Science.gov

Sample records for structural condition monitoring

  1. Structural health monitoring methodology for aircraft condition-based maintenance

    NASA Astrophysics Data System (ADS)

    Saniger, Jordi; Reithler, Livier; Guedra-Degeorges, Didier; Takeda, Nobuo; Dupuis, Jean Pierre

    2001-06-01

    Reducing maintenance costs while keeping a constant level of safety is a major issue for Air Forces and airlines. The long term perspective is to implement condition based maintenance to guarantee a constant safety level while decreasing maintenance costs. On this purpose, the development of a generalized Structural Health Monitoring System (SHMS) is needed. The objective of such a system is to localize the damages and to assess their severity, with enough accuracy to allow low cost corrective actions. The present paper describes a SHMS based on acoustic emission technology. This choice was driven by its reliability and wide use in the aerospace industry. The described SHMS uses a new learning methodology which relies on the generation of artificial acoustic emission events on the structure and an acoustic emission sensor network. The calibrated acoustic emission events picked up by the sensors constitute the knowledge set that the system relies on. With this methodology, the anisotropy of composite structures is taken into account, thus avoiding the major cause of errors of classical localization methods. Moreover, it is adaptive to different structures as it does not rely on any particular model but on measured data. The acquired data is processed and the event's location and corrected amplitude are computed. The methodology has been demonstrated and experimental tests on elementary samples presented a degree of accuracy of 1cm.

  2. Thick-film acoustic emission sensors for use in structurally integrated condition-monitoring applications.

    PubMed

    Pickwell, Andrew J; Dorey, Robert A; Mba, David

    2011-09-01

    Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.

  3. Vibration-based structural health monitoring using adaptive statistical method under varying environmental condition

    NASA Astrophysics Data System (ADS)

    Jin, Seung-Seop; Jung, Hyung-Jo

    2014-03-01

    It is well known that the dynamic properties of a structure such as natural frequencies depend not only on damage but also on environmental condition (e.g., temperature). The variation in dynamic characteristics of a structure due to environmental condition may mask damage of the structure. Without taking the change of environmental condition into account, false-positive or false-negative damage diagnosis may occur so that structural health monitoring becomes unreliable. In order to address this problem, an approach to construct a regression model based on structural responses considering environmental factors has been usually used by many researchers. The key to success of this approach is the formulation between the input and output variables of the regression model to take into account the environmental variations. However, it is quite challenging to determine proper environmental variables and measurement locations in advance for fully representing the relationship between the structural responses and the environmental variations. One alternative (i.e., novelty detection) is to remove the variations caused by environmental factors from the structural responses by using multivariate statistical analysis (e.g., principal component analysis (PCA), factor analysis, etc.). The success of this method is deeply depending on the accuracy of the description of normal condition. Generally, there is no prior information on normal condition during data acquisition, so that the normal condition is determined by subjective perspective with human-intervention. The proposed method is a novel adaptive multivariate statistical analysis for monitoring of structural damage detection under environmental change. One advantage of this method is the ability of a generative learning to capture the intrinsic characteristics of the normal condition. The proposed method is tested on numerically simulated data for a range of noise in measurement under environmental variation. A comparative

  4. Development of an In-Situ Decommissioning Sensor Network Test Bed for Structural Condition Monitoring - 12156

    SciTech Connect

    Zeigler, Kristine E.; Ferguson, Blythe A.

    2012-07-01

    The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials and condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors

  5. Monitoring Technical Conditions of Engineering Structures Using the Non-Linear Approach

    NASA Astrophysics Data System (ADS)

    Volkova, V. E.

    2015-11-01

    Conventional methods of monitoring technical condition are based on detection of damage in the structures of buildings or facilities during the entire period of their operation. In spite of considerable interest displayed to this issue and a significant number of publications, there is no unity of opinions. These methods differ from each other in the sets of values fixed for investigations, the techniques of their recording, transfer and further processing. Today's rules and regulations for structural designs expand the scope of application of the structures operating in the elastic-plastic stage. These damage-free structures originally display the nonlinear properties and can be adequately described only by the non-linear models. This paper presents a method for determining the type and level of non-linearity from the structural oscillations data for monitoring the change in the health of structures. It is shown that a plot of acceleration against the magnitude of the displacement represents the restoring force of a structure. If the structure is damaged during a new striking motion, the phase trajectories in plane “acceleration-displacement” will deviate from its healthy signature.

  6. Structural Health Monitoring of Composite Plates Under Ambient and Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.

    2005-01-01

    Methods for structural health monitoring are now being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. Different types of excitation and response signals and different sensors are employed in composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency and high frequency chirps of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage and operating environment. These results are furthermore compared with previous work using externally mounted sensors. More work is needed to accurately account for changes in temperature seen in these environments and be statistically significant. Sensor development and placement strategy are other areas of further work to make structural health monitoring more robust. Results from this and other work might then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2nd generation reusable launch vehicle using composites as a structural element.

  7. Aspects of structural health and condition monitoring of offshore wind turbines.

    PubMed

    Antoniadou, I; Dervilis, N; Papatheou, E; Maguire, A E; Worden, K

    2015-02-28

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector. PMID:25583864

  8. Aspects of structural health and condition monitoring of offshore wind turbines

    PubMed Central

    Antoniadou, I.; Dervilis, N.; Papatheou, E.; Maguire, A. E.; Worden, K.

    2015-01-01

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector. PMID:25583864

  9. Aspects of structural health and condition monitoring of offshore wind turbines.

    PubMed

    Antoniadou, I; Dervilis, N; Papatheou, E; Maguire, A E; Worden, K

    2015-02-28

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector.

  10. Rapid evaluation of mechanical boundary conditions using impedance based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Kettle, Ryan A.; Anton, Steven R.

    2016-04-01

    Conventionally, structural health monitoring (SHM) has been primarily concerned with sensing, identifying, locating, and determining the severity of damage present in a structure that is in a static state. Instead, this study will investigate adapting the impedance SHM method to rapidly evaluate a mechanical system during a dynamic event. Also in contrast to conventional SHM, the objective is not to detect damage but instead to detect changes in the boundary conditions as they occur during a dynamic event. Rapid detection of changes in boundary conditions in highly dynamic environments has the potential to be used in a wide variety of applications, including the aerospace, civil, and mining industries. A key feature of this work will be the use of frequency ranges higher than what is typically used for SHM impedance measurements, in the range of several MHz. Using such high frequencies will allow for faster measurements of impedance, thus enabling the capture of variations in boundary conditions as they change during a dynamic event. An existing analytical model from the literature for electromechanical impedance based SHM will be utilized for this study.

  11. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions.

    PubMed

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-02-26

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack

  12. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions

    PubMed Central

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-01-01

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack

  13. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions.

    PubMed

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-01-01

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack

  14. Load monitoring of aerospace structures utilizing micro-electro-mechanical systems for static and quasi-static loading conditions

    NASA Astrophysics Data System (ADS)

    Martinez, M.; Rocha, B.; Li, M.; Shi, G.; Beltempo, A.; Rutledge, R.; Yanishevsky, M.

    2012-11-01

    The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads.

  15. Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006

    SciTech Connect

    Schulz, M. J.; Sundaresan, M. J.

    2006-08-01

    This report describes the efforts of the University of Cincinnati, North Carolina A&T State University, and NREL to develop a structural neural system for structural health monitoring of wind turbine blades.

  16. Methods for forewarning of critical condition changes in monitoring civil structures

    DOEpatents

    Abercrombie, Robert K.; Hively, Lee M.

    2013-04-02

    Sensor modules (12) including accelerometers (20) are placed on a physical structure (10) and tri-axial accelerometer data is converted to mechanical power (P) data (41) which then processed to provide a forewarning (57) of a critical event concerning the physical structure (10). The forewarning is based on a number of occurrences of a composite measure of dissimilarity (C.sub.i) exceeding a forewarning threshold over a defined sampling time; and a forewarning signal (58) is provided to a human observer through a visual, audible or tangible signal. A forewarning of a structural failure can also be provided based on a number of occurrences of (C.sub.i) above a failure value threshold.

  17. Oil Analysis and Condition Monitoring

    NASA Astrophysics Data System (ADS)

    Toms, A.; Toms, L.

    Lubricants are essential and expensive components of machine systems needing sampling, analysis and monitoring. Monitoring can be either performance testing or oil condition monitoring. Knowledge of the system's critical failure modes is essential for cost-effective oil and machinery monitoring. Contamination occurs by water, fuel, glycol, dirt, wrong oil, metal particulate, soot, oil degradation and additive depletion. Oil test methods include in situ or laboratory FT-IR, electronic particle counting, elemental metal measurement, X-ray fluorescence, viscosity, gas chromatography, water determination and RULER®. Condition monitoring data must be managed by storage, analysis and interpretation. Status levels must be established from the database and reported upon for individual and sequential runs of samples as condition indicators.

  18. Integrated structural health monitoring.

    SciTech Connect

    Farrar, C. R.

    2001-01-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the authors opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  19. Structure function monitor

    DOEpatents

    McGraw, John T.; Zimmer, Peter C.; Ackermann, Mark R.

    2012-01-24

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  20. Monitoring Thermal Conditions in Footwear

    NASA Astrophysics Data System (ADS)

    Silva-Moreno, Alejandra. A.; Lopez Vela, Martín; Alcalá Ochoa, Noe

    2006-09-01

    Thermal conditions inside the foot were evaluated on a volunteer subject. We have designed and constructed an electronic system which can monitors temperature and humidity of the foot inside the shoe. The data is stored in a battery-powered device for later uploading to a host computer for data analysis. The apparatus potentially can be used to provide feedback to patients who are prone to having skin breakdowns.

  1. Electrical condition monitoring method for polymers

    DOEpatents

    Watkins, Jr., Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2008-08-19

    An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated-aged conductive composite.

  2. Wind Turbine Drivetrain Condition Monitoring - An Overview

    SciTech Connect

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  3. Vehicle condition monitoring and fault diagnosis

    SciTech Connect

    Not Available

    1985-01-01

    This book contains a compilation of papers on vehicle condition monitoring and fault diagnosis. The complete contents include: Bus operators' needs for the nineties; The use of portable remote data collection devices in vehicle preventive maintenance programs; The diagnosis of cylinder power faults in diesel engines by flywheel speed measurements; Current and future developments in vehicle servicing, condition monitoring and diagnostics; Experience with condition monitoring in other industries; Contamination and viscosity monitoring of automobile and motor cycle oils using a portable contamination meter; Knock detection alternatives for production vehicles; Oil monitoring - under what conditions can it improve engine life, yet be financed by condition-based oil changes: The use of speed sensing for monitoring the condition of military vehicle engines; The development of vehicle condition monitoring and fault diagnosis equipment for commercial vehicle fleets; The development of automotive diagnostic systems for armoured fighting vehicles in the British Army; Oil analysis techniques used in the development of automotive diesel engines and their condition monitoring in service; Recent developments in the nonintrusive diagnosis of engine faults; Operating experience with a vehicle fault diagnosis system; The case for on-board diagnostics; An on-board monitoring system with its essential sensors and evaluating characteristics; Computerized diagnostics for diesel engines; Laser tools for diesel engine diagnosis.

  4. Monitoring of civil engineering structures

    NASA Astrophysics Data System (ADS)

    Tyrsa, Valentin E.; Burtseva, Larisa P.; Rivas Lopez, Moises; Tyrsa, Vera V.

    2004-07-01

    Civil engineering structures require geometrical monitoring to assure their integrity during their life time. The monitoring by geodetic devices or according to GPS technology is not always appropriate, sometimes it is unrealizable. Means for monitoring based on automatic geodetic measurements applying optical scanners are proposed. The sensor for integrity and deformation control of the structure elements and components was designed.

  5. Plant Condition Remote Monitoring Technique

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Krishen, K.

    1996-01-01

    This paper summarizes the results of a radiation transfer study conducted on houseplants using controlled environmental conditions. These conditions included: (1) air and soil temperature; (2) incident and reflected radiation; and (3) soil moisture. The reflectance, transmittance, and emittance measurements were conducted in six spectral bands: microwave, red, yellow, green, violet and infrared, over a period of three years. Measurements were taken on both healthy and diseased plants. The data was collected on plants under various conditions which included: variation in plant bio-mass, diurnal variation, changes in plant pathological conditions (including changes in water content), different plant types, various disease types, and incident light wavelength or color. Analysis of this data was performed to yield an algorithm for plant disease from the remotely sensed data.

  6. Structural health monitoring for ship structures

    SciTech Connect

    Farrar, Charles; Park, Gyuhae; Angel, Marian; Bement, Matthew; Salvino, Liming

    2009-01-01

    Currently the Office of Naval Research is supporting the development of structural health monitoring (SHM) technology for U.S. Navy ship structures. This application is particularly challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with these ships missions, lack of data from known damage conditions, limited sensing that was not designed specifically for SHM, and the management of the vast amounts of data that can be collected during a mission. This paper will first define a statistical pattern recognition paradigm for SHM by describing the four steps of (1) Operational Evaluation, (2) Data Acquisition, (3) Feature Extraction, and (4) Statistical Classification of Features as they apply to ship structures. Note that inherent in the last three steps of this process are additional tasks of data cleansing, compression, normalization and fusion. The presentation will discuss ship structure SHM challenges in the context of applying various SHM approaches to sea trials data measured on an aluminum multi-hull high-speed ship, the HSV-2 Swift. To conclude, the paper will discuss several outstanding issues that need to be addressed before SHM can make the transition from a research topic to actual field applications on ship structures and suggest approaches for addressing these issues.

