precipitated solids derived from the neutralized raffinate, a set of reference compounds were synthesized and analyzed. The reference compounds include crystalline scorodite, poorly-crystalline scorodite, iron(III)-arsenate co-precipitates obtained under different pH conditions, and arsenate-adsorbed on goethite. The poorly-crystalline scorodite (prepared at pH 4 with Fe/As = 1) has similar As local structure as that of crystalline scorodite. Both As and Femore » K-edge XAFS of poorly-crystalline scorodite yield consistent results on As-Fe (or Fe-As) shell. From As K-edge analysis the As-Fe shell has an inter-atomic distance of 3.33 ± 0.02 Å and coordination number of 3.2; while from Fe K-edge analysis the Fe-As distance and coordination number are 3.31 ± 0.02 Å and 3.8, respectively. These are in contrast with the typical arsenate adsorption on bidentate binuclear sites on goethite surfaces, where the As-Fe distance is 3.26 ± 0.03 Å and coordination number is close to 2. A similar local structure identified in the poorly-crystalline scorodite is also found in co-precipitation solids (Fe(III)/As(V) = 3) when precipitated at the same pH (pH = 4): As-Fe distance 3.30 ± 0.03 Å and coordination number 3.9; while at pH = 8 the co-precipitate has As-Fe distance of 3.27 ± 0.03 Å and coordination number about 2, resembling more closely the adsorption case. The As local structure in the two neutralized raffinate solid series (precipitated at pH values up to 7) closely resembles that in the poorly-crystalline scorodite. All of the raffinate solids have the same As-Fe inter-atomic distance as that in the poorly-crystalline scorodite, and a systematic

  18. Conductance based characterization of structure and hopping site density in 2D molecule-nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    McCold, Cliff E.; Fu, Qiang; Howe, Jane Y.; Hihath, Joshua

    2015-09-01

    Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems.Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from

  19. Synthesis and Structural Characterization of New High-Valent Inorganic Fluorine Compounds and their Oxidizing Properties. Volume 2

    DTIC Science & Technology

    1992-02-01

    a definitely related Government procurement operation, the fact ti ’it the Govern- ment may have formulated, furnished, or in any way supplied the...rapid rcxprired in which krypton is bonded to an clement other than acquisition of the free induction decays with a high-field pulse fluorine...spectroscopy is the single most powerful technique used in the structural characterization of noble gas species. This technique is especially useful in

  20. Characterization of microbial structures in Setul Limestone

    NASA Astrophysics Data System (ADS)

    Ezanie, A. S. Mohamad; Aziz, A. Che; Roslan, M. Kamal

    2018-04-01

    Setul Limestone in Langgun Island and Perlis are lack of sedimentary structures, which makes it difficult for paleoenvironmental study in the study area. The present study of limestone succession at Kaki Bukit and Teluk Mempelam area focuses on microbial related structure in order to constraint its depositional setting. The structures were identified as stromatolites and thrombolites, which resulted from the interaction of microbial with sediments by trapping, binding and/or precipitation of minerals. Both structures can be distinguished based on four main classifications, the megastructure, macrostructure, mesostructure and microstructure scales. These classifications assist in understanding its physical natures and lead to the recognition of paleoenvironment in the study area which is believed to be controlled by several factors such as environment, hydrodynamic, biological and chemical processes.

  1. Characterizing the spatial structure of endangered species habitat using geostatistical analysis of IKONOS imagery

    USGS Publications Warehouse

    Wallace, C.S.A.; Marsh, S.E.

    2005-01-01

    Our study used geostatistics to extract measures that characterize the spatial structure of vegetated landscapes from satellite imagery for mapping endangered Sonoran pronghorn habitat. Fine spatial resolution IKONOS data provided information at the scale of individual trees or shrubs that permitted analysis of vegetation structure and pattern. We derived images of landscape structure by calculating local estimates of the nugget, sill, and range variogram parameters within 25 ?? 25-m image windows. These variogram parameters, which describe the spatial autocorrelation of the 1-m image pixels, are shown in previous studies to discriminate between different species-specific vegetation associations. We constructed two independent models of pronghorn landscape preference by coupling the derived measures with Sonoran pronghorn sighting data: a distribution-based model and a cluster-based model. The distribution-based model used the descriptive statistics for variogram measures at pronghorn sightings, whereas the cluster-based model used the distribution of pronghorn sightings within clusters of an unsupervised classification of derived images. Both models define similar landscapes, and validation results confirm they effectively predict the locations of an independent set of pronghorn sightings. Such information, although not a substitute for field-based knowledge of the landscape and associated ecological processes, can provide valuable reconnaissance information to guide natural resource management efforts. ?? 2005 Taylor & Francis Group Ltd.

  2. Syntheses, crystal structures and characterizations of new zinc (II) and lead (II) carboxylate-phosphonates

    NASA Astrophysics Data System (ADS)

    Song, Jun-Ling; Mao, Jiang-Gao

    2005-04-01

    The syntheses, crystal structures and characterizations of two new divalent metal carboxylate-phosphonates, namely, Zn(H 3L)·2H 2O ( 1) and Pb(H 3L)(H 2O) 2 ( 2) (H 5L dbnd6 4-HO 2C-C 6H 4-CH 2N(CH 2PO 3H 2) 2) have been reported. Compound 1 features a 1D column structure in which the Zn(II) ions are tetrahedrally coordinated by four phosphonate oxygen atoms from four phosphonate ligands, and neighboring such 1D building blocks are further interconnected via hydrogen bonds into a 3D network. The carboxylate group of H 3L anion remains non-coordinated. Compound 2 has a 2D layer structure. Pb(II) ion is 7-coordinated by four phosphonate oxygen atoms from four phosphonate ligands and three aqua ligands. The interconnection of Pb(II) ions via bridging H 3L anions results in a <001> layer. The carboxylate group of the H 3L anion also remains non-coordinated and is oriented toward the interlayer space. Solid state luminescent spectrum of compound 1 exhibits a strong broad blue fluorescent emission band at 455 nm under excitation at 365 nm at room temperature.

  3. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Zhen; Yan, Qiaojuan; Ma, Qingjun

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5′-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147more » and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0–9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering. - Highlights: • The crystal structure of a fungal L-serine ammonia-lyase (RmSDH) was solved. • Five unique residue substitutions are found at the catalytic site of RmSDH. • RmSDH was expressed in Pichia. pastoris and biochemically characterized. • RmSDH has potential application in splitting D/L-serine.« less

  4. Structural and optical characterization of self-assembled Ge nanocrystal layers grown by plasma-enhanced chemical vapor deposition.

    PubMed

    Saeed, Saba; Buters, Frank; Dohnalova, Katerina; Wosinski, Lech; Gregorkiewicz, Tom

    2014-10-10

    We present a structural and optical study of solid-state dispersions of Ge nanocrystals prepared by plasma-enhanced chemical vapor deposition. Structural analysis shows the presence of nanocrystalline germanium inclusions embedded in an amorphous matrix of Si-rich SiO(2).Optical characterization reveals two prominent emission bands centered around 2.6 eV and 3.4 eV, and tunable by excitation energy. In addition, the lower energy band shows an excitation power-dependent blue shift of up to 0.3 eV. Decay dynamics of the observed emission contains fast (nanosecond) and slow (microseconds) components, indicating contributions of several relaxation channels. Based on these material characteristics, a possible microscopic origin of the individual emission bands is discussed.

  5. A discrete polar Stockwell transform for enhanced characterization of tissue structure using MRI.

    PubMed

    Pridham, Glen; Steenwijk, Martijn D; Geurts, Jeroen J G; Zhang, Yunyan

    2018-05-02

    The purpose of this study was to present an effective algorithm for computing the discrete polar Stockwell transform (PST), investigate its unique multiscale and multi-orientation features, and explore potentially new applications including denoising and tissue segmentation. We investigated PST responses using both synthetic and MR images. Moreover, we compared the features of PST with both Gabor and Morlet wavelet transforms, and compared the PST with two wavelet approaches for denoising using MRI. Using a synthetic image, we also tested the edge effect of PST through signal-padding. Then, we constructed a partially supervised classifier using radial, marginal PST spectra of T2-weighted MRI, acquired from postmortem brains with multiple sclerosis. The classification involved three histology-verified tissue types: normal appearing white matter (NAWM), lesion, or other, along with 5-fold cross-validation. The PST generated a series of images with varying orientations or rotation-invariant scales. Radial frequencies highlighted image structures of different size, and angular frequencies enhanced structures by orientation. Signal-padding helped suppress boundary artifacts but required attention to incidental artifacts. In comparison, the Gabor transform produced more redundant images and the wavelet spectra appeared less spatially smooth than the PST. In addition, the PST demonstrated lower root-mean-square errors than other transforms in denoising and achieved a 93% accuracy for NAWM pixels (296/317), and 88% accuracy for lesion pixels (165/188) in MRI segmentation. The PST is a unique local spectral density-assessing tool which is sensitive to both structure orientations and scales. This may facilitate multiple new applications including advanced characterization of tissue structure in standard MRI. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Electrical Characterization of Amorphous Silicon MIS-Based Structures for HIT Solar Cell Applications.

    PubMed

    García, Héctor; Castán, Helena; Dueñas, Salvador; Bailón, Luis; García-Hernansanz, Rodrigo; Olea, Javier; Del Prado, Álvaro; Mártil, Ignacio

    2016-12-01

    A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100-150 °C) might be the best choice.

  7. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    NASA Astrophysics Data System (ADS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-12-01

    Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV-vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  8. Characterization of internal structure of hydrated agar and gelatin matrices by cryo-SEM.

    PubMed

    Rahbani, Janane; Behzad, Ali R; Khashab, Niveen M; Al-Ghoul, Mazen

    2013-02-01

    There has been a considerable interest in recent years in developing polymer gel matrices for many important applications such as 2DE for quantization and separation of a variety of proteins and drug delivery system to control the release of active agents. However, a well-defined knowledge of the ultrastructures of the gels has been elusive. In this study, we report the characterization of two different polymers used in 2DE: Gelatin, a naturally occurring polymer derived from collagen (protein) and agar, a polymer of polysaccharide (sugar) origin. Low-temperature SEM is used to examine the internal structure of these gels in their frozen natural hydrated states. Results of this study show that both polymers have an array of hollow cells that resembles honeycomb structures. While agar pores are almost circular, the corresponding Gaussian curve is very broad exhibiting a range of radii from nearly 370 to 700 nm. Gelatin pores are smaller and more homogeneous reflecting a narrower distribution from nearly 320 to 650 nm. Overall, these ultrastructural findings could be used to correlate with functions of the polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions.

    PubMed

    Tahiri, Abdelghani; Richel, Aurore; Destain, Jacqueline; Druart, Philippe; Thonart, Philippe; Ongena, Marc

    2016-03-01

    Humic substances (HS) are complex and heterogeneous mixtures of organic compounds that occur everywhere in the environment. They represent most of the dissolved organic matter in soils, sediments (fossil), water, and landfills. The exact structure of HS macromolecules has not yet been determined because of their complexity and heterogeneity. Various descriptions of HS are used depending on specific environments of origin and research interests. In order to improve the understanding of the structure of HS extracted from landfill leachate (LHS) and commercial HS from leonardite (HHS), this study sought to compare the composition and characterization of the structure of LHS and HHS using elemental composition, chromatographic (high-performance liquid chromatography (HPLC)), and spectroscopic techniques (UV-vis, FTIR, NMR, and MALDI-TOF). The results showed that LHS molecules have a lower molecular weight and less aromatic structure than HHS molecules. The characteristics of functional groups of both LHS and HHS, however, were basically similar, but there was some differences in absorbance intensity. There were also less aliphatic and acidic functional groups and more aromatic and polyphenolic compounds in the humic acid (HA) fraction than in the fulvic acid (FA) and other molecules (OM) fractions of both origins. The differences between LHS and HHS might be due to the time course of humification. Combining the results obtained from these analytical techniques cold improve our understanding of the structure of HS of different origins and thus enhance their potential use.

  10. Synthesis and structural characterization of the hexagonal anti-perovskite Na{sub 2}CaVO{sub 4}F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Robert L., E-mail: rgreen@flpoly.org; Avdeev, Maxim; School of Chemistry, The University of Sydney, Sydney, NSW 2006

    The structural details of the ordered hexagonal oxyfluoride Na{sub 2}CaVO{sub 4}F prepared by solid-state synthesis using stoichiometric amounts of V{sub 2}O{sub 5}, CaCO{sub 3}, Na{sub 2}CO{sub 3} and NaF were characterized using high-resolution neutron powder diffraction. The structural changes between 25 °C and 750 °C revealed that the two structural subunits in this material behave different when heated: there is an expansion of the face-shared FNa{sub 4}Ca{sub 2} octahedra while the VO{sub 4} tetrahedra due to increased thermal disorder reveal marginal bond contractions. Bond valences and the global instability index point to significant structural disorder at 750 °C. - Graphicalmore » abstract: The structure of the novel oxyfluoride Na{sub 2}CaVO{sub 4}F is studied at room temperature and high-temperatures. The structure can be viewed as layers of compression and elongation of polyhedral subunits, which change as a function of temperature. - Highlights: • The novel oxyfluoride, Na{sub 2}CaVO{sub 4}F, is synthesized via solid-state method. • High-resolution neutron diffraction data is used to analyze the structure of Na{sub 2}CaVO{sub 4}F. • Structural subunits exhibit expansion and contraction with increasing temperature. • Higher temperatures increase instability within the structure of Na{sub 2}CaVO{sub 4}F.« less

  11. Characterization of Geologic Structures and Host Rock Properties Relevant to the Hydrogeology of the Standard Mine in Elk Basin, Gunnison County, Colorado

    USGS Publications Warehouse

    Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn

    2010-01-01

    The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.

  12. Structural characterization of magnesium silicate hydrate: towards the design of eco-sustainable cements.

    PubMed

    Tonelli, M; Martini, F; Calucci, L; Fratini, E; Geppi, M; Ridi, F; Borsacchi, S; Baglioni, P

    2016-02-28

    Magnesium-based cement is one of the most interesting eco-sustainable alternatives to standard cementitious binders. The reasons for the interest towards this material are twofold: (i) its production process, using magnesium silicates, brine or seawater, dramatically reduces CO2 emissions with respect to Portland cement production, and (ii) it is very well suited to applications in radioactive waste encapsulation. In spite of its potential, assessment of the structural properties of its binder phase (magnesium silicate hydrate or M-S-H) is far from complete, especially because of its amorphous character. In this work, a comprehensive structural characterization of M-S-H was obtained using a multi-technique approach, including a detailed solid-state NMR investigation and, in particular, for the first time, quantitative (29)Si solid-state NMR data. M-S-H was prepared through room-temperature hydration of highly reactive MgO and silica fume and was monitored for 28 days. The results clearly evidenced the presence in M-S-H of "chrysotile-like" and "talc-like" sub-nanometric domains, which are approximately in a 1 : 1 molar ratio after long-time hydration. Both these kinds of domains have a high degree of condensation, corresponding to the presence of a small amount of silanols in the tetrahedral sheets. The decisive improvement obtained in the knowledge of M-S-H structure paves the way for tailoring the macroscopic properties of eco-sustainable cements by means of a bottom-up approach.

  13. Characterization of the Population Structures in Wildland Collections of Dalea Ornata and Dalea Searlsiae from the Western U.S.A.

    USDA-ARS?s Scientific Manuscript database

    Dalea ornata and D. searlsiae are non-toxic native legumes that have potential for increasing forage production and forage quality of degraded rangelands in the western U.S.A. It is important to characterize the population structures in both species for developing new plant materials through plant ...

  14. Fast Lamb wave energy shift approach using fully contactless ultrasonic system to characterize concrete structures

    NASA Astrophysics Data System (ADS)

    Ham, Suyun; Popovics, John S.

    2015-03-01

    Ultrasonic techniques provide an effective non-destructive evaluation (NDE) method to monitor concrete structures, but the need to perform rapid and accurate structural assessment requires evaluation of hundreds, or even thousands, of measurement datasets. Use of a fully contactless ultrasonic system can save time and labor through rapid implementation, and can enable automated and controlled data acquisition, for example through robotic scanning. Here we present results using a fully contactless ultrasonic system. This paper describes our efforts to develop a contactless ultrasonic guided wave NDE approach to detect and characterize delamination defects in concrete structures. The developed contactless sensors, controlled scanning system, and employed Multi-channel Analysis of Surface Waves (MASW) signal processing scheme are reviewed. Then a guided wave interpretation approach for MASW data is described. The presence of delamination is interpreted by guided plate wave (Lamb wave) behavior, where a shift in excited Lamb mode phase velocity, is monitored. Numerically simulated and experimental ultrasonic data collected from a concrete sample with simulated delamination defects are presented, where the occurrence of delamination is shown to be associated with a mode shift in Lamb wave energy.

  15. Characterization of core/shell structures based on CdTe and GaAs nanocrystalline layers deposited on SnO2 microwires

    NASA Astrophysics Data System (ADS)

    Ghimpu, L.; Ursaki, V. V.; Pantazi, A.; Mesterca, R.; Brâncoveanu, O.; Shree, Sindu; Adelung, R.; Tiginyanu, I. M.; Enachescu, M.

    2018-04-01

    We report the fabrication and characterization of SnO2/CdTe and SnO2/GaAs core/shell microstructures. CdTe or GaAs shell layers were deposited by radio-frequency (RF) magnetron sputtering on core SnO2 microwires synthesized by a flame-based thermal oxidation method. The produced structures were characterized by scanning electron microscopy (SEM), high-resolution scanning transmission electron microscope (HR-STEM), X-ray diffraction (XRD), Raman scattering and FTIR spectroscopy. It was found that the SnO2 core is of the rutile type, while the shells are composed of CdTe or GaAs nanocrystallites of zincblende structure with the dimensions of crystallites in the range of 10-20 nm. The Raman scattering investigations demonstrated that the quality of the porous nanostructured shell is improved by annealing at temperatures of 420-450 °C. The prospects of implementing these microstructures in intrinsic type fiber optic sensors are discussed.

  16. Synthesis and structural characterization by NMR and X-ray of new Morita-Baylis-Hillman adducts derived from 7-chloroquinoline

    NASA Astrophysics Data System (ADS)

    da Silva Caleffi, Guilherme; de Oliveira, João Paulo Gomes; da Paz Silva, Everton; Olegário, Tayná Rodrigues; Mendes, Rhuan Karlos Santos; Lima-Junior, Cláudio Gabriel; Silva, Fábio Pedrosa Lins; Martins, Felipe Terra; Vasconcellos, Mário Luiz Araújo de Almeida

    2017-04-01

    Herein we describe the design, synthesis and structural characterization by NMR and X-ray of new molecular hybrids 4a-4c containing the nitroaromatic MBHA moiety and the 7-chloroquinoline pharmacophores, linked by an aliphatic spacer as a model for antiprotozoal drugs. Firstly, the 4,7-dichloroquinoline (7) reacted with excess of ethylene glycol, through a SNAr promoted by t-BuOK, to prepare the 2-(7-chloroquinolin-4-yloxy)ethanol (6) in 98% isolated yield. Then, the novel 2-(7-chloroquinolin-4-yloxy) ethyl acrylate (5) was synthesized in 78% isolated yield by reacting the alcohol (6) with acryloyl chloride and TEA in CH2Cl2. Finally, this acrylate (5) reacted with o-nitrobenzaldehyde, m-nitrobenzaldehyde and p-nitrobenzaldehyde through Morita-Baylis-Hillman reactions promoted by DABCO at room temperature, using t-BuOH:Water (9:1) as solvent, to afford the new hybrids 4a-4c in 73-76% isolated yields. Three-dimensional structures were characterized in both monomeric and intermolecular packing by X-Ray experiments.

  17. Structural characterization of the cell division cycle in Strigomonas culicis, an endosymbiont-bearing trypanosomatid.

