Science.gov

Sample records for structural condition monitoring

  1. A suite of optical fibre sensors for structural condition monitoring

    NASA Astrophysics Data System (ADS)

    Sun, T.; Grattan, K. T. V.; Carlton, J.

    2015-05-01

    This paper is to review the research activities at City University London in the development of a range of fibre Bragg grating (FBG)-based sensors, including strain, temperature, relative humidity, vibration and acoustic sensors, with an aim to meet the increasing demands from industry for structural condition monitoring. As a result, arrays of optical fibre sensors have been instrumented into various types of structures, including concrete, limestone, marine propellers, pantograph and electrical motors, allowing for both static and dynamic monitoring and thus enhanced structural reliability and integrity.

  2. Temperature Based Condition Monitoring of Rail and Structural Mill

    NASA Astrophysics Data System (ADS)

    Patidar, Lakhan; Chitransh, Chitragupt Swaroop; Rao, K. U.

    2012-06-01

    today in this competitive market it is necessary to reduce shutdowns and to increase our production rate. For this purpose we apply Condition Monitoring Methods. SAIL is the world?s largest producer of rails with an installed capacity to produce 500 000 tons of rails and 250 000 tons of structural?s. Bhilai is also the sole supplier of the country's longest rail tracks of 260 meters. Infrared Thermography is the latest Condition Monitoring technique that is adopted in Bhilai Steel Plant. Predictive Maintenance schemes are being practiced in Bhilai Steel Plant to monitor the health of the equipment and identify potential problems well in advance and plan remedial measures, thereby avoiding unwanted failures.

  3. Guaranteeing robustness of structural condition monitoring to environmental variability

    NASA Astrophysics Data System (ADS)

    Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François

    2017-01-01

    Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28

  4. Structural health condition monitoring of rails using acoustic emission techniques

    NASA Astrophysics Data System (ADS)

    Yilmazer, Pinar

    In-service rails can develop several types of structural defects due to fatigue and wear caused by rolling stock passing over them. Most rail defects will develop gradually over time thus permitting inspection engineers to detect them in time before final failure occurs. In the UK, certain types of severe rail defects such as tache ovales, require the fitting of emergency clamps and the imposing of an Emergency Speed Restriction (ESR) until the defects are removed. Acoustic emission (AE) techniques can be applied for the detection and continuous monitoring of defect growth therefore removing the need of imposing strict ESRs. The work reported herewith aims to develop a sound methodology for the application of AE in order to detect and subsequently monitor damage evolution in rails. To validate the potential of the AE technique, tests have been carried out under laboratory conditions on three and four-point bending samples manufactured from 260 grade rail steel. Further tests, simulating the background noise conditions caused by passing rolling stock have been carried out using special experimental setups. The crack growth events have been simulated using a pencil tip break..

  5. Structural health monitoring and condition based fatigue damage prognosis of complex metallic structures

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhasish

    Current practice in fatigue life prediction is based on assumed initial structural flaws regardless of whether these assumed flaws actually occur in service. Furthermore, the model parameters are often estimated empirically based on previous coupon test results. Small deviations of the initial conditions and model parameters may generate large errors in the expected dynamical behavior of fatigue damage growth. Consequently, a large degree of conservatism is incorporated into structural designs due to these expected uncertainties. The current research in the area of Structural Health Monitoring (SHM) and probabilistic fatigue modeling can help in improved fatigue damage modeling and remaining useful life estimation (RULE) techniques. This thesis discusses an integrated approach of SHM and adaptive prognosis model that not only estimates the current health, but can also forecast the future health and calculate RULE of an aerospace structural component with high level of confidence. The approach does not assume any fixed initial condition and model parameters. This dissertation include the following novel contributions. 1) A Bayesian based off-line Gaussian Process (GP) model is developed, which is the core of the present condition based prognosis approach. 2) Different passive and active SHM approaches are used for on-line damage state estimation. Applications of passive sensing are shown to estimate the time-series fatigue damage states both under constant and random fatigue loading. It is found that there is a good correlation between estimated damage states and optically measured damage states. In addition, applications for both narrow and broadband active sensing approaches are presented to estimate smaller incipient damage. It is demonstrated that the active sensing techniques not only can identify smaller incipient damage but also can quantify fatigue damage during all the three stages (stages I, II, and III) of fatigue life. 3) An integrated on-line SHM and

  6. Structural condition assessment of long-span suspension bridges using long-term monitoring data

    NASA Astrophysics Data System (ADS)

    Yang, Deng; Youliang, Ding; Aiqun, Li

    2010-03-01

    This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperature and beam-end displacement-temperature for the Runyang Suspension Bridge are performed, first. Then, a statistical modeling technique using a six-order polynomial is further applied to formulate the correlations of frequency-temperature and displacement-temperature, from which abnormal changes of measured frequencies and displacements are detected using the mean value control chart. Analysis results show that modal frequencies of higher vibration modes and displacements have remarkable seasonal correlations with the environmental temperature and the proposed method exhibits a good capability for detecting the micro damage-induced changes of modal frequencies and displacements. The results demonstrate that the proposed method can effectively eliminate temperature complications from frequency and displacement time series and is well suited for online condition monitoring of long-span suspension bridges.

  7. Thick-film acoustic emission sensors for use in structurally integrated condition-monitoring applications.

    PubMed

    Pickwell, Andrew J; Dorey, Robert A; Mba, David

    2011-09-01

    Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.

  8. Vibration-based structural health monitoring using adaptive statistical method under varying environmental condition

    NASA Astrophysics Data System (ADS)

    Jin, Seung-Seop; Jung, Hyung-Jo

    2014-03-01

    It is well known that the dynamic properties of a structure such as natural frequencies depend not only on damage but also on environmental condition (e.g., temperature). The variation in dynamic characteristics of a structure due to environmental condition may mask damage of the structure. Without taking the change of environmental condition into account, false-positive or false-negative damage diagnosis may occur so that structural health monitoring becomes unreliable. In order to address this problem, an approach to construct a regression model based on structural responses considering environmental factors has been usually used by many researchers. The key to success of this approach is the formulation between the input and output variables of the regression model to take into account the environmental variations. However, it is quite challenging to determine proper environmental variables and measurement locations in advance for fully representing the relationship between the structural responses and the environmental variations. One alternative (i.e., novelty detection) is to remove the variations caused by environmental factors from the structural responses by using multivariate statistical analysis (e.g., principal component analysis (PCA), factor analysis, etc.). The success of this method is deeply depending on the accuracy of the description of normal condition. Generally, there is no prior information on normal condition during data acquisition, so that the normal condition is determined by subjective perspective with human-intervention. The proposed method is a novel adaptive multivariate statistical analysis for monitoring of structural damage detection under environmental change. One advantage of this method is the ability of a generative learning to capture the intrinsic characteristics of the normal condition. The proposed method is tested on numerically simulated data for a range of noise in measurement under environmental variation. A comparative

  9. Development of an In-Situ Decommissioning Sensor Network Test Bed for Structural Condition Monitoring - 12156

    SciTech Connect

    Zeigler, Kristine E.; Ferguson, Blythe A.

    2012-07-01

    The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials and condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors

  10. Monitoring Technical Conditions of Engineering Structures Using the Non-Linear Approach

    NASA Astrophysics Data System (ADS)

    Volkova, V. E.

    2015-11-01

    Conventional methods of monitoring technical condition are based on detection of damage in the structures of buildings or facilities during the entire period of their operation. In spite of considerable interest displayed to this issue and a significant number of publications, there is no unity of opinions. These methods differ from each other in the sets of values fixed for investigations, the techniques of their recording, transfer and further processing. Today's rules and regulations for structural designs expand the scope of application of the structures operating in the elastic-plastic stage. These damage-free structures originally display the nonlinear properties and can be adequately described only by the non-linear models. This paper presents a method for determining the type and level of non-linearity from the structural oscillations data for monitoring the change in the health of structures. It is shown that a plot of acceleration against the magnitude of the displacement represents the restoring force of a structure. If the structure is damaged during a new striking motion, the phase trajectories in plane “acceleration-displacement” will deviate from its healthy signature.

  11. Structural Health Monitoring of Composite Plates Under Ambient and Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.

    2005-01-01

    Methods for structural health monitoring are now being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. Different types of excitation and response signals and different sensors are employed in composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency and high frequency chirps of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage and operating environment. These results are furthermore compared with previous work using externally mounted sensors. More work is needed to accurately account for changes in temperature seen in these environments and be statistically significant. Sensor development and placement strategy are other areas of further work to make structural health monitoring more robust. Results from this and other work might then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2nd generation reusable launch vehicle using composites as a structural element.

  12. Aspects of structural health and condition monitoring of offshore wind turbines

    PubMed Central

    Antoniadou, I.; Dervilis, N.; Papatheou, E.; Maguire, A. E.; Worden, K.

    2015-01-01

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector. PMID:25583864

  13. Aspects of structural health and condition monitoring of offshore wind turbines.

    PubMed

    Antoniadou, I; Dervilis, N; Papatheou, E; Maguire, A E; Worden, K

    2015-02-28

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector.

  14. Rapid evaluation of mechanical boundary conditions using impedance based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Kettle, Ryan A.; Anton, Steven R.

    2016-04-01

    Conventionally, structural health monitoring (SHM) has been primarily concerned with sensing, identifying, locating, and determining the severity of damage present in a structure that is in a static state. Instead, this study will investigate adapting the impedance SHM method to rapidly evaluate a mechanical system during a dynamic event. Also in contrast to conventional SHM, the objective is not to detect damage but instead to detect changes in the boundary conditions as they occur during a dynamic event. Rapid detection of changes in boundary conditions in highly dynamic environments has the potential to be used in a wide variety of applications, including the aerospace, civil, and mining industries. A key feature of this work will be the use of frequency ranges higher than what is typically used for SHM impedance measurements, in the range of several MHz. Using such high frequencies will allow for faster measurements of impedance, thus enabling the capture of variations in boundary conditions as they change during a dynamic event. An existing analytical model from the literature for electromechanical impedance based SHM will be utilized for this study.

  15. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions.

    PubMed

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-02-26

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack

  16. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions

    PubMed Central

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-01-01

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack

  17. Load monitoring of aerospace structures utilizing micro-electro-mechanical systems for static and quasi-static loading conditions

    NASA Astrophysics Data System (ADS)

    Martinez, M.; Rocha, B.; Li, M.; Shi, G.; Beltempo, A.; Rutledge, R.; Yanishevsky, M.

    2012-11-01

    The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads.

  18. Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition

    NASA Astrophysics Data System (ADS)

    Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.

    2006-03-01

    As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.

  19. Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006

    SciTech Connect

    Schulz, M. J.; Sundaresan, M. J.

    2006-08-01

    This report describes the efforts of the University of Cincinnati, North Carolina A&T State University, and NREL to develop a structural neural system for structural health monitoring of wind turbine blades.

  20. Rocket engine condition monitoring system

    SciTech Connect

    Hagar, S.K.; Alcock, J.F.

    1989-01-01

    It is expected that the Rocket Engine Condition Monitoring System (RECMS) program will define engine monitoring technologies and an integration approach which can be applied to engine development in support of advanced launch system objectives. The RECMS program approaches engine monitoring as a system which is fully integrated with the engine controller, vehicle monitoring system, and ground processing systems to ensure mission success in addition to engine reliability. The system components are monitored through health and performance sensors; they are analyzed with the diagnostic and prognostic algorithms and demonstrated by system testing with hardware from other advanced development programs.

  1. Methods for forewarning of critical condition changes in monitoring civil structures

    DOEpatents

    Abercrombie, Robert K.; Hively, Lee M.

    2013-04-02

    Sensor modules (12) including accelerometers (20) are placed on a physical structure (10) and tri-axial accelerometer data is converted to mechanical power (P) data (41) which then processed to provide a forewarning (57) of a critical event concerning the physical structure (10). The forewarning is based on a number of occurrences of a composite measure of dissimilarity (C.sub.i) exceeding a forewarning threshold over a defined sampling time; and a forewarning signal (58) is provided to a human observer through a visual, audible or tangible signal. A forewarning of a structural failure can also be provided based on a number of occurrences of (C.sub.i) above a failure value threshold.

  2. Integrated structural health monitoring.

    SciTech Connect

    Farrar, C. R.

    2001-01-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the authors opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  3. Integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Farrar, Charles R.; Sohn, Hoon; Fugate, Michael L.; Czarnecki, Jerry J.

    2001-07-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the author's opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  4. Ultrasonic condition monitoring of composite structures using a low-profile acoustic source and an embedded optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Pierce, S. Gareth; Staszewski, Wieslaw J.; Gachagan, Anthony; James, I. R.; Philip, Wayne R.; Worden, Keith; Culshaw, Brian; McNab, Alistair; Tomlinson, Geoffrey R.; Hayward, Gordon

    1997-06-01

    The purpose of this paper is to provide a concise introduction to the developments and recent findings of a BRITE-EURAM program of work (BRE2.CT94-0990 , structurally integrated system for the comprehensive evaluation of composites). The aim of the program has been to develop an acoustic/ultrasonic based structural monitoring system for composite structures using material compatible sensors. Since plate-like structures have been investigated, it has been a requirement to utilize the propagation of ultrasonic Lamb waves through the sample materials. Preliminary investigations utilized conventional piezo-electric sources coupled to the sample via perspex wedges. The Lamb waves generated by these sources were monitored using either a fully embedded or surface mounted optical fiber sensors. The system was tested with a variety of different carbon and glass fiber reinforced panels, and the interaction of the lamb waves with different defects in these materials was monitored. Conventional signal processing allowed the location of defects such as impact damage sites, delaminations and holes. Subsequent investigations have endeavored to refine the system. This paper reports the development of advanced wavelet based signal processing techniques to enhance defect visibility, the optical connectorization of composite panels, and the development of flexible low profile acoustic sources for efficient Lamb wave generation.

  5. Structure function monitor

    DOEpatents

    McGraw, John T [Placitas, NM; Zimmer, Peter C [Albuquerque, NM; Ackermann, Mark R [Albuquerque, NM

    2012-01-24

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  6. Electrical condition monitoring method for polymers

    DOEpatents

    Watkins, Jr., Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2008-08-19

    An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated-aged conductive composite.

  7. Advanced optical condition monitoring. [of rocket engines

    NASA Technical Reports Server (NTRS)

    Cross, G.; Barkhoudarian, S.

    1991-01-01

    The application of Advanced Optical Condition Monitoring to optical leak detection and plume spectrometry is discussed. The development of these selected sensors for propulsion system monitoring is addressed.

  8. Wind Turbine Drivetrain Condition Monitoring - An Overview

    SciTech Connect

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  9. Plant Condition Remote Monitoring Technique

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Krishen, K.

    1996-01-01

    This paper summarizes the results of a radiation transfer study conducted on houseplants using controlled environmental conditions. These conditions included: (1) air and soil temperature; (2) incident and reflected radiation; and (3) soil moisture. The reflectance, transmittance, and emittance measurements were conducted in six spectral bands: microwave, red, yellow, green, violet and infrared, over a period of three years. Measurements were taken on both healthy and diseased plants. The data was collected on plants under various conditions which included: variation in plant bio-mass, diurnal variation, changes in plant pathological conditions (including changes in water content), different plant types, various disease types, and incident light wavelength or color. Analysis of this data was performed to yield an algorithm for plant disease from the remotely sensed data.

  10. Structural health monitoring for ship structures

    SciTech Connect

    Farrar, Charles; Park, Gyuhae; Angel, Marian; Bement, Matthew; Salvino, Liming

    2009-01-01

    Currently the Office of Naval Research is supporting the development of structural health monitoring (SHM) technology for U.S. Navy ship structures. This application is particularly challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with these ships missions, lack of data from known damage conditions, limited sensing that was not designed specifically for SHM, and the management of the vast amounts of data that can be collected during a mission. This paper will first define a statistical pattern recognition paradigm for SHM by describing the four steps of (1) Operational Evaluation, (2) Data Acquisition, (3) Feature Extraction, and (4) Statistical Classification of Features as they apply to ship structures. Note that inherent in the last three steps of this process are additional tasks of data cleansing, compression, normalization and fusion. The presentation will discuss ship structure SHM challenges in the context of applying various SHM approaches to sea trials data measured on an aluminum multi-hull high-speed ship, the HSV-2 Swift. To conclude, the paper will discuss several outstanding issues that need to be addressed before SHM can make the transition from a research topic to actual field applications on ship structures and suggest approaches for addressing these issues.

  11. OTVE combustor wall condition monitoring

    NASA Technical Reports Server (NTRS)

    Szemenyei, Brian; Nelson, Robert S.; Barkhoudarian, S.

    1989-01-01

    Conventional ultrasonics, eddy current, and electromagnetic acoustic transduction (EMAT) technologies were evaluated to determine their capability of measuring wall thickness/wear of individual cooling channels in test specimens simulating conditions in the throat region of an OTVE combustion chamber liner. Quantitative results are presented for the eddy current technology, which was shown to measure up to the optimum 20-mil wall thickness with near single channel resolution. Additional results demonstrate the capability of the conventional ultrasonics and EMAT technologies to detect a thinning or cracked wall. Recommendations for additional eddy current and EMAT development tests are presented.

  12. Survey of Condition Indicators for Condition Monitoring Systems (Open Access)

    DTIC Science & Technology

    2014-09-29

    gear and shaft in the gearbox as well as the generator and main bearing. A condition monitoring system is designed to detect faults early on so...discrimination, which is arguably one of the most important aspects of a condition monitoring system . Fault discrimination is the ability to...separate out a faulted component from good components. If the fault discrimination is good, then the alarms the system provides are trustworthy and

  13. An advanced condition monitoring system for turbopumps

    NASA Technical Reports Server (NTRS)

    Cross, George S.; Barkhoudarian, Sarkis

    1991-01-01

    Advanced condition monitoring (ACM) technologies developed for in situ turbomachinery applications are reviewed. The ACM concepts are based on direct in situ hardware monitoring and between-flight inspections, using novel real-time, automated, noncontacting, and nonintrusive sensor and associated electronic technologies.

  14. Structural Health Monitoring of Repairs

    DTIC Science & Technology

    2010-05-01

    monitoring, the monitoring system consists of several design elements with defined interfaces. The raw monitoring signals are generated by a sensor with...is directly connected or integrated in the structure or repair. In Figure 2.3-1, the design element 1 is showing a surface mounted sensor. The...aircraft bus system. The monitoring data from the bus system are transferred to the next design element (element 4), where an onboard processing

  15. Machine condition monitoring using principal component representations

    NASA Astrophysics Data System (ADS)

    He, Qingbo; Yan, Ruqiang; Kong, Fanrang; Du, Ruxu

    2009-02-01

    The purpose of this paper is to find the low-dimensional principal component (PC) representations from the statistical features of the measured signals to characterize and hence, monitor machine conditions. The PC representations can be automatically extracted using the principal component analysis (PCA) technique from the time- and frequency-domains statistical features of the measured signals. First, a mean correlation rule is proposed to evaluate the capability of each of the PCs in characterizing machine conditions and to select the most representative PCs to classify machine fault patterns. Then a procedure that uses the low-dimensional PC representations for machine condition monitoring is proposed. The experimental results from an internal-combustion engine sound analysis and an automobile gearbox vibration analysis show that the proposed method is effective for machine condition monitoring.

  16. Integrated condition monitoring of space information network

    NASA Astrophysics Data System (ADS)

    Wang, Zhilin; Li, Xinming; Li, Yachen; Yu, Shaolin

    2015-11-01

    In order to solve the integrated condition monitoring problem in space information network, there are three works finished including analyzing the characteristics of tasks process and system health monitoring, adopting the automata modeling method, and respectively establishing the models for state inference and state determination. The state inference model is a logic automaton and is gotten by concluding engineering experiences. The state determination model is a double-layer automaton, the lower automaton is responsible for parameter judge and the upper automaton is responsible for state diagnosis. At last, the system state monitoring algorithm has been proposed, which realizes the integrated condition monitoring for task process and system health, and can avoid the false alarm.

  17. Reusable rocket engine turbopump condition monitoring

    NASA Technical Reports Server (NTRS)

    Hampson, M. E.

    1984-01-01

    Significant improvements in engine readiness with reductions in maintenance costs and turn-around times can be achieved with an engine condition monitoring systems (CMS). The CMS provides health status of critical engine components, without disassembly, through monitoring with advanced sensors. Engine failure reports over 35 years were categorized into 20 different modes of failure. Rotor bearings and turbine blades were determined to be the most critical in limiting turbopump life. Measurement technologies were matched to each of the failure modes identified. Three were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiberoptic deflectometer (bearings), and the fiberoptic pyrometer (blades). Signal processing algorithms were evaluated for their ability to provide useful health data to maintenance personnel. Design modifications to the Space Shuttle Main Engine (SSME) high pressure turbopumps were developed to incorporate the sensors. Laboratory test fixtures have been designed for monitoring the rotor bearings and turbine blades in simulated turbopump operating conditions.

  18. Electrical condition monitoring method for polymers

    DOEpatents

    Watkins, Jr. Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  19. Reusable rocket engine turbopump condition monitoring

    NASA Technical Reports Server (NTRS)

    Hampson, M. E.; Barkhoudarian, S.

    1985-01-01

    Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors.

  20. Online Condition Monitoring mit der Stresswellenanalyse

    NASA Astrophysics Data System (ADS)

    Bruderreck, Frank

    Die Anforderungen des heutigen Energiemarkts und damit einhergehende veränderte Einsatzbedingungen für ältere Kraftwerksblöcke haben unvorhergesehene Produktionsausfälle in den letzten Jahren erheblich verteuert. Nach der Optimierung der Kraftwerksprozesse und der Steigerung der Wirkungsgrade richten die Energieversorger ihren Blick daher nun verstärkt auch auf die Verfügbarkeit ihrer Anlagen. Zur Verbesserung der Anlagenverfügbarkeit und der Minimierung der Instandhaltungskosten bietet sich der Einsatz von Condition Monitoring Systemen an. Nach der Erprobung eines Systems zur Vibrationsanalyse setzt die Evonik Steag GmbH jetzt in einem Pilotprojekt die Stresswellenanalyse ein, ein Online Condition Monitoring System auf der Basis von Ultraschallsensoren. Dieser Beitrag erläutert an einem Beispiel die Methode und grenzt sie gegen den De-facto-Standard Vibrationsanalyse ab.

  1. A Resilient Condition Assessment Monitoring System

    SciTech Connect

    Humberto Garcia; Wen-Chiao Lin; Semyon M. Meerkov

    2012-08-01

    An architecture and supporting methods are presented for the implementation of a resilient condition assessment monitoring system that can adaptively accommodate both cyber and physical anomalies to a monitored system under observation. In particular, the architecture includes three layers: information, assessment, and sensor selection. The information layer estimates probability distributions of process variables based on sensor measurements and assessments of the quality of sensor data. Based on these estimates, the assessment layer then employs probabilistic reasoning methods to assess the plant health. The sensor selection layer selects sensors so that assessments of the plant condition can be made within desired time periods. Resilient features of the developed system are then illustrated by simulations of a simplified power plant model, where a large portion of the sensors are under attack.

  2. Reusable rocket engine optical condition monitoring

    NASA Technical Reports Server (NTRS)

    Wyett, L.; Maram, J.; Barkhoudarian, S.; Reinert, J.

    1987-01-01

    Plume emission spectrometry and optical leak detection are described as two new applications of optical techniques to reusable rocket engine condition monitoring. Plume spectrometry has been used with laboratory flames and reusable rocket engines to characterize both the nominal combustion spectra and anomalous spectra of contaminants burning in these plumes. Holographic interferometry has been used to identify leaks and quantify leak rates from reusable rocket engine joints and welds.

  3. Condition monitoring system of wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abdusamad, Khaled B.

    The development and implementation of the condition monitoring systems (CMS) play a significant role in overcoming the number of failures in the wind turbine generators that result from the harsh operation conditions, such as over temperature, particularly when turbines are deployed offshore. In order to increase the reliability of the wind energy industry, monitoring the operation conditions of wind generators is essential to detect the immediate faults rapidly and perform appropriate preventative maintenance. CMS helps to avoid failures, decrease the potential shutdowns while running, reduce the maintenance and operation costs and maintain wind turbines protected. The knowledge of wind turbine generators' faults, such as stator and rotor inter-turn faults, is indispensable to perform the condition monitoring accurately, and assist with maintenance decision making. Many techniques are utilized to avoid the occurrence of failures in wind turbine generators. The majority of the previous techniques that are applied to monitor the wind generator conditions are based on electrical and mechanical concepts and theories. An advanced CMS can be implemented by using a variety of different techniques and methods to confirm the validity of the obtained electrical and mechanical condition monitoring algorithms. This thesis is focused on applying CMS on wind generators due to high temperature by contributing the statistical, thermal, mathematical, and reliability analyses, and mechanical concepts with the electrical methodology, instead of analyzing the electrical signal and frequencies trends only. The newly developed algorithms can be compared with previous condition monitoring methods, which use the electrical approach in order to establish their advantages and limitations. For example, the hazard reliability techniques of wind generators based on CMS are applied to develop a proper maintenance strategy, which aims to extend the system life-time and reduce the potential

  4. The Structure Design of Piezoelectric Poly(vinylidene Fluoride) (PVDF) Polymer-Based Sensor Patch for the Respiration Monitoring under Dynamic Walking Conditions.

    PubMed

    Lei, Kin-Fong; Hsieh, Yi-Zheng; Chiu, Yi-Yuan; Wu, Min-Hsien

    2015-07-31

    This study reports a piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor patch for respiration detections in dynamic walking condition. The working mechanism of respiration signal generation is based on the periodical deformations on a human chest wall during the respiratory movements, which in turn mechanically stretch the piezoelectric PVDF film to generate the corresponding electrical signals. In this study, the PVDF sensing film was completely encapsulated within the sensor patch forming a mass-spring-damper mechanical system to prevent the noises generated in a dynamic condition. To verify the design of sensor patch to prevent dynamic noises, experimental investigations were carried out. Results demonstrated the respiration signals generated and the respiratory rates measured by the proposed sensor patch were in line with the same measurements based on a commercial respiratory effort transducer both in a static (e.g., sitting) or dynamic (e.g., walking) condition. As a whole, this study has developed a PVDF-based sensor patch which is capable of monitoring respirations in a dynamic walking condition with high fidelity. Other distinctive features include its small size, light weight, ease of use, low cost, and portability. All these make it a promising sensing device to monitor respirations particularly in home care units.

  5. The Structure Design of Piezoelectric Poly(vinylidene Fluoride) (PVDF) Polymer-Based Sensor Patch for the Respiration Monitoring under Dynamic Walking Conditions

    PubMed Central

    Lei, Kin-Fong; Hsieh, Yi-Zheng; Chiu, Yi-Yuan; Wu, Min-Hsien

    2015-01-01

    This study reports a piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor patch for respiration detections in dynamic walking condition. The working mechanism of respiration signal generation is based on the periodical deformations on a human chest wall during the respiratory movements, which in turn mechanically stretch the piezoelectric PVDF film to generate the corresponding electrical signals. In this study, the PVDF sensing film was completely encapsulated within the sensor patch forming a mass-spring-damper mechanical system to prevent the noises generated in a dynamic condition. To verify the design of sensor patch to prevent dynamic noises, experimental investigations were carried out. Results demonstrated the respiration signals generated and the respiratory rates measured by the proposed sensor patch were in line with the same measurements based on a commercial respiratory effort transducer both in a static (e.g., sitting) or dynamic (e.g., walking) condition. As a whole, this study has developed a PVDF-based sensor patch which is capable of monitoring respirations in a dynamic walking condition with high fidelity. Other distinctive features include its small size, light weight, ease of use, low cost, and portability. All these make it a promising sensing device to monitor respirations particularly in home care units. PMID:26263992

  6. Condition monitoring of rotary blood pumps.

    PubMed

    Jammu, V B; Malanoski, S; Walter, T; Smith, W

    1997-01-01

    Long-term, trouble-free operation of ventricular assist devices (VADs) is critical to the patient. A catastrophic failure of the VAD could cost the patient's life, thus defeating the purpose of the device. The targeted 90% 5 year reliability also implies that the average device life would exceed the 5 year limit. Time based explantation of the device after the fifth year will replace many devices with significant additional life, subject the patient to unnecessary surgical risk, and increase costs. To preclude the need for time based replacements and prevent catastrophic failures, a condition monitor is proposed in this article for early detection of faults in VADs. To develop this monitor, the effectiveness of various sensing and monitoring methods for determining the VAD condition is investigated. A Hemadyne pump was instrumented with a set of eight sensors, and a series of experiments were performed to record and analyze signals from the normal and abnormal pumps with five different faults. Statistical, spectral, envelope, and ensemble averaging analyses were performed to characterize changes in sensor signals due to faults. Experimental results indicate that statistical and frequency information from the acceleration and dynamic pressure signals can clearly detect and identify various VAD faults.

  7. Tolkku - a toolbox for decision support from condition monitoring data

    NASA Astrophysics Data System (ADS)

    Saarela, Olli; Lehtonen, Mikko; Halme, Jari; Aikala, Antti; Raivio, Kimmo

    2012-05-01

    This paper describes a software toolbox (a software library) designed for condition monitoring and diagnosis of machines. This toolbox implements both new methods and prior art and is aimed for practical down-to-earth data analysis work. The target is to improve knowledge of the operation and behaviour of machines and processes throughout their entire life-cycles. The toolbox supports different phases of condition based maintenance with tools that extract essential information and automate data processing. The paper discusses principles that have guided toolbox design and the implemented toolbox structure. Case examples are used to illustrate how condition monitoring applications can be built using the toolbox. In the first case study the toolbox is applied to fault detection of industrial centrifuges based on measured electrical current. The second case study outlines an application for centralized monitoring of a fleet of machines that supports organizational learning.

  8. OTVE turbopump condition monitoring, task E.5

    NASA Technical Reports Server (NTRS)

    Coleman, Paul T.; Collins, J. J.

    1989-01-01

    Recent work has been carried out on development of isotope wear analysis and optical and eddy current technologies to provide bearing wear measurements and real time monitoring of shaft speed, shaft axial displacement and shaft orbit of the Orbit Transfer Vehicle hydrostatic bearing tester. Results show shaft axial displacement can be optically measured (at the same time as shaft orbital motion and speed) to within 0.3 mils by two fiberoptic deflectometers. Evaluation of eddy current probes showed that, in addition to measuring shaft orbital motion, they can be used to measure shaft speed without having to machine grooves on the shaft surface as is the usual practice for turbomachinery. The interim results of this condition monitoring effort are presented.

  9. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  10. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    SciTech Connect

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  11. Bridge condition assessment based on long-term strain monitoring

    NASA Astrophysics Data System (ADS)

    Sun, LiMin; Sun, Shouwang

    2011-04-01

    In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.

  12. Vibration health monitoring for tensegrity structures

    NASA Astrophysics Data System (ADS)

    Ashwear, Nasseradeen; Eriksson, Anders

    2017-02-01

    Tensegrities are assembly structures, getting their equilibrium from the interaction between tension in cables and compression in bars. During their service life, slacking in their cables and nearness to buckling in their bars need to be monitored to avoid a sudden collapse. This paper discusses how to design the tensegrities to make them feasible for vibrational health monitoring methods. Four topics are discussed; suitable finite elements formulation, pre-measurements analysis to find the locations of excitation and sensors for the interesting modes, the effects from some environmental conditions, and the pre-understanding of the effects from different slacking scenarios.

  13. Strain Monitoring of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.

    2017-01-01

    , such as tensile testing, fatigue testing, and shear testing, but common measurement techniques cannot be used on fabric. Measuring strain in a material and during a test is a critical parameter for an engineer to monitor the structure during the test and correlate to an analytical model. The ability to measure strain in fabric structures is a challenge for NASA. Foil strain gauges, for example, are commonplace on metallic structures testing, but are extremely difficult to interface with a fabric substrate. New strain measuring techniques need to be developed for use with fabric structures. This paper investigates options for measuring strain in fabric structures for both ground testing and in-space structural health monitoring. It evaluates current commercially available options and outlines development work underway to build custom measurement solutions for NASA's fabric structures.

  14. Investigation of Various Condition Monitoring Techniques Based on a Damaged Wind Turbine Gearbox

    SciTech Connect

    Sheng, S.

    2011-10-01

    This paper is a continuation of a 2009 paper presented at the 7th International Workshop on Structural Health Monitoring that described various wind turbine condition-monitoring techniques. This paper presents the results obtained by various condition- monitoring techniques from a damaged Gearbox Reliability Collaborative test gearbox.

  15. Structural lubricity under ambient conditions

    PubMed Central

    Cihan, Ebru; İpek, Semran; Durgun, Engin; Baykara, Mehmet Z.

    2016-01-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000–130,000 nm2) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold–graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions. PMID:27350035

  16. Structural lubricity under ambient conditions

    NASA Astrophysics Data System (ADS)

    Cihan, Ebru; Ipek, Semran; Durgun, Engin; Baykara, Mehmet Z.

    2016-06-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (~4,000-130,000 nm2) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold-graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions.

  17. Compatibility Conditions of Structural Mechanics

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1999-01-01

    The theory of elasticity has camouflaged a deficiency in the compatibility formulation since 1860. In structures the ad hoc compatibility conditions through virtual "cuts" and closing "gaps" are not parallel to the strain formulation in elasticity. This deficiency in the compatibility conditions has prevented the development of a direct stress determination method in structures and in elasticity. We have addressed this deficiency and attempted to unify the theory of compatibility. This work has led to the development of the integrated force method for structures and the completed Beltrami-Michell formulation for elasticity. The improved accuracy observed in the solution of numerical examples by the integrated force method can be attributed to the compliance of the compatibility conditions. Using the compatibility conditions allows mapping of variables and facile movement among different structural analysis formulations. This paper reviews and illustrates the requirement of compatibility in structures and in elasticity. It also describes the generation of the conditions and quantifies the benefits of their use. The traditional analysis methods and available solutions (which have been obtained bypassing the missed conditions) should be verified for compliance of the compatibility conditions.

  18. Functioning condition monitoring of industrial equipment

    NASA Astrophysics Data System (ADS)

    Ungureanu, N. S.; Petrovan, A.; Ungureanu, M.; Alexandrescu, M.

    2017-02-01

    The paper analyses the theoretical aspects related to monitoring industrial equipment. Are treated issues that concern the choosing of industrial equipment to be monitored, the parameters to be monitored, monitoring mode (local or remote) and the mode of collection and transmission of data.

  19. Ultrasonic corrosion condition monitoring - A systematised approach

    SciTech Connect

    Yates, A.

    1985-01-01

    The technique of taking ultrasonic thickness readings as a basis for assessing corrosion and erosion damage on structures and pipework systems is an established means of obtaining condition data. To ensure that surveys carried out in this way are relevant and useful, several conditions must be met: 1. Individual readings must be accurate and the measuring system must be capable of ignoring paints and coatings at the test point; 2. Test points must be appropriately positioned; 3. Sufficient points must be taken to give a representative sample; 4. Reporting must be in a format which is readable, flexible and capable of highlighting anomalies. Following extensive experience in onshore and offshore corrosion condition surveys, systems have been evolved which have improved the efficiency of this approach in all the above areas.

  20. Health Monitoring for Airframe Structural Characterization

    NASA Technical Reports Server (NTRS)

    Munns, Thomas E.; Kent, Renee M.; Bartolini, Antony; Gause, Charles B.; Borinski, Jason W.; Dietz, Jason; Elster, Jennifer L.; Boyd, Clark; Vicari, Larry; Ray, Asok; Cooper, E. G. (Technical Monitor)

    2002-01-01

    This study established requirements for structural health monitoring systems, identified and characterized a prototype structural sensor system, developed sensor interpretation algorithms, and demonstrated the sensor systems on operationally realistic test articles. Fiber-optic corrosion sensors (i.e., moisture and metal ion sensors) and low-cycle fatigue sensors (i.e., strain and acoustic emission sensors) were evaluated to validate their suitability for monitoring aging degradation; characterize the sensor performance in aircraft environments; and demonstrate placement processes and multiplexing schemes. In addition, a unique micromachined multimeasure and sensor concept was developed and demonstrated. The results show that structural degradation of aircraft materials could be effectively detected and characterized using available and emerging sensors. A key component of the structural health monitoring capability is the ability to interpret the information provided by sensor system in order to characterize the structural condition. Novel deterministic and stochastic fatigue damage development and growth models were developed for this program. These models enable real time characterization and assessment of structural fatigue damage.

  1. Monitoring Polaris and Seeing Conditions at PARI

    NASA Astrophysics Data System (ADS)

    Crawford, April

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) was originally built by NASA to track and collect data from satellites. The location in the Pisgah National Forest was chosen due to the excellent ability of the surrounding mountains to block radio interference and light pollution. The PARI observatory has been monitoring Polaris for over 10 years and has amassed a large collection of images of the star and those surrounding it. While several telescopes have been used throughout the project, we are currently using a Omni XLT Series Celestron and an SBIG ST-8300M CCD camera with a 0.70 arcsecond/pixel ratio. The software is run on Windows, however, we will be making a switch to Linux and implementing a new program to control the camera. The new images, once converted to a usable format (ST10 to FITS), can be automatically fed into an in-house Java program to track the variability of the star and simultaneously determine the seeing conditions experienced on the campus. Since we have several years worth of data, the program will also be used to provide a history of variability and seeing conditions. We ultimately hope to be able to track the possible changes in variability of Polaris, as it's current location on the HR diagram is being studied. The data could also prove valuable for our on-site scientists and many visiting students to study on campus. We are also developing a relative scale for our seeing conditions, accompanied by FWHM measurements in arcseconds that will can be compared to those of surrounding observatories in mountainous areas.

  2. Model-based condition monitoring for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Taesic; Wang, Yebin; Fang, Huazhen; Sahinoglu, Zafer; Wada, Toshihiro; Hara, Satoshi; Qiao, Wei

    2015-11-01

    Condition monitoring for batteries involves tracking changes in physical parameters and operational states such as state of health (SOH) and state of charge (SOC), and is fundamentally important for building high-performance and safety-critical battery systems. A model-based condition monitoring strategy is developed in this paper for Lithium-ion batteries on the basis of an electrical circuit model incorporating hysteresis effect. It systematically integrates 1) a fast upper-triangular and diagonal recursive least squares algorithm for parameter identification of the battery model, 2) a smooth variable structure filter for the SOC estimation, and 3) a recursive total least squares algorithm for estimating the maximum capacity, which indicates the SOH. The proposed solution enjoys advantages including high accuracy, low computational cost, and simple implementation, and therefore is suitable for deployment and use in real-time embedded battery management systems (BMSs). Simulations and experiments validate effectiveness of the proposed strategy.

  3. Condition Monitoring for Helicopter Data. Appendix A

    NASA Technical Reports Server (NTRS)

    Wen, Fang; Willett, Peter; Deb, Somnath

    2000-01-01

    In this paper the classical "Westland" set of empirical accelerometer helicopter data is analyzed with the aim of condition monitoring for diagnostic purposes. The goal is to determine features for failure events from these data, via a proprietary signal processing toolbox, and to weigh these according to a variety of classification algorithms. As regards signal processing, it appears that the autoregressive (AR) coefficients from a simple linear model encapsulate a great deal of information in a relatively few measurements; it has also been found that augmentation of these by harmonic and other parameters can improve classification significantly. As regards classification, several techniques have been explored, among these restricted Coulomb energy (RCE) networks, learning vector quantization (LVQ), Gaussian mixture classifiers and decision trees. A problem with these approaches, and in common with many classification paradigms, is that augmentation of the feature dimension can degrade classification ability. Thus, we also introduce the Bayesian data reduction algorithm (BDRA), which imposes a Dirichlet prior on training data and is thus able to quantify probability of error in an exact manner, such that features may be discarded or coarsened appropriately.

  4. Structural Health Monitoring 2007: Quantification, Validation, and Implementation

    DTIC Science & Technology

    2007-11-30

    Bent F. Sørensen, Ris National Laboratory 14:45 ~ 15:05 Fundamentals for Remote Condition Monitoring of Offshore Wind Turbine Blades p. 1913...11:20 ~ 11:40 A Novel MEMS Strain Sensor for Structural Health Monitoring Applications under Harsh Environmental Conditions p. 121 Matthew Malkin...Institute for Materials Research and Testing (BAM) 14:25 ~ 14:45 Integrated Monitoring Systems for Offshore Wind Turbines p. 1897 Malcolm McGugan and

  5. Monitoring structure movement with laser tracking technology

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi; Giussani, Alberto; Roncoroni, Fabio; Previtali, Mattia

    2013-04-01

    This paper presents the use of laser tracking technology for structure monitoring. In this field the use of this precise instrument is innovative and therefore new investigations are needed for civil structures, especially for applications carried out during unstable environmental conditions. On the other hand, as laser trackers are today very used in industrial applications aimed at collecting data at high speed with precisions superior to +/-0.05 mm, they seem quite promising for those civil engineering applications where numerous geodetic tools, often coupled with mechanical and electrical instruments, are usually used to inspect structure movements. This work illustrates three real civil engineering monitoring applications where laser tracking technology was used to detect object movements. The first one is a laboratory testing for the inspection of a beam (bending moment and shear). The second experiment is the stability inspection of a bridge. The last experiment is one of the first attempts where laser trackers tried to substitute traditional high precision geometric leveling for monitoring an important historical building: the Cathedral of Milan. The achieved results, pro and contra along with some practical issues are described.

  6. An autonomous structural health monitoring solution

    NASA Astrophysics Data System (ADS)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  7. Structural health monitoring of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  8. Noncontacting measurement technologies for space propulsion condition monitoring

    NASA Technical Reports Server (NTRS)

    Randall, M. R.; Barkhoudarian, S.; Collins, J. J.; Schwartzbart, A.

    1987-01-01

    This paper describes four noncontacting measurement technologies that can be used in a turbopump condition monitoring system. The isotope wear analyzer, fiberoptic deflectometer, brushless torque-meter, and fiberoptic pyrometer can be used to monitor component wear, bearing degradation, instantaneous shaft torque, and turbine blade cracking, respectively. A complete turbopump condition monitoring system including these four technologies could predict remaining component life, thus reducing engine operating costs and increasing reliability.

  9. Condition monitoring of reciprocating seal based on FBG sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuxu; Zhang, Shuanshuan; Wen, Pengfei; Zhen, Wenhan; Ke, Wei

    2016-07-01

    The failure of hydraulic reciprocating seals will seriously affect the normal operation of hydraulic reciprocating machinery, so the potential fault condition monitoring of reciprocating seals is very important. However, it is extremely difficult because of the limitation of reciprocating motion and the structure constraints of seal groove. In this study, an approach using fiber Bragg grating (FBG) sensors is presented. Experimental results show that the contact strain changes of a reciprocating seal can be detected by FBG sensors in the operation process of the hydraulic cylinders. The failure condition of the reciprocating seal can be identified by wavelet packet energy entropy, and the center frequency of power spectrum analysis. It can provide an effective solution for the fault prevention and health management of reciprocating hydraulic rod seals.

  10. Modern techniques for condition monitoring of railway vehicle dynamics

    NASA Astrophysics Data System (ADS)

    Ngigi, R. W.; Pislaru, C.; Ball, A.; Gu, F.

    2012-05-01

    A modern railway system relies on sophisticated monitoring systems for maintenance and renewal activities. Some of the existing conditions monitoring techniques perform fault detection using advanced filtering, system identification and signal analysis methods. These theoretical approaches do not require complex mathematical models of the system and can overcome potential difficulties associated with nonlinearities and parameter variations in the system. Practical applications of condition monitoring tools use sensors which are mounted either on the track or rolling stock. For instance, monitoring wheelset dynamics could be done through the use of track-mounted sensors, while vehicle-based sensors are preferred for monitoring the train infrastructure. This paper attempts to collate and critically appraise the modern techniques used for condition monitoring of railway vehicle dynamics by analysing the advantages and shortcomings of these methods.

  11. STRUCTURAL HEALTH MONITORING OF WELDED CONNECTIONS

    SciTech Connect

    H. SOHN; C. FARRAR; M. FUGATE; J. CZARNECKI

    2001-05-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective monitoring system for welded beam-column connections in a moment resisting frame structure. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMs) technology, and statistical pattern recognition algorithms. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  12. Health Monitoring System for Composite Structures

    NASA Technical Reports Server (NTRS)

    Tang, S. S.; Riccardella, P. C.; Andrews, R. J.; Grady, J. E.; Mucciaradi, A. N.

    1996-01-01

    An automated system was developed to monitor the health status of composites. It uses the vibration characteristics of composites to identify a component's damage condition. The vibration responses are characterized by a set of signal features defined in the time, frequency and spatial domains. The identification of these changes in the vibration characteristics corresponding to different health conditions was performed using pattern recognition principles. This allows efficient data reduction and interpretation of vast amounts of information. Test components were manufactured from isogrid panels to evaluate performance of the monitoring system. The components were damaged by impact to simulate different health conditions. Free vibration response was induced by a tap test on the test components. The monitoring system was trained using these free vibration responses to identify three different health conditions. They are undamaged vs. damaged, damage location and damage zone size. High reliability in identifying the correct component health condition was achieved by the monitoring system.

  13. Embedded Strain Gauges for Condition Monitoring of Silicone Gaskets

    PubMed Central

    Schotzko, Timo; Lang, Walter

    2014-01-01

    A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term. PMID:25014099

  14. Embedded strain gauges for condition monitoring of silicone gaskets.

    PubMed

    Schotzko, Timo; Lang, Walter

    2014-07-10

    A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term.

  15. Monitoring breath markers under controlled conditions.

    PubMed

    Righettoni, Marco; Ragnoni, Alessandro; Güntner, Andreas T; Loccioni, Claudio; Pratsinis, Sotiris E; Risby, Terence H

    2015-10-15

    Breath analysis has the potential to detect and monitor diseases as well as to reduce the corresponding medical costs while improving the quality of a patient's life. Herein, a portable prototype, consisting of a commercial breath sampler modified to work as a platform for solid-state gas sensors was developed. The sensor is placed close to the mouth (<10 cm) and minimizes the mouth-to-sensor path to avoid contamination and dilution of the target breath marker. Additionally with an appropriate cooling concept, even high sensor operating temperatures (e.g. 350 °C) could be used. Controlled sampling is crucial for accurate repeatable analysis of the human breath and these concerns have been addressed by this novel prototype. The device helps a subject control their exhaled flow rate which increases reproducibility of intra-subject breath samples. The operation of this flame-made selective chemo-resistive gas sensor is demonstrated by the detection of breath acetone.