  7. Structural health monitoring of wind turbines

    SciTech Connect

    Simmermacher, T.; James, G.H. III.; Hurtado, J.E.

    1997-09-01

    To properly determine what is needed in a structural health monitoring system, actual operational structures need to be studied. We have found that to effectively monitor the structural condition of an operational structure four areas must be addressed: determination of damage-sensitive parameters, test planning, information condensation, and damage identification techniques. In this work, each of the four areas has been exercised on an operational structure. The structures studied were all be wind turbines of various designs. The experiments are described and lessons learned will be presented. The results of these studies include a broadening of experience in the problems of monitoring actual structures as well as developing a process for implementing such monitoring systems.

  8. Integrated condition monitoring of space information network

    NASA Astrophysics Data System (ADS)

    Wang, Zhilin; Li, Xinming; Li, Yachen; Yu, Shaolin

    2015-11-01

    In order to solve the integrated condition monitoring problem in space information network, there are three works finished including analyzing the characteristics of tasks process and system health monitoring, adopting the automata modeling method, and respectively establishing the models for state inference and state determination. The state inference model is a logic automaton and is gotten by concluding engineering experiences. The state determination model is a double-layer automaton, the lower automaton is responsible for parameter judge and the upper automaton is responsible for state diagnosis. At last, the system state monitoring algorithm has been proposed, which realizes the integrated condition monitoring for task process and system health, and can avoid the false alarm.

  9. Electrical condition monitoring method for polymers

    DOEpatents

    Watkins, Jr. Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  10. Reusable rocket engine turbopump condition monitoring

    NASA Technical Reports Server (NTRS)

    Hampson, M. E.; Barkhoudarian, S.

    1985-01-01

    Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors.

  11. Condition Monitoring of the SSE Generation Fleet

    NASA Astrophysics Data System (ADS)

    Twiddle, J.; Muthuraman, S.; Connolly, N.

    2012-05-01

    SSE (previously known as Scottish and Southern Energy) operates a diverse portfolio of generation plant, including coal, gas and renewable plant with a total generation capacity of 11,375MW (Sept 2011). In recent years a group of specialists dedicated to providing condition monitoring services has been established at the Equipment Performance Centre (EPC) based at Knottingley, West Yorkshire. We aim to illustrate the role of the EPC and the methods used for monitoring the generation fleet with the objective of maintaining asset integrity, reducing risk of plant failure and unplanned outages and describe the challenges which have been overcome in establishing the EPC. This paper describes methods including vibration and process data analysis, model-based techniques and on-site testing used for monitoring of generation plant, including gas turbines, steam turbines, generators and steam raising plant. These condition monitoring processes utilise available data, adding value to the business, by bringing services in-house and capturing knowledge of plant operation for the benefit of the whole fleet.

  12. A Resilient Condition Assessment Monitoring System

    SciTech Connect

    Humberto Garcia; Wen-Chiao Lin; Semyon M. Meerkov

    2012-08-01

    An architecture and supporting methods are presented for the implementation of a resilient condition assessment monitoring system that can adaptively accommodate both cyber and physical anomalies to a monitored system under observation. In particular, the architecture includes three layers: information, assessment, and sensor selection. The information layer estimates probability distributions of process variables based on sensor measurements and assessments of the quality of sensor data. Based on these estimates, the assessment layer then employs probabilistic reasoning methods to assess the plant health. The sensor selection layer selects sensors so that assessments of the plant condition can be made within desired time periods. Resilient features of the developed system are then illustrated by simulations of a simplified power plant model, where a large portion of the sensors are under attack.

  13. Condition monitoring system of wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abdusamad, Khaled B.

    The development and implementation of the condition monitoring systems (CMS) play a significant role in overcoming the number of failures in the wind turbine generators that result from the harsh operation conditions, such as over temperature, particularly when turbines are deployed offshore. In order to increase the reliability of the wind energy industry, monitoring the operation conditions of wind generators is essential to detect the immediate faults rapidly and perform appropriate preventative maintenance. CMS helps to avoid failures, decrease the potential shutdowns while running, reduce the maintenance and operation costs and maintain wind turbines protected. The knowledge of wind turbine generators' faults, such as stator and rotor inter-turn faults, is indispensable to perform the condition monitoring accurately, and assist with maintenance decision making. Many techniques are utilized to avoid the occurrence of failures in wind turbine generators. The majority of the previous techniques that are applied to monitor the wind generator conditions are based on electrical and mechanical concepts and theories. An advanced CMS can be implemented by using a variety of different techniques and methods to confirm the validity of the obtained electrical and mechanical condition monitoring algorithms. This thesis is focused on applying CMS on wind generators due to high temperature by contributing the statistical, thermal, mathematical, and reliability analyses, and mechanical concepts with the electrical methodology, instead of analyzing the electrical signal and frequencies trends only. The newly developed algorithms can be compared with previous condition monitoring methods, which use the electrical approach in order to establish their advantages and limitations. For example, the hazard reliability techniques of wind generators based on CMS are applied to develop a proper maintenance strategy, which aims to extend the system life-time and reduce the potential

  14. The Structure Design of Piezoelectric Poly(vinylidene Fluoride) (PVDF) Polymer-Based Sensor Patch for the Respiration Monitoring under Dynamic Walking Conditions

    PubMed Central

    Lei, Kin-Fong; Hsieh, Yi-Zheng; Chiu, Yi-Yuan; Wu, Min-Hsien

    2015-01-01

    This study reports a piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor patch for respiration detections in dynamic walking condition. The working mechanism of respiration signal generation is based on the periodical deformations on a human chest wall during the respiratory movements, which in turn mechanically stretch the piezoelectric PVDF film to generate the corresponding electrical signals. In this study, the PVDF sensing film was completely encapsulated within the sensor patch forming a mass-spring-damper mechanical system to prevent the noises generated in a dynamic condition. To verify the design of sensor patch to prevent dynamic noises, experimental investigations were carried out. Results demonstrated the respiration signals generated and the respiratory rates measured by the proposed sensor patch were in line with the same measurements based on a commercial respiratory effort transducer both in a static (e.g., sitting) or dynamic (e.g., walking) condition. As a whole, this study has developed a PVDF-based sensor patch which is capable of monitoring respirations in a dynamic walking condition with high fidelity. Other distinctive features include its small size, light weight, ease of use, low cost, and portability. All these make it a promising sensing device to monitor respirations particularly in home care units. PMID:26263992

  15. The Structure Design of Piezoelectric Poly(vinylidene Fluoride) (PVDF) Polymer-Based Sensor Patch for the Respiration Monitoring under Dynamic Walking Conditions.

    PubMed

    Lei, Kin-Fong; Hsieh, Yi-Zheng; Chiu, Yi-Yuan; Wu, Min-Hsien

    2015-01-01

    This study reports a piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor patch for respiration detections in dynamic walking condition. The working mechanism of respiration signal generation is based on the periodical deformations on a human chest wall during the respiratory movements, which in turn mechanically stretch the piezoelectric PVDF film to generate the corresponding electrical signals. In this study, the PVDF sensing film was completely encapsulated within the sensor patch forming a mass-spring-damper mechanical system to prevent the noises generated in a dynamic condition. To verify the design of sensor patch to prevent dynamic noises, experimental investigations were carried out. Results demonstrated the respiration signals generated and the respiratory rates measured by the proposed sensor patch were in line with the same measurements based on a commercial respiratory effort transducer both in a static (e.g., sitting) or dynamic (e.g., walking) condition. As a whole, this study has developed a PVDF-based sensor patch which is capable of monitoring respirations in a dynamic walking condition with high fidelity. Other distinctive features include its small size, light weight, ease of use, low cost, and portability. All these make it a promising sensing device to monitor respirations particularly in home care units. PMID:26263992

  16. The Structure Design of Piezoelectric Poly(vinylidene Fluoride) (PVDF) Polymer-Based Sensor Patch for the Respiration Monitoring under Dynamic Walking Conditions.

    PubMed

    Lei, Kin-Fong; Hsieh, Yi-Zheng; Chiu, Yi-Yuan; Wu, Min-Hsien

    2015-07-31

    This study reports a piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor patch for respiration detections in dynamic walking condition. The working mechanism of respiration signal generation is based on the periodical deformations on a human chest wall during the respiratory movements, which in turn mechanically stretch the piezoelectric PVDF film to generate the corresponding electrical signals. In this study, the PVDF sensing film was completely encapsulated within the sensor patch forming a mass-spring-damper mechanical system to prevent the noises generated in a dynamic condition. To verify the design of sensor patch to prevent dynamic noises, experimental investigations were carried out. Results demonstrated the respiration signals generated and the respiratory rates measured by the proposed sensor patch were in line with the same measurements based on a commercial respiratory effort transducer both in a static (e.g., sitting) or dynamic (e.g., walking) condition. As a whole, this study has developed a PVDF-based sensor patch which is capable of monitoring respirations in a dynamic walking condition with high fidelity. Other distinctive features include its small size, light weight, ease of use, low cost, and portability. All these make it a promising sensing device to monitor respirations particularly in home care units.

  17. OTVE turbopump condition monitoring, task E.5

    NASA Technical Reports Server (NTRS)

    Coleman, Paul T.; Collins, J. J.

    1989-01-01

    Recent work has been carried out on development of isotope wear analysis and optical and eddy current technologies to provide bearing wear measurements and real time monitoring of shaft speed, shaft axial displacement and shaft orbit of the Orbit Transfer Vehicle hydrostatic bearing tester. Results show shaft axial displacement can be optically measured (at the same time as shaft orbital motion and speed) to within 0.3 mils by two fiberoptic deflectometers. Evaluation of eddy current probes showed that, in addition to measuring shaft orbital motion, they can be used to measure shaft speed without having to machine grooves on the shaft surface as is the usual practice for turbomachinery. The interim results of this condition monitoring effort are presented.

  18. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  19. Operant conditioning of mental retardates' visual monitoring.

    PubMed

    Perryman, R E; Halcomb, C R; Landers, W F

    1981-10-01

    To study improvement of visual monitoring of retardates, specialized training methods backed up by incentives were used. The extent to which these training techniques might be expected to produce results which would generalize to those situations in which the retardate was required to monitor without the increased signal rate and knowledge of results was explored. Subjects were 8 female mental retardates with IQs from 38 to 69. Detection of an aperiodic pattern change during pre-training was compared with final performance after 4 training sessions. During training, the task difficulty was increased until during the final training session it approximated the test conditions. Immediate knowledge of results was given for correct detections and false positive responses. Tokens were given to the subjects, based on the scores at the end of the session. After the final session these tokens were exchanged for prizes. As predicted, training under these conditions significantly enhanced the retardates' performance and transferred to the condition with no knowledge of results.

  20. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    SciTech Connect

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  1. Structural lubricity under ambient conditions

    PubMed Central

    Cihan, Ebru; İpek, Semran; Durgun, Engin; Baykara, Mehmet Z.

    2016-01-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000–130,000 nm2) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold–graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions. PMID:27350035

  2. Structural lubricity under ambient conditions

    NASA Astrophysics Data System (ADS)

    Cihan, Ebru; Ipek, Semran; Durgun, Engin; Baykara, Mehmet Z.

    2016-06-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (~4,000-130,000 nm2) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold-graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions.

  3. Structural lubricity under ambient conditions.

    PubMed

    Cihan, Ebru; İpek, Semran; Durgun, Engin; Baykara, Mehmet Z

    2016-01-01

    Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000-130,000 nm(2)) interfaces formed by gold islands on graphite. Ab initio calculations reveal that the gold-graphite interface is expected to remain largely free from contaminant molecules, leading to structurally lubric sliding. The experiments reported here demonstrate the potential for practical lubrication schemes for micro- and nano-electromechanical systems, which would mainly rely on an atomic-scale structural mismatch between the slider and substrate components, via the utilization of material systems featuring clean, atomically flat interfaces under ambient conditions. PMID:27350035

  4. Bridge condition assessment based on long-term strain monitoring

    NASA Astrophysics Data System (ADS)

    Sun, LiMin; Sun, Shouwang

    2011-04-01

    In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.

  5. Strain Monitoring of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.

    2017-01-01

    , such as tensile testing, fatigue testing, and shear testing, but common measurement techniques cannot be used on fabric. Measuring strain in a material and during a test is a critical parameter for an engineer to monitor the structure during the test and correlate to an analytical model. The ability to measure strain in fabric structures is a challenge for NASA. Foil strain gauges, for example, are commonplace on metallic structures testing, but are extremely difficult to interface with a fabric substrate. New strain measuring techniques need to be developed for use with fabric structures. This paper investigates options for measuring strain in fabric structures for both ground testing and in-space structural health monitoring. It evaluates current commercially available options and outlines development work underway to build custom measurement solutions for NASA's fabric structures.