    PubMed

    Brum, Felipe Lopes; Catta-Preta, Carolina Moura Costa; de Souza, Wanderley; Schenkman, Sergio; Elias, Maria Carolina; Motta, Maria Cristina Machado

    2014-02-01

    Strigomonas culicis (previously referred to as Blastocrithidia culicis) is a monoxenic trypanosomatid harboring a symbiotic bacterium, which maintains an obligatory relationship with the host protozoan. Investigations of the cell cycle in symbiont harboring trypanosomatids suggest that the bacterium divides in coordination with other host cell structures, particularly the nucleus. In this study we used light and electron microscopy followed by three-dimensional reconstruction to characterize the symbiont division during the cell cycle of S. culicis. We observed that during this process, the symbiotic bacterium presents different forms and is found at different positions in relationship to the host cell structures. At the G1/S phase of the protozoan cell cycle, the endosymbiont exhibits a constricted form that appears to elongate, resulting in the bacterium division, which occurs before kinetoplast and nucleus segregation. During cytokinesis, the symbionts are positioned close to each nucleus to ensure that each daughter cell will inherit a single copy of the bacterium. These observations indicated that the association of the bacterium with the protozoan nucleus coordinates the cell cycle in both organisms.

  18. Structural characterization of hemicelluloses and topochemical changes in Eucalyptus cell wall during alkali ethanol treatment.

    PubMed

    Li, Han-Yin; Sun, Shao-Ni; Zhou, Xia; Peng, Feng; Sun, Run-Cang

    2015-06-05

    Eucalyptus was sequentially extracted with 70% ethanol containing 0.4, 1.0, 2.0, 3.0, and 5.0% NaOH for 2h at 80°C. The chemical composition and structural features of the hemicellulosic fractions obtained were comparatively characterized by the combination of high-performance anion-exchange chromatography, gel permeation chromatography, Fourier transform infrared, and nuclear magnetic resonance spectroscopies. Furthermore, the main component distribution and their changes in cell wall were investigated by confocal Raman microscopy. Based on the Fourier transform infrared and nuclear magnetic resonance analyses, the hemicelluloses extracted from Eucalyptus mainly have a linear backbone of (1→4)-linked-β-d-xylopyranosyl residues decorated with branch at O-2 of 4-O-methyl-α-glucuronic acid unit. Raman analysis revealed that the dissolution of hemicelluloses was different in the morphological regions, and the hemicelluloses released mainly originated from the secondary wall. The information obtained from the study conducted by combining chemical characterization with ultrastructure provides important basis for studying the mechanism of the alkali treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Structural and physicochemical characterization of pyridine derivative salts of anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Nechipadappu, Sunil Kumar; Trivedi, Darshak R.

    2017-08-01

    Salts of common anti-inflammatory drugs mefenamic acid (MFA), tolfenamic acid (TFA) and naproxen (NPX) with various pyridine derivatives (4-amino pyridine (4AP), 4-dimethylaminopyridine (DMAP) and 2-amino pyridine (2AP)) were synthesized by crystal engineering approach based on the pKa values of API's and the salt former. All the salts were characterized systematically by various spectroscopic methods including FT-IR and 1H NMR and the crystal structure was determined by single-crystal X-ray diffraction techniques (SCXRD). DMAP salt of NPX and 2AP salts of MFA and TFA were not obtained in the salt screening experiments. All the molecular salts exhibited 1:1 molecular stoichiometry in the asymmetric unit and except NPX-2AP salt, all the molecular salts included a water molecule in the crystal lattice. Physicochemical and structural properties between drug-drug molecular salts of MFA-4AP, TFA-4AP and NPX-4AP have been evaluated and it was found that these molecular salts were found to be stable for a time period of six months at ambient condition and further hydration of molecular salts were not observed even at accelerated humid conditions (∼75% RH). It was found that 4AP salts of MFA and TFA and DMAP salts of MFA and TFA are isostructural.

  20. Assessing the efficacy of single-pass backpack electrofishing to characterize fish community structure

    USGS Publications Warehouse

    Meador, M.R.; McIntyre, J.P.; Pollock, K.H.

    2003-01-01

    Two-pass backpack electrofishing data collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program were analyzed to assess the efficacy of single-pass backpack electrofishing. A two-capture removal model was used to estimate, within 10 river basins across the United States, proportional fish species richness from one-pass electrofishing and probabilities of detection for individual fish species. Mean estimated species richness from first-pass sampling (ps1) ranged from 80.7% to 100% of estimated total species richness for each river basin, based on at least seven samples per basin. However, ps1 values for individual sites ranged from 40% to 100% of estimated total species richness. Additional species unique to the second pass were collected in 50.3% of the samples. Of these, cyprinids and centrarchids were collected most frequently. Proportional fish species richness estimated for the first pass increased significantly with decreasing stream width for 1 of the 10 river basins. When used to calculate probabilities of detection of individual fish species, the removal model failed 48% of the time because the number of individuals of a species was greater in the second pass than in the first pass. Single-pass backpack electrofishing data alone may make it difficult to determine whether characterized fish community structure data are real or spurious. The two-pass removal model can be used to assess the effectiveness of sampling species richness with a single electrofishing pass. However, the two-pass removal model may have limited utility to determine probabilities of detection of individual species and, thus, limit the ability to assess the effectiveness of single-pass sampling to characterize species relative abundances. Multiple-pass (at least three passes) backpack electrofishing at a large number of sites may not be cost-effective as part of a standardized sampling protocol for large-geographic-scale studies. However, multiple

  1. Structural and fractal characterization of tungstophosphoric acid modified titanium dioxide photocatalyst

    NASA Astrophysics Data System (ADS)

    Petrović, S.; Rožić, Lj; Vuković, Z.; Grbić, B.; Radić, N.; Stojadinović, S.; Vasilić, R.

    2017-04-01

    This article presents the comparison of structural and fractal properties of nanocrystalline titanium dioxide (TiO2) and TiO2 modified with tungstophosphoric acid (TiO2/HPW) and their impact on the photocatalytic degradation of hazardous water pollutants. TiO2 and TiO2/HPW samples were synthesized by a combined sol-gel and hydrothermal processing. The XRD analysis of pure TiO2 samples revealed that phase composition was mainly dependent on the calcination temperature, changing from amorphous TiO2 to crystalline anatase and rutile by increasing the temperature. On the other hand, the XRD of TiO2/HPW samples calcined at temperatures above 600 °C showed crystalline peaks associated to formation of WO3 and WO2.92 crystalline domains. The N2 adsorption-desorption isotherm and pore size distribution of TiO2/HPW samples detected the existence of mesoporous characteristic with very narrow bimodal pores in the mesoporous region. The structural heterogeneity of samples was analyzed by means of pore size distribution functions, while the variation in fractal dimension were determined from the nitrogen adsorption isotherms, using the modified Frenkel-Halsey-Hill method. The results demonstrate that the approach is capable of characterizing complex textures such as those present in the TiO2 and TiO2/HPW photocatalysts. Besides, the effect of calcinations condition on photocatalytic properties of the samples was also investigated. The highest efficiency with respect to methyl orange photodecomposition was observed for TiO2/HPW photocatalysts calcined at 700 °C.

  2. Using Neutron Scattering and Mercury Intrusion Techniques to Characterize Micro- and Nano-Pore Structure of Shale

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Barber, T.; Hu, Q.; Bleuel, M.

    2017-12-01

    The micro- and nano-pore structure of oil shale plays a critical role in hydrocarbon storage and migration. This study aims to characterize the pore structure of three Bakken members (i.e., upper organic-rich shale, middle silty/sandy dolomites, and lower organic-rich shale), through small and ultra-small angle neutron scattering (SANS and USANS) techniques, as well as mercury injection capillary pressure (MICP) analyses. SANS/USANS have the capabilities of measuring total porosity (connected and closed porosity) across nm-mm spectrum, not measurable than other fluid-invasion approaches, such as MICP which obtains connected porosity and pore-throat size distribution. Results from both techniques exhibit different features of upper/lower Bakken and middle Bakken, as a result of various mineral composition and organic matter contents. Middle Bakken is primarily dominated by the mineral pores, while in the upper and lower Bakken, organic pores contribute a significant portion of total porosity. A combination of USANS/SANS and MICP techniques gives a comprehensive picture of shale micro- and nano-pore structure.

  3. Structural characterization and inhibition on α-d-glucosidase activity of non-starch polysaccharides from Fagopyrum tartaricum.

    PubMed

    Wang, Xiao-Ting; Zhu, Zhen-Yuan; Zhao, Liang; Sun, Hui-Qing; Meng, Meng; Zhang, Jin-Yu; Zhang, Yong-Min

    2016-11-20

    In the present study, the crude polysaccharide was extracted from Fagopyrum tartaricum and purified by Sephadex G-25 and G-75 column to produce a polysaccharide fraction termed TBP-II. Its average molecular weight was 26kDa. The structural characterization of TBP-II was investigated by gas chromatography, periodate oxidation-Smith degradation, Methylation and NMR. Congo red was applied to explore its advanced structures. The results revealed that chemical composition and structural characteristic of TBP-II was mainly consisted of galactose, arabinose, xylose and glucose with a molar ratio of 0.7:1:6.3:74.2. The backbone of TBP-II was composed of (1→4)-linked α-d-glucopyranosyl (Glcp), while the branches comprised of (1→3)-linked α-d-glucopyranosyl (Glcp), (1→6)-linked α-d-galactopyranosyl (Galp) and (1→2,4)-linked α-d-rhamnopyranosyl (Rhap). The structure of TBP-II was 1,3 and 1,6-branched-galactorhamnoglucan that had a linear backbone of (1→4)-linked α-d-glucopyranose (Glcp). Using Congo red assay showed that it was absent of triple helix structure. The α-d-glucosidase inhibitory activity of TBP-II was determined using acarbose as positive control. The result showed that the inhibition rate depended on the concentration of polysaccharides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Synthesis and characterization of crystalline structures based on phenylboronate ligands bound to alkaline earth cations.

    PubMed

    Reinholdt, Marc; Croissant, Jonas; Di Carlo, Lidia; Granier, Dominique; Gaveau, Philippe; Bégu, Sylvie; Devoisselle, Jean-Marie; Mutin, P Hubert; Smith, Mark E; Bonhomme, Christian; Gervais, Christel; van der Lee, Arie; Laurencin, Danielle

    2011-08-15

    We describe the preparation of the first crystalline compounds based on arylboronate ligands PhB(OH)(3)(-) coordinated to metal cations: [Ca(PhB(OH)(3))(2)], [Sr(PhB(OH)(3))(2)]·H(2)O, and [Ba(PhB(OH)(3))(2)]. The calcium and strontium structures were solved using powder and single-crystal X-ray diffraction, respectively. In both cases, the structures are composed of chains of cations connected through phenylboronate ligands, which interact one with each other to form a 2D lamellar structure. The temperature and pH conditions necessary for the formation of phase-pure compounds were investigated: changes in temperature were found to mainly affect the morphology of the crystallites, whereas strong variations in pH were found to affect the formation of pure phases. All three compounds were characterized using a wide range of analytical techniques (TGA, IR, Raman, XRD, and high resolution (1)H, (11)B, and (13)C solid-state NMR), and the different coordination modes of phenylboronate ligands were analyzed. Two different kinds of hydroxyl groups were identified in the structures: those involved in hydrogen bonds, and those that are effectively "free" and not involved in hydrogen bonds of any significant strength. To position precisely the OH protons within the structures, an NMR-crystallography approach was used: the comparison of experimental and calculated NMR parameters (determined using the Gauge Including Projector Augmented Wave method, GIPAW) allowed the most accurate positions to be identified. In the case of the calcium compound, it was found that it is the (43)Ca NMR data that are critical to help identify the best model of the structure. © 2011 American Chemical Society

  5. Structural Characterization Studies on Semiconducting ZnSnN 2 Films using Synchrotron X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Senabulya, Nancy

    This work is motivated by the need for new visible frequency direct bandgap semiconductor materials that are earth abundant and low-cost to meet the increasing demand for optoelectronic device applications such as solid state lighting and photovoltaics. Zinc-Tin-Nitride (ZnSnN2), a member of the II-IV nitride semiconductor family has been proposed as an alternative to the more common III-nitride semiconductors for use in optoelectronic devices. This material has been synthesized under optimized conditions using plasma assisted molecular beam epitaxy. Though a lot of research has recently been done computationally to predict the electronic and structural properties of ZnSnN2, experimental verification of these theories in single crystal thin films is lacking and warrants investigation because the accurate determination of the crystal structure of ZnSnN2 is a fundamental prerequisite for controlling and optimizing optoelectronic properties. In this synchrotron x-ray diffraction study, we present experimental validation, through unit cell refinement and 3d reciprocal space maps, of the crystal structure of single domain ZnSnN2 films deposited on (111) Yttria stabilized zirconia (YSZ) and (001) Lithium gallate (LGO) substrates. We find that ZnSnN2 films grown on (111) YSZ can attain both the theoretically predicted disordered wurtzite and ordered orthorhombic Pna21 structures under carefully controlled MBE growth conditions, while films grown on (001) LGO have the ordered Pn21a orthorhombic crystal structure. Through a systematic annealing study, a temperature induced first order structural phase transition from the wurtzite to orthorhombic phase is realized, characterized by the appearance of superstructure reflections in.

  6. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE PAGES

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; ...

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 V p-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  7. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 V p-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  8. Report on maloine, a new alkaloid discovered from G. maloi: Structural characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Çela, Dorisa; Nepravishta, Ridvan; Lazari, Diamanto; Gaziano, Roberta; Moroni, Gabriella; Pica, Francesca; Paci, Maurizio; Abazi, Sokol

    2017-02-01

    Gymnospermium maloi Kit Tan, & Shuka is a new endemic species of the genus Gymnospermium Spach which has been described recently from the southern part of Albania. The members of this genus are poorly studied for what it concern the secondary metabolites in general and the class of alkaloids in particular. In fact from Gymnospermium genus, there are only few alkaloids characterized, (namely albertramine, albertidine, and albertine) isolated from G. albertii. Until now the chemical composition and the structure elucidation of other possible secondary metabolites, especially alkaloids, remain largely unknown. Here we report, for the first time, the structure of a new alkaloid isolated from G. maloi, designated by us as maloine, and obtained by the use of 2D homonuclear and heteronuclear NMR spectroscopy, FTIR, UV, Fluorescence and HPLC/MS spectra. The biological activity of the crude extract of Gymnospermium maloi and of its alkaloid maloine, was evaluated in vitro on human chronic myeloid leukemia cell line K562 and results herewith reported.

  9. In situ characterization of silver nanoparticle synthesis in maltodextrin supramolecular structures

    DOE PAGES

    Bell, Nelson S.; Dunphy, Darren R.; Lambert, Timothy N.; ...

    2015-06-26

    In this study, the use of maltodextrin supramolecular structures (MD SMS) as a reducing agent and colloidal stabilizing agent for the synthesis of Ag nanoparticles (Ag NPs) identified three key points. First, the maltodextrin (MD) solutions are effective in the formation of well-dispersed Ag NPs utilizing alkaline solution conditions, with the resulting Ag NPs ranging in size from 5 to 50 nm diameter. Second, in situ characterization by Raman spectroscopy and small angle X-ray scattering (SAXS) are consistent with initial nucleation of Ag NPs within the MD SMS up to a critical size of ca. 1 nm, followed by amore » transition to more rapid growth by aggregation and fusion between MD SMS, similar to micelle aggregation reactions. Third, the stabilization of larger Ag NPs by adsorbed MD SMS is similar to hemi-micelle stabilization, and monomodal size distributions are proposed to relate to integer surface coverage of the Ag NPs. Conditions were identified for preparing Ag NPs with monomodal distributions centered at 30–35 nm Ag NPs.« less

  10. Structural, biochemical, and biophysical characterization of idelalisib binding to phosphoinositide 3-kinase δ

    DOE PAGES

    Somoza, John R.; Koditek, David; Villaseñor, Armando G.; ...

    2015-01-28

    Idelalisib (also known as GS-1101, CAL-101, IC489666, and Zydelig) is a PI3Kδ inhibitor that has recently been approved for the treatment of several hematological malignancies. Given its use in human diseases, we needed a clear picture of how idelalisib binds to and inhibits PI3Kδ. Here, our data show that idelalisib is a potent and selective inhibitor of the kinase activity of PI3Kδ. A kinetic characterization clearly demonstrated ATP-competitive inhibition, and several additional biochemical and biophysical assays showed that the compound binds reversibly and noncovalently to the kinase. Lastly, a crystal structure of idelalisib bound to the p110δ subunit of PI3Kδmore » furthers our understanding of the binding interactions that confer the potency and selectivity of idelalisib.« less

  11. Synthesis and Structural Characterization of Reflectin Proteins

    DTIC Science & Technology

    2012-02-29

    constructs of interest included a reflectin 1a domain 3 (D3) monomer, a domain 3 dimer, subdomain peptides, recombinant reflectin 1b, an elastin -reflectin...diblock copolymer, and an elastin -reflectin-GFP fusion protein. After construction of the sequences of interest at the DNA level, protein expression...characterization was performed. The unique spectral properties associated with recombinant reflectin protein materials make elastin -reflectin

  12. Characterization of a Chlamydomonas Insertional Mutant that Disrupts Flagellar Central Pair Microtubule-associated Structures

    PubMed Central

    Mitchell, David R.; Sale, Winfield S.

    1999-01-01

    Two alleles at a new locus, central pair–associated complex 1 (CPC1), were selected in a screen for Chlamydomonas flagellar motility mutations. These mutations disrupt structures associated with central pair microtubules and reduce flagellar beat frequency, but do not prevent changes in flagellar activity associated with either photophobic responses or phototactic accumulation of live cells. Comparison of cpc1 and pf6 axonemes shows that cpc1 affects a row of projections along C1 microtubules distinct from those missing in pf6, and a row of thin fibers that form an arc between the two central pair microtubules. Electron microscopic images of the central pair in axonemes from radial spoke–defective strains reveal previously undescribed central pair structures, including projections extending laterally toward radial spoke heads, and a diagonal link between the C2 microtubule and the cpc1 projection. By SDS-PAGE, cpc1 axonemes show reductions of 350-, 265-, and 79-kD proteins. When extracted from wild-type axonemes, these three proteins cosediment on sucrose gradients with three other central pair proteins (135, 125, and 56 kD) in a 16S complex. Characterization of cpc1 provides new insights into the structure and biochemistry of the central pair apparatus, and into its function as a regulator of dynein-based motility. PMID:9922455

  13. Identification and Characterization of Molecular Bonding Structures by ab initio Quasi-Atomic Orbital Analyses.

    PubMed

    West, Aaron C; Duchimaza-Heredia, Juan J; Gordon, Mark S; Ruedenberg, Klaus

    2017-11-22

    The quasi-atomic analysis of ab initio electronic wave functions in full valence spaces, which was developed in preceding papers, yields oriented quasi-atomic orbitals in terms of which the ab initio molecular wave function and energy can be expressed. These oriented quasi-atomic orbitals are the rigorous ab initio counterparts to the conceptual bond forming atomic hybrid orbitals of qualitative chemical reasoning. In the present work, the quasi-atomic orbitals are identified as bonding orbitals, lone pair orbitals, radical orbitals, vacant orbitals and orbitals with intermediate character. A program determines the bonding characteristics of all quasi-atomic orbitals in a molecule on the basis of their occupations, bond orders, kinetic bond orders, hybridizations and local symmetries. These data are collected in a record and provide the information for a comprehensive understanding of the synergism that generates the bonding structure that holds the molecule together. Applications to a series of molecules exhibit the complete bonding structures that are embedded in their ab initio wave functions. For the strong bonds in a molecule, the quasi-atomic orbitals provide quantitative ab initio amplifications of the Lewis dot symbols. Beyond characterizing strong bonds, the quasi-atomic analysis also yields an understanding of the weak interactions, such as vicinal, hyperconjugative and radical stabilizations, which can make substantial contributions to the molecular bonding structure.

  14. AFM Structural Characterization of Drinking Water Biofilm ...

    EPA Pesticide Factsheets

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  15. Characterization of Lateral Structure of the p-i-n Diode for Thin-Film Silicon Solar Cell.

    PubMed

    Kiaee, Zohreh; Joo, Seung Ki

    2018-03-01

    The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.