  16. Wind Turbine Drivetrain Condition Monitoring - An Overview (Presentation)

    SciTech Connect

    Sheng, S.; Yang, W.

    2013-07-01

    High operation and maintenance costs still hamper the development of the wind industry despite its quick growth worldwide. To reduce unscheduled downtime and avoid catastrophic failures of wind turbines and their components have been and will be crucial to further raise the competitiveness of wind power. Condition monitoring is one of the key tools for achieving such a goal. To enhance the research and development of advanced condition monitoring techniques dedicated to wind turbines, we present an overview of wind turbine condition monitoring, discuss current practices, point out existing challenges, and suggest possible solutions.

  17. Monitoring surface conditions of a Thoroughbred racetrack.

    PubMed

    Clanton, C; Kobluk, C; Robinson, R A; Gordon, B

    1991-02-15

    During a pilot study at a Thoroughbred racetrack, information was collected to include weather conditions and track surface properties (moisture content, composition, strength, and coefficient of friction between surface and hoof). Measured weather variables did not correlate to any pattern of horse injuries of breakdowns. Surface moisture content was variable, whereas the moisture content of the compacted cushion was constant. Track surfaces around the starting chutes were more compacted than were other areas of the track. Next to the rail, track surface was softer than the surface toward the middle of the track. The coefficient of friction between a hoof and the surface was not affected by location or surface moisture content.

  18. Using the motor to monitor pump conditions

    SciTech Connect

    Casada, D.

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  19. REGIONAL MONITORING OF CORAL CONDITION IN THE FLORIDA KEYS

    EPA Science Inventory

    Fisher, William S. and Deborah L. Santavy. 2004. Regional Monitoring of Coral Condition in Florida Keys (Abstract). Presented at the Monitoring Science and Technology Symposium, 20-24 September 2004, Denver, CO. 1 p. (ERL,GB R1020).

    Coral reefs have experienced unpreceden...

  20. Diagnostic device for monitoring the technical condition of mechanical assemblies

    NASA Technical Reports Server (NTRS)

    Osovskiy, V. I.; Shergin, V. V.; Shumilin, V. I.

    1973-01-01

    An automatic diagnostic device for monitoring the condition of tractor transmission gears is described. The structural noise spectrum of the gearshift box and rear axle of the tractor were analyzed in a digital computer, by an algorithm based on the multiple correlation method. The optimum assembly of operating frequencies, by use of which the errors in measurement were minimized, was selected from the entire frequency spectrum. Selected frequencies are necessary for choosing the measurement range of the diagnostic device. It turned out that, to obtain a relative error of no more than 2%, it was sufficient to use two filters, vibrating only at the frequencies carrying the maximum data of the mechanical parameter being investigated. The measurement system consists of frequency-selection filters, amplifiers and quadratic detectors, at the outlets of which constant voltages are created, which are proportional to the signal level at the frequencies selected.

  1. Piezoelectric Sensor Evaluation for Structural Health Monitoring of Cryogenic Structures

    NASA Technical Reports Server (NTRS)

    Lassiter, John; Engberg, Robert

    2005-01-01

    This viewgraph presentation provides an overview of Structural Health Monitoring (SHM), and profiles piezoelectric sensors useful for SHM of cryogenic structures. The presentation also profiles impedance tests and other SHM tests conducted at Marshall Space Flight Center (MSFC).

  2. Investigation of Various Wind Turbine Drivetrain Condition Monitoring Techniques (Presentation)

    SciTech Connect

    Sheng, S.

    2011-08-01

    This presentation was given at the 2011 Wind Turbine Reliability Workshop sponsored by Sandia National Laboratories in Albuquerque, NM on August 2-3, 2011. It discusses work for the Gearbox Reliability Collaborative including downtime caused by turbine subsystems, annual failure frequency of turbine subsystems, cost benefits of condition monitoring (CM), the Gearbox Reliability Collaborative's condition monitoring approach and rationale, test setup, and results and observations.

  3. Optical Structural Health Monitoring Device

    NASA Technical Reports Server (NTRS)

    Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.

    2010-01-01

    This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with

  4. Acoustic Techniques for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  5. The CMS Beam Conditions and Radiation Monitoring System

    NASA Astrophysics Data System (ADS)

    Castro, E.; Bacchetta, N.; Bell, A. J.; Dabrowski, A.; Guthoff, M.; Hall-Wilton, R.; Hempel, M.; Henschel, H.; Lange, W.; Lohmann, W.; Müller, S.; Novgorodova, O.; Pfeiffer, D.; Ryjov, V.; Stickland, D.; Schimdt, R.; Walsh, R.

    The Compact Muon Solenoid (CMS) is one of the two large, general purpose experiments situated at the LHC at CERN. As with all high energy physics experiments, knowledge of the beam conditions and luminosity is of vital importance. The Beam Conditions and Radiation Monitoring System (BRM) is installed in CMS to protect the detector and to provide feedback to LHC on beam conditions. It is composed of several sub-systems that measure the radiation level close to or inside all sub-detectors, monitor the beam halo conditions with different time resolution, support beam tuning and protect CMS in case of adverse beam conditions by firing a beam abort signal. This paper presents three of the BRM subsystems: the Fast Beam Conditions Monitor (BCM1F), which is designed for fast flux monitoring, measuring with nanosecond time resolution, both the beam halo and collision products; the Beam Scintillator Counters (BSC), that provide hit rates and time information of beam halo and collision products; and the Beam Conditions Monitors (BCM) used as a protection system that can trigger a beam dump when beam losses occur in order to prevent damage to the pixel and tracker detectors. A description of the systems and a characterization on the basis of data collected during LHC operation is presented.

  6. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    NASA Astrophysics Data System (ADS)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  7. An introduction to structural health monitoring.

    PubMed

    Farrar, Charles R; Worden, Keith

    2007-02-15

    The process of implementing a damage identification strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). Here, damage is defined as changes to the material and/or geometric properties of these systems, including changes to the boundary conditions and system connectivity, which adversely affect the system's performance. A wide variety of highly effective local non-destructive evaluation tools are available for such monitoring. However, the majority of SHM research conducted over the last 30 years has attempted to identify damage in structures on a more global basis. The past 10 years have seen a rapid increase in the amount of research related to SHM as quantified by the significant escalation in papers published on this subject. The increased interest in SHM and its associated potential for significant life-safety and economic benefits has motivated the need for this theme issue. This introduction begins with a brief history of SHM technology development. Recent research has begun to recognize that the SHM problem is fundamentally one of the statistical pattern recognition (SPR) and a paradigm to address such a problem is described in detail herein as it forms the basis for organization of this theme issue. In the process of providing the historical overview and summarizing the SPR paradigm, the subsequent articles in this theme issue are cited in an effort to show how they fit into this overview of SHM. In conclusion, technical challenges that must be addressed if SHM is to gain wider application are discussed in a general manner.

  8. Damage tolerance and structural monitoring for wind turbine blades

    PubMed Central

    McGugan, M.; Pereira, G.; Sørensen, B. F.; Toftegaard, H.; Branner, K.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858

  9. Damage tolerance and structural monitoring for wind turbine blades.

    PubMed

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind.

  10. Spatial and temporal information fusion for crop condition monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop growth condition information is critical for crop management and yield estimation. In order to monitor crop conditions from space, high spatial and temporal resolution remote sensing data are required. Data fusion approach provides a way to generate such data set from multiple remote sensing da...

  11. Data-driven nonlinear technique for condition monitoring

    SciTech Connect

    Hively, L.M.

    1997-04-01

    This paper describes a sensitive technique for distinguishing changes in a nonlinear process. The method obtains a phase-space (PS) representation of the process, which in turn is converted into a probability density function (PDF). Condition change is monitored by comparing two PS-PDFs via a {chi}{sup 2} statistical measure. One example application involves monitoring of brain waves to distinguish various states in an epileptic patient. A second example distinguishes different drilling conditions from spindle motor current data. A third example distinguishes balanced and unbalanced pumping conditions from power data.

  12. Nonlinear structural crack growth monitoring

    DOEpatents

    Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  13. Structural health monitoring using piezoelectric impedance measurements.

    PubMed

    Park, Gyuhae; Inman, Daniel J

    2007-02-15

    This paper presents an overview and recent advances in impedance-based structural health monitoring. The basic principle behind this technique is to apply high-frequency structural excitations (typically greater than 30kHz) through surface-bonded piezoelectric transducers, and measure the impedance of structures by monitoring the current and voltage applied to the piezoelectric transducers. Changes in impedance indicate changes in the structure, which in turn can indicate that damage has occurred. An experimental study is presented to demonstrate how this technique can be used to detect structural damage in real time. Signal processing methods that address damage classifications and data compression issues associated with the use of the impedance methods are also summarized. Finally, a modified frequency-domain autoregressive model with exogenous inputs (ARX) is described. The frequency-domain ARX model, constructed by measured impedance data, is used to diagnose structural damage with levels of statistical confidence.

  14. Dynamic Structural Health Monitoring of Slender Structures Using Optical Sensors

    PubMed Central

    Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo

    2012-01-01

    In this paper we summarize the research activities at the Instituto de Telecomunicações—Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior. PMID:22778661

  15. Dynamic Structural Health Monitoring of slender structures using optical sensors.

    PubMed

    Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo

    2012-01-01

    In this paper we summarize the research activities at the Instituto de Telecomunicações--Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior.

  16. Machine Condition Monitoring Software Agent Using JADE and Data Mining

    NASA Astrophysics Data System (ADS)

    Anandan, R.

    2015-03-01

    In recent days there is a huge demand to increase the production of any mechanical components without any disturbance or mechanical faults in the machine. Therefore, to increase the productivity, it is necessary to monitor the running machine at regular intervals. To overcome such difficulties, a new machine condition monitoring software is designed using the multi agent software. This software is designed using the JADE framework and the data are analyzed using free open source Weka explorer for statistical calculations.

  17. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P.; Brandt, James M.; Gentile, Ann C.; Marzouk, Youssef M.; Hale, Darrian J.; Thompson, David C.

    2011-01-04

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  18. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P.; Brandt, James M. , Gentile; Ann C. , Marzouk; Youssef M. , Hale; Darrian J. , Thompson; David C.

    2010-07-13

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  19. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P.; Brandt, James M.; Gentile, Ann C.; Marzouk, Youssef M.; Hale, Darrian J.; Thompson, David C.

    2011-01-25

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  20. Condition Monitoring of Helicopter Gearboxes by Embedded Sensing

    NASA Technical Reports Server (NTRS)

    Suryavanashi, Abhijit; Wang, Shengda; Gao, Robert; Danai, Kourosh; Lewicki, David G.

    2002-01-01

    Health of helicopter gearboxes is commonly assessed by monitoring the housing vibration, thus it is challenged by poor signal-to-noise ratio of the signal measured away from the source. It is hypothesized that vibration measurements from sensors placed inside the gearbox will be much clearer indicators of faults and will eliminate many of the difficulties faced by present condition monitoring systems. This paper outlines our approach to devising such a monitoring system. Several tasks have been outlined toward this objective and the strategy to address each has been described. Among the tasks are wireless sensor design, antenna design, and selection of sensor locations.

  1. Wireless pilot monitoring system for extreme race conditions.

    PubMed

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.

  2. Flexible Structural-Health-Monitoring Sheets

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  3. Structural health monitoring using parameter identification methods

    NASA Astrophysics Data System (ADS)

    Liu, Pengxiang; Rao, Vittal S.

    2000-06-01

    A structural health monitoring method for determination of damages in structural system is developed using state variable model. A time-domain identification method, the subspace system identification algorithm, is first applied to get a state-space model of the structure. The identified state-space model is then transformed to two special realization forms, for determination of the equation of motion of multiple- degrees-freedom of the structure. The parameters of equation of motion, mass and stiffness matrices or damage indices are used to determine the location and extent of the damage. This method is also extended for the health monitoring of substructural system. Unlike the health monitoring of the whole structure, the health monitoring of substructure uses localized parameter identification which only involves the measurement of substructure parameters. Using this method, the number of unknown parameters and the computational requirement for each identification can be significantly reduced, hence the accuracy of estimation can be improved. Illustrative cases studies using both numerical and experimental structures are presented.

  4. Surface monitoring measurements of materials on environmental change conditions

    NASA Astrophysics Data System (ADS)

    Tornari, Vivi; Bernikola, Eirini; Bellendorf, Paul; Bertolin, Chiara; Camuffo, Dario; Kotova, Lola; Jacobs, Daniela; Zarnic, Roko; Rajcic, Vlatka; Leissner, Johanna

    2013-05-01

    Climate Change is one of the most critical global challenges of our time and the burdened cultural heritage of Europe is particularly vulnerable to be left unprotected. Climate for Culture2 project exploits the damage impact of climate change on cultural heritage at regional scale. In this paper the progress of the study with in situ measurements and investigations at cultural heritage sites throughout Europe combined with laboratory simulations is described. Cultural works of art are susceptible to deterioration with environmental changes causing imperceptibly slow but steady accumulation of damaging effects directly impacted on structural integrity. Laser holographic interference method is employed to provide remote non destructive field-wise detection of the structural differences occurred as climate responses. The first results from climate simulation of South East Europe (Crete) are presented. A full study in regards to the four climate regions of Europe is foreseen to provide values for development of a precise and integrated model of thermographic building simulations for evaluation of impact of climate change. Development of a third generation user interface software optimised portable metrology system (DHSPI II) is designed to record in custom intervals the surface of materials witnessing reactions under simulated climatic conditions both onfield and in laboratory. The climate conditions refer to real data-loggers readings representing characteristic historical building in selected climate zones. New generation impact sensors termed Glass Sensors and Free Water Sensors are employed in the monitoring procedure to cross-correlate climate data with deformation data. In this paper results from the combined methodology are additionally presented.

  5. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  6. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    SciTech Connect

    Sheng, Shuangwen

    2015-10-25

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.

  7. Condition monitoring helps make the Space Shuttle Main Engine reusable

    NASA Technical Reports Server (NTRS)

    Lacroix, W. P.

    1973-01-01

    The Space Shuttle Main Engine (SSME) is a reusable, high-performance liquid-propellant rocket engine being developed for the Space Shuttle Orbiter Vehicle. The SSME has been designed for long life, rapid postflight maintenance, and a fast vehicle turnaround cycle of 160 hours. To meet the unique reusability requirements, the SSME considers maintainability and condition monitoring much as airlines do today. The condition monitoring capabilities designed into this engine are discussed with major emphasis on internal inspection and techniques which ensure the reusability of the SSME.

  8. Optical Fiber Sensors for Aircraft Structural Health Monitoring

    PubMed Central

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-01-01

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel. PMID:26134107

  9. Optical Fiber Sensors for Aircraft Structural Health Monitoring.

    PubMed

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-06-30

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  10. Health monitoring of a composite wingbox structure.

    PubMed

    Grondel, S; Assaad, J; Delebarre, C; Moulin, E

    2004-04-01

    This work was devoted to the development of a health monitoring system assigned to aerospace applications. Those applications concerned the detection of damaging impacts and debonding between stiffeners and composite skins, since they are the major causes of in-service damage of aircraft structures. The chosen health monitoring system was first based on the excitation and reception of Lamb waves along the structure by using thin piezoelectric transducers (active mode) and secondly on a continuous monitoring taking the same transducers used as acoustic emission sensors (passive mode). The composite specimen used was consistent with aircraft wingbox in terms of structure and loading. Several impacts with increasing energy increments were applied on the composite specimen. In passive mode, the study showed the ability of using the acoustic signature of an impact to detect possible damage. Moreover, the damage emergence in the case of damaging impact was confirmed in active mode. Further measurements during fatigue testing were performed. The aim was to demonstrate the ability of the system to monitor disbond growth between the stiffener and the composite skin. The sensitivity of the health monitoring system to the disbond growth was further demonstrated.

  11. A systems approach to the quantitative condition monitoring of pipelines

    SciTech Connect

    Shannon, R.W.; Argent, C.J.

    1988-01-01

    In Service deterioration is a problem on all pipelines. British Gas operates procedures for in-service inspection and surveillance, corrosion control and condition monitoring from which remedial maintenance action is initiated. These procedures include helicopter patrols, foot patrols, landowner liaison, cathodic protection monitoring, hydrostatic testing, on-line inspection by intelligent pig and above ground survey. All fault data is logged and the reasons for particular faults investigated. The experience gained through this process has permitted a quantitative re-assessment of pipeline behaviour - real rather than perceived behaviour - and has enabled the contribution of each monitoring technique to be established. Using this information, soundly based monitoring and preventative maintenance strategies have been derived for British Gas high-pressure pipelines. By integrating the different procedures into a co-ordinated policy, the basis for a technically acceptable, cost effective approach to pipeline preventative maintenance has been achieved.

  12. A Wavelet-Based Methodology for Grinding Wheel Condition Monitoring

    SciTech Connect

    Liao, T. W.; Ting, C.F.; Qu, Jun; Blau, Peter Julian

    2007-01-01

    Grinding wheel surface condition changes as more material is removed. This paper presents a wavelet-based methodology for grinding wheel condition monitoring based on acoustic emission (AE) signals. Grinding experiments in creep feed mode were conducted to grind alumina specimens with a resinoid-bonded diamond wheel using two different conditions. During the experiments, AE signals were collected when the wheel was 'sharp' and when the wheel was 'dull'. Discriminant features were then extracted from each raw AE signal segment using the discrete wavelet decomposition procedure. An adaptive genetic clustering algorithm was finally applied to the extracted features in order to distinguish different states of grinding wheel condition. The test results indicate that the proposed methodology can achieve 97% clustering accuracy for the high material removal rate condition, 86.7% for the low material removal rate condition, and 76.7% for the combined grinding conditions if the base wavelet, the decomposition level, and the GA parameters are properly selected.

  13. Reality Monitoring and Metamemory in Adults with Autism Spectrum Conditions.

    PubMed

    Cooper, Rose A; Plaisted-Grant, Kate C; Baron-Cohen, Simon; Simons, Jon S

    2016-06-01

    Studies of reality monitoring (RM) often implicate medial prefrontal cortex (mPFC) in distinguishing internal and external information, a region linked to autism-related deficits in social and self-referential information processing, executive function, and memory. This study used two RM conditions (self-other; perceived-imagined) to investigate RM and metamemory in adults with autism. The autism group showed a deficit in RM, which did not differ across source conditions, and both groups exhibited a self-encoding benefit on recognition and source memory. Metamemory for perceived-imagined information, but not for self-other information, was significantly lower in the autism group. Therefore, reality monitoring and metamemory, sensitive to mPFC function, appear impaired in autism, highlighting a difficulty in remembering and monitoring internal and external details of past events.

  14. Monitoring the condition of the slag crust in blast furnaces

    SciTech Connect

    Chernov, N.N.; Marder, B.F.; Demidenko, T.V.; Riznitskii, I.G.; Safina, L.A.; Dyshlevich, I.I.; Tkach, A.Ya.

    1988-05-01

    Studies conducted at the Krivorozhstal' combine blast furnaces have shown that fusion of the crust can be established from the change in the total content of alkali metals in the slag. After the furnaces were blown out for repairs the remaining lining and crust were inspected. It was found that the lining of the uncooled part of the stock remained in relatively good shape with the greatest amount of lining wear seen between the second row of stack coolers and bosh coolers. The composition and structure of the slag crust for different regions of the furnaces were analyzed and various physicochemical properties leading to crust formation and behavior were assessed. It was concluded that the systematic determination of the fraction of K/sub 2/O in the alkali compounds in the furnace slag will permit monitoring of the conditions of the slag crust in the furnace and, in the event of the onset of its collapse, will enable measures to be taken to stabilize the heating of the furnace.

  15. Design Optimization of Structural Health Monitoring Systems

    SciTech Connect

    Flynn, Eric B.

    2014-03-06

    Sensor networks drive decisions. Approach: Design networks to minimize the expected total cost (in a statistical sense, i.e. Bayes Risk) associated with making wrong decisions and with installing maintaining and running the sensor network itself. Search for optimal solutions using Monte-Carlo-Sampling-Adapted Genetic Algorithm. Applications include structural health monitoring and surveillance.

  16. Reality Monitoring and Metamemory in Adults with Autism Spectrum Conditions

    ERIC Educational Resources Information Center

    Cooper, Rose A.; Plaisted-Grant, Kate C.; Baron-Cohen, Simon; Simons, Jon S.

    2016-01-01

    Studies of reality monitoring (RM) often implicate medial prefrontal cortex (mPFC) in distinguishing internal and external information, a region linked to autism-related deficits in social and self-referential information processing, executive function, and memory. This study used two RM conditions (self-other; perceived-imagined) to investigate…

  17. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring.

    PubMed

    Salmanpour, Mohammad Saleh; Sharif Khodaei, Zahra; Aliabadi, Mohammad Hossein

    2016-12-12

    This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM) transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA)/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP) composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions.

  18. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring

    PubMed Central

    Salmanpour, Mohammad Saleh; Sharif Khodaei, Zahra; Aliabadi, Mohammad Hossein

    2016-01-01

    This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM) transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA)/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP) composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions. PMID:27973450

  19. Energy harvesting to power embedded condition monitoring hardware

    NASA Astrophysics Data System (ADS)

    Farinholt, Kevin; Brown, Nathan; Siegel, Jake; McQuown, Justin; Humphris, Robert

    2015-04-01

    The shift toward condition-based monitoring is a key area of research for many military, industrial, and commercial customers who want to lower the overall operating costs of capital equipment and general facilities. Assessing the health of rotating systems such as gearboxes, bearings, pumps and other actuation systems often rely on the need for continuous monitoring to capture transient signals that are evidence of events that could cause (i.e. cavitation), or be the result of (i.e. spalling), damage within a system. In some applications this can be accomplished using line powered analyzers, however for wide-spread monitoring, the use of small-scale embedded electronic systems are more desirable. In such cases the method for powering the electronics becomes a significant design factor. This work presents a multi-source energy harvesting approach meant to provide a robust power source for embedded electronics, capturing energy from vibration, thermal and light sources to operate a low-power sensor node. This paper presents the general design philosophy behind the multi-source harvesting circuit, and how it can be extended from powering electronics developed for periodic monitoring to sensing equipment capable of providing continuous condition-based monitoring.

  20. Cable condition monitoring research activities at Sandia National Laboratories

    SciTech Connect

    Jacobus, M.J.; Zigler, G.L.; Bustard, L.D.

    1988-01-01

    Sandia National Laboratories is currently conducting long-term aging research on representative samples of nuclear power plant cables. The objectives of the program are to determine the suitability of these cables for extended life (beyond 40 year design basis) and to assess various cable condition monitoring techniques for predicting remaining cable life. The cables are being aged for long times at relatively mild exposure conditions with various condition monitoring techniques to be employed during the aging process. Following the aging process, the cables will be exposed to a sequential accident profile consisting of high dose rate irradiation followed by a simulated design basis loss-of-coolant accident (LOCA) steam exposure. 12 refs., 1 fig., 1 tab.

  1. USING CONDITION MONITORING TO PREDICT REMAINING LIFE OF ELECTRIC CABLES.

    SciTech Connect

    LOFARO,R.; SOO,P.; VILLARAN,M.; GROVE,E.

    2001-03-29

    Electric cables are passive components used extensively throughout nuclear power stations to perform numerous safety and non-safety functions. It is known that the polymers commonly used to insulate the conductors on these cables can degrade with time; the rate of degradation being dependent on the severity of the conditions in which the cables operate. Cables do not receive routine maintenance and, since it can be very costly, they are not replaced on a regular basis. Therefore, to ensure their continued functional performance, it would be beneficial if condition monitoring techniques could be used to estimate the remaining useful life of these components. A great deal of research has been performed on various condition monitoring techniques for use on electric cables. In a research program sponsored by the U.S. Nuclear Regulatory Commission, several promising techniques were evaluated and found to provide trendable information on the condition of low-voltage electric cables. These techniques may be useful for predicting remaining life if well defined limiting values for the aging properties being measured can be determined. However, each technique has advantages and limitations that must be addressed in order to use it effectively, and the necessary limiting values are not always easy to obtain. This paper discusses how condition monitoring measurements can be used to predict the remaining useful life of electric cables. The attributes of an appropriate condition monitoring technique are presented, and the process to be used in estimating the remaining useful life of a cable is discussed along with the difficulties that must be addressed.

  2. Children's Acquisition of Conditional Logic Structure: Teachable?

    ERIC Educational Resources Information Center

    Lee, Seong-Soo

    1985-01-01

    To assess the teachability of conditional logic structure, the commonly used syllogistic conditional reasoning task was divided into three main components: (1) inductive rule learning; (2) induction of conditional language; and (3) deductive interpretation. When trained on all components, fifth and seventh graders became very competent in dealing…

  3. Condition monitoring of a subsea pump using fibre optic sensing

    NASA Astrophysics Data System (ADS)

    Jones, Kevin; Staveley, Chris; Vialla, Jean-Francois

    2014-05-01

    With the growth in deep-water oil and gas production, condition monitoring of high-value subsea assets to give early warning of developing problems is vital. Offshore operators can then transport and deploy spare parts before a failure occurs thus minimizing equipment down- time. Results are presented from a suite of tests in which multiple elements of a subsea twin-screw pump were monitored using a single fibre optic sensing system that simultaneously measured dynamic strain on the main rotor bearings, pressure and temperature of the lube oil, distributed temperature through the motor stator windings and vibration of the motor housing.

  4. Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements

    NASA Astrophysics Data System (ADS)

    Döhler, Michael; Mevel, Laurent

    2014-05-01

    Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.

  5. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays

    NASA Technical Reports Server (NTRS)

    Black, Richard J.; Faridian, Ferey; Moslehi, Behzad; Sotoudeh, Vahid

    2012-01-01

    Structural health monitoring (SHM) is one of the most important tools available for the maintenance, safety, and integrity of aerospace structural systems. Lightweight, electromagnetic-interference- immune, fiber-optic sensor-based SHM will play an increasing role in more secure air transportation systems. Manufacturers and maintenance personnel have pressing needs for significantly improving safety and reliability while providing for lower inspection and maintenance costs. Undetected or untreated damage may grow and lead to catastrophic structural failure. Damage can originate from the strain/stress history of the material, imperfections of domain boundaries in metals, delamination in multi-layer materials, or the impact of machine tools in the manufacturing process. Damage can likewise develop during service life from wear and tear, or under extraordinary circumstances such as with unusual forces, temperature cycling, or impact of flying objects. Monitoring and early detection are key to preventing a catastrophic failure of structures, especially when these are expected to perform near their limit conditions.

  6. Some aspects of AE application in tool condition monitoring

    PubMed

    Jemielniak

    2000-03-01

    Acoustic emission (AE) is rather a well-known form of non-destructive testing. In the last few years the technology of the AE measurement has been expanded to cover the area of tool condition monitoring. The paper presents some experience of Warsaw University of Technology (WUT) in such applications of AE. It provides an interpretation of common AE signal distortions and possible solutions to avoid them. Furthermore, a characteristic study of several different AE and ultrasonic sensors being used in WUT is furnished. Evaluation of the applicability of some basic measures of acoustic emission for tool condition monitoring is also presented in the paper. Finally paper presents a method of the catastrophic tool failure detection in turning, which uses symptoms other than the direct magnitude AERMS signal. The method is based on the statistical analysis of the distributions of the AERMS signal.

  7. Characterization and Cure Monitoring of Structural Adhesives

    DTIC Science & Technology

    1989-02-01

    OX tiLE (OP? MTL TR 89-15 AD CHARACTERIZATION AND CURE MONITORING OF STRUCTURAL ADHESIVES CD WALTER X. ZUKAS, HOWARD H. WONG, DAVID A. DUNN, and...REPORT NUMB3ER 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBERs) Walter X. Zukas, Howard H. Wong, David A. Dunn, and Stanley E. Wentworth I. PERFORING...Technology, Gaithersburg, MD 20899 1 ATTN: B. Fanconi, Polymer Standards Division 1 D. Hunston, Polymer Standards Division 1 Dr. Stanley M. Barkin , Staff

  8. Monitoring and Reporting Hospital-Acquired Conditions: A Federalist Approach

    PubMed Central

    West, Nathan; Eng, Terry

    2015-01-01

    Background Serious adverse events that occur in hospitals rank as a leading cause of preventable death in the United States. Many states operate reporting systems to monitor and publicly report serious adverse events, a subset that falls under Medicare’s Hospital-Acquired Conditions (HACs). Purpose(s) Identify and describe state efforts, and the supporting role of federal initiatives, to track and report HACs and other serious adverse events. Data Sources Document review of state and federal reports, databases, and policies for HACs and other serious adverse events; conduct semi-structured telephone interviews with state health department officials and directors of patient safety organizations. Results Thirty-two states and the District of Columbia (D.C.) track at least one Medicare HAC. Five states collect nearly all ten Medicare HACs (9–10). Eighteen states and D.C. track events through both a state-based reporting system and the Centers for Disease Control National Healthcare Safety Network (NHSN) for health-care associated infections (HAI). For serious adverse events, most states either partially or fully adopted the National Quality Forum’s Serious Reportable Events. For HAIs, thirty states and D.C. mandate reporting through NHSN. States interviewed reported that Medicare’s choice of HACs for nonpayment had at least a partial influence on which serious adverse events required reporting. Conclusions Many states use the collected data on HACs and other events for quality improvement initiatives and to provide greater transparency through public reporting. More work and research is needed to develop a national reporting system template that has standard definitions, methodology, and reporting. PMID:25584196

  9. Evaluation of High-Precision Sensors in Structural Monitoring

    PubMed Central

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant. PMID:22163499

  10. Evaluation of high-precision sensors in structural monitoring.

    PubMed

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant.

  11. Anomaly Detection Techniques for the Condition Monitoring of Tidal Turbines

    DTIC Science & Technology

    2014-09-29

    live turbine data, with anomalies indicating the possible onset of a fault within the system . 1. INTRODUCTION Tidal power has great potential...live turbine data, alerting the operator to the possible onset of a fault . The implementation of an intelligent condition monitoring system is also...indicate a change in the response of the system , indicating the possible onset of a fault . 1.2.1. CRISP-DM The CRISP-DM (Cross-Industry Standard

  12. Monitoring of Double Stud Wall Moisture Conditions in the Northeast

    SciTech Connect

    Ueno, K.

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  13. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    PubMed

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-05-21

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  14. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation

    PubMed Central

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  15. Monitoring vegetation conditions from LANDSAT for use in range management

    NASA Technical Reports Server (NTRS)

    Haas, R. H.; Deering, D. W.; Rouse, J. W., Jr.; Schell, J. A.

    1975-01-01

    A summary of the LANDSAT Great Plains Corridor projects and the principal results are presented. Emphasis is given to the use of satellite acquired phenological data for range management and agri-business activities. A convenient method of reducing LANDSAT MSS data to provide quantitative estimates of green biomass on rangelands in the Great Plains is explained. Suggestions for the use of this approach for evaluating range feed conditions are presented. A LANDSAT Follow-on project has been initiated which will employ the green biomass estimation method in a quasi-operational monitoring of range readiness and range feed conditions on a regional scale.

  16. Case studies aid choice among quantitative condition-monitoring strategies

    SciTech Connect

    Shannon, R.W.E.; Argent, C.J.

    1989-02-20

    Operational pipelines differ in age, condition, and location. All of these factors may influence the best option. From the operator's point of view, the expected working life of the pipeline is also important. Despite these complexities, a technical and financial appraisal of the options is desirable. To this end the pipeline-corrosion model has been constructed. Sample appraisals for a 40-year, condition-monitoring package on a new pipeline, and an ''on-off'' exercise on a 50-year-old line will be presented. The model pipeline in this instance consists of 100 km of 600-mm diameter pipe with an 8-mm W.T.

  17. Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions

    PubMed Central

    Yu, Chang Ho; Patton, Allison P.; Zhang, Andrew; Fanac, Zhi-Hua (Tina); Weisel, Clifford P.; Lioy, Paul J.

    2015-01-01

    Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80 °F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m3) in a controlled exposure facility. The 2-hour averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R2=0.84; slope=1.17±0.06; N=27) and reported ~17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hour averaged EC concentrations obtained by the Airtec instrument versus the NIOSH method (p<0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5

  18. [Feasibility of monitoring karst standing conditions with vegetation spectra].

    PubMed

    Yue, Yue-Min; Wang, Ke-Lin; Xiong, Ying

    2012-07-01

    Karst regions are typically ecological fragile zones constrained by geological setting, which resulted in high heterogeneity of vegetation standing conditions. The karst vegetation was featured with stone, dry and high calcium carbonate content growth conditions. Based on vegetation spectral analysis and canonical correspondence analysis (CCA), the present study aimed to examine the feasibility of using vegetation spectra to monitor the heterogeneous karst standing conditions. The results showed that there were significant differences between karst vegetation and non-karst vegetation within the spectral range of 1 300-2 500 nm reflectance and 400 - 680 nm first-derivative spectra. It was found that soil moisture and calcium carbonate contents had the most significant effects on vegetation spectral features in karst regions. Ordination diagrams of CCA could distinguish the differences of karst vegetation and non-karst vegetation. Our study demonstrates that vegetation spectra are highly related to karst standing conditions and it is feasible to monitor karst standing conditions with vegetation spectral features.

  19. Crack width monitoring of concrete structures based on smart film

    NASA Astrophysics Data System (ADS)

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2014-04-01

    Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge.

  20. Structural health monitoring apparatus and methodology

    NASA Technical Reports Server (NTRS)

    Giurgiutiu, Victor (Inventor); Yu, Lingyu (Inventor); Bottai, Giola Santoni (Inventor)

    2011-01-01

    Disclosed is an apparatus and methodology for structural health monitoring (SHM) in which smart devices interrogate structural components to predict failure, expedite needed repairs, and thus increase the useful life of those components. Piezoelectric wafer active sensors (PWAS) are applied to or integrated with structural components and various data collected there from provide the ability to detect and locate cracking, corrosion, and disbanding through use of pitch-catch, pulse-echo, electro/mechanical impedance, and phased array technology. Stand alone hardware and an associated software program are provided that allow selection of multiple types of SHM investigations as well as multiple types of data analysis to perform a wholesome investigation of a structure.

  1. Structured populations with diffusion and Feller conditions.

    PubMed

    Bartomiejczyk, Agnieszka; Leszczynski, Henryk

    2016-04-01

    We prove a weak maximum principle for structured population models with dynamic boundary conditions. We establish existence and positivity of solutions of these models and investigate the asymptotic behaviour of solutions. In particular, we analyse so called size profile.

  2. A hybrid fiber-optic sensor system for condition monitoring of large scale wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kim, Dae-gil; Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-01

    A hybrid fiber-optic sensor system which combines fiber Bragg grating (FBG) sensors and a Michelson interferometer is suggested for condition monitoring uses of large scale wind turbine blades. The system uses single broadband light source to address both sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light for the Michelson interferometer demodulation. For the feasibility test, different profiles of test strain, temperature and vibration have been applied to test structures, and successfully reconstructed with the proposed sensor system.

  3. ASSESSMENT OF CABLE AGING USING CONDITION MONITORING TECHNIQUES

    SciTech Connect

    GROVE,E.; LOFARO,R.; SOO,P.; VILLARAN,M.; HSU,F.

    2000-04-06

    Electric cables in nuclear power plants suffer degradation during service as a result of the thermal and radiation environments in which they are installed. Instrumentation and control cables are one type of cable that provide an important role in reactor safety. Should the polymeric cable insulation material become embrittled and cracked during service, or during a loss-of-coolant-accident (LOCA) and when steam and high radiation conditions are anticipated, failure could occur and prevent the cables from fulfilling their intended safety function(s). A research program is being conducted at Brookhaven National Laboratory to evaluate condition monitoring (CM) techniques for estimating the amount of cable degradation experienced during in-plant service. The objectives of this program are to assess the ability of the cables to perform under a simulated LOCA without losing their ability to function effectively, and to identify CM techniques which may be used to determine the effective lifetime of cables. The cable insulation materials tested include ethylene propylene rubber (EPR) and cross-linked polyethylene (XLPE). Accelerated aging (thermal and radiation) to the equivalent of 40 years of service was performed, followed by exposure to simulated LOCA conditions. The effectiveness of chemical, electrical, and mechanical condition monitoring techniques are being evaluated. Results indicate that several of these methods can detect changes in material parameters with increasing age. However, each has its limitations, and a combination of methods may provide an effective means for trending cable degradation in order to assess the remaining life of cables.

  4. Induction machine condition monitoring using notch-filtered motor current

    NASA Astrophysics Data System (ADS)

    Günal, Serkan; Gökhan Ece, Dog˜an; Nezih Gerek, Ömer

    2009-11-01

    This paper presents a new approach to induction motor condition monitoring using notch-filtered motor current signature analysis (NFMCSA). Unlike most of the previous work utilizing motor current signature analysis (MCSA) using spectral methods to extract required features for detecting motor fault conditions, here NFMCSA is performed in time-domain to extract features of energy, sample extrema, and third and fourth cumulants evaluated from data within sliding time window. Six identical three-phase induction motors were used for the experimental verification of the proposed method. One healthy machine was used as a reference, while other five with different synthetic faults were used for condition detection and classification. Extracted features obtained from NFMCSA of all motors were employed in three different and popular classifiers. The proposed motor current analysis and the performance of the features used for fault detection and classification are examined at various motor load levels and it is shown that a successful induction motor condition monitoring system is developed. Developed system is also able to indicate the load level and the type of a fault in multi-dimensional feature space representation. In order to test the generality and applicability of the developed method to other induction motors, data acquired from another healthy induction motor with different number of poles and rated power is also incorporated into the system. In spite of the above difference, the proposed feature set successfully locates the healthy motor within the classification cluster of "healthy motors" on the feature space.

  5. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  6. Factorial switching linear dynamical systems applied to physiological condition monitoring.

    PubMed

    Quinn, John A; Williams, Christopher K I; McIntosh, Neil

    2009-09-01

    Condition monitoring often involves the analysis of systems with hidden factors that switch between different modes of operation in some way. Given a sequence of observations, the task is to infer the filtering distribution of the switch setting at each time step. In this paper, we present factorial switching linear dynamical systems as a general framework for handling such problems. We show how domain knowledge and learning can be successfully combined in this framework, and introduce a new factor (the "X-factor") for dealing with unmodeled variation. We demonstrate the flexibility of this type of model by applying it to the problem of monitoring the condition of a premature baby receiving intensive care. The state of health of a baby cannot be observed directly, but different underlying factors are associated with particular patterns of physiological measurements and artifacts. We have explicit knowledge of common factors and use the X-factor to model novel patterns which are clinically significant but have unknown cause. Experimental results are given which show the developed methods to be effective on typical intensive care unit monitoring data.

  7. Remote monitoring as a tool in condition assessment of a highway bridge

    NASA Astrophysics Data System (ADS)

    Tantele, Elia A.; Votsis, Renos A.; Onoufriou, Toula; Milis, Marios; Kareklas, George

    2016-08-01

    The deterioration of civil infrastructure and their subsequent maintenance is a significant problem for the responsible managing authorities. The ideal scenario is to detect deterioration and/or structural problems at early stages so that the maintenance cost is kept low and the safety of the infrastructure remains undisputed. The current inspection regimes implemented mostly via visual inspection are planned at specific intervals but are not always executed on time due to shortcomings in expert personnel and finance. However the introduction of technological advances in the assessment of infrastructures provides the tools to alleviate this problem. This study describes the assessment of a highway RC bridge's structural condition using remote structural health monitoring. A monitoring plan is implemented focusing on strain measurements; as strain is a parameter influenced by the environmental conditions supplementary data are provided from temperature and wind sensors. The data are acquired using wired sensors (deployed at specific locations) which are connected to a wireless sensor unit installed at the bridge. This WSN application enables the transmission of the raw data from the field to the office for processing and evaluation. The processed data are then used to assess the condition of the bridge. This case study, which is part of an undergoing RPF research project, illustrates that remote monitoring can alleviate the problem of missing structural inspections. Additionally, shows its potential to be the main part of a fully automated smart procedure of obtaining structural data, processed them and trigger an alarm when certain undesirable conditions are met.

  8. An overview of wireless structural health monitoring for civil structures.

    PubMed

    Lynch, Jerome Peter

    2007-02-15

    Wireless monitoring has emerged in recent years as a promising technology that could greatly impact the field of structural monitoring and infrastructure asset management. This paper is a summary of research efforts that have resulted in the design of numerous wireless sensing unit prototypes explicitly intended for implementation in civil structures. Wireless sensing units integrate wireless communications and mobile computing with sensors to deliver a relatively inexpensive sensor platform. A key design feature of wireless sensing units is the collocation of computational power and sensors; the tight integration of computing with a wireless sensing unit provides sensors with the opportunity to self-interrogate measurement data. In particular, there is strong interest in using wireless sensing units to build structural health monitoring systems that interrogate structural data for signs of damage. After the hardware and the software designs of wireless sensing units are completed, the Alamosa Canyon Bridge in New Mexico is utilized to validate their accuracy and reliability. To improve the ability of low-cost wireless sensing units to detect the onset of structural damage, the wireless sensing unit paradigm is extended to include the capability to command actuators and active sensors.

  9. Wireless Applications for Structural Monitoring of Inflatable Habitats

    NASA Technical Reports Server (NTRS)

    Miller, Glenn J.

    2007-01-01

    A viewgraph presentation on wireless applications for structural health monitoring of inflatable space structures is shown. The topics include: 1) Background; 2) REquirements; 3) Implementation; and 4) strucutral health monitoring system summary.

  10. Adaptive parameter blind source separation technique for wheel condition monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Gao, Hongli; Liu, Qiyue; Farzadpour, F.; Grebe, C.; Tian, Ying

    2017-06-01

    Wheel condition monitoring has played a key role in the safe operation of railway vehicles. Blind source separation (BSS) is an attractive tool due to its excellent performance in separating source signals from their mixtures when no detailed knowledge of defective sources and the mixing process is assumed. In this paper, we propose an adaptive parameter BSS approach based on the adaptive time-frequency distributions theory in order to deal with the non-stationary blind separation problem and apply it to wheel defect monitoring. Some classical time-frequency signal analysis and BSS methods are applied in comparison with the proposed approach through frequency-varying non-stationary and time-varying non-stationary simulations. Experiments of single and multi-fault wheels have been conducted using the wheel/rail simulation facility to illustrate the effectiveness of the proposed method in processing the non-stationary signals with varying fault complexity.

  11. Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis

    SciTech Connect

    Sheng, S.

    2012-07-01

    The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.

  12. Condition monitoring of machinery using motor current signature analysis

    SciTech Connect

    Haynes, H.D.; Kryter, R.C.

    1989-01-01

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting changes in process conditions or the presence of mechanical abnormalities. It was recently developed at the Oak Ridge National Laboratory (ORNL) as a means for determining the effects of service wear on motor-operated valves used in nuclear power plant safety systems. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer, sensing both large and small, long-term and rapid, mechanical load variation and converting them into variations in the induced current generated in the motor windings. The motor current signature, which is carried by the motor power cables, can be extracted at a convenient location and processed as needed to obtain time- and frequency-domain (spectral) characteristics which provide equipment condition indicators for trending over time. MCSA technology (patent applied for) has already been applied successfully to motor-operated valves, vacuum pumps, water pumps, air blowers and air conditioning systems, and examples of such application will be presented. The applicability of MCSA to a broader range of equipment monitoring and production line testing is also discussed. 1 ref., 8 figs.

  13. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, the International Space Station, Uninhabited Aerial Vehicles, and Expendable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  14. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  15. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the

  16. Structural health monitoring system/method using electroactive polymer fibers

    NASA Technical Reports Server (NTRS)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  17. Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study

    PubMed Central

    Albarbar, Alhussein; Mekid, Samir; Starr, Andrew; Pietruszkiewicz, Robert

    2008-01-01

    With increasing demands for wireless sensing nodes for assets control and condition monitoring; needs for alternatives to expensive conventional accelerometers in vibration measurements have been arisen. Micro-Electro Mechanical Systems (MEMS) accelerometer is one of the available options. The performances of three of the MEMS accelerometers from different manufacturers are investigated in this paper and compared to a well calibrated commercial accelerometer used as a reference for MEMS sensors performance evaluation. Tests were performed on a real CNC machine in a typical industrial environmental workshop and the achieved results are presented. PMID:27879734

  18. Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study.

    PubMed

    Albarbar, Alhussein; Mekid, Samir; Starr, Andrew; Pietruszkiewicz, Robert

    2008-02-06

    With increasing demands for wireless sensing nodes for assets control and condition monitoring; needs for alternatives to expensive conventional accelerometers in vibration measurements have been arisen. Micro-Electro Mechanical Systems (MEMS) accelerometer is one of the available options. The performances of three of the MEMS accelerometers from different manufacturers are investigated in this paper and compared to a well calibrated commercial accelerometer used as a reference for MEMS sensors performance evaluation. Tests were performed on a real CNC machine in a typical industrial environmental workshop and the achieved results are presented.

  19. Reduction of Doppler effect for the needs of wayside condition monitoring system of railway vehicles

    NASA Astrophysics Data System (ADS)

    Dybała, Jacek; Radkowski, Stanisław

    2013-07-01

    Technology of acoustic condition monitoring of vehicles in motion is based on the assumption that diagnostically relevant information is stored in the acoustic signal generated by a passing vehicle. Analyzing the possibilities of increasing the effectiveness of condition monitoring of a passing vehicle with stationary microphones, it should be noted that the acoustic signal recorded in these conditions is disturbed with the disturbance resulting from the Doppler effect. Reduction of signal's frequential structure disturbance resulting from the Doppler effect allows efficient analysis of changes in frequential structure of recorded signals and as a result extraction of relevant diagnostic information related with technical condition of running gear of vehicle. This article presents a method for removal of signal's frequential structure disturbances related with relative move of vehicles and stationary monitoring station. For elimination of the frequential non-stationary of signals disturbance-oriented dynamic signal resampling method was used. The paper provides a test of two methods for defining the time course of local disturbance of signal's frequential structure: the method based on the Hilbert transform and the method of analytical description of signal's disturbance based on the knowledge of a phenomenon that causes frequential non-stationarity of signals. As an example, the results of the processing and analysis of acoustic signals recorded by wayside measuring station, during the passage of WM-15A railway vehicle on an experimental track of Polish Railway Institute, are presented.