  6. Compatibility Conditions of Structural Mechanics

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1999-01-01

    The theory of elasticity has camouflaged a deficiency in the compatibility formulation since 1860. In structures the ad hoc compatibility conditions through virtual "cuts" and closing "gaps" are not parallel to the strain formulation in elasticity. This deficiency in the compatibility conditions has prevented the development of a direct stress determination method in structures and in elasticity. We have addressed this deficiency and attempted to unify the theory of compatibility. This work has led to the development of the integrated force method for structures and the completed Beltrami-Michell formulation for elasticity. The improved accuracy observed in the solution of numerical examples by the integrated force method can be attributed to the compliance of the compatibility conditions. Using the compatibility conditions allows mapping of variables and facile movement among different structural analysis formulations. This paper reviews and illustrates the requirement of compatibility in structures and in elasticity. It also describes the generation of the conditions and quantifies the benefits of their use. The traditional analysis methods and available solutions (which have been obtained bypassing the missed conditions) should be verified for compliance of the compatibility conditions.

  7. Investigation of Various Condition Monitoring Techniques Based on a Damaged Wind Turbine Gearbox

    SciTech Connect

    Sheng, S.

    2011-10-01

    This paper is a continuation of a 2009 paper presented at the 7th International Workshop on Structural Health Monitoring that described various wind turbine condition-monitoring techniques. This paper presents the results obtained by various condition- monitoring techniques from a damaged Gearbox Reliability Collaborative test gearbox.

  8. Health Monitoring for Airframe Structural Characterization

    NASA Technical Reports Server (NTRS)

    Munns, Thomas E.; Kent, Renee M.; Bartolini, Antony; Gause, Charles B.; Borinski, Jason W.; Dietz, Jason; Elster, Jennifer L.; Boyd, Clark; Vicari, Larry; Ray, Asok; Cooper, E. G. (Technical Monitor)

    2002-01-01

    This study established requirements for structural health monitoring systems, identified and characterized a prototype structural sensor system, developed sensor interpretation algorithms, and demonstrated the sensor systems on operationally realistic test articles. Fiber-optic corrosion sensors (i.e., moisture and metal ion sensors) and low-cycle fatigue sensors (i.e., strain and acoustic emission sensors) were evaluated to validate their suitability for monitoring aging degradation; characterize the sensor performance in aircraft environments; and demonstrate placement processes and multiplexing schemes. In addition, a unique micromachined multimeasure and sensor concept was developed and demonstrated. The results show that structural degradation of aircraft materials could be effectively detected and characterized using available and emerging sensors. A key component of the structural health monitoring capability is the ability to interpret the information provided by sensor system in order to characterize the structural condition. Novel deterministic and stochastic fatigue damage development and growth models were developed for this program. These models enable real time characterization and assessment of structural fatigue damage.

  9. Monitoring Polaris and Seeing Conditions at PARI

    NASA Astrophysics Data System (ADS)

    Crawford, April

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) was originally built by NASA to track and collect data from satellites. The location in the Pisgah National Forest was chosen due to the excellent ability of the surrounding mountains to block radio interference and light pollution. The PARI observatory has been monitoring Polaris for over 10 years and has amassed a large collection of images of the star and those surrounding it. While several telescopes have been used throughout the project, we are currently using a Omni XLT Series Celestron and an SBIG ST-8300M CCD camera with a 0.70 arcsecond/pixel ratio. The software is run on Windows, however, we will be making a switch to Linux and implementing a new program to control the camera. The new images, once converted to a usable format (ST10 to FITS), can be automatically fed into an in-house Java program to track the variability of the star and simultaneously determine the seeing conditions experienced on the campus. Since we have several years worth of data, the program will also be used to provide a history of variability and seeing conditions. We ultimately hope to be able to track the possible changes in variability of Polaris, as it's current location on the HR diagram is being studied. The data could also prove valuable for our on-site scientists and many visiting students to study on campus. We are also developing a relative scale for our seeing conditions, accompanied by FWHM measurements in arcseconds that will can be compared to those of surrounding observatories in mountainous areas.

  10. Condition Monitoring for Helicopter Data. Appendix A

    NASA Technical Reports Server (NTRS)

    Wen, Fang; Willett, Peter; Deb, Somnath

    2000-01-01

    In this paper the classical "Westland" set of empirical accelerometer helicopter data is analyzed with the aim of condition monitoring for diagnostic purposes. The goal is to determine features for failure events from these data, via a proprietary signal processing toolbox, and to weigh these according to a variety of classification algorithms. As regards signal processing, it appears that the autoregressive (AR) coefficients from a simple linear model encapsulate a great deal of information in a relatively few measurements; it has also been found that augmentation of these by harmonic and other parameters can improve classification significantly. As regards classification, several techniques have been explored, among these restricted Coulomb energy (RCE) networks, learning vector quantization (LVQ), Gaussian mixture classifiers and decision trees. A problem with these approaches, and in common with many classification paradigms, is that augmentation of the feature dimension can degrade classification ability. Thus, we also introduce the Bayesian data reduction algorithm (BDRA), which imposes a Dirichlet prior on training data and is thus able to quantify probability of error in an exact manner, such that features may be discarded or coarsened appropriately.

  11. An autonomous structural health monitoring solution

    NASA Astrophysics Data System (ADS)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  12. Monitoring trail conditions: New methodological considerations

    USGS Publications Warehouse

    Marion, Jeffrey L.; Leung, Yu-Fai; Nepal, Sanjay K.

    2006-01-01

    The U.S. National Park Service (NPS) accommodates nearly 300 million visitors per year, visitation that has the potential to produce negative effects on fragile natural and cultural resources. The policy guidance from the NPS Management Policies recognizes the legitimacy of providing opportunities for public enjoyment of parks while acknowledging the need for managers to “seek ways to avoid, or to minimize to the greatest degree practicable, adverse impacts on park resources and values” (NPS 2001). Thus, relative to visitor use, park managers must evaluate the types and extents of resource impacts associated with recreational activities, and determine to what extent they are unacceptable and constitute impairment. Visitor impact monitoring programs can assist managers in making objective evaluations of impact acceptability and impairment and in selecting effective impact management practices by providing quantitative documentation of the types and extent of recreationrelated impacts on natural resources. Monitoring programs are explicitly authorized in Section 4.1 of the Management Policies: Natural systems in the national park system, and the human influences upon them, will be monitored to detect change. The Service will use the results of monitoring and research to understand the detected change and to develop appropriate management actions.

  13. Operant Conditioning of Mental Retardates' Visual Monitoring.

    ERIC Educational Resources Information Center

    Perryman, Roy E.; And Others

    1981-01-01

    To study improvement of visual monitoring of retardates, specialized training methods backed up by incentives were used. The extent to which these training techniques might be expected to produce results which would generalize was explored. Subjects were eight female mental retardates (ages 15-22) with IQs from 38 to 69. (Author/SJL)

  14. Noncontacting measurement technologies for space propulsion condition monitoring

    NASA Astrophysics Data System (ADS)

    Randall, M. R.; Barkhoudarian, S.; Collins, J. J.; Schwartzbart, A.

    1987-12-01

    This paper describes four noncontacting measurement technologies that can be used in a turbopump condition monitoring system. The isotope wear analyzer, fiberoptic deflectometer, brushless torque-meter, and fiberoptic pyrometer can be used to monitor component wear, bearing degradation, instantaneous shaft torque, and turbine blade cracking, respectively. A complete turbopump condition monitoring system including these four technologies could predict remaining component life, thus reducing engine operating costs and increasing reliability.

  15. Noncontacting measurement technologies for space propulsion condition monitoring

    NASA Technical Reports Server (NTRS)

    Randall, M. R.; Barkhoudarian, S.; Collins, J. J.; Schwartzbart, A.

    1987-01-01

    This paper describes four noncontacting measurement technologies that can be used in a turbopump condition monitoring system. The isotope wear analyzer, fiberoptic deflectometer, brushless torque-meter, and fiberoptic pyrometer can be used to monitor component wear, bearing degradation, instantaneous shaft torque, and turbine blade cracking, respectively. A complete turbopump condition monitoring system including these four technologies could predict remaining component life, thus reducing engine operating costs and increasing reliability.

  16. Condition monitoring of reciprocating seal based on FBG sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuxu; Zhang, Shuanshuan; Wen, Pengfei; Zhen, Wenhan; Ke, Wei

    2016-07-01

    The failure of hydraulic reciprocating seals will seriously affect the normal operation of hydraulic reciprocating machinery, so the potential fault condition monitoring of reciprocating seals is very important. However, it is extremely difficult because of the limitation of reciprocating motion and the structure constraints of seal groove. In this study, an approach using fiber Bragg grating (FBG) sensors is presented. Experimental results show that the contact strain changes of a reciprocating seal can be detected by FBG sensors in the operation process of the hydraulic cylinders. The failure condition of the reciprocating seal can be identified by wavelet packet energy entropy, and the center frequency of power spectrum analysis. It can provide an effective solution for the fault prevention and health management of reciprocating hydraulic rod seals.

  17. Conformal and embedded IDT microsensors for health monitoring of structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    2000-06-01

    MEMS are currently being applied to the structural health monitoring of critical aircraft components and composites. The approach integrates acoustic emission, strain gauges, MEMS accelerometers and vibration monitoring aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensor and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State wireless communication systems suitable for condition monitoring of aircraft structures in-flight. The main application areas of this investigation include continuos monitoring of a) structural integrity of aging aircraft, b) fatigue cracking, c) corrosion, d) deflection and strain of aircraft structures, wings, and rotorblades, e) impact damage, f) delamination and g) location and propagation of cracks. In this paper we give an overview of wireless programmable microsensors and MEMS and their associated driving electronics for such applications.

  18. STRUCTURAL HEALTH MONITORING OF WELDED CONNECTIONS

    SciTech Connect

    H. SOHN; C. FARRAR; M. FUGATE; J. CZARNECKI

    2001-05-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective monitoring system for welded beam-column connections in a moment resisting frame structure. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMs) technology, and statistical pattern recognition algorithms. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  19. Health Monitoring System for Composite Structures

    NASA Technical Reports Server (NTRS)

    Tang, S. S.; Riccardella, P. C.; Andrews, R. J.; Grady, J. E.; Mucciaradi, A. N.

    1996-01-01

    An automated system was developed to monitor the health status of composites. It uses the vibration characteristics of composites to identify a component's damage condition. The vibration responses are characterized by a set of signal features defined in the time, frequency and spatial domains. The identification of these changes in the vibration characteristics corresponding to different health conditions was performed using pattern recognition principles. This allows efficient data reduction and interpretation of vast amounts of information. Test components were manufactured from isogrid panels to evaluate performance of the monitoring system. The components were damaged by impact to simulate different health conditions. Free vibration response was induced by a tap test on the test components. The monitoring system was trained using these free vibration responses to identify three different health conditions. They are undamaged vs. damaged, damage location and damage zone size. High reliability in identifying the correct component health condition was achieved by the monitoring system.

  20. Monitoring Car Drivers' Condition Using Image Processing

    NASA Astrophysics Data System (ADS)

    Adachi, Kazumasa; Yamamto, Nozomi; Yamamoto, Osami; Nakano, Tomoaki; Yamamoto, Shin

    We have developed a car driver monitoring system for measuring drivers' consciousness, with which we aim to reduce car accidents caused by drowsiness of drivers. The system consists of the following three subsystems: an image capturing system with a pulsed infrared CCD camera, a system for detecting blinking waveform by the images using a neural network with which we can extract images of face and eye areas, and a system for measuring drivers' consciousness analyzing the waveform with a fuzzy inference technique and others. The third subsystem extracts three factors from the waveform first, and analyzed them with a statistical method, while our previous system used only one factor. Our experiments showed that the three-factor method we used this time was more effective to measure drivers' consciousness than the one-factor method we described in the previous paper. Moreover, the method is more suitable for fitting parameters of the system to each individual driver.

  1. Embedded strain gauges for condition monitoring of silicone gaskets.

    PubMed

    Schotzko, Timo; Lang, Walter

    2014-01-01

    A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term. PMID:25014099

  2. Embedded Strain Gauges for Condition Monitoring of Silicone Gaskets

    PubMed Central

    Schotzko, Timo; Lang, Walter

    2014-01-01

    A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term. PMID:25014099

  3. Monitoring breath markers under controlled conditions.

    PubMed

    Righettoni, Marco; Ragnoni, Alessandro; Güntner, Andreas T; Loccioni, Claudio; Pratsinis, Sotiris E; Risby, Terence H

    2015-12-01

    Breath analysis has the potential to detect and monitor diseases as well as to reduce the corresponding medical costs while improving the quality of a patient's life. Herein, a portable prototype, consisting of a commercial breath sampler modified to work as a platform for solid-state gas sensors was developed. The sensor is placed close to the mouth (<10 cm) and minimizes the mouth-to-sensor path to avoid contamination and dilution of the target breath marker. Additionally with an appropriate cooling concept, even high sensor operating temperatures (e.g. 350 °C) could be used. Controlled sampling is crucial for accurate repeatable analysis of the human breath and these concerns have been addressed by this novel prototype. The device helps a subject control their exhaled flow rate which increases reproducibility of intra-subject breath samples. The operation of this flame-made selective chemo-resistive gas sensor is demonstrated by the detection of breath acetone. PMID:26469378

  4. Wind Turbine Drivetrain Condition Monitoring - An Overview (Presentation)

    SciTech Connect

    Sheng, S.; Yang, W.