  16. High-temperature, high-pressure hydrothermal synthesis, characterization, and structural relationships of mixed-alkali metals uranyl silicates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi-Hsin; Liu, Hsin-Kuan; Chang, Wen-Jung

    2016-04-15

    Three mixed-alkali metals uranyl silicates, Na{sub 3}K{sub 3}[(UO{sub 2}){sub 3}(Si{sub 2}O{sub 7}){sub 2}]·2H{sub 2}O (1), Na{sub 3}Rb{sub 3}[(UO{sub 2}){sub 3}(Si{sub 2}O{sub 7}){sub 2}] (2), and Na{sub 6}Rb{sub 4}[(UO{sub 2}){sub 4}Si{sub 12}O{sub 33}] (3), have been synthesized by high-temperature, high-pressure hydrothermal reactions at 550 °C and 1440 bar, and characterized by single-crystal X-ray diffraction, photoluminescence, and thermogravimetric analysis. Compound 1 and 2 are isostructural and contain layers of uranyl disilicate. The smaller cation, Na{sup +}, is located in the intralayer channels, whereas the larger cations, K{sup +} and Rb{sup +}, and water molecule are located in the interlayer region. The absencemore » of lattice water in 2 can be understood according to the valence-matching principle. The structure is related to that of a previously reported mixed-valence uranium(V,VI) silicate. Compound 3 adopts a 3D framework structure and contains a unique unbranched dreier fourfold silicate chain with the structural formula {uB,4"1_∞}[{sup 3}Si{sub 12}O{sub 33}] formed of Q{sup 2}, Q{sup 3}, and Q{sup 4} Si. The connectivity of the Si atoms in the Si{sub 12}O{sub 33}{sup 18−} anion can be interpreted on the basis of Zintl–Klemm concept. Crystal data for compound 1: triclinic, P-1, a=5.7981(2) Å, b=7.5875(3) Å, c=12.8068(5) Å, α=103.593(2)°, β=102.879(2)°, γ=90.064(2)°, V=533.00(3) Å{sup 3}, Z=1, R1=0.0278; compound 2: triclinic, P-1, a=5.7993(3) Å, b=7.5745(3) Å, c=12.9369(6) Å, α=78.265(2)°, β=79.137(2)°, γ=89.936(2)°, V=546.02(4) Å{sup 3}, Z=1, R1=0.0287; compound 3: monoclinic, C2/m, a=23.748(1) Å, b=7.3301(3) Å, c=15.2556(7) Å, β=129.116(2)°, V=2060.4(2) Å{sup 3}, Z=2, R1=0.0304. - Graphical abstract: Three mixed-alkali metals uranyl silicates were synthesized under hydrothermal conditions at 550 °C and 1400 bar and structurally characterized by single-crystal X-ray diffraction. Two of them have a layer

  17. Characterization of the Interior Density Structure of Near Earth Objects with Muons

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Sykes, M. V.; Miller, R. S.; Pinsky, L. S.; Empl, A.; Nolan, M. C.; Koontz, S. L.; Lawrence, D. J.; Mittlefehldt, D. W.; Reddell, B. D.

    2015-12-01

    Near Earth Objects (NEOs) are a diverse population of short-lived asteroids originating from the main belt and Jupiter family comets. Some have orbits that are easy to access from Earth, making them attractive as targets for science and exploration as well as a potential resource. Some pose a potential impact threat. NEOs have undergone extensive collisional processing, fragmenting and re-accreting to form rubble piles, which may be compositionally heterogeneous (e.g., like 2008 TC3, the precursor to Almahata Sitta). At present, little is known about their interior structure or how these objects are held together. The wide range of inferred NEO macroporosities hint at complex interiors. Information about their density structure would aid in understanding their formation and collisional histories, the risks they pose to human interactions with their surfaces, the constraints on industrial processing of NEO resources, and the selection of hazard mitigation strategies (e.g., kinetic impactor vs nuclear burst). Several methods have been proposed to characterize asteroid interiors, including radar imaging, seismic tomography, and muon imaging (muon radiography and tomography). Of these, only muon imaging has the potential to determine interior density structure, including the relative density of constituent fragments. Muons are produced by galactic cosmic ray showers within the top meter of asteroid surfaces. High-energy muons can traverse large distances through rock with little deflection. Muons transmitted through an Itokawa-sized asteroid can be imaged using a compact hodoscope placed on or near the surface. Challenges include background rejection and correction for variations in muon production with surface density. The former is being addressed by hodoscope design. Surface density variations can be determined via radar or muon limb imaging. The performance of muon imaging is evaluated for prospective NEO interior-mapping missions.

  18. Characterization and structural analysis of the potent antiparasitic and antiviral agent tizoxanide

    NASA Astrophysics Data System (ADS)

    Bruno, Flavia P.; Caira, Mino R.; Martin, Eliseo Ceballos; Monti, Gustavo A.; Sperandeo, Norma R.

    2013-03-01

    Tizoxanide [2-(hydroxy)-N-(5-nitro-2-thiazolyl)benzamide, TIZ] is a new potent anti-infective agent which may enhance current therapies for leishmaniasis, Chagas disease and viral hepatitis. The aim of this study was to identify the conformational preferences that may be related to the biological activity of TIZ by resolving its crystal structure and characterizing various physicochemical properties, including its experimental vibrational and 13C nuclear magnetic resonance properties, behavior on heating and solubility in several solvents at 25 °C. TIZ crystallizes from dimethylformamide as the carboxamide tautomer in the triclinic system, space group P(-1) (No. 2) with the following unit cell parameters at 173(2) K: a = 5.4110(3) Å, b = 7.3315(6) Å, c = 13.5293(9) Å, α = 97.528(3), β = 95.390(4), γ = 97.316(5), V = 524.41(6) Å3, Z = 2, Dc = 1.680 g/cm3, R1 = 0.0482 and wR2 = 0.0911 for 2374 reflections. This modification of TIZ has a 'graphitic' structure and is composed of tightly packed layers of extensively hydrogen-bonded molecules. The various spectroscopic data [Diffuse Fourier transform infrared (DRIFT) and FT-Raman, recorded in the range 3600-500 and 4000-200 cm-1 respectively, and solid-state 13C NMR] were consistent with the structure determined by X-ray crystallography. From DSC, TG and thermomicroscopy, it was concluded that TIZ is thermally stable as a solid and that melting is not an isolated event from the one-step thermal decomposition that it undergoes above 270 °C. This modification of TIZ is practically insoluble in water and slightly soluble in polar aprotic solvents such as dimethylsulfoxide, dimethylformamide and dioxane.

  19. Techniques for characterizing lignin

    Treesearch

    Nicole M. Stark; Daniel J. Yelle; Umesh P. Agarwal

    2016-01-01

    Many techniques are available to characterize lignin. The techniques presented in this chapter are considered nondegradative, which are commonly applied to lignin. A brief discussion of lignin structure is included with this chapter to aid the reader in understanding why the discussed characterization techniques are appropriate for the study of lignin. Because the...

  20. Using measurable dosimetric quantities to characterize the inter-structural tradeoff in inverse planning

    NASA Astrophysics Data System (ADS)

    Liu, Hongcheng; Dong, Peng; Xing, Lei

    2017-08-01

    Traditional inverse planning relies on the use of weighting factors to balance the conflicting requirements of different structures. Manual trial-and-error determination of weighting factors has long been recognized as a time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the dosimetric tradeoff among the structures with physically meaningful quantities to simplify the search for clinically sensible plans. In this formalism, instead of using weighting factors, the permissible variation range of the prescription dose or dose volume histogram (DVH) of the involved structures are used to characterize the ‘importance’ of the structures. The inverse planning is then formulated into a convex feasibility problem, called the dosimetric variation-controlled model (DVCM), whose goal is to generate plans with dosimetric or DVH variations of the structures consistent with the pre-specified values. For simplicity, the dosimetric variation range for a structure is extracted from a library of previous cases which possess similar anatomy and prescription. A two-phase procedure (TPP) is designed to solve the model. The first phase identifies a physically feasible plan to satisfy the prescribed dosimetric variation, and the second phase automatically improves the plan in case there is room for further improvement. The proposed technique is applied to plan two prostate cases and two head-and-neck cases and the results are compared with those obtained using a conventional CVaR approach and with a moment-based optimization scheme. Our results show that the strategy is able to generate clinically sensible plans with little trial and error. In all cases, the TPP generates a very competitive plan as compared to those obtained using the alternative approaches. Particularly, in the planning of one of the head-and-neck cases, the TPP leads to a non-trivial improvement in the resultant dose distribution

  1. Characterization of Bifunctional Spin Labels for Investigating the Structural and Dynamic Properties of Membrane Proteins Using EPR Spectroscopy.

    PubMed

    Sahu, Indra D; Craig, Andrew F; Dunagum, Megan M; McCarrick, Robert M; Lorigan, Gary A

    2017-10-05

    Site-directed spin labeling (SDSL) coupled with electron paramagnetic resonance (EPR) spectroscopy is a very powerful technique to study structural and dynamic properties of membrane proteins. The most widely used spin label is methanthiosulfonate (MTSL). However, the flexibility of this spin label introduces greater uncertainties in EPR measurements obtained for determining structures, side-chain dynamics, and backbone motion of membrane protein systems. Recently, a newer bifunctional spin label (BSL), 3,4-bis(methanethiosulfonylmethyl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxy, has been introduced to overcome the dynamic limitations associated with the MTSL spin label and has been invaluable in determining protein backbone dynamics and inter-residue distances due to its restricted internal motion and fewer size restrictions. While BSL has been successful in providing more accurate information about the structure and dynamics of several proteins, a detailed characterization of the spin label is still lacking. In this study, we characterized BSLs by performing CW-EPR spectral line shape analysis as a function of temperature on spin-labeled sites inside and outside of the membrane for the integral membrane protein KCNE1 in POPC/POPG lipid bilayers and POPC/POPG lipodisq nanoparticles. The experimental data revealed a powder pattern spectral line shape for all of the KCNE1-BSL samples at 296 K, suggesting the motion of BSLs approaches the rigid limit regime for these series of samples. BSLs were further utilized to report for the first time the distance measurement between two BSLs attached on an integral membrane protein KCNE1 in POPC/POPG lipid bilayers at room temperature using dipolar line broadening CW-EPR spectroscopy. The CW dipolar line broadening EPR data revealed a 15 ± 2 Å distance between doubly attached BSLs on KCNE1 (53/57-63/67) which is consistent with molecular dynamics modeling and the solution NMR structure of KCNE1 which yielded a

  2. Structural characterization and mechanical properties of polypropylene reinforced natural fibers

    NASA Astrophysics Data System (ADS)

    Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.

    2017-10-01

    Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.

  3. Soil structure characterized using computed tomographic images

    Treesearch

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  4. Design considerations for an astronaut monorail system for large space structures and the structural characterization of its positioning arm

    NASA Astrophysics Data System (ADS)

    Watson, Judith J.

    1992-08-01

    An astronaut monorail system (AMS) is presented as a vehicle to transport and position EVA astronauts along large space truss structures. The AMS is proposed specifically as an alternative to the crew and equipment transfer aid for Space Station Freedom. Design considerations for the AMS were discussed and a reference configuration was selected for the study. Equations were developed to characterize the stiffness and frequency behavior of the AMS positioning arm. Experimental data showed that these equations gave a fairly accurate representation of the stiffness and frequency behavior of the arm. A study was presented to show trends for the arm behavior based on varying parameters of the stiffness and frequency equations. An ergonomics study was conducted to provide boundary conditions for tolerable frequency and deflection to be used in developing a design concept for the positioning arm. The feasibility of the AMS positioning arm was examined using equations and working curves developed in this study. It was found that a positioning arm of a length to reach all interior points of the space station truss structure could not be designed to satisfy frequency and deflection constraints. By relaxing the design requirements and the ergonomic boundaries, an arm could be designed which would provide a stable work platform for the EVA astronaut and give him access to over 75 percent of the truss interior.

  5. Recognition and characterization of hierarchical interstellar structure. II - Structure tree statistics

    NASA Technical Reports Server (NTRS)

    Houlahan, Padraig; Scalo, John

    1992-01-01

    A new method of image analysis is described, in which images partitioned into 'clouds' are represented by simplified skeleton images, called structure trees, that preserve the spatial relations of the component clouds while disregarding information concerning their sizes and shapes. The method can be used to discriminate between images of projected hierarchical (multiply nested) and random three-dimensional simulated collections of clouds constructed on the basis of observed interstellar properties, and even intermediate systems formed by combining random and hierarchical simulations. For a given structure type, the method can distinguish between different subclasses of models with different parameters and reliably estimate their hierarchical parameters: average number of children per parent, scale reduction factor per level of hierarchy, density contrast, and number of resolved levels. An application to a column density image of the Taurus complex constructed from IRAS data is given. Moderately strong evidence for a hierarchical structural component is found, and parameters of the hierarchy, as well as the average volume filling factor and mass efficiency of fragmentation per level of hierarchy, are estimated. The existence of nested structure contradicts models in which large molecular clouds are supposed to fragment, in a single stage, into roughly stellar-mass cores.

  6. Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Novotný, M.; Čížek, J.; Kužel, R.; Bulíř, J.; Lančok, J.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.; Anwand, W.; Brauer, G.

    2012-06-01

    ZnO thin films were grown by pulsed laser deposition on three different substrates: sapphire (0 0 0 1), MgO (1 0 0) and fused silica (FS). The structure and morphology of the films were characterized by x-ray diffraction and scanning electron microscopy and defect studies were carried out using slow positron implantation spectroscopy (SPIS). Films deposited on all substrates studied in this work exhibit the wurtzite ZnO structure and are characterized by an average crystallite size of 20-100 nm. However, strong differences in the microstructure of films deposited on various substrates were found. The ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit local epitaxy, i.e. a well-defined relation between film crystallites and the substrate. Domains with different orientation relationships with the substrate were found in both films. On the other hand, the film deposited on the FS substrate exhibits fibre texture with random lateral orientation of crystallites. Extremely high compressive in-plane stress of σ ˜ 14 GPa was determined in the film deposited on the MgO substrate, while the film deposited on sapphire is virtually stress-free, and the film deposited on the FS substrate exhibits a tensile in-plane stress of σ ˜ 0.9 GPa. SPIS investigations revealed that the concentration of open-volume defects in the ZnO films is substantially higher than that in a bulk ZnO single crystal. Moreover, the ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit a significantly higher density of defects than the film deposited on the amorphous FS substrate.

  7. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  8. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    DOE PAGES

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; ...

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less

  9. Structural and biochemical characterization of the protease domain of the mosaic botulinum neurotoxin type HA.

    PubMed

    Lam, Kwok-Ho; Sikorra, Stefan; Weisemann, Jasmin; Maatsch, Hannah; Perry, Kay; Rummel, Andreas; Binz, Thomas; Jin, Rongsheng

    2018-04-23

    The extreme toxicity of botulinum neurotoxins (BoNTs) relies on their specific cleavage of SNARE proteins, which eventually leads to muscle paralysis. One newly identified mosaic toxin, BoNT/HA (aka H or FA), cleaves VAMP-2 at a unique position between residues L54 and E55, but the molecular basis underlying VAMP-2-recognition of BoNT/HA remains poorly characterized. Here, we report a ∼2.09 Å resolution crystal structure of the light chain protease domain of BoNT/HA (LC/HA). Structural comparison between LC/HA and LC of BoNT/F1 (LC/F1) reveals distinctive hydrophobic and electrostatic features near the active sites, which may explain their different VAMP-2 cleavage sites. When compared to BoNT/F5 that cleaves VAMP-2 at the same site as BoNT/HA, LC/HA displays higher affinity for VAMP-2, which could be caused by their different surface charge properties surrounding a VAMP-2 exosite-binding cleft. Furthermore, systematic mutagenesis studies on VAMP-2 and structural modeling demonstrate that residues R47 to K59 spanning the cleavage site in VAMP-2 may adopt a novel extended conformation when interacting with LC/HA and LC/F5. Taken together, our structure provides new insights into substrate-recognition of BoNT/HA and paves the way for rational design of small molecule or peptide inhibitors against LC/HA.

  10. A facile approach towards synthesis, characterization, single crystal structure, and DFT study of 5-bromosalicylalcohol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastogi, Rupali, E-mail: rastogirupali@ymail.com; Tarannum, Nazia; Butcher, R. J.

    2016-03-15

    5-Bromosalicylalcohol was prepared by the interaction of NaBH{sub 4} and 5-bromosalicylaldehyde. The use of sodium borohydride makes the reaction easy, facile, economic and does not require any toxic catalyst. The compound is characterized by FTIR, {sup 1}H NMR, {sup 13}C NMR, TEM and ESI-mass spectra. Crystal structure is determined by single crystal X-ray analysis. Quantum mechanical calculations of geometries, energies and thermodynamic parameters are carried out using density functional theory (DFT/B3LYP) method with 6-311G(d,p) basis set. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data.

  11. Characterization of changes of lignin structure in the processes of cooking with solid alkali and different active oxygen.

    PubMed

    Yang, Qiulin; Shi, Jianbin; Lin, Lu; Peng, Lincai; Zhuang, Junping

    2012-11-01

    The cooking with solid alkali and active oxygen has a high selectivity for delignification. In the present work, the O(2) and H(2)O(2) were separately combined with MgO used in cornstalk cooking for investigating their effects on delignification. After cooking, the lignins in raw material, pulp, and yellow liquor were all characterized by HSQC NMR. The results showed that the syringyl (S/S'/S″) units and β-O-4' (A/A'/A″) structures had different reactivity in the cooking with MgO and H(2)O(2) due to their different structures on side-chains. Whereas the syringyl (S/S'/S″) units could be completely decomposed when the MgO and O(2) were used, and the β-O-4' (A/A'/A″) structures could be partly degraded. A novel structure G' unit with a carbonyl group was only generated in the cooking with MgO and O(2). In addition, the H unit, non-phenolic β-β' (B) and β-5' (C) structures were all stable in both of the two cooking processes. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  12. Invited review article: Photopyroelectric calorimeter for the simultaneous thermal, optical, and structural characterization of samples over phase transitions.

    PubMed

    Zammit, U; Marinelli, M; Mercuri, F; Paoloni, S; Scudieri, F

    2011-12-01

    The study of thermophysical properties is of great importance in several scientific fields. Among them, the heat capacity, for example, is related to the microscopic structure of condensed matter and plays an important role in monitoring the changes in the energy content of a system. Calorimetric techniques are thus of fundamental importance for characterizing physical systems, particularly in the vicinity of phase transitions where energy fluctuations can play an important role. In this work, the ability of the Photopyroelctric calorimetry to study the versus temperature behaviour of the specific heat and of the other thermal parameters in the vicinity of phase transitions is outlined. The working principle, the theoretical basis, the experimental configurations, and the advantages of this technique, with respect to the more conventional ones, have been described and discussed in detail. The integrations in the calorimetric setup giving the possibility to perform, simultaneously with the calorimetric studies, complementary kind of characterizations of optical, structural, and electrical properties are also described. A review of the results obtained with this technique, in all its possible configurations, for the high temperature resolution studies of the thermal parameters over several kinds of phase transitions occurring in different systems is presented and discussed.

  13. Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Nilsson, Jonas; Noborn, Fredrik; Gomez Toledo, Alejandro; Nasir, Waqas; Sihlbom, Carina; Larson, Göran

    2017-02-01

    Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl- O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides.