  20. Structural Health Monitoring of AN Aircraft Joint

    NASA Astrophysics Data System (ADS)

    Mickens, T.; Schulz, M.; Sundaresan, M.; Ghoshal, A.; Naser, A. S.; Reichmeider, R.

    2003-03-01

    A major concern with ageing aircraft is the deterioration of structural components in the form of fatigue cracks at fastener holes, loose rivets and debonding of joints. These faults in conjunction with corrosion can lead to multiple-site damage and pose a hazard to flight. Developing a simple vibration-based method of damage detection for monitoring ageing structures is considered in this paper. The method is intended to detect damage during operation of the vehicle before the damage can propagate and cause catastrophic failure of aircraft components. It is typical that only a limited number of sensors could be used on the structure and damage can occur anywhere on the surface or inside the structure. The research performed was to investigate use of the chirp vibration responses of an aircraft wing tip to detect, locate and approximately quantify damage. The technique uses four piezoelectric patches alternatively as actuators and sensors to send and receive vibration diagnostic signals.Loosening of selected screws simulated damage to the wing tip. The results obtained from the testing led to the concept of a sensor tape to detect damage at joints in an aircraft structure.

  1. The ATLAS Beam Condition and Beam Loss Monitors

    NASA Astrophysics Data System (ADS)

    Dolenc, I.

    2010-04-01

    The primary goal of ATLAS Beam Condition Monitor (BCM) and Beam Loss Monitor (BLM) is to protect the ATLAS Inner Detector against damaging LHC beam incidents by initiating beam abort in case of beam failures. Poly-crystalline Chemical Vapour Deposition (pCVD) diamond was chosen as the sensor material for both systems. ATLAS BCM will provide real-time monitoring of instantaneous particle rates close to the interaction point (IP) of ATLAS spectrometer. Using fast front-end and signal processing electronics the time-of-flight and pulse amplitude measurements will be performed to distinguish between normal collisions and background events due to natural or accidental beam losses. Additionally, BCM will also provide coarse relative luminosity information. A second system, the ATLAS BLM, is an independent system which was recently added to complement the BCM. It is a current measuring system and was partially adopted from the BLM system developed by the LHC beam instrumentation group with pCVD diamond pad sensors replacing the ionisation chambers. The design of both systems and results of operation in ATLAS framework during the commissioning with cosmic rays will be reported in this contribution.

  2. Thermographic monitoring of materials under simulated reentry conditions

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Burleigh, Douglas

    1991-01-01

    Thermography can be used to measure surface temperature gradients graphically, and can be used under conditions where the direct measurement of temperature at all desired points, using thermocouples or resistance temperature detectors (RTDs), is either difficult or impossible. The use of thermographic monitoring during a series of arc-jet tests is described. Described in this work are the issues that influence interpretation of the thermographic measurements under these conditions, including the calculation of effective emittance and window transmittance from the spectral properties of the materials in order to calculate the temperature distribution of a surface directly from the measured radiance. Comparison of the surface temperatures measured using thermocouples and the temperatures derived from thermographic measurements show good agreement. The data gathered will be used to evaluate important test parameters such as the heating distribution across the surface of a heat shield test model and at steps on the model surface.

  3. Thermal sensitivity of Lamb waves for structural health monitoring applications.

    PubMed

    Dodson, J C; Inman, D J

    2013-03-01

    One of the drawbacks of the current Lamb wave structural health monitoring methods are the false positives due to changing environmental conditions such as temperature. To create an environmental insensitive damage detection scheme, the physics of thermal effects on Lamb waves must be understood. Dispersion and thermal sensitivity curves for an isotropic plate with thermal stress and thermally varying elastic modulus are presented. The thermal sensitivity of dispersion curves is analytically developed and validated by experimental measurements. The group velocity thermal sensitivity highlights temperature insensitive features at two critical frequencies. The thermal sensitivity gives us insight to how temperature affects Lamb wave speeds in different frequency ranges and will help those developing structural health monitoring algorithms.

  4. New Fast Beam Conditions Monitoring (BCM1F) system for CMS

    NASA Astrophysics Data System (ADS)

    Zagozdzinska, A. A.; Bell, A. J.; Dabrowski, A. E.; Hempel, M.; Henschel, H. M.; Karacheban, O.; Przyborowski, D.; Leonard, J. L.; Penno, M.; Pozniak, K. T.; Miraglia, M.; Lange, W.; Lohmann, W.; Ryjov, V.; Lokhovitskiy, A.; Stickland, D.; Walsh, R.

    2016-01-01

    The CMS Beam Radiation Instrumentation and Luminosity (BRIL) project is composed of several systems providing the experiment protection from adverse beam conditions while also measuring the online luminosity and beam background. Although the readout bandwidth of the Fast Beam Conditions Monitoring system (BCM1F—one of the faster monitoring systems of the CMS BRIL), was sufficient for the initial LHC conditions, the foreseen enhancement of the beams parameters after the LHC Long Shutdown-1 (LS1) imposed the upgrade of the system. This paper presents the new BCM1F, which is designed to provide real-time fast diagnosis of beam conditions and instantaneous luminosity with readout able to resolve the 25 ns bunch structure.

  5. Condition monitoring of machinery using motor current signature analysis

    NASA Astrophysics Data System (ADS)

    Kryter, R. C.; Haynes, H. D.

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process downstream of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given.

  6. Application of TRIZ approach to machine vibration condition monitoring problems

    NASA Astrophysics Data System (ADS)

    Cempel, Czesław

    2013-12-01

    Up to now machine condition monitoring has not been seriously approached by TRIZ1TRIZ= Russian acronym for Inventive Problem Solving System, created by G. Altshuller ca 50 years ago. users, and the knowledge of TRIZ methodology has not been applied there intensively. However, there are some introductory papers of present author posted on Diagnostic Congress in Cracow (Cempel, in press [11]), and Diagnostyka Journal as well. But it seems to be further need to make such approach from different sides in order to see, if some new knowledge and technology will emerge. In doing this we need at first to define the ideal final result (IFR) of our innovation problem. As a next we need a set of parameters to describe the problems of system condition monitoring (CM) in terms of TRIZ language and set of inventive principles possible to apply, on the way to IFR. This means we should present the machine CM problem by means of contradiction and contradiction matrix. When specifying the problem parameters and inventive principles, one should use analogy and metaphorical thinking, which by definition is not exact but fuzzy, and leads sometimes to unexpected results and outcomes. The paper undertakes this important problem again and brings some new insight into system and machine CM problems. This may mean for example the minimal dimensionality of TRIZ engineering parameter set for the description of machine CM problems, and the set of most useful inventive principles applied to given engineering parameter and contradictions of TRIZ.

  7. Condition monitoring of machinery using motor current signature analysis

    SciTech Connect

    Kryter, R.C.; Haynes, H.D.

    1989-01-01

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process ''downstream'' of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given. 1 ref., 13 figs.

  8. VegScape: U.S. Crop Condition Monitoring Service

    NASA Astrophysics Data System (ADS)

    mueller, R.; Yang, Z.; Di, L.

    2013-12-01

    Since 1995, the US Department of Agriculture (USDA)/National Agricultural Statistics Service (NASS) has provided qualitative biweekly vegetation condition indices to USDA policymakers and the public on a weekly basis during the growing season. Vegetation indices have proven useful for assessing crop condition and identifying the areal extent of floods, drought, major weather anomalies, and vulnerabilities of early/late season crops. With growing emphasis on more extreme weather events and food security issues rising to the forefront of national interest, a new vegetation condition monitoring system was developed. The new vegetation condition portal named VegScape was initiated at the start of the 2013 growing season. VegScape delivers web mapping service based interactive vegetation indices. Users can use an interactive map to explore, query and disseminate current crop conditions. Vegetation indices like Normal Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and mean, median, and ratio comparisons to prior years can be constructed for analytical purposes and on-demand crop statistics. The NASA MODIS satellite with 250 meter (15 acres) resolution and thirteen years of data history provides improved spatial and temporal resolutions and delivers improved detailed timely (i.e., daily) crop specific condition and dynamics. VegScape thus provides supplemental information to support NASS' weekly crop reports. VegScape delivers an agricultural cultivated crop mask and the most recent Cropland Data Layer (CDL) product to exploit the agricultural domain and visualize prior years' planted crops. Additionally, the data can be directly exported to Google Earth for web mashups or delivered via web mapping services for uses in other applications. VegScape supports the ethos of data democracy by providing free and open access to digital geospatial data layers using open geospatial standards, thereby supporting transparent and collaborative government

  9. SSME Condition Monitoring Using Neural Networks and Plume Spectral Signatures

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall; Benzing, Daniel

    1996-01-01

    For a variety of reasons, condition monitoring of the Space Shuttle Main Engine (SSME) has become an important concern for both ground tests and in-flight operation. The complexities of the SSME suggest that active, real-time condition monitoring should be performed to avoid large-scale or catastrophic failure of the engine. In 1986, the SSME became the subject of a plume emission spectroscopy project at NASA's Marshall Space Flight Center (MSFC). Since then, plume emission spectroscopy has recorded many nominal tests and the qualitative spectral features of the SSME plume are now well established. Significant discoveries made with both wide-band and narrow-band plume emission spectroscopy systems led MSFC to develop the Optical Plume Anomaly Detection (OPAD) system. The OPAD system is designed to provide condition monitoring of the SSME during ground-level testing. The operational health of the engine is achieved through the acquisition of spectrally resolved plume emissions and the subsequent identification of abnormal emission levels in the plume indicative of engine erosion or component failure. Eventually, OPAD, or a derivative of the technology, could find its way on to an actual space vehicle and provide in-flight engine condition monitoring. This technology step, however, will require miniaturized hardware capable of processing plume spectral data in real-time. An objective of OPAD condition monitoring is to determine how much of an element is present in the SSME plume. The basic premise is that by knowing the element and its concentration, this could be related back to the health of components within the engine. For example, an abnormal amount of silver in the plume might signify increased wear or deterioration of a particular bearing in the engine. Once an anomaly is identified, the engine could be shut down before catastrophic failure occurs. Currently, element concentrations in the plume are determined iteratively with the help of a non-linear computer

  10. Structural changes and relaxations monitored by luminescence.

    PubMed

    Wang, Y; Yang, B; Townsend, P D

    2013-01-01

    Luminescence data have often been used to study imperfections and to characterize lattice distortions because the signals are sensitive to changes of structure and composition. Previous studies have included intentionally added probe ions such as rare earth ions to sense distortions in local crystal fields caused by modified structural environments. An under-exploited extension of this approach was to use luminescence to monitor crystalline phase changes. A current overview of this new and powerful technique shows that continuous scanning of the sample temperatures immediately offered at least three types of signatures for phase transitions. Because of high sensitivity, luminescence signals were equally responsive to structural changes from inclusions and nanoparticles. These coupled to the host material via long-range interactions and modified the host signals. Two frequently observed examples that are normally overlooked are from nanoparticle inclusions of water and CO2. Examples also indicated that phase transitions were detected in more diverse materials such as superconductors and fullerenes. Finally, luminescence studies have shown that in some crystalline examples, high dose ion implantation of surface layers could induce relaxations and/or structural changes of the entire underlying bulk material. This was an unexpected result and therefore such a possibility has not previously been explored. However, the implications for ion implication are significant and could be far more general than the examples mentioned here.

  11. Large-scale structural monitoring systems

    NASA Astrophysics Data System (ADS)

    Solomon, Ian; Cunnane, James; Stevenson, Paul

    2000-06-01

    Extensive structural health instrumentation systems have been installed on three long-span cable-supported bridges in Hong Kong. The quantities measured include environment and applied loads (such as wind, temperature, seismic and traffic loads) and the bridge response to these loadings (accelerations, displacements, and strains). Measurements from over 1000 individual sensors are transmitted to central computing facilities via local data acquisition stations and a fault- tolerant fiber-optic network, and are acquired and processed continuously. The data from the systems is used to provide information on structural load and response characteristics, comparison with design, optimization of inspection, and assurance of continued bridge health. Automated data processing and analysis provides information on important structural and operational parameters. Abnormal events are noted and logged automatically. Information of interest is automatically archived for post-processing. Novel aspects of the instrumentation system include a fluid-based high-accuracy long-span Level Sensing System to measure bridge deck profile and tower settlement. This paper provides an outline of the design and implementation of the instrumentation system. A description of the design and implementation of the data acquisition and processing procedures is also given. Examples of the use of similar systems in monitoring other large structures are discussed.

  12. Wireless Condition Monitoring and Maintenance for Rooftop Packaged Heating, Ventilation, and Air-Conditioning

    SciTech Connect

    Katipamula, Srinivas; Brambley, Michael R.

    2004-06-01

    Rooftop package air-conditioning and heat pumps, while representing over half of U.S. commercial-building cooling energy consumption, are some of the most neglected of building systems. They are often found with inoperable dampers, dirty/clogged filters and coils, incorrect refrigerant charges, failing compressors, failed fans, missing enclosure panels, un-calibrated controls, failed sensors, and other problems. Frequently, actual operating hours deviate considerably from intended (and assumed) schedules. Although there are no reliable estimates on what fraction of the units operate under degraded conditions and the energy inefficiencies associated with such operations, a range of savings from 10 to 30% are generally believed to be achievable by enhancing operation of these units. Potential national energy savings from proper operation range from 23 to 70 trillion Btus annually in the U.S. Since the cost associated with conventional monitoring and servicing is quite high, conventional monitoring is seldom done. Combinations of wireless sensing and data acquisition, monitoring tools, automated diagnostics and prognostics show considerable promise to help remedy this maintenance problem for package HVAC units and the underserved small commercial building sector in which they are predominantly installed. This paper characterizes the current problem with maintenance of packaged air conditioners and heat pumps, provides estimates of the total energy impacts of the problem, and describes a generic system in which these developing technologies are used to provide real-time condition monitoring for package HVAC units and their components. Costs with today's technology are provided and future costs are estimated, showing that benefits will greatly exceed costs in many cases particularly if low-cost wireless monitoring is used.

  13. Receptance-based structural health monitoring approach for bridge structures

    NASA Astrophysics Data System (ADS)

    Jang, S. A.; Spencer, B. F., Jr.

    2009-03-01

    A number of structural health monitoring strategies have been proposed recently that can be implemented in smart sensor networks. Many are based on changes in the experimentally determined flexibility matrix for the structure under consideration. However, the flexibility matrix contains only static information; much richer information is potentially available by considering the dynamic flexibility, or receptance, of the structure. Recently, the stochastic dynamic DLV method was proposed based on the changes in the dynamic flexibility matrix employing centrally collected output-only measurements. This paper extends the stochastic dynamic DLV method so that it can be implemented on a decentralized network of smart sensors. New damage indices are derived that provide robustness estimates of damage location. The smart sensor network is emulated with wired sensors to demonstrate the potential of the proposed method. The efficacy of the proposed approach is demonstrated experimentally using a model truss structure.

  14. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    PubMed Central

    Li, Yong; Wang, Xiufeng; Lin, Jing; Shi, Shengyu

    2014-01-01

    The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM) has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features. PMID:24473281

  15. A wavelet bicoherence-based quadratic nonlinearity feature for translational axis condition monitoring.

    PubMed

    Li, Yong; Wang, Xiufeng; Lin, Jing; Shi, Shengyu

    2014-01-27

    The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM) has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features.

  16. Automated System Of Monitoring Of The Physical Condition Of The Staff Of The Enterprise

    NASA Astrophysics Data System (ADS)

    Pilipenko, A.

    2017-01-01

    In the work the author solves an important applied problem of increasing of safety of engineering procedures and production using technologies of monitoring of a condition of employees. The author offers a work algorithm, structural and basic electric schemes of system of collection of data of employee’s condition of the enterprise and some parameters of the surrounding environment. In the article the author offers an approach to increasing of efficiency of acceptance of management decisions at the enterprise at the expense of the prompt analysis of information about employee’s condition and productivity of his work and also about various parameters influencing these factors.

  17. Structural health monitoring algorithm comparisons using standard data sets

    SciTech Connect

    Figueiredo, Eloi; Park, Gyuhae; Figueiras, Joaquim; Farrar, Charles; Worden, Keith

    2009-03-01

    The real-world structures are subjected to operational and environmental condition changes that impose difficulties in detecting and identifying structural damage. The aim of this report is to detect damage with the presence of such operational and environmental condition changes through the application of the Los Alamos National Laboratory’s statistical pattern recognition paradigm for structural health monitoring (SHM). The test structure is a laboratory three-story building, and the damage is simulated through nonlinear effects introduced by a bumper mechanism that simulates a repetitive impact-type nonlinearity. The report reviews and illustrates various statistical principles that have had wide application in many engineering fields. The intent is to provide the reader with an introduction to feature extraction and statistical modelling for feature classification in the context of SHM. In this process, the strengths and limitations of some actual statistical techniques used to detect damage in the structures are discussed. In the hierarchical structure of damage detection, this report is only concerned with the first step of the damage detection strategy, which is the evaluation of the existence of damage in the structure. The data from this study and a detailed description of the test structure are available for download at: http://institute.lanl.gov/ei/software-and-data/.

  18. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    SciTech Connect

    Mahadevan, Sankaran; Agarwal, Vivek; Cai, Guowei; Nath, Paromita; Bao, Yanqing; Bru Brea, Jose Maria; Koester, David; Adams, Douglas; Kosson, David

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  19. Aircraft fiber optic structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih

    2012-06-01

    Structural Health Monitoring (SHM) is a sought after concept that is expected to advance military maintenance programs, increase platform operational safety and reduce its life cycle cost. Such concept is further considered to constitute a major building block of any Integrated Health Management (IHM) capability. Since 65% to 80% of military assets' Life Cycle Cost (LCC) is devoted to operations and support (O&S), the aerospace industry and military sectors continue to look for opportunities to exploit SHM systems, capability and tools. Over the past several years, countless SHM concepts and technologies have emerged. Among those, fiber optic based systems were identified of significant potential. This paper introduces the elements of an SHM system and investigates key issues impeding the commercial implementation of fiber optic based SHM capability. In particular, this paper presents an experimental study of short gauge, intrinsic, spectrometric-based in-fiber Bragg grating sensors, for potential use as a component of an SHM system. Fiber optic Bragg grating sensors are evaluated against resistance strain gauges for strain monitoring, sensitivity, accuracy, reliability, and fatigue durability. Strain field disturbance is also investigated by "embedding" the sensors under a photoelastic coating in order to illustrate sensor intrusiveness in an embedded configuration.

  20. Structural health monitoring of civil infrastructure.

    PubMed

    Brownjohn, J M W

    2007-02-15

    Structural health monitoring (SHM) is a term increasingly used in the last decade to describe a range of systems implemented on full-scale civil infrastructures and whose purposes are to assist and inform operators about continued 'fitness for purpose' of structures under gradual or sudden changes to their state, to learn about either or both of the load and response mechanisms. Arguably, various forms of SHM have been employed in civil infrastructure for at least half a century, but it is only in the last decade or two that computer-based systems are being designed for the purpose of assisting owners/operators of ageing infrastructure with timely information for their continued safe and economic operation. This paper describes the motivations for and recent history of SHM applications to various forms of civil infrastructure and provides case studies on specific types of structure. It ends with a discussion of the present state-of-the-art and future developments in terms of instrumentation, data acquisition, communication systems and data mining and presentation procedures for diagnosis of infrastructural 'health'.

  1. Information processing for aerospace structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, Peter F.; White, Edward V.; Baumann, Erwin W.

    1998-06-01

    Structural health monitoring (SHM) technology provides a means to significantly reduce life cycle of aerospace vehicles by eliminating unnecessary inspections, minimizing inspection complexity, and providing accurate diagnostics and prognostics to support vehicle life extension. In order to accomplish this, a comprehensive SHM system will need to acquire data from a wide variety of diverse sensors including strain gages, accelerometers, acoustic emission sensors, crack growth gages, corrosion sensors, and piezoelectric transducers. Significant amounts of computer processing will then be required to convert this raw sensor data into meaningful information which indicates both the diagnostics of the current structural integrity as well as the prognostics necessary for planning and managing the future health of the structure in a cost effective manner. This paper provides a description of the key types of information processing technologies required in an effective SHM system. These include artificial intelligence techniques such as neural networks, expert systems, and fuzzy logic for nonlinear modeling, pattern recognition, and complex decision making; signal processing techniques such as Fourier and wavelet transforms for spectral analysis and feature extraction; statistical algorithms for optimal detection, estimation, prediction, and fusion; and a wide variety of other algorithms for data analysis and visualization. The intent of this paper is to provide an overview of the role of information processing for SHM, discuss various technologies which can contribute to accomplishing this role, and present some example applications of information processing for SHM implemented at the Boeing Company.

  2. Enhanced Composites Integrity Through Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Soutis, Constantinos

    2012-10-01

    This paper discusses the topic of how the integrity of safety-critical structural composites can be enhanced by the use of structural health monitoring (SHM) techniques. The paper starts with a presentation of how the certification of flight-critical composite structures can be achieved within the framework of civil aviation safety authority requirements. Typical composites damage mechanisms, which make this process substantially different from that for metallic materials are discussed. The opportunities presented by the use of SHM techniques in future civil aircraft developments are explained. The paper then focuses on active SHM with piezoelectric wafer active sensors (PWAS). After reviewing the PWAS-based SHM options, the paper follows with a discussion of the specifics of guided wave propagation in composites and PWAS-tuning effects. The paper presents a number of experimental results for damage detection in simple flat unidirectional and quasi-isotropic composite specimens. Calibrated through holes of increasing diameter and impact damage of various energies and velocities are considered. The paper ends with conclusions and suggestions for further work.

  3. Condition Based Monitoring of Gas Turbine Combustion Components

    SciTech Connect

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

    2012-09-30

    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  4. FOREWORD: Structural Health Monitoring and Intelligent Infrastructure

    NASA Astrophysics Data System (ADS)

    Wu, Zhishen; Fujino, Yozo

    2005-06-01

    This special issue collects together 19 papers that were originally presented at the First International Conference on Structural Health Monitoring and Intelligent Infrastructure (SHMII-1'2003), held in Tokyo, Japan, on 13-15 November 2003. This conference was organized by the Japan Society of Civil Engineers (JSCE) with partial financial support from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sport, Science and Technology, Japan. Many related organizations supported the conference. A total of 16 keynote papers including six state-of-the-art reports from different counties, six invited papers and 154 contributed papers were presented at the conference. The conference was attended by a diverse group of about 300 people from a variety of disciplines in academia, industry and government from all over the world. Structural health monitoring (SHM) and intelligent materials, structures and systems have been the subject of intense research and development in the last two decades and, in recent years, an increasing range of applications in infrastructure have been discovered both for existing structures and for new constructions. SHMII-1'2003 addressed progress in the development of building, transportation, marine, underground and energy-generating structures, and other civilian infrastructures that are periodically, continuously and/or actively monitored where there is a need to optimize their performance. In order to focus the current needs on SHM and intelligent technologies, the conference theme was set as 'Structures/Infrastructures Sustainability'. We are pleased to have the privilege to edit this special issue on SHM and intelligent infrastructure based on SHMII-1'2003. We invited some of the presenters to submit a revised/extended version of their paper that was included in the SHMII-1'2003 proceedings for possible publication in the special issue. Each paper included in this special issue was edited with the same

  5. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    NASA Astrophysics Data System (ADS)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  6. Structural Health Monitoring of Frame Structures Using Piezo-Transducer

    NASA Astrophysics Data System (ADS)

    Shanker, R.; Bhalla, S.; Gupta, A.

    2008-07-01

    Monitoring of civil structures is crucial for their proper functioning. Any crack in a structure changes its static and dynamic behaviours. To detect the damage/crack at the initiating time itself is challenging task in modern time. This paper describes an experimental study to extract the dynamic characteristics of a frame structure using piezo-electric ceramic (PZT) transducers. Tests are conducted on steel frame to extract the natural frequencies and the experimental mode shapes. Free vibration response is first acquired in the time domain and then transformed into frequency domain using Fast Fourier Transforms (FFT) analyser. Only single PZT patch is sufficient to extract the first nine modes shape of the steel frame .By using numerical model, mode shapes are extracted corresponding to each identified natural frequency. After determining natural frequencies and experimental mode shape, damages can be located by method of Naidu and Soh (2004). This approach can be used for damage/crack detection at very earlier stage.

  7. New methods for the condition monitoring of level crossings

    NASA Astrophysics Data System (ADS)

    García Márquez, Fausto Pedro; Pedregal, Diego J.; Roberts, Clive

    2015-04-01

    Level crossings represent a high risk for railway systems. This paper demonstrates the potential to improve maintenance management through the use of intelligent condition monitoring coupled with reliability centred maintenance (RCM). RCM combines advanced electronics, control, computing and communication technologies to address the multiple objectives of cost effectiveness, improved quality, reliability and services. RCM collects digital and analogue signals utilising distributed transducers connected to either point-to-point or digital bus communication links. Assets in many industries use data logging capable of providing post-failure diagnostic support, but to date little use has been made of combined qualitative and quantitative fault detection techniques. The research takes the hydraulic railway level crossing barrier (LCB) system as a case study and develops a generic strategy for failure analysis, data acquisition and incipient fault detection. For each barrier the hydraulic characteristics, the motor's current and voltage, hydraulic pressure and the barrier's position are acquired. In order to acquire the data at a central point efficiently, without errors, a distributed single-cable Fieldbus is utilised. This allows the connection of all sensors through the project's proprietary communication nodes to a high-speed bus. The system developed in this paper for the condition monitoring described above detects faults by means of comparing what can be considered a 'normal' or 'expected' shape of a signal with respect to the actual shape observed as new data become available. ARIMA (autoregressive integrated moving average) models were employed for detecting faults. The statistical tests known as Jarque-Bera and Ljung-Box have been considered for testing the model.

  8. Condition monitoring of gearboxes using synchronously averaged electric motor signals

    NASA Astrophysics Data System (ADS)

    Ottewill, J. R.; Orkisz, M.

    2013-07-01

    Due to their prevalence in rotating machinery, the condition monitoring of gearboxes is extremely important in the minimization of potentially dangerous and expensive failures. Traditionally, gearbox condition monitoring has been conducted using measurements obtained from casing-mounted vibration transducers such as accelerometers. A well-established technique for analyzing such signals is the synchronous signal average, where vibration signals are synchronized to a measured angular position and then averaged from rotation to rotation. Driven, in part, by improvements in control methodologies based upon methods of estimating rotor speed and torque, induction machines are used increasingly in industry to drive rotating machinery. As a result, attempts have been made to diagnose defects using measured terminal currents and voltages. In this paper, the application of the synchronous signal averaging methodology to electric drive signals, by synchronizing stator current signals with a shaft position estimated from current and voltage measurements is proposed. Initially, a test-rig is introduced based on an induction motor driving a two-stage reduction gearbox which is loaded by a DC motor. It is shown that a defect seeded into the gearbox may be located using signals acquired from casing-mounted accelerometers and shaft mounted encoders. Using simple models of an induction motor and a gearbox, it is shown that it should be possible to observe gearbox defects in the measured stator current signal. A robust method of extracting the average speed of a machine from the current frequency spectrum, based on the location of sidebands of the power supply frequency due to rotor eccentricity, is presented. The synchronous signal averaging method is applied to the resulting estimations of rotor position and torsional vibration. Experimental results show that the method is extremely adept at locating gear tooth defects. Further results, considering different loads and different

  9. Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants

    SciTech Connect

    Meyer, Ryan M.; Bond, Leonard J.; Ramuhalli, Pradeep

    2012-03-31

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption for online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components.

  10. Dynamic time warping for temperature compensation in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Douglass, Alexander; Harley, Joel B.

    2017-02-01

    Guided wave structural health monitoring uses ultrasonic waves to identify changes in structures. To identify these changes, most guided wave methods require a pristine baseline measurement with which other measurements are compared. Damage signatures arise when there is a deviation between the baseline and the recorded measurement. However, temperature significantly complicates this analysis by creating misalignment between the baseline and measurements. This leads to false alarms of damage and significantly reduces the reliability of these systems. Several methods have been created to account for these temperature perturbations. Yet, most of these compensation methods fail in harsh, highly variable temperature conditions or require a prohibitive amount of prior data. In this paper, we use an algorithm known as dynamic time warping to compensate for temperature in these harsh conditions. We demonstrate that dynamic time warping is able to account for temperature variations whereas the more traditional baseline signal stretch method is unable to resolve damage under high temperature fluctuations.

  11. Quantitative structural health monitoring using acoustic emission

    NASA Astrophysics Data System (ADS)

    Wilcox, Paul D.; Lee, Chee Kin; Scholey, Jonathan J.; Friswell, Michael I.; Wisnom, Michael R.; Drinkwater, Bruce W.

    2006-03-01

    Acoustic emission (AE) testing is potentially a highly suitable technique for structural health monitoring (SHM) applications due to its ability to achieve high sensitivity from a sparse array of sensors. For AE to be deployed as part of an SHM system it is essential that its capability is understood. This is the motivation for developing a forward model, referred to as QAE-Forward, of the complete AE process in real structures which is described in the first part of this paper. QAE-Forward is based around a modular and expandable architecture of frequency domain transfer functions to describe various aspects of the AE process, such as AE signal generation, wave propagation and signal detection. The intention is to build additional functionality into QAE-Forward as further data becomes available, whether this is through new analytic tools, numerical models or experimental measurements. QAE-Forward currently contains functions that implement (1) the excitation of multimodal guided waves by arbitrarily orientated point sources, (2) multi-modal wave propagation through generally anisotropic multi-layered media, and (3) the detection of waves by circular transducers of finite size. Results from the current implementation of QAE-Forward are compared to experimental data obtained from Hsu-Neilson tests on aluminum plate and good agreement is obtained. The paper then describes an experimental technique and a finite element modeling technique to obtain quantitative AE data from fatigue crack growth that will feed into QAE-Forward.

  12. Noninvasive health condition monitoring device for workers at high altitudes conditions.

    PubMed

    Aqueveque, Pablo; Gutierrez, Cristopher; Saavedra, Francisco; Pino, Esteban J

    2016-08-01

    This work presents the design and implementation of a continuous monitoring device to control the health state of workers, for instance miners, at high altitudes. The extreme ambient conditions are harmful for peoples' health; therefore a continuous control of the workers' vital signs is necessary. The developed system includes physiological variables: electrocardiogram (ECG), respiratory activity and body temperature (BT), and ambient variables: ambient temperature (AT) and relative humidity (RH). The noninvasive sensors are incorporated in a t-shirt to deliver a functional device, and maximum comfort to the users. The device is able to continuously calculate heart rate (HR) and respiration rate (RR), and establish a wireless data transmission to a central monitoring station.

  13. A modern diagnostic approach for automobile systems condition monitoring

    NASA Astrophysics Data System (ADS)

    Selig, M.; Shi, Z.; Ball, A.; Schmidt, K.

    2012-05-01

    An important topic in automotive research and development is the area of active and passive safety systems. In general, it is grouped in active safety systems to prevent accidents and passive systems to reduce the impact of a crash. An example for an active system is ABS while a seat belt tensioner represents the group of passive systems. Current developments in the automotive industry try to link active with passive system components to enable a complete event sequence, beginning with the warning of the driver about a critical situation till the automatic emergency call after an accident. The cross-linking has an impact on the current diagnostic approach, which is described in this paper. Therefore, this contribution introduces a new diagnostic approach for automotive mechatronic systems. The concept is based on monitoring the messages which are exchanged via the automotive communication systems, e.g. the CAN bus. According to the authors' assumption, the messages on the bus are changing between faultless and faulty vehicle condition. The transmitted messages of the sensors and control units are different depending on the condition of the car. First experiments are carried and in addition, the hardware design of a suitable diagnostic interface is presented. Finally, first results will be presented and discussed.

  14. Fiber optic sensor reliability issues in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Xu, Zhihong; Bassam, Asadollah; Jia, Hongqiang; Tennant, Adam; Ansari, Farhad

    2005-05-01

    Reliability is an important aspect of any sensor, and especially in terms of long term monitoring of structures. Some issues pertaining to the reliability of optical fiber sensors in civil structures are discussed in this article. The strength and fatigue properties of optical fibers influence their performance, and life span. Lessons learnt from the reliability of optical fibers in the telecommunication industry are useful for assessment of reliability in optical fiber sensors. However, optical fiber sensors go through additional manufacturing steps, handling processes, and in general operate under environmental conditions and stress levels different from the telecommunication lines. In general, optical fiber sensors in structures are subjected to fatigue loading under high stresses. Other reliability concerns pertain to the effects of the packaging, installation issues at the construction site. These issues along with some of the results acquired from fatigue tests on fiber optic Bragg gratings and long gauge interferometric sensors are discussed in this article.

  15. Development of a wireless bridge monitoring system for condition assessment using hybrid techniques

    NASA Astrophysics Data System (ADS)

    Whelan, Matthew J.; Fuchs, Michael P.; Gangone, Michael V.; Janoyan, Kerop D.

    2007-04-01

    The introduction and development of wireless sensor network technology has resulted in rapid growth within the field of structural health monitoring (SHM), as the dramatic cable costs associated with instrumentation of large civil structures is potentially alleviated. Traditionally, condition assessment of bridge structures is accomplished through the use of either vibration measurements or strain sensing. One approach is through quantifying dynamic characteristics and mode shapes developed through the use of relatively dense arrays of accelerometers. Another widely utilized method of condition assessment is bridge load rating, which is enabled through the use of strain sensors. The Wireless Sensor Solution (WSS) developed specifically for diagnostic bridge monitoring provides a hybrid system that interfaces with both accelerometers and strain sensors to facilitate vibration-based bridge evaluation as well as load rating and static analysis on a universal platform. This paper presents the development and testing of a wireless bridge monitoring system designed within the Laboratory for Intelligent Infrastructure and Transportation Technologies (LIITT) at Clarkson University. The system interfaces with low-cost MEMS accelerometers using custom signal conditioning for amplification and filtering tailored to the spectrum of typical bridge vibrations, specifically from ambient excitation. Additionally, a signal conditioning and high resolution ADC interface is provided for strain gauge sensors. To permit compensation for the influence of temperature, thermistor-based temperature sensing is also enabled. In addition to the hardware description, this paper presents features of the software applications and host interface developed for flexible, user-friendly in-network control of and acquisition from the sensor nodes. The architecture of the software radio protocol is also discussed along with results of field deployments including relatively large-scale networks and

  16. DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING

    SciTech Connect

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-07-06

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  17. Structural Health Monitoring of a Bridge with Energy Dissipators

    NASA Astrophysics Data System (ADS)

    Amaddeo, Carmen; Benzoni, Gianmario; D'Amore, Enzo

    2008-07-01

    After natural events like the 1994 Northridge (USA), the 1995 Kobe (Japan), the 1999 Chi-Chi (Taiwan) and the 1999 Duzce (Turkey) earthquakes it became evident that the demand for bridge structures could greatly benefit from the application of isolation/energy dissipation techniques. Despite the level of maturity achieved in the field of seismic isolation, open questions still remain on the durability of seismic response modification devices (SRMD) under working conditions. The option of removal of sample devices from the bridge structure to verify their performance characteristics involves a significant economical effort, particularly if associated to disruption of the regular traffic. It provides also a device response verification difficult to correlate to the global structural performance. Health monitoring techniques offer a valuable alternative. The main objective of this research is the definition of an effective health monitoring approach to be applied to bridges protected with the most common seismic response modification devices (SRMD). The proposed methodology was validated with the use of records from a bridge equipped with viscous dampers. The record were obtained before and after damage occurred. The procedure proved to be accurate in detecting early degradations of the device characteristics as well as of the structural elements directly connected to the devices.

  18. Carbon Nanotube-Based Structural Health Monitoring Sensors

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip

    2011-01-01

    Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.

  19. Effects of monitoring condition and frequency-altered feedback on stuttering frequency.

    PubMed

    Kalinowski, J; Stuart, A; Wamsley, L; Rastatter, M P

    1999-12-01

    The purpose of the study was to examine stuttering frequency during speaking conditions that are believed to mitigate stuttering frequency both with normal nonaltered auditory feedback (NAF) and a known fluency-enhancing feedback. Specifically, stuttering frequency was examined as a function of three monitoring conditions under NAF and frequency-altered feedback (FAF): no monitoring (i.e., speaking alone, in the absence of audio and visual recording), audiovisual monitoring (i.e., speaking alone with audiovisual recording), and audiovisual monitoring with observers (i.e., speaking with audiovisual recording in the presence of two observers). Seven adults and one adolescent who stutter served as participants. Stuttering frequency was differentially affected across monitoring conditions under each auditory feedback condition (p = .027). Post hoc analyses revealed no significant difference in stuttering frequency between the two conditions in the absence of the observers (i.e., no monitoring vs. audiovisual monitoring) under NAF (p = .45). There was, however, a significant difference in stuttering frequency for the no-monitoring and audiovisual-monitoring conditions relative to the audiovisual-monitoring-with-observers condition (p = .0002). There was no statistically significant difference in stuttering frequency across monitoring conditions under FAF (p > .05). The findings are consistent with the notion that during NAF stuttering frequency varies as a function of hierarchical socio-environmental conditions in which inanimate monitoring conditions constitute one entity. Such a relationship does not exist during FAF.

  20. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  1. Fetal breathing movements: antepartum monitoring of fetal condition.

    PubMed

    Manning, F A; Platt, L D

    1979-08-01

    Until recently, the relative inaccessibility of the human fetus to physical assessment has made antepartum assessment of its condition difficult. The development of methods for accurate antepartum fetal heart rate monitoring and the subsequent study of heart rate responses to various stimuli have resulted in a significant improvement in accuracy of antepartum fetal surveillance. The development of real time B-mode ultrasound enables the clinician to assess many additional fetal biophysical variables including fetal breathing movements. In our observations, the combination of heart rate and fetal breathing assessment has produced a significant improvement in differentiating the normal from the compromised fetus. The addition of other biophysical variables (tone, movements and amniotic fluid volume) have further refined the ability to identify the fetus at risk. At this point, we have evaluated only a few of many possible variables. It seems probable that, as other fetal biophysical variables are included with the overall assessment, for example fetal reflexes or fetal biophysical response to exogenous stimuli, the identification of the fetus at risk and the quantitation of the magnitude of risk will become increasingly more precise.

  2. Diamond pixel modules and the ATLAS beam conditions monitor

    NASA Astrophysics Data System (ADS)

    Dobos, D.; Pernegger, Heinz; RD42 Collaboration; ATLAS Diamond Pixel Upgrade Collaboration; ATLAS Beam Conditions Monitor Collaborations

    2011-02-01

    Chemical vapor deposition diamonds are considered among possible sensor materials for the next pixel upgrade in ATLAS. Full size diamond pixel modules have been constructed to the specification of the ATLAS Pixel Detector using poly-crystalline CVD diamond sensors to develop the production techniques required for industrial production. Those modules were tested in the lab and testbeam. Additionally we will present results of diamond pixel modules using single-crystal diamonds and results of proton irradiations up to 1.8 ×10 16 protons/cm 2. The ATLAS Beam Conditions Monitors (BCM) main purpose is to protect the experiments silicon tracker from beam incidents. In total 16 1×1 cm2 500 μm thick diamond pCVD sensors are used in eight positions around the LHC interaction point. They perform time difference measurements with sub nanosecond resolution to distinguish between particles from a collision and spray particles from a beam incident; an abundance of the latter can lead the BCM to provoke an abort of LHC beam. The BCM diamond detector modules, their readout system and the algorithms used to detect beam incidents are described. Results of the BCM operation with circulating LHC beams and its commissioning with first LHC collisions are reported.

  3. Insitu electrical sensing and material health monitoring in concrete structures

    NASA Astrophysics Data System (ADS)

    Rajabipour, Farshad

    While several structural health monitoring methods are available for assessing the applied loads, displacements, stresses, and strains in a concrete structure, very few techniques are available to enable condition assessment from a material durability viewpoint. Material health monitoring provides a valuable tool in assessing the current durability condition of a concrete structure (i.e., diagnosis), determining if and what preventative measures need to be taken to reduce future maintenance (i.e., prescription), and evaluating the remaining life and the future performance of the material (i.e., prognosis). The objective of this research is development of a new material sensing system that is designed to measure several properties and state parameters of concrete necessary for evaluation of the material's performance. This sensing system is composed of three electrical conductivity-based sensors and a temperature sensor. The electrical sensors include a concrete conductivity (sigma t) sensor (that monitors setting and hardening and measures microstructural and transport properties of concrete), a pore solution conductivity (sigma o) sensor (that monitors changes in the internal chemistry of the system due to ion penetration or carbonation), and a conductivity-based relative humidity (RH) sensor (to monitor moisture transport and shrinkage of the material). The temperature (T) sensor enables determination of the rate of hydration and strength development of concrete while it provides information needed for temperature calibration of the electrical sensors. It is shown that the combined measurements of the three electrical sensors and the temperature sensor provide sufficient calibration information that enables determination of the desired material properties and state parameters of concrete. This document provides a comprehensive description of several phases of the process used for development of the three conductivity-based sensors. To develop the prototype of

  4. Phenomenological models of vibration signals for condition monitoring and fault diagnosis of epicyclic gearboxes

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Lin, Jing; Lu, Fanbo

    2016-05-01

    Condition monitoring and fault diagnosis of epicyclic gearboxes using vibration signals are not as straightforward as that of fixed-axis gearboxes since epicyclic gearboxes behave quite differently from fixed-axis gearboxes in many aspects, like spectral structures. Aiming to present the spectral structures of vibration signals of epicyclic gearboxes, phenomenological models of vibration signals of epicyclic gearboxes are developed by algebraic equations and spectral structures of these models are deduced using Fourier series analysis. In the phenomenological models, all the possible vibration transfer paths from gear meshing points to a fixed transducer and the effects of angular shifts of planet gears on the spectral structures are considered. Accordingly, time-varying vibration transfer paths from sun-planet/ring-planet gear meshing points to the fixed transducer due to carrier rotation are given by window functions with different amplitudes. And an angular shift in one planet gear position is introduced in the process of modeling. After the theoretical derivations, three experiments are conducted on an epicyclic gearbox test rig and the spectral structures of collected vibration signals are analyzed. As a result, the effects of angular shifts of planet gears are verified, and the phenomenological models of vibration signals when a local fault occurs on the sun gear and the planet gear are validated, respectively. The experiment results demonstrate that the established phenomenological models in this paper are helpful to the condition monitoring and fault diagnosis of epicyclic gearboxes.

  5. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Conditions requiring individual monitoring of external and internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal...

  6. MONITORING STREAM CONDITION IN THE WESTERN UNITED STATES

    EPA Science Inventory


    The U.S. Environmental Protection Agency Environmental Monitoring and Assessment Program (EMAP) is a national research program to develop the tools necessary to monitor and assess the- status and trends of ecological resources. EMAP's goal is to develop the scientific underst...

  7. The use of acoustic emission for bearing condition monitoring

    NASA Astrophysics Data System (ADS)

    Lees, A. W.; Quiney, Z.; Ganji, A.; Murray, B.

    2011-07-01

    This paper reports research currently in progress at Swansea University in collaboration with SKF Engineering & Research Centre as part of a continuing investigation into high frequency Acoustic Emission. The primary concerns are experimentally producing subsurface cracks, the type of which would occur in a service failure of a ball bearing, within a steel ball and to closely monitor the properties of this AE from crack initiation to the formation of a ball on the ball surface. It is worth noting that there is evidence that the frequency content of the AE changes during this period, although this has yet to be proved consistent or even fully explained. Conclusive evidence could lead to a system which detects such cracks in a bearing operating in real life conditions, advantageous for many reasons including safety, downtime and maintenance and associated costs. The results from two experimental procedures are presented, one of which loads a single ball held stationary in a test rig to induce subsurface cracks, which are in turn detected by a pair of broadband AE sensors and recorded via a Labview based software system. This approach not only allows detailed analysis of the AE waveforms but also approximate AE source location from the time difference between two sensors. The second experimental procedure details an adaptation of a four-ball lubricant tester in an attempt to produce naturally occurring subsurface cracks from rolling contact whilst minimising the AE arising from surface wear. This thought behind this experiment is reinforced with 3D computational modelling of the rotating system.

  8. BIRD COMMUNITIES AND HABITAT AS ECOLOGICAL INDICATORS OF FOREST CONDITION IN REGIONAL MONITORING

    EPA Science Inventory

    Ecological indicators for long-term monitoring programs are needed to detect and assess changing environmental conditions, We developed and tested community-level environmental indicators for monitoring forest bird populations and associated habitat. We surveyed 197 sampling plo...

  9. Course Modules on Structural Health Monitoring with Smart Materials

    ERIC Educational Resources Information Center

    Shih, Hui-Ru; Walters, Wilbur L.; Zheng, Wei; Everett, Jessica

    2009-01-01

    Structural Health Monitoring (SHM) is an emerging technology that has multiple applications. SHM emerged from the wide field of smart structures, and it also encompasses disciplines such as structural dynamics, materials and structures, nondestructive testing, sensors and actuators, data acquisition, signal processing, and possibly much more. To…

  10. Monitoring the condition of natural resources in US national parks.

    PubMed

    Fancy, S G; Gross, J E; Carter, S L

    2009-04-01

    The National Park Service has developed a long-term ecological monitoring program for 32 ecoregional networks containing more than 270 parks with significant natural resources. The monitoring program assists park managers in developing a broad-based understanding of the status and trends of park resources as a basis for making decisions and working with other agencies and the public for the long-term protection of park ecosystems. We found that the basic steps involved in planning and designing a long-term ecological monitoring program were the same for a range of ecological systems including coral reefs, deserts, arctic tundra, prairie grasslands, caves, and tropical rainforests. These steps involve (1) clearly defining goals and objectives, (2) compiling and summarizing existing information, (3) developing conceptual models, (4) prioritizing and selecting indicators, (5) developing an overall sampling design, (6) developing monitoring protocols, and (7) establishing data management, analysis, and reporting procedures. The broad-based, scientifically sound information obtained through this systems-based monitoring program will have multiple applications for management decision-making, research, education, and promoting public understanding of park resources. When combined with an effective education program, monitoring results can contribute not only to park issues, but also to larger quality-of-life issues that affect surrounding communities and can contribute significantly to the environmental health of the nation.