    2013-07-01

    High operation and maintenance costs still hamper the development of the wind industry despite its quick growth worldwide. To reduce unscheduled downtime and avoid catastrophic failures of wind turbines and their components have been and will be crucial to further raise the competitiveness of wind power. Condition monitoring is one of the key tools for achieving such a goal. To enhance the research and development of advanced condition monitoring techniques dedicated to wind turbines, we present an overview of wind turbine condition monitoring, discuss current practices, point out existing challenges, and suggest possible solutions.

  5. Using the motor to monitor pump conditions

    SciTech Connect

    Casada, D.

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  6. Piezoelectric Sensor Evaluation for Structural Health Monitoring of Cryogenic Structures

    NASA Technical Reports Server (NTRS)

    Lassiter, John; Engberg, Robert

    2005-01-01

    This viewgraph presentation provides an overview of Structural Health Monitoring (SHM), and profiles piezoelectric sensors useful for SHM of cryogenic structures. The presentation also profiles impedance tests and other SHM tests conducted at Marshall Space Flight Center (MSFC).

  7. Laser conditioning on HfO2 film monitored by calorimeter.

    PubMed

    Hao, Liu; Songlin, Chen; Yaowei, Wei; Zhe, Zhang; Jin, Luo; Nan, Zheng; Ping, Ma

    2012-01-01

    Conditioning effect on HfO2 single-layer film by quasi-cw laser was investigated. The conditioning process was monitored with laser calorimeter. Experimental results revealed that the HfO2 film absorption decreased as a function of the irradiation dose. Higher laser power accelerated the conditioning process. The conditioning effect could not be explained by water annihilation. AFM pictures of the film surface showed that the structural information in the conditioned region was different from the unconditioned region. Monitoring the in situ absorption, laser calorimeter is a promising tool to investigate the laser conditioning process.

  8. Diagnostic device for monitoring the technical condition of mechanical assemblies

    NASA Technical Reports Server (NTRS)

    Osovskiy, V. I.; Shergin, V. V.; Shumilin, V. I.

    1973-01-01

    An automatic diagnostic device for monitoring the condition of tractor transmission gears is described. The structural noise spectrum of the gearshift box and rear axle of the tractor were analyzed in a digital computer, by an algorithm based on the multiple correlation method. The optimum assembly of operating frequencies, by use of which the errors in measurement were minimized, was selected from the entire frequency spectrum. Selected frequencies are necessary for choosing the measurement range of the diagnostic device. It turned out that, to obtain a relative error of no more than 2%, it was sufficient to use two filters, vibrating only at the frequencies carrying the maximum data of the mechanical parameter being investigated. The measurement system consists of frequency-selection filters, amplifiers and quadratic detectors, at the outlets of which constant voltages are created, which are proportional to the signal level at the frequencies selected.

  9. REGIONAL MONITORING OF CORAL CONDITION IN THE FLORIDA KEYS

    EPA Science Inventory

    Fisher, William S. and Deborah L. Santavy. 2004. Regional Monitoring of Coral Condition in Florida Keys (Abstract). Presented at the Monitoring Science and Technology Symposium, 20-24 September 2004, Denver, CO. 1 p. (ERL,GB R1020).

    Coral reefs have experienced unpreceden...

  10. Optical Structural Health Monitoring Device

    NASA Technical Reports Server (NTRS)

    Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.

    2010-01-01

    This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with

  11. Investigation of Various Wind Turbine Drivetrain Condition Monitoring Techniques (Presentation)

    SciTech Connect

    Sheng, S.

    2011-08-01

    This presentation was given at the 2011 Wind Turbine Reliability Workshop sponsored by Sandia National Laboratories in Albuquerque, NM on August 2-3, 2011. It discusses work for the Gearbox Reliability Collaborative including downtime caused by turbine subsystems, annual failure frequency of turbine subsystems, cost benefits of condition monitoring (CM), the Gearbox Reliability Collaborative's condition monitoring approach and rationale, test setup, and results and observations.

  12. Passive and active structural monitoring experience: Civil engineering applications

    NASA Astrophysics Data System (ADS)

    Thompson, L. D.; Westermo, B. D.; Crum, D. B.; Law, W. R.; Trombi, R. G.

    2000-05-01

    State Departments of Transportation and regional city government officials are beginning to view the long-term monitoring of infrastructure as being beneficial for structural damage accumulation assessment, condition based maintenance, life extension, and post-earthquake or -hurricane (-tornado, -typhoon, etc.) damage assessment. Active and passive structural monitoring systems were installed over the last few years to monitor concerns in a wide range of civil infrastructure applications. This paper describes the monitoring technologies and systems employed for such applications. Bridge system applications were directed at monitoring corrosion damage accumulation, composite reinforcements for life extension, general service cracking damage related to fatigue and overloads, and post-earthquake damage. Residential system applications were directed primarily at identifying damage accumulation and post-earthquake damage assessment. A professional sports stadium was monitored for isolated ground instability problems and for post-earthquake damage assessment. Internet-based, remote, data acquisition system experience is discussed with examples of long-term passive and active system data collected from many of the individual sites to illustrate the potential for both passive and active structural health monitoring. A summary of system-based operating characteristics and key engineering recommendations are provided to achieve specific structural monitoring objectives for a wide range of civil infrastructure applications.

  13. The CMS Beam Conditions and Radiation Monitoring System

    NASA Astrophysics Data System (ADS)

    Castro, E.; Bacchetta, N.; Bell, A. J.; Dabrowski, A.; Guthoff, M.; Hall-Wilton, R.; Hempel, M.; Henschel, H.; Lange, W.; Lohmann, W.; Müller, S.; Novgorodova, O.; Pfeiffer, D.; Ryjov, V.; Stickland, D.; Schimdt, R.; Walsh, R.

    The Compact Muon Solenoid (CMS) is one of the two large, general purpose experiments situated at the LHC at CERN. As with all high energy physics experiments, knowledge of the beam conditions and luminosity is of vital importance. The Beam Conditions and Radiation Monitoring System (BRM) is installed in CMS to protect the detector and to provide feedback to LHC on beam conditions. It is composed of several sub-systems that measure the radiation level close to or inside all sub-detectors, monitor the beam halo conditions with different time resolution, support beam tuning and protect CMS in case of adverse beam conditions by firing a beam abort signal. This paper presents three of the BRM subsystems: the Fast Beam Conditions Monitor (BCM1F), which is designed for fast flux monitoring, measuring with nanosecond time resolution, both the beam halo and collision products; the Beam Scintillator Counters (BSC), that provide hit rates and time information of beam halo and collision products; and the Beam Conditions Monitors (BCM) used as a protection system that can trigger a beam dump when beam losses occur in order to prevent damage to the pixel and tracker detectors. A description of the systems and a characterization on the basis of data collected during LHC operation is presented.

  14. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    NASA Astrophysics Data System (ADS)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  15. Damage tolerance and structural monitoring for wind turbine blades

    PubMed Central

    McGugan, M.; Pereira, G.; Sørensen, B. F.; Toftegaard, H.; Branner, K.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858

  16. Damage tolerance and structural monitoring for wind turbine blades.

    PubMed

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind.

  17. Damage tolerance and structural monitoring for wind turbine blades.

    PubMed

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858

  18. Spatial and temporal information fusion for crop condition monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop growth condition information is critical for crop management and yield estimation. In order to monitor crop conditions from space, high spatial and temporal resolution remote sensing data are required. Data fusion approach provides a way to generate such data set from multiple remote sensing da...

  19. Data-driven nonlinear technique for condition monitoring

    SciTech Connect

    Hively, L.M.

    1997-04-01

    This paper describes a sensitive technique for distinguishing changes in a nonlinear process. The method obtains a phase-space (PS) representation of the process, which in turn is converted into a probability density function (PDF). Condition change is monitored by comparing two PS-PDFs via a {chi}{sup 2} statistical measure. One example application involves monitoring of brain waves to distinguish various states in an epileptic patient. A second example distinguishes different drilling conditions from spindle motor current data. A third example distinguishes balanced and unbalanced pumping conditions from power data.

  20. Nonlinear structural crack growth monitoring

    DOEpatents

    Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  1. Dynamic Structural Health Monitoring of Slender Structures Using Optical Sensors

    PubMed Central

    Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo

    2012-01-01

    In this paper we summarize the research activities at the Instituto de Telecomunicações—Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior. PMID:22778661

  2. Flexible Structural-Health-Monitoring Sheets

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  3. Machine Condition Monitoring Software Agent Using JADE and Data Mining

    NASA Astrophysics Data System (ADS)

    Anandan, R.

    2015-03-01

    In recent days there is a huge demand to increase the production of any mechanical components without any disturbance or mechanical faults in the machine. Therefore, to increase the productivity, it is necessary to monitor the running machine at regular intervals. To overcome such difficulties, a new machine condition monitoring software is designed using the multi agent software. This software is designed using the JADE framework and the data are analyzed using free open source Weka explorer for statistical calculations.

  4. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P.; Brandt, James M.; Gentile, Ann C.; Marzouk, Youssef M.; Hale, Darrian J.; Thompson, David C.

    2011-01-25

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  5. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P.; Brandt, James M. , Gentile; Ann C. , Marzouk; Youssef M. , Hale; Darrian J. , Thompson; David C.

    2010-07-13

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  6. System and method for statistically monitoring and analyzing sensed conditions

    DOEpatents

    Pebay, Philippe P.; Brandt, James M.; Gentile, Ann C.; Marzouk, Youssef M.; Hale, Darrian J.; Thompson, David C.

    2011-01-04

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  7. Wireless pilot monitoring system for extreme race conditions.

    PubMed

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.

  8. Condition Monitoring of Helicopter Gearboxes by Embedded Sensing

    NASA Technical Reports Server (NTRS)

    Suryavanashi, Abhijit; Wang, Shengda; Gao, Robert; Danai, Kourosh; Lewicki, David G.

    2002-01-01

    Health of helicopter gearboxes is commonly assessed by monitoring the housing vibration, thus it is challenged by poor signal-to-noise ratio of the signal measured away from the source. It is hypothesized that vibration measurements from sensors placed inside the gearbox will be much clearer indicators of faults and will eliminate many of the difficulties faced by present condition monitoring systems. This paper outlines our approach to devising such a monitoring system. Several tasks have been outlined toward this objective and the strategy to address each has been described. Among the tasks are wireless sensor design, antenna design, and selection of sensor locations.

  9. Surface monitoring measurements of materials on environmental change conditions

    NASA Astrophysics Data System (ADS)

    Tornari, Vivi; Bernikola, Eirini; Bellendorf, Paul; Bertolin, Chiara; Camuffo, Dario; Kotova, Lola; Jacobs, Daniela; Zarnic, Roko; Rajcic, Vlatka; Leissner, Johanna

    2013-05-01

    Climate Change is one of the most critical global challenges of our time and the burdened cultural heritage of Europe is particularly vulnerable to be left unprotected. Climate for Culture2 project exploits the damage impact of climate change on cultural heritage at regional scale. In this paper the progress of the study with in situ measurements and investigations at cultural heritage sites throughout Europe combined with laboratory simulations is described. Cultural works of art are susceptible to deterioration with environmental changes causing imperceptibly slow but steady accumulation of damaging effects directly impacted on structural integrity. Laser holographic interference method is employed to provide remote non destructive field-wise detection of the structural differences occurred as climate responses. The first results from climate simulation of South East Europe (Crete) are presented. A full study in regards to the four climate regions of Europe is foreseen to provide values for development of a precise and integrated model of thermographic building simulations for evaluation of impact of climate change. Development of a third generation user interface software optimised portable metrology system (DHSPI II) is designed to record in custom intervals the surface of materials witnessing reactions under simulated climatic conditions both onfield and in laboratory. The climate conditions refer to real data-loggers readings representing characteristic historical building in selected climate zones. New generation impact sensors termed Glass Sensors and Free Water Sensors are employed in the monitoring procedure to cross-correlate climate data with deformation data. In this paper results from the combined methodology are additionally presented.

  10. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    SciTech Connect

    Sheng, Shuangwen

    2015-10-25

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.

  11. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  12. Optical Fiber Sensors for Aircraft Structural Health Monitoring.

    PubMed

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-06-30

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  13. Optical Fiber Sensors for Aircraft Structural Health Monitoring

    PubMed Central

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-01-01

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel. PMID:26134107

  14. Optical Fiber Sensors for Aircraft Structural Health Monitoring.

    PubMed

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-01-01

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel. PMID:26134107

  15. On-orbit structural health monitoring

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.

    1990-01-01

    On-orbit structural health monitoring aboard space platforms requires the development of sensor systems for assessing impact damage from particles and debris, the effects of atomic oxygen erosion, and the integrity of power systems, storage tanks, pressure vessels, and major structural elements. The task of implementing such a smart structure diagnostic system during the initial phase of the NASA Space Station Freedom is evaluated, with a view to more complete smart structures implementation in the course of station evolution. The data processing/cataloguing task may ultimately require AI and neural networks.

  16. Design Optimization of Structural Health Monitoring Systems

    SciTech Connect

    Flynn, Eric B.