  14. Structural characterization of nanocrystalline cadmium sulphide powder prepared by solvent evaporation technique

    NASA Astrophysics Data System (ADS)

    Pandya, Samir; Tandel, Digisha; Chodavadiya, Nisarg

    2018-05-01

    CdS is one of the most important compounds in the II-VI group of semiconductor. There are numerous applications of CdS in the form of nanoparticles and nanocrystalline. Semiconductors nanoparticles (also known as quantum dots), belong to state of matter in the transition region between molecules and solids, have attracted a great deal of attention because of their unique electrical and optical properties, compared to bulk materials. In the field of optoelectronic, nanocrystalline form utilizes mostly in the field of catalysis and fluid technology. Considering these observations, presented work had been carried out, i.e. based on the nanocrystalline material preparation. In the present work CdS nano-crystalline powder was synthesized by a simple and cost effective chemical technique to grow cadmium sulphide (CdS) nanoparticles at 200 °C with different concentrations of cadmium. The synthesis parameters were optimized. The synthesized powder was structurally characterized by X-ray diffraction and particle size analyzer. In the XRD analysis, Micro-structural parameters such as lattice strain, dislocation density and crystallite size were analysed. The broadened diffraction peaks indicated nanocrystalline particles of the film material. In addition to that the size of the prepared particles was analyzed by particle size analyzer. The results show the average size of CdS particles ranging from 80 to 100 nm. The overall conclusion of the work can be very useful in the synthesis of nanocrystalline CdS powder.

  15. Structural and Biological Characterization of a Capsular Polysaccharide Produced by Staphylococcus haemolyticus▿

    PubMed Central

    Flahaut, Sigrid; Vinogradov, Evgeny; Kelley, Kathryn A.; Brennan, Shannon; Hiramatsu, Keiichi; Lee, Jean C.

    2008-01-01

    The DNA sequence of the genome of Staphylococcus haemolyticus JCSC1435 revealed a putative capsule operon composed of 13 genes in tandem. The first seven genes (capABCDEFGSh) showed ≥57% similarity with the Staphylococcus aureus cap5 or cap8 locus. However, the capHIJKLMSh genes are unique to S. haemolyticus and include genes encoding a putative flippase, an aminotransferase, two glycosyltransferases, and a transcriptional regulator. Capsule-like material was readily apparent by immunoelectron microscopy on bacteria harvested in the postexponential phase of growth. Electron micrographs of a JCSC1435 mutant with a deleted cap region lacked the capsule-like material. Both strains produced small amounts of surface-associated material that reacted with antibodies to polyglutamic acid. S. haemolyticus cap genes were amplified from four of seven clinical isolates of S. haemolyticus from humans, and three of these strains produced a serologically cross-reactive capsular polysaccharide. In vitro assays demonstrated that the acapsular mutant strain showed greater biofilm formation but was more susceptible to complement-mediated opsonophagocytic killing than the parent strain. Structural characterization of capsule purified from S. haemolyticus strain JCSC1435 showed a trisaccharide repeating unit: −3-α-l-FucNAc-3-(2-NAc-4-N-Asp-2,4,6-trideoxy-β-d-Glc)-4-α-d-GlcNAc-. This structure is unique among staphylococcal polysaccharides in that its composition includes a trideoxy sugar residue with aspartic acid as an N-acyl substituent. PMID:18165309

  16. Structural and biological characterization of a capsular polysaccharide produced by Staphylococcus haemolyticus.

    PubMed

    Flahaut, Sigrid; Vinogradov, Evgeny; Kelley, Kathryn A; Brennan, Shannon; Hiramatsu, Keiichi; Lee, Jean C

    2008-03-01

    The DNA sequence of the genome of Staphylococcus haemolyticus JCSC1435 revealed a putative capsule operon composed of 13 genes in tandem. The first seven genes (capABCDEFG(Sh)) showed > or = 57% similarity with the Staphylococcus aureus cap5 or cap8 locus. However, the capHIJKLM(Sh) genes are unique to S. haemolyticus and include genes encoding a putative flippase, an aminotransferase, two glycosyltransferases, and a transcriptional regulator. Capsule-like material was readily apparent by immunoelectron microscopy on bacteria harvested in the postexponential phase of growth. Electron micrographs of a JCSC1435 mutant with a deleted cap region lacked the capsule-like material. Both strains produced small amounts of surface-associated material that reacted with antibodies to polyglutamic acid. S. haemolyticus cap genes were amplified from four of seven clinical isolates of S. haemolyticus from humans, and three of these strains produced a serologically cross-reactive capsular polysaccharide. In vitro assays demonstrated that the acapsular mutant strain showed greater biofilm formation but was more susceptible to complement-mediated opsonophagocytic killing than the parent strain. Structural characterization of capsule purified from S. haemolyticus strain JCSC1435 showed a trisaccharide repeating unit: -3-alpha-L-FucNAc-3-(2-NAc-4-N-Asp-2,4,6-trideoxy-beta-D-Glc)-4-alpha-D-GlcNAc-. This structure is unique among staphylococcal polysaccharides in that its composition includes a trideoxy sugar residue with aspartic acid as an N-acyl substituent.

  17. Structural characterizations and magnetic properties of three new reduced molybdenum phosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiao; Xu Jiqing; Yu Jiehui

    2007-06-15

    Three new molybdophosphates, [Co(dien){sub 2}].(H{sub 3}dien){sub 6}.{l_brace}[CoMo{sub 12}O{sub 24}(OH){sub 6}(HPO{sub 4}){sub 2}(PO{sub 4}){sub 6}][Co(Hdien)]{sub 2}[CoMo{sub 12}O{sub 24} (OH){sub 6}(PO{sub 4}){sub 8}]{r_brace}.(dien).4H{sub 3}O.5H{sub 2}O (1) (H{sub 3}dien){sub 4}[MMo{sub 12}O{sub 24}(OH){sub 6}(HPO{sub 4}){sub 4}(PO{sub 4}){sub 4}].10H{sub 2}O [M=Co for (2), Ni for (3); dien=diethylenetriamine], have been synthesized by employing hydrothermal method and characterized by single crystal X-ray diffraction. Compound 1 is built up of Co[P{sub 4}Mo{sub 6}]{sub 2} units as the structural motif covalently linked by [Co(Hdien)] complex subunits to yield an unusual 1-D chain. Compounds 2 and 3 are isomorphic and both display covalent discrete M[P{sub 4}Mo{sub 6}]{sub 2} cluster structuresmore » which are linked by the hydrogen bonds to form 3-D supramolecular networks. Both 1 and 2 display antiferromagnetic interaction and these three compounds all exhibit intensive photoluminescence. - Graphical abstract: Three new reduced molybdophoshpates based on P{sub 4}MO{sub 6} building blocks have been hydrothermally synthesized. 1 is the first covalent 1-D chain consisting of two kinds of forms of M[P{sub 4}MO{sub 6}]{sub 2} units, standing forms A and lying forms B, while 2 and 3 possess 3-D supramolecular network structures. These three compounds all display photoluminescence.« less

  18. Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae.

    PubMed

    Rosconi, Federico; Davyt, Danilo; Martínez, Verónica; Martínez, Marcela; Abin-Carriquiry, Juan Andrés; Zane, Hannah; Butler, Alison; de Souza, Emanuel M; Fabiano, Elena

    2013-03-01

    Herbaspirillum seropedicae Z67 is a diazotrophic endophyte able to colonize the interior of many economically relevant crops such as rice, wheat, corn and sorghum. Structures of siderophores produced by bacterial endophytes have not yet been elucidated. The aim of this work was to identify and characterize the siderophores produced by this bacterium. In a screening for mutants unable to produce siderophores we found a mutant that had a transposon insertion in a non-ribosomal peptide synthase (NRPS) gene coding for a putative siderophore biosynthetic enzyme. The chemical structure of the siderophore was predicted using computational genomic tools. The predicted structure was confirmed by chemical analysis. We found that siderophores produced by H. seropedicae Z67 are a suite of amphiphilic lipopeptides, named serobactin A, B and C, which vary by the length of the fatty acid chain. We also demonstrated the biological activity of serobactins as nutritional iron sources for H. seropedicae. These are the first structurally described siderophores produced by endophytic bacteria. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  20. Characterization of pore and crystal structure of synthesized LiBOB with varying quality of raw materials as electrolyte for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Lestariningsih, Titik; Ratri, Christin Rina; Wigayati, Etty Marty; Sabrina, Qolby

    2016-02-01

    Characterization of pore structure and crystal structure of the LiB(C2O4)2H2O or LIBOB compound has been performed in this study. These recent years, research regarding LiBOB electrolyte salt have been performed using analytical-grade raw materials, therefore this research was aimed to synthesized LiBOB electrolyte salt using the cheaper and abundant technical-grade raw materials. Lithium hydroxide (LiOH), oxalic acid dihydrate (H2C2O4.2H2O), and boric acid (H3BO3) both in technical-grade and analytical-grade quality were used as raw materials for the synthesis of LiBOB. Crystal structure characterization results of synthesized LiBOB from both technical-grade and analytical-grade raw materials have shown the existence of LiBOB and LiBOB hydrate phase with orthorombic structure. These results were also confirmed by FT-IR analysis, which showed the functional groups of LiBOB compounds. SEM analysis results showed that synthesized LiBOB has spherical structure, while commercial LiBOB has cylindrical structure. Synthesized LiBOB has a similar pore size of commercial LiBOB, i.e. 19 nm (mesoporous material). Surface area of synthesized LiBOB from analytical-grade raw materials and technical-grade materials as well as commercial LIBOB were 88.556 m2/g, 41.524 m2/g, and 108.776 m2/g, respectively. EIS analysis results showed that synthesized LiBOB from technical-grade raw materials has lower conductivity than synthesized LiBOB from analytical-grade raw materials.

  1. Complete structural characterization of ceramides as [M – H]− ions by multiple-stage linear ion trap mass spectrometry

    PubMed Central

    Hsu, Fong-Fu

    2016-01-01

    Ceramide is a huge lipid family consisting of diversified structures including various modifications in the fatty acyl chain and the long chain base (LCB). In this contribution, negative-ion ESI linear ion-trap multiple-stage mass spectrometric method (LIT MSn) towards complete structural determination of ceramides in ten major families characterized as the [M – H]− ions is described. Multiple sets of fragment ions reflecting the fatty acyl chain and LCB were observed in the CID MS2 spectrum, while the sequential MS3 and MS4 spectra contain structural information for locating the double bond and the functional groups, permitting realization of the fragmentation processes. Thereby, differentiation of ceramide molecules varied by chain length, the LCB (sphingosine, phytosphigosine, 6-hydroxy-sphingosine), and by the modification (α-hydroxy-, β-hydroxy-, ω-hydroxy-FA) can be achieved; and many isomeric structures in the biological specimen can be revealed in detail. PMID:27523779

  2. Advances in Chemical and Structural Characterization of Concretion with Implications for Modeling Marine Corrosion

    NASA Astrophysics Data System (ADS)

    Johnson, Donald L.; DeAngelis, Robert J.; Medlin, Dana J.; Carr, James D.; Conlin, David L.

    2014-05-01

    The Weins number model and concretion equivalent corrosion rate methodology were developed as potential minimum-impact, cost-effective techniques to determine corrosion damage on submerged steel structures. To apply the full potential of these technologies, a detailed chemical and structural characterization of the concretion (hard biofouling) that transforms into iron bearing minerals is required. The fractions of existing compounds and the quantitative chemistries are difficult to determine from x-ray diffraction. Environmental scanning electron microscopy was used to present chemical compositions by means of energy-dispersive spectroscopy (EDS). EDS demonstrates the chemical data in mapping format or in point or selected area chemistries. Selected-area EDS data collection at precise locations is presented in terms of atomic percent. The mechanism of formation and distribution of the iron-bearing mineral species at specific locations will be presented. Based on water retention measurements, porosity in terms of void volume varies from 15 v/o to 30 v/o (vol.%). The void path displayed by scanning electron microscopy imaging illustrates the tortuous path by which oxygen migrates in the water phase within the concretion from seaside to metalside.

  3. Structural characterization and cytotoxicity studies of different forms of a combretastatin A4 analogue

    NASA Astrophysics Data System (ADS)

    de Figueiredo, Laysa P.; Ibiapino, Amanda L.; do Amaral, Daniel N.; Ferraz, Letícia S.; Rodrigues, Tiago; Barreiro, Eliezer J.; Lima, Lídia M.; Ferreira, Fabio F.

    2017-11-01

    It is well known that combretastatin A4 (CA-4), which is a natural stilbene isolated from Combretum caffrum, is used to inhibit angiogenesis. However, depending on the dose administered to the patient, it can cause some side-effects. Herein, we present the synthesis and structural characterization of a novel N-acylhydrazone derivative - LASSBio-1735 - a CA-4 analogue. LASSBio-1735 has displayed in vitro antiproliferative activity against HL-60 (human leukemia), SF-295 (human glioblastoma), MDA-MB435 (melanoma) and HCT-8 (ileocecal adenocarcinoma) tumor cells. We found different hydration levels in two batches of the as-synthesized compound. As a consequence, we could successfully determine the crystal structures - by using X-ray powder diffraction data and a simulated annealing procedure - of the anhydrous and hydrated forms. The effects on cell viability of anhydrous and hydrated forms of LASSBio-1735 were comparatively evaluated in different tumor cell lines, and the hydrated form exhibited higher cytotoxicity in human leukemia K562 cells. These findings lead us to perform a quantitative phase analysis on one of the samples and may shed some light on the search for possible new solvates and/or hydrates.

  4. Structural, antimicrobial and computational characterization of 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea.

    PubMed

    Atiş, Murat; Karipcin, Fatma; Sarıboğa, Bahtiyar; Taş, Murat; Çelik, Hasan

    2012-12-01

    A new thiourea derivative, 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea (bcht) has been synthesized from the reaction of 2-amino-4-chlorophenol with benzoyl isothiocyanate. The title compound has been characterized by elemental analyses, FT-IR, (13)C, (1)H NMR spectroscopy and the single crystal X-ray diffraction analysis. The structure of bcht derived from X-ray diffraction of a single crystal has been presented. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method using 6-311++G(d,p) basis set. The complete assignments of all vibrational modes were performed on the basis of the total energy distributions (TED). Isotropic chemical shifts ((13)C NMR and (1)H NMR) were calculated using the gauge-invariant atomic orbital (GIAO) method. Theoretical calculations of bond parameters, harmonic vibration frequencies and nuclear magnetic resonance are in good agreement with experimental results. The UV absorption spectra of the compound that dissolved in ACN and MeOH were recorded. Bcht was also screened for antimicrobial activity against pathogenic bacteria and fungi. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Structural characterization of a therapeutic anti-methamphetamine antibody fragment: oligomerization and binding of active metabolites.

    PubMed

    Peterson, Eric C; Celikel, Reha; Gokulan, Kuppan; Varughese, Kottayil I

    2013-01-01

    Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, K(D) = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or "ecstasy"). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni(2+). Two of the histidine residues of each C-terminal His-tag interact with Ni(2+) in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy.

  6. Syntheses and structural characterization of mercury (II) coordination polymers with neutral bidentate flexible pyrazole-based ligands

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Salavati, Hossein; Asadi, Amin; Gajda, Roman; Woźniak, Krzysztof

    2016-03-01

    Mercury(II) coordination compounds [Hg(μ-bbd)(μ-SCN)4]n(1) and [Hg(bpp)(SCN)2] (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethypyrazol-1-yl)butane (bbd) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp), NCS- ligand and appropriate mercury(II) salts. Compound 1 forms a polymeric network with moieties which are connected by SCN groups and the mercury ions present as HgN3S2 trigonal bipyramides. The crystal structure of 2 is build of monomers and the mercury(II) ion adopts an HgN2S2 tetrahedral geometry. In the complex 1, each bbd acts as bridging ligand connecting Hg(μ-SCN)4 ions, while in the complex 2, the bpp ligand is coordinated to an mercury(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Moreover, in the tetrahedral structure of 2, the neutral molecules form a 1D chain structure through the C-H···N hydrogen bonds, whereas in 1 no hydrogen bonds are observed. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction.

  7. Temperature dependence measurements and structural characterization of trimethyl ammonium ionic liquids with a highly polar solvent.

    PubMed

    Attri, Pankaj; Venkatesu, Pannuru; Hofman, T

    2011-08-25

    We report the synthesis and characterization of a series of an ammonium ionic liquids (ILs) containing acetate, dihydrogen phosphate, and hydrogen sulfate anions with a common cation. To characterize the thermophysical properties of these newly synthesized ILs with the highly polar solvent N,N-dimethylformamide (DMF), precise measurements such as densities (ρ) and ultrasonic sound velocities (u) over the whole composition range have been performed at atmospheric pressure and over wide temperature ranges (25-50 °C). The excess molar volume (V(E)) and the deviation in isentropic compressibilities (Δκ(s)) were predicted using these temperature dependence properties as a function of the concentration of ILs. The Redlich-Kister polynomial was used to correlate the results. The ILs investigated in the present study included trimethylammonium acetate [(CH(3))(3)NH][CH(3)COO] (TMAA), trimethylammonium dihydrogen phosphate [(CH(3))(3)NH][H(2)PO(4)] (TMAP), and trimethylammonium hydrogen sulfate [(CH(3))(3)NH][HSO(4)] (TMAS). The intermolecular interactions and structural effects were analyzed on the basis of the measured and the derived properties. In addition, the hydrogen bonding between ILs and DMF has been demonstrated using semiempirical calculations with help of Hyperchem 7. A qualitative analysis of the results is discussed in terms of the ion-dipole, ion-pair interactions, and hydrogen bonding between ILs and DMF molecules and their structural factors. The influence of the anion of the protic IL, namely, acetate (CH(3)COO), dihydrogen phosphate (H(2)PO(4)), and hydrogen sulfate (HSO(4)), on the thermophysical properties is also provided. © 2011 American Chemical Society

  8. Characterization of Structure, Dynamics, and Detergent Interactions of the Anti-HIV Chemokine Variant 5P12-RANTES

    PubMed Central

    Wiktor, Maciej; Hartley, Oliver; Grzesiek, Stephan

    2013-01-01

    RANTES (CCL5) is a chemokine that recruits immune cells to inflammatory sites by interacting with the G-protein coupled receptor CCR5, which is also the primary coreceptor used together with CD4 by HIV to enter and infect target cells. Ligands of CCR5, including chemokines and chemokine analogs, are capable of blocking HIV entry, and studies of their structures and interactions with CCR5 will be key to understanding and optimizing HIV inhibition. The RANTES derivative 5P12-RANTES is a highly potent HIV entry inhibitor that is being developed as a topical HIV prevention agent (microbicide). We have characterized the structure and dynamics of 5P12-RANTES by solution NMR. With the exception of the nine flexible N-terminal residues, 5P12-RANTES has the same structure as wild-type RANTES but unlike the wild-type, does not dimerize via its N-terminus. To prepare the ground for interaction studies with detergent-solubilized CCR5, we have also investigated the interaction of RANTES and 5P12-RANTES with various commonly used detergents. Both RANTES variants are stable in Cymal-5, DHPC, Anzergent-3-12, dodecyltrimethylammonium chloride, and a DDM/CHAPS/CHS mixture. Fos-Cholines, dodecyldimethylglycine, and sodium dodecyl-sulfate denature both RANTES variants at low pH, whereas at neutral pH the stability is considerably higher. The onset of Fos-Choline-12-induced denaturation and the denatured state were characterized by circular dichroism and NMR. The detergent interaction starts below the critical micelle concentration at a well-defined mixed hydrophobic/positive surface region of the chemokine, which overlaps with the dimer interface. An increase of Fos-Choline-12 concentration above the critical micelle concentration causes a transition to a denatured state with a high α-helical content. PMID:24314089

  9. Functional and Structural Characterization of Zebrafish ASC.

    PubMed

    Li, Yajuan; Huang, Yi; Cao, Xiaocong; Yin, Xueying; Jin, Xiangyu; Liu, Sheng; Jiang, Jiansheng; Jiang, Wei; Xiao, Tsan Sam; Zhou, Rongbin; Cai, Gang; Hu, Bing; Jin, Tengchuan

    2018-05-23

    The zebrafish genome encodes homologs for most of the proteins involved in inflammatory pathways; however, the molecular components and activation mechanisms of fish inflammasomes are largely unknown. ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)) is the only adaptor involved in the formation of multiple types of inflammasomes. Here, we demonstrate that zASC is also involved in inflammasome activation in zebrafish. When overexpressed in vitro and in vivo in zebrafish, both the zASC and zASC pyrin domain (PYD) proteins form speck and filament structures. Importantly, the crystal structures of the N-terminal PYD and C-terminal CARD of zebrafish ASC were determined independently as two separate entities fused to maltose-binding protein (MBP). Structure-guided mutagenesis revealed the functional relevance of the PYD hydrophilic surface found in the crystal lattice. Finally, the fish caspase-1 homolog Caspy, but not the caspase-4/11 homolog Caspy2, interacts with zASC through homotypic PYD-PYD interactions, which differ from those in mammals. These observations establish the conserved and unique structural/functional features of the zASC-dependent inflammasome pathway. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Isolation and characterization of Candida albicans morphological mutants derepressed for the formation of filamentous hypha-type structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, C.; Pomes, R.; Nombela, C.