  11. A Hybrid Numerical Analysis Method for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Staroselsky, Alexander

    2001-01-01

    A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.

  12. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    PubMed Central

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  13. Monitoring corrosion of steel bars in reinforced concrete structures.

    PubMed

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  14. Behavioral pattern identification for structural health monitoring in complex systems

    NASA Astrophysics Data System (ADS)

    Gupta, Shalabh

    Estimation of structural damage and quantification of structural integrity are critical for safe and reliable operation of human-engineered complex systems, such as electromechanical, thermofluid, and petrochemical systems. Damage due to fatigue crack is one of the most commonly encountered sources of structural degradation in mechanical systems. Early detection of fatigue damage is essential because the resulting structural degradation could potentially cause catastrophic failures, leading to loss of expensive equipment and human life. Therefore, for reliable operation and enhanced availability, it is necessary to develop capabilities for prognosis and estimation of impending failures, such as the onset of wide-spread fatigue crack damage in mechanical structures. This dissertation presents information-based online sensing of fatigue damage using the analytical tools of symbolic time series analysis ( STSA). Anomaly detection using STSA is a pattern recognition method that has been recently developed based upon a fixed-structure, fixed-order Markov chain. The analysis procedure is built upon the principles of Symbolic Dynamics, Information Theory and Statistical Pattern Recognition. The dissertation demonstrates real-time fatigue damage monitoring based on time series data of ultrasonic signals. Statistical pattern changes are measured using STSA to monitor the evolution of fatigue damage. Real-time anomaly detection is presented as a solution to the forward (analysis) problem and the inverse (synthesis) problem. (1) the forward problem - The primary objective of the forward problem is identification of the statistical changes in the time series data of ultrasonic signals due to gradual evolution of fatigue damage. (2) the inverse problem - The objective of the inverse problem is to infer the anomalies from the observed time series data in real time based on the statistical information generated during the forward problem. A computer-controlled special

  15. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NASA Astrophysics Data System (ADS)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  16. Condition monitoring and life-cycle cost design of stay cable by embedded OFBG sensors

    NASA Astrophysics Data System (ADS)

    Lan, C. M.; Ju, Y.; Li, H.

    2011-04-01

    Stay cables are one of the most critical structural components of a cable-stayed bridge. However, stay cables readily suffer from fatigue damage, corrosion damage and their coupled effect. Thus, condition monitoring of stay cables is important to ensure the integrity and safety of a bridge. Glass Fibre Reinforced Polymer Optical Fibre Bragg Grating (GFRP-OFBG) cable, a kind of fibre Bragg grating optical sensing technology-based smart stay cables is used in this study. The application of the smart stay cables on the Tianjin Yonghe Bridge was demonstrated and the vehicle live load effect and fatigue effect of smart stay cables were evaluated based on field monitoring data. Furthermore, the life-cycle cost analysis method of the stay cables is established. Finally, based on the nonlinear reliability index deterioration model, the optimal design of stay cable with different reference period is evaluated.

  17. A statistical pattern recognition paradigm for structural health monitoring

    SciTech Connect

    Farrar, C. R.; Sohn, H.; Park, G. H.

    2004-01-01

    The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). Here damage is defined as changes to the material and/or geometric properties of these systems, including changes to the boundary conditions and system connectivity, which adversely affect the system's current or future performance. Our approach is to address the SHM problem in the context of a statistical pattern recognition paradigm (Farrar, Nix and Doebling, 2001). In this paradigm, the process can be broken down into four parts: (1) Operational Evaluation, (2) Data Acquisition, (3) Feature Extraction, and (4) Statistical Model Development for Feature Discrimination. When one attempts to apply this paradigm to data from 'real-world' structures, it quickly becomes apparent that data cleansing, normalization, fusion and compression, which can be implemented with either hardware or software, are inherent in Parts 2-4 of this paradigm. The authors believe that all approaches to SHM, as well as all traditional non-destructive evaluation procedures (e.g. ultrasonic inspection, acoustic emissions, active thermography) can be cast in the context of this statistical pattern recognition paradigm. It should be noted that the statistical modeling portion of the structural health monitoring process has received the least attention in the technical literature. The algorithms used in statistical model development usually fall into the three categories of group classification, regression analysis or outlier detection. The ability to use a particular statistical procedure from one of these categories will depend on the availability of data from both an undamaged and damaged structure. This paper will discuss each portion of the SHM statistical pattern recognition paradigm.

  18. [Monitoring and conditioning in plastic and reconstructive ENT-surgery].

    PubMed

    Dacho, A; Dietz, A

    2006-11-01

    Plastic and reconstructive ENT surgery serves for reconstruction of form and function. Frequent indications in ENT surgery are the covering of large tissue defects after tumor operations, firing and/or explosion injuries, accidents, burns or massive infections. A high revision rate of up to 20 % in selective patient groups show that more knowledge of both monitoring and ischemia-/reperfusion mechanisms is necessary. Besides improved monitor proceedings biochemical cell procedures in pedicled and free flaps are getting more focused. In the last years certain physical and medical factors appear, which have influence on the long-term surviving of a pedicled or free flap, e. g. pre- and/or postconditioning. The increasing knowledge of changes in perfusion and oxygenation, which prevail in the flap, as well as different options of physical and pharmacological therapies permit a promising view into the future, in order to achieve an improved surviving of a pedicled or free flap in combination with improved monitor proceedings.

  19. Damage Detection with Streamlined Structural Health Monitoring Data

    PubMed Central

    Li, Jian; Deng, Jun; Xie, Weizhi

    2015-01-01

    The huge amounts of sensor data generated by large scale sensor networks in on-line structural health monitoring (SHM) systems often overwhelms the systems’ capacity for data transmission and analysis. This paper presents a new concept for an integrated SHM system in which a streamlined data flow is used as a unifying thread to integrate the individual components of on-line SHM systems. Such an integrated SHM system has a few desirable functionalities including embedded sensor data compression, interactive sensor data retrieval, and structural knowledge discovery, which aim to enhance the reliability, efficiency, and robustness of on-line SHM systems. Adoption of this new concept will enable the design of an on-line SHM system with more uniform data generation and data handling capacity for its subsystems. To examine this concept in the context of vibration-based SHM systems, real sensor data from an on-line SHM system comprising a scaled steel bridge structure and an on-line data acquisition system with remote data access was used in this study. Vibration test results clearly demonstrated the prominent performance characteristics of the proposed integrated SHM system including rapid data access, interactive data retrieval and knowledge discovery of structural conditions on a global level. PMID:25884788

  20. Development of lightweight structural health monitoring systems for aerospace applications

    NASA Astrophysics Data System (ADS)

    Pearson, Matthew

    This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy

  1. Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Kullaa, Jyrki

    2011-11-01

    Discrimination between three different sources of variability in a vibration-based structural health monitoring system is investigated: environmental or operational effects, sensor faults, and structural damage. Separating the environmental or operational effects from the other two is based on the assumption that measurements under different environmental or operational conditions are included in the training data. Distinguishing between sensor fault and structural damage utilizes the fact that the sensor faults are local, while structural damage is global. By localizing the change to a sensor which is then removed from the network, the two different influences can be separated. The sensor network is modelled as a Gaussian process and the generalized likelihood ratio test (GLRT) is then used to detect and localize a change in the system. A numerical and an experimental study are performed to validate the proposed method.

  2. An effective neuro-fuzzy paradigm for machinery condition health monitoring.

    PubMed

    Yen, G G; Meesad, P

    2001-01-01

    An innovative neuro-fuzzy network appropriate for fault detection and classification in a machinery condition health monitoring environment is proposed. The network, called an incremental learning fuzzy neural (ILFN) network, uses localized neurons to represent the distributions of the input space and is trained using a one-pass, on-line, and incremental learning algorithm that is fast and can operate in real time. The ILFN network employs a hybrid supervised and unsupervised learning scheme to generate its prototypes. The network is a self-organized structure with the ability to adaptively learn new classes of failure modes and update its parameters continuously while monitoring a system. To demonstrate the feasibility and effectiveness of the proposed network, numerical simulations have been performed using some well-known benchmark data sets, such as the Fisher's Iris data and the Deterding vowel data set. Comparison studies with other well-known classifiers were performed and the ILFN network was found competitive with or even superior to many existing classifiers. The ILFN network was applied on the vibration data known as Westland data set collected from a U.S. Navy CH-46E helicopter test stand, in order to assess its efficiency in machinery condition health monitoring. Using a simple fast Fourier transform (FFT) technique for feature extraction, the ILFN network has shown promising results. With various torque levels for training the network, 100% correct classification was achieved for the same torque Levels of the test data.

  3. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    SciTech Connect

    Kim, Jung-Taek; Luk, Vincent K.

    2005-05-01

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  4. Health monitoring of operational structures -- Initial results

    SciTech Connect

    James, G.; Mayes, R.; Carne, T.; Simmermacher, T.; Goodding, J.

    1995-03-01

    Two techniques for damage localization (Structural Translational and Rotational Error Checking -- STRECH and MAtriX COmpletioN -- MAXCON) are described and applied to operational structures. The structures include a Horizontal Axis Wind Turbine (HAWT) blade undergoing a fatigue test and a highway bridge undergoing an induced damage test. STRECH is seen to provide a global damage indicator to assess the global damage state of a structure. STRECH is also seen to provide damage localization for static flexibility shapes or the first mode of simple structures. MAXCON is a robust damage localization tool using the higher order dynamics of a structure. Several options arc available to allow the procedure to be tailored to a variety of structures.

  5. Wireless sensor network for monitoring soil moisture and weather conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  6. 40 CFR 141.625 - Conditions requiring increased monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....080 mg/L or a HAA5 sample is >0.060 mg/L at any location. (b) You are in violation of the MCL when the... least four consecutive quarters and the LRAA for every monitoring location is ≤0.060 mg/L for TTHM and ≤0.045 mg/L for HAA5....

  7. 40 CFR 141.625 - Conditions requiring increased monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....080 mg/L or a HAA5 sample is >0.060 mg/L at any location. (b) You are in violation of the MCL when the... least four consecutive quarters and the LRAA for every monitoring location is ≤0.060 mg/L for TTHM and ≤0.045 mg/L for HAA5....

  8. Online condition monitoring of axial-flow turbomachinery blades using rotor-axial Eulerian laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Oberholster, A. J.; Heyns, P. S.

    2009-07-01

    The ability to monitor the vibration of blades online is of great importance to the structural health of turbomachinery. This paper focuses on the fixed reference frame or Eulerian implementation of laser Doppler vibrometry to perform this function. The way in which this measurement technique works is studied analytically and then a numerical simulation approach is proposed. Through experimental testing and finite element modeling, it is shown that this measurement approach is in principle viable for online blade condition monitoring when phase angles at reference frequencies are monitored, using non-harmonic Fourier analysis.

  9. Using Vibration Monitoring for Local Fault Detection on Gears Operating Under Fluctuating Load Conditions

    NASA Astrophysics Data System (ADS)

    Stander, C. J.; Heyns, P. S.; Schoombie, W.

    2002-11-01

    Gearboxes often operate under fluctuating load conditions during service. Conventional techniques for monitoring vibration are based on the assumption that changes in the measured structural response are caused by deterioration in the condition of the gearbox. However, this assumption is not valid for fluctuating load conditions. To find a methodology that could deal with such conditions, experiments were conducted on a gearbox test rig with different levels of tooth damage severity and the capability of applying fluctuating loads to the gear system. Different levels of fluctuation in constant loads as well as in sinusoidal, step and chirp loads were considered. The test data were order tracked and time synchronously averaged with the rotation of the shaft in order to compensate for the variation in rotational speed induced by the fluctuating loads. A pseudo-Wigner-Ville distribution was then applied to the test data, in order to identify the influence of the fluctuating load conditions. In this work, a vibration waveform normalisation approach is presented, which enables the use of the pseudo-Wigner-Ville distribution to indicate deteriorating fault conditions under fluctuating load conditions. Statistical parameters and various other features were extracted from the distribution in order to indicate the linear separation of the values for various fault conditions, after applying the vibration waveform normalisation approach. Feature vectors were compiled for the various fault and load conditions. Mahalanobis distances were calculated between the various feature vectors and an average feature vector was compiled from data measured on the undamaged gearbox. It was proved that the Mahalanobis distance could be used as a single parameter, which can readily be monotonically trended to indicate the progression of a fault condition under fluctuating load conditions. It was shown that a single layer perceptron network could be trained with the perceptron learning rule

  10. Workshop on Transitioning Structural Health Monitoring Technology to Military Platforms

    DTIC Science & Technology

    2012-08-28

    sensors that can be multiplexed such as extrinsic Fabry -Perot interferometers (EFPI), but they are rarely used for structural monitoring. We have not...bureau, and outbreak monitoring by the US Centers for Disease Control (CDC).  One approach to data management is replacing conventional processing

  11. Monitoring of Structural Integrity of Composite Structures by Embedded Optical Fiber Sensors

    NASA Technical Reports Server (NTRS)

    Osei, Albert J.

    2002-01-01

    Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Maintenance yearly costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of

  12. Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions

    NASA Astrophysics Data System (ADS)

    Stander, C. J.; Heyns, P. S.

    2005-07-01

    Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.

  13. 18. DETAIL VIEW SHOWING SAWTOOTH MONITOR ROOF AND TYPICAL STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL VIEW SHOWING SAWTOOTH MONITOR ROOF AND TYPICAL STRUCTURAL CONFIGURATION OF TOP STORY, NORTH SECTION, THIRD FLOOR, LOOKING WEST INTO SOUTH SECTION - Massachusetts Mills, Cloth Room-Section 15, 95 Bridge Street, Lowell, Middlesex County, MA

  14. Embedded Sensor Array Development for Composite Structure Integrity Monitoring

    SciTech Connect

    Kumar, A.; Bryan, W. L.; Clonts, L. G.; Franks, S.

    2007-06-26

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Accellent Technologies, Inc. (the "Participant") was for the development of an embedded ultrasonic sensor system for composite structure integrity monitoring.

  15. Information and telecommunication system for monitoring of hydraulic engineering structures

    NASA Astrophysics Data System (ADS)

    Pavlycheva, Nadezhda K.; Akhmetgaleeva, Railia R.; Muslimov, Eduard R.; Murav'eva, Elena V.; Peplov, Artem A.; Sibgatulina, Dina S.

    2016-03-01

    In this article, we present the information and telecommunications system that allows to carry out real-time monitoring of the quality and quantity of hydraulic engineering structures in order to reduce the risk of emergencies caused by environmental damage.

  16. Multi-metric model-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jo, Hongki; Spencer, B. F.

    2014-04-01

    ABSTRACT The inspection and maintenance of bridges of all types is critical to the public safety and often critical to the economy of a region. Recent advanced sensor technologies provide accurate and easy-to-deploy means for structural health monitoring and, if the critical locations are known a priori, can be monitored by direct measurements. However, for today's complex civil infrastructure, the critical locations are numerous and often difficult to identify. This paper presents an innovative framework for structural monitoring at arbitrary locations on the structure combining computational models and limited physical sensor information. The use of multi-metric measurements is advocated to improve the accuracy of the approach. A numerical example is provided to illustrate the proposed hybrid monitoring framework, particularly focusing on fatigue life assessment of steel structures.

  17. An online technique for condition monitoring the induction generators used in wind and marine turbines

    NASA Astrophysics Data System (ADS)

    Yang, Wenxian; Tavner, P. J.; Court, R.

    2013-07-01

    Induction generators have been successfully applied to a variety of industries. However, their operation and maintenance in renewable wind and marine energy industries still face challenges due to harsh environments, limited access to site and relevant reliability issues. Hence, further enhancing their condition monitoring is regarded as one of the essential measures for improving their availability. To date, much effort has been made to monitor induction motors, which can be equally applied to monitoring induction generators. However, the achieved techniques still have constrains in particular when dealing with the condition monitoring problems in wind and marine turbine generators. For example, physical measurements of partial discharge, noise and temperature have been widely applied to monitoring induction machinery. They are simple and cost-effective, but unable to be used for fault diagnosis. The spectral analysis of vibration and stator current signals is also a mature technique popularly used in motor/generator condition monitoring practice. However, it often requires sufficient expertise for data interpretation, and significant pre-knowledge about the machines and their components. In particular in renewable wind and marine industries, the condition monitoring results are usually coupled with load variations, which further increases the difficulty of obtaining a reliable condition monitoring result. In view of these issues, a new condition monitoring technique is developed in this paper dedicated for wind and marine turbine generators. It is simple, informative and less load-dependent thus more reliable to deal with the online motor/generator condition monitoring problems under varying loading conditions. The technique has been verified through both simulated and practical experiments. It has been shown that with the aid of the proposed technique, not only the electrical faults but also the shaft unbalance occurring in the generator become detectable

  18. Monitor weather conditions for cloud seeding control. [Colorado River Basin

    NASA Technical Reports Server (NTRS)

    Kahan, A. M. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The near real-time DCS platform data transfer to the time-share compare is a working reality. Six stations are now being automatically monitored and displayed with a system delay of 3 to 8 hours from time of data transmission to time of data accessibility on the computer. The DCS platform system has proven itself a valuable tool for near real-time monitoring of mountain precipitation. Data from Wolf Creek Pass were an important input in making the decision when to suspend seeding operations to avoid exceeding suspension criteria in that area. The DCS platforms, as deployed in this investigation, have proven themselves to be reliable weather resistant systems for winter mountain environments in the southern Colorado mountains.

  19. Converting Tribology Based Condition Monitoring into Measurable Maintenance Results

    DTIC Science & Technology

    1998-01-01

    34* precision alignment and balance requirements, "* after installation startup and inspection, and "* cleanliness monitoring and removal of break-in...acceptable or excessive, depending on machine operation, balance, shaft alignment , etc. Surface chemistry for oil wetted surfaces can be benign or under...0.1 0.2 0.3 0.4 0.5 PERCEN T VVWATFER The SKF Bearing Company report that if contaminants larger than the clearances between bearing

  20. Monitoring the Financial Condition of Colleges and Universities. AAHE-ERIC Higher Education Research Currents.

    ERIC Educational Resources Information Center

    Taylor, Barbara

    1984-01-01

    Efforts to monitor the financial condition of colleges and universities have arisen from concerns about the effects of economic and demographic pressures. Researchers have attempted to monitor financial condition through two types of research: subjective studies and objective financial indicator studies. Subjective analyses can be useful for…

  1. Advanced instrumentation for acousto-ultrasonic based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik

    2016-04-01

    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  2. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    PubMed

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  3. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    PubMed Central

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  4. Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction

    PubMed Central

    Ran, L.; Ye, X. W.; Ming, G.; Dong, X. B.

    2014-01-01

    Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented. PMID:25032238

  5. Structural monitoring of metro infrastructure during shield tunneling construction.

    PubMed

    Ran, L; Ye, X W; Ming, G; Dong, X B

    2014-01-01

    Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented.

  6. Corrosion Sensor for Monitoring the Service Condition of Chloride-Contaminated Cement Mortar

    PubMed Central

    Lu, Shuang; Ba, Heng-Jing

    2010-01-01

    A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures. PMID:22319347

  7. Corrosion sensor for monitoring the service condition of chloride-contaminated cement mortar.

    PubMed

    Lu, Shuang; Ba, Heng-Jing

    2010-01-01

    A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures.

  8. Transmission path phase compensation for gear monitoring under fluctuating load conditions

    NASA Astrophysics Data System (ADS)

    Stander, C. J.; Heyns, P. S.

    2006-10-01

    Vibration can be monitored under fluctuating load conditions if provision is made for taking into account the fluctuation in machine speed, the response amplitude modulation caused by the change in input force, and the amplitude and phase effects on the measured response from the transmission path. Methodologies have been developed to compensate for the effects of fluctuating speed and amplitude modulation. However, this article investigates the effect of the transmission path phase. This is discussed in terms of the effect this phase has on synchronous averaging. A new approach is presented to resolve the influence that the transmission path phase has on synchronous averaging. The approach is used for the experimental data measured on a helical gear test rig. A significant improvement in the rate of convergence was obtained by adopting the new approach which compensates for the phase shifting in the measured structural response. This contrasts with conventional synchronous averaging with order tracking which does not compensate for structural response phase shifting.

  9. Development of structural health monitoring techniques using dynamics testing

    SciTech Connect

    James, G.H. III

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  10. Security monitoring system based on a line structure Sagnac interferometer with 3×3 coupler

    NASA Astrophysics Data System (ADS)

    Ruan, Li; He, Cunfu; Wu, Bin

    2016-06-01

    Damage action, such as human disruption, is one of the major threats to pipeline operation. It is essential to monitor perturbation behavior and locate the position in real time. A pipeline security monitoring system is proposed using a line structure Sagnac distributed optic fiber interferometer with a 3×3 coupler that can modulate the optic signal phase without special modulation and demodulation. The optic structure of the system is simplified, signal processing accuracy improved, and the effect of polarization reduced. The working principle of the monitoring in ideal conditions and phase demodulation are analyzed and the location of the possible damage point is formulated. Simulation and validation tests confirm the feasibility of the proposed monitoring system and indicate that the low frequency signals <1 kHz can be detected effectively. A disturbance can be accurately located over long monitoring distances.

  11. Ultrasonic condition monitoring of CFRP and GRP plates using a surface-mounted source and an embedded optical fibre sensor

    NASA Astrophysics Data System (ADS)

    Philp, Wayne R.; Pierce, S. Gareth; Gachagan, Anthony; McNab, Alistair; Hayward, Gordon; Culshaw, Brian

    1996-04-01

    Glass reinforced plastic (GRP) and carbon fibre reinforced plastic (CF'RP) laminates are durable, versatile and light-weight materials which are progressively replacing metals traditionally used in aerospace, automobile, rail, gas-storage and many other industries. If these composite structures were to debond, fracture or seriously degrade whilst in-service, public injury or catastrophic failure could result. Therefore, in-service condition monitoring techniques for composite structures are most significant and are of immediate importance.

  12. Monitoring of an hydraulic structure affected by ASR: A case study

    SciTech Connect

    Rivard, Patrice; Ballivy, Gerard; Gravel, Clermont; Saint-Pierre, Francois

    2010-04-15

    Relevant and effective instruments and techniques must be selected for monitoring hydraulic structures affected by Alkali-Silica Reaction ('ASR'). A program aiming at assessing the condition of a hydraulic structure affected by ASR is presented in this paper. The structure has been exhibiting signs of ASR for more than 30 years and shows various levels of damage. The program encompassed different components, consisting of: (1) stress measurement, (2) evaluation of concrete condition by nondestructive methods without drilling (seismic tomography), (3) the evaluation of the mechanical, physical and petrographic properties of the concrete determined from cores recovered from full-length boreholes. The results of this case study suggest that ASR may generate relatively little damage in structures and that the concrete mechanical properties do not seem to be significantly affected despite high expansion levels measured in this structure. A major crack was localized with the seismic tomography. The monitoring program will be used to follow the development of ASR in the structure.

  13. Optoelectronic methods in potential application in monitoring of environmental conditions

    NASA Astrophysics Data System (ADS)

    Mularczyk-Oliwa, Monika; Bombalska, Aneta; Kwaśny, Mirosław; Kopczyński, Krzysztof; Włodarski, Maksymilian; Kaliszewski, Miron; Kostecki, Jerzy

    2016-12-01

    Allergic rhinitis, also known as hay fever is a type of inflammation which occurs when the immune system overreacts to allergens in the air. It became the most common disease among people. It became important to monitor air content for the presence of a particular type of allergen. For the purposes of environmental monitoring there is a need to widen the group of traditional methods of identification of pollen for faster and more accurate research systems. The aim of the work was the characterization and classification of certain types of plant pollens by using laser optical methods, which were supported by the chemmometrics. Several species of pollen were examined, for which a database of spectral characteristics was created, using LIF, Raman scattering and FTIR methods. Spectral database contains characteristics of both common allergens and pollen of minor importance. Based on registered spectra, statistical analysis was made, which allows the classification of the tested pollen species. For the study of the emission spectra Nd:YAG laser was used with the fourth harmonic generation (266 nm) and GaN diode laser (375 nm). For Raman scattering spectra spectrometer Nicolet IS-50 with a excitation wavelength of 1064 nm was used. The FTIR spectra, recorded in the mid infrared1 range (4000-650 cm-1) were collected with use of transmission mode (KBr pellet), ATR and DRIFT.

  14. Sensing platforms for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zheng, Shijie; Naik, Gautam; Chen, Zhongbi; Zhu, Yinian; Krishnaswamy, Sridhar

    2013-04-01

    The emerging concept of structural health management relies on extensive onboard diagnostic sensors that can provide near real-time information about the state of a structure so that informed prognostic assessment can be made of the continuing reliability of the structure. In this paper, we will discuss two types of sensing platforms that can provide valuable information about the state of a structure: 1D fiber-optic sensors and 2D thin-film sensors. Both fiber-optic and thin film sensors are easily integrated with structures, and can offer local and/or distributed sensing capabilities. Parameters that can be sensed include: static and dynamic strain, acoustic emission, vibration, corrosion products, moisture ingression etc. We will first describe some recent developments in dynamic strain sensing using optical fiber Bragg grating (FBG) sensors. Applications to detection of acoustic emission and impact will be described. In the area of chemical sensing, we will describe a nanofilm-coated photonic crystal fiber (PCF) long-period grating (LPG) sensing platform. PCF-LPG sensors can be designed to provide greater interaction between the analyte of interest and the light propagating in the fiber, thereby increasing the sensitivity of detection. Applications to humidity sensing will be described. Finally, 2D thin-film sensors on polymer substrates will be discussed. One type of sensor we have been fabricating is based on reduced graphene oxide for large-area chemical sensing applications. It is expected that these 1D and 2D sensing platforms will form part of a suite of sensors that can provide diagnostic structural health information.

  15. Feature and Statistical Model Development in Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Inho

    All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network

  16. Structural health monitoring activities at National Laboratories

    SciTech Connect

    Farrar, C.R.; Doebling, S.W.; James, G.H.; Simmermacher, T.

    1997-09-01

    Sandia National Laboratories and Los Alamos National Laboratory have on-going programs to assess damage in structures and mechanical systems from changes in their dynamic characteristics. This paper provides a summary of how both institutes became involved with this technology, their experience in this field and the directions that their research in this area will be taking in the future.

  17. I35W collapse, rebuild, and structural health monitoring - challenges associated with structural health monitoring of bridge systems

    SciTech Connect

    French, C. E.; Hedegaard, B.; Shield, C. K.; Stolarski, H.

    2011-06-23

    During evening rush hour traffic on August 1, 2007, the major interstate highway bridge carrying I35W over the Mississippi River in Minneapolis catastrophically failed, tragically taking the lives of thirteen people and injuring many more. The steel truss bridge, constructed in 1967, was undergoing deck reconstruction during the collapse, and was estimated to carry more than 140,000 vehicles daily. This tragedy generated great interest in employment of structural health monitoring systems. The I35W St. Anthony Falls Bridge, a post-tensioned concrete box bridge constructed to replace the collapsed steel truss bridge, contains over 500 instruments to monitor the structural behavior. Numerical models of the bridge are being developed and calibrated to the collected data obtained from truck load tests and thermal effects. The data obtained over the first few years of monitoring are being correlated with the calibrated models and used to develop the baseline bridge behavior. This information is being used to develop a system to monitor and interpret the long-term behavior of the bridge. This paper describes the instrumentation, preliminary results from the data and model calibration, the plan for developing long-term monitoring capabilities, and the challenges associated with structural health monitoring of bridge systems. In addition, opportunities and directions for future research required to fully realize the objectives of structural health monitoring are described.

  18. Optical methods for hydrogen degassing monitoring in urban conditions

    NASA Astrophysics Data System (ADS)

    Timchenko, E. V.; Timchenko, P. E.; Zherdeva, L. A.; Tregub, N. V.; Selezneva, E. A.; Yakovlev, V. N.

    2015-12-01

    Results of a study of variations in optical parameters of bioindicators that grow in the regions of hydrogen degassing in Samara are presented. Raman spectroscopy and confocal fluorescence microscopy were used as the main methods of the study. Features of Raman spectra of plants that grow in zones with presence/ absence of deep hydrogen emissions have been ascertained. The main variations have been recorded at wavenumbers of 1380, 1522, 1547, and 1600 cm-1, which are responsible for stretching vibrations in lignin and β-carotene and chlorophyll a and cellulose in plant leaves. Confocal fluorescence microscopy showed an increase in the chloroplasts in leaves of plants which grow at hydrogen degassing territories. An optical coefficient was introduced, on the basis of which the Samara region was monitored.

  19. On-Line Modal State Monitoring of Slowly Time-Varying Structures

    NASA Technical Reports Server (NTRS)

    Johnson, Erik A.; Bergman, Lawrence A.; Voulgaris, Petros G.

    1997-01-01

    Monitoring the dynamic response of structures is often performed for a variety of reasons. These reasons include condition-based maintenance, health monitoring, performance improvements, and control. In many cases the data analysis that is performed is part of a repetitive decision-making process, and in these cases the development of effective on-line monitoring schemes help to speed the decision-making process and reduce the risk of erroneous decisions. This report investigates the use of spatial modal filters for tracking the dynamics of slowly time-varying linear structures. The report includes an overview of modal filter theory followed by an overview of several structural system identification methods. Included in this discussion and comparison are H-infinity, eigensystem realization, and several time-domain least squares approaches. Finally, a two-stage adaptive on-line monitoring scheme is developed and evaluated.

  20. Applications of nonlinear system identification to structural health monitoring.

    SciTech Connect

    Farrar, C. R.; Sohn, H.; Robertson, A. N.

    2004-01-01

    The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). In many cases damage causes a structure that initially behaves in a predominantly linear manner to exhibit nonlinear response when subject to its operating environment. The formation of cracks that subsequently open and close under operating loads is an example of such damage. The damage detection process can be significantly enhanced if one takes advantage of these nonlinear effects when extracting damage-sensitive features from measured data. This paper will provide an overview of nonlinear system identification techniques that are used for the feature extraction process. Specifically, three general approaches that apply nonlinear system identification techniques to the damage detection process are discussed. The first two approaches attempt to quantify the deviation of the system from its initial linear characteristics that is a direct result of damage. The third approach is to extract features from the data that are directly related to the specific nonlinearity associated with the damaged condition. To conclude this discussion, a summary of outstanding issues associated with the application of nonlinear system identification techniques to the SHM problem is presented.

  1. Optimal sensor placement in structural health monitoring using discrete optimization

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Büyüköztürk, Oral

    2015-12-01

    The objective of optimal sensor placement (OSP) is to obtain a sensor layout that gives as much information of the dynamic system as possible in structural health monitoring (SHM). The process of OSP can be formulated as a discrete minimization (or maximization) problem with the sensor locations as the design variables, conditional on the constraint of a given sensor number. In this paper, we propose a discrete optimization scheme based on the artificial bee colony algorithm to solve the OSP problem after first transforming it into an integer optimization problem. A modal assurance criterion-oriented objective function is investigated to measure the utility of a sensor configuration in the optimization process based on the modal characteristics of a reduced order model. The reduced order model is obtained using an iterated improved reduced system technique. The constraint is handled by a penalty term added to the objective function. Three examples, including a 27 bar truss bridge, a 21-storey building at the MIT campus and the 610 m high Canton Tower, are investigated to test the applicability of the proposed algorithm to OSP. In addition, the proposed OSP algorithm is experimentally validated on a physical laboratory structure which is a three-story two-bay steel frame instrumented with triaxial accelerometers. Results indicate that the proposed method is efficient and can be potentially used in OSP in practical SHM.

  2. A remote condition monitoring system for wind-turbine based DG systems

    NASA Astrophysics Data System (ADS)

    Ma, X.; Wang, G.; Cross, P.; Zhang, X.

    2012-05-01

    In this paper, a remote condition monitoring system is proposed, which fundamentally consists of real-time monitoring modules on the plant side, a remote support centre and the communications between them. The paper addresses some of the key issues related on the monitoring system, including i) the implementation and configuration of a VPN connection, ii) an effective database system to be able to handle huge amount of monitoring data, and iii) efficient data mining techniques to convert raw data into useful information for plant assessment. The preliminary results have demonstrated that the proposed system is practically feasible and can be deployed to monitor the emerging new energy generation systems.

  3. Cointegration as a data normalization tool for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2012-04-01

    The structural health monitoring literature has shown an abundance of features sensitive to various types of damage in laboratory tests. However, robust feature extraction in the presence of varying operational and environmental conditions has proven to be one of the largest obstacles in the development of practical structural health monitoring systems. Cointegration, a technique adapted from the field of econometrics, has recently been introduced to the SHM field as one solution to the data normalization problem. Response measurements and feature histories often show long-run nonstationarity due to fluctuating temperature, load conditions, or other factors that leads to the occurrence of false positives. Cointegration theory allows nonstationary trends common to two or more time series to be modeled and subsequently removed. Thus, the residual retains sensitivity to damage with dependence on operational and environmental variability removed. This study further explores the use of cointegration as a data normalization tool for structural health monitoring applications.

  4. Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multiwavelet analysis method

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zhang, Chunlin; Zhang, Xiaoyan; Zi, Yanyang; He, Shuilong; Yang, Zhe

    2015-03-01

    Satellite communication antennas are key devices of a measurement ship to support voice, data, fax and video integration services. Condition monitoring of mechanical equipment from the vibration measurement data is significant for guaranteeing safe operation and avoiding the unscheduled breakdown. So, condition monitoring system for ship-based satellite communication antennas is designed and developed. Planetary gearboxes play an important role in the transmission train of satellite communication antenna. However, condition monitoring of planetary gearbox still faces challenges due to complexity and weak condition feature. This paper provides a possibility for planetary gearbox condition monitoring by proposing ensemble a multiwavelet analysis method. Benefit from the property on multi-resolution analysis and the multiple wavelet basis functions, multiwavelet has the advantage over characterizing the non-stationary signal. In order to realize the accurate detection of the condition feature and multi-resolution analysis in the whole frequency band, adaptive multiwavelet basis function is constructed via increasing multiplicity and then vibration signal is processed by the ensemble multiwavelet transform. Finally, normalized ensemble multiwavelet transform information entropy is computed to describe the condition of planetary gearbox. The effectiveness of proposed method is first validated through condition monitoring of experimental planetary gearbox. Then this method is used for planetary gearbox condition monitoring of ship-based satellite communication antennas and the results support its feasibility.

  5. Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring

    NASA Astrophysics Data System (ADS)

    Baglee, D.; Knowles, M. J.

    2012-05-01

    Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.

  6. Health Monitoring and Management for Manufacturing Workers in Adverse Working Conditions.

    PubMed

    Xu, Xiaoya; Zhong, Miao; Wan, Jiafu; Yi, Minglun; Gao, Tiancheng

    2016-10-01

    In adverse working conditions, environmental parameters such as metallic dust, noise, and environmental temperature, directly affect the health condition of manufacturing workers. It is therefore important to implement health monitoring and management based on important physiological parameters (e.g., heart rate, blood pressure, and body temperature). In recent years, new technologies, such as body area networks, cloud computing, and smart clothing, have allowed the improvement of the quality of services. In this article, we first give five-layer architecture for health monitoring and management of manufacturing workers. Then, we analyze the system implementation process, including environmental data processing, physical condition monitoring and system services and management, and present the corresponding algorithms. Finally, we carry out an evaluation and analysis from the perspective of insurance and compensation for manufacturing workers in adverse working conditions. The proposed scheme will contribute to the improvement of workplace conditions, realize health monitoring and management, and protect the interests of manufacturing workers.

  7. Electrical techniques for monitoring the condition of lubrication oil

    NASA Astrophysics Data System (ADS)

    Turner, J. D.; Austin, L.

    2003-10-01

    The lubricating oil used in engines for vehicle and other applications is renewed according to a schedule specified by the manufacturer. This timetable is, naturally, very conservative, and makes no allowance for the way in which the engine is operated. Constant-speed operation (such as motorway use) is much less harmful to the lubricant than variable-speed operation, such as urban driving, during which the oil experiences extreme variations of temperature and engine speed. The net result of the conservative lubricant replacement schedule is that most engine oil is discarded well before it has reached the end of its useful life. This paper reports a study in which changes to the dielectric and magnetic properties of the oil are assessed as methods of measuring the degradation of lubricating oil. The relationship between oil use (measured by the distance a vehicle has travelled) and oil viscosity is also measured. The conclusions from this work are that simple distance travelled (miles/kilometres) is not a good indicator of the state of an oil, as estimated by measuring its viscosity. The magnetic characteristics of lubricating oil (i.e. its magnetic permeability) do change as the oil degrades, but the measurements were poorly correlated with viscosity and do not seem to offer much promise as the basis of an oil monitoring system. The dielectric properties of lubricating oil are reasonably well correlated with viscosity, and it is proposed that this could form the basis of a useful sensing technique.

  8. Disposable indicators for monitoring lighting conditions in museums.

    PubMed

    Bacci, Mauro; Cucci, Costanza; Dupont, Anne-Laurence; Lavédrine, Bertrand; Picollo, Marcello; Porcinai, Simone

    2003-12-15

    Photoinduced alterations of light-sensitive artifacts represent one of the main problems that conservators and curators have to face for environmental control in museums and galleries. Therefore, increasing attention has been recently devoted to developing strategies of indoor light monitoring, especially aimed at minimizing the cumulated light exposure for the objects on exhibit. In this work a prototype of a light dosimeter, constituted by a photosensitive dyes/polymer mixture applied on a paper substrate, is presented. This indicator, specially designed for a preventive assessment of the risk of damage for highly light-sensitive objects, undergoes a progressive color variation as its exposure to the light increases. Different, easily distinguishable color steps are exhibited depending on the light dose received, so that the dosimeter can be used straightforwardly to have a first, instrumentation-free estimation of the total light exposure. A reflectance spectroscopy study in the 350-860 nm range was carried out on prototype dosimeters exposed to light emitted from a tungsten-halogen lamp to investigate the response of the dosimeter to the light and to study the fading mechanism. Two different approaches were evaluated for the calibration of the prototype: colorimetry and principal component analysis of the reflectance spectra. The usefulness of the two methods in providing a quantitative indication of the light dose received was evaluated.

  9. Alternative luciferase for monitoring bacterial cells under adverse conditions.

    PubMed

    Wiles, Siouxsie; Ferguson, Kathryn; Stefanidou, Martha; Young, Douglas B; Robertson, Brian D

    2005-07-01

    The availability of cloned luciferase genes from fireflies (luc) and from bacteria (luxAB) has led to the widespread use of bioluminescence as a reporter to measure cell viability and gene expression. The most commonly occurring bioluminescence system in nature is the deep-sea imidazolopyrazine bioluminescence system. Coelenterazine is an imidazolopyrazine derivative which, when oxidized by an appropriate luciferase enzyme, produces carbon dioxide, coelenteramide, and light. The luciferase from the marine copepod Gaussia princeps (Gluc) has recently been cloned. We expressed the Gluc gene in Mycobacterium smegmatis using a shuttle vector and compared its performance with that of an existing luxAB reporter. In contrast to luxAB, the Gluc luciferase retained its luminescence output in the stationary phase of growth and exhibited enhanced stability during exposure to low pH, hydrogen peroxide, and high temperature. The work presented here demonstrated the utility of the copepod luciferase bioluminescent reporter as an alternative to bacterial luciferase, particularly for monitoring responses to environmental stress stimuli.

  10. Diagnostic and Condition Monitoring System Assessment for Army Helicopter Modular Turboshaft Engines.

    DTIC Science & Technology

    1980-10-01

    and Condition Monitoring METS Modular Engine Test System MPFI Modular Performance F-4ult Isolation MTBF Mean Time Between Failures MTTR Mean Time to...AO-ACO? 31b GENERAL ELECTRIC CO LYNN MA AIRCRAFT ENGINE GROUP F/G 91/5 DIASNObIC AND CONDITION MONITORING SYSTEM ASSESSMENT FOR ARMY -ETCIU) OCT 80 H...1AIN)Il.A AD A-oft LEV t DIAGNOSTIC £ CONDITION MONITORING SYSTEM ASSESSMENT FOR ARMY HELICOPTER MODULAR TURBOSHAFT ENGINES. Harold J. Jord n General

  11. Nonlinear feature identification of impedance-based structural health monitoring

    SciTech Connect

    Rutherford, A. C.; Park, G. H.; Sohn, H.; Farrar, C. R.

    2004-01-01

    The impedance-based structural health monitoring technique, which utilizes electromechanical coupling properties of piezoelectric materials, has shown feasibility for use in a variety of structural health monitoring applications. Relying on high frequency local excitations (typically > 30 kHz), this technique is very sensitive to minor changes in structural integrity in the near field of piezoelectric sensors. Several damage sensitive features have been identified and used coupled with the impedance methods. Most of these methods are, however, limited to linearity assumptions of a structure. This paper presents the use of experimentally identified nonlinear features, combined with impedance methods, for structural health monitoring. Their applicability to damage detection in various frequency ranges is demonstrated using actual impedance signals measured from a portal frame structure. The performance of the nonlinear feature is compared with those of conventional impedance methods. This paper reinforces the utility of nonlinear features in structural health monitoring and suggests that their varying sensitivity in different frequency ranges may be leveraged for certain applications.

  12. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  13. AN EVALUATION OF CONDITION MONITORING TECHNIQUES FOR LOW-VOLTAGE ELECTRIC CABLES

    SciTech Connect

    LOFARO,R.J.; GROVE,E.; SOO,P.

    2000-07-23

    Aging of systems and components in nuclear power plants is a well known occurrence that must be managed to ensure the continued safe operation of these plants. Much of the degradation due to aging is controlled through periodic maintenance and/or component replacement. However, there are components that do not receive periodic maintenance or monitoring once they are installed; electric cables are such a component. To provide a means of monitoring the condition of electric cables, research is ongoing to evaluate promising condition monitoring (CM) techniques that can be used in situ to monitor cable condition and predict remaining life. While several techniques are promising, each has limitations that must be considered in its application. This paper discusses the theory behind several of the promising cable CM techniques being studied, along with their effectiveness for monitoring aging degradation in typical cable insulation materials, such as cross-linked polyethylene and ethylene propylene rubber. Successes and limitations of each technique are also presented.

  14. Opportunities and challenges for structural health monitoring of radioactive waste systems and structures

    SciTech Connect

    Giurgiutiu, Victor; Mendez Torres, Adrian E.

    2013-07-01

    Radioactive waste systems and structures (RWSS) are safety-critical facilities in need of monitoring over prolonged periods of time. Structural health monitoring (SHM) is an emerging technology that aims at monitoring the state of a structure through the use of networks of permanently mounted sensors. SHM technologies have been developed primarily within the aerospace and civil engineering communities. This paper addresses the issue of transitioning the SHM concept to the monitoring of RWSS and evaluates the opportunities and challenges associated with this process. Guided wave SHM technologies utilizing structurally-mounted piezoelectric wafer active sensors (PWAS) have a wide range of applications based on both propagating-wave and standing-wave methodologies. Hence, opportunities exist for transitioning these SHM technologies into RWSS monitoring. However, there exist certain special operational conditions specific to RWSS such as: radiation field, caustic environments, marine environments, and chemical, mechanical and thermal stressors. In order to address the high discharge of used nuclear fuel (UNF) and the limited space in the storage pools the U.S. the Department of Energy (DOE) has adopted a 'Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste' (January 2013). This strategy endorses the key principles that underpin the Blue Ribbon Commission's on America's Nuclear Future recommendations to develop a sustainable program for deploying an integrated system capable of transporting, storing, and disposing of UNF and high-level radioactive waste from civilian nuclear power generation, defense, national security, and other activities. This will require research to develop monitoring, diagnosis, and prognosis tools that can aid to establish a strong technical basis for extended storage and transportation of UNF. Monitoring of such structures is critical for assuring the safety and security of the nation's spent nuclear

  15. Structural Conditions of Reform-oriented Pedagogics.

    ERIC Educational Resources Information Center

    Luhmann, Niklas; Schorr, Karl Eberhard

    1988-01-01

    Describes educational reforms as structural necessities in a differentiated system; not simply historical events or recurrent pushes of dissatisfied idealism. Stating that the current system can increase in complexity but not in excellence, the authors suggest the following distinctions be used to improve its pedagogy: system--environment,…

  16. A microwave tomography strategy for structural monitoring

    NASA Astrophysics Data System (ADS)

    Catapano, I.; Crocco, L.; Isernia, T.

    2009-04-01

    The capability of the electromagnetic waves to penetrate optical dense regions can be conveniently exploited to provide high informative images of the internal status of manmade structures in a non destructive and minimally invasive way. In this framework, as an alternative to the wide adopted radar techniques, Microwave Tomography approaches are worth to be considered. As a matter of fact, they may accurately reconstruct the permittivity and conductivity distributions of a given region from the knowledge of a set of incident fields and measures of the corresponding scattered fields. As far as cultural heritage conservation is concerned, this allow not only to detect the anomalies, which can possibly damage the integrity and the stability of the structure, but also characterize their morphology and electric features, which are useful information to properly address the repair actions. However, since a non linear and ill-posed inverse scattering problem has to be solved, proper regularization strategies and sophisticated data processing tools have to be adopt to assure the reliability of the results. To pursue this aim, in the last years huge attention has been focused on the advantages introduced by diversity in data acquisition (multi-frequency/static/view data) [1,2] as well as on the analysis of the factors affecting the solution of an inverse scattering problem [3]. Moreover, how the degree of non linearity of the relationship between the scattered field and the electromagnetic parameters of the targets can be changed by properly choosing the mathematical model adopt to formulate the scattering problem has been shown in [4]. Exploiting the above results, in this work we propose an imaging procedure in which the inverse scattering problem is formulated as an optimization problem where the mathematical relationship between data and unknowns is expressed by means of a convenient integral equations model and the sought solution is defined as the global minimum of a

  17. What are we monitoring and why? Using geomorphic principles to frame eco-hydrological assessments of river condition.

    PubMed

    Brierley, Gary; Reid, Helen; Fryirs, Kirstie; Trahan, Nadine

    2010-04-01

    Monitoring and assessment are integral components in adaptive management programmes that strive to improve the condition of river systems. Unfortunately, these procedures are generally applied with an emphasis upon biotic attributes and water quality, with limited regard for the geomorphic structure, function and evolutionary trajectory of a river system. Geomorphic principles convey an understanding of the landscape context within which ecohydrologic processes interact. Collectively, geo-eco-hydrologic understanding presents a coherent biophysical template that can be used to frame spatially and temporally rigorous approaches to monitoring that respect the inherent diversity, variability and complexity of any given river system. This understanding aids the development of management programmes that 'work with nature.' Unless an integrative perspective is used to monitor river condition, conservation and rehabilitation plans are unlikely to reach their true potential.