    2014-03-06

    Sensor networks drive decisions. Approach: Design networks to minimize the expected total cost (in a statistical sense, i.e. Bayes Risk) associated with making wrong decisions and with installing maintaining and running the sensor network itself. Search for optimal solutions using Monte-Carlo-Sampling-Adapted Genetic Algorithm. Applications include structural health monitoring and surveillance.

  17. Aero-Engine Condition Monitoring Based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxiao; Wang, Nan

    The maintenance and management of civil aero-engine require advanced monitor approaches to estimate aero-engine performance and health in order to increase life of aero-engine and reduce maintenance costs. In this paper, we adopted support vector machine (SVM) regression approach to monitor an aero-engine health and condition by building monitoring models of main aero-engine performance parameters(EGT, N1, N2 and FF). The accuracy of nonlinear baseline models of performance parameters is tested and the maximum relative error does not exceed ±0.3%, which meets the engineering requirements. The results show that SVM nonlinear regression is an effective method in aero-engine monitoring.

  18. A Wavelet-Based Methodology for Grinding Wheel Condition Monitoring

    SciTech Connect

    Liao, T. W.; Ting, C.F.; Qu, Jun; Blau, Peter Julian

    2007-01-01

    Grinding wheel surface condition changes as more material is removed. This paper presents a wavelet-based methodology for grinding wheel condition monitoring based on acoustic emission (AE) signals. Grinding experiments in creep feed mode were conducted to grind alumina specimens with a resinoid-bonded diamond wheel using two different conditions. During the experiments, AE signals were collected when the wheel was 'sharp' and when the wheel was 'dull'. Discriminant features were then extracted from each raw AE signal segment using the discrete wavelet decomposition procedure. An adaptive genetic clustering algorithm was finally applied to the extracted features in order to distinguish different states of grinding wheel condition. The test results indicate that the proposed methodology can achieve 97% clustering accuracy for the high material removal rate condition, 86.7% for the low material removal rate condition, and 76.7% for the combined grinding conditions if the base wavelet, the decomposition level, and the GA parameters are properly selected.

  19. Monitoring the condition of the slag crust in blast furnaces

    SciTech Connect

    Chernov, N.N.; Marder, B.F.; Demidenko, T.V.; Riznitskii, I.G.; Safina, L.A.; Dyshlevich, I.I.; Tkach, A.Ya.

    1988-05-01

    Studies conducted at the Krivorozhstal' combine blast furnaces have shown that fusion of the crust can be established from the change in the total content of alkali metals in the slag. After the furnaces were blown out for repairs the remaining lining and crust were inspected. It was found that the lining of the uncooled part of the stock remained in relatively good shape with the greatest amount of lining wear seen between the second row of stack coolers and bosh coolers. The composition and structure of the slag crust for different regions of the furnaces were analyzed and various physicochemical properties leading to crust formation and behavior were assessed. It was concluded that the systematic determination of the fraction of K/sub 2/O in the alkali compounds in the furnace slag will permit monitoring of the conditions of the slag crust in the furnace and, in the event of the onset of its collapse, will enable measures to be taken to stabilize the heating of the furnace.

  20. Reality Monitoring and Metamemory in Adults with Autism Spectrum Conditions

    ERIC Educational Resources Information Center

    Cooper, Rose A.; Plaisted-Grant, Kate C.; Baron-Cohen, Simon; Simons, Jon S.

    2016-01-01

    Studies of reality monitoring (RM) often implicate medial prefrontal cortex (mPFC) in distinguishing internal and external information, a region linked to autism-related deficits in social and self-referential information processing, executive function, and memory. This study used two RM conditions (self-other; perceived-imagined) to investigate…

  1. Energy harvesting to power embedded condition monitoring hardware

    NASA Astrophysics Data System (ADS)

    Farinholt, Kevin; Brown, Nathan; Siegel, Jake; McQuown, Justin; Humphris, Robert

    2015-04-01

    The shift toward condition-based monitoring is a key area of research for many military, industrial, and commercial customers who want to lower the overall operating costs of capital equipment and general facilities. Assessing the health of rotating systems such as gearboxes, bearings, pumps and other actuation systems often rely on the need for continuous monitoring to capture transient signals that are evidence of events that could cause (i.e. cavitation), or be the result of (i.e. spalling), damage within a system. In some applications this can be accomplished using line powered analyzers, however for wide-spread monitoring, the use of small-scale embedded electronic systems are more desirable. In such cases the method for powering the electronics becomes a significant design factor. This work presents a multi-source energy harvesting approach meant to provide a robust power source for embedded electronics, capturing energy from vibration, thermal and light sources to operate a low-power sensor node. This paper presents the general design philosophy behind the multi-source harvesting circuit, and how it can be extended from powering electronics developed for periodic monitoring to sensing equipment capable of providing continuous condition-based monitoring.

  2. Cable condition monitoring research activities at Sandia National Laboratories

    SciTech Connect

    Jacobus, M.J.; Zigler, G.L.; Bustard, L.D.

    1988-01-01

    Sandia National Laboratories is currently conducting long-term aging research on representative samples of nuclear power plant cables. The objectives of the program are to determine the suitability of these cables for extended life (beyond 40 year design basis) and to assess various cable condition monitoring techniques for predicting remaining cable life. The cables are being aged for long times at relatively mild exposure conditions with various condition monitoring techniques to be employed during the aging process. Following the aging process, the cables will be exposed to a sequential accident profile consisting of high dose rate irradiation followed by a simulated design basis loss-of-coolant accident (LOCA) steam exposure. 12 refs., 1 fig., 1 tab.

  3. USING CONDITION MONITORING TO PREDICT REMAINING LIFE OF ELECTRIC CABLES.

    SciTech Connect

    LOFARO,R.; SOO,P.; VILLARAN,M.; GROVE,E.

    2001-03-29

    Electric cables are passive components used extensively throughout nuclear power stations to perform numerous safety and non-safety functions. It is known that the polymers commonly used to insulate the conductors on these cables can degrade with time; the rate of degradation being dependent on the severity of the conditions in which the cables operate. Cables do not receive routine maintenance and, since it can be very costly, they are not replaced on a regular basis. Therefore, to ensure their continued functional performance, it would be beneficial if condition monitoring techniques could be used to estimate the remaining useful life of these components. A great deal of research has been performed on various condition monitoring techniques for use on electric cables. In a research program sponsored by the U.S. Nuclear Regulatory Commission, several promising techniques were evaluated and found to provide trendable information on the condition of low-voltage electric cables. These techniques may be useful for predicting remaining life if well defined limiting values for the aging properties being measured can be determined. However, each technique has advantages and limitations that must be addressed in order to use it effectively, and the necessary limiting values are not always easy to obtain. This paper discusses how condition monitoring measurements can be used to predict the remaining useful life of electric cables. The attributes of an appropriate condition monitoring technique are presented, and the process to be used in estimating the remaining useful life of a cable is discussed along with the difficulties that must be addressed.

  4. Vibration condition monitoring of planetary gearbox under varying external load

    NASA Astrophysics Data System (ADS)

    Bartelmus, W.; Zimroz, R.

    2009-01-01

    The paper shows that for condition monitoring of planetary gearboxes it is important to identify the external varying load condition. In the paper, systematic consideration has been taken of the influence of many factors on the vibration signals generated by a system in which a planetary gearbox is included. These considerations give the basis for vibration signal interpretation, development of the means of condition monitoring, and for the scenario of the degradation of the planetary gearbox. Real measured vibration signals obtained in the industrial environment are processed. The signals are recorded during normal operation of the diagnosed objects, namely planetary gearboxes, which are a part of the driving system used in a bucket wheel excavator, used in lignite mines. It is found that a planetary gearbox in bad condition is more susceptible to load than a gearbox in good condition. The estimated load time traces obtained by a demodulation process of the vibration acceleration signal for a planetary gearbox in good and bad conditions are given. It has been found that the most important factor of the proper planetary gearbox condition is connected with perturbation of arm rotation, where an arm rotation gives rise to a specific vibration signal whose properties are depicted by a short-time Fourier transform (STFT) and Wigner-Ville distribution presented as a time frequency map. The paper gives evidence that there are two dominant low-frequency causes that influence vibration signal modulation, i.e. the varying load, which comes from the nature of the bucket wheel digging process, and the arm/carrier rotation. These two causes determine the condition of the planetary gearboxes considered. Typical local faults such as cracking or breakage of a gear tooth, or local faults in rolling element bearings, have not been found in the cases considered. In real practice, local faults of planetary gearboxes have not occurred, but heavy destruction of planetary gearboxes have

  5. Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements

    NASA Astrophysics Data System (ADS)

    Döhler, Michael; Mevel, Laurent

    2014-05-01

    Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.

  6. Wireless microsensors for health monitoring of aircraft structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2003-01-01

    The integration of MEMS, IDTs (interdigital transducers) and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring (ASHM) system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC (Application Specific Integrated Circuit), providing a low power Microsystems. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial

  7. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays

    NASA Technical Reports Server (NTRS)

    Black, Richard J.; Faridian, Ferey; Moslehi, Behzad; Sotoudeh, Vahid

    2012-01-01

    Structural health monitoring (SHM) is one of the most important tools available for the maintenance, safety, and integrity of aerospace structural systems. Lightweight, electromagnetic-interference- immune, fiber-optic sensor-based SHM will play an increasing role in more secure air transportation systems. Manufacturers and maintenance personnel have pressing needs for significantly improving safety and reliability while providing for lower inspection and maintenance costs. Undetected or untreated damage may grow and lead to catastrophic structural failure. Damage can originate from the strain/stress history of the material, imperfections of domain boundaries in metals, delamination in multi-layer materials, or the impact of machine tools in the manufacturing process. Damage can likewise develop during service life from wear and tear, or under extraordinary circumstances such as with unusual forces, temperature cycling, or impact of flying objects. Monitoring and early detection are key to preventing a catastrophic failure of structures, especially when these are expected to perform near their limit conditions.

  8. Evaluation of High-Precision Sensors in Structural Monitoring

    PubMed Central

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant. PMID:22163499

  9. Evaluation of high-precision sensors in structural monitoring.

    PubMed

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant. PMID:22163499

  10. Evaluation of high-precision sensors in structural monitoring.

    PubMed

    Erol, Bihter

    2010-01-01

    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant.

  11. Monitoring of Double Stud Wall Moisture Conditions in the Northeast

    SciTech Connect

    Ueno, K.

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  12. Structural health monitoring apparatus and methodology

    NASA Technical Reports Server (NTRS)

    Giurgiutiu, Victor (Inventor); Yu, Lingyu (Inventor); Bottai, Giola Santoni (Inventor)

    2011-01-01

    Disclosed is an apparatus and methodology for structural health monitoring (SHM) in which smart devices interrogate structural components to predict failure, expedite needed repairs, and thus increase the useful life of those components. Piezoelectric wafer active sensors (PWAS) are applied to or integrated with structural components and various data collected there from provide the ability to detect and locate cracking, corrosion, and disbanding through use of pitch-catch, pulse-echo, electro/mechanical impedance, and phased array technology. Stand alone hardware and an associated software program are provided that allow selection of multiple types of SHM investigations as well as multiple types of data analysis to perform a wholesome investigation of a structure.

  13. The Path Containment Condition and Argument Structure.

    ERIC Educational Resources Information Center

    Stroik, Thomas

    The internal structure of verb phrases (VPs) are investigated. Using the Path Containment Condition, as developed by May (1985), to establish relations between quantified arguments, this study draws two conclusions about the structure of argument-relations within VPs. First, arguments have binary relations with projections of the verb, and second,…

  14. Monitoring vegetation conditions from LANDSAT for use in range management

    NASA Technical Reports Server (NTRS)

    Haas, R. H.; Deering, D. W.; Rouse, J. W., Jr.; Schell, J. A.

    1975-01-01

    A summary of the LANDSAT Great Plains Corridor projects and the principal results are presented. Emphasis is given to the use of satellite acquired phenological data for range management and agri-business activities. A convenient method of reducing LANDSAT MSS data to provide quantitative estimates of green biomass on rangelands in the Great Plains is explained. Suggestions for the use of this approach for evaluating range feed conditions are presented. A LANDSAT Follow-on project has been initiated which will employ the green biomass estimation method in a quasi-operational monitoring of range readiness and range feed conditions on a regional scale.

  15. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    PubMed

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  16. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    PubMed

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-05-21

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  17. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation

    PubMed Central

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-01-01

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735

  18. Image-based monitoring of structural damage: concrete surface cracks

    NASA Astrophysics Data System (ADS)

    Chen, ZhiQiang; Chang, Barbara; Hutchinson, Tara C.

    2008-03-01

    Nondestructive imaging has been a widely used approach for detection of local structural damage in the engineering community. By combining image analysis methods, quantities describing the type, severity and extent of damage can be extracted within the spatial domain of images. However, the current practice of structural health monitoring requires a temporal characterization of structural damage, or some correlation of structural damage with response data. To accomplish this, one needs to consider the time scale in using any of the nondestructive imaging techniques, which in turn demands the use of spatial-temporal image analysis. In this paper, we address the temporal occurrence of cracks on the surface of concrete structural members, and attempt to monitor cracks, including their inception and propagation, using temporal image data. We assume under some conditions for objects in a pair of temporal images that only planar rigid-body motion takes place in the image domain, while cracks are treated as a type of local anomaly. The unknown motion parameters are estimated by means of a manifold-based optimization procedure, and the obtained manifold distance (MD) measure is used as a motion-invariant feature to describe the temporal occurrence of concrete cracks. Numerical analyses are conducted with the use of video clips from two laboratory experiments. It is concluded in this paper that the MD-based spatial-temporal image analysis can be an effective means for monitoring local damage of structural components that occurs and is accompanied by structural motion induced by loading.