    1990-05-01

    Several Candida albicans morphological mutants were obtained by a procedure based on a combined treatment with nitrous acid plus UV irradiation and a double-enrichment step to increase the proportion of mutants growing as long filamentous structures. Altered cell morphogenesis in these mutants correlated with an altered colonial phenotype. Two of these mutants, C. albicans NEL102 and NEL103, were selected and characterized. Mutant blastoconidia initiated budding but eventually gave rise to filamentous hypha-type formations. These filaments were long and septate, and they branched very regularly at positions near septa. Calcofluor white (which is known to bind chitin-rich areas) stained septa, branchingmore » zones, and filament tips very intensely, as observed under the fluorescence microscope. Wild-type hybrids were obtained by fusing protoplasts of strain NEL102 with B14, another morphological mutant previously described as being permanently pseudomycelial, indicating that genetic determinants responsible for the two altered phenotypes are different. The mutants characterized in this work seemed to sequentially express the morphogenic characteristics of C. albicans, from blastoconidia to hyphae, in the absence of any inducer. Further characterization of these strains could be relevant to gain understanding of the genetic control of dimorphism in this species.« less

  11. Functional properties and structural characterization of rice δ 1-pyrroline-5-carboxylate reductase

    DOE PAGES

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; ...

    2015-07-28

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice ( Oryza sativa L.) for δ 1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was ablemore » to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP + were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP + ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. It was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.« less

  12. Structural, morphological and interfacial characterization of Al-Mg/TiC composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras, A.; Angeles-Chavez, C.; Flores, O.

    2007-08-15

    Morphological and structural characterization of Al-Mg/TiC composites obtained by infiltration process and wetting by the sessile drop technique were studied. Focusing at the interface, wetting of TiC substrates by molten Al-Mg-alloys at 900 deg. C was investigated. Electron probe microanalysis (EPMA) indicated that aluminum carbide (Al{sub 4}C{sub 3}) is formed at the interface and traces of TiAl{sub 3} in the wetting assemblies were detected. Scanning Electron Microscopy (SEM) observations show that TiC particles do not appear to be uniformly attacked to produce a continuous layer of Al{sub 4}C{sub 3} at the interface. Molten Al-Mg-alloys were infiltrated into TiC preforms withmore » flowing argon at a temperature of 900 deg. C. In the composites no reaction phase was observed by SEM. Quantification of the Al phase in the composite was carried out by X-ray diffraction (XRD) and Rietveld analysis. Chemical mapping analyzed by SEM shows that the Al-Mg alloy surrounds TiC particles. In the composites with 20 wt.% of Mg the Al-Mg-{beta} phase was detected through XRD.« less

  13. Structural characterization of sulfated steroids that activate mouse pheromone-sensing neurons.

    PubMed

    Hsu, Fong-Fu; Nodari, Francesco; Kao, Lung-Fa; Fu, Xiaoyan; Holekamp, Terrence F; Turk, John; Holy, Timothy E

    2008-12-30

    In many species, social behavior is organized via chemical signaling. While many of these signals have been identified for insects, the chemical identity of these social cues (often called pheromones) for mammals is largely unknown. We recently isolated these chemical cues that caused firing in the pheromone-sensing neurons of the vomeronasal organ from female mouse urine [Nodari, F., et al. (2008) J. Neurosci. 28, 6407-6418]. Here, we report their structural characterization. Mass spectrometric approaches, including tandem quadrupole, multiple-stage linear ion trap, high-resolution mass spectrometry, and H-D exchange followed by ESI mass spectrometry, along with (1)H and (13)C nuclear magnetic resonance spectroscopy, including two-dimensional correlation spectroscopy, total correlation spectroscopy, heteronuclear multiple-quantum coherence, and NOE, were used to identify two sulfated steroids, 4-pregnene-11beta,20,21-triol-3-one 21-sulfate (I) (the configuration at C20 was not deduced) and 4-pregnene-11beta,21-diol-3,20-dione 21-sulfate (II), whose presence is sex-specific. The identification of this novel class of mammalian social signaling compounds suggests that steroid hormones, upon conjugation, assume a new biological role, conveying information about the organism's identity and physiological state.

  14. Strategies for an enzyme immobilization on electrodes: Structural and electrochemical characterizations

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Muthurasu, A.

    2012-04-01

    In this paper, we propose various strategies for an enzyme immobilization on electrodes (both metal and semiconductor electrodes). In general, the proposed methodology involves two critical steps viz., (1) chemical modification of substrates using functional monolayers [Langmuir - Blodgett (LB) films and/or self-assembled monolayers (SAMs)] and (2) anchoring of a target enzyme using specific chemical and physical interactions by attacking the terminal functionality of the modified films. Basically there are three ways to immobilize an enzyme on chemically modified electrodes. First method consists of an electrostatic interaction between the enzyme and terminal functional groups present within the chemically modified films. Second and third methods involve the introduction of nanomaterials followed by an enzyme immobilization using both the physical and chemical adsorption processes. As a proof of principle, in this work we demonstrate the sensing and catalytic activity of horseradish peroxidase (HRP) anchored onto SAM modified indium tin oxide (ITO) electrodes towards hydrogen peroxide (H2O2). Structural characterization of such modified electrodes is performed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The binding events and the enzymatic reactions are monitored using electrochemical techniques mainly cyclic voltammetry (CV).

  15. Accurate Assessment of the Oxygen Reduction Electrocatalytic Activity of Mn/Polypyrrole Nanocomposites Based on Rotating Disk Electrode Measurements, Complemented with Multitechnique Structural Characterizations

    PubMed Central

    Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto

    2016-01-01

    This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement. PMID:28042491

  16. Underground structure characterization using motor vehicles as passive seismic sources

    NASA Astrophysics Data System (ADS)

    Kuzma, H. A.; Liu, Y.; Zhao, Y.; Rector, J.; Vaidya, S.

    2009-12-01

    The ability to detect and characterize underground voids will be critical to the success of On-Site Inspections (OSI) as mandated by the nuclear Comprehensive Test Ban Treaty (CTBT). OSIs may be conducted in order to successfully locate the Ground Zero of underground tests as well as infrastructure related to testing. Recently, our team has shown the potential of a new technique to detect underground objects using the amplitude of seismic surface waves generated by motor vehicles. In an experiment conducted in June, 2009 we were able to detect an abandoned railroad tunnel by recognizing a clear pattern in the surface waves scattered by the tunnel, using a signal generated by driving a car on a dirt road across the tunnel. Synthetic experiments conducted using physically realistic wave-equation models further suggest that the technique can be readily applied to detecting underground features: it may be possible to image structures of importance to OSI simply by laying out an array of geophones (or using an array already in place for passive listening for event aftershocks) and driving vehicles around the site. We present evidence from a set of field experiments and from synthetic modeling and inversion studies to illustrate adaptations of the technique for OSI. Signature of an abandoned underground railroad tunnel at Donner Summit, CA. To produce this image, a line of geophones was placed along a dirt road perpendicular to the tunnel (black box) and a single car was driven along the road. A normalized mean power-spectrum is displayed on a log scale as a function of meters from the center of the tunnel. The top of the tunnel was 18m below ground surface. The tunnel anomaly is made up of a shadow (light) directly above the tunnel and amplitude build-up (dark) on either side of the tunnel. The size of the anomaly (6 orders of magnitude) suggests that the method can be extended to find deep structures at greater distances from the source and receivers.

  17. Synthesis, growth, structural characterization, Hirshfeld analysis and nonlinear optical studies of a methyl substituted chalcone

    NASA Astrophysics Data System (ADS)

    Prabhu, Shobha R.; Jayarama, A.; Chandrasekharan, K.; Upadhyaya, V.; Ng, Seik Weng

    2017-05-01

    A new chalcone compound (2E)-3-(3-methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3MPNP) with molecular formula C16H13NO3 has been synthesized and crystallized by slow solvent evaporation technique. The Fourier transform infrared, Fourier transform Raman and nuclear magnetic resonance techniques were used for structural characterization. UV-visible absorption studies were carried out to study the transparency of the crystal in the visible region. Differential scanning calorimetry study shows thermal stability of crystals up to temperature 122 °C. Single crystal X-ray diffraction and powder X-ray diffraction techniques were used to study crystal structure and cell parameters. The Hirshfeld surface and 2-D fingerprint analysis were performed to study the nature of interactions and their quantitative contributions towards the crystal packing. The third order non-linear optical properties have been studied using single beam Z-scan technique and the results show that the material is a potential candidate for optical device applications such as optical limiters and optical switches.

  18. Characterization and Structural Studies of the Plasmodium falciparum Ubiquitin and Nedd8 Hydrolase UCHL3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artavanis-Tsakonas, Katerina; Weihofen, Wilhelm A.; Antos, John M.

    Like their human hosts, Plasmodium falciparum parasites rely on the ubiquitin-proteasome system for survival. We previously identified PfUCHL3, a deubiquitinating enzyme, and here we characterize its activity and changes in active site architecture upon binding to ubiquitin. We find strong evidence that PfUCHL3 is essential to parasite survival. The crystal structures of both PfUCHL3 alone and in complex with the ubiquitin-based suicide substrate UbVME suggest a rather rigid active site crossover loop that likely plays a role in restricting the size of ubiquitin adduct substrates. Molecular dynamics simulations of the structures and a model of the PfUCHL3-PfNedd8 complex allowed themore » identification of shared key interactions of ubiquitin and PfNedd8 with PfUCHL3, explaining the dual specificity of this enzyme. Distinct differences observed in ubiquitin binding between PfUCHL3 and its human counterpart make it likely that the parasitic DUB can be selectively targeted while leaving the human enzyme unaffected.« less

  19. Characterization of Au/PbTi0.5Fe0.5O3/Si structure for possible multiferroic based non-volatile memory applications

    NASA Astrophysics Data System (ADS)

    Nawaz, S.; Roy, S.; Tulapurkar, A. A.; Palkar, V. R.

    2017-03-01

    Magnetoelectric multiferroic PbTi0.5Fe0.5O3 films are deposited on a ⟨100⟩ conducting p-Si substrate without any buffer layer by using pulsed laser deposition and characterized for possible non-volatile memory applications. Their crystalline structure and surface morphology were characterized by using x-ray diffraction and AFM techniques. HRTEM was employed to determine the film-substrate interface. The electronic structure of the film was investigated by XPS, and no signature of metal was found for all the elements. The chemical shift of the Ti 2p XPS peak is attributed to the replacement of Ti with Fe in the PbTiO3 matrix. Piezoelectric force microscopy (PFM) results indicate the 180° phase shift of ferroelectric polarization. The upward self-polarization phenomenon is also observed in the PFM study. Magnetic and magneto-electric coupling measurements were carried out to confirm the magnetic nature and electro-magnetic coupling characteristics. C-V measurements exhibit clock-wise hysteresis loops with a maximum memory window of 1.2 V and a sweep voltage of ±7 V. This study could influence the fabrication of silicon compatible multiple memory device structures.

  20. Structural characterization and numerical simulations of flow properties of standard and reservoir carbonate rocks using micro-tomography

    NASA Astrophysics Data System (ADS)

    Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed

    2018-04-01

    With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.

  1. Stratigraphic and structural characterization of the OU-1 area at the former George Air Force Base, Adelanto, Southern California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.

    2001-01-01

    The former George Air Force Base (GAFB), now known as the Southern California Logistics Airport (SCLA), is located in the town of Adelanto, approximately 100 km northeast of Los Angeles, California (Fig. 1). In this report, we present acquisition parameters, data, and interpretations of seismic images that were acquired in the OU-1 area of GAFB during July 1999 (Fig. 2). GAFB is scheduled for conversion to civilian use, however, during its years as an Air Force base, trichlorethylene (TCE) was apparently introduced into the subsurface as a result of spills during normal aircraft maintenance operations. To comply with congressional directives, TCE contaminant removal has been ongoing since the early-tomid 1990s. However, only a small percentage of the TCE believed to have been introduced into the subsurface has been recovered, due largely to difficulty in locating the TCE within the subsurface. Because TCE migrates within the subsurface by ground water movement, attempts to locate the TCE contaminants in the subsurface have employed an array of ground-water monitoring and extraction wells. These wells primarily sample within a shallow-depth (~40 m) aquifer system. Cores obtained from the monitoring and extraction wells indicate that the aquifer, which is composed of sand and gravel channels, is bounded by aquitards composed largely of clay and other fine-grained sediments. Based on well logs, the aquifer is about 3 to 5 m thick along the seismic profiles. A more thorough understanding of the lateral variations in the depth and thickness of the aquifer system may be a key to finding and removing the remaining TCE. However, due to its complex depositional and tectonic history, the structural and stratigraphic sequences are not easily characterized. An indication of the complex nature of the structure and stratigraphy is the appreciable variation in stratigraphic sequences observed in some monitoring wells that are only a few tens of meters apart. To better

  2. Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1.

    PubMed

    Tang, Weizhi; Dong, Mingsheng; Wang, Weilu; Han, Shuo; Rui, Xin; Chen, Xiaohong; Jiang, Mei; Zhang, Qiuqin; Wu, Junjun; Li, Wei

    2017-10-01

    Three released exopolysaccharide fractions (r-EPS1, r-EPS2 and r-EPS3) were isolated from the fermented milk of Lactobacillus delbrueckii ssp. bulgaricus SRFM-1 and purified by anion exchange chromatography, and characterizations of the structures were conducted. The r-EPS1 and r-EPS2 were homogenous with the average molecular weights of 3.97×10 5 Da and 3.86×10 5 Da, respectively. Three r-EPS fractions were composed of galactose and glucose with a molar ratio of 1.23: 1.00, 1.33: 1.00 and 1.00: 1.34, respectively. Structural characterization indicated that the r-EPS1 contained a backbone of →6-β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Galp-(1→4)-β-d-Galp-(1→6)-β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Galp-(1→4)-β-d-Galp-(1→4)-α-d-Glcp-(1→, and had three branching points which existed in terminal with D-Glcp residues with α/β-d-(1→6) linkages. The r-EPS2 was composed of →6-β-d-Galp-(1→4)-β-d-Glcp-(1→6)-α-d-Galp-(1→ as the backbone chain with a branching point which also existed in terminal D-Glcp residue with β-(1→6) linkage. In addition, three r-EPS fractions exhibited strong scavenging activities on superoxide radical, hydroxyl radical, DPPH radical and chelating activity on ferrous ion, and their antioxidant activities decreased in the order of r-EPS1>r-EPS2>r-EPS3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Ni(II) Bis(diphosphine)-Hydride Complex Containing Proton Relays - Structural Characterization and Electrocatalytic Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Partha Pratim; Stolley, Ryan M.; Van Der Eide, Edwin F.

    The syntheses of the new 1,5-diphenyl-3,7-di(isopropyl)-1,5-diaza-3,7-diphosphacyclooctane ligand, PiPr2NPh2, is reported. The two equivalents of the ligand react with [Ni(CH3CN)6](BF4)2 to form the bis-diphosphine Ni(II)-complex [Ni(PiPr2NPh2)2](BF4)2, which acts as a proton reduction electrocatalyst. In addition to [Ni(PiPr2NPh2)2]2+, we report the syntheses and structural characterization of the Ni(0)-complex Ni(PiPr2NPh2)2, and the Ni(II)-hydride complex [HNi(PiPr2NPh2)2]BF4. The [HNi(PiPr2NPh2)2]BF4 complex represents the first Ni(II)-hydride in the [Ni(PR2NR'2)2]2+ family of compounds to be isolated and structurally characterized. In addition to the experimental data, the mechanism of electrocatalysis facilitated by [Ni(PiPr2NPh2)2]2+ is analyzed using linear free energy relationships recently established for the [Ni(PR2NR'2)2]2+ family. We thank Dr.more » Aaron Appel, Dr. Simone Raugei and Dr. Eric Wiedner for helpful discussions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Mass spectrometry was provided at W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s office of Biological and Environmental Research located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  4. (The relationship between microstructure and magnetic properties in high-energy permanent magnets characterized by polytwinned structures)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    This report summarizes the results of a study of the relationship between microstructure and magnetic properties in a unique genre of ferromagnetic material characterized by a polysynthetically twinned structure which arises during solid state transformation. These results stem from the work over a period of approximately 27 months of a nominal 3 year grant period. The report also contains a proposal to extend the research project for an additional 3 years. The polytwinned structures produce an inhomogeneous magnetic medium in which the easy axis of magnetization varies quasi-periodically giving rise to special domain configurations which are expected to markedly influencemore » the mechanism of magnetization reversal and hysteresis behavior of these materials in bulk or thin films. The extraordinary permanent magnet properties exhibited by the well-known Co-Pt alloys as well as the Fe-Pt and Fe-Pd systems near the equiatomic composition derive from the formation of a polytwinned microstructure.« less

  5. [The relationship between microstructure and magnetic properties in high-energy permanent magnets characterized by polytwinned structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This report summarizes the results of a study of the relationship between microstructure and magnetic properties in a unique genre of ferromagnetic material characterized by a polysynthetically twinned structure which arises during solid state transformation. These results stem from the work over a period of approximately 27 months of a nominal 3 year grant period. The report also contains a proposal to extend the research project for an additional 3 years. The polytwinned structures produce an inhomogeneous magnetic medium in which the easy axis of magnetization varies quasi-periodically giving rise to special domain configurations which are expected to markedly influencemore » the mechanism of magnetization reversal and hysteresis behavior of these materials in bulk or thin films. The extraordinary permanent magnet properties exhibited by the well-known Co-Pt alloys as well as the Fe-Pt and Fe-Pd systems near the equiatomic composition derive from the formation of a polytwinned microstructure.« less

  6. Synthesis, characterization and nitrite ion sensing performance of reclaimable composite samples through a core-shell structure

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang

    2018-02-01

    The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.

  7. The relationship between microstructure and magnetic properties in high-energy permanent magnets characterized by polytwinned structures

    NASA Astrophysics Data System (ADS)

    This report summarizes the results of a study of the relationship between microstructure and magnetic properties in a unique genre of ferromagnetic material characterized by a polysynthetically twinned structure which arises during solid state transformation. These results stem from the work over a period of approximately 27 months of a nominal 3 year grant period. The report also contains a proposal to extend the research project for an additional 3 years. The polytwinned structures produce an inhomogeneous magnetic medium in which the easy axis of magnetization varies quasi-periodically giving rise to special domain configurations which are expected to markedly influence the mechanism of magnetization reversal and hysteresis behavior of these materials in bulk or thin films. The extraordinary permanent magnet properties exhibited by the well-known Co-Pt alloys as well as the Fe-Pt and Fe-Pd systems near the equiatomic composition derive from the formation of a polytwinned microstructure.

  8. Structural variability of the Tonga-Kermadec forearc characterized using robustly constrained geophysical data

    NASA Astrophysics Data System (ADS)

    Funnell, M. J.; Peirce, C.; Robinson, A. H.