  18. A NATIONAL PROGRAM FOR MONITORING STREAM CONDITION IN THE WESTERN UNITED STATES

    EPA Science Inventory


    The U.S. Environmental Protection Agency recently initiated a four-year survey of streams in the Western United States as a component of the Environmental Monitoring and Assessment Program (EMAP). EMAP is developing indicators to monitor and assess the condition of ecological...

  19. 7 CFR 623.16 - Monitoring and enforcement of easement terms and conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Monitoring and enforcement of easement terms and conditions. 623.16 Section 623.16 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WETLANDS RESERVE PROGRAM § 623.16 Monitoring and...

  20. GEOGRAPHIC-SPECIFIC WATER QUALITY CRITERIA DEVELOPMENT WITH MONITORING DATA USING CONDITIONAL PROBABILITIES - A PROPOSED APPROACH

    EPA Science Inventory

    A conditional probability approach using monitoring data to develop geographic-specific water quality criteria for protection of aquatic life is presented. Typical methods to develop criteria using existing monitoring data are limited by two issues: (1) how to extrapolate to an...

  1. Investigation of piezoelectric impedance-based health monitoring of structure interface debonding

    NASA Astrophysics Data System (ADS)

    Xiao, Li; Chen, Guofeng; Chen, Xiaoming; Qu, Wenzhong

    2016-04-01

    Various damages might occur during the solid rocket motor (SRM) manufacturing/operational phase, and the debonding of propellant/insulator/composite case interfaces is one of damage types which determine the life of a motor. The detection of such interface debonding damage will be beneficial for developing techniques for reliable nondestructive evaluation (NDE) and structural health monitoring (SHM). Piezoelectric sensors are widely used for structural health monitoring technique. In particular, electromechanical impedance (EMI) techniques give simple and low-cost solutions for detecting damage in various structures. In this work, piezoelectric EMI structural health monitoring technique is applied to identify the debonding condition of propellant/insulator interface structure using finite element method and experimental investigation. A three-dimensional coupled field finite element model is developed using the software ANSYS and the harmonic analysis is conducted for high-frequency impedance analysis procedure. In the experimental study, the impedance signals were measured from PZT and MFC sensors outside attached to composite case monitoring the different debonding conditions between the propellant and insulator. Root mean square deviation (RMSD) based damage index is conducted to quantify the changes i n impedance for different de bonding conditions and frequency range. Simulation and experimental results confirmed that the EMI technique can be used effectively for detecting the debonding damage in SRM and is expected to be useful for future application of real SRM's SHM.

  2. Structural health monitoring of long-span suspension bridges using wavelet packet analysis

    NASA Astrophysics Data System (ADS)

    Ding, Youliang; Li, Aiqun

    2007-09-01

    During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage. This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT-based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices V D reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index V D is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.

  3. A silicon micromachined piezoresistive accelerometer for health and condition monitoring

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin M.; Henderson, H. Thurman

    1990-01-01

    Silicon micromachining etching techniques were utilized to batch-fabricate hundreds of general purpose microaccelerometers on a single silicon substrate. Piezoresistive sensing elements were aligned to the back-side patterns using an IR mask aligner and then diffused into the areas of maximum stress. Capping of the two-arm cantilever beam structure was achieved using a combination of electrostatic bonding and low temperature glass films. Overrange protection, critical damping, and overall protection from the outside environment are achieved by controlling the cavity depths of the top and bottom covers. Temperature compensation, amplification, and filtering are performed by a companion LSI chip that is interfaced to the accelerometer by conventional wire-bonding techniques.

  4. Monitoring network-design influence on assessment of ecological condition in wadeable streams

    EPA Science Inventory

    We investigated outcomes of three monitoring networks for assessing ecological character and condition of wadeable streams in the Waikato region, New Zealand. Sites were selected 1) based on a professional judgment network, 2) within categories of stream and watershed characteris...

  5. Experimental FSO network availability estimation using interactive fog condition monitoring

    NASA Astrophysics Data System (ADS)

    Turán, Ján.; Ovseník, Łuboš

    2016-12-01

    Free Space Optics (FSO) is a license free Line of Sight (LOS) telecommunication technology which offers full duplex connectivity. FSO uses infrared beams of light to provide optical broadband connection and it can be installed literally in a few hours. Data rates go through from several hundreds of Mb/s to several Gb/s and range is from several 100 m up to several km. FSO link advantages: Easy connection establishment, License free communication, No excavation are needed, Highly secure and safe, Allows through window connectivity and single customer service and Compliments fiber by accelerating the first and last mile. FSO link disadvantages: Transmission media is air, Weather and climate dependence, Attenuation due to rain, snow and fog, Scattering of laser beam, Absorption of laser beam, Building motion and Air pollution. In this paper FSO availability evaluation is based on long term measured data from Fog sensor developed and installed at TUKE experimental FSO network in TUKE campus, Košice, Slovakia. Our FSO experimental network has three links with different physical distances between each FSO heads. Weather conditions have a tremendous impact on FSO operation in terms of FSO availability. FSO link availability is the percentage of time over a year that the FSO link will be operational. It is necessary to evaluate the climate and weather at the actual geographical location where FSO link is going to be mounted. It is important to determine the impact of a light scattering, absorption, turbulence and receiving optical power at the particular FSO link. Visibility has one of the most critical influences on the quality of an FSO optical transmission channel. FSO link availability is usually estimated using visibility information collected from nearby airport weather stations. Raw data from fog sensor (Fog Density, Relative Humidity, Temperature measured at each ms) are collected and processed by FSO Simulator software package developed at our Department. Based

  6. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different

  7. Monitoring pasture damage in subarid conditions in south of Spain.

    NASA Astrophysics Data System (ADS)

    Díaz, Felix; Saa-Requejo, Antonio; Martín-Sotoca, Juan J.; Dalezios, Nicolas; Tarquis, Ana M.

    2016-04-01

    This work analyzes four areas in Murcia region (Spain) to study the application of the indexed pastures insurances in arid and subarid conditions. For this purpose four zones of 2,5 km have been selected, all of them close to meteorological stations, with records covering the period since 2001 to 2012 and with compound MODIS images of 500 m x 500 m from eight days intervals on that period. In addition to obtain historical series of the Normalized Difference Vegetation Index (NDVI), other indices (NDWI, NDDI and NDWU) have been computed. The results of this study show that NDWU provides additional information to that in the NDVI. In fact, according to our results, NDDI does not provide accurate information for the regions analyzed in this particular case study. In an attempt to relate precipitancy indices and drought situations in the four areas selected, we have showed that Standardized Precipitation Index (SPI) cannot be used accurately for drought intensity assessment. Then new indices have been formulated based on Markov chains: PI5mm and PI10mm.These indices can assess on isolated droughts which are missed by using indexed insurances. Nonetheless, it has also been observed that abnormal droppings in the NDWI index often coincide with drought lapses well established by indexed insurances. Acknowledgements First author acknowledges the Research Grant obtained from CEIGRAM in 2015

  8. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing a new guide regulatory guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants.'' This guide describes techniques that the staff of the NRC considers acceptable for condition monitoring of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive,......

  9. Monitoring the condition of the Canadian forest environment: The relevance of the concept of 'ecological indicators'.

    PubMed

    Kimmins, J P

    1990-11-01

    The Canadian forest environment is characterized by high spatial and temporal variability, especially in the west. Our forests vary according to climate, landform, and surficial geology, and according to the type, intensity, extent of, and the time since the last disturbance. Most Canadian forests have had a history of repeated acute, episodic disturbance from fire, insects, wind, diseases and/or logging, with a frequency of disturbance varying from a few decades to many centuries. These sources of variability have resulted in a complex and continually changing mosaic of forest conditions and stages of successional development.Monitoring the 'quality' of this dynamic forested landscape mosaic is extremely difficult, and in most cases the concept of a relatively simple index of forest ecosystem quality or condition (i.e. an 'ecological indicator') is probably inappropriate. Such ecological indicators are better suited for monitoring chronic anthropogenically induced disturbances that are continuous in their effect (e.g. 'acid rain', heavy metal pollution, air pollution, and the 'greenhouse effect') in ecosystems that, in the absence of such chronic disturbance, exhibit very slow directional change (e.g. lakes, higher order streams and rivers). Monitoring the effects of a chronic anthropogenic disturbance to forest ecosystems to determine if it is resulting in a sustained, directional alteration of environmental 'quality' will require a definition of the expected pattern of episodic disturbance and recovery therefrom (i.e. patterns of secondary succession in the absence of the chronic disturbance). Only when we have such a 'temporal fingerprint' of forest ecosystem condition for 'normal' patterns of disturbance and recovery can we determine if the ecosystem condition is being degraded by chronic human-induced alteration of the environment. Thus, degradation is assessed in terms of deviations from the expected temporal pattern of conditions rather than in terms of an

  10. Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators: Preprint

    SciTech Connect

    Yang, W.; Sheng, S.; Court, R.

    2012-08-01

    To date the existing wind turbine condition monitoring technologies and commercially available systems have not been fully accepted for improving wind turbine availability and reducing their operation and maintenance costs. One of the main reasons is that wind turbines are subject to constantly varying loads and operate at variable rotational speeds. As a consequence, the influences of turbine faults and the effects of varying load and speed are coupled together in wind turbine condition monitoring signals. So, there is an urgent need to either introduce some operational condition de-coupling procedures into the current wind turbine condition monitoring techniques or develop a new operational condition independent wind turbine condition monitoring technique to maintain high turbine availability and achieve the expected economic benefits from wind. The purpose of this paper is to develop such a technique. In the paper, three operational condition independent criteria are developed dedicated for monitoring the operation and health condition of wind turbine generators. All proposed criteria have been tested through both simulated and practical experiments. The experiments have shown that these criteria provide a solution for detecting both mechanical and electrical faults occurring in wind turbine generators.

  11. Method and apparatus for conducting structural health monitoring in a cryogenic, high vibration environment

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin (Inventor); Beard, Shawn J. (Inventor); Li, Irene (Inventor)

    2013-01-01

    Sensors affixed to various such structures, where the sensors can withstand, remain affixed, and operate while undergoing both cryogenic temperatures and high vibrations. In particular, piezoelectric single crystal transducers are utilized, and these sensors are coupled to the structure via a low temperature, heat cured epoxy. This allows the transducers to monitor the structure while the engine is operating, even despite the harsh operating conditions. Aspects of the invention thus allow for real time monitoring and analysis of structures that operate in conditions that previously did not permit such analysis. A further aspect of the invention relates to use of piezoelectric single crystal transducers. In particular, use of such transducers allows the same elements to be used as both sensors and actuators.

  12. Effect of calibration and environmental condition on the performance of direct-reading organic vapor monitors.

    PubMed

    Coffey, Christopher; LeBouf, Ryan; Lee, Larry; Slaven, James; Martin, Stephen

    2012-01-01

    The performance of three MIRAN SapphIRe Portable Infrared Ambient Air Analyzers and three Century Portable Toxic Vapor Analyzers equipped with photoionization (PID) and flame ionization (FID) detectors was compared with charcoal tube sampling. Relationships were investigated using two different calibration methods at four cyclohexane concentrations, three temperatures, and four relative humidities. For the first method, the TVA monitors were calibrated with a single concentration of methane for the FID, and isobutylene for the PID. The SapphIRe monitors were zeroed and the monitor's manufacturer-supplied library was used. For the second method, a five-point cyclohexane calibration curve was created for each monitor. Comparison of the monitor results of each calibration method (pooled data) indicated a significant difference between methods (t-test, p < 0.001), The SapphIRe group had results closer to the charcoal tubes with the second calibration method, while the PID and FID monitor groups performed better using the first calibration method. The PID monitor group's performance was affected only at the 90% relative humidity (RH) condition. Using the first method, the monitor readings were compared with the charcoal tube average using mixed linear model analyses of variance (ANOVAs) and regression. The ANOVA results showed there was a statistically significant difference among readings from all monitor types (p <0.0001). The regression results demonstrated that the SapphIRe (r² = 0.97) and FID (r² = 0.92) monitor groups correlated well with the charcoal tubes. The PID monitor group had a similar correlation when 90% RH was excluded (r² = 0.94) but had a weaker correlation when it was included (r² = 0.58). The operator should take care when using these monitors at high concentrations and the PID monitors at high humidities, consider the variability between units of the same monitor, and conduct performance verification of the monitor being used.

  13. Health Monitoring of Composite Material Structures using a Vibrometry Technique

    NASA Technical Reports Server (NTRS)

    Schulz, Mark J.

    1997-01-01

    Large composite material structures such as aircraft and Reusable Launch Vehicles (RLVS) operate in severe environments comprised of vehicle dynamic loads, aerodynamic loads, engine vibration, foreign object impact, lightning strikes, corrosion, and moisture absorption. These structures are susceptible to damage such as delamination, fiber breaking/pullout, matrix cracking, and hygrothermal strain. To ensure human safety and load-bearing integrity, these structures must be inspected to detect and locate often invisible damage and faults before becoming catastrophic. Moreover, nearly all future structures will need some type of in-service inspection technique to increase their useful life and reduce maintenance and overall costs. Possible techniques for monitoring the health and indicating damage on composite structures include: c-scan, thermography, acoustic emissions using piezoceramic actuators or fiber-optic wires with gratings, laser ultrasound, shearography, holography, x-ray, and others. These techniques have limitations in detecting damage that is beneath the surface of the structure, far away from a sensor location, or during operation of the vehicle. The objective of this project is to develop a more global method for damage detection that is based on structural dynamics principles, and can inspect for damage when the structure is subjected to vibratory loads to expose faults that may not be evident by static inspection. A Transmittance Function Monitoring (TFM) method is being developed in this project for ground-based inspection and operational health monitoring of large composite structures as a RLV. A comparison of the features of existing health monitoring approaches and the proposed TFM method is given.

  14. Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.

    2016-01-01

    The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.

  15. Autonomous structural health monitoring technique for interplanetary drilling applications using laser Doppler velocimeters

    NASA Astrophysics Data System (ADS)

    Statham, Shannon M.

    The research work presented in this thesis is devoted to the formulation and field testing of a dynamics-based structural health monitoring system for an interplanetary subsurface exploration drill system. Structural health monitoring is the process of detecting damage or other types of defects in structural and mechanical systems that have the potential to adversely affect the current or future performance of these systems. Interplanetary exploration missions, specifically to Mars, involve operations to search for water and other signs of extant or past life. Such missions require advanced robotic systems that are more susceptible to structural and mechanical failures, which motivates a need for structural health monitoring techniques relevant to interplanetary exploration systems. Strict design requirements for interplanetary exploration missions create unique research problems and challenges compared with structural health monitoring procedures and techniques developed to date. These challenges include implementing sensors and devices that will not interfere with the drilling operation, producing "real-time" diagnostics of the drilling condition, and developing an automation procedure for complete autonomous operations. The first research area involves modal analysis experiments to understand the dynamic characteristics of interplanetary drill structural systems in operation. These experiments also validate the use of Laser Doppler Velocimeter sensors in real-time structural health monitoring and prove the drill motor system adequately excites the drill for dynamic measurements and modal analysis while the drill is in operation. The second research area involves the development of modal analysis procedures for rotating structures using a Chebyshev signal filter to remove harmonic component and other noise from the rotating drill signal. This filter is necessary to accurately analyze the condition of the rotating drill auger tube while in operation. The third

  16. Comparison of multispectral remote-sensing techniques for monitoring subsurface drain conditions. [Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Goettelman, R. C.; Grass, L. B.; Millard, J. P.; Nixon, P. R.

    1983-01-01

    The following multispectral remote-sensing techniques were compared to determine the most suitable method for routinely monitoring agricultural subsurface drain conditions: airborne scanning, covering the visible through thermal-infrared (IR) portions of the spectrum; color-IR photography; and natural-color photography. Color-IR photography was determined to be the best approach, from the standpoint of both cost and information content. Aerial monitoring of drain conditions for early warning of tile malfunction appears practical. With careful selection of season and rain-induced soil-moisture conditions, extensive regional surveys are possible. Certain locations, such as the Imperial Valley, Calif., are precluded from regional monitoring because of year-round crop rotations and soil stratification conditions. Here, farms with similar crops could time local coverage for bare-field and saturated-soil conditions.

  17. Unsupervised statistical damage diagnosis for structural health monitoring of existing civil structures

    NASA Astrophysics Data System (ADS)

    Iwasaki, A.; Todoroki, A.; Sugiya, T.; Izumi, S.; Sakai, S.

    2005-06-01

    Structural health monitoring is an important technology for ageing aerospace and civil structures. For this structural health monitoring, fiber optic sensors are increasing in popularity; however, several kinds of sensors are usually required, including sensors other than fiber optic sensors. Thus, a new technology for transforming conventional sensors into distributed sensors is required. The present study proposes Ethernet LAN technologies for the sensor integration required for structural health monitoring, and discusses the advantages of adopting this technology. Moreover, the paper describes an Ethernet-based health monitoring system and a statistical unsupervised damage detecting method for automatic damage diagnosis. Then, we create a system for monitoring the damage to an expressway tunnel jet-fan using system identification and statistical tools. Damage was detected from changes in a set of data measuring loads on the turnbuckles of the jet-fan. The resulting automatic diagnosis of damage to the jet-fan was successful.

  18. STRUCTURAL INTEGRITY MONITORING FOR IMPROVED DRINKING WATER INFRASTRUCTURE SUSTAINABILITY

    EPA Science Inventory

    Structural integrity monitoring (SIM) is the systematic detection, location, and quantification of pipe wall damage or associated indicators. Each of the adverse situations below has the potential to be reduced by more effective and economical SIM of water mains:
    1) the dr...

  19. A New Ion Implant Monitor Electrical Test Structure.

    DTIC Science & Technology

    1986-01-01

    In this paper, a new Ion Implant Monitor test structure and measurement method is reported. A direct measurement of the sheet resistance of the...probe measurements. Voltage measurements are directly converted to sheet resistance , thus measurements may be performed rapidly.

  20. STRUCTURAL HEALTH MONITORING OF COMPOSITE LAMINATES WITH EMBEDDED PIEZOELECTRIC FIBERS

    SciTech Connect

    Lissenden, Cliff J.; Puthillath, Padma K.; Blackshire, James L.

    2009-03-03

    The actuation of ultrasonic guided waves in a carbon fiber reinforced polymer plate from embedded metal core piezoelectric fibers is studied for structural health monitoring applications. A linear array of fibers embedded at the midplane can generate guided waves transverse to the fiber direction. Finite element simulations show that a significant source influence is associated with the small diameter piezoelectric fibers.

  1. Condition monitoring of distributed systems using two-stage Bayesian inference data fusion

    NASA Astrophysics Data System (ADS)

    Jaramillo, Víctor H.; Ottewill, James R.; Dudek, Rafał; Lepiarczyk, Dariusz; Pawlik, Paweł

    2017-03-01

    In industrial practice, condition monitoring is typically applied to critical machinery. A particular piece of machinery may have its own condition monitoring system that allows the health condition of said piece of equipment to be assessed independently of any connected assets. However, industrial machines are typically complex sets of components that continuously interact with one another. In some cases, dynamics resulting from the inception and development of a fault can propagate between individual components. For example, a fault in one component may lead to an increased vibration level in both the faulty component, as well as in connected healthy components. In such cases, a condition monitoring system focusing on a specific element in a connected set of components may either incorrectly indicate a fault, or conversely, a fault might be missed or masked due to the interaction of a piece of equipment with neighboring machines. In such cases, a more holistic condition monitoring approach that can not only account for such interactions, but utilize them to provide a more complete and definitive diagnostic picture of the health of the machinery is highly desirable. In this paper, a Two-Stage Bayesian Inference approach allowing data from separate condition monitoring systems to be combined is presented. Data from distributed condition monitoring systems are combined in two stages, the first data fusion occurring at a local, or component, level, and the second fusion combining data at a global level. Data obtained from an experimental rig consisting of an electric motor, two gearboxes, and a load, operating under a range of different fault conditions is used to illustrate the efficacy of the method at pinpointing the root cause of a problem. The obtained results suggest that the approach is adept at refining the diagnostic information obtained from each of the different machine components monitored, therefore improving the reliability of the health assessment of

  2. Reducing the cost of impedance-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Peairs, Daniel M.; Park, Gyuhae; Inman, Daniel J.

    2002-06-01

    This paper presents the current research on impedance-based structural health monitoring technique at the Center for Intelligent Material Systems and Structures. The basic principle behind this technique is to apply high frequency structural excitations (typically higher than 30 kHz) through the surface-bonded piezoelectric transducers, and measure the impedance of structures by monitoring the current and voltage applied to the piezoelectric transducers. Changes in impedance indicate changes in the structure, which in turn can indicate that damage has occurred. Three examples, including a bolted joint, gas pipeline and composite structure, are presented to illustrate the effectiveness of this health monitoring technique to the wide variety of practical field applications. Although many proof-of-concept experiments have been performed using the impedance methods, the impedance-measuring device (HP4194A) is still bulky and expensive. Therefore, we have developed an operational amplifier-based turnkey device that can measure and record the electric impedance of a PZT. The performance of this miniaturized and portable device has been compared to our previous results and its effectiveness has been demonstrated. This paper summarizes the experimental setup, procedures, considerations needed to implement the device in field applications.

  3. X-band rf structure with integrated alignment monitors

    NASA Astrophysics Data System (ADS)

    Dehler, M.; Raguin, J.-Y.; Citterio, A.; Falone, A.; Wuensch, W.; Riddone, G.; Grudiev, A.; Zennaro, R.

    2009-06-01

    We present the electrical design for an X-band traveling wave accelerator structure with integrated alignment monitors to measure the transverse wake, which will be used as part of the PSI-XFEL project and in the CLIC structure testing program. At PSI, it will compensate nonlinearities in the longitudinal phase space at the injector prototype of the PSI-XFEL. At CLIC it will be tested for breakdown limits and rates in the high gradient regime. The prolonged operation of such a structure in the PSI-XFEL injector, albeit not for the CLIC parameter regime, will constitute a good quality test of the manufacturing procedures employed. The operation in the PSI-XFEL injector will be at a relatively modest beam energy of 250 MeV, at which transverse wakes can easily destroy the beam emittance. For this reason, the layout chosen employs a large iris, 5π/6 phase advance geometry, which minimizes transverse wakefield effects while still retaining a good efficiency. As a second important feature, the design includes two wakefield monitors coupling to the transverse higher order modes, which allow steering the beam to the structure axis, potentially facilitating a higher precision than mechanical alignment strategies. Of special interest is the time domain envelope of these monitor signals. Local offsets due to bends or tilts have individual signatures in the frequency spectrum, which in turn are correlated with different delays in the signal envelope. By taking advantage of this combined with the single bunch mode at the PSI-XFEL, the use of a relatively simple detector-type rf front end should be possible, which will not only show beam offsets but also higher order misalignments such as tilts in the structure. The resolution of these monitors is determined by the tolerance of the random cell-to-cell misalignment leading to a spurious signal in the monitors.

  4. Wireless Zigbee strain gage sensor system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  5. 24 CFR 235.230 - Condition of multifamily structure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Condition of multifamily structure. 235.230 Section 235.230 Housing and Urban Development Regulations Relating to Housing and Urban... Involving Condominium Units § 235.230 Condition of multifamily structure. (a) When a family unit is...

  6. A novel method for condition monitoring of rotating machinery based on statistical linguistic analysis and weighted similarity measures

    NASA Astrophysics Data System (ADS)

    Lin, Jinshan; Dou, Chunhong

    2017-03-01

    Defective rotating machinery generally produces complex fluctuations due to non-stationary and nonlinear properties of dynamical systems. Consequently, dynamical structures of vibration data from rotating machinery are hard to disclose. As a result, condition monitoring of rotating machinery is fairly challenging. In this paper, statistical linguistic analysis (SLA), a novel tool for time series analysis, was introduced to analyze dynamical mechanisms hidden in vibration data of rotating machinery. SLA maps original vibration data from rotating machinery to a binary symbolic sequence by exploiting potential of increase and decreases of time intervals. Next, by sliding a window and identifying the elements in each window as a "word", a group of words is created. Then, by counting the occurrence of each word type, the binary symbolic sequence can be converted into a word frequency sequence. Next, a weighted similarity measure (WSM) defined in this paper serves to detect a change of running conditions of rotating machinery. As a result, this paper proposed a novel method for condition monitoring of rotating machinery based on SLA and WSM. Afterwards, the performance of the proposed method was validated using vibration data from both gearboxes and rolling bearings. Also, the proposed method was compared with conventional temporal statistical parameters, Approximate Entropy and Sample Entropy. The results indicate that the proposed method performs better than the other methods in condition monitoring of rotating machinery. Also, compared with either of Correlation Coefficients and Standardized Euclidean Distances, the WSM gives a somewhat better performance in reflecting a change of dynamical structures.

  7. Structural Health Monitoring for Impact Damage in Composite Structures.

    SciTech Connect

    Roach, Dennis P.; Raymond Bond; Doug Adams

    2014-08-01

    Composite structures are increasing in prevalence throughout the aerospace, wind, defense, and transportation industries, but the many advantages of these materials come with unique challenges, particularly in inspecting and repairing these structures. Because composites of- ten undergo sub-surface damage mechanisms which compromise the structure without a clear visual indication, inspection of these components is critical to safely deploying composite re- placements to traditionally metallic structures. Impact damage to composites presents one of the most signi fi cant challenges because the area which is vulnerable to impact damage is generally large and sometimes very dif fi cult to access. This work seeks to further evolve iden- ti fi cation technology by developing a system which can detect the impact load location and magnitude in real time, while giving an assessment of the con fi dence in that estimate. Fur- thermore, we identify ways by which impact damage could be more effectively identi fi ed by leveraging impact load identi fi cation information to better characterize damage. The impact load identi fi cation algorithm was applied to a commercial scale wind turbine blade, and results show the capability to detect impact magnitude and location using a single accelerometer, re- gardless of sensor location. A technique for better evaluating the uncertainty of the impact estimates was developed by quantifying how well the impact force estimate meets the assump- tions underlying the force estimation technique. This uncertainty quanti fi cation technique was found to reduce the 95% con fi dence interval by more than a factor of two for impact force estimates showing the least uncertainty, and widening the 95% con fi dence interval by a fac- tor of two for the most uncertain force estimates, avoiding the possibility of understating the uncertainty associated with these estimates. Linear vibration based damage detection tech- niques were investigated in the

  8. Monitoring the Geneseo Nuclear Structure Lab with VISION

    NASA Astrophysics Data System (ADS)

    Nicklaw, R.; Padalino, S.; McLean, J.

    2002-10-01

    VISION (Virtual Instrument System Information) is a LabVIEW based program designed to monitor a 2 MV Van de Graaff accelerator in the Geneseo Nuclear Structure Laboratory (GNSL). The purpose of the system is to monitor and notify the user of potentially critical situations in the lab. Main parameters of interest are the water coolant temperatures in the diffusion pumps, pressures within the vacuum chambers, and Van de Graaff operational parameters. LabVIEW reads these values and then displays them on monitors located throughout the laboratory. The user can set alarm limits on the relevant parameters, and when exceeded notifies the user verbally and visually. Recent additions to the VISION program include the water level sensor, calibration of the pressure readings, a web server application, and data logging. The VISION system is Internet accessible ^1, data from the main screen is displayed over the web for remote monitoring of the accelerator. Another useful monitoring tool is the data logger, which writes acquired data to a formatted text document at specified intervals. A future goal for VISION is to not only monitor, but to control aspects of the GNSL with LabVIEW. ^1 Webpage accessible at: http://s69n144.sci.geneseo.edu/vision.htm * Research funded in part by the United States Department of Energy

  9. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    NASA Astrophysics Data System (ADS)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  10. Unraveling fabrication and calibration of wearable gas monitor for use under free-living conditions.

    PubMed

    Yue Deng; Cheng Chen; Tsow, Francis; Xiaojun Xian; Forzani, Erica

    2016-08-01

    Volatile organic compounds (VOC) are organic chemicals that have high vapor pressure at regular conditions. Some VOC could be dangerous to human health, therefore it is important to determine real-time indoor and outdoor personal exposures to VOC. To achieve this goal, our group has developed a wearable gas monitor with a complete sensor fabrication and calibration protocol for free-living conditions. Correction factors for calibrating the sensors, including sensitivity, aging effect, and temperature effect are implemented into a Quick Response Code (QR code), so that the pre-calibrated quartz tuning fork (QTF) sensor can be used with the wearable monitor under free-living conditions.

  11. A new experimental method for in situ corrosion monitoring under alternate wet-dry conditions.

    PubMed

    Fu, Xinxin; Dong, Junhua; Han, Enhou; Ke, Wei

    2009-01-01

    A new experimental method was applied in in situ corrosion monitoring of mild steel Q235 under alternate wet-dry conditions. The thickness of the electrolyte film during the wet cycle was monitored by a high-precision balance with a sensibility of 0.1 mg. At the same time, an electrochemical impedance technique was employed to study the effect of film thickness on corrosion rates. Experimental results showed that there was a critical electrolyte film condition for which the corrosion rate reached a maximum during wet-dry cycles. For the substrate, the critical condition could be described by a film thickness of about 17 μm. For the rusted specimen, the critical condition could be described by an electrolyte amount of about 0.038 g, which is equivalent to a film thickness of 38 μm. This monitoring system was very useful for studying atmospheric corrosion of metals covered by corrosion products.

  12. A nonlinear cointegration approach with applications to structural health monitoring

    NASA Astrophysics Data System (ADS)

    Shi, H.; Worden, K.; Cross, E. J.

    2016-09-01

    One major obstacle to the implementation of structural health monitoring (SHM) is the effect of operational and environmental variabilities, which may corrupt the signal of structural degradation. Recently, an approach inspired from the community of econometrics, called cointegration, has been employed to eliminate the adverse influence from operational and environmental changes and still maintain sensitivity to structural damage. However, the linear nature of cointegration may limit its application when confronting nonlinear relations between system responses. This paper proposes a nonlinear cointegration method based on Gaussian process regression (GPR); the method is constructed under the Engle-Granger framework, and tests for unit root processes are conducted both before and after the GPR is applied. The proposed approach is examined with real engineering data from the monitoring of the Z24 Bridge.

  13. Convexity conditions and normal structure of Banach spaces

    NASA Astrophysics Data System (ADS)

    Saejung, Satit

    2008-08-01

    We prove that F-convexity, the property dual to P-convexity of Kottman, implies uniform normal structure. Moreover, in the presence of the WORTH property, normal structure follows from a weaker convexity condition than F-convexity. The latter result improves the known fact that every uniformly nonsquare space with the WORTH property has normal structure.

  14. Vibration Condition Monitoring Techniques for Fault Diagnosis of Electromotor with 1.5 Kw Power

    NASA Astrophysics Data System (ADS)

    Mohamadi Monavar, H.; Ahmadi, H.; Mohtasebi, S. S.; Hasani, S.

    Vibration analysis is the main conditions monitoring techniques for machinery maintenance and fault diagnosis. This technique has its unique advantages and disadvantages associated with the monitoring and fault diagnosis of machinery. When this technique is conducted independently, only a portion of machine faults are typically diagnosed. However, practical experience has shown that this technique in a machine condition monitoring program provides useful reliable information, bringing significant cost benefits to industry. The objective of this research is to investigate the correlation between vibration analysis and fault diagnosis. This was achieved by vibration analysis and investigating different operating conditions of an experimental electromotor. The electromotor was initially run under normal operating conditions as a comparative test. A series of tests were then conducted corresponding to different operating condition. Our varieties were speed of electromotor at three levels, respectively 500, 1000 and 1500 rpm. We did three faults in our electromotor; there were misalignment, looseness and bad bearing. We coupled our electromotor to the variable blade fan and applied several load on that by changing the number of blade of fan. We have chosen 2, 6 and 10 blades fan to apply three different loads on our electromotor. Vibration data was regularly collected. Numerical data produced by vibration analysis were compared with vibration spectra in normal condition of healthy machine, in order to quantify the effectiveness of the vibration condition monitoring technique. The results from this paper have given more understanding on the dependent roles of vibration analysis in predicting and diagnosing machine faults.

  15. Application of structural health monitoring technologies to bio-systems: current status and path forward

    NASA Astrophysics Data System (ADS)

    Bhalla, Suresh; Srivastava, Shashank; Suresh, Rupali; Moharana, Sumedha; Kaur, Naveet; Gupta, Ashok

    2015-03-01

    This paper presents a case for extension of structural health monitoring (SHM) technologies to offer solutions for biomedical problems. SHM research has made remarkable progress during the last two/ three decades. These technologies are now being extended for possible applications in the bio-medical field. Especially, smart materials, such as piezoelectric ceramic (PZT) patches and fibre-Bragg grating (FBG) sensors, offer a new set of possibilities to the bio-medical community to augment their conventional set of sensors, tools and equipment. The paper presents some of the recent extensions of SHM, such as condition monitoring of bones, monitoring of dental implant post surgery and foot pressure measurement. Latest developments, such as non-bonded configuration of PZT patches for monitoring bones and possible applications in osteoporosis detection, are also discussed. In essence, there is a whole new gamut of new possibilities for SHM technologies making their foray into the bi-medical sector.

  16. Ultrasonic wave-based structural health monitoring embedded instrument.

    PubMed

    Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  17. Ultrasonic wave-based structural health monitoring embedded instrument

    SciTech Connect

    Aranguren, G.; Monje, P. M.; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-15

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  18. Ultrasonic wave-based structural health monitoring embedded instrument

    NASA Astrophysics Data System (ADS)

    Aranguren, G.; Monje, P. M.; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  19. Piezo impedance sensors to monitor degradation of biological structure

    NASA Astrophysics Data System (ADS)

    Annamdas, Kiran Kishore Kumar; Annamdas, Venu Gopal Madhav

    2010-04-01

    In some countries it is common to have wooden structures in their homes, especially Japan. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Re-visiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood (green material) was accepted as excellent rehabilitation material, after any disaster. In recent times, the recycling materials extracted from inorganic, biodegradable wastes are converted into blocks or sheets, and are also used to assist public in rehabilitation camps. The key issue which decreases the life of these rehabilitated structure including green materials (like wood) is unnecessary degradation or deterioration over time due to insect or acid attack or rain/ice fall. The recycling material also needs monitoring to protect them against acid or rain/ice attacks. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was subjected to degradation in presence of acids. Variations in mass of plank are studied.

  20. Autonomous self-powered structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Anton, Steven R.; Zhang, David; Kumar, Amrita; Inman, Daniel J.; Ooi, Teng K.

    2010-03-01

    Structural health monitoring technology is perceived as a revolutionary method of determining the integrity of structures involving the use of multidisciplinary fields including sensors, materials, system integration, signal processing and interpretation. The core of the technology is the development of self-sufficient systems for the continuous monitoring, inspection and damage detection of structures with minimal labor involvement. A major drawback of the existing technology for real-time structural health monitoring is the requirement for external electrical power input. For some applications, such as missiles or combat vehicles in the field, this factor can drastically limit the use of the technology. Having an on-board electrical power source that is independent of the vehicle power system can greatly enhance the SHM system and make it a completely self-contained system. In this paper, using the SMART layer technology as a basis, an Autonomous Self-powered (ASP) Structural Health Monitoring (SHM) system has been developed to solve the major challenge facing the transition of SHM systems into field applications. The architecture of the self-powered SHM system was first designed. There are four major components included in the SHM system: SMART Layer with sensor network, low power consumption diagnostic hardware, rechargeable battery with energy harvesting device, and host computer with supporting software. A prototype of the integrated self-powered active SHM system was built for performance and functionality testing. Results from the evaluation tests demonstrated that a fully charged battery system is capable of powering the SHM system for active scanning up to 10 hours.

  1. Dynamic Data-Driven Prognostics and Condition Monitoring of On-board Electronics

    DTIC Science & Technology

    2012-08-27

    a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...W911NF-08-C-0065 665502 Form Approved OMB NO. 0704-0188 54937-MA-ST2.2 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...To) 12-Sep-2008 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 11-Sep-2010 Dynamic Data-Driven Prognostics and Condition Monitoring

  2. Monitoring of suspended sediments, sediment conditions and aquatic biota during the functional check of bottom outlets

    NASA Astrophysics Data System (ADS)

    Haun, Stefan; Seitz, Lydia; Stockinger, Wolfram; Riedl, Martin; Schletterer, Martin

    2016-04-01

    Reservoirs are used to store water for multiple purposes and are therefore of great importance for our society. Regularly inspections of the dam structure and the bottom outlets are necessary to ensure a safe operation of these structures. The release of water from the reservoirs for this procedure often results in high suspended sediment concentrations downstream by the remobilization of deposited sediments, which may result further in negative effects on the downstream located habitats. Due to a careful elaborated monitoring concept, e.g. regarding the opening procedure of the bottom outlets, it is possible to change the management strategy and to avoid or to minimize ecological impacts. Within this study a monitoring concept is developed and implemented to observe occurring suspended sediment concentrations during the opening of the bottom outlets of a small reservoir in the alpine region. The measurement concept includes suspended sediment concentration and discharge measurements at the two upstream located tributaries as well as suspended sediment concentration measurements downstream. Two stations are selected downstream with a distance of 750 m and 2,000 m from the dam. To ensure a complete series of concentrations over time bottom samples, Imhoff-cones as well as turbidity meters are implemented. Whereas the turbidity meters ensure a permanent observation of the conditions (will be calibrated with laboratory results from the bottle samples), the Imhoff-cones make it possible to intervene right away into the process of releasing water. A second focus lies on the downstream located river bed, which is monitored before and after the opening of the bottom outlets in order to assess morphodynamical changes such as river bed clogging occurs. Therefore sediment samples with the so called freeze-panel technique are collected before and after the opening of the bottom outlets to quantify possible changes of the bed material. The results show that downstream habitats

  3. Gb-Sar Interferometry for Structure Monitoring during Infrastructure Projects

    NASA Astrophysics Data System (ADS)

    Serrano Juan, A.; Vázquez-Suñé, E.; Monserrat, O.; Crosetto, M.; Hoffman, C.; Ledesma, A.; Criollo, R.; Pujades, E.; Velasco, V.; García, A.

    2015-12-01

    Monitoring is a necessary task for infrastructure projects. Ground-based synthetic aperture radar (GB-SAR) has been used in a large variety of displacement measurements. However, it has not yet been applied as a monitoring tool during construction projects. This paper aims to demonstrate that GB-SAR can be very helpful for understanding the mechanisms that control structure deformations and for identifying unexpected events and sensitive areas during construction projects. This could be done in a cost-effective way, which complements the traditional displacement measurements. An experiment was performed in the future railway station of La Sagrera, Barcelona (Spain) to demonstrate the utility of GB-SAR on structure monitoring during construction projects. In this experiment, GB-SAR precisely quantified wall displacements induced by dewatering. Manual data and numerical models have been used to confirm the measurements with a correlation analysis and by comparing measurements and deformation patterns, which have produced similar results. These results validate the use of the GB-SAR technique as a monitoring tool during construction projects.

  4. Distributed fiber optic sensors embedded in technical textiles for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Krebber, Katerina; Lenke, Philipp; Liehr, Sascha; Noether, Nils; Wendt, Mario; Wosniok, Aleksander

    2010-09-01

    Technical textiles with embedded distributed fiber optic sensors have been developed for the purposes of structural health monitoring in geotechnical and civil engineering. The distributed fiber optic sensors are based on Brillouin scattering in silica optical fibers and OTDR in polymer optical fibers. Such "smart" technical textiles can be used for reinforcement of geotechnical and masonry structures and the embedded fiber optic sensors can provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, structural health monitoring of critical geotechnical and civil infrastructures can be realized. The paper highlights the results achieved in this innovative field in the framework of several German and European projects.

  5. Condition Monitoring and Fault Diagnosis of Wet-Shift Clutch Transmission Based on Multi-technology

    NASA Astrophysics Data System (ADS)

    Chen, Man; Wang, Liyong; Ma, Biao

    Based on the construction feature and operating principle of the wet-shift clutch transmission, the condition monitoring and fault diagnosis for the transmission of the tracklayer with wet-shift clutch were implemented with using the oil analysis technology, function parameter test method and vibration analysis technology. The new fault diagnosis methods were proposed, which are to build the gray modeling with the oil analysis data, and to test the function parameter of the clutch press, the rotate speed of each gear, the oil press of the steer system and lubrication system and the hydraulic torque converter. It's validated that the representative function signals were chosen to execute the condition monitoring analysis, when the fault symptoms were found, and the oil analysis data were used to apply the gray modeling to forecast the fault occurs time can satisfy the demand of the condition monitoring and fault diagnosis for the transmission regular work.

  6. Wireless sensor systems and methods, and methods of monitoring structures

    DOEpatents

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.

    2007-02-20

    A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.

  7. Pipelining in structural health monitoring wireless sensor network

    NASA Astrophysics Data System (ADS)

    Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim

    2010-04-01

    Application of wireless sensor network (WSN) for structural health monitoring (SHM), is becoming widespread due to its implementation ease and economic advantage over traditional sensor networks. Beside advantages that have made wireless network preferable, there are some concerns regarding their performance in some applications. In long-span Bridge monitoring the need to transfer data over long distance causes some challenges in design of WSN platforms. Due to the geometry of bridge structures, using multi-hop data transfer between remote nodes and base station is essential. This paper focuses on the performances of pipelining algorithms. We summarize several prevent pipelining approaches, discuss their performances, and propose a new pipelining algorithm, which gives consideration to both boosting of channel usage and the simplicity in deployment.

  8. Multistage gearbox condition monitoring using motor current signature analysis and Kolmogorov Smirnov test

    NASA Astrophysics Data System (ADS)

    Kar, Chinmaya; Mohanty, A. R.

    2006-02-01

    Even though there are a number of condition monitoring and analysis techniques, researchers are in search of a simple and easy way to monitor vibration of a gearbox, which is an omnipresent and an important power transmission component in any machinery. Motor current signature analysis (MCSA) has been the most recent addition as a non-intrusive and easy to measure condition monitoring technique. The objective of this paper is to detect artificially introduced defects in gears of a multistage automotive transmission gearbox at different gear operations using MCSA as a condition monitoring technique and Kolmogorov-Smirnov (KS) test as an analysis technique assuming that any defect or load has a specific probability distribution. Empirical cumulative distribution functions (ECDF) are used to differentiate these probability distributions. Steady as well as fluctuating load conditions on the gearbox are tested for both vibration and current signatures during different gear operations. It is concluded that combined MCSA and KS test can be an effective way to monitor and detect faults in gears.

  9. Structural health monitoring of composite repair patches in bridge rehabilitation

    NASA Astrophysics Data System (ADS)

    Wu, Zhanjun; Ghosh, Kumar; Qing, Xinlin; Karbhari, Vistasp; Chang, Fu-Kuo

    2006-03-01

    In recent years, there are many issues involving safety on old bridges, aircrafts and other structures, which threaten the lives of the people using those structures, as well as the structures themselves. To prevent future failure, various measures are being taken. Structure rehabilitations with carbon fiber reinforced composite patches have been adopted and demonstrated to be an excellent way to enhance/repair the structures and prolong the service life. However, there are still many problems residing in this kind of technology that remain unsolved, for example, the failure of the interface between composite repair patches and their host structures. This is a critical issue that must be addressed in order to show the viability of composite patches. In order to study debond occurring between composite repair patches and their host structures, a structure health monitoring scheme was demonstrated on a concrete bridge model in the laboratory. The system is based on active sensing with diagnostic lamb waves, in which piezoelectric transducers are used as both sensors and actuators. In the test, six SMART Layers, each having eight piezoelectirc transducers, were integrated with two composite repair strips on the deck slab of the concrete bridge model. For the three diagnostic layers with each composite repair patch, two layers were bonded on the top surface of the patch, and the other is embedded at the interface between the composite repair patch and the deck slab of the concrete bridge model. The loading procedure of the test included three phases. First, the bridge model was preloaded to initiate cracks on the deck slabs and the repair patches were then implemented. Second, the load was raised to reach the shear capacity of the girders of the bridge model and then the repair patches were implemented on those girders. Lastly, the structure was loaded to damage the deck slabs. During the test, the initiation and development of debond between composite repair patches

  10. Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring

    DTIC Science & Technology

    2016-02-02

    AFRL-AFOSR-VA-TR-2016-0094 Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring. Thomas Henderson UNIVERSITY OF UTAH SALT...The major goal of this work was to provide rigorous Bayesian Computational Sensor Networks to quantify uncertainty in (1) model-based state...estimates incorporating sensor data, (2) model parameters (e.g., diffusion coefficients), (3) sensor node model parameter values (e.g., location, bias

  11. A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions

    NASA Astrophysics Data System (ADS)

    Antoniadou, I.; Manson, G.; Staszewski, W. J.; Barszcz, T.; Worden, K.

    2015-12-01

    This paper deals with the condition monitoring of wind turbine gearboxes under varying operating conditions. Generally, gearbox systems include nonlinearities so a simplified nonlinear gear model is developed, on which the time-frequency analysis method proposed is first applied for the easiest understanding of the challenges faced. The effect of varying loads is examined in the simulations and later on in real wind turbine gearbox experimental data. The Empirical Mode Decomposition (EMD) method is used to decompose the vibration signals into meaningful signal components associated with specific frequency bands of the signal. The mode mixing problem of the EMD is examined in the simulation part and the results in that part of the paper suggest that further research might be of interest in condition monitoring terms. For the amplitude-frequency demodulation of the signal components produced, the Hilbert Transform (HT) is used as a standard method. In addition, the Teager-Kaiser energy operator (TKEO), combined with an energy separation algorithm, is a recent alternative method, the performance of which is tested in the paper too. The results show that the TKEO approach is a promising alternative to the HT, since it can improve the estimation of the instantaneous spectral characteristics of the vibration data under certain conditions.