  19. Sensor systems for monitoring maglev guideway structures. Final report

    SciTech Connect

    Berthold, J.W.; Bower, J.R.; Buttram, J.D.; Okes, L.R.; Robertson, M.O.

    1992-07-01

    The report is an assessment of the technologies available for continuous monitoring of the physical condition and structural integrity of maglev guideways. The detection of obstructions on the guideway is not included. No particular guideway design is assumed, other than that the largest part of the system will consist of repetitive reinforced concrete structures, probably elevated, that are aligned with close tolerances. It is assumed that the guideway is to be monitored for the correct alignment of the sections, any unusual vibrations or motions, detection of catastrophic failure, and possibly accumulation of ice and snow. The technologies covered are acoustic emission monitoring (a passive acoustic method of listening for crack growth or other unusual structure borne sound), infrared and visible light monitoring (ranging from cameras to displacement sensors), ultrasonics (for vibration, displacement, snow and ice), microwave monitors (for vibration and displacement sensors), and fiber optics (for networks of strain gauges). It is the conclusion of the report that the technologies described are sufficiently mature to meet the requirements. Any particular application will certainly need development, and some may need extensive development, but the basic capabilities are there.

  20. [Feasibility of monitoring karst standing conditions with vegetation spectra].

    PubMed

    Yue, Yue-Min; Wang, Ke-Lin; Xiong, Ying

    2012-07-01

    Karst regions are typically ecological fragile zones constrained by geological setting, which resulted in high heterogeneity of vegetation standing conditions. The karst vegetation was featured with stone, dry and high calcium carbonate content growth conditions. Based on vegetation spectral analysis and canonical correspondence analysis (CCA), the present study aimed to examine the feasibility of using vegetation spectra to monitor the heterogeneous karst standing conditions. The results showed that there were significant differences between karst vegetation and non-karst vegetation within the spectral range of 1 300-2 500 nm reflectance and 400 - 680 nm first-derivative spectra. It was found that soil moisture and calcium carbonate contents had the most significant effects on vegetation spectral features in karst regions. Ordination diagrams of CCA could distinguish the differences of karst vegetation and non-karst vegetation. Our study demonstrates that vegetation spectra are highly related to karst standing conditions and it is feasible to monitor karst standing conditions with vegetation spectral features.

  1. Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions

    PubMed Central

    Yu, Chang Ho; Patton, Allison P.; Zhang, Andrew; Fanac, Zhi-Hua (Tina); Weisel, Clifford P.; Lioy, Paul J.

    2015-01-01

    Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80 °F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m3) in a controlled exposure facility. The 2-hour averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R2=0.84; slope=1.17±0.06; N=27) and reported ~17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hour averaged EC concentrations obtained by the Airtec instrument versus the NIOSH method (p<0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5

  2. An application of smart dust for pavement condition monitoring

    NASA Astrophysics Data System (ADS)

    Ferzli, Nadim A.; Ivey, Richard A.; King, Timothy; Sandburg, Colby J.; Pei, Jin-Song; Zaman, Musharraf M.; Refai, Hazem H.; Lin, Hung, Jr.; Landrum, Aaron; Victor, Rory

    2006-03-01

    Pavement maintenance is vital for travel safety; detecting road weather conditions using a wireless sensing network poses many challenges due to the harsh environment. This paper presents some preliminary results of an ongoing effort of applying "Smart Dust" sensor network for monitoring pavement temperature and moisture condition to detect icy road condition. Careful considerations yield effective solutions to various hardware and software development issues including the selection of sensors and antenna, design of casing, interfacing motes with alien sensors and programming of motes. A series of experiments is carried out to study traffic interference to packet delivery performance of a small-scale sensor network in a pseudo-field environment. In addition, several overnight tests are conducted to study the performance of motes operated under a power efficient condition. The results are analyzed and challenges are identified in this smart sensing application. The aforementioned research activities would benefit robust real-world implementations of off-the-shelf sensor network products.

  3. A hybrid fiber-optic sensor system for condition monitoring of large scale wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kim, Dae-gil; Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-01

    A hybrid fiber-optic sensor system which combines fiber Bragg grating (FBG) sensors and a Michelson interferometer is suggested for condition monitoring uses of large scale wind turbine blades. The system uses single broadband light source to address both sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light for the Michelson interferometer demodulation. For the feasibility test, different profiles of test strain, temperature and vibration have been applied to test structures, and successfully reconstructed with the proposed sensor system.

  4. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  5. ASSESSMENT OF CABLE AGING USING CONDITION MONITORING TECHNIQUES

    SciTech Connect

    GROVE,E.; LOFARO,R.; SOO,P.; VILLARAN,M.; HSU,F.

    2000-04-06

    Electric cables in nuclear power plants suffer degradation during service as a result of the thermal and radiation environments in which they are installed. Instrumentation and control cables are one type of cable that provide an important role in reactor safety. Should the polymeric cable insulation material become embrittled and cracked during service, or during a loss-of-coolant-accident (LOCA) and when steam and high radiation conditions are anticipated, failure could occur and prevent the cables from fulfilling their intended safety function(s). A research program is being conducted at Brookhaven National Laboratory to evaluate condition monitoring (CM) techniques for estimating the amount of cable degradation experienced during in-plant service. The objectives of this program are to assess the ability of the cables to perform under a simulated LOCA without losing their ability to function effectively, and to identify CM techniques which may be used to determine the effective lifetime of cables. The cable insulation materials tested include ethylene propylene rubber (EPR) and cross-linked polyethylene (XLPE). Accelerated aging (thermal and radiation) to the equivalent of 40 years of service was performed, followed by exposure to simulated LOCA conditions. The effectiveness of chemical, electrical, and mechanical condition monitoring techniques are being evaluated. Results indicate that several of these methods can detect changes in material parameters with increasing age. However, each has its limitations, and a combination of methods may provide an effective means for trending cable degradation in order to assess the remaining life of cables.

  6. An overview of wireless structural health monitoring for civil structures.

    PubMed

    Lynch, Jerome Peter

    2007-02-15

    Wireless monitoring has emerged in recent years as a promising technology that could greatly impact the field of structural monitoring and infrastructure asset management. This paper is a summary of research efforts that have resulted in the design of numerous wireless sensing unit prototypes explicitly intended for implementation in civil structures. Wireless sensing units integrate wireless communications and mobile computing with sensors to deliver a relatively inexpensive sensor platform. A key design feature of wireless sensing units is the collocation of computational power and sensors; the tight integration of computing with a wireless sensing unit provides sensors with the opportunity to self-interrogate measurement data. In particular, there is strong interest in using wireless sensing units to build structural health monitoring systems that interrogate structural data for signs of damage. After the hardware and the software designs of wireless sensing units are completed, the Alamosa Canyon Bridge in New Mexico is utilized to validate their accuracy and reliability. To improve the ability of low-cost wireless sensing units to detect the onset of structural damage, the wireless sensing unit paradigm is extended to include the capability to command actuators and active sensors.

  7. Remote monitoring as a tool in condition assessment of a highway bridge

    NASA Astrophysics Data System (ADS)

    Tantele, Elia A.; Votsis, Renos A.; Onoufriou, Toula; Milis, Marios; Kareklas, George

    2016-08-01

    The deterioration of civil infrastructure and their subsequent maintenance is a significant problem for the responsible managing authorities. The ideal scenario is to detect deterioration and/or structural problems at early stages so that the maintenance cost is kept low and the safety of the infrastructure remains undisputed. The current inspection regimes implemented mostly via visual inspection are planned at specific intervals but are not always executed on time due to shortcomings in expert personnel and finance. However the introduction of technological advances in the assessment of infrastructures provides the tools to alleviate this problem. This study describes the assessment of a highway RC bridge's structural condition using remote structural health monitoring. A monitoring plan is implemented focusing on strain measurements; as strain is a parameter influenced by the environmental conditions supplementary data are provided from temperature and wind sensors. The data are acquired using wired sensors (deployed at specific locations) which are connected to a wireless sensor unit installed at the bridge. This WSN application enables the transmission of the raw data from the field to the office for processing and evaluation. The processed data are then used to assess the condition of the bridge. This case study, which is part of an undergoing RPF research project, illustrates that remote monitoring can alleviate the problem of missing structural inspections. Additionally, shows its potential to be the main part of a fully automated smart procedure of obtaining structural data, processed them and trigger an alarm when certain undesirable conditions are met.

  8. Wireless Applications for Structural Monitoring of Inflatable Habitats

    NASA Technical Reports Server (NTRS)

    Miller, Glenn J.

    2007-01-01

    A viewgraph presentation on wireless applications for structural health monitoring of inflatable space structures is shown. The topics include: 1) Background; 2) REquirements; 3) Implementation; and 4) strucutral health monitoring system summary.

  9. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  10. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, the International Space Station, Uninhabited Aerial Vehicles, and Expendable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  11. Structural health monitoring system/method using electroactive polymer fibers

    NASA Technical Reports Server (NTRS)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  12. Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis

    SciTech Connect

    Sheng, S.

    2012-07-01

    The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.

  13. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the

  14. Structural Health Monitoring of AN Aircraft Joint

    NASA Astrophysics Data System (ADS)

    Mickens, T.; Schulz, M.; Sundaresan, M.; Ghoshal, A.; Naser, A. S.; Reichmeider, R.

    2003-03-01

    A major concern with ageing aircraft is the deterioration of structural components in the form of fatigue cracks at fastener holes, loose rivets and debonding of joints. These faults in conjunction with corrosion can lead to multiple-site damage and pose a hazard to flight. Developing a simple vibration-based method of damage detection for monitoring ageing structures is considered in this paper. The method is intended to detect damage during operation of the vehicle before the damage can propagate and cause catastrophic failure of aircraft components. It is typical that only a limited number of sensors could be used on the structure and damage can occur anywhere on the surface or inside the structure. The research performed was to investigate use of the chirp vibration responses of an aircraft wing tip to detect, locate and approximately quantify damage. The technique uses four piezoelectric patches alternatively as actuators and sensors to send and receive vibration diagnostic signals.Loosening of selected screws simulated damage to the wing tip. The results obtained from the testing led to the concept of a sensor tape to detect damage at joints in an aircraft structure.

  15. Tunable Vibration Energy Harvester for Condition Monitoring of Maritime Gearboxes

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Willmann, A.; Folkmer, B.; Manoli, Y.

    2014-11-01

    This paper reports on a new tuning concept, which enables the operation of a vibration generator for energy autonomous condition monitoring of maritime gearboxes. The tuning concept incorporates a circular tuning magnet, which interacts with a coupling magnet attached to the active transducer element. The tuning range can be tailored to the application by careful design of the gap between tuning magnet and coupling magnet. A total rotation angle of only 180° is required for the tuning magnet in order to obtain the full frequency bandwidth. The tuning concept is successfully demonstrated by charging a 0.6 F capacitor on the basis of physical vibration profiles taken from a gearbox.

  16. Development of a locomotive engine condition monitoring system

    SciTech Connect

    Broughton, C.; Holloway, R.; Webster, G.

    1997-12-31

    Outlines test procedures and results of a study of the application of the instantaneous crankshaft angular velocity (ICAV) engine condition monitoring system applied to three freight locomotives. The study involved the assessment of a prototype repair-shop diagnostic tool, based on prior experimental programs and the ICAV technology. Engine testing was carried out at four-month intervals for three separate trials on the locomotives. Experimental data obtained included power output, fuel consumption, cylinder firing pressure waveforms, and the ICAV waveforms. The performance of the ICAV system was judged on its ability to accurately predict the change in indicated mean effective pressure of each cylinder from one test to the next.

  17. The ATLAS Beam Condition and Beam Loss Monitors

    NASA Astrophysics Data System (ADS)

    Dolenc, I.

    2010-04-01

    The primary goal of ATLAS Beam Condition Monitor (BCM) and Beam Loss Monitor (BLM) is to protect the ATLAS Inner Detector against damaging LHC beam incidents by initiating beam abort in case of beam failures. Poly-crystalline Chemical Vapour Deposition (pCVD) diamond was chosen as the sensor material for both systems. ATLAS BCM will provide real-time monitoring of instantaneous particle rates close to the interaction point (IP) of ATLAS spectrometer. Using fast front-end and signal processing electronics the time-of-flight and pulse amplitude measurements will be performed to distinguish between normal collisions and background events due to natural or accidental beam losses. Additionally, BCM will also provide coarse relative luminosity information. A second system, the ATLAS BLM, is an independent system which was recently added to complement the BCM. It is a current measuring system and was partially adopted from the BLM system developed by the LHC beam instrumentation group with pCVD diamond pad sensors replacing the ionisation chambers. The design of both systems and results of operation in ATLAS framework during the commissioning with cosmic rays will be reported in this contribution.