    2017-09-01

    Subducting bathymetric anomalies enhance erosion of the overriding forearc crust. The deformation associated with this process is superimposed on pre-existing variable crustal and sedimentary structures developed as a subduction system evolves. Recent attempts to determine the effect and timescale of Louisville Ridge seamount subduction on the Tonga-Kermadec forearc have been limited by simplistic models of inherited overriding crustal structure that neglect along-strike variability. Synthesis of new robustly tested seismic velocity and density models with existing data sets from the region, highlight along-strike variations in the structure of the Tonga-Kermadec subducting and overriding plates. As the subducting plate undergoes bend-faulting and hydration throughout the trench-outer rise region, observed oceanic upper- and mid-crustal velocities are reduced by ∼1.0 km s-1 and upper mantle velocities by ∼0.5 km s-1. In the vicinity of the Louisville Ridge Seamount Chain (LRSC), the trench shallows by 4 km and normal fault throw is reduced by >1 km, suggesting that the subduction of seamounts reduces plate deformation. We find that the extinct Eocene frontal arc, defined by a high velocity (7.0-7.4 km s-1) and density (3.2 g cm-3) lower-crustal anomaly, increases in thickness by ∼6 km, from 12 to >18 km, over 300 km laterally along the Tonga-Kermadec forearc. Coincident variations in bathymetry and free-air gravity anomaly indicate a regional trend of northward-increasing crustal thickness that predates LRSC subduction, and highlight the present-day extent of the Eocene arc between 32°S and ∼18°S. Within this framework of existing forearc crustal structure, the subduction of seamounts of the LRSC promotes erosion of the overriding crust, forming steep, gravitationally unstable, lower-trench slopes. Trench-slope stability is most likely re-established by the collapse of the mid-trench slope and the trenchward side of the extinct Eocene arc, which, within

  9. Structural Characterization and Antifungal Studies of Zinc-Doped Hydroxyapatite Coatings.

    PubMed

    Iconaru, Simona Liliana; Prodan, Alina Mihaela; Buton, Nicolas; Predoi, Daniela

    2017-04-09

    The present study is focused on the synthesis, characterization and antifungal evaluation of zinc-doped hydroxyapatite (Zn:HAp) coatings. The Zn:HAp coatings were deposited on a pure Si (Zn:HAp_Si) and Ti (Zn:HAp_Ti) substrate by a sol-gel dip coating method using a zinc-doped hydroxyapatite nanogel. The nature of the crystal phase was determined by X-ray diffraction (XRD). The crystalline phase of the prepared Zn:HAp composite was assigned to hexagonal hydroxyapatite in the P6 3/m space group. The colloidal properties of the resulting Zn:HAp (x Zn = 0.1) nanogel were analyzed by Dynamic Light Scattering (DLS) and zeta potential. Scanning Electron Microscopy (SEM) was used to investigate the morphology of the zinc-doped hydroxyapatite (Zn:HAp) nanogel composite and Zn:HAp coatings. The elements Ca, P, O and Zn were found in the Zn:HAp composite. According to the EDX results, the degree of Zn substitution in the structure of Zn:HAp composite was 1.67 wt%. Moreover, the antifungal activity of Zn:HAp_Si and Zn:HAp_Ti against Candida albicans ( C. albicans ) was evaluated. A decrease in the number of surviving cells was not observed under dark conditions, whereas under daylight and UV light illumination a major decrease in the number of surviving cells was observed.

  10. Nondestructive characterization of textured a-Si:H/c-Si heterojunction solar cell structures with nanometer-scale a-Si:H and In2O3:Sn layers by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Matsuki, Nobuyuki; Fujiwara, Hiroyuki

    2013-07-01

    Nanometer-scale hydrogenated amorphous silicon (a-Si:H) layers formed on crystalline silicon (c-Si) with pyramid-shaped textures have been characterized by spectroscopic ellipsometry (SE) using a tilt angle measurement configuration, in an attempt to establish a nondestructive method for the structural characterization of the a-Si:H/c-Si heterojunction solar cells. By applying an a-Si:H dielectric function model developed recently, the thickness and SiH2 content of the a-Si:H layer have been determined even on the textured substrates. Furthermore, from the SE analysis incorporating the Drude model, the carrier properties of the In2O3:Sn layers in the textured solar-cell structure have been characterized.

  11. Characterization of embryo-specific genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that is not expressed in mature tissues -- the embryonic genes. In the last two years, using cDNA clones, we have isolated 22 cDNA clones, and characterized the expression pattern of their corresponding RNA. At least 4 cDNA clones detect RNAs of embryonic genes. These cDNA clones detect RNAs expressed in somatic as well as zygotic embryos of carrot. Using the cDNA clones, we screened the genomic library of carrot embryo DNA, and isolatedmore » genomic clones for three genes. The structure and function of two genes DC 8 and DC 59 have been characterized and are reported in this paper.« less

  12. Growth And Characterization Of LPE CdHgTe/CdZnTe/CdZnTe Structure

    NASA Astrophysics Data System (ADS)

    Pelliciari, B.; Chamonal, J. P.; Destefanis, G. L.; Dicioccio, L.

    1988-05-01

    The liquid phase epitaxial technique is used to grow Hgl_x Cdx Te (x = .23) from a Te - rich solution onto a Cdl_y ZnyTe (y = .04) buffer layer grown from a Te-rich solution onto a Cdi_yZnyTe bulk substrate in an open tube multibin horizontal slider apparatus.Growth conditions and physical characterizations of both the buffer layer and the CdHgTe layer are given ; electrical properties of the CdHgTe layer are also presen-ted. PV detectors were successfully obtained on such a structure using an ion-implanted technology and their characteristics at 77 K for a 10.1 ,um cut-off wavelength are given.

  13. Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data.

    NASA Astrophysics Data System (ADS)

    Steiner, Matthias; Houze, Robert A., Jr.; Yuter, Sandra E.

    1995-09-01

    Three algorithms extract information on precipitation type, structure, and amount from operational radar and rain gauge data. Tests on one month of data from one site show that the algorithms perform accurately and provide products that characterize the essential features of the precipitation climatology. Input to the algorithms are the operationally executed volume scans of a radar and the data from a surrounding rain gauge network. The algorithms separate the radar echoes into convective and stratiform regions, statistically summarize the vertical structure of the radar echoes, and determine precipitation rates and amounts on high spatial resolution.The convective and stratiform regions are separated on the basis of the intensity and sharpness of the peaks of echo intensity. The peaks indicate the centers of the convective region. Precipitation not identified as convective is stratiform. This method avoids the problem of underestimating the stratiform precipitation. The separation criteria are applied in exactly the same way throughout the observational domain and the product generated by the algorithm can be compared directly to model output. An independent test of the algorithm on data for which high-resolution dual-Doppler observations are available shows that the convective stratiform separation algorithm is consistent with the physical definitions of convective and stratiform precipitation.The vertical structure algorithm presents the frequency distribution of radar reflectivity as a function of height and thus summarizes in a single plot the vertical structure of all the radar echoes observed during a month (or any other time period). Separate plots reveal the essential differences in structure between the convective and stratiform echoes.Tests yield similar results (within less than 10%) for monthly rain statistics regardless of the technique used for estimating the precipitation, as long as the radar reflectivity values are adjusted to agree with monthly

  14. Synthesis and Characterization of 1,4-Dihydro-3,1-Benzoxazines and 1,2,3,4-Tetrahydroquinazolines: An Unknown Structure Determination Experiment

    ERIC Educational Resources Information Center

    Bendorf, Holly D.; Vebrosky, Emily N.; Eck, Brian J.

    2016-01-01

    In this experiment for an upper-division course in organic structure determination, each student prepares an unknown compound and characterizes the product using multiple spectroscopic techniques. The unknowns, 2-aryl-substituted 1,4-dihydro-3,1-benzoxazines and 1,2,3,4-tetrahydroquinazolines, are prepared in a single step by the condensation of…

  15. Structural and Functional Characterization of Pseudomonas aeruginosa Global Regulator AmpR

    PubMed Central

    Caille, Olivier; Zincke, Diansy; Merighi, Massimo; Balasubramanian, Deepak; Kumari, Hansi; Kong, Kok-Fai; Silva-Herzog, Eugenia; Narasimhan, Giri; Schneper, Lisa; Lory, Stephen

    2014-01-01

    Pseudomonas aeruginosa is a dreaded pathogen in many clinical settings. Its inherent and acquired antibiotic resistance thwarts therapy. In particular, derepression of the AmpC β-lactamase is a common mechanism of β-lactam resistance among clinical isolates. The inducible expression of ampC is controlled by the global LysR-type transcriptional regulator (LTTR) AmpR. In the present study, we investigated the genetic and structural elements that are important for ampC induction. Specifically, the ampC (PampC) and ampR (PampR) promoters and the AmpR protein were characterized. The transcription start sites (TSSs) of the divergent transcripts were mapped using 5′ rapid amplification of cDNA ends-PCR (RACE-PCR), and strong σ54 and σ70 consensus sequences were identified at PampR and PampC, respectively. Sigma factor RpoN was found to negatively regulate ampR expression, possibly through promoter blocking. Deletion mapping revealed that the minimal PampC extends 98 bp upstream of the TSS. Gel shifts using membrane fractions showed that AmpR binds to PampC in vitro whereas in vivo binding was demonstrated using chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR). Additionally, site-directed mutagenesis of the AmpR helix-turn-helix (HTH) motif identified residues critical for binding and function (Ser38 and Lys42) and critical for function but not binding (His39). Amino acids Gly102 and Asp135, previously implicated in the repression state of AmpR in the enterobacteria, were also shown to play a structural role in P. aeruginosa AmpR. Alkaline phosphatase fusion and shaving experiments suggest that AmpR is likely to be membrane associated. Lastly, an in vivo cross-linking study shows that AmpR dimerizes. In conclusion, a potential membrane-associated AmpR dimer regulates ampC expression by direct binding. PMID:25182487

  16. Genetic and Structural Characterization of L11 Lipooligosaccharide from Neisseria meningitidis Serogroup A Strains

    PubMed Central

    Mistretta, Noëlle; Seguin, Delphine; Thiébaud, Jerôme; Vialle, Sandrine; Blanc, Frédéric; Brossaud, Marina; Talaga, Philippe; Norheim, Gunnstein; Moreau, Monique; Rokbi, Bachra

    2010-01-01

    The lipooligosaccharide (LOS) of immunotype L11 is unique within serogroup A meningococci. In order to resolve its molecular structure, we conducted LOS genotyping by PCR analysis of genes responsible for α-chain sugar addition (lgtA, -B, -C, -E, -H, and -F) and inner core substituents (lgtG, lpt-3, and lpt-6). For this study, we selected seven strains belonging to subgroup III, a major clonal complex responsible for meningococcal meningitis epidemics in Africa. In addition, we sequenced the homopolymeric tract regions of three phase-variable genes (lgtA, lgtG, and lot-3) to predict gene functionality. The fine structure of the L11 LOS of each strain was determined using composition and glycosyl linkage analyses, NMR, and mass spectrometry. The masses of the dephosphorylated oligosaccharides were consistent with an oligosaccharide composed of two hexoses, one N-acetyl-hexosamine, two heptoses, and one KDO, as proposed previously. The molar composition of LOS showed two glucose residues to be present, in agreement with lgtH sequence prediction. Despite phosphoethanolaminetransferase genes lpt-3 and lpt-6 being present in all seven Neisseria meningitidis strains, phosphoethanolamine (PEtn) was found at both O-3 and O-6 of HepII among the three ST-5 strains, whereas among the four ST-7 strains, only one PEtn was found and located at O-3 of the HepII. The L11 LOS was found to be O-acetylated, as was indicated by the presence of the lot-3 gene being in-frame in all of the seven N. meningitidis strains. To our knowledge, these studies represent the first full genetic and structural characterization of the L11 LOS of N. meningitidis. These investigations also suggest the presence of further regulatory mechanisms affecting LOS structure microheterogeneity in N. meningitidis related to PEtn decoration of the inner core. PMID:20421293

  17. Fabrication, characterization, and heuristic trade space exploration of magnetically actuated Miura-Ori origami structures

    NASA Astrophysics Data System (ADS)

    Cowan, Brett; von Lockette, Paris R.

    2017-04-01

    The authors develop magnetically actuated Miura-Ori structures through observation, experiment, and computation using an initially heuristic strategy followed by trade space visualization and optimization. The work is novel, especially within origami engineering, in that beyond final target shape approximation, Miura-Ori structures in this work are additionally evaluated for the shape approximation while folding and for their efficient use of their embedded actuators. The structures consisted of neodymium magnets placed on the panels of silicone elastomer substrates cast in the Miura-Ori folding pattern. Initially four configurations, arrangements of magnets on the panels, were selected based on heuristic arguments that (1) maximized the amount of magnetic torque applied to the creases and (2) reduced the number of magnets needed to affect all creases in the pattern. The results of experimental and computational performance metrics were used in a weighted sum model to predict the optimum configuration, which was then fabricated and experimentally characterized for comparison to the initial prototypes. As expected, optimization of magnet placement and orientation was effective at increasing the degree of theoretical useful work. Somewhat unexpectedly, however, trade space results showed that even after optimization, the configuration with the most number of magnets was least effective, per magnet, at directing its actuation to the structure’s creases. Overall, though the winning configuration experimentally outperformed its initial, non-optimal counterparts, results showed that the choice of optimum configuration was heavily dependent on the weighting factors. These results highlight both the ability of the Miura-Ori to be actuated with external magnetic stimuli, the effectiveness of a heuristic design approach that focuses on the actuation mechanism, and the need to address path-dependent metrics in assessing performance in origami folding structures.

  18. Partial structural characterization and antioxidant activity of a phenolic-xylan from Castanea sativa hardwood.

    PubMed

    Renault, Emmanuel; Barbat-Rogeon, Aline; Chaleix, Vincent; Calliste, Claude-Alain; Colas, Cyril; Gloaguen, Vincent

    2014-09-01

    4-O-Methylglucuronoxylans (MGX) were isolated from chestnut wood sawdust using two different procedures: chlorite delignification followed by the classical alkaline extraction step, and an unusual green chemistry process of delignification using phthalocyanine/H2O2 followed by a simple extraction with hot water. Antioxidant properties of both MGX were evaluated against the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) by electronic spin resonance (ESR). IC50 of water-extracted MGX was found to be less than 225 μg mL(-1), in contrast with alkali-extracted MGX for which no radical scavenging was observed. Characterization of extracts by colorimetric assay, GC, LC-MS and NMR spectroscopy provided some clues to understanding structure-function relationships of MGX in connection with their antioxidant activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Structural Characterization and Impedance Spectroscopy of Substituted, Fused-Ring Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Shaw, Charles Michael

    Organic materials present a number of advantages over silicon that make them ideal candidates for modest performance devices like active matrix backplanes and RFID tags. The work detailed here describes both structural characterization of promising new materials, as well as the adaptation of impedance spectroscopy techniques to the study of organic transistors. Unit cells and solution casting behavior for dioctyl- and didodecyl-pentathienoacene are presented. Dioctyl pentathienoacene has an orthorhombic lattice with parameters a = 1.15 nm, b = 0.43 nm and c = 3.05 nm. Didodecyl pentathienoacene has an monoclinic lattice with parameters gamma = 92.2°, a = 1.10 urn, b = 0.42 nm and c = 3.89 nm. Additionally, thermotropic phase behavior is detailed. Both materials exhibit a "side chain melting" transition---characterized by a dramatic unit cell contraction of more than 20%---and smectic C liquid crystal phases. The side chain melting transition shows similarity to phase transitions elicited by exposing these materials to high energy electron flux. In both cases, disorder in the substitutions results in new phases for these materials. Dioctyl-pentathienoacene also exhibits a unique phase, which is intermediately ordered and shows a threefold increase in critical dose over the as-cast phase. Impedance spectroscopy of triisopropylsilyl pentacene transistors suggests these devices are well fit by a Voigt model equivalent circuit. The gate bias dependent resistor represents the channel conductance and the capacitor represents the drain-gate and source-gate capacitances. This in turn suggests that conduction occurs through delocalized states available in ordered regions, with disordered regions contributing localized, immobile states. Impedance spectroscopy of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) shows similar behavior. The use of variable temperature impedance spectroscopy is also demonstrated. This technique is used to measure the reduction in trap

  20. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    PubMed Central

    Ruzanski, Christian; Krucewicz, Katarzyna; Meier, Sebastian; Hägglund, Per; Svensson, Birte; Palcic, Monica M.

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley. PMID:28407006

  1. Structural Characterization of a Therapeutic Anti-Methamphetamine Antibody Fragment: Oligomerization and Binding of Active Metabolites

    PubMed Central

    Gokulan, Kuppan; Varughese, Kottayil I.

    2013-01-01

    Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, KD = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or “ecstasy”). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni2+. Two of the histidine residues of each C-terminal His-tag interact with Ni2+ in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy. PMID:24349338

  2. Crystal structure and functional characterization of selenocysteine-containing glutathione peroxidase 4 suggests an alternative mechanism of peroxide reduction.

    PubMed

    Borchert, Astrid; Kalms, Jacqueline; Roth, Sophia R; Rademacher, Marlena; Schmidt, Andrea; Holzhutter, Hermann-Georg; Kuhn, Hartmut; Scheerer, Patrick

    2018-06-05

    Glutathione peroxidases (GPX) are anti-oxidative enzymes that reduce organic and inorganic hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. The human genome involves eight GPX genes and five of them encode for selenocysteine-containing enzymes. Among the human GPX-isoforms, GPX4 is unique since it is capable of reducing complex hydroperoxy ester lipids such as hydroperoxy phospholipids and hydroperoxy cholesterolesters. Using a number of genetically modified mouse strains the biological role of GPX4 has comprehensively characterized but the molecular enzymology is less well explored. This lack of knowledge is partly related to the fact that mammalian selenoproteins are not high-level expressed in conventional overexpression systems. To explore the structural and functional properties of human GPX4 we expressed this selenoprotein in a cysteine-auxotrophic E. coli strain using a semi-chemical expression strategy. The recombinant enzyme was purified in mg amounts from the bacterial lysate to electrophoretic homogeneity and characterized with respect to its protein-chemical and enzymatic properties. Its crystal structure was solved at 1.3 Å resolution and the X-ray data indicated a monomeric protein, which contains the catalytic selenium at the redox level of the seleninic acid. These data suggest an alternative reaction mechanism involving three different redox states (selenol, selenenic acid, seleninic acid) of the catalytically active selenocysteine. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Structural Characterization and Immunomodulatory Activity of a Novel Polysaccharide from Lepidium meyenii.

    PubMed

    Zhang, Mengmeng; Wang, Guang; Lai, Furao; Wu, Hui

    2016-03-09

    A novel polysaccharide named as MC-1 was isolated from the roots of Lepidium meyenii using a water extraction method. Structural characterization revealed that MC-1 had an average molecular weight of 11.3 kDa and consisted of arabinose (26.21%), mannose (11.81%), glucose (53.66%), and galactose (8.32%). The main linkage types of MC-1 were proven to be (1 → 5)-α-L-Ara, (1 → 3)-α-L-Man, (1 → 2,6)-α-L-Man, (1 → )-α-D-Glc, (1 → 4)-α-D-Glc, (1 → 6)-α-D-Glc and (1 → 6)-β-D-Gal by methylation analysis, periodate oxidation-Smith degradation and NMR analysis. The immunostimulating assay indicated that MC-1 could significantly enhance the pinocytic and phagocytic capacity and promote the NO, TNF-α, and IL-6 secretion of RAW 264.7 cells, involving toll-like receptor 2, complement receptor 3, and mannose receptor mainly. These results suggested the potential utilization of MC-1 as an attractive functional food supplement candidate for hypoimmunity population.

  4. Growth, structural, spectroscopic and optical characterization of barium doped calcium tartrate

    NASA Astrophysics Data System (ADS)

    Verma, Seema; Raina, Bindu; Gupta, Vandana; Bamzai, K. K.

    2018-05-01

    Barium doped calcium tartrates synthesized by controlled diffusion using silica gel technique at ambient temperature was characterized by single crystal X-ray diffraction which establishes monoclinic crystal system with volume of the unit cell 923.97(10) Ǻ3 and the space group being P21. UV - Vis characterization gives various linear optical constants like absorption, transmittance, reflectance, band gap, extinction coefficient, urbach energy, complex dielectric constant, optical and electrical conductivity. These constants are considered to be essential in characterizing materials that are used in various applications like fabrication of optoelectronic devices. FTIR spectrum establishes the presence of various bands of functional groups expected from metal tartrate with water of crystallization.

  5. Synthesis, characterization, crystal structure and theoretical study of a compound with benzodiazole ring: antimicrobial activity and DNA binding.