  12. Structural Health Monitoring of Composite Structures Using Fiber Optic Sensors

    NASA Astrophysics Data System (ADS)

    Williams, Charles Phillip Michael

    In an aircraft engine at high altitude, the low-pressure turbine (LPT) section can experience low-Reynolds number (Re) flows making the turbine blades susceptible to large separation losses. These losses are detrimental to the performance of the turbine and lead to a roadblock for "higher-lift" blade designs. Accurate prediction of the separation characteristics and an understanding of mitigation techniques are of the utmost importance. The current study conducts simulations of flow control techniques for the Air Force Research Laboratory (AFRL) L2A turbine blade at low-Re of 10,000 based on inlet velocity and blade axial chord. This blade was selected for its "high-lift" characteristics coupled with massive separation on the blade at low-Re which provides an excellent test blade for flow control techniques. Flow control techniques involved various configurations of vortex generator jets (VGJs) using momentum injection (i.e. jet blowing). All computations were executed on dual-topology, multi-block, structured meshes and incorporated the use of a parallel computing platform using the message passing interface (MPI) communications. A high-order implicit large eddy simulation (ILES) approach was used in the simulations allowing for a seamless transition between laminar, transitional, and turbulent flow without changing flow solver parameters. A validation study was conducted involving an AFRL L1A turbine blade which showed good agreement with experimental trends for cases which controlled separation in the experiments. The same cases showed good agreement between different grid sizes. The differences between experimental and numerical results are largely attributed to differences in the setup. That is, the simulation did not include freestream turbulence or wind-tunnel wall effects. The flow control study conducted for the L2A blade showed a small degree of separation control for jets placed just downstream (DS) of the separation point. A limited study was conducted

  13. Progress toward an advanced condition monitoring system for reusable rocket engines

    NASA Technical Reports Server (NTRS)

    Maram, J.; Barkhoudarian, S.

    1987-01-01

    A new generation of advanced sensor technologies will allow the direct measurement of critical/degradable rocket engine components' health and the detection of degraded conditions before component deterioration affects engine performance, leading to substantial improvements in reusable engines' operation and maintenance. When combined with a computer-based engine condition-monitoring system, these sensors can furnish a continuously updated data base for the prediction of engine availability and advanced warning of emergent maintenance requirements. Attention is given to the case of a practical turbopump and combustion device diagnostic/prognostic health-monitoring system.

  14. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  15. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  16. Wireless system for structural health monitoring based on Lamb waves

    NASA Astrophysics Data System (ADS)

    Lieske, U.; Dietrich, A.; Schubert, L.; Frankenstein, B.

    2012-04-01

    Structural health monitoring systems are increasingly used for comprehensive fatigue tests and surveillance of large scale structures. In this paper we describe the development and validation of a wireless system for SHM application based on Lamb-waves. The system is based on a wireless sensor network and focuses especially on low power measurement, signal processing and communication. The sensor nodes were realized by compact, sensor near signal processing structures containing components for analog preprocessing of acoustic signals, their digitization and network communication. The core component is a digital microprocessor ARM Cortex-M3 von STMicroelectronics, which performs the basic algorithms necessary for data acquisition synchronization and filtering. The system provides network discovery and multi-hop and self-healing mechanisms. If the distance between two communicating devices is too big for direct radio transmission, packets are routed over intermediate devices automatically. The system represents a low-power and low-cost active structural health monitoring solution. As a first application, the system was installed on a CFRP structure.

  17. [Research on the inner wall condition monitoring method of ring forgings based on infrared spectra].

    PubMed

    Fu, Xian-bin; Liu, Bin; Wei, Bin; Zhang, Yu-cun; Liu, Zhao-lun

    2015-01-01

    In order to grasp the inner wall condition of ring forgings, an inner wall condition monitoring method based on infrared spectra for ring forgings is proposed in the present paper. Firstly, using infrared spectroscopy the forgings temperature measurement system was built based on the three-level FP-cavity LCTF. The two single radiation spectra from the forgings' surface were got using the three-level FP-cavity LCTF. And the temperature measuring of the surface forgings was achieved according to the infrared double-color temperature measuring principle. The measuring accuracy can be greatly improved by this temperature measurement method. Secondly, on the basis of the Laplace heat conduction differential equation the inner wall condition monitoring model was established by the method of separating variables. The inner wall condition monitoring of ring forgings was realized via combining the temperature data and the forgings own parameter information. Finally, this method is feasible according to the simulation experiment. The inner wall condition monitoring method can provide the theoretical basis for the normal operating of the ring forgings.

  18. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  19. Preschool Children Learn about Causal Structure from Conditional Interventions

    ERIC Educational Resources Information Center

    Schulz, Laura E.; Gopnik, Alison; Glymour, Clark

    2007-01-01

    The conditional intervention principle is a formal principle that relates patterns of interventions and outcomes to causal structure. It is a central assumption of experimental design and the causal Bayes net formalism. Two studies suggest that preschoolers can use the conditional intervention principle to distinguish causal chains, common cause…

  20. Aspects of model-based rocket engine condition monitoring and control

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.; Helmicki, Arthur J.

    1994-01-01

    A rigorous propulsion system modelling method suitable for control and condition monitoring purposes is developed. Previously developed control oriented methods yielding nominal models for gaseous medium propulsion systems are extended to include both nominal and anomalous models for liquid mediums in the following two ways. First, thermodynamic and fluid dynamic properties for liquids such as liquid hydrogen are incorporated into the governing equations. Second, anomalous conditions are captured in ways compatible with existing system theoretic design tools so that anomalous models can be constructed. Control and condition monitoring based methods are seen as an improvement over some existing modelling methods because such methods typically do not rigorously lead to low order models nor do they provide a means for capturing anomalous conditions. Applications to the nominal SSME HPFP and degraded HPFP serve to illustrate the approach.

  1. The role of sample surveys for monitoring the condition of the nation's lakes.

    PubMed

    Larsen, D P; Thornton, K W; Urquhart, N S; Paulsen, S G

    1994-09-01

    In order to meet a growing need to determine the condition of the nation's ecosystems and how their condition is changing, the U.S. Environmental Protection Agency (EPA) developed EMAP, the Environmental Monitoring and Assessment Program. A common survey design serves as the foundation on which to base monitoring of status and trends among diverse ecosystem types. In this paper, we describe the need for a statistically based survey design, briefly summarize the basic EMAP design, describe how that design is tailored for the selection of a probability sample of lakes on which to make measurements of lake condition, and illustrate the process for selecting a sample of lakes in the northeastern United States. Finally, we illustrate how measurements taken on the sample of lakes can be summarized, with known uncertainty, to describe the condition of a population of lakes.

  2. Recommendations for strengthening the infrared technology component of any condition monitoring program

    NASA Astrophysics Data System (ADS)

    Nicholas, Jack R., Jr.; Young, R. K.

    1999-03-01

    This presentation provides insights of a long term 'champion' of many condition monitoring technologies and a Level III infra red thermographer. The co-authors present recommendations based on their observations of infra red and other components of predictive, condition monitoring programs in manufacturing, utility and government defense and energy activities. As predictive maintenance service providers, trainers, informal observers and formal auditors of such programs, the co-authors provide a unique perspective that can be useful to practitioners, managers and customers of advanced programs. Each has over 30 years experience in the field of machinery operation, maintenance, and support the origins of which can be traced to and through the demanding requirements of the U.S. Navy nuclear submarine forces. They have over 10 years each of experience with programs in many different countries on 3 continents. Recommendations are provided on the following: (1) Leadership and Management Support (For survival); (2) Life Cycle View (For establishment of a firm and stable foundation for a program); (3) Training and Orientation (For thermographers as well as operators, managers and others); (4) Analyst Flexibility (To innovate, explore and develop their understanding of machinery condition); (5) Reports and Program Justification (For program visibility and continued expansion); (6) Commitment to Continuous Improvement of Capability and Productivity (Through application of updated hardware and software); (7) Mutual Support by Analysts (By those inside and outside of the immediate organization); (8) Use of Multiple Technologies and System Experts to Help Define Problems (Through the use of correlation analysis of data from up to 15 technologies. An example correlation analysis table for AC and DC motors is provided.); (9) Root Cause Analysis (Allows a shift from reactive to proactive stance for a program); (10) Master Equipment Identification and Technology Application (To

  3. Health monitoring of composite structures throughout the life cycle

    NASA Astrophysics Data System (ADS)

    Chilles, James; Croxford, Anthony; Bond, Ian

    2016-04-01

    This study demonstrates the capability of inductively coupled piezoelectric sensors to monitor the state of health throughout the lifetime of composite structures. A single sensor which generated guided elastic waves was embedded into the stacking sequence of a large glass fiber reinforced plastic plate. The progress of cure was monitored by measuring variations in the amplitude and velocity of the waveforms reflected from the plate's edges. Baseline subtraction techniques were then implemented to detect barely visible impact damage (BVID) created by a 10 Joule impact, at a distance of 350 mm from the sensor embedded in the cured plate. To investigate the influence of mechanical loading on sensor performance, a single sensor was embedded within a glass fiber panel and subjected to tensile load. The panel was loaded up to a maximum strain of 1%, in increments of 0.1% strain. Guided wave measurements were recorded by the embedded sensor before testing, when the panel was under load, and after testing. The ultrasonic measurements showed a strong dependence on the applied load. Upon removal of the mechanical load the guided wave measurements returned to their original values recorded before testing. The results in this work show that embedded piezoelectric sensors can be used to monitor the state of health throughout the life-cycle of composite parts, even when subjected to relatively large strains. However the influence of load on guided wave measurements has implications for online monitoring using embedded piezoelectric transducers.

  4. Optoelectronic leak detection system for monitoring subsea structures

    NASA Astrophysics Data System (ADS)

    Moodie, D.,; Costello, L.; McStay, D.

    2010-04-01

    Leak detection and monitoring on subsea structures is an area of increasing interest for the detection and monitoring of production and control fluids for the oil and gas industry. Current techniques such as capacitive (dielectric) based measurement or passive acoustic systems have limitations and we report here an optoelectronic solution based upon fluorescence spectroscopy to provide a permanent monitoring solution. We report here a new class of optoelectronic subsea sensor for permanent, real time monitoring of hydrocarbon production systems. The system is capable of detecting small leaks of production or hydraulic fluid (ppm levels) over distances of 4-5 meters in a subsea environment. Ideally systems designed for such applications should be capable of working at depths of up to 3000m unattended for periods of 20+ years. The system uses advanced single emitter LED technology to meet the challenges of lifetime, power consumption, spatial coverage and delivery of a cost effective solution. The system is designed for permanent deployment on Christmas tree (XT), subsea processing systems (SPS) and associated equipment to provide enhanced leak detection capability.

  5. Model-based condition monitoring of PEM fuel cell using Hotelling T 2 control limit

    NASA Astrophysics Data System (ADS)

    Xue, X.; Tang, J.; Sammes, N.; Ding, Y.

    Although a variety of design and control strategies have been proposed to improve the performance of polymer electrolyte membrane (PEM) fuel cell systems, temporary faults in such systems still might occur during operations due to the complexity of the physical process and the functional limitations of some components. The development of an effective condition monitoring system that can detect these faults in a timely manner is complicated by the operating condition variation, the significant variability/uncertainty of the fuel cell system, and the measurement noise. In this research, we propose a model-based condition monitoring scheme that employs the Hotelling T 2 statistical analysis for fault detection of PEM fuel cells. Under a given operating condition, the instantaneous load current, the temperature and fuel/gas source pressures of the fuel cell are measured. These measurements are then fed into a lumped parameter dynamic fuel cell model for the establishment of the baseline under the same operating condition for comparison. The fuel cell operation is simulated under statistical sampling of parametric uncertainties with specified statistics (mean and variance) that account for the system variability/uncertainty and measurement noise. This yields a group of output voltages (under the same operating condition but with uncertainties) as the baseline. Fault detection is facilitated by comparing the real-time measurement of the fuel cell output voltage with the baseline voltages by employing the Hotelling T 2 statistical analysis. The baseline voltages are used to evaluate the output T 2 statistics under normal operating condition. Then, with a given confidence level the upper control limit can be specified. Fault condition will be declared if the T 2 statistics of real-time voltage measurement exceeds the upper control limit. This model-based robust condition monitoring scheme can deal with the operating condition variation, various uncertainties in a fuel cell

  6. 42 CFR 485.627 - Condition of participation: Organizational structure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... participation: Organizational structure. (a) Standard: Governing body or responsible individual. The CAH has a... 42 Public Health 5 2011-10-01 2011-10-01 false Condition of participation: Organizational structure. 485.627 Section 485.627 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT...

  7. 42 CFR 485.627 - Condition of participation: Organizational structure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... participation: Organizational structure. (a) Standard: Governing body or responsible individual. The CAH has a... 42 Public Health 5 2010-10-01 2010-10-01 false Condition of participation: Organizational structure. 485.627 Section 485.627 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT...

  8. Using Johnson Distribution for Automatic Threshold Setting in Wind Turbine Condition Monitoring System

    DTIC Science & Technology

    2014-12-23

    Using Johnson Distribution for Automatic Threshold Setting in Wind Turbine Condition Monitoring System Kun S. Marhadi1 and Georgios Alexandros...distribution could result in sub-optimal thresholds. Moreover, in wind turbine applications the collected data available may not rep- resent the whole...operating conditions of a turbine , which re- sults in uncertainty in the parameters of the fitted probabil- ity distribution and the thresholds calculated. In

  9. Monitoring of WUT grand hall roof in conditions of high temperature changes

    NASA Astrophysics Data System (ADS)

    Wozniak, M.

    2009-04-01

    The geodetic control measurements of changes in object's geometry should satisfy high accuracy and reliability. New tacheometers equipped with Automatic Target Recognition automatically moves the telescope to the center of the prism and supports control points measurements. The accuracy of using ATR system and stability of instrument in precise measurements were controlled in laboratory and field conditions. This paper will present the results of monitoring measurements using Leica TDA 5005 during investigations of roof geometry in conditions of high temperature changes.

  10. Railway track component condition monitoring using optical fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Buggy, S. J.; James, S. W.; Staines, S.; Carroll, R.; Kitson, P.; Farrington, D.; Drewett, L.; Jaiswal, J.; Tatam, R. P.

    2016-05-01

    The use of optical fibre Bragg grating (FBG) strain sensors to monitor the condition of safety critical rail components is investigated. Fishplates, switchblades and stretcher bars on the Stagecoach Supertram tramway in Sheffield in the UK have been instrumented with arrays of FBG sensors. The dynamic strain signatures induced by the passage of a tram over the instrumented components have been analysed to identify features indicative of changes in the condition of the components.

  11. A Recursive Multiscale Correlation-Averaging Algorithm for an Automated Distributed Road Condition Monitoring System

    SciTech Connect

    Ndoye, Mandoye; Barker, Alan M; Krogmeier, James; Bullock, Darcy

    2011-01-01

    A signal processing approach is proposed to jointly filter and fuse spatially indexed measurements captured from many vehicles. It is assumed that these measurements are influenced by both sensor noise and measurement indexing uncertainties. Measurements from low-cost vehicle-mounted sensors (e.g., accelerometers and Global Positioning System (GPS) receivers) are properly combined to produce higher quality road roughness data for cost-effective road surface condition monitoring. The proposed algorithms are recursively implemented and thus require only moderate computational power and memory space. These algorithms are important for future road management systems, which will use on-road vehicles as a distributed network of sensing probes gathering spatially indexed measurements for condition monitoring, in addition to other applications, such as environmental sensing and/or traffic monitoring. Our method and the related signal processing algorithms have been successfully tested using field data.

  12. Principles for the monitoring and evaluation of wetland extent, condition and function in Australia.

    PubMed

    Saintilan, Neil; Imgraben, Sarah

    2012-01-01

    The monitoring of resource condition is receiving renewed attention across several levels of government in Australia. This interest is linked to substantial investment in environmental remediation and aquatic ecosystem restoration in particular. In this context, it is timely to consider principles which ought to guide the development and implementation of monitoring programmes for wetland ecosystems. A framework is established which places monitoring in the context of the strategic adaptive management of wetlands. This framework requires there has to be clear goals for the extent and condition of the resource, with these goals being defined within thresholds of acceptable variability. Qualitative and, where possible, quantitative conceptual models linking management interventions to management goals should be the basis of indicator selection and assessment. The intensity of sampling ought to be informed by pilot surveys of statistical power in relation to the thresholds of acceptable variability identified within the management plan.

  13. Rotor fault condition monitoring techniques for squirrel-cage induction machine—A review

    NASA Astrophysics Data System (ADS)

    Mehrjou, Mohammad Rezazadeh; Mariun, Norman; Hamiruce Marhaban, Mohammad; Misron, Norhisam

    2011-11-01

    Nowadays, manufacturing companies are making great efforts to implement an effective machinery maintenance program, which provides incipient fault detection. The machine problem and its irregularity can be detected at an early stage by employing a suitable condition monitoring accompanied with powerful signal processing technique. Among various defects occurred in machines, rotor faults are of significant importance as they cause secondary failures that lead to a serious motor malfunction. Diagnosis of rotor failures has long been an important but complicated task in the area of motor faults detection. This paper intends to review and summarize the recent researches and developments performed in condition monitoring of the induction machine with the purpose of rotor faults detection. The aim of this article is to provide a broad outlook on rotor fault monitoring techniques for the researchers and engineers.

  14. In-service health monitoring of composite structures

    NASA Technical Reports Server (NTRS)

    Pinto, Gino A.; Ventres, C. S.; Ginty, Carol A.; Chamis, Christos C.

    1990-01-01

    The aerospace industry is witnessing a vast utilization of composites in critical structural applications and anticipates even more use of them in future aircraft. Therefore, a definite need exists for a composite health monitoring expert system to meet today's current needs and tomorrow's future demands. The primary goal for this conceptual health monitoring system is functional reliably for in-service operation in the environments of various composite structures. The underlying philosophy of this system is to utilize proven vibration techniques to assess the structural integrity of a fibrous composite. Statistical methods are used to determine if the variances in the measured data are acceptable for making a reliable decision on the health status of the composite. The flexible system allows for algorithms describing any composite fatigue or damage behavior characteristic to be provided as an input to the system. Alert thresholds and variances can also be provided as an input to this system and may be updated to allow for future changes/refinements in the composite's structural integrity behavior.

  15. Impedance based sensor technology to monitor stiffness of biological structures

    NASA Astrophysics Data System (ADS)

    Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kishore Kumar

    2010-04-01

    In countries like USA or Japan it is not so uncommon to have wooden structures in their homes. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Revisiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood is accepted as excellent rehabilitation material, after any disaster. The recycling materials extracted from in-organic, biodegradable wastes, also can be used for rehabilitation. The key issue which dampens the life of these rehabilitated structure including green materials (like wood) is unnecessary deposits (nails, screws, bolts etc)/damages due to insect attack. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was used to study changes due to metallic (steel nails) deposits at various locations. A study of weight deposits on aluminum plate was used for comparisons.

  16. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  17. Implementation of an Integrated, Portable Transformer Condition Monitoring Instrument in the Classroom and On-Site

    ERIC Educational Resources Information Center

    Chatterjee, B.; Dey, D.; Chakravorti, S.

    2010-01-01

    The development of integrated, portable, transformer condition monitoring (TCM) equipment for classroom demonstrations as well as for student exercises conducted in the field is discussed. Demonstrations include experimentation with real-world transformers to illustrate concepts such as polarization and depolarization current through oil-paper…

  18. Monitoring diapause development in the Colorado potato beetle, Leptinotarsa decemlineata, under field conditions using molecular biomarkers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multiplex PCR protocol was developed using five diapause-regulated genes to monitor diapause development of the Colorado potato beetle under field conditions. A total of 870 beetles from the Red River Valley of North Dakota and Minnesota, USA, were screened for three consecutive years. Out of the ...

  19. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    SciTech Connect

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  20. 14 CFR 414.31 - Monitoring compliance with the terms and conditions of a safety approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Monitoring compliance with the terms and conditions of a safety approval. 414.31 Section 414.31 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING SAFETY APPROVALS Safety Approval Review and Issuance §...

  1. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  2. Integrating remote sensing data from multiple optical sensors for ecological and crop condition monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecological and crop condition monitoring requires high temporal and spatial resolution remote sensing data. Due to technical limitations and budget constraints, remote sensing instruments trade spatial resolution for swath width. As a result, it is difficult to acquire remotely sensed data with both...

  3. A mobile-agent based wireless sensing network for structural monitoring applications

    SciTech Connect

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2008-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field.

  4. High frequency guided waves for hidden fatigue crack growth monitoring in multi-layer aerospace structures

    NASA Astrophysics Data System (ADS)

    Chan, Henry; Fromme, Paul

    2015-03-01

    Varying loading conditions of aircraft structures result in stress concentration at fastener holes, where multi-layered components are connected, possibly leading to the development of fatigue cracks. High frequency guided waves propagating along the structure allow for the non-destructive testing of such components, e.g., aircraft wings. However, the sensitivity for the detection of small, potentially hidden, fatigue cracks has to be ascertained. The type of multi-layered model structure investigated consists of two adhesively bonded aluminium plate-strips. Fatigue experiments were carried out. The sensitivity of the high frequency guided wave modes to monitor fatigue crack growth at a fastener hole during cyclic loading was investigated, using both standard pulse-echo equipment and laser interferometry. The sensitivity and repeatability of the measurements were ascertained, having the potential for fatigue crack growth monitoring at critical and difficult to access fastener locations from a stand-off distance.

  5. Fiber optic sensors for structural health monitoring of air platforms.

    PubMed

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  6. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  7. Wake-up transceivers for structural health monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Kumberg, T.; Kokert, J.; Younesi, V.; Koenig, S.; Reindl, L. M.

    2016-04-01

    In this article we present a wireless sensor network to monitor the structural health of a large-scale highway bridge in Germany. The wireless sensor network consists of several sensor nodes that use wake-up receivers to realize latency free and low-power communication. The sensor nodes are either equipped with very accurate tilt sensor developed by Northrop Grumman LITEF GmbH or with a Novatel OEM615 GNSS receiver. Relay nodes are required to forward measurement data to a base station located on the bridge. The base station is a gateway that transmits the local measurement data to a remote server where it can be further analyzed and processed. Further on, we present an energy harvesting system to supply the energy demanding GNSS sensor nodes to realize long term monitoring.

  8. Assessing the ecological condition of streams in a southeastern Brazilian basin using a probabilistic monitoring design.

    PubMed

    Jiménez-Valencia, Juliana; Kaufmann, Philip R; Sattamini, Ana; Mugnai, Riccardo; Baptista, Darcilio Fernandes

    2014-08-01

    Prompt assessment and management actions are required if we are to reduce the current rapid loss of habitat and biodiversity worldwide. Statistically valid quantification of the biota and habitat condition in water bodies are prerequisites for rigorous assessment of aquatic biodiversity and habitat. We assessed the ecological condition of streams in a southeastern Brazilian basin. We quantified the percentage of stream length in good, fair, and poor ecological condition according to benthic macroinvertebrate assemblage. We assessed the risk of finding degraded ecological condition associated with degraded aquatic riparian physical habitat condition, watershed condition, and water quality. We describe field sampling and implementation issues encountered in our survey and discuss design options to remedy them. Survey sample sites were selected using a spatially balanced, stratified random design, which enabled us to put confidence bounds on the ecological condition estimates derived from the stream survey. The benthic condition index indicated that 62 % of stream length in the basin was in poor ecological condition, and 13 % of stream length was in fair condition. The risk of finding degraded biological condition when the riparian vegetation and forests in upstream catchments were degraded was 2.5 and 4 times higher, compared to streams rated as good for the same stressors. We demonstrated that the GRTS statistical sampling method can be used routinely in Brazilian rain forests and other South American regions with similar conditions. This survey establishes an initial baseline for monitoring the condition and trends of streams in the region.

  9. GPS in pioneering dynamic monitoring of long-period structures

    USGS Publications Warehouse

    Celebi, M.; Sanli, A.

    2002-01-01

    Global Positioning System (GPS) technology with 10-20-Hz sampling rates allows scientifically justified dynamic measurements of relative displacements of long-period structures. The displacement response of a simulated tall building in real time and permanent deployment of GPS units at the roof of a building are described. To the authors' best knowledge, this is the first permanent deployment of GPS units (in the world) for continuous dynamic monitoring of a tall building. Data recorded from the building during a windy day is analyzed to determine the structural characteristics. When recorded during extreme motions caused by earthquakes and strong winds, such measurements can be used to compute average drift ratios and changes in dynamic characteristics, and therefore can be used by engineers and building owners or managers to assess the structural integrity and performance by establishing pre-established thresholds. Such information can be used to secure public safety and/or take steps to improve the performance of the building.

  10. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  11. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  12. Seismogeodetic Monitoring of Structural Deformation during Shaketable Experiments

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Saunders, J. K.; Geng, J.; Bock, Y.; Goldberg, D.; Melgar, D.; Restrepo, J. I.; Nema, A.; Fleischman, R. B.; Zhang, Z.; Offield, D. G.; Squibb, M. B.

    2014-12-01

    Accurate low frequency strong motion recordings are important for understanding free field and building response in large engineered structures. We have developed a seismogeodetic monitoring system based on GPS technology for real-time observations of large earthquakes that can also be used for structural monitoring. The data analysis method implements in a tightly-coupled Kalman filter to provide absolute estimates of seismic displacement, velocity, and tilt from GPS and accelerometer observations. Tilt is one of the major error sources that prevents accelerometer data from being integrated correctly to displacements. The technology is currently operational and streaming real-time observations from remote SIO Geodetic Module packages containing MEMS accelerometers at 17 GPS sites in southern California for the purposes of earthquake early warning and rapid response. The instruments were run in real-time on a four-story structure at the UCSD NEES shaketable to test an inertial force-limiting floor anchorage system as an emerging technology for new seismically resistant buildings. Observations were made during a series of earthquake simulations at five points on the roof of the structure, at the base, and at two nearby reference sites off the structure. Two of the points were also observed with observatory-grade Kinemetrics Episensor accelerometers to compare the performance of the MEMS sensors. The unique asymmetric design of the engineered structure deliberately induced large out-of-plane torsion and tilts of the building. This tested the performance of anchorage components to motions in two lateral directions even though the shaketable generated motions in only one component. We performed a seismogeodetic combination of the accelerometer and GPS data in which we simultaneously estimated tilts to take into account the impact of the rotations on vertical tilts of the accelerometers. The seismogeodetic combination reliably recovers drift at the rooftop, demonstrated

  13. Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant

    SciTech Connect

    Kumar, Rajeeva; Kumar, Aditya; Dai, Dan; Seenumani, Gayathri; Down, John; Lopez, Rodrigo

    2012-12-31

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developed will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve

  14. Health Monitoring of Composite Material Structures Using a Vibrometry Technique

    NASA Technical Reports Server (NTRS)

    Schulz, Mark J.

    1998-01-01

    Non-destructive evaluation (NDE) methods for quantifying and locating damage are essential for inspecting structures to ensure safety and reliability. Transmittance function monitoring is a potentially new NDE technique being tested as a tool to detect, quantify, and locate damage on flexible structures. The technique has a large spatial range that is practical for detecting damage on large composite material structures such as a reusable launch vehicle. The Transmittance Function (TF) theory is based on structural dynamics principles that define how vibration at one point in a structure is related to a force at another point. This relationship is called the Frequency Response Function (FRF). A Transmittance Function (TF) is derived as the ratio of FRFs, and can detect damage because the FRFs change due to damage. If one excitation is used for the testing, the force does not need to be measured to compute the TF. In the damage detection procedure, the structure is subjected to wide-band vibration and TFs are computed between different accelerometers to detect changes in the structure, presumably due to damage. In the first year of the project the TF method was tested on a bolted panel, a curved panel, and beams, all made of fiberglass. It was shown that damage could be detected using low frequency vibration, 250 to 1,250 Hz. The technique is sensitive to damage, but it requires storage of historical or pre-damage TFs for the healthy structure. This would become a large data storage requirement for large structures. Thus one objective for the second year of the project was to eliminate the need to store historical data. The second year report gives details of how storage of historical data was eliminated. Further results of testing panel structures are also given.

  15. Remote online monitoring and measuring system for civil engineering structures

    NASA Astrophysics Data System (ADS)

    Kujawińska, Malgorzata; Sitnik, Robert; Dymny, Grzegorz; Karaszewski, Maciej; Michoński, Kuba; Krzesłowski, Jakub; Mularczyk, Krzysztof; Bolewicki, Paweł

    2009-06-01

    In this paper a distributed intelligent system for civil engineering structures on-line measurement, remote monitoring, and data archiving is presented. The system consists of a set of optical, full-field displacement sensors connected to a controlling server. The server conducts measurements according to a list of scheduled tasks and stores the primary data or initial results in a remote centralized database. Simultaneously the server performs checks, ordered by the operator, which may in turn result with an alert or a specific action. The structure of whole system is analyzed along with the discussion on possible fields of application and the ways to provide a relevant security during data transport. Finally, a working implementation consisting of a fringe projection, geometrical moiré, digital image correlation and grating interferometry sensors and Oracle XE database is presented. The results from database utilized for on-line monitoring of a threshold value of strain for an exemplary area of interest at the engineering structure are presented and discussed.

  16. Monitoring system for bolt joints on steel structures

    NASA Astrophysics Data System (ADS)

    Park, Ki-Tae; Yu, Young-Joon; Shin, Hyunsup; Lee, Jin-Hyung; Lee, Woo-Sang

    2011-04-01

    The bolt joints on steel structures are exposed to the possibility of damage, and thus, require intensive care. Usually, periodic inspections are conducted at the cost of time and money. However, it is very difficult to check so many bolts carefully. The purpose of this study is to propose a system that can more efficiently monitor the tightness/looseness of these bolts. The proposed bolt fastening monitoring system is comprised of sensors that are attached to nuts and a data receiving terminal, which gathers information. The reed switch consists of two thin, metallic contacts enveloped in a glass tube and is an electrical switching sensor that is triggered ON or OFF by changes in the surrounding magnetic field. The verification tests showed that bolt loosening can be effectively detected, proving the applicability of this system to the maintenance of the bolt joints of steel structures. The newly developed sensor system is expected to solve conventional sensor problems by enabling measurement of structural members which was not previously possible, thus providing a basis for a new technology in the construction industry by applying IT to construction technology.

  17. Grinding Wheel Condition Monitoring with Hidden Markov Model-Based Clustering Methods

    SciTech Connect

    Liao, T. W.; Hua, G; Qu, Jun; Blau, Peter Julian

    2006-01-01

    Hidden Markov model (HMM) is well known for sequence modeling and has been used for condition monitoring. However, HMM-based clustering methods are developed only recently. This article proposes a HMM-based clustering method for monitoring the condition of grinding wheel used in grinding operations. The proposed method first extract features from signals based on discrete wavelet decomposition using a moving window approach. It then generates a distance (dissimilarity) matrix using HMM. Based on this distance matrix several hierarchical and partitioning-based clustering algorithms are applied to obtain clustering results. The proposed methodology was tested with feature sequences extracted from acoustic emission signals. The results show that clustering accuracy is dependent upon cutting condition. Higher material removal rate seems to produce more discriminatory signals/features than lower material removal rate. The effect of window size, wavelet decomposition level, wavelet basis, clustering algorithm, and data normalization were also studied.

  18. Unified Multi-speed analysis (UMA) for the condition monitoring of aero-engines

    NASA Astrophysics Data System (ADS)

    Nembhard, Adrian D.; Sinha, Jyoti K.

    2015-12-01

    For rotating machinery in which speeds and dynamics constantly change, performing vibration-based condition monitoring can be challenging. Thus, an effort is made here to develop a Unified Multi-speed fault diagnosis technique that can exploit useful vibration information available at various speeds from a rotating machine in a single analysis. Commonly applied indicators are computed from data collected from a rig at different speeds for a baseline case and different faults. Four separate analyses are performed: single speed at a single bearing, integrated features from multiple speeds at a single bearing, single speed for integrated features from multiple bearings and the proposed Unified Multi-speed analysis. The Unified Multi-speed approach produces the most conspicuous separation and isolation among the conditions tested. Observations made here suggest integration of more dynamic features available at different speeds improves the learning process of the tool which could prove useful for aero-engine condition monitoring.

  19. Monitoring Surface Condition of Plasma Grid of a Negative Hydrogen Ion Source

    SciTech Connect

    Wada, M.; Kasuya, T.; Tokushige, S.; Kenmotsu, T.

    2011-09-26

    Surface condition of a plasma grid in a negative hydrogen ion source is controlled so as to maximize the beam current under a discharge operation with introducing Cs into the ion source. Photoelectric current induced by laser beams incident on the plasma grid can produce a signal to monitor the surface condition, but the signal detection can be easily hindered by plasma noise. Reduction in size of a detection electrode embedded in the plasma grid can improve signal-to-noise ratio of the photoelectric current from the electrode. To evaluate the feasibility of monitoring surface condition of a plasma gird by utilizing photoelectric effect, a small experimental setup capable of determining quantum yields of a surface in a cesiated plasma environment is being assembled. Some preliminary test results of the apparatus utilizing oxide cathodes are reported.

  20. Monitoring strategies for re-establishment of ecological reference conditions: possibilities and limitations.

    PubMed

    Alve, Elisabeth; Lepland, Aivo; Magnusson, Jan; Backer-Owe, Kristian

    2009-01-01

    The ecological status of an environment should be evaluated by comparison with local "reference conditions", here defined as the pre-industrial ecological status of the 19th century. This pilot study illustrates how micropalaeontological monitoring, using benthic foraminifera (protists) and associated geochemical parameters preserved in inner Oslofjord (Norway) sediments, characterise local reference conditions. In order to optimise the usefulness of the ecological information held by foraminifera and enable characterisation of temporal changes in environmental quality beyond time intervals covered by biological time-series, the Norwegian governmental macrofauna-based classification system is applied on fossil benthic foraminiferal assemblages. Quantitative comparisons demonstrate deteriorating ecological status in response to increased anthropogenic forcing (eutrophication, micropollutants), including a 73% loss in number of foraminiferal species. Despite reduced pollution during the past decades and, at one site, capping of polluted sediments with clean clay, the reference conditions are far from re-established. Micropalaeontological monitoring requires net sediment accumulation basins and careful considerations of taphonomic processes.

  1. Condition Monitoring of a Motor-Operated Valve Using Estimated Motor Torque

    NASA Astrophysics Data System (ADS)

    Chai, Jangbom; Kang, Shinchul; Park, Sungkeun; Hong, Sungyull; Lim, Chanwoo

    This paper is concerned with the development of data analysis methods to be used in on-line monitoring and diagnosis of Motor-Operated Valves (MOVs) effectively and accurately. The technique to be utilized includes the electrical measurements and signal processing to estimate electric torque of induction motors, which are attached to most of MOV systems. The estimated torque of an induction motor is compared with the directly measured torque using a torque cell in various loading conditions including the degraded voltage conditions to validate the estimating scheme. The accuracy of the estimating scheme is presented. The advantages of the estimated torque signatures are reviewed over the currently used ones such as the current signature and the power signature in several respects: accuracy, sensitivity, resolution and so on. Additionally, the estimated torque methods are suggested as a good way to monitor the conditions of MOVs with higher accuracy.

  2. Raman spectroscopy for monitoring protein structure in muscle food systems.

    PubMed

    Herrero, Ana M

    2008-06-01

    Raman spectroscopy offers structural information about complex solid systems such as muscle food proteins. This spectroscopic technique is a powerful and a non-invasive method for the study of protein changes in secondary structure, mainly quantified, analysing the amide I (1650-1680 cm(- 1)) and amide III (1200-1300 cm(- 1)) regions and C-C stretching band (940 cm(- 1)), as well as modifications in protein local environments (tryptophan residues, tyrosil doublet, aliphatic aminoacids bands) of muscle food systems. Raman spectroscopy has been used to determine structural changes in isolated myofibrillar and connective tissue proteins by the addition of different compounds and by the effect of the conservation process such as freezing and frozen storage. It has been also shown that Raman spectroscopy is particularly useful for monitoring in situ protein structural changes in muscle food during frozen storage. Besides, the possibilities of using protein structural changes of intact muscle to predict the protein functional properties and the sensory attributes of muscle foods have been also investigated. In addition, the application of Raman spectroscopy to study changes in the protein structure during the elaboration of muscle food products has been demonstrated.

  3. Research of on-line monitoring method for insulation condition of power transformer bushing

    NASA Astrophysics Data System (ADS)

    Xia, Jiuyun; Qian, Zheng; Yu, Hao; Yao, Junda

    2016-01-01

    The power transformer is the key equipment of the power system; its insulation condition will directly influence the security and reliability of the power system. Thus, the on-line monitoring of power transformer is urgently required in order to guarantee the normal operation of the power system. Moreover, the dielectric loss factor is a significant parameter reflecting the condition of transformer bushing, so the on-line measurement of dielectric loss factor is really important. In this paper, the phase-to-phase comparison method is selected as the on-line monitoring method based on the overall analysis and discussion of the existing on-line monitoring methods. At first, the harmonic analysis method is utilized to calculate the dielectric loss of each phase of the three-phase transformer bushing, and then the differences of dielectric loss between every two phases are calculated and analyzed. So the insulation condition of each bushing could be achieved based on the careful analysis of different phase-to-phase dielectric loss. The simulation results of phase-to-phase comparison method are carried out in this paper, and the validity is verified. At last, this method is utilized in an actual equipment of on-line monitoring.

  4. Sensitivity of a Wave Structure to Initial Conditions

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Duval, Walter M. B. (Technical Monitor)

    2000-01-01

    Microgravity experiments aimed at quantifying effects of gentler via controlled sinusoidal forcing transmitted on the interface between two miscible liquids have shown the evolution of a quasi -stationary four-mode wave structure oriented vertically. The sensitivity of the wave structure to phase angle variation is investigated computationally. We show that a slight variation of the phase angle is sufficient to cause a bifurcation to a two-mode structure. The dependence of phase angle on wave structure is attributed to sensitivity on initial conditions due to the strong nonlinearity of the coupled field equations for the parametric space of interest.

  5. A Guided Ultrasonic Waves Array for Structural Integrity Monitoring

    SciTech Connect

    Fromme, P.; Wilcox, P.D.; Lowe, M.; Cawley, P.

    2005-04-09

    Constant, long-term monitoring of large plate-like structures, e.g., oil storage tanks, can be performed using permanently attached remote sensors. A guided ultrasonic waves array, consisting of piezoelectric transducer elements for the excitation and reception of the first antisymmetric Lamb wave mode A0, has been designed and built. Laboratory measurements for a steel plate containing various defects have been performed. The results are compared to theoretical predictions and the sensitivity of the array device for defect detection is ascertained.

  6. Structural Health Monitoring Sensor Development at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Wu, M. C.; Allison, S. G.; DeHaven, S. L.; Ghoshal, A.

    2002-01-01

    NASA is applying considerable effort on the development of sensor technology for structural health monitoring (SHM). This research is targeted toward increasing the safety and reliability of aerospace vehicles, while reducing operating and maintenance costs. Research programs are focused on applications to both aircraft and space vehicles. Sensor technologies under development span a wide range including fiber-optic sensing, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, fiber-optic sensors are one of the leading candidates and are the major focus of this presentation. In addition, recent advances in active and passive acoustic sensing will also be discussed.

  7. Monitoring a 5 MW offshore wind energy converter—Condition parameters and triangulation based extraction of modal parameters

    NASA Astrophysics Data System (ADS)

    Häckell, Moritz W.; Rolfes, Raimund

    2013-10-01

    The test field alpha ventus is the first operating German offshore parks for wind energy. Twelve Wind Energy Converters (WECs) of the 5 MW-class are installed, both, for commercial and research reasons. Due to upcoming mass production and uncertainties in loads and behaviour, monitoring the foundation of these structures was desired. Two goals addressed are the extraction of modal parameters for model validation and the estimation of condition parameters to allow a hypothesis of the system's state. In a first step the largedatabase is classified by Environmental and Operational Conditions (EOCs) through affinity propagation which is a new approach for Structural Health Monitoring (SHM) on wind turbines. Further, system identification through data driven stochastic subspace identification (SSI) is performed. A new, automated approach called triangulation-based extraction of modal parapeters (TEMP), using stability diagrams, is a key focus of the presented research. Finally, extraction of condition parameters for tower accelerations classified by EOCs, based on covariance driven SSI and Vector Auto-Regressive (VAR) Models, is performed for several observation periods from one to 16 weeks. These parameters and their distributions provide a base line for long term observations.

  8. Design and Analysis of Architectures for Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  9. In situ monitoring of structural changes during colloidal self-assembly.

    PubMed

    Koh, Yaw Koon; Wong, Chee Cheong

    2006-01-31

    Reflectance spectroscopy is utilized to monitor structural changes during the self-assembly of a monodisperse colloidal system at the meniscus of a sessile drop on an inert substrate. Treating the ordered colloidal structure as a photonic crystal is equivalent to monitoring the changes in the photonic band gap (PBG) as the colloidal system self-assembles heterogeneously into a crystal through solvent evaporation in ambient conditions. Using a modified Bragg's law model of the photonic crystal, we can trace the structural evolution of the self-assembling colloidal system. After a certain induction period, a face-centered cubic (FCC) structure emerges, albeit with a lattice parameter larger than that of a true close-packed structure. This FCC structure is maintained while the lattice parameter shrinks continuously with further increase in the colloidal concentration due to drying. When the structure reaches a lattice parameter 1.09 times the size of that of a true close-packed structure, it undergoes an abrupt decrease in lattice spacing, apparently similar to those reported for lattice-distortive martensitic transformations. This abrupt final lattice shrinkage agrees well with the estimated Debye screening length of the electric double layer of charged colloids and could be the fundamental reason behind the cracking commonly seen in colloidal crystals.

  10. Noncontact laser sensing technology for structural health monitoring and nondestructive testing (presentation video)

    NASA Astrophysics Data System (ADS)

    Sohn, Hoon

    2014-03-01

    Noncontact sensing techniques is gaining prominence for structural health monitoring (SHM) and nondestructive testing (NDT) due to (1) their noncontact and nonintrusive natures, (2) their spatial resolution much higher than conventional discrete sensors can achieve, (3) their less dependency on baseline data obtained from the pristine condition of a target structure (reference-free diagnosis), (4) cost and labor reduction in sensor installation and maintenance. In this talk, a suite of noncontact sensing techniques particularly based on laser technology will be presented for SHM and NDT of aircraft, wind turbine blades, high-speed trains, nuclear power plants, bridges, automobile manufacturing facilities and semiconductors.

  11. Evaluation of embedded FBGs in composite overwrapped pressure vessels for strain based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Pena, Francisco; Strutner, Scott M.; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.

    2014-03-01

    The increased use of composite overwrapped pressure vessels (COPVs) in space and commercial applications, and the explosive nature of pressure vessel ruptures, make it crucial to develop techniques for early condition based damage detection. The need for a robust health monitoring system for COPVs is a high priority since the mechanisms of stress rupture are not fully understood. Embedded Fiber Bragg Grating (FBG) sensors have been proposed as a potential solution that may be utilized to anticipate and potentially avoid catastrophic failures. The small size and light weight of optical fibers enable manufactures to integrate FBGs directly into composite structures for the purpose of structural health monitoring. A challenging aspect of embedding FBGs within composite structures is the risk of potentially impinging the optical fiber while the structure is under load, thus distorting the optical information to be transferred. As the COPV is pressurized, an embedded optical sensor is compressed between the expansion of the inner bottle, and the outer overwrap layer of composite. In this study, FBGs are installed on the outer surface of a COPV bottle as well as embedded underneath a composite overwrap layer for comparison of strain measurements. Experimental data is collected from optical fibers containing multiple FBGs during incremental pressurization cycles, ranging from 0 to 10,000 psi. The graphical representations of high density strain maps provide a more efficient process of monitoring structural integrity. Preliminary results capture the complex distribution of strain, while furthering the understanding of the failure mechanisms of COPVs.

  12. Test-bed for the remote health monitoring system for bridge structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog

    2009-05-01

    This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.

  13. Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring

    NASA Astrophysics Data System (ADS)

    Arsenault, Tyler J.; Achuthan, Ajit; Marzocca, Pier; Grappasonni, Chiara; Coppotelli, Giuliano

    2013-07-01

    The development of a fiber Bragg grating (FBG) based distributed strain sensor system for real time structural health monitoring of a wind turbine rotor and its validation under a laboratory scale test setup is discussed in this paper. A 1 kW, 1.6 m diameter rotor, horizontal axis wind turbine with three instrumented blades is used in this study. The sensor system consists of strain sensors, surface mounted at various locations on the blade. At first the sensors are calibrated under static loading conditions to validate the FBG mounting and the proposed data collection techniques. Then, the capability of the sensor system coupled with the operational modal analysis (OMA) methods to capture natural frequencies and corresponding mode shapes in terms of distributed strains are validated under various non-rotating dynamic loading conditions. Finally, the sensor system is tested under rotating conditions using the wind flow from an open-jet wind tunnel, for both a baseline wind turbine and a wind turbine with a structurally modified blade. The blade was modified by attaching a lumped mass at the blade tip simulating structural damage or ice accretion. The dynamic characteristics of the baseline (healthy) blade and modified (altered) blade are compared to validate the sensor system’s ability for real time structural health monitoring of the rotor.

  14. Time-Frequency Methods for Structural Health Monitoring

    PubMed Central

    Pyayt, Alexander L.; Kozionov, Alexey P.; Mokhov, Ilya I.; Lang, Bernhard; Meijer, Robert J.; Krzhizhanovskaya, Valeria V.; Sloot, Peter M. A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and “strange” behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany). PMID:24625740

  15. Structural Health Monitoring: Leveraging Pain in the Human Body

    NASA Astrophysics Data System (ADS)

    Nayak, Subhadarshi

    2012-07-01

    Tissue damage, or the perception thereof, is managed through pain experience. The neurobiological process of pain triggers most effective defense mechanisms for our safety. Structural health monitoring (SHM) is also a very similar function, albeit in engineering systems. SHM technology can leverage many aspects of pain mechanisms to progress in several critical areas. Discrimination between features from the undamaged and damaged structures can follow the threshold gate mechanism of the pain perception. Furthermore, the sensing mechanisms can be adaptive to changes by adjusting the threshold as does the pain perception. A distributed sensor network, often advanced by SHM, can be made fault-tolerant and robust by following the perception way of self-organization and redundancy. Data handling in real life is a huge challenge for large-scale SHM. As sensory data of pain is first cleaned, the threshold is then processed through experiential information gathering and use.