  18. Thermal sensitivity of Lamb waves for structural health monitoring applications.

    PubMed

    Dodson, J C; Inman, D J

    2013-03-01

    One of the drawbacks of the current Lamb wave structural health monitoring methods are the false positives due to changing environmental conditions such as temperature. To create an environmental insensitive damage detection scheme, the physics of thermal effects on Lamb waves must be understood. Dispersion and thermal sensitivity curves for an isotropic plate with thermal stress and thermally varying elastic modulus are presented. The thermal sensitivity of dispersion curves is analytically developed and validated by experimental measurements. The group velocity thermal sensitivity highlights temperature insensitive features at two critical frequencies. The thermal sensitivity gives us insight to how temperature affects Lamb wave speeds in different frequency ranges and will help those developing structural health monitoring algorithms.

  19. VegScape: U.S. Crop Condition Monitoring Service

    NASA Astrophysics Data System (ADS)

    mueller, R.; Yang, Z.; Di, L.

    2013-12-01

    Since 1995, the US Department of Agriculture (USDA)/National Agricultural Statistics Service (NASS) has provided qualitative biweekly vegetation condition indices to USDA policymakers and the public on a weekly basis during the growing season. Vegetation indices have proven useful for assessing crop condition and identifying the areal extent of floods, drought, major weather anomalies, and vulnerabilities of early/late season crops. With growing emphasis on more extreme weather events and food security issues rising to the forefront of national interest, a new vegetation condition monitoring system was developed. The new vegetation condition portal named VegScape was initiated at the start of the 2013 growing season. VegScape delivers web mapping service based interactive vegetation indices. Users can use an interactive map to explore, query and disseminate current crop conditions. Vegetation indices like Normal Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and mean, median, and ratio comparisons to prior years can be constructed for analytical purposes and on-demand crop statistics. The NASA MODIS satellite with 250 meter (15 acres) resolution and thirteen years of data history provides improved spatial and temporal resolutions and delivers improved detailed timely (i.e., daily) crop specific condition and dynamics. VegScape thus provides supplemental information to support NASS' weekly crop reports. VegScape delivers an agricultural cultivated crop mask and the most recent Cropland Data Layer (CDL) product to exploit the agricultural domain and visualize prior years' planted crops. Additionally, the data can be directly exported to Google Earth for web mashups or delivered via web mapping services for uses in other applications. VegScape supports the ethos of data democracy by providing free and open access to digital geospatial data layers using open geospatial standards, thereby supporting transparent and collaborative government

  20. Condition monitoring of machinery using motor current signature analysis

    NASA Astrophysics Data System (ADS)

    Kryter, R. C.; Haynes, H. D.

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process downstream of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given.

  1. Application of TRIZ approach to machine vibration condition monitoring problems

    NASA Astrophysics Data System (ADS)

    Cempel, Czesław

    2013-12-01

    Up to now machine condition monitoring has not been seriously approached by TRIZ1TRIZ= Russian acronym for Inventive Problem Solving System, created by G. Altshuller ca 50 years ago. users, and the knowledge of TRIZ methodology has not been applied there intensively. However, there are some introductory papers of present author posted on Diagnostic Congress in Cracow (Cempel, in press [11]), and Diagnostyka Journal as well. But it seems to be further need to make such approach from different sides in order to see, if some new knowledge and technology will emerge. In doing this we need at first to define the ideal final result (IFR) of our innovation problem. As a next we need a set of parameters to describe the problems of system condition monitoring (CM) in terms of TRIZ language and set of inventive principles possible to apply, on the way to IFR. This means we should present the machine CM problem by means of contradiction and contradiction matrix. When specifying the problem parameters and inventive principles, one should use analogy and metaphorical thinking, which by definition is not exact but fuzzy, and leads sometimes to unexpected results and outcomes. The paper undertakes this important problem again and brings some new insight into system and machine CM problems. This may mean for example the minimal dimensionality of TRIZ engineering parameter set for the description of machine CM problems, and the set of most useful inventive principles applied to given engineering parameter and contradictions of TRIZ.

  2. Condition monitoring of machinery using motor current signature analysis

    SciTech Connect

    Kryter, R.C.; Haynes, H.D.

    1989-01-01

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process ''downstream'' of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given. 1 ref., 13 figs.

  3. SSME Condition Monitoring Using Neural Networks and Plume Spectral Signatures

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall; Benzing, Daniel

    1996-01-01

    For a variety of reasons, condition monitoring of the Space Shuttle Main Engine (SSME) has become an important concern for both ground tests and in-flight operation. The complexities of the SSME suggest that active, real-time condition monitoring should be performed to avoid large-scale or catastrophic failure of the engine. In 1986, the SSME became the subject of a plume emission spectroscopy project at NASA's Marshall Space Flight Center (MSFC). Since then, plume emission spectroscopy has recorded many nominal tests and the qualitative spectral features of the SSME plume are now well established. Significant discoveries made with both wide-band and narrow-band plume emission spectroscopy systems led MSFC to develop the Optical Plume Anomaly Detection (OPAD) system. The OPAD system is designed to provide condition monitoring of the SSME during ground-level testing. The operational health of the engine is achieved through the acquisition of spectrally resolved plume emissions and the subsequent identification of abnormal emission levels in the plume indicative of engine erosion or component failure. Eventually, OPAD, or a derivative of the technology, could find its way on to an actual space vehicle and provide in-flight engine condition monitoring. This technology step, however, will require miniaturized hardware capable of processing plume spectral data in real-time. An objective of OPAD condition monitoring is to determine how much of an element is present in the SSME plume. The basic premise is that by knowing the element and its concentration, this could be related back to the health of components within the engine. For example, an abnormal amount of silver in the plume might signify increased wear or deterioration of a particular bearing in the engine. Once an anomaly is identified, the engine could be shut down before catastrophic failure occurs. Currently, element concentrations in the plume are determined iteratively with the help of a non-linear computer

  4. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    PubMed Central

    Li, Yong; Wang, Xiufeng; Lin, Jing; Shi, Shengyu

    2014-01-01

    The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM) has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features. PMID:24473281

  5. Analysis of structures under fire conditions

    NASA Astrophysics Data System (ADS)

    Kajaste-Rudnitski, Juri

    The prospect of the application of a standard finite element method program to study the ability of a structure to withstand fire is studied. The objective of using a finite element method program for structure fire resistance evaluation is to compliment, if not to substitute, the expensive fire tests of the natural size structural elements. Besides, an existing measurement technique provides limited scope of data: the temperature and displacement at the reference points of the structure. Furthermore, the simulation of the real fire situation is rather difficult in the laboratory conditions. The numerical model of the concrete type of material with temperature dependent properties is studied. The standard finite element method program ABAQUS chosen for this purpose enables users to create their own subroutines and insert them into the main program.

  6. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    SciTech Connect

    Mahadevan, Sankaran; Agarwal, Vivek; Cai, Guowei; Nath, Paromita; Bao, Yanqing; Bru Brea, Jose Maria; Koester, David; Adams, Douglas; Kosson, David

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  7. Aircraft fiber optic structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih

    2012-06-01

    Structural Health Monitoring (SHM) is a sought after concept that is expected to advance military maintenance programs, increase platform operational safety and reduce its life cycle cost. Such concept is further considered to constitute a major building block of any Integrated Health Management (IHM) capability. Since 65% to 80% of military assets' Life Cycle Cost (LCC) is devoted to operations and support (O&S), the aerospace industry and military sectors continue to look for opportunities to exploit SHM systems, capability and tools. Over the past several years, countless SHM concepts and technologies have emerged. Among those, fiber optic based systems were identified of significant potential. This paper introduces the elements of an SHM system and investigates key issues impeding the commercial implementation of fiber optic based SHM capability. In particular, this paper presents an experimental study of short gauge, intrinsic, spectrometric-based in-fiber Bragg grating sensors, for potential use as a component of an SHM system. Fiber optic Bragg grating sensors are evaluated against resistance strain gauges for strain monitoring, sensitivity, accuracy, reliability, and fatigue durability. Strain field disturbance is also investigated by "embedding" the sensors under a photoelastic coating in order to illustrate sensor intrusiveness in an embedded configuration.

  8. Structural health monitoring of civil infrastructure.

    PubMed

    Brownjohn, J M W

    2007-02-15

    Structural health monitoring (SHM) is a term increasingly used in the last decade to describe a range of systems implemented on full-scale civil infrastructures and whose purposes are to assist and inform operators about continued 'fitness for purpose' of structures under gradual or sudden changes to their state, to learn about either or both of the load and response mechanisms. Arguably, various forms of SHM have been employed in civil infrastructure for at least half a century, but it is only in the last decade or two that computer-based systems are being designed for the purpose of assisting owners/operators of ageing infrastructure with timely information for their continued safe and economic operation. This paper describes the motivations for and recent history of SHM applications to various forms of civil infrastructure and provides case studies on specific types of structure. It ends with a discussion of the present state-of-the-art and future developments in terms of instrumentation, data acquisition, communication systems and data mining and presentation procedures for diagnosis of infrastructural 'health'.

  9. Monitoring of Concrete Structures Using Ofdr Technique

    NASA Astrophysics Data System (ADS)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  10. Information processing for aerospace structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, Peter F.; White, Edward V.; Baumann, Erwin W.

    1998-06-01

    Structural health monitoring (SHM) technology provides a means to significantly reduce life cycle of aerospace vehicles by eliminating unnecessary inspections, minimizing inspection complexity, and providing accurate diagnostics and prognostics to support vehicle life extension. In order to accomplish this, a comprehensive SHM system will need to acquire data from a wide variety of diverse sensors including strain gages, accelerometers, acoustic emission sensors, crack growth gages, corrosion sensors, and piezoelectric transducers. Significant amounts of computer processing will then be required to convert this raw sensor data into meaningful information which indicates both the diagnostics of the current structural integrity as well as the prognostics necessary for planning and managing the future health of the structure in a cost effective manner. This paper provides a description of the key types of information processing technologies required in an effective SHM system. These include artificial intelligence techniques such as neural networks, expert systems, and fuzzy logic for nonlinear modeling, pattern recognition, and complex decision making; signal processing techniques such as Fourier and wavelet transforms for spectral analysis and feature extraction; statistical algorithms for optimal detection, estimation, prediction, and fusion; and a wide variety of other algorithms for data analysis and visualization. The intent of this paper is to provide an overview of the role of information processing for SHM, discuss various technologies which can contribute to accomplishing this role, and present some example applications of information processing for SHM implemented at the Boeing Company.

  11. FOREWORD: Structural Health Monitoring and Intelligent Infrastructure

    NASA Astrophysics Data System (ADS)

    Wu, Zhishen; Fujino, Yozo

    2005-06-01

    This special issue collects together 19 papers that were originally presented at the First International Conference on Structural Health Monitoring and Intelligent Infrastructure (SHMII-1'2003), held in Tokyo, Japan, on 13-15 November 2003. This conference was organized by the Japan Society of Civil Engineers (JSCE) with partial financial support from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sport, Science and Technology, Japan. Many related organizations supported the conference. A total of 16 keynote papers including six state-of-the-art reports from different counties, six invited papers and 154 contributed papers were presented at the conference. The conference was attended by a diverse group of about 300 people from a variety of disciplines in academia, industry and government from all over the world. Structural health monitoring (SHM) and intelligent materials, structures and systems have been the subject of intense research and development in the last two decades and, in recent years, an increasing range of applications in infrastructure have been discovered both for existing structures and for new constructions. SHMII-1'2003 addressed progress in the development of building, transportation, marine, underground and energy-generating structures, and other civilian infrastructures that are periodically, continuously and/or actively monitored where there is a need to optimize their performance. In order to focus the current needs on SHM and intelligent technologies, the conference theme was set as 'Structures/Infrastructures Sustainability'. We are pleased to have the privilege to edit this special issue on SHM and intelligent infrastructure based on SHMII-1'2003. We invited some of the presenters to submit a revised/extended version of their paper that was included in the SHMII-1'2003 proceedings for possible publication in the special issue. Each paper included in this special issue was edited with the same

  12. Condition Based Monitoring of Gas Turbine Combustion Components

    SciTech Connect

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

    2012-09-30

    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  13. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    NASA Astrophysics Data System (ADS)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  14. A simplified scheme for induction motor condition monitoring

    NASA Astrophysics Data System (ADS)

    Rodríguez, Pedro Vicente Jover; Negrea, Marian; Arkkio, Antero

    2008-07-01

    This work proposes a general scheme to detect induction motor fault by monitoring the motor current. The scheme is based on signal processing (predictive filters) and soft computing technique (fuzzy logic). The predictive filter is used in order to separate the fundamental component from the harmonic components. Fuzzy logic is used to identify the motor state. Finite element method (FEM) is utilised to generate virtual data that allows to test the proposed technique and foresee the change in the current under different motor conditions. A simple and reliable method for the detection of stator winding failures based on the phase current amplitudes is implemented and tested. The layout has been proved in MATLAB/SIMULINK, with both data from FEM motor simulation program and real measurements. The proposed method has the ability to work with variable speed drives and avoids the detailed spectral analysis of the motor current. This work shows the feasibility of spotting broken rotor bars, eccentricities and inter-turn short-circuit by monitoring the motor currents.

  15. Condition monitoring of gearboxes using synchronously averaged electric motor signals

    NASA Astrophysics Data System (ADS)

    Ottewill, J. R.; Orkisz, M.