    PubMed

    Latha, P; Kodisundaram, P; Sundararajan, M L; Jeyakumar, T

    2014-08-14

    2-(Thiophen-2-yl)-1-((thiophen-2-yl)methyl)-1H-1,3-benzodiazole (HL) is synthesized and characterized by elemental analysis, UV-Vis, FT-IR, (1)H, (13)C NMR, mass spectra, scanning electron microscope (SEM) and single crystal X-ray diffraction. The crystal structure is stabilized by intermolecular CH⋯N and CH⋯π interactions. The molecular structure is also optimized at the B3LYP/6-31G level using density functional theory (DFT). The structural parameters from the theory are nearer to those of crystal, the calculated total energy of coordination is -1522.814a.u. The energy of HOMO-LUMO and the energy gap are -0.20718, -0.04314, 0.16404a.u, respectively. All data obtained from the spectral studies support the structural properties of the compound HL. The benzimidazole ring is essentially planar. The in vitro biological screening effects of the synthesized compound is tested against four bacterial and four fungal strains by well diffusion method. Antioxidant property and DNA binding behaviour of the compound has been investigated using spectrophotometric method. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen.

    PubMed

    Resch, Yvonne; Blatt, Katharina; Malkus, Ursula; Fercher, Christian; Swoboda, Ines; Focke-Tejkl, Margit; Chen, Kuan-Wei; Seiberler, Susanne; Mittermann, Irene; Lupinek, Christian; Rodriguez-Dominguez, Azahara; Zieglmayer, Petra; Zieglmayer, René; Keller, Walter; Krzyzanek, Vladislav; Valent, Peter; Valenta, Rudolf; Vrtala, Susanne

    2016-01-01

    The house dust mite (HDM) allergen Der p 18 belongs to the glycoside hydrolase family 18 chitinases. The relevance of Der p 18 for house dust mite allergic patients has only been partly investigated. To perform a detailed characterization of Der p 18 on a molecular, structural and immunological level. Der p 18 was expressed in E. coli, purified to homogeneity, tested for chitin-binding activity and its secondary structure was analyzed by circular dichroism. Der p 18-specific IgG antibodies were produced in rabbits to localize the allergen in mites using immunogold electron microscopy and to search for cross-reactive allergens in other allergen sources (i.e. mites, crustacea, mollusca and insects). IgE reactivity of rDer p 18 was tested with sera from clinically well characterized HDM-allergic patients (n = 98) and its allergenic activity was analyzed in basophil activation experiments. Recombinant Der p 18 was expressed and purified as a folded, biologically active protein. It shows weak chitin-binding activity and partial cross-reactivity with Der f 18 from D. farinae but not with proteins from the other tested allergen sources. The allergen was mainly localized in the peritrophic matrix of the HDM gut and to a lower extent in fecal pellets. Der p 18 reacted with IgE from 10% of mite allergic patients from Austria and showed allergenic activity when tested for basophil activation in Der p 18-sensitized patients. Der p 18 is a rather genus-specific minor allergen with weak chitin-binding activity but exhibits allergenic activity and therefore should be included in diagnostic test panels for HDM allergy.

  7. Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen

    PubMed Central

    Resch, Yvonne; Blatt, Katharina; Malkus, Ursula; Fercher, Christian; Swoboda, Ines; Focke-Tejkl, Margit; Chen, Kuan-Wei; Seiberler, Susanne; Mittermann, Irene; Lupinek, Christian; Rodriguez-Dominguez, Azahara; Zieglmayer, Petra; Zieglmayer, René; Keller, Walter; Krzyzanek, Vladislav; Valent, Peter; Valenta, Rudolf; Vrtala, Susanne

    2016-01-01

    Background The house dust mite (HDM) allergen Der p 18 belongs to the glycoside hydrolase family 18 chitinases. The relevance of Der p 18 for house dust mite allergic patients has only been partly investigated. Objective To perform a detailed characterization of Der p 18 on a molecular, structural and immunological level. Methods Der p 18 was expressed in E. coli, purified to homogeneity, tested for chitin-binding activity and its secondary structure was analyzed by circular dichroism. Der p 18-specific IgG antibodies were produced in rabbits to localize the allergen in mites using immunogold electron microscopy and to search for cross-reactive allergens in other allergen sources (i.e. mites, crustacea, mollusca and insects). IgE reactivity of rDer p 18 was tested with sera from clinically well characterized HDM-allergic patients (n = 98) and its allergenic activity was analyzed in basophil activation experiments. Results Recombinant Der p 18 was expressed and purified as a folded, biologically active protein. It shows weak chitin-binding activity and partial cross-reactivity with Der f 18 from D. farinae but not with proteins from the other tested allergen sources. The allergen was mainly localized in the peritrophic matrix of the HDM gut and to a lower extent in fecal pellets. Der p 18 reacted with IgE from 10% of mite allergic patients from Austria and showed allergenic activity when tested for basophil activation in Der p 18-sensitized patients. Conclusion Der p 18 is a rather genus-specific minor allergen with weak chitin-binding activity but exhibits allergenic activity and therefore should be included in diagnostic test panels for HDM allergy. PMID:27548813

  8. Structural and Biochemical Characterization of a Bifunctional Ketoisomerase/N-acetyltransferase from Shewanella denitrificans¶

    PubMed Central

    Chantigian, Daniel P.; Thoden, James B.; Holden, Hazel M.

    2014-01-01

    Unusual N-acetylated sugars have been observed on the O-antigens of some Gram-negative bacteria and on the S-layers of both Gram-positive and Gram-negative bacteria. One such sugar is 3-acetamido-3,6-dideoxy-α-d-galactose or Fuc3NAc. The pathway for its production requires five enzymes with the first step involving the attachment of dTMP to glucose-1-phosphate. Here we report a structural and biochemical characterization of a bifunctional enzyme from Shewanella denitificans thought to be involved in the biosynthesis of dTDP-Fuc3NAc. On the basis of a bioinformatics analysis, the enzyme, hereafter referred to as FdtD, has been postulated to catalyze the third and fifth steps in the pathway, namely a 3,4-keto isomerization and an N-acetyltransferase reaction. For the X-ray analysis reported here, the enzyme was crystallized in the presence of dTDP and CoA. The crystal structure shows that FdtD adopts a hexameric quaternary structure with 322 symmetry. Each subunit of the hexamer folds into two distinct domains connected by a flexible loop. The N-terminal domain adopts a left-handed β-helix motif and is responsible for the N-acetylation reaction. The C-terminal domain folds into an antiparallel flattened β-barrel that harbors the active site responsible for the isomerization reaction. Biochemical assays verify the two proposed catalytic activities of the enzyme and reveal that the 3,4-keto isomerization event leads to inversion of configuration about the hexose C-4' carbon. PMID:24128043

  9. Comparative structure-function characterization of the saposin-like domains from potato, barley, cardoon and Arabidopsis aspartic proteases.

    PubMed

    Bryksa, Brian C; Grahame, Douglas A; Yada, Rickey Y

    2017-05-01

    The present study characterized the aspartic protease saposin-like domains of four plant species, Solanum tuberosum (potato), Hordeum vulgare L. (barley), Cynara cardunculus L. (cardoon; artichoke thistle) and Arabidopsis thaliana, in terms of bilayer disruption and fusion, and structure pH-dependence. Comparison of the recombinant saposin-like domains revealed that each induced leakage of bilayer vesicles composed of a simple phospholipid mixture with relative rates Arabidopsis>barley>cardoon>potato. When compared for leakage of bilayer composed of a vacuole-like phospholipid mixture, leakage was approximately five times higher for potato saposin-like domain compared to the others. In terms of fusogenic activity, distinctions between particle size profiles were noted among the four proteins, particularly for potato saposin-like domain. Bilayer fusion assays in reducing conditions resulted in altered fusion profiles except in the case of cardoon saposin-like domain which was virtually unchanged. Secondary structure profiles were similar across all four proteins under different pH conditions, although cardoon saposin-like domain appeared to have higher overall helix structure. Furthermore, increases in Trp emission upon protein-bilayer interactions suggested that protein structure rearrangements equilibrated with half-times ranging from 52 to 120s, with cardoon saposin-like domain significantly slower than the other three species. Overall, the present findings serve as a foundation for future studies seeking to delineate protein structural features and motifs in protein-bilayer interactions based upon variability in plant aspartic protease saposin-like domain structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Structural and dynamical trends in alkali-metal silanides characterized by neutron-scattering methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean -Noel

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH 3, where M = K, Rb, Cs, K 0.5Rb 0.5, K 0.5Cs 0.5, and Rb 0.5Cs 0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200–250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a redmore » shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order–disorder (β–α) phase transition, and measurements upon cooling of the α-phase revealed the known strong hysteresis for reversion back to the β-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH 3 – anions in the α- and β-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. Lastly, this dynamical result might provide some insights concerning the enthalpy–entropy compensation effect previously observed for these potentially promising hydrogen storage materials.« less

  11. Structural, functional and evolutionary characterization of major drought transcription factors families in maize

    NASA Astrophysics Data System (ADS)

    Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2018-05-01

    Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.

  12. Structural and dynamical trends in alkali-metal silanides characterized by neutron-scattering methods

    DOE PAGES

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean -Noel; ...

    2016-09-02

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH 3, where M = K, Rb, Cs, K 0.5Rb 0.5, K 0.5Cs 0.5, and Rb 0.5Cs 0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200–250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a redmore » shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order–disorder (β–α) phase transition, and measurements upon cooling of the α-phase revealed the known strong hysteresis for reversion back to the β-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH 3 – anions in the α- and β-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. Lastly, this dynamical result might provide some insights concerning the enthalpy–entropy compensation effect previously observed for these potentially promising hydrogen storage materials.« less

  13. Physicochemical characterization and structural evaluation of a specific 2:1 cocrystal of naproxen-nicotinamide.

    PubMed

    Ando, Shigeru; Kikuchi, Junko; Fujimura, Yuko; Ida, Yasuo; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2012-09-01

    Physicochemical characterization and structural evaluation of a 2:1 naproxen-nicotinamide cocrystal were performed. The 2:1 cocrystal showed rapid naproxen dissolution and less water vapor adsorption, indicating better pharmaceutical properties of naproxen. The unique 2:1 cocrystal formation was evaluated by solid-state nuclear magnetic resonance (NMR). The assignments of all H and (13) C peaks for naproxen and the cocrystal were performed using dipolar-insensitive nuclei enhanced by polarization transfer and (1) H-(13) C cross-polarization (CP)-heteronuclear correlation (HETCOR) NMR measurements. The (13) C chemical shift revealed that two naproxen molecules and one nicotinamide molecule existed in the asymmetric unit of the cocrystal. The (1) H chemical shifts indicated that the carboxylic group of the naproxen in the cocrystal was nonionized, and the CH-π interaction between naproxens was very strong. From the (1) H-(13) C CP-HETCOR NMR spectrum with contact time of 5 ms, two different synthons, carboxylic acid-amide and carboxylic acid-pyridine ring, were found between naproxen and nicotinamide. Single-crystal X-ray analysis, which supported the solid-state NMR results, clarified the geometry and intermolecular interactions in more detail. The structure is unique among pharmaceutical cocrystals because each carboxyl group of the two naproxens formed different intermolecular synthons. Copyright © 2012 Wiley Periodicals, Inc.

  14. Synthesis, crystal structure, characterizations and magnetic study of a novel two-dimensional iron fluoride

    NASA Astrophysics Data System (ADS)

    Bouketaya, Sabrine; Smida, Mouna; Abdelbaky, Mohammed S. M.; Dammak, Mohamed; García-Granda, Santiago

    2018-06-01

    A new hybrid compound formulated as [Fe3F8(H2O)2](Am2TAZ)2 (Am2TAZ= 3,5-diamino-1,2,4-triazole) was prepared under hydrothermal conditions. The crystal structure was solved by single-crystal X-ray diffraction and the bulk was characterized by thermal analyses (TG-MS), vibrational spectroscopy (FTIR, Raman), Ultraviolet-visible spectroscopy (UV-Vis), and scanning electron microscopy (SEM-EDX). It crystallizes in the triclinic system space group P 1 ̅ with unit cell parameters a= 7.100(2) Å, b= 7.658(2) Å, c= 8.321(2) Å, α = 107.330(20)°, β = 111.842(18)°, γ = 93.049(17)°, Z = 1 and V= 394.01(17) Å3. The studied X-ray crystal structure shows the two oxidation states for iron atoms (Fe2+, Fe3+) and generates a 2D inorganic network, built up of inorganic layers constructed from infinite inorganic chains running along a axis. In fact, these chains are connected via (Fe3+(3)F6) octahedral. OW-H…F and N-H…F hydrogen bonds, making up the whole 3D network, are strongly linked in the layers. Magnetization measurements were performed, exhibiting the paramagnetic feature of the studied compound above 150 K.

  15. Limestone characterization to model damage from acidic precipitation: Effect of pore structure on mass transfer

    USGS Publications Warehouse

    Leith, S.D.; Reddy, M.M.; Irez, W.F.; Heymans, M.J.

    1996-01-01

    The pore structure of Salem limestone is investigated, and conclusions regarding the effect of the pore geometry on modeling moisture and contaminant transport are discussed based on thin section petrography, scanning electron microscopy, mercury intrusion porosimetry, and nitrogen adsorption analyses. These investigations are compared to and shown to compliment permeability and capillary pressure measurements for this common building stone. Salem limestone exhibits a bimodal pore size distribution in which the larger pores provide routes for convective mass transfer of contaminants into the material and the smaller pores lead to high surface area adsorption and reaction sites. Relative permeability and capillary pressure measurements of the air/water system indicate that Salem limestone exhibits high capillarity end low effective permeability to water. Based on stone characterization, aqueous diffusion and convection are believed to be the primary transport mechanisms for pollutants in this stone. The extent of contaminant accumulation in the stone depends on the mechanism of partitioning between the aqueous and solid phases. The described characterization techniques and modeling approach can be applied to many systems of interest such as acidic damage to limestone, mass transfer of contaminants in concrete and other porous building materials, and modeling pollutant transport in subsurface moisture zones.

  16. Synthesis and structural characterization of ZnO-and CuO-NPs supported mesoporous silica materials (hexagonal SBA-15 and lamellar-SiO2)

    NASA Astrophysics Data System (ADS)

    El-Nahhal, Issa M.; Salem, Jamil K.; Tabasi, Nihal S.; Hempelmann, Rolf; Kodeh, Fawzi S.

    2018-01-01

    Two different mesoporous silica structures (hexagonal and lamellar) were synthesized via sol-gel method using a series of triblock copolymer (Pluronic) surfactants. L81, L61 & L31 surfactants form lamellar structure whereas P123 surfactant forms a hexagonal structure. CuO and ZnO nanoparticles (NPs) supported mesoporous silica were synthesized using impregnation method. The structural properties of these materials were investigated using several characterization techniques such as FTIR, XRD, SAXS, TEM and TGA. SAXS and TEM confirmed that the obtained mesoporous silica is based on the EO/PO ratio of Pluronic surfactants. They proved that the mesoporosity of silica is well maintained even after they loaded with metal oxide nanoparticles.

  17. Structural characterizations of human periostin dimerization and cysteinylation.

    PubMed

    Liu, Jianmei; Zhang, Junying; Xu, Fei; Lin, Zhaohan; Li, Zhiqiang; Liu, Heli

    2018-05-12

    Human periostin plays a multifaceted role in remodeling the extracellular matrix milieu by interacting with other proteins and itself in both a heterophilic and homophilic manner. However, the structural mechanism for its extensive interactions has remained elusive. Here, we report the crystal structures of human periostin (EMI-Fas1 I- IV ) and its Cys60Ala mutant. In combination with multi-angle light scattering analysis and biochemical assays, the crystal structures reveal that periostin mainly exists as a dimer in solution and its homophilic interaction is mainly mediated by the EMI domain. Furthermore, Cys60 undergoes cysteinylation as confirmed by mass spectroscopy, and this site hardly affects the homophilic interaction. Also, the structures yield insights into how periostin forms heterophilic interactions with other proteins under physiological or pathological conditions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Structural and enzymatic characterization of NanS (YjhS), a 9-O-Acetyl N-acetylneuraminic acid esterase from Escherichia coli O157:H7

    PubMed Central

    Rangarajan, Erumbi S; Ruane, Karen M; Proteau, Ariane; Schrag, Joseph D; Valladares, Ricardo; Gonzalez, Claudio F; Gilbert, Michel; Yakunin, Alexander F; Cygler, Miroslaw

    2011-01-01

    There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into two subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates. PMID:21557376

  19. Structural and Enzymatic Characterization of NanS (YjhS) a 9-O-Acetyl N-acetylneuraminic Acid Esterase from Escherichia coli O157:H7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Rangarajan; K Ruane; A Proteau

    2011-12-31

    There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into twomore » subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates.« less

  20. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    PubMed Central

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-01-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins. PMID:25672826

  1. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    NASA Astrophysics Data System (ADS)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  2. Characterization of crystalline structures in Opuntia ficus-indica.

    PubMed

    Contreras-Padilla, Margarita; Rivera-Muñoz, Eric M; Gutiérrez-Cortez, Elsa; del López, Alicia Real; Rodríguez-García, Mario Enrique

    2015-01-01

    This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosphate [K4P2O8] and potassium chloride [KCl]. The SEM images indicate that calcite crystals grow to dipyramidal, octahedral-like, prismatic, and flower-like structures; meanwhile, calcium-magnesium bicarbonate structures show rhombohedral exfoliation and calcium oxalate monohydrate is present in a drusenoid morphology. These calcium carbonate compounds have a great importance for humans because their bioavailability. This is the first report about the identification and structural analysis of calcium carbonate and calcium-magnesium bicarbonate in nopal cladodes, as well as the presence of magnesium oxide, potassium peroxydiphosphate and potassium chloride in these plants. The significance of the study of the inorganic components of these cactus plants is related with the increasing interest in the potential use of Opuntia as a raw material of products for the food, pharmaceutical, and cosmetic industries.

  3. Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy.

    PubMed

    Kong, Lingyan; Lee, Christopher; Kim, Seong H; Ziegler, Gregory R

    2014-02-20

    The polymorphic structures of starch were characterized with vibrational sum frequency generation (SFG) spectroscopy. The noncentrosymmetry requirement of SFG spectroscopy allows for the detection of the ordered domains without spectral interferences from the amorphous phase and also the distinction of the symmetric elements among crystalline polymorphs. The V-type amylose was SFG-inactive due to the antiparallel packing of single helices in crystal unit cells, whereas the A- and B-type starches showed strong SFG peaks at 2904 cm(-1) and 2952-2968 cm(-1), which were assigned to CH stretching of the axial methine group in the ring and CH2 stretching of the exocyclic CH2OH side group, respectively. The CH2/CH intensity ratios of the A- and B-type starches are significantly different, indicating that the conformation of hydroxymethyl groups in these two polymorphs may be different. Cyclodextrin inclusion complexes were also analyzed as a comparison to the V-type amylose and showed that the head-to-tail and head-to-head stacking patterns of cyclodextrin molecules govern their SFG signals and peak positions. Although the molecular packing is different between V-type amylose and cyclodextrin inclusion complexes, both crystals show the annihilation of SFG signals when the functional group dipoles are arranged pointing in opposite directions.

  4. Spectral characterization, crystal structures and biological activities of iminodiacetate ternary complexes

    NASA Astrophysics Data System (ADS)

    Shahid, M.; Anjuli; Tasneem, Sana; Mantasha, I.; Ahamad, M. Naqi; Sama, Farasha; Fatma, Kehkeshan; Siddiqi, Zafar A.