  16. Responsive satellites and the need for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Arritt, Brandon J.; Kumar, Amrita; Buckley, Steven; Hannum, Robert; Welsh, Jeffry; Beard, Shawn; Qin, Xinlin; Wegner, Peter

    2007-04-01

    The United States is striving to develop an Operationally Responsive Space capability. The goal is to be able to deliver tailored spacecraft capabilities to the warfighter as needs arise. This places a premium on the timespan between generating that requirement and having a functioning satellite performing its mission on orbit. Although there is lively debate regarding how to achieve this responsive space capability, one thing remains undeniable; the satellite flight qualification and launch vehicle integration process needs to be dramatically truncated. This paper describes the Air Force Research Laboratory's attempts to validate the use of Structural Health Monitoring (SHM) in lieu of traditional structural flight qualification testing schemes (static and shock loads, random vibration, coupled loads analysis, thermal vacuum testing, etc.) for potential Responsive Space (RS) satellites.

  17. Damage detection and health monitoring of operational structures

    SciTech Connect

    James, G.; Mayes, R.; Carne, T.; Reese, G.

    1994-09-01

    Initial damage detection/health monitoring experiments have been performed on three different operational structures: a fracture critical bridge, a composite wind turbine blade, and an aging aircraft. An induced damage test was performed on the Rio Grande/I40 bridge before its demolition. The composite wind turbine test was fatgued to failure with periodic modal testing performed throughout the testing. The front fuselage of a DC-9 aircraft was used as the testbed for an induced damage test. These tests have yielded important insights into techniques for experimental damage detection on real structures. Additionally, the data are currently being used with current damage detection algorithms to further develop the numerical technology. State of the art testing technologies such as, high density modal testing, scanning laser vibrometry and natural excitation testing have also been utilized for these tests.

  18. Flight parameters monitoring system for tracking structural integrity of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Mohammadi, Jamshid; Olkiewicz, Craig

    1994-01-01

    Recent developments in advanced monitoring systems used in conjunction with tracking structural integrity of rotary-wing aircraft are explained. The paper describes: (1) an overview of rotary-wing aircraft flight parameters that are critical to the aircraft loading conditions and each parameter's specific requirements in terms of data collection and processing; (2) description of the monitoring system and its functions used in a survey of rotary-wing aircraft; and (3) description of the method of analysis used for the data. The paper presents a newly-developed method in compiling flight data. The method utilizes the maneuver sequence of events in several pre-identified flight conditions to describe various flight parameters at three specific weight ranges.

  19. Surface Monitoring of CFRP Structures for Adhesive Bonding

    NASA Technical Reports Server (NTRS)

    Ledesma, Rodolfo; Palmieri, Frank L.; Yost, William T.; Connell, John W.; Fitz-Gerald, James M.

    2017-01-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding is essential in order to obtain a surface free from contaminants that may degrade structural performance. Two techniques which monitor the effectiveness of the laser surface treatment of carbon fiber reinforced polymer (CFRP) materials are being investigated: laser induced breakdown spectroscopy (LIBS) and optically stimulated electron emission (OSEE). The applicability of LIBS to detect silicone contaminants on CFRP composites is studied using 35 ns Nd:YAG laser pulses at 355 nm with a pulse energy of 45 mJ. The LIBS regime in which pulse energies are < 100 mJ is referred to as mLIBS. CFRP surfaces were contaminated with polydimethylsiloxane (PDMS), a major component of silicone based mold release agents. The presence of PDMS is found by inspecting the Si I emission line at 288.2 nm. Untreated CFRP samples and CFRP contaminated with PDMS were tested. The PDMS areal density ranged from 0.36 Â+/- 0.04 to 0.51 Â+/- 0.16 mg/cm2. The results demonstrate the successful detection of PDMS on CFRP using mLIBS. In addition, OSEE was used to measure CFRP surface cleanliness pre- and post-treatment by laser ablation on specimens contaminated with PDMS coatings from 8 nm to 1311 nm in thickness. The results showed a significant increase in the OSEE photocurrent after laser surface treatment.

  20. Conditions for Two-Cell Structure in Severe Vortical Storms.

    DTIC Science & Technology

    1984-02-01

    SEVERE VORTICAL STORMS by G. F. Carrier, F. E. Fendell , P. S. Feldman, and S. F. Fink TRW Space and Technology Group, Redondo Beach, CA 90278 Thi...Claification Conditions for Two-Call Structure in Severe Vortical Storms (U) 12. PERSONAL AUTHOR(S) Carrier. G. F. (Harvard U.): Fendell , F. E., Feldman...cell structure will occur. Very roughly, about half of all tropical storms ( Fendell 1974), and about one-quarter to one-half of meso- cyclones (Brooks

  1. An Updated Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    SciTech Connect

    Ramuhalli, Pradeep; Hirt, Evelyn H.; Coles, Garill A.; Bonebrake, Christopher A.; Ivans, William J.; Wootan, David W.; Mitchell, Mark R.

    2014-07-18

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment, as AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors and the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results on augmenting an initial methodology for enhanced risk monitors that integrate real-time information about equipment condition and POF into risk monitors. Methods to propagate uncertainty through the enhanced risk monitor are evaluated. Available data to quantify the level of uncertainty and the POF of key components are examined for their relevance, and a status update of this data evaluation is described. Finally, we describe potential targets for developing new risk metrics that may be useful for studying trade-offs for economic

  2. Measuring various sizes of H-reflex while monitoring the stimulus condition.

    PubMed

    Hiraoka, Koichi

    2002-11-01

    The purpose of this study was to assess the usefulness of a new technique that measured various sizes of the soleus H-reflex, while monitoring the stimulus condition. Eight healthy volunteers participated in this experiment. In the new technique, an above-motor-threshold conditioning stimulus was given to the tibial nerve 10-12 ms after a below-motor-threshold test stimulus. The conditioning stimulus evoked a direct M-wave, which was followed by a test-stimulus-evoked H-reflex. This reflex was followed by a conditioning stimulus-evoked H-reflex. The amount of the voluntary-contraction-induced facilitation of the H-reflex was similar for both the new technique and conventional technique, in which an above-motor-threshold test stimulus was given without a conditioning stimulus. Using the new technique, we found that the amount of facilitation increased linearly with the size of the test H-reflex. This technique allows us to evoke various sizes of H-reflex while monitoring a stimulus condition, and is useful for measuring H-reflexes during voluntary movement.

  3. Perspectives on railway track geometry condition monitoring from in-service railway vehicles

    NASA Astrophysics Data System (ADS)

    Weston, P.; Roberts, C.; Yeo, G.; Stewart, E.

    2015-07-01

    This paper presents a view of the current state of monitoring track geometry condition from in-service vehicles. It considers technology used to provide condition monitoring; some issues of processing and the determination of location; how things have evolved over the past decade; and what is being, or could/should be done in future research. Monitoring railway track geometry from an in-service vehicle is an attractive proposition that has become a reality in the past decade. However, this is only the beginning. Seeing the same track over and over again provides an opportunity for observing track geometry degradation that can potentially be used to inform maintenance decisions. Furthermore, it is possible to extend the use of track condition information to identify if maintenance is effective, and to monitor the degradation of individual faults such as dipped joints. There are full unattended track geometry measurement systems running on in-service vehicles in the UK and elsewhere around the world, feeding their geometry measurements into large databases. These data can be retrieved, but little is currently done with the data other than the generation of reports of track geometry that exceeds predefined thresholds. There are examples of simpler systems that measure some track geometry parameters more or less directly and accurately, but forego parameters such as gauge. Additionally, there are experimental systems that use mathematics and models to infer track geometry using data from sensors placed on an in-service vehicle. Finally, there are systems that do not claim to measure track geometry, but monitor some other quantity such as ride quality or bogie acceleration to infer poor track geometry without explicitly measuring it.

  4. Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Bernstein, Dennis S.

    2012-01-01

    Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.

  5. Feasibility Investigation on the Development of a Structural Damage Diagnostic and Monitoring System for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Shen, Ji Y.; Sharpe, Lonnie, Jr.

    1998-01-01

    The research activity for this project is mainly to investigate the necessity and feasibility to develop a structural health monitoring system for rocket engines, and to carry out a research plan for further development of the system. More than one hundred technical papers have been searched and reviewed during the period. We concluded after this investigation that adding a new module in NASA's existing automated diagnostic system to monitor the healthy condition of rocket engine structures is a crucial task, and it's possible to develop such a system based upon the vibrational-based nondestructive damage assessment techniques. A number of such techniques have been introduced. Their advantages and disadvantages are also discussed. A global research plan has been figured out. As the first step of the overall research plan, a proposal for the next fiscal year has been submitted.

  6. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops

    PubMed Central

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-01-01

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi® Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops. PMID:26633418

  7. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops.

    PubMed

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-12-03

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi(®) Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops.

  8. Voltammetry as a tool for monitoring micellar structural evolution?

    PubMed

    Charlton; Doherty

    2000-02-15

    Self-assembled systems such as micelles and liquid crystals are currently of interest as templates for the controlled formation of nanoscale structures. Knowledge of the mesophase structure, structural evolution, and interparticle interaction is of great importance in understanding the behavior of such systems especially for applications such as nanoreactors. Here, we compare the use of cyclic voltammetry, chronoamperometry, and the rotating disk electrode (RDE) for the determination of micellar hydrodynamic radii and show that only the steady-state RDE yields values directly comparable with nonelectrochemical techniques. The RDE is applied for the determination of cetyltrimethylammonium chloride micellar structure and observing micellar structural evolution as well as evaluating the usual intermicellar interactions. The results clearly show (a) the collapse of the micellar shear plane toward the hard-sphere surface with increasing electrolyte concentration, (b) the electrolyte-dependent spherical expansion of the micellar hard-spheres due to increasing aggregation (N) number, (c) the structural transition from spherical to rodlike micelles, and (d) micellar elongation. As well as structural evolution, the evolutionary changes in interaction processes are also observed, i.e. the transition from Coulombic interactions to excluded volume interaction. This paper describes in detail the voltammetric measurement of these processes and explicates the necessary experimental conditions for successful observation of micellar structural evolution.

  9. ARMA modelled time-series classification for structural health monitoring of civil infrastructure

    NASA Astrophysics Data System (ADS)

    Peter Carden, E.; Brownjohn, James M. W.

    2008-02-01

    Structural health monitoring (SHM) is the subject of a great deal of ongoing research leading to the capability that reliable remote monitoring of civil infrastructure would allow a shift from schedule-based to condition-based maintenance strategies. The first stage in such a system would be the indication of an extraordinary change in the structure's behaviour. A statistical classification algorithm is presented here which is based on analysis of a structure's response in the time domain. The time-series responses are fitted with Autoregressive Moving Average (ARMA) models and the ARMA coefficients are fed to the classifier. The classifier is capable of learning in an unsupervised manner and of forming new classes when the structural response exhibits change. The approach is demonstrated with experimental data from the IASC-ASCE benchmark four-storey frame structure, the Z24 bridge and the Malaysia-Singapore Second Link bridge. The classifier is found to be capable of identifying structural change in all cases and of forming distinct classes corresponding to different structural states in most cases.

  10. An Uncertainty Quantification Framework for Prognostics and Condition-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Goebel, Kai

    2014-01-01

    This paper presents a computational framework for uncertainty quantification in prognostics in the context of condition-based monitoring of aerospace systems. The different sources of uncertainty and the various uncertainty quantification activities in condition-based prognostics are outlined in detail, and it is demonstrated that the Bayesian subjective approach is suitable for interpreting uncertainty in online monitoring. A state-space model-based framework for prognostics, that can rigorously account for the various sources of uncertainty, is presented. Prognostics consists of two important steps. First, the state of the system is estimated using Bayesian tracking, and then, the future states of the system are predicted until failure, thereby computing the remaining useful life of the system. The proposed framework is illustrated using the power system of a planetary rover test-bed, which is being developed and studied at NASA Ames Research Center.

  11. Cable aging and condition monitoring of radiation resistant nano-dielectrics in advanced reactor applications

    SciTech Connect

    Duckworth, Robert C; Aytug, Tolga; Paranthaman, Mariappan Parans; Kidder, Michelle; Polyzos, Georgios; Leonard, Keith J

    2015-01-01

    Cross-linked polyethylene (XLPE) nanocomposites have been developed in an effort to improve cable insulation lifetime to serve in both instrument cables and auxiliary power systems in advanced reactor applications as well as to provide an alternative for new or retro-fit cable insulation installations. Nano-dielectrics composed of different weight percentages of MgO & SiO2 have been subjected to radiation at accumulated doses approaching 20 MRad and thermal aging temperatures exceeding 100 C. Depending on the composition, the performance of the nanodielectric insulation was influenced, both positively and negatively, when quantified with respect to its electrical and mechanical properties. For virgin unradiated or thermally aged samples, XLPE nanocomposites with 1wt.% SiO2 showed improvement in breakdown strength and reduction in its dissipation factor when compared to pure undoped XLPE, while XLPE 3wt.% SiO2 resulted in lower breakdown strength. When aged in air at 120 C, retention of electrical breakdown strength and dissipation factor was observed for XLPE 3wt.% MgO nanocomposites. Irrespective of the nanoparticle species, XLPE nanocomposites that were gamma irradiated up to the accumulated dose of 18 MRad showed a significant drop in breakdown strength especially for particle concentrations greater than 3 wt.%. Additional attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy measurements suggest changes in the structure of the XLPE SiO2 nanocomposites associated with the interaction of silicon and oxygen. Discussion on the relevance of property changes with respect to cable aging and condition monitoring is presented.

  12. Lubricant oil condition monitoring using a scattering-free single-wavelength optical scheme

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, Andrea A.; Adriani, G.; Paccagnini, A.; Campatelli, M.; Ottevaere, H.; Thienpont, H.

    2014-05-01

    A simple and low-cost optical setup can be used for monitoring online the condition of lubricant oil in big machineries, as an action of preventive maintenance. The total acid number and the water content, as indicators of the lubricant oil quality, can be assessed by means of an integrating sphere for achieving scattering-free absorption measurements. For each indicator, spectroscopy showed that a peculiar wavelength is enough for predicting with good accuracy the value of the indicator.

  13. Monitoring of Double-Stud Wall Moisture Conditions in the Northeast

    SciTech Connect

    Ueno, K.

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double-stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double-stud walls were monitored in Zone 5A (Massachusetts); three double-stud assemblies were compared.

  14. Load monitoring and compensation strategies for guided-waves based structural health monitoring using piezoelectric transducers

    SciTech Connect

    Roy, Surajit; Ladpli, Purim; Chang, Fu-Kuo

    2015-09-01

    Accurate interpretation of in-situ piezoelectric sensor signals is a challenging task. This article presents the development of a numerical compensation model based on physical insight to address the influence of structural loads on piezo-sensor signals. The model requires knowledge of in-situ strain and temperature distribution in a structure while acquiring sensor signals. The parameters of the numerical model are obtained using experiments on flat aluminum plate under uniaxial tensile loading. It is shown that the model parameters obtained experimentally can be used for different structures, and sensor layout. Furthermore, the combined effects of load and temperature on the piezo-sensor response are also investigated and it is observed that both of these factors have a coupled effect on the sensor signals. It is proposed to obtain compensation model parameters under a range of operating temperatures to address this coupling effect. An important outcome of this study is a new load monitoring concept using in-situ piezoelectric sensor signals to track changes in the load paths in a structure.

  15. Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions

    PubMed Central

    Kolářová, Hana; Ambrůzová, Barbora; Švihálková Šindlerová, Lenka; Klinke, Anna; Kubala, Lukáš

    2014-01-01

    The glycocalyx of the endothelium is an intravascular compartment that creates a barrier between circulating blood and the vessel wall. The glycocalyx is suggested to play an important role in numerous physiological processes including the regulation of vascular permeability, the prevention of the margination of blood cells to the vessel wall, and the transmission of shear stress. Various theoretical models and experimental approaches provide data about changes to the structure and functions of the glycocalyx under various types of inflammatory conditions. These alterations are suggested to promote inflammatory processes in vessels and contribute to the pathogenesis of number of diseases. In this review we summarize current knowledge about the modulation of the glycocalyx under inflammatory conditions and the consequences for the course of inflammation in vessels. The structure and functions of endothelial glycocalyx are briefly discussed in the context of methodological approaches regarding the determination of endothelial glycocalyx and the uncertainty and challenges involved in glycocalyx structure determination. In addition, the modulation of glycocalyx structure under inflammatory conditions and the possible consequences for pathogenesis of selected diseases and medical conditions (in particular, diabetes, atherosclerosis, ischemia/reperfusion, and sepsis) are summarized. Finally, therapeutic strategies to ameliorate glycocalyx dysfunction suggested by various authors are discussed. PMID:24803742

  16. Conditional Covariance-based Representation of Multidimensional Test Structure.

    ERIC Educational Resources Information Center

    Bolt, Daniel M.

    2001-01-01

    Presents a new nonparametric method for constructing a spatial representation of multidimensional test structure, the Conditional Covariance-based SCALing (CCSCAL) method. Describes an index to measure the accuracy of the representation. Uses simulation and real-life data analyses to show that the method provides a suitable approximation to…

  17. Multi-tiered sensing and data processing for monitoring ship structures

    SciTech Connect

    Farrar, Charles; Salvino, Liming; Lynch, Jerome; Brady, Thomas

    2009-01-01

    A comprehensive structural health monitoring (SHM) system is a critical mechanism to ensure hull integrity and evaluate structural performance over the life of a ship, especially for lightweight high-speed ships. One of the most important functions of a SHM system is to provide real-time performance guidance and reduce the risk of structural damage during operations at sea. This is done by continuous feedback from onboard sensors providing measurements of seaway loads and structural responses. Applications of SHM should also include diagnostic capabilities such as identifying the presence of damage, assessing the location and extent of damage when it does occur in order to plan for future inspection and maintenance. The development of such SHM systems is extremely challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with the missions of high performance ships, the lack of data from known damage conditions, the limited sensing that was not designed specifically for SHM, the management of the vast amounts of data, and the need for continued, real-time data processing. This paper will discuss some of these challenges and several outstanding issues that need to be addressed in the context of applying various SHM approaches to sea trials data measured on an aluminum high-speed catamaran, the HSV-2 Swift. A multi-tiered approach for sensing and data processing will be discussed as potential SHM architecture for future shipboard application. This approach will involve application of low cost and dense sensor arrays such as wireless communications in selected areas of the ship hull in addition to conventional sensors measuring global structural response of the ship. A recent wireless hull monitoring demo on FSF-I SeaFighter will be discussed as an example to show how this proposed architecture is a viable approach for long-term and real-time hull monitoring.

  18. Time-dependent reliability analysis and condition assessment of structures

    SciTech Connect

    Ellingwood, B.R.

    1997-01-01

    Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process.

  19. Structural 3d Monitoring Using a New Sinusoidal Fitting Adjustment

    NASA Astrophysics Data System (ADS)

    Detchev, I.; Habib, A.; Lichti, D.; El-Badry, M.

    2016-06-01

    Digital photogrammetric systems combined with image processing techniques have been used for structural monitoring purposes for more than a decade. For applications requiring sub-millimetre level precision, the use of off-the-shelf DSLR cameras is a suitable choice, especially when the low cost of the involved sensors is a priority. The disadvantage in the use of entry level DSLRs is that there is a trade-off between frame rate and burst rate - a high frame rate is either not available or it cannot be sustained long enough. This problem must be overcome when monitoring a structural element undergoing a dynamic test, where a range of loads are cycled through multiple times a second. In order to estimate deflections during such a scenario, this paper proposes a new least-squares adjustment for sinusoidal fitting. The new technique is capable of processing multiple back-to-back bursts of data within the same adjustment, which synthetically increases the de-facto temporal resolution of the system. The paper describes a beam deformation test done in a structures laboratory. The experimental results were assessed in terms of both their precision and accuracy. The new method increased the effective sampling frequency three-fold, which improved the standard deviations of the estimated parameters with up to two orders of magnitude. A residual RMSE as low as 30 μm was attained, and likewise the RMSE of the computed amplitudes between the photogrammetric system and the control laser transducers was as small as 34 μm.

  20. An efficient recursive least square-based condition monitoring approach for a rail vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Alfi, S.; Bruni, S.

    2016-06-01

    A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic 'input-output' model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software 'ADTreS' are utilised as 'virtual measurements' considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.

  1. Force sensor based tool condition monitoring using a heterogeneous ensemble learning model.

    PubMed

    Wang, Guofeng; Yang, Yinwei; Li, Zhimeng

    2014-11-14

    Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability.

  2. Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model

    PubMed Central

    Wang, Guofeng; Yang, Yinwei; Li, Zhimeng

    2014-01-01

    Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability. PMID:25405514

  3. Concrete structural health monitoring using embedded piezoceramic transducers

    NASA Astrophysics Data System (ADS)

    Song, G.; Gu, H.; Mo, Y. L.; Hsu, T. T. C.; Dhonde, H.

    2007-08-01

    Health monitoring of reinforced concrete bridges and other large-scale civil infrastructures has received considerable attention in recent years. However, traditional inspection methods (x-ray, C-scan, etc) are expensive and sometimes ineffective for large-scale structures. Piezoceramic transducers have emerged as new tools for the health monitoring of large-scale structures due to their advantages of active sensing, low cost, quick response, availability in different shapes, and simplicity for implementation. In this research, piezoceramic transducers are used for damage detection of a 6.1 m long reinforced concrete bridge bent-cap. Piezoceramic transducers are embedded in the concrete structure at pre-determined spatial locations prior to casting. This research can be considered as a continuation of an earlier work, where four piezoceramic transducers were embedded in planar locations near one end of the bent-cap. This research involves ten piezoceramic patches embedded at spatial locations in four different cross-sections. To induce cracks in the bent-cap, the structure is subjected to loads from four hydraulic actuators with capacities of 80 and 100 ton. In addition to the piezoceramic sensors, strain gages, LVDTs, and microscopes are used in the experiment to provide reference data. During the experiment, one embedded piezoceramic patch is used as an actuator to generate high frequency waves, and the other piezoceramic patches are used as sensors to detect the propagating waves. With the increasing number and severity of cracks, the magnitude of the sensor output decreases. Wavelet packet analysis is used to analyze the recorded sensor signals. A damage index is formed on the basis of the wavelet packet analysis. The experimental results show that the proposed methods of using piezoceramic transducers along with the damage index based on wavelet packet analysis are effective in identifying the existence and severity of cracks inside the concrete structure. The

  4. Compatibility conditions of structural mechanics for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Berke, L.; Gallagher, R. H.

    1991-01-01

    The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's; (2) the cluster or field CC's; and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown.

  5. Compatibility conditions of structural mechanics for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.

    1990-01-01

    The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's; (2) the cluster or field CC's; and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown.

  6. Usefulness of LANDSAT data for monitoring plant development and range conditions in California's annual grassland

    NASA Technical Reports Server (NTRS)

    Carneggie, D. M.; Degloria, S. D.; Colwell, R. N.

    1975-01-01

    A network of sampling sites throughout the annual grassland region of California was established to correlate plant growth stages and forage production to climatic and other environmental factors. Plant growth and range conditions were further related to geographic location and seasonal variations. A sequence of LANDSAT data was obtained covering critical periods in the growth cycle. This was analyzed by both photointerpretation and computer aided techniques. Image characteristics and spectral reflectance data were then related to forage production, range condition, range site and changing growth conditions. It was determined that repeat sequences with LANDSAT color composite images do provide a means for monitoring changes in range condition. Spectral radiance data obtained from magnetic tape can be used to determine quantitatively the critical stages in the forage growth cycle. A computer ratioing technique provided a sensitive indicator of changes in growth stages and an indication of the relative differences in forage production between range sites.

  7. Psycho-physiological monitoring in real and simulated space flight conditions.

    PubMed

    Larina, I M; Bystritzkaya, A F; Smirnova, T M

    1997-07-01

    Earlier in simulating experiments from long isolation of small group in hermetic cabin we were found out the significant interrelation between changes physiological parameters and subjective appraisal of a condition, activity regulating systems of organism, individual variability of a colour choice, and also quality of operator's activity. On the basis of these results we develop a method of psychophysiological monitoring. The important component of a method is study of the variational characteristics of registered parameters, with the purpose of reception of the information about character of transients in organism. The present research is carried out in conditions of 135-daily isolation in a breadboard model MIR station (experiment HUBES). Its PURPOSE was study of dynamic psycho-emotional condition, simultaneously with study physiological and biochemical parameters, describing process of adaptation to complex conditions of ability to live. Besides were analyzed the results of circadian rhythm's researches during space flights of 6 Russian cosmonauts (duration from 70 till 182 days) on orbital MIR station.

  8. Technical Report on Preliminary Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    SciTech Connect

    Ramuhalli, Pradeep; Coles, Garill A.; Coble, Jamie B.; Hirt, Evelyn H.

    2013-09-17

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. AdvSMRs may provide a longer-term alternative to traditional light-water reactors (LWRs) and SMRs based on integral pressurized water reactor concepts currently being considered. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment. AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors. Some of this loss can be recovered through reduced capital costs through smaller size, fewer components, modular fabrication processes, and the opportunity for modular construction. However, the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments that are a step towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results from an initial methodology for enhanced risk monitors by integrating real-time information about equipment condition and POF into risk monitors.

  9. Efficient baseline gathering and damage detection in guided wave structural health monitoring

    NASA Astrophysics Data System (ADS)

    Croxford, A. J.; Putkis, O.; Wilcox, P. D.

    2013-01-01

    Guided wave structural health monitoring (SHM) has been proposed as a technique to allow permanently attached sensors to provide information about the state of a structure. Typical approaches rely on gathering information about the baseline state of the structure and using this data with subtraction to highlight changes to the system. This relies on the baseline data accurately representing the conditions that the system will experience. In reality this is difficult to ensure and may result in either large periods out of service or poor performance. In addition the size of the baseline set can become prohibitively large. This paper describes an alternative approach that produces an efficient continuously evolving baseline. The paper considers how damage detection performance can be characterized within this framework and presents a series of metrics to do this. The result is a new way of considering the baseline problem with practical applications to the long term inspection of structures.

  10. Field monitoring of condition of large electric generators. (Latest citations from the EI Compendex plus database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning monitoring techniques to determine the condition of large electric generators. Electric generators are limited to turbine generators, variously called hydroturbines, turbogenerators and turbosets. Wind turbines and magnetohydrodynamics are not included in this bibliography. Techniques for condition monitoring include noise analysis and acoustic monitoring, vibration and misalignment measurements, bearing oil analyses, and transient torsional changes affecting shafts and rotors. (Contains a minimum of 178 citations and includes a subject term index and title list.)

  11. Health monitoring of a concrete structure using piezoceramic materials

    NASA Astrophysics Data System (ADS)

    Song, G.; Gu, H.; Mo, Y. L.; Hsu, T.; Dhonde, H.; Zhu, R. R. H.

    2005-05-01

    Health monitoring for reinforced concrete bridges and other large-scale civil infrastructure has received considerable attention in recent years. Traditional inspection methods (x-ray, C-scan etc.) are expensive and sometimes ineffective for large-scale structures. Piezoceramic transducers have emerged as new tools to health monitoring of large size structures due to the advantages of active sensing, low cost, quick response, availability in different shapes, and simplicity for implementation. In this research, piezoceramic transducers in the form of patches are used to detect internal cracks of a 6.1-meter long reinforced concrete bridge bent-cap. Piezoceramic patches are embedded in the concrete structure at pre-determined spatial locations prior to casting. This research can be considered as a continuation of an early work, where four piezoceramic patches were embedded in planar locations near one end of the bent-cap. This research involves ten piezoceramic patches embedded at spatial locations in four different cross-sections. To induce cracks in the bent-cap, the structure is subjected to loads from four hydraulic actuators with capacities of 80-ton and 100-ton. In addition to the piezoceramic sensors, strain gages, LVDTs, and microscopes are used in the experiment. During the experiment, one embedded piezoceramic patch is used as an actuator to generate sweep sinusoidal waves, and the other piezoceramic patches are used as sensors to detect the propagating waves. With the increase of number of and severity of cracks, the magnitude of the sensor output decreases. Wavelet packet analysis is used to analyze the recorded sensor signals. A damage index is formed on the basis of the wavelet packet analysis. The experimental results show that the proposed methods using piezoceramic transducers along with the damage index based on wavelet packet analysis is effective in identifying the existence and severity of cracks inside the concrete structure. The experimental

  12. Conditional graphical models for protein structural motif recognition.

    PubMed

    Liu, Yan; Carbonell, Jaime; Gopalakrishnan, Vanathi; Weigele, Peter

    2009-05-01

    Determining protein structures is crucial to understanding the mechanisms of infection and designing drugs. However, the elucidation of protein folds by crystallographic experiments can be a bottleneck in the development process. In this article, we present a probabilistic graphical model framework, conditional graphical models, for predicting protein structural motifs. It represents the structure characteristics of a structural motif using a graph, where the nodes denote the secondary structure elements, and the edges indicate the side-chain interactions between the components either within one protein chain or between chains. Then the model defines the optimal segmentation of a protein sequence against the graph by maximizing its "conditional" probability so that it can take advantages of the discriminative training approach. Efficient approximate inference algorithms using reversible jump Markov Chain Monte Carlo (MCMC) algorithm are developed to handle the resulting complex graphical models. We test our algorithm on four important structural motifs, and our method outperforms other state-of-art algorithms for motif recognition. We also hypothesize potential membership proteins of target folds from Swiss-Prot, which further supports the evolutionary hypothesis about viral folds.

  13. Physical Conditions in the Source Region of a Zebra Structure

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.; Stupishin, A. G.

    2016-08-01

    We analyze the physical conditions in the source region of a zebra structure, observed with the Ondřejov radiospectrograph during the 1 August 2010 solar flare. To determine the gyro-frequency harmonic numbers of the observed zebra lines, we compute the magnetic field strength, the electron density, and their spatial scales in the source region of the zebra structure. The region where the flare occurred is analyzed using EUV (171 Å and 335 Å) observations. To determine the conditions in the zebra source region, the magnetic field structure is reconstructed using observed photospheric magnetic field data. By computing the dependence of the magnetic field vs. height in this reconstruction and by comparing the magnetic field strength derived from the zebra structure, we determine the dependence of the electron density vs. height in the zebra source-region. We identify the loops where the zebra structure was generated at heights of about 2.5 - 3.3 Mm. Assuming the barometric law for the electron density, we determine the temperature in the zebra source-region to be T ≈ 2.0 × 104~K. Comparing the obtained values of the temperature and electron density in the zebra source-region with a model of the solar atmosphere, we find that the zebra structure was generated in the transition region, in agreement with our previous results.

  14. Structural health monitoring of wind turbine blades : SE 265 Final Project.

    SciTech Connect

    Barkley, W. C.; Jacobs, Laura D.; Rutherford, A. C.; Puckett, Anthony

    2006-03-23

    ACME Wind Turbine Corporation has contacted our dynamic analysis firm regarding structural health monitoring of their wind turbine blades. ACME has had several failures in previous years. Examples are shown in Figure 1. These failures have resulted in economic loss for the company due to down time of the turbines (lost revenue) and repair costs. Blade failures can occur in several modes, which may depend on the type of construction and load history. Cracking and delamination are some typical modes of blade failure. ACME warranties its turbines and wishes to decrease the number of blade failures they have to repair and replace. The company wishes to implement a real time structural health monitoring system in order to better understand when blade replacement is necessary. Because of warranty costs incurred to date, ACME is interested in either changing the warranty period for the blades in question or predicting imminent failure before it occurs. ACME's current practice is to increase the number of physical inspections when blades are approaching the end of their fatigue lives. Implementation of an in situ monitoring system would eliminate or greatly reduce the need for such physical inspections. Another benefit of such a monitoring system is that the life of any given component could be extended since real conditions would be monitored. The SHM system designed for ACME must be able to operate while the wind turbine is in service. This means that wireless communication options will likely be implemented. Because blade failures occur due to cyclic stresses in the blade material, the sensing system will focus on monitoring strain at various points.

  15. A wireless laser displacement sensor node for structural health monitoring.

    PubMed

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  16. Health monitoring studies on composite structures for aerospace applications

    SciTech Connect

    James, G.; Roach, D.; Hansche, B.; Meza, R.; Robinson, N.

    1996-02-01

    This paper discusses ongoing work to develop structural health monitoring techniques for composite aerospace structures such as aircraft control surfaces, fuselage sections or repairs, and reusable launch vehicle fuel tanks. The overall project is divided into four tasks: Operational evaluation, diagnostic measurements, information condensation, and damage detection. Five composite plates were constructed to study delaminations, disbonds, and fluid retention issues as the initial step in creating an operational system. These four square feet plates were graphite-epoxy with nomex honeycomb cores. The diagnostic measurements are composed of modal tests with a scanning laser vibrometer at over 500 scan points per plate covering the frequency range up to 2000 Hz. This data has been reduced into experimental dynamics matrices using a generic, software package developed at the University of Colorado at Boulder. The continuing effort will entail performing a series of damage identification studies to detect, localize, and determine the extent of the damage. This work is providing understanding and algorithm development for a global NDE technique for composite aerospace structures.

  17. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    PubMed Central

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements. PMID:24084114

  18. Modeling ultrasonic NDE and guided wave based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Ravi, Nitin B.; Rathod, Vivek T.; Chakraborty, Nibir.; Mahapatra, D. R.; Sridaran, Ramanan; Boller, Christian

    2015-04-01

    Structural Health Monitoring (SHM) systems require integration of non-destructive technologies into structural design and operational processes. Modeling and simulation of complex NDE inspection processes are important aspects in the development and deployment of SHM technologies. Ray tracing techniques are vital simulation tools to visualize the wave path inside a material. These techniques also help in optimizing the location of transducers and their orientation with respect to the zone of interrogation. It helps in increasing the chances of detection and identification of a flaw in that zone. While current state-of-the-art techniques such as ray tracing based on geometric principle help in such visualization, other information such as signal losses due to spherical or cylindrical shape of wave front are rarely taken into consideration. The problem becomes a little more complicated in the case of dispersive guided wave propagation and near-field defect scattering. We review the existing models and tools to perform ultrasonic NDE simulation in structural components. As an initial step, we develop a ray-tracing approach, where phase and spectral information are preserved. This enables one to study wave scattering beyond simple time of flight calculation of rays. Challenges in terms of theory and modelling of defects of various kinds are discussed. Various additional considerations such as signal decay and physics of scattering are reviewed and challenges involved in realistic computational implementation are discussed. Potential application of this approach to SHM system design is highlighted and by applying this to complex structural components such as airframe structures, SHM is demonstrated to provide additional value in terms of lighter weight and/or longevity enhancement resulting from an extension of the damage tolerance design principle not compromising safety and reliability.

  19. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  20. Bio-inspired sensor skins for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Tata, Uday; Deshmukh, S.; Chiao, J. C.; Carter, Ronald; Huang, H.

    2009-10-01

    This paper presents the simulation and experimental work that proved the feasibility of using a patch antenna for strain measurement. A patch antenna, besides serving as a data transmitting device, can function as a transducer that directly encodes the strain experienced into its resonant frequency. Printed on a flexible substrate, the antenna sensor is small in size, has a low profile and can be conformal to any attached surface. The technique for interrogating the antenna sensor using a wireless non-contact method is also demonstrated. Without needing electric wiring for power supply and data transmitting, the antenna sensor has a great potential for the realization of engineered sensor skins that imitate the sense of pain for structural health monitoring purposes.

  1. Guided wave based structural health monitoring: A review

    NASA Astrophysics Data System (ADS)

    Mitra, Mira; Gopalakrishnan, S.

    2016-05-01

    The paper provides a state of the art review of guided wave based structural health monitoring (SHM). First, the fundamental concepts of guided wave propagation and its implementation for SHM is explained. Following sections present the different modeling schemes adopted, developments in the area of transducers for generation, and sensing of wave, signal processing and imaging technique, statistical and machine learning schemes for feature extraction. Next, a section is presented on the recent advancements in nonlinear guided wave for SHM. This is followed by section on Rayleigh and SH waves. Next is a section on real-life implementation of guided wave for industrial problems. The paper, though briefly talks about the early development for completeness, is primarily focussed on the recent progress made in the last decade. The paper ends by discussing and highlighting the future directions and open areas of research in guided wave based SHM.

  2. Mapping Soil Structure, Identification and Monitoring of Soil processes

    NASA Astrophysics Data System (ADS)

    Tabbagh, A.

    2006-05-01

    As in other domains of earth exploration, geophysical surface analysis tools are very well adapted to the 3D mapping of soil structure. They generate well-sampled information which can be used for plotting large-scale soil maps as a guide for determining water and fertilizer requirements in precision agriculture, can be used to assist with the delineation of polluted areas, In the case of small soil volumes they can also be used to localise cracks and preferential flow paths. Electrical measurement methods are the most suitable for the above applications because of the sensitivity of electrical conductivity to clay and water content, as well as to salinity. Dielectric permittivity exhibits the most direct relationship to free liquid water content, but GPR necessitates very short sampling intervals, and TDR measurements are limited to water content monitoring at one or several specific points. Electrical resistivity measurements have been successful in monitoring spatial soil characteristics, to follow both structural changes such as crack opening, and water displacements such as liquid uptake by plants. Self potential is sensitive to the presence of on-going redox biological activity, and 'streaming potential' is expected to provide a direct assessment of Darcy's velocity as do temperature variations. Indirectly, all of these parameters may help in the determination of hydraulic conductivity. Apart from short-term changes, on a daily to seasonal scale, long term changes such as pedogenesis processes on a secular scale and anthropogenic influences are revealed by variations in magnetic properties, which can be charted using both magnetic and electromagnetic prospection methods.

  3. Structural Health Monitoring in Cylindrical Structures Using Helical Guided Wave Propagation

    NASA Astrophysics Data System (ADS)

    Baltazar, A.; Rojas, E.; Mijarez, R.

    Defect detection and characterization are critical tasks for structural health monitoring of pipe-like engineering structures. Propagation and detection of ultrasonic helical Lamb waves using macro fiber composite (MFC) sensors is studied. Experiments for defect detection and characterization on an aluminum hollow cylinder (114 mm in outer-diameter and 6 mm of wall thickness) were carried out. An experimental setup using MFC sensors coupled to the cylinder's surface in a pitch-catch configuration is presented. Time-frequency representation (TFR) using wavelets is employed to accurately perform mode identification of the ultrasonic captured signals. The initial results indicate that the use of helical waves could allow the monitoring of damage in difficult to access critical areas by locating the sensors only on a small region of the periphery of the cylindrical structure under inspection.

  4. Optimizing groundwater monitoring systems for landfills with random leaks under heterogeneous subsurface conditions

    NASA Astrophysics Data System (ADS)

    Yenigül, N. B.; Elfeki, A. M. M.; van den Akker, C.; Dekking, F. M.

    2013-12-01

    Landfills are one of the most common human activities threatening the natural groundwater quality. The landfill may leak, and the corresponding plumes may contaminate an area, entailing costly remediation measures. The objective of the installation of monitoring systems at landfill sites is to detect the contaminant plumes before they reach the regulatory compliance boundary in order to enable cost-effective counter measures. In this study, a classical decision analysis approach is linked to a stochastic simulation model to determine the optimal groundwater monitoring system given uncertainties due to the hydrogeological conditions and contaminant source characteristics. A Monte Carlo approach is used to incorporate uncertainties. Hydraulic conductivity and the leak location are the random inputs of the simulation model. The design objectives are to: (1) maximize the detection probability, (2) minimize the area of contamination at the time of detection, and (3) minimize the total cost of the monitoring system. A synthetic test case based on a real-world case in the Netherlands is analyzed. The results show that monitoring systems located close to the source are optimal except for the cases with very high unit installation and sampling cost and/or very cheap unit remediation.

  5. Graphite Based Electrode for ECG Monitoring: Evaluation under Freshwater and Saltwater Conditions

    PubMed Central

    Thap, Tharoeun; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    We proposed new electrodes that are applicable for electrocardiogram (ECG) monitoring under freshwater- and saltwater-immersion conditions. Our proposed electrodes are made of graphite pencil lead (GPL), a general-purpose writing pencil. We have fabricated two types of electrode: a pencil lead solid type (PLS) electrode and a pencil lead powder type (PLP) electrode. In order to assess the qualities of the PLS and PLP electrodes, we compared their performance with that of a commercial Ag/AgCl electrode, under a total of seven different conditions: dry, freshwater immersion with/without movement, post-freshwater wet condition, saltwater immersion with/without movement, and post-saltwater wet condition. In both dry and post-freshwater wet conditions, all ECG-recorded PQRST waves were clearly discernible, with all types of electrodes, Ag/AgCl, PLS, and PLP. On the other hand, under the freshwater- and saltwater-immersion conditions with/without movement, as well as post-saltwater wet conditions, we found that the proposed PLS and PLP electrodes provided better ECG waveform quality, with significant statistical differences compared with the quality provided by Ag/AgCl electrodes. PMID:27092502

  6. Aging and condition monitoring of electric cables in nuclear power plants

    SciTech Connect

    Lofaro, R.J.; Grove, E.; Soo, P.

    1998-05-01

    There are a variety of environmental stressors in nuclear power plants that can influence the aging rate of components; these include elevated temperatures, high radiation fields, and humid conditions. Exposure to these stressors over long periods of time can cause degradation of components that may go undetected unless the aging mechanisms are identified and monitored. In some cases the degradation may be mitigated by maintenance or replacement. However, some components receive neither and are thus more susceptible to aging degradation, which might lead to failure. One class of components that falls in this category is electric cables. Cables are very often overlooked in aging analyses since they are passive components that require no maintenance. However, they are very important components since they provide power to safety related equipment and transmit signals to and from instruments and controls. This paper will look at the various aging mechanisms and failure modes associated with electric cables. Condition monitoring techniques that may be useful for monitoring degradation of cables will also be discussed.

  7. Monitoring Single-Stranded DNA Secondary Structure Formation by Determining the Topological State of DNA Catenanes

    PubMed Central

    Liang, Xingguo; Kuhn, Heiko; Frank-Kamenetskii, Maxim D.

    2006-01-01

    Single-stranded DNA (ssDNA) has essential biological functions during DNA replication, recombination, repair, and transcription. The structure of ssDNA must be better understood to elucidate its functions. However, the available data are too limited to give a clear picture of ssDNA due to the extremely capricious structural features of ssDNA. In this study, by forming DNA catenanes and determining their topology (the linking number, Lk) through the electrophoretic analysis, we demonstrate that the studies of catenanes formed from two ssDNA molecules can yield valuable new information about the ssDNA secondary structure. We construct catenanes out of two short (60/70 nt) ssDNA molecules by enzymatic cyclization of linear oligodeoxynucleotides. The secondary structure formed between the two DNA circles determines the topology (the Lk value) of the constructed DNA catenane. Thus, formation of the secondary structure is experimentally monitored by observing the changes of linking number with sequences and conditions. We found that the secondary structure of ssDNA is much easier to form than expected: the two strands in an internal loop in the folded ssDNA structure prefer to braid around each other rather than stay separately forming a loop, and a duplex containing only mismatched basepairs can form under physiological conditions. PMID:16461397

  8. Monitoring compared with paleolimnology: implications for the definition of reference condition in limed lakes in Sweden.

    PubMed

    Norberg, Matilda; Bigler, Christian; Renberg, Ingemar

    2008-11-01

    Surface water acidification was identified as a major environmental problem in the 1960s. Consequently, a liming program was launched in Sweden in the 1970s. The primary purpose of liming is to restore conditions that existed prior to acidification. To reach this goal, as well as achieve 'good status' (i.e. low levels of distortion resulting from human activity) in European freshwaters until 2016 under the European Union Water Framework Directive, lake data are required to define reference conditions. Here, we compare data from chemical/biological monitoring of 12 limed lakes with results of paleolimnological investigations, to address questions of reference conditions, acidification, and restoration by liming. Using diatom-based lake-water pH inferences, we found clear evidence of acidification in only five of the 12 lakes, which had all originally been classified as acidified according to monitoring data. After liming, measured and diatom-inferred pH agree well in seven lakes. The sediment record of three of the five remaining lakes gave ambiguous results, presumably due to sediment mixing or low sediment accumulation rates. It is difficult to determine whether liming restored the lakes to a good status, especially as some of the lakes were not acidified during the twentieth century. In addition to acid deposition, other factors, such as natural lake and catchment ontogeny or human impact through agricultural activity, influence lake acidity. This study shows that monitoring series are usually too short to define reference conditions for lakes, and that paleolimnological studies are useful to set appropriate goals for restoration and for evaluation of counter measures.

  9. Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures

    NASA Astrophysics Data System (ADS)

    Panopoulou, A.; Loutas, T.; Roulias, D.; Fransen, S.; Kostopoulos, V.

    2011-09-01

    The main purpose of the current work is to develop a new system for structural health monitoring of composite aerospace structures based on real-time dynamic measurements, in order to identify the structural state condition. Long-gauge Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The algorithm that was developed for structural damage detection utilizes the collected dynamic response data, analyzes them in various ways and through an artificial neural network identifies the damage state and its location. Damage was simulated by slightly varying locally the mass of the structure (by adding a known mass) at different zones of the structure. Lumped masses in different locations upon the structure alter the eigen-frequencies in a way similar to actual damage. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of modal testing on two different composite aerospace structures. Advanced digital signal processing techniques, e.g. the wavelet transform (WT), were used for the analysis of the dynamic response for feature extraction. WT's capability of separating the different frequency components in the time domain without loosing frequency information makes it a versatile tool for demanding signal processing applications. The use of WT is also suggested by the no-stationary nature of dynamic response signals and the opportunity of evaluating the temporal evolution of their frequency contents. Feature extraction is the first step of the procedure. The extracted features are effective indices of damage size and location. The classification step comprises of a feed-forward back propagation network, whose output determines the simulated damage location. Finally, dedicated training and validation activities were carried out by means of numerical simulations and experimental procedures. Experimental validation was performed initially on a flat stiffened panel

  10. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New

  11. The diagnostic line: A novel criterion for condition monitoring of rotating machinery.

    PubMed

    Lin, Jinshan; Dou, Chunhong

    2015-11-01

    This study examined scaling properties of an increment series from rotating machinery. Moreover, two fluctuation parameters for the smallest and largest time scales of a scaling range served as a pair of fluctuation parameters to describe system conditions. Therefore, an interesting phenomenon is observed: the data points, each representing a pair of fluctuation parameters, for fault conditions almost form a straight line, while those for normal clearly depart from the straight line. To describe the phenomenon, a novel concept termed the diagnostic line was introduced. Subsequently, properties of the diagnostic line were carefully investigated theoretically and numerically. Consequently, a decisive role of noise in forming the diagnostic line was determined. Accordingly, this study develops a novel criterion for condition monitoring of rotating machinery.

  12. Structural health monitoring of the Gröndals Bridge in Sweden: the behaviour of CFRP strengthening in cold temperature

    NASA Astrophysics Data System (ADS)

    Hejll, Arvid; Täljsten, Björn; Carolin, Anders

    2006-03-01

    To obtain a better knowledge of existing structures behaviour monitoring can be used. The use of monitoring in bridge structures by the use of instruments to assess the integrity of structures is not new and there are reports from structures tested as early as in the 19th century according to ISIS Canada1 However, the term SHM (Structural Health Monitoring) is relatively new to civil engineering and the driving force to implement SHM comes from recognising the limitations of conventional visual inspections and evaluations using conservative codes of practice. The possibilities to monitor existing structures with help of the rapidly evolving Information Technology are to day carried out. The objective of SHM is to monitor the in-situ behaviour of a structure accurately and efficiently, to assess its performance under various service conditions, to detect damage or deterioration, and to determine the health or condition of the structure1. In Sweden strengthening and periodic monitoring of a large freivorbau bridge (pre-stresed concrete box girder bridge) has been carried out, the Gröndals Bridge. The bridge is located in Stockholm and is approximately 400 m in length with a free span of 120 m. It was opened to tram traffic in year 2000. Just after opening cracks were noticed in the webs, these cracks have then increased, the size of the largest cracks exceeded 0.5 mm, and at the end of year 2001 the bridge was temporarily strengthened. This was carried out with externally placed prestressed steel stays. The reason for cracking is quite clear but the responsibility is still debated. Nevertheless, it was evidently that the bridge needed to be strengthened. The strengthening methods used were CFRP plates in the Service Limit State (SLS) and prestressed dywidag stays in the Ultimate Limit State (ULS). The strengthening was carried out during year 2002. At the same time monitoring of the bridge commenced, using LVDT crack gauges as well as optical fibre sensors. This

  13. Bedload monitoring under conditions of ultra-high suspended sediment concentrations

    NASA Astrophysics Data System (ADS)

    Liébault, F.; Jantzi, H.; Klotz, S.; Laronne, J. B.; Recking, A.

    2016-09-01

    The bedload response of the Moulin Ravine, a small alluvial system draining a very active Mediterranean badlands landscape entrenched into Jurassic black marls of the Southern French Prealps, has been investigated using an automatic Reid bedload slot sampler. This site is known for its exceptional sediment transport conditions thanks to a long-term monitoring program that started in the late 1980s, revealing a mean annual bedload yield of 2810 t km-2 yr-1, and suspended sediment concentrations (SSCs) during flow events commonly reaching 100 g L-1. With the deployment of the slot sampler, it has been possible to record instantaneous bedload fluxes during 10 s time increments and to investigate bedload response under flow conditions with ultra-high SSCs. Bedload records cover 4 flashy summer flow events induced by heavy convective storms including a 20-yr return period event. Due to the very high SSC conditions these events challenge bedload monitoring. Even if slot sampling has been recognized as insensitive to fine sediments (silts and clays), it has never been tested in such exceptional muddy flow conditions. The bedload slot sampler performed well in such conditions. A flow-invariant proportion of fines (∼15-20%) was captured in the slot sampler during flows. This proportion is equivalent to its content in the active bedload layer during summer flows, suggesting that fines enter the slot embedded with coarse particles. Instantaneous bedload fluxes recorded in the Moulin are amongst the highest hitherto reported values worldwide, providing evidence of the exceptional sediment transport conditions of marly alpine badlands. The dimensionless entrainment threshold is one order of magnitude higher than commonly reported for gravel-bed rivers, likely reflecting the cohesion effect of fines intruded in the channel surface and subsurface.

  14. Photopyroelectric Monitoring of Olive's Ripening Conditions and Olive Oil Quality Using Pulsed Wideband IR Thermal Source

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Sarahneh, Y.; Saleh, A. M.

    The present study is based on band absorption of radiation from pulsed wideband infrared (IR) thermal source (PWBS) in conjunction with polyvinylidene fluoride film (PVDF). It is the first time to be employed to monitor the ripening state of olive fruit. Olive's characteristics vary at different stages of ripening, and hence, cultivation of olives at the right time is important in ensuring the best oil quality and maximizes the harvest yield. The photopyroelectric (PPE) signal resulting from absorption of wideband infrared (IR) radiation by fresh olive juice indicates the ripening stage of olives, i.e., allows an estimate of the suitable harvest time. The technique was found to be very useful in discriminating between olive oil samples according to geographical region, shelf life, some storage conditions, and deliberate adulteration. Our results for monitoring oil accumulation in olives during the ripening season agree well with the complicated analytical studies carried out by other researchers.

  15. [Bioimpedance means of skin condition monitoring during therapeutic and cosmetic procedures].

    PubMed

    Alekseenko, V A; Kus'min, A A; Filist, S A

    2008-01-01

    Engineering and technological problems of bioimpedance skin surface mapping are considered. A typical design of a device based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, probing current generator with programmed frequency tuning, and units for probing current monitoring and bioimpedance measurement. The electrode matrix of the device is constructed using nanotechnology. A microcontroller-controlled multiplexor provides scanning of interelectrode impedance, which makes it possible to obtain the impedance image of the skin surface under the electrode matrix. The microcontroller controls the probing signal generator frequency and allows layer-by-layer images of skin under the electrode matrix to be obtained. This makes it possible to use reconstruction tomography methods for analysis and monitoring of the skin condition during therapeutic and cosmetic procedures.

  16. Guided ultrasonic waves for the monitoring of hidden fatigue crack growth in multi-layer aerospace structures

    NASA Astrophysics Data System (ADS)

    Najarre, I.; Kostson, E.; Fromme, P.

    2014-03-01

    Varying loading conditions of aircraft structures result in stress concentration at fastener holes, where multi-layered components are connected, possibly leading to the development of fatigue cracks. The potential of guided ultrasonic waves, propagating along large plate-like structures, for the Structural Health Monitoring (SHM) of aerospace structures has been identified. However, the sensitivity for the detection of small, potentially hidden, defects has to be ascertained. This contribution presents a study of the application of guided ultrasonic waves in multi-layered tensile specimens for the monitoring of fatigue crack growth at fastener holes in the 2nd (bottom) layer of such structures. Fatigue crack growth was monitored optically and the changes in the ultrasonic signal caused by the crack development were quantified. It was shown that hidden fatigue crack detection and monitoring using the low frequency guided waves is possible. The sensitivity and repeatability of the measurements were ascertained, having the potential for fatigue crack growth monitoring at critical and difficult to access fastener locations from a stand-off distance. The robustness of the methodology for practical in-situ ultrasonic monitoring of fatigue crack growth was discussed.

  17. Inspection of the Engineering Condition of Underwater Concrete Structures

    DTIC Science & Technology

    1989-04-01

    information, bulletins, and reports of work accomplished and planned on the evaluation and repair of concrete structures. Research Needs 159. Risse! et al...43-85-01 O&M, Port Hueneme, CA. Hansen, W. C. 1965 (May). "Twenty-Year Report on the Long-Term Study of Cement Performance in Concrete ," Research ...REPAIR, EVALUATION, MAINTENANCE, AND REHABILITATION RESEARCH PROGRAM TECHNICAL REPORT REMR-CS-9 INSPECTION OF THE ENGINE~:RING CONDITION OF

  18. Innovative monitoring campaign of the environmental conditions of the Stibbert museum in Florence

    NASA Astrophysics Data System (ADS)

    Angelini, E.; Civita, F.; Corbellini, S.; Fulginiti, D.; Giovagnoli, A.; Grassini, S.; Parvis, M.

    2016-02-01

    Conservation of ancient metallic artefact displayed inside museums is a complex problem due to the large number of constraints mainly related to the artefacts fruition by people. The development of a simple procedure for monitoring the artefact conservation state promptly highlighting risky conditions without impacting on the normal museum operations could be of interest in the cultural heritage world. This paper describes the interesting results obtained by using a highly sensitive and innovative methodology for evaluating the safety level of the museum indoor areas, and more specifically of the interior of the showcases, with respect to the metallic artefacts. The methodology is based on the use of an innovative smart sensors network and of copper reference samples. The smart sensors network was employed for the continuous monitoring of temperature and relative humidity close to the artefacts, i.e. inside the display showcases. The reference specimens were Cu coated with a 100 nm Cu nanostructured layer put for 1 year in the exhibition rooms inside and outside the showcases and characterised by means of normal imaging, colorimetric and FESEM techniques at regular intervals. The results of the monitoring activity evidenced the higher reactivity to the environmental aggressivity of the nanocoated copper specimen with respect to bulk artefacts and therefore the possibility to use them as alerts to possible corrosion phenomena that may occur to the real artefacts. A proper temperature and relative humidity monitoring inside the showcases and close to each group of artefacts is a powerful though economic and non-invasive way to highlight most of the possible critical display conditions.

  19. Development of structural health monitoring and early warning system for reinforced concrete system

    SciTech Connect

    Iranata, Data E-mail: data@ce.its.ac.id; Wahyuni, Endah; Murtiadi, Suryawan; Widodo, Amien; Riksakomara, Edwin; Sani, Nisfu Asrul

    2015-04-24

    Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limit value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results.

  20. Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser

    2012-01-01

    Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the

  1. Singularity detection for structural health monitoring using holder exponents.

    SciTech Connect

    Robertson, A. N.; Farrar, C. R.; Sohn, H.

    2003-01-01

    The majority of structural health monitoring studies reported in the technical literature focus on identifying damage sensitive features that can be extracted from dynamic response data . However, many of these studies assume the structure can be modeled as a linear system before and after damage and use parameters of these models as the damage sensitive features. The study summarized in this paper proposes a damage sensitive feature that takes advantage of the nonlinearities associated with discontinuities introduced into the dynamic response data as a result of certain types of damage. Specifically, the Holder exponent, a measure of the degree to which a signal is differentiable, is the feature that is used to detect the presence of damage and when that damage occurred . A procedure for capturing the time varying nature of the Holder exponent based on wavelet transforms is demonstrated through applications to non-stationary random signals with underlying discontinuities and then to a harmonically excited mechanical system that contains a loose part . Also, a classification procedure is developed to quantify when changes in the Holder exponent are significant . The results presented herein show the Holder exponent to be an effective feature for identifying damage that introduces discontinuities into the measured dynamic response data .

  2. Phase Space Dissimilarity Measures for Structural Health Monitoring

    SciTech Connect

    Bubacz, Jacob A; Chmielewski, Hana T; Pape, Alexander E; Depersio, Andrew J; Hively, Lee M; Abercrombie, Robert K; Boone, Shane

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  3. Directional transduction for guided wave structural health monitoring

    NASA Astrophysics Data System (ADS)

    Salas, Ken I.

    The principal objectives of structural health monitoring (SHM) are the detection, location, and classification of structural defects that may adversely affect the performance of engineering systems. Ultrasonic testing based on guided waves (GW) is one of the most promising solutions for SHM. These waves are capable of inspecting large structural areas, and can be made sensitive to specific defect types by controlling the testing parameters. A key challenge in the development of GW SHM systems is the lack of robust transduction devices for efficient structural interrogation. This dissertation presents the design, fabrication, and testing of the Composite Long-range Variable-length Emitting Radar (CLoVER) transducer. This device is composed of independent piezocomposite sectors capable of efficiently exciting highly directional GW for structural inspection. The first step in the development of the new device consists of formulating a theoretical model based on 3-D elasticity to characterize its GW excitation properties. In contrast to reduced structural theories, the developed model captures the multi-modal nature of GW at high frequencies (MHz-range). After a thorough numerical verification, the model is used to determine the efficiency of the transducer relative to conventional configurations under similar electric inputs. The in-house fabrication and characterization procedures for CLoVER transducers are described and applied to more conventional piezocomposite transducer geometries. The free strain performance of these conventional in-house actuators is shown to be similar to that of commercially available piezocomposite ones. An extensive experimental investigation is subsequently presented to assess the CLoVER GW excitation characteristics in isotropic and composite materials. The radiation patterns excited by these devices are spatially characterized using laser vibrometry, and the results confirm the ability of the devices to induce highly directional GW

  4. Dynamic similarity approach for more robust structural health monitoring in nonlinear, nonstationary and stochastic systems

    NASA Astrophysics Data System (ADS)

    Nataraju, Madhura; Johnson, Timothy J.; Adams, Douglas E.

    2003-07-01

    Environmental and operational variability due to changes in the excitation or any other variable can mimic or altogether obscure evidence of structural defects in measured data leading to false positive/negative diagnoses of damage and conservative/tolerant predictions of remaining useful life in structural health monitoring system. Diagnostic and prognostic errors like these in many types of commercial and defense-related applications must be eliminated if health monitoring is to be widely implemented in these applications. A theoretical framework of "dynamic similiarity" in which two sets of mathematical operators are utilized in one system/data model to distinguish damage from nonlinear, time-varying and stochastic events in the measured data is discussed in this paper. Because structural damage initiation, evolution and accumulation are nonlinear processes, the challenge here is to distinguish damage from nonlinear, time-varying and stochastic events in the measured data is discussed in this paper. Because structural damage initiation, evolution and accumulation are nonlinear processes, the challenge here is to distinguish abnormal from normal nonlinear dynamics, which are accentuated by physically or statistically non-stationary events in the operating environment. After discussing several examples of structural diagnosis and prognosis involving dynamic similarity, a simplifeid numerical finite element model of a helicopter blade with time-varying flexural stiffness on a nonlinear aerodynamic elastic foundation that is subjected to a stochastic base excitation is utilized to introduce and examine the effects of dynamic similarity on health monitoring systems. It is shown that environmental variability can be distinguished from structural damage using a physics-based model in conjunction with the dynamic similarity operators to develop more robust damage detection algorithms, which may prove to be more accurate and precise when operating conditions fluctuate.

  5. Approach towards sensor placement, selection and fusion for real-time condition monitoring of precision machines

    NASA Astrophysics Data System (ADS)

    Er, Poi Voon; Teo, Chek Sing; Tan, Kok Kiong

    2016-02-01

    Moving mechanical parts in a machine will inevitably generate vibration profiles reflecting its operating conditions. Vibration profile analysis is a useful tool for real-time condition monitoring to avoid loss of performance and unwanted machine downtime. In this paper, we propose and validate an approach for sensor placement, selection and fusion for continuous machine condition monitoring. The main idea is to use a minimal series of sensors mounted at key locations of a machine to measure and infer the actual vibration spectrum at a critical point where it is not suitable to mount a sensor. The locations for sensors' mountings which are subsequently used for vibration inference are identified based on sensitivity calibration at these locations moderated with normalized Fisher Information (NFI) associated with the measurement quality of the sensor at that location. Each of the identified sensor placement location is associated with one or more sensitive frequencies for which it ranks top in terms of the moderated sensitivities calibrated. A set of Radial Basis Function (RBF), each of them associated with a range of sensitive frequencies, is used to infer the vibration at the critical point for that frequency. The overall vibration spectrum of the critical point is then fused from these components. A comprehensive set of experimental results for validation of the proposed approach is provided in the paper.

  6. Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil.

    PubMed

    Rauscher, Markus S; Tremmel, Anton J; Schardt, Michael; Koch, Alexander W

    2017-02-18

    The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit.

  7. Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil

    PubMed Central

    Rauscher, Markus S.; Tremmel, Anton J.; Schardt, Michael; Koch, Alexander W.

    2017-01-01

    The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit. PMID:28218701

  8. Organizational Structures and Data Use in Volunteer Monitoring Organizations (VMOs)

    ERIC Educational Resources Information Center

    Laird, Shelby Gull; Nelson, Stacy A. C.; Stubbs, Harriett S.; James, April L.; Menius, Erika

    2012-01-01

    Complex environmental problems call for unique solutions to monitoring efforts alongside developing a more environmentally literate citizenry. Community-based monitoring (CBM) through the use of volunteer monitoring organizations helps to provide a part of the solution, particularly when CBM groups work with research scientists or government…

  9. Fluorescence spectroscopy: a promising tool for gear-oil condition monitoring

    NASA Astrophysics Data System (ADS)

    Dorigo, Daniel D.; Wiesent, Benjamin R.; Simsek, Özlem; Pérez Grassi, A.; Koch, Alexander W.

    2012-04-01

    Wind power is one of the most promising green energy sources, especially when produced in offshore power plants. Corrective operations in wind turbines cause a considerable part of the maintenance costs of such plants. One preventive action for reducing such operations is the periodic off-line control of oil samples from the wind turbines. The time delay between sampling and availability of the results is a major disadvantage of this kind of controlling. In-situ condition monitoring is a solution to this problem. In-situ monitoring allows real time detection of random, time discrete events, thus enabling a better scheduling of preventive actions and reducing costs and downtime. Fluorescence spectroscopy is a complementary technique to absorption spectroscopy. Due to absorption of UV or visible light, the electrons of specific molecules are excited from a ground electronic state to a vibrational state of higher energy. By collision with other molecules, the excited electron looses a part of the acquired energy and relaxes to a lower vibrational state. The remaining acquired energy is emitted during the electron's transition to the ground state. The resulting frequency shift between excitation and emission energy, known as Stokes shift, is unique and characteristic for each active molecule. In this paper gear-oil condition monitoring based on fluorescence spectroscopy is proposed. Three typical commercial gear-oils for wind turbines were studied. The spectra gained by UV excitation of the samples were analyzed by means of partial least square (PLS) regression. Good prediction results were obtained for the total acid number (TAN). The latter is a measure for the oil acidity and is considered to be a proxy variable for oil age. Other parameters delivering information about gear-oil additive depletion and the related oil aging condition, like phosphor, sulfur and molybdenum concentration, were also analyzed.

  10. All-optically driven system in ultrasonic wave-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Wu, Nan; Zhou, Jingcheng; Zhang, Haifeng; Wang, Xingwei

    2016-04-01

    Ultrasonic wave based structural health monitoring (SHM) is an innovative method for nondestructive detection and an area of growing interest. This is due to high demands for wireless detection in the field of structural engineering. Through optically exciting and detecting ultrasonic waves, electrical wire connections can be avoided, and non-contact SHM can be achieved. With the combination of piezoelectric transducer (PZT) (which possesses high heat resistance) and the noncontact detection, this system has a broad range of applications, even in extreme conditions. This paper reports an all-optically driven SHM system. The resonant frequencies of the PZT transducers are sensitive to a variety of structural damages. Experimental results have verified the feasibility of the all-optically driven SHM system.

  11. Propagation error minimization method for multiple structural displacement monitoring system

    NASA Astrophysics Data System (ADS)

    Jeon, Haemin; Shin, Jae-Uk; Myung, Hyun

    2013-04-01

    In the previous study, a visually servoed paired structured light system (ViSP) which is composed of two sides facing each other, each with one or two lasers, a 2-DOF manipulator, a camera, and a screen has been proposed. The lasers project their parallel beams to the screen on the opposite side and 6-DOF relative displacement between two sides is estimated by calculating positions of the projected laser beams and rotation angles of the manipulators. To apply the system to massive civil structures such as long-span bridges or high-rise buildings, the whole area should be divided into multiple partitions and each ViSP module is placed in each partition in a cascaded manner. In other words, the movement of the entire structure can be monitored by multiplying the estimated displacements from multiple ViSP modules. In the multiplication, however, there is a major problem that the displacement estimation error is propagated throughout the multiple modules. To solve the problem, propagation error minimization method (PEMM) which uses Newton-Raphson formulation inspired by the error back-propagation algorithm is proposed. In this method, a propagation error at the last module is calculated and then the estimated displacement from ViSP at each partition is updated in reverse order by using the proposed PEMM that minimizes the propagation error. To verify the performance of the proposed method, various simulations and experimental tests have been performed. The results show that the propagation error is significantly reduced after applying PEMM.

  12. Remote sensing of vegetation pattern and condition to monitor changes in Everglades biogeochemistry

    USGS Publications Warehouse

    Jones, John W.

    2011-01-01

    Ground-based studies of biogeochemistry and vegetation patterning yield process understanding, but the amount of information gained by ground-based studies can be greatly enhanced by efficient, synoptic, and temporally resolute monitoring afforded by remote sensing. The variety of presently available Everglades vegetation maps reflects both the wide range of application requirements and the need to balance cost and capability. More effort needs to be applied to documenting and understanding vegetation distribution and condition as indicators of biogeochemistry and contamination. Ground-based and remote sensing studies should be modified to maximize their synergy and utility for adaptive management.

  13. Remote sensing of vegetation pattern and condition to monitor changes in everglades biogeochemistry

    USGS Publications Warehouse

    Jones, J.W.

    2011-01-01

    Ground-based studies of biogeochemistry and vegetation patterning yield process understanding, but the amount of information gained by ground-based studies can be greatly enhanced by efficient, synoptic, and temporally resolute monitoring afforded by remote sensing. The variety of presently available Everglades vegetation maps reflects both the wide range of application requirements and the need to balance cost and capability. More effort needs to be applied to documenting and understanding vegetation distribution and condition as indicators of biogeochemistry and contamination. Ground-based and remote sensing studies should be modified to maximize their synergy and utility for adaptive management. Copyright ?? 2011 Taylor & Francis Group, LLC.

  14. A ground test program to support condition monitoring of a spacecraft attitude control propulsion system

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Lester, Robert W.; Baroth, Edmund C.; Coleman, Arthur L.

    1991-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission involves seven years of flight from 0.6 to 4.57 Astronomical Units (AU), followed by about 915 days of maneuvering around a comet. Ground testing will characterize the very critical attitude control system thrusters' fuel consumption and performance for all anticipated fuel temperatures over thruster life. The ground test program characterization will support flight condition monitoring. A commercial software application hosted on a commercial microcomputer will control ground test operations and data acquisition using a newly designed thrust stand. The data acquisition and control system uses a graphics-based language and features a visual interface to integrate data acquisition and control.

  15. New smart materials to address issues of structural health monitoring.

    SciTech Connect

    Chaplya, Pavel Mikhail

    2004-12-01

    Nuclear weapons and their storage facilities may benefit from in-situ structural health monitoring systems. Appending health-monitoring functionality to conventional materials and structures has been only marginally successful. The purpose of this project was to evaluate feasibility of a new smart material that includes self-sensing health monitoring functions similar to that of a nervous system of a living organism. Reviews of current efforts in the fields of heath-monitoring, nanotechnology, micro-electromechanical systems (MEMS), and wireless sensor networks were conducted. Limitations of the current nanotechnology methods were identified and new approaches were proposed to accelerate the development of self-sensing materials. Wireless networks of MEMS sensors have been researched as possible prototypes of self-sensing materials. Sensor networks were also examined as enabling technologies for dense data collection techniques to be used for validation of numerical methods and material parameter identification. Each grain of the envisioned material contains sensors that are connected in a dendritic manner similar to networks of neurons in a nervous system. Each sensor/neuron can communicate with the neighboring grains. Both the state of the sensor (on/off) and the quality of communication signal (speed/amplitude) should indicate not only a presence of a structural defect but the nature of the defect as well. For example, a failed sensor may represent a through-grain crack, while a lost or degraded communication link may represent an inter-granular crack. A technology to create such material does not exist. While recent progress in the fields of MEMS and nanotechnology allows to envision these new smart materials, it is unrealistic to expect creation of self-sensing materials in the near future. The current state of MEMS, nanotechnology, communication, sensor networks, and data processing technologies indicates that it will take more than ten years for the

  16. Developing a structural health monitoring system for nuclear dry cask storage canister

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyi; Lin, Bin; Bao, Jingjing; Giurgiutiu, Victor; Knight, Travis; Lam, Poh-Sang; Yu, Lingyu

    2015-03-01

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. In total, there are over 1482 dry cask storage system (DCSS) in use at US plants, storing 57,807 fuel assemblies. Nondestructive material condition monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health", and more importantly, to guarantee the safe operation of radioactive waste storage systems (RWSS) during their extended usage period. A state-of-the-art nuclear structural health monitoring (N-SHM) system based on in-situ sensing technologies that monitor material degradation and aging for nuclear spent fuel DCSS and similar structures is being developed. The N-SHM technology uses permanently installed low-profile piezoelectric wafer sensors to perform long-term health monitoring by strategically using a combined impedance (EMIS), acoustic emission (AE), and guided ultrasonic wave (GUW) approach, called "multimode sensing", which is conducted by the same network of installed sensors activated in a variety of ways. The system will detect AE events resulting from crack (case for study in this project) and evaluate the damage evolution; when significant AE is detected, the sensor network will switch to the GUW mode to perform damage localization, and quantification as well as probe "hot spots" that are prone to damage for material degradation evaluation using EMIS approach. The N-SHM is expected to eventually provide a systematic methodology for assessing and monitoring nuclear waste storage systems without incurring human radiation exposure.

  17. VA Health Care: Processes to Evaluate, Implement, and Monitor Organizational Structure Changes Needed

    DTIC Science & Technology

    2016-09-01

    VA HEALTH CARE Processes to Evaluate, Implement, and Monitor Organizational Structure Changes Needed Report to...Monitor Organizational Structure Changes Needed What GAO Found Recent internal and external reviews of Veterans Health Administration (VHA...operations have identified deficiencies in its organizational structure and recommended changes that would require significant restructuring to address

  18. Fiber Bragg grating spectral features for structural health monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Webb, Sean; Peters, Kara; Zikry, Mohammed; Stan, Nikola; Chadderdon, Spencer; Selfridge, Richard; Schultz, Stephen

    2014-05-01

    We demonstrate the measurement of and applications for reflected spectral signatures obtained from FBG sen- sors in dynamic environments. Three uses of the spectral distortion measurements for monitoring of airframe structures are presented: the measurement of the dynamic response of a laminated plate to an impact event; the measurement of damage induced spectral distortion in a thin plate during vibration loading; and the measurement of the change in dynamic response of an adhesively bonded joint with the progression of fatigue damage.

  19. Three dimensional dynamics of rotating structures under mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Bediz, Bekir; Romero, L. A.; Ozdoganlar, O. Burak

    2015-12-01

    This paper presents the spectral-Tchebychev (ST) technique for solution of three dimensional (3D) dynamics of rotating structures. In particular, structures that exhibit coupled dynamic response require a 3D modeling approach to capture their dynamic behavior. Rotational motions further complicate this behavior, inducing coriolis, centrifugal softening, and (nonlinear) stress-stiffening effects. Therefore, a 3D solution approach is needed to accurately capture the rotational dynamics. The presented 3D-ST technique provides a fast-converging and precise solution approach for rotational dynamics of structures with complex geometries and mixed boundary conditions. Specifically, unlike finite elements techniques, the presented technique uses a series expansion approach considering distributed-parameter system equations: The integral boundary value problem for rotating structures is discretized using the spectral-Tchebychev approach. To simplify the domain of the structures, cross-sectional and rotational transformations are applied to problems with curved cross-section and pretwisted geometry. The nonlinear terms included in the integral boundary value problem are linearized around an equilibrium solution using the quasi-static method. As a result, mass, damping, and stiffness matrices, as well as a forcing vector, are obtained for a given rotating structure. Several case studies are then performed to demonstrate the application and effectiveness of the 3D-ST solution. For each problem, the natural frequencies and modes shapes from the 3D-ST solution are compared to those from the literature (when available) and to those from a commercial finite elements software. The case studies include rotating/spinning parallelepipeds under free and mixed boundary conditions, and a cantilevered pretwisted beam (i.e., rotating blade) with an airfoil geometry rotating on a hub. It is seen that the natural frequencies and mode shapes from the 3D-ST technique differ from those from the

  20. Design and performance of optimal detectors for guided wave structural health monitoring

    SciTech Connect

    Dib, G.; Udpa, L.

    2016-01-01

    Ultrasonic guided wave measurements in a long term structural health monitoring system are affected by measurement noise, environmental conditions, transducer aging and malfunction. This results in measurement variability which affects detection performance, especially in complex structures where baseline data comparison is required. This paper derives the optimal detector structure, within the framework of detection theory, where a guided wave signal at the sensor is represented by a single feature value that can be used for comparison with a threshold. Three different types of detectors are derived depending on the underlying structure’s complexity: (i) Simple structures where defect reflections can be identified without the need for baseline data; (ii) Simple structures that require baseline data due to overlap of defect scatter with scatter from structural features; (iii) Complex structure with dense structural features that require baseline data. The detectors are derived by modeling the effects of variabilities and uncertainties as random processes. Analytical solutions for the performance of detectors in terms of the probability of detection and false alarm are derived. A finite element model is used to generate guided wave signals and the performance results of a Monte-Carlo simulation are compared with the theoretical performance. initial results demonstrate that the problems of signal complexity and environmental variability can in fact be exploited to improve detection performance.

  1. Structural health monitoring of wind towers: residual fatigue life estimation

    NASA Astrophysics Data System (ADS)

    Benedetti, M.; Fontanari, V.; Battisti, L.

    2013-04-01

    In a recent paper (Benedetti et al 2011 Smart Mater. Struct. 20 055009), the authors investigated the possibility of detecting cracks in critical sites of onshore wind towers using a radial arrangement of strain sensors around the tower periphery in the vicinity of the base welded joint. Specifically, the strain difference between adjacent strain sensors is used as a damage indicator. The number of sensors to be installed is determined by the minimum crack size to be detected, which in turn depends on the expected extreme wind conditions and programmed inspection/repair schedule. In this companion paper, we address these issues by investigating possible strategies for residual fatigue life assessment and management of onshore wind towers once the crack has been detected. For this purpose, fracture mechanics tests are carried out using welded samples to quantify the resistance to fatigue crack growth as well as the elastic-plastic fracture toughness of the welded joint at the tower base. These material strength characteristics are used to estimate (i) the critical crack size for structural integrity on the basis of fracture toughness tests, elastoplastic finite element analyses and loading spectra under extreme wind conditions, (ii) the residual life before structural collapse, applying a frequency-domain method to typical in-service wind actions and wind directionality.

  2. Using an infrasonic method to monitor the destruction of glaciers in Arctic conditions

    NASA Astrophysics Data System (ADS)

    Asming, V. E.; Baranov, S. V.; Vinogradov, A. N.; Vinogradov, Yu. A.; Fedorov, A. V.

    2016-09-01

    We study the application of an infrasonic method to detect infrasonic acoustic emission caused by the destruction of glaciers in the Arctic. We consider the main approaches and methods for automatic signal detection from the data of infrasonic microarrays from the viewpoint of their practical use in conditions of frequent and significant variations in the noise level characteristics of the Arctic coast. We propose a novel method for the automatic detection of infrasonic events based on representation of a plane wave signal and adaptive estimation of the noise level. The method makes it possible to detect signals with a small number of sensors (up to three) in the specific conditions of the Arctic coast. We present the results of infrasonic monitoring of the destruction of Icefjord outlet glaciers (Spitsbergen archipelago) carried out by the Kola Branch of the RAS Geophysical Survey in 2011-2012.

  3. A dynamical model for condition monitoring and fault diagnostics of spur gears

    SciTech Connect

    Paya, B.; Esat, I.; Badi, M.N.M.

    1996-12-31

    The symptoms of condition monitoring and fault diagnostics of machinery based on the dynamic modelling of spur gears are discussed in this paper. The mathematical model presented in the earlier work, assumes two degree of freedom for each gear and the rotor, and also incorporates a varying gear tooth stiffness. This system is assumed to be in good condition (i.e. no fault present). The results obtained from this analytical model are compared with the ones obtained from an experimental model gearbox. This experimental gearbox consists of two meshing spur gears driven by an electric motor. The comparison of the results are encouraging as fundamental (dominant) frequencies of the analytical results correlates very closely to the experimental ones. It is shown that certain vibration frequency of a real gearbox such as the tooth meshing frequencies can be achieved from its mathematical model.

  4. Adaptive Methods within a Sequential Bayesian Approach for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Huff, Daniel W.

    Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring approach is based on predicting crack damage state dynamics and modeling crack length observations. Since fatigue loading of a structural component can change while in service, an interacting multiple model technique is employed to estimate probabilities of different loading modes and incorporate this information in the crack length estimation problem. For the observation model, features are obtained from regions of high signal energy in the time-frequency plane and modeled for each crack length damage condition. Although this observation model approach exhibits high classification accuracy, the resolution characteristics can change depending upon the extent of the damage. Therefore, several different transmission waveforms and receiver sensors are considered to create multiple modes for making observations of crack damage. Resolution characteristics of the different observation modes are assessed using a predicted mean squared error criterion and observations are obtained using the predicted, optimal observation modes based on these characteristics. Calculation of the predicted mean square error metric can be computationally intensive, especially if performed in real time, and an approximation method is proposed. With this approach, the real time

  5. A wireless multifunctional radar-based displacement sensor for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rice, Jennifer A.; Li, Changzhi; Gu, Changzhan; Hernandez, Justin C.

    2011-04-01

    Wireless smart sensor technology offers many opportunities to advance infrastructure monitoring and maintenance by providing pertinent information regarding the condition of a structure at a lower cost and higher density than traditional monitoring approaches. Many civil structures, especially long-span bridges, have low fundamental response frequencies that are challenging to accurately measure with sensors that are suitable for integration with low-cost, low-profile, and power-constrained wireless sensor networks. Existing displacement sensing technology is either not practical for wireless sensor implementations, does not provide the necessary accuracy, or is simply too cost-prohibitive for dense sensor deployments. This paper presents the development and integration of an accurate, low-cost radar-based sensor for the enhancement of low-frequency vibration-based bridge monitoring and the measurement of static bridge deflections. The sensors utilize both a nonlinear vibrometer mode and an arctangent-demodulated interferometry mode to achieve sub-millimeter measurement accuracy for both periodic and non-periodic displacement. Experimental validation results are presented and discussed.

  6. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors.

    PubMed

    Bremer, Kort; Weigand, Frank; Zheng, Yulong; Alwis, Lourdes Shanika; Helbig, Reinhard; Roth, Bernhard

    2017-02-10

    Optical fiber-based sensors "embedded" in functionalized carbon structures (FCSs) and textile net structures (TNSs) based on alkaline-resistant glass are introduced for the purpose of structural health monitoring (SHM) of concrete-based structures. The design aims to monitor common SHM parameters such as strain and cracks while at the same time acting as a structural strengthening mechanism. The sensor performances of the two systems are characterized in situ using Mach-Zehnder interferometric (MZI) and optical attenuation measurement techniques, respectively. For this purpose, different FCS samples were subjected to varying elongation using a tensile testing machine by carefully incrementing the applied force, and good correlation between the applied force and measured length change was observed. For crack detection, the functionalized TNSs were embedded into a concrete block which was then exposed to varying load using the three-point flexural test until destruction. Promising results were observed, identifying that the location of the crack can be determined using the conventional optical time domain reflectometry (OTDR) technique. The embedded sensors thus evaluated show the value of the dual achievement of the schemes proposed in obtaining strain/crack measurement while being utilized as strengthening agents as well.

  7. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors

    PubMed Central

    Bremer, Kort; Weigand, Frank; Zheng, Yulong; Alwis, Lourdes Shanika; Helbig, Reinhard; Roth, Bernhard

    2017-01-01

    Optical fiber-based sensors “embedded” in functionalized carbon structures (FCSs) and textile net structures (TNSs) based on alkaline-resistant glass are introduced for the purpose of structural health monitoring (SHM) of concrete-based structures. The design aims to monitor common SHM parameters such as strain and cracks while at the same time acting as a structural strengthening mechanism. The sensor performances of the two systems are characterized in situ using Mach-Zehnder interferometric (MZI) and optical attenuation measurement techniques, respectively. For this purpose, different FCS samples were subjected to varying elongation using a tensile testing machine by carefully incrementing the applied force, and good correlation between the applied force and measured length change was observed. For crack detection, the functionalized TNSs were embedded into a concrete block which was then exposed to varying load using the three-point flexural test until destruction. Promising results were observed, identifying that the location of the crack can be determined using the conventional optical time domain reflectometry (OTDR) technique. The embedded sensors thus evaluated show the value of the dual achievement of the schemes proposed in obtaining strain/crack measurement while being utilized as strengthening agents as well. PMID:28208636

  8. Ecological Indicators and Monitoring Systems are Needed to Track Changing Ecosystem Condition in the United States

    NASA Astrophysics Data System (ADS)

    Negra, C.; O'Malley, R.; Cavender-Bares, K.

    2007-12-01

    Well-designed ecological indicators are important tools for tracking the cumulative effects of land management, disturbance patterns and climate on the biogeochemical condition of ecosystems. Indicators can be used to identify direct and indirect ecological responses to major stressors, to evaluate the effectiveness of management strategies and to understand potential changes in provision of ecological services. To contextualize the magnitude of contemporary ecological changes, long-term data sources are needed for indicator metrics. In the absence of ongoing, objective monitoring programs, public and private environmental decisions will not be adequately supported by scientifically sound baseline or trend information. In the State of the Nation's Ecosystems, the Heinz Center reports on 108 indicators selected to represent the most important components of major terrestrial and aquatic ecosystem types in the U.S. A central finding of this effort is the large number of gaps in available datasets to populate key ecological indicators. The 2008 edition of the report will have complete data for 42 indicators, partial data for 27 indicators and data gaps for 28 indicators (11 indicators require further development). The U.S. Government Accountability Office (GAO) and the Heinz Center have produced major assessments of the status of environmental monitoring systems. The GAO report highlights eroding data-gathering capacity in the face of funding constraints and expanding information demands. The Heinz Center report maps out specific technical challenges in filling high-priority, national-scale data gaps and addresses barriers to integration and efficiency in the nation's overall monitoring system. This presentation will focus on crucial environmental monitoring needs for reporting on U.S. ecological indicators. Key concepts for effective monitoring systems will be presented including: (1) design to capture essential dynamics of ecosystems and to establish credible

  9. Conditional random fields for pattern recognition applied to structured data

    SciTech Connect

    Burr, Tom; Skurikhin, Alexei

    2015-07-14

    Pattern recognition uses measurements from an input domain, X, to predict their labels from an output domain, Y. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features between parts of the model are often correlated. Therefore, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. This paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.

  10. Conditional random fields for pattern recognition applied to structured data

    DOE PAGES

    Burr, Tom; Skurikhin, Alexei

    2015-07-14

    Pattern recognition uses measurements from an input domain, X, to predict their labels from an output domain, Y. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features between parts of the modelmore » are often correlated. Therefore, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. This paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.« less

  11. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2012-04-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  12. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2011-11-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  13. The use of the motor as a transducer to monitor pump conditions

    SciTech Connect

    Casada, D.A.; Bunch, S.L.

    1995-12-31

    Motor current and power analysis methods have been developed to assist in the condition monitoring of a variety of motor-driven devices. The successful implementation of motor current signature analysis (MCSA) as a diagnostic for valves led to its application to other devices and to refinements in the methodologies used. A variety of pump applications, ranging from 5 to over 1200 horsepower have been analyzed, including low and high specific speed and suction specific speed pumps. For some of the pumps, the full range of flow conditions from shutoff to runout has been studied. Motor current and power analysis have been found to provide information that is complementary to that available from conventional diagnostics, such as vibration and pressure pulsation analysis. Inherent signal filtering associated with rotor to stator magnetic field coupling does limit the high frequency response capability of the motor as a transducer; as a result certain phenomena, such as vane pass energy, is not readily apparent in the motor electrical signals. On the other hand, the motor-monitored parameters have often been found to be much more sensitive than vibration transducers in detecting the effects of unsteady flow conditions resulting from both system and pump specific sources such as suction cavitation. By combining motor equivalent circuit models with pump performance characteristics, shaft power and torque fluctuation estimates have been assessed. The usefulness of motor data in assessing some common sources of pump problems, such as mechanical and hydraulic imbalance, misalignment, and unstable flow conditions is shown. The results of testing several motor-driven pumps, including comparisons with vibration and pressure pulsation analysis are discussed. The development of a single figure of merit for pump load stability (as a function of pump flow rate and type) is presented.

  14. Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-10-01

    Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflects the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit

  15. Structural Health Monitoring of Composite Wound Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kaul, Raj; Taylor, Scott; Jackson, Kurt; Myers, George; Sharma, A.

    2002-01-01

    The increasing use of advanced composite materials in the wide range of applications including Space Structures is a great impetus to the development of smart materials. Incorporating these FBG sensors for monitoring the integrity of structures during their life cycle will provide valuable information about viability of the usage of such material. The use of these sensors by surface bonding or embedding in this composite will measure internal strain and temperature, and hence the integrity of the assembled engineering structures. This paper focuses on such a structure, called a composite wound pressure vessel. This vessel was fabricated from the composite material: TRH50 (a Mitsubishi carbon fiber with a 710-ksi tensile strength and a 37 Msi modulus) impregnated with an epoxy resin from NEWPORT composites (WDE-3D-1). This epoxy resin in water dispersed system without any solvents and it cures in the 240-310 degrees F range. This is a toughened resin system specifically designed for pressure applications. These materials are a natural fit for fiber sensors since the polyimide outer buffer coating of fiber can be integrated into the polymer matrix of the composite material with negligible residual stress. The tank was wound with two helical patterns and 4 hoop wraps. The order of winding is: two hoops, two helical and two hoops. The wall thickness of the composite should be about 80 mil or less. The tank should burst near 3,000 psi or less. We can measure the actual wall thickness by ultrasonic or we can burst the tank and measure the pieces. Figure 1 shows a cylinder fabricated out of carbon-epoxy composite material. The strain in different directions is measured with a surface bonded fiber Bragg gratings and with embedded fiber Bragg gratings as the cylinder is pressurized to burst pressures. Figure 2 shows the strain as a function of pressure of carbon-epoxy cylinder as it is pressurized with water. Strain is measured in different directions by multiple gratings

  16. Remote monitoring of parental incubation conditions in the greater sandhill crane

    USGS Publications Warehouse

    Gee, G.F.; Hatfield, J.; Howey, P.J.

    1995-01-01

    To monitor incubation conditions in nests of greater sandhill cranes, a radiotransmitting egg was built using six temperature sensors, a position sensor, and a light sensor. Sensor readings were received, along with time of observations, and stored in a computer. The egg was used to monitor incubation in nests of six pairs of cranes during 1987 and 1988. Ambient temperature was also measured. Analysis of covariance (ANCOVA) was used to relate highest egg temperature, core egg temperature, and lowest egg temperature to ambient temperature, time since the egg was last turned, and time since the beginning of incubation. Ambient temperature had the greatest effect on egg temperature (P 0.0001), followed by the time since the beginning of incubation and time since the egg was last turned. Pair effect, the class variable in the ANCOVA. was also very significant (P < 0.0001). A nine-term Fourier series was used to estimate the average core egg temperature versus time of day and was found to fit the data well (r2 = 0.94). The Fourier series will be used to run a mechanical incubator to simulate natural incubation conditions for cranes.

  17. Application-ready expedited MODIS data for operational land surface monitoring of vegetation condition

    USGS Publications Warehouse

    Brown, Jesslyn; Howard, Daniel M.; Wylie, Bruce K.; Frieze, Aaron; Ji, Lei; Gacke, Carolyn

    2015-01-01

    Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS) system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1), the eMODIS Normalized Difference Vegetation Index (NDVI) maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra) or afternoon (Aqua) orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  18. Design and Realization of Rotating Machinery Conditions Monitoring System Based on Labview

    NASA Astrophysics Data System (ADS)

    Fan, Qiyuan

    Nonlinear dynamic analysis of rotating machinery system has always been the hot spot of the rotational dynamics research. This article sets up a rotating machinery condition monitoring system to realize the measurement of system dynamic characteristic parameters based on NI(National Instruments) virtual instruments technology. The measurement of vibration signal of rotating machinery system is achieved by using NI company general data acquisition module of NI company. Meanwhile, by analyzing and processing the acquired data using Labview 2012, the dynamic characteristics, such as .the speed of the rotating machinery system, the axis trajectory, spectrum parameters, are attained. The measurement results show that the rotating machinery condition monitoring system based on Labview is easy to operate, easy to realize the function extension and maintenance, and that it can be used in the industrial engineering projects with rotation characteristics. Labview as the development tools used by virtual instrument function, is very powerful data acquisition software products support is one of the features of it, so using Labview programming and data acquisition is simple and convenient [1].

  19. Condition monitoring requirements for the development of a space nuclear propulsion module

    NASA Technical Reports Server (NTRS)

    Wagner, Robert C.

    1993-01-01

    To facilitate the development of a space nuclear propulsion module for manned flights to Mars, requirements must be established early in the technology cycle. The long lead times for the acquisition of the engine system and nuclear test facilities demands that the engine system, size, performance, safety goals and condition monitoring philosophy be defined at the earliest possible time. These systems are highly complex and require a large multi-disciplinary systems engineering team to develop and track the requirements and to ensure that the as-built system reflects the intent of the mission. An effective methodology has been devised coupled with sophisticated computer tools to effectivly develop and interpret the functional requirements. These requirements can then be decomposed down to the specification level for implementation. This paper discusses the application of the methodology and the analyses to develop condition monitoring requirements under a contract with the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) Nuclear Propulsion Office (NPO).

  20. Adaptive responses of the cardiovascular system to prolonged spaceflight conditions: assessment with Holter monitoring

    NASA Technical Reports Server (NTRS)

    Baevsky, R. M.; Bennett, B. S.; Bungo, M. W.; Charles, J. B.; Goldberger, A. L.; Nikulina, G. A.

    1997-01-01

    This article presents selected findings obtained with Holter monitoring from two crew members of the expedition, performed during a 175-day space mission on board orbital space station "MIR." Using mathematical processing of daily cardiointervals files, 5-minute sections of records were analyzed consecutively. Then, the average daily values of indices, the average-per-every-eight-hours values (morning, evening, night) and mean values per hour were computed. The results of analysis showed that prolonged exposure of man to microgravity conditions leads to important functional alteration in human neuroautonomic regulatory mechanisms. Both crew members had significant increase of heart rate, the rise of stress index, the decrease in power of the spectrum in the range of respiratory sinus arrhythmia. These marked signs of activation of the sympathetic section of the vegetative nervous system showed individual variations. The analysis of the daily collection of cardiointervals with Holter monitoring allows us to understand and forecast the functional feasibilities of the human organism under a variety of stress conditions associated with acute and chronic microgravity exposure.