    2017-10-01

    The ternary complexes with stoichiometry [M(imda)(bipy)]·6H2O (M = Cu) and [M(imda)(bipy)(H2O)]·4H2O (M = Ni, Co and Mn) where H2imda = iminodiacetic acid and bipy = 2,2‧-bipyridine, are prepared and characterized to exploit as novel antimicrobial agents and SOD mimics. The chemical structures were elucidated by IR, FAB-Mass, 1H, 13C NMR, EPR and spectral techniques. Single crystal X-ray and spectral studies of the complexes (1) and (2) have confirmed a square pyramidal geometry around Cu(II) ion while a saturated six coordinate (distorted octahedral) geometry around the Ni(II), Co(II) and Mn(II) ions due to the additional coordination from water. A supramolecular network is formed by extensive H-bonding in complex (1). The supramolecular assembly in complex (1) is additionally consolidated via the existence of unusual cyclic hexameric water clusters. The antimicrobial activities for the present complexes have been examined against Escherichia coli (K-12), Bacillus subtilis (MTC-121), Staphylococcus aureus (IOASA-22), Salmonella typhymurium (MTCC-98), Candida albicans, Aspergillus fumigatus and Penicillium marneffei. The superoxide dismutase (SOD) activity of the Cu(II) complex (1) is also assessed employing nitrobluetetrazolium (NBT) assay.

  5. Structural and biochemical characterization of novel bacterial α-galactosidases belonging to glycoside hydrolase family 31.

    PubMed

    Miyazaki, Takatsugu; Ishizaki, Yuichi; Ichikawa, Megumi; Nishikawa, Atsushi; Tonozuka, Takashi

    2015-07-01

    Glycoside hydrolase family 31 (GH31) proteins have been reportedly identified as exo-α-glycosidases with activity for α-glucosides and α-xylosides. We focused on a GH31 subfamily, which contains proteins with low sequence identity (<24%) to the previously reported GH31 glycosidases and characterized two enzymes from Pedobacter heparinus and Pedobacter saltans. The enzymes unexpectedly exhibited α-galactosidase activity, but were not active on α-glucosides and α-xylosides. The crystal structures of one of the enzymes, PsGal31A, in unliganded form and in complexes with D-galactose or L-fucose and the catalytic nucleophile mutant in unliganded form and in complex with p-nitrophenyl-α-D-galactopyranoside, were determined at 1.85-2.30 Å (1 Å=0.1 nm) resolution. The overall structure of PsGal31A contains four domains and the catalytic domain adopts a (β/α)8-barrel fold that resembles the structures of other GH31 enzymes. Two catalytic aspartic acid residues are structurally conserved in the enzymes, whereas most residues forming the active site differ from those of GH31 α-glucosidases and α-xylosidases. PsGal31A forms a dimer via a unique loop that is not conserved in other reported GH31 enzymes; this loop is involved in its aglycone specificity and in binding L-fucose. Considering potential genes for α-L-fucosidases and carbohydrate-related proteins within the vicinity of Pedobacter Gal31, the identified Gal31 enzymes are likely to function in a novel sugar degradation system. This is the first report of α-galactosidases which belong to GH31 family. © 2015 Authors; published by Portland Press Limited.

  6. Structural and optical characterization of Er-alkali-metals codoped MgO nanoparticles synthesized by solution combustion route

    NASA Astrophysics Data System (ADS)

    Sivasankari, J.; Selvakumar Sellaiyan, S.; Sankar, S.; Devi, L. Vimala; Sivaji, K.

    2017-01-01

    Pure MgO, rare-earth (Er) doped MgO (MgO:Er), and alkali metal ions (Li, Na and K) co-doped MgO:Er [i.e. MgO: Er+X (X=Li, Na, and K)] nanopowders were synthesized by solution combustion method and characterized. The XRD analysis reveals the cubic structure and the substitution of dopants and co-dopants in MgO. Annealing at 800 °C, increases the sizes of nano-crystallites of all samples appreciably, indicating the grain growth and the improvement in crystallinity of all the samples. Increase in lattice parameter, d spacing and band gap were observed after annealing. Structural and morphological analysis using scanning electron microscope (SEM) and transmission electron microscope (TEM) studies has shown that the samples contain structures like agglomerated clusters. FT-IR spectra confirm the stretching mode of hydroxyl groups, carbonate and presence of MgO bonding. The characteristic wavelength ranging from 2600 cm-1 to 3000 cm-1 were assigned to transition of 4S3/2→4I13/2 and 4I11/2→4I15/2 of Er3+.

  7. Structural characterization of lignin in the process of cooking of cornstalk with solid alkali and active oxygen.

    PubMed

    Yang, Qiulin; Shi, Jianbin; Lin, Lu; Zhuang, Junping; Pang, Chunsheng; Xie, Tujun; Liu, Ying

    2012-05-09

    A novel, efficient, and environmentally friendly technology is used in cornstalk cooking, active oxygen (O₂ and H₂O₂) cooking with solid alkali (MgO). After the cooking, the milled wood lignin in the raw material and pulp and the water-soluble and insoluble lignin in the yellow liquor were all characterized by attenuated total reflectance Fourier transform infrared spectroscopy and two-dimensional heteronuclear single-quantum coherence NMR. The results showed that the cooking procedure with solid alkali and active oxygen had a high selectivity for delignification, which could remove 85.5% of the lignin from the raw material. The syringyl (S/S'/S') units could be dissolved preferentially because of their high reactivity, and a novel guaiacyl unit with a carbonyl group (G') was generated in the cooking process. Moreover, during the cooking, the β-O-4' (A/A'/A″) structures as the main side-chain linkages in all the lignins could be partly broken and the β-O-4' (A') with a ring-conjugated structure was readily attacked by oxygen, whereas the H unit and β-5' and β-β' structures were found to stay stable without characteristic reaction.

  8. Structural characterization of tellurite glasses doped with transition metal oxides using Raman spectra and ab initio calculations.

    PubMed

    Mohamed, Tarek A; Shaltout, I; Al Yahyaei, K M

    2006-05-01

    Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO2+5%Fe2O3+10%TMO], where transition metal oxides (TMO) are TiO2, V2O5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm(-1)) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO4(4-) triagonal bipyramid (C2v) and Te2O7(6-) bridged tetrahedra (Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO3+1 binds to TeO3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).

  9. Structural, morphological, and thermal characterization of kraft lignin and its charcoals obtained at different heating rates

    NASA Astrophysics Data System (ADS)

    Rodrigues Brazil, Tayra; Nunes Costa, Rogeria; Massi, Marcos; Cerqueira Rezende, Mirabel

    2018-04-01

    Biomass is a renewable resource that is becoming more import due to environmental concerns and possible oil crisis. Thus, optimizing its use is a current challenge for many researchers. Lignin, which is a macromolecule with complex chemical structure, valuable physicochemical properties, and varied chemical composition, is available in large quantities in pulp and paper companies. The objective of this work is the physicochemical characterization of two Kraft lignin samples with different purities, and the study of its thermal conversion into charcoal. The lignin characterization was based on chemical, TGA, DSC, FT-IR, particle sizes, and FEG-SEM analyses. These analyses show that the lignins are mainly composed of guaiacyl and syringyl units, with residues of 30–36 wt.%, in inert atmosphere, depending on the lignin purity. From these results, the more purified lignin with higher carbon yield (%C) was selected for charcoal production. The heat treatment (HT) for carbonization of lignin, at different times (90, 180, and 420 min), resulted in different %C (41–44 wt.%). Longer HT resulted in higher %C and in charcoals with smaller pore sizes. Nanopores (∼50 nm) are observed for the charcoal obtained with the longest HT.

  10. Computational characterization of ordered nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Mohieddin Abukhdeir, Nasser

    2016-08-01

    A vital and challenging task for materials researchers is to determine relationships between material characteristics and desired properties. While the measurement and assessment of material properties can be complex, quantitatively characterizing their structure is frequently a more challenging task. This issue is magnified for materials researchers in the areas of nanoscience and nanotechnology, where material structure is further complicated by phenomena such as self-assembly, collective behavior, and measurement uncertainty. Recent progress has been made in this area for both self-assembled and nanostructured surfaces due to increasing accessibility of imaging techniques at the nanoscale. In this context, recent advances in nanomaterial surface structure characterization are reviewed including the development of new theory and image processing methods.

  11. Synthesis, structural characterization, and thermal stability studies of heteroleptic cadmium(II) dithiocarbamate with different pyridyl groups

    NASA Astrophysics Data System (ADS)

    Onwudiwe, Damian C.; Hosten, Eric C.

    2018-01-01

    The synthesis, characterization and crystal structures of three chloroform solvated adducts of cadmium with mixed ligands of N-alkyl-N-phenyldithiocarbamate and pyridine, 2,2-bipyridine and 1, 10 phenanthroline represented as [CdL1L2 (py)2]·CHCl3(1), [CdL1L2bpy]•CHCl3(2), and [CdL1L2phen]•CHCl3(3) (LI = N-methyl-N-phenyldithiocarbamate, L2 = N-ethyl-N-phenyldithiocarbamate, py = pyridine, bpy = 2,2-bipyridine and phen = 1,10-phenanthroline) respectively are reported. Complex 1, which crystallized in the monoclinic space group P-1, is a centrosymmetric dimeric structure where each Cd center is bonded to two monodentate pyridine, a bidentate terminal dithiocarbamate, and another bidentate bridging dithiocarbamate to form a four-membered ring. Complex 2 crystallized in the monoclinic space group P21/c, with four discrete monomeric molecules in the asymmetric unit. The structure presents a cadmium atom coordinated by two sulphur atoms of a dithiocarbamate ligand and two nitrogen atoms of the 2,2‧-bipyridine to form a CdS4N2 fragment, thus giving the structure around the Cd atom a distorted trigonal prism geometry. Complex 3 contains two discrete monomeric molecules of (phenanthroline) (N, N-methyl phenyl-N, N-ethyl phenyl dithiocarbamato)cadmium (II) per unit cell, and the complex crystallized in the triclinic space group P-1. The structure showed that the Cd atom is bonded to two bidentate dithiocarbamate ligands and to one bidentate phenanthroline ligand in a distorted trigonal prism geometry. All the compounds resulted in CdS as residue upon thermal decomposition process conducted under inert atmosphere.

  12. Assessing local structure motifs using order parameters for motif recognition, interstitial identification, and diffusion path characterization

    NASA Astrophysics Data System (ADS)

    Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; Haranczyk, Maciej

    2017-11-01

    Structure-property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal closed packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  13. Characterization of Nanophase Materials

    NASA Astrophysics Data System (ADS)

    Wang, Zhong Lin

    2000-01-01

    Engineering of nanophase materials and devices is of vital interest in electronics, semiconductors and optics, catalysis, ceramics and magnetism. Research associated with nanoparticles has widely spread and diffused into every field of scientific research, forming a trend of nanocrystal engineered materials. The unique properties of nanophase materials are entirely determined by their atomic scale structures, particularly the structures of interfaces and surfaces. Development of nanotechnology involves several steps, of which characterization of nanoparticles is indespensable to understand the behavior and properties of nanoparticles, aiming at implementing nanotechnolgy, controlling their behavior and designing new nanomaterials systems with super performance. The book will focus on structural and property characterization of nanocrystals and their assemblies, with an emphasis on basic physical approach, detailed techniques, data interpretation and applications. Intended readers of this comprehensive reference work are advanced graduate students and researchers in the field, who are specialized in materials chemistry, materials physics and materials science.

  14. Characterization of the Electric Double Layer Formation Dynamics of a Metal/Ionic Liquid/Metal Structure.

    PubMed

    Schmidt, Elliot; Shi, Sha; Ruden, P Paul; Frisbie, C Daniel

    2016-06-15

    Although ionic liquids (ILs) have been used extensively in recent years as a high-capacitance "dielectric" in electric double layer transistors, the dynamics of the double layer formation have remained relatively unexplored. Better understanding of the dynamics and relaxation processes involved in electric double layer formation will guide device optimization, particularly with regard to switching speed. In this paper, we explore the dynamical characteristics of an IL in a metal/ionic liquid/metal (M/IL/M) capacitor. In particular, we examine a Au/IL/Au structure where the IL is 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. The experiments consist of frequency-dependent impedance measurements and time-dependent current vs voltage measurements for applied linear voltage ramps and abrupt voltage steps. The parameters of an equivalent circuit model are determined by fits to the impedance vs frequency data and subsequently verified by calculating the current vs voltage characteristics for the applied potential profiles. The data analysis indicates that the dynamics of the structure are characterized by a wide distribution of relaxation times spanning the range of less than microseconds to longer than seconds. Possible causes for these time scales are discussed.

  15. Characterization of dipeptidylcarboxypeptidase of Leishmania donovani: a molecular model for structure based design of antileishmanials

    NASA Astrophysics Data System (ADS)

    Baig, Mirza Saqib; Kumar, Ashutosh; Siddiqi, Mohammad Imran; Goyal, Neena

    2010-01-01

    Leishmania donovani dipeptidylcarboxypeptidsae (LdDCP), an angiotensin converting enzyme (ACE) related metallopeptidase has been identified and characterized as a putative drug target for antileishmanial chemotherapy. The kinetic parameters for LdDCP with substrate, Hip-His-Leu were determined as, Km, 4 mM and Vmax, 1.173 μmole/ml/min. Inhibition studies revealed that known ACE inhibitors (captopril and bradykinin potentiating peptide; BPP1) were weak inhibitors for LdDCP as compared to human testicular ACE (htACE) with Ki values of 35.8 nM and 3.9 μM, respectively. Three dimensional model of LdDCP was generated based on crystal structure of Escherichia coli DCP (EcDCP) by means of comparative modeling and assessed using PROSAII, PROCHECK and WHATIF. Captopril docking with htACE, LdDCP and EcDCP and analysis of molecular electrostatic potentials (MEP) suggested that the active site domain of three enzymes has several minor but potentially important structural differences. These differences could be exploited for designing selective inhibitor of LdDCP thereby antileishmanial compounds either by denovo drug design or virtual screening of small molecule databases.

  16. Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes

    DOE PAGES

    Bali, Garima; Khunsupat, Ratayakorn; Akinosho, Hannah; ...

    2016-09-10

    Here, the recalcitrant nature of lignocellulosic biomass is a combined effect of several factors such as high crystallinity and high degree of polymerization of cellulose, lignin content and structure, and the available surface area for enzymatic degradation (i.e., accessibility). Genetic improvement of feedstock cell wall properties is a path to reducing recalcitrance of lignocellulosic biomass and improving conversion to various biofuels. An advanced understanding of the cellulose biosynthesis pathway is essential to precisely modify cellulose properties of plant cell walls. Here we report on the impact of modified expression of candidate cellulose biosynthesis pathway genes on the ultra-structure of cellulose,more » a key carbohydrate polymer of Populus cell wall using advanced nuclear magnetic resonance approaches. Noteworthy changes were observed in the cell wall characteristics of downregulated KORRIGAN 1 (KOR) and KOR 2 transgenic plants in comparison to the wild-type control. It was observed that all of the transgenic lines showed variation in cellulose ultrastructure, increase in cellulose crystallinity and decrease in the cellulose degree of polymerization. Additionally, the properties of cellulose allomorph abundance and accessibility were found to be variable. Application of such cellulose characterization techniques beyond the traditional measurement of cellulose abundance to comprehensive studies of cellulose properties in larger transgenic and naturally variable populations is expected to provide deeper insights into the complex nature of lignocellulosic material, which can significantly contribute to the development of precisely tailored plants for enhanced biofuels production.« less

  17. Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bali, Garima; Khunsupat, Ratayakorn; Akinosho, Hannah

    Here, the recalcitrant nature of lignocellulosic biomass is a combined effect of several factors such as high crystallinity and high degree of polymerization of cellulose, lignin content and structure, and the available surface area for enzymatic degradation (i.e., accessibility). Genetic improvement of feedstock cell wall properties is a path to reducing recalcitrance of lignocellulosic biomass and improving conversion to various biofuels. An advanced understanding of the cellulose biosynthesis pathway is essential to precisely modify cellulose properties of plant cell walls. Here we report on the impact of modified expression of candidate cellulose biosynthesis pathway genes on the ultra-structure of cellulose,more » a key carbohydrate polymer of Populus cell wall using advanced nuclear magnetic resonance approaches. Noteworthy changes were observed in the cell wall characteristics of downregulated KORRIGAN 1 (KOR) and KOR 2 transgenic plants in comparison to the wild-type control. It was observed that all of the transgenic lines showed variation in cellulose ultrastructure, increase in cellulose crystallinity and decrease in the cellulose degree of polymerization. Additionally, the properties of cellulose allomorph abundance and accessibility were found to be variable. Application of such cellulose characterization techniques beyond the traditional measurement of cellulose abundance to comprehensive studies of cellulose properties in larger transgenic and naturally variable populations is expected to provide deeper insights into the complex nature of lignocellulosic material, which can significantly contribute to the development of precisely tailored plants for enhanced biofuels production.« less

  18. Characterization of the porous structures of the green body and sintered biomedical titanium scaffolds with micro-computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arifvianto, B., E-mail: b.arifvianto@tudelft.nl; L

    The present research was aimed at gaining an understanding of the porous structure changes from the green body through water leaching and sintering to titanium scaffolds. Micro-computed tomography (micro-CT) was performed to generate 3D models of titanium scaffold preforms containing carbamide space-holding particles and sintered scaffolds containing macro- and micro-pores. The porosity values and structural parameters were determined by means of image analysis. The result showed that the porosity values, macro-pore sizes, connectivity densities and specific surface areas of the titanium scaffolds sintered at 1200 °C for 3 h did not significantly deviate from those of the green structures withmore » various volume fractions of the space holder. Titanium scaffolds with a maximum specific surface area could be produced with an addition of 60–65 vol% carbamide particles to the matrix powder. The connectivity of pores inside the scaffold increased with rising volume fraction of the space holder. The shrinkage of the scaffolds prepared with > 50 vol% carbamide space holder, occurring during sintering, was caused by the reductions of macro-pore sizes and micro-pore sizes as well as the thickness of struts. In conclusion, the final porous structural characteristics of titanium scaffolds could be estimated from those of the green body. - Highlights: •Porous structures of green body and sintered titanium scaffolds was studied. •Porous structures of both samples were quantitatively characterized with micro-CT. •Porous structures of scaffolds could be controlled from the green body. •Shrinkage mechanisms of titanium scaffolds during sintering was established.« less

  19. Accurate structural and spectroscopic characterization of prebiotic molecules: The neutral and cationic acetyl cyanide and their related species.

    PubMed

    Bellili, A; Linguerri, R; Hochlaf, M; Puzzarini, C

    2015-11-14

    In an effort to provide an accurate structural and spectroscopic characterization of acetyl cyanide, its two enolic isomers and the corresponding cationic species, state-of-the-art computational methods, and approaches have been employed. The coupled-cluster theory including single and double excitations together with a perturbative treatment of triples has been used as starting point in composite schemes accounting for extrapolation to the complete basis-set limit as well as core-valence correlation effects to determine highly accurate molecular structures, fundamental vibrational frequencies, and rotational parameters. The available experimental data for acetyl cyanide allowed us to assess the reliability of our computations: structural, energetic, and spectroscopic properties have been obtained with an overall accuracy of about, or better than, 0.001 Å, 2 kcal/mol, 1-10 MHz, and 11 cm(-1) for bond distances, adiabatic ionization potentials, rotational constants, and fundamental vibrational frequencies, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for guiding future experimental investigations and/or astronomical observations.

  20. Syntheses and structural characterization of Co(II) and Cd(II) coordination polymers with 1,4-bis(imidazolyl)butane ligand

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khalaj, Mehdi; Sedaghat, Sajjad; Łyczko, Krzysztof; Lipkowski, Janusz

    2017-11-01

    Two new coordination polymers, {[Co(bib)3](PF6)2}n (1) and [Cd (bib) Cl2]n (2), were prepared at room temperature by the reaction of appropriate salts of cobalt (II) and cadmium (II) with the flexible linker ligands 1,4-bis(imidazolyl) butane (bib). The compounds were characterized by elemental analyses, IR spectroscopy and single crystal X-ray diffraction. In the polymeric structure of 1, the Co(II) ion lies on an inversion centre and adopts the CoN6 octahedral geometry, while in the structure of 2, the Cd(II) ions adopt the CdN2Cl4 pseudo-octahedral geometry. In compound 1, six bib ligands are coordinated to one central cobalt (II) to form an open 3D 2-fold interpenetrating framework of the α-polonium (pcu) type topology, while in compound 2 two bib ligands are coordinated to one central cadmium (II) to form 2D network structure.