    2013-07-01

    Due to their prevalence in rotating machinery, the condition monitoring of gearboxes is extremely important in the minimization of potentially dangerous and expensive failures. Traditionally, gearbox condition monitoring has been conducted using measurements obtained from casing-mounted vibration transducers such as accelerometers. A well-established technique for analyzing such signals is the synchronous signal average, where vibration signals are synchronized to a measured angular position and then averaged from rotation to rotation. Driven, in part, by improvements in control methodologies based upon methods of estimating rotor speed and torque, induction machines are used increasingly in industry to drive rotating machinery. As a result, attempts have been made to diagnose defects using measured terminal currents and voltages. In this paper, the application of the synchronous signal averaging methodology to electric drive signals, by synchronizing stator current signals with a shaft position estimated from current and voltage measurements is proposed. Initially, a test-rig is introduced based on an induction motor driving a two-stage reduction gearbox which is loaded by a DC motor. It is shown that a defect seeded into the gearbox may be located using signals acquired from casing-mounted accelerometers and shaft mounted encoders. Using simple models of an induction motor and a gearbox, it is shown that it should be possible to observe gearbox defects in the measured stator current signal. A robust method of extracting the average speed of a machine from the current frequency spectrum, based on the location of sidebands of the power supply frequency due to rotor eccentricity, is presented. The synchronous signal averaging method is applied to the resulting estimations of rotor position and torsional vibration. Experimental results show that the method is extremely adept at locating gear tooth defects. Further results, considering different loads and different

  16. New methods for the condition monitoring of level crossings

    NASA Astrophysics Data System (ADS)

    García Márquez, Fausto Pedro; Pedregal, Diego J.; Roberts, Clive

    2015-04-01

    Level crossings represent a high risk for railway systems. This paper demonstrates the potential to improve maintenance management through the use of intelligent condition monitoring coupled with reliability centred maintenance (RCM). RCM combines advanced electronics, control, computing and communication technologies to address the multiple objectives of cost effectiveness, improved quality, reliability and services. RCM collects digital and analogue signals utilising distributed transducers connected to either point-to-point or digital bus communication links. Assets in many industries use data logging capable of providing post-failure diagnostic support, but to date little use has been made of combined qualitative and quantitative fault detection techniques. The research takes the hydraulic railway level crossing barrier (LCB) system as a case study and develops a generic strategy for failure analysis, data acquisition and incipient fault detection. For each barrier the hydraulic characteristics, the motor's current and voltage, hydraulic pressure and the barrier's position are acquired. In order to acquire the data at a central point efficiently, without errors, a distributed single-cable Fieldbus is utilised. This allows the connection of all sensors through the project's proprietary communication nodes to a high-speed bus. The system developed in this paper for the condition monitoring described above detects faults by means of comparing what can be considered a 'normal' or 'expected' shape of a signal with respect to the actual shape observed as new data become available. ARIMA (autoregressive integrated moving average) models were employed for detecting faults. The statistical tests known as Jarque-Bera and Ljung-Box have been considered for testing the model.

  17. Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants

    SciTech Connect

    Meyer, Ryan M.; Bond, Leonard J.; Ramuhalli, Pradeep

    2012-03-31

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption for online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components.

  18. Development of High Temperature Ultrasonic Transducer for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Baba, A.; Searfass, C. T.; Tittmann, B. R.

    2011-06-01

    Structural health monitoring (SHM) techniques are needed to maintain the reliability of aging power plants for long term operation. The high temperature transducers are necessary to realize SHM (monitor wall thickness of the pipings, crack growth in the materials and material evaluation) under the working condition of power plants. We have developed high temperature transducer using lithium niobate (LiNbO3) single crystal which is well known as a high Curie temperature piezoelectric material. The LiNbO3 was bonded onto a stainless steel substrate. The transducer was heated in an electric furnace while measuring the bottom echoes from the substrate. We confirmed that the high temperature transducer could work up to 1000 °C.

  19. Monitoring of weathering steel structures. The induction ultrasonic thickness testers

    NASA Astrophysics Data System (ADS)

    McKenzie, M.

    Long term corrosion tests carried out in the UK show that weathering steels continue to corrode at a finite rate. It is therefore necessary to use thicker steel and to monitor the corrosion. An ultrasonic instrument to measure residual steel thickness was assessed. This measures steel thickness through a rust layer, requires no couplant to transmit the ultrasound into the steel and gives only the steel thickness not the thickness of the steel plus a layer of rust. This instrument provides a suitable method of measuring the residual steel thickness on weathering steel structures where corrosion has been generally uniform. However, the instrument can give no information on localized roughness or pitting of the underlying steel surface and it would seem worthwhile to include test specimens in any monitoring scheme so that the surface condition of the steel can be assessed.

  20. Structural dynamic health monitoring of adaptive CFRP structures

    NASA Astrophysics Data System (ADS)

    Kaiser, Stephan; Melcher, Joerg; Breitbach, Elmar J.; Sachau, Delf

    1999-07-01

    The DLR Institute of Structural Mechanics is engaged in the construction and optimization of adaptive structures for aerospace and terrestrial applications. Due to the FFS- Project, one of the recent works of the Institute is the reduction of buffet induced vibration loads at a fin. The construction of modern aircrafts is influenced b the increasing use of fiber composites. They have more specific stiffness and strength properties than metals. On the other hand the layered structure leads to new kinds of damages like delaminations. In the fin interface there are actuators and sensors integrated. Therefore the fin is connected with a controller. For the extension of this adaptive system towards an on-line tool for health monitoring this controller can be used as an identifier of the structure's modal parameters. The most promising procedure is based on MX filters. These filters constitute the filter coefficients from which a fast transformation procedure extracts the modal parameters. The changes of these parameters are related to the location and extent of the damage. So when using the already integrate controller for system identification, one can have a low-cost on-line damage detection for dynamic adaptive structures. First off-line test at CFRP plates have shown the ability to detect delaminations.

  1. A modern diagnostic approach for automobile systems condition monitoring

    NASA Astrophysics Data System (ADS)

    Selig, M.; Shi, Z.; Ball, A.; Schmidt, K.

    2012-05-01

    An important topic in automotive research and development is the area of active and passive safety systems. In general, it is grouped in active safety systems to prevent accidents and passive systems to reduce the impact of a crash. An example for an active system is ABS while a seat belt tensioner represents the group of passive systems. Current developments in the automotive industry try to link active with passive system components to enable a complete event sequence, beginning with the warning of the driver about a critical situation till the automatic emergency call after an accident. The cross-linking has an impact on the current diagnostic approach, which is described in this paper. Therefore, this contribution introduces a new diagnostic approach for automotive mechatronic systems. The concept is based on monitoring the messages which are exchanged via the automotive communication systems, e.g. the CAN bus. According to the authors' assumption, the messages on the bus are changing between faultless and faulty vehicle condition. The transmitted messages of the sensors and control units are different depending on the condition of the car. First experiments are carried and in addition, the hardware design of a suitable diagnostic interface is presented. Finally, first results will be presented and discussed.

  2. Development of a wireless bridge monitoring system for condition assessment using hybrid techniques

    NASA Astrophysics Data System (ADS)

    Whelan, Matthew J.; Fuchs, Michael P.; Gangone, Michael V.; Janoyan, Kerop D.

    2007-04-01

    The introduction and development of wireless sensor network technology has resulted in rapid growth within the field of structural health monitoring (SHM), as the dramatic cable costs associated with instrumentation of large civil structures is potentially alleviated. Traditionally, condition assessment of bridge structures is accomplished through the use of either vibration measurements or strain sensing. One approach is through quantifying dynamic characteristics and mode shapes developed through the use of relatively dense arrays of accelerometers. Another widely utilized method of condition assessment is bridge load rating, which is enabled through the use of strain sensors. The Wireless Sensor Solution (WSS) developed specifically for diagnostic bridge monitoring provides a hybrid system that interfaces with both accelerometers and strain sensors to facilitate vibration-based bridge evaluation as well as load rating and static analysis on a universal platform. This paper presents the development and testing of a wireless bridge monitoring system designed within the Laboratory for Intelligent Infrastructure and Transportation Technologies (LIITT) at Clarkson University. The system interfaces with low-cost MEMS accelerometers using custom signal conditioning for amplification and filtering tailored to the spectrum of typical bridge vibrations, specifically from ambient excitation. Additionally, a signal conditioning and high resolution ADC interface is provided for strain gauge sensors. To permit compensation for the influence of temperature, thermistor-based temperature sensing is also enabled. In addition to the hardware description, this paper presents features of the software applications and host interface developed for flexible, user-friendly in-network control of and acquisition from the sensor nodes. The architecture of the software radio protocol is also discussed along with results of field deployments including relatively large-scale networks and

  3. Structural Health Monitoring of a Bridge with Energy Dissipators

    SciTech Connect

    Amaddeo, Carmen; D'Amore, Enzo; Benzoni, Gianmario

    2008-07-08

    After natural events like the 1994 Northridge (USA), the 1995 Kobe (Japan), the 1999 Chi-Chi (Taiwan) and the 1999 Duzce (Turkey) earthquakes it became evident that the demand for bridge structures could greatly benefit from the application of isolation/energy dissipation techniques. Despite the level of maturity achieved in the field of seismic isolation, open questions still remain on the durability of seismic response modification devices (SRMD) under working conditions. The option of removal of sample devices from the bridge structure to verify their performance characteristics involves a significant economical effort, particularly if associated to disruption of the regular traffic. It provides also a device response verification difficult to correlate to the global structural performance. Health monitoring techniques offer a valuable alternative. The main objective of this research is the definition of an effective health monitoring approach to be applied to bridges protected with the most common seismic response modification devices (SRMD). The proposed methodology was validated with the use of records from a bridge equipped with viscous dampers. The record were obtained before and after damage occurred. The procedure proved to be accurate in detecting early degradations of the device characteristics as well as of the structural elements directly connected to the devices.

  4. Carbon Nanotube-Based Structural Health Monitoring Sensors

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip

    2011-01-01

    Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.

  5. DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING

    SciTech Connect

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-07-06

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  6. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  7. A knowledge based expert system for condition monitoring

    SciTech Connect

    Selkirk, C.G.; Roberge, P.R.; Fisher, G.F.; Yeung, K.K.

    1994-12-31

    Condition monitoring (CM) is the focus of many maintenance philosophies around the world today. In the Canadian Forces (CF), CM has played an important role in the maintenance of aircraft systems since the introduction of spectrometric oil analysis (SOAP) over twenty years ago. Other techniques in use in the CF today include vibration analysis (VA), ferrography, and filter debris analysis (FDA). To improve the usefulness and utility gained from these CM techniques, work is currently underway to incorporate expert systems into them. An expert system for FDA is being developed which will aid filter debris analysts in identifying wear debris and wear level trends, and which will provide the analyst with reference examples in an attempt to standardize results. Once completed, this knowledge based expert system will provide a blueprint from which other CM expert systems can be created. Amalgamating these specific systems into a broad based global system will provide the CM analyst with a tool that will be able to correlate data and results from each of the techniques, thereby increasing the utility of each individual method of analysis. This paper will introduce FDA and then outline the development of the FDA expert system and future applications.

  8. Phenomenological models of vibration signals for condition monitoring and fault diagnosis of epicyclic gearboxes

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Lin, Jing; Lu, Fanbo

    2016-05-01

    Condition monitoring and fault diagnosis of epicyclic gearboxes using vibration signals are not as straightforward as that of fixed-axis gearboxes since epicyclic gearboxes behave quite differently from fixed-axis gearboxes in many aspects, like spectral structures. Aiming to present the spectral structures of vibration signals of epicyclic gearboxes, phenomenological models of vibration signals of epicyclic gearboxes are developed by algebraic equations and spectral structures of these models are deduced using Fourier series analysis. In the phenomenological models, all the possible vibration transfer paths from gear meshing points to a fixed transducer and the effects of angular shifts of planet gears on the spectral structures are considered. Accordingly, time-varying vibration transfer paths from sun-planet/ring-planet gear meshing points to the fixed transducer due to carrier rotation are given by window functions with different amplitudes. And an angular shift in one planet gear position is introduced in the process of modeling. After the theoretical derivations, three experiments are conducted on an epicyclic gearbox test rig and the spectral structures of collected vibration signals are analyzed. As a result, the effects of angular shifts of planet gears are verified, and the phenomenological models of vibration signals when a local fault occurs on the sun gear and the planet gear are validated, respectively. The experiment results demonstrate that the established phenomenological models in this paper are helpful to the condition monitoring and fault diagnosis of epicyclic gearboxes.

  9. MONITORING STREAM CONDITION IN THE WESTERN UNITED STATES

    EPA Science Inventory


    The U.S. Environmental Protection Agency Environmental Monitoring and Assessment Program (EMAP) is a national research program to develop the tools necessary to monitor and assess the- status and trends of ecological resources. EMAP's goal is to develop the scientific underst...

  10. Condition health monitoring of composite wound pressure vessels using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojing; Zhang, Boming; Wu, Zhanjun

    2007-07-01

    Structure health monitoring refers to a real time and in situ monitoring system. It can diagnose the condition status of composite structure in time and effectively estimate the safety, increasing the reliability, extending the service life, at the same time, reducing the maintenance cost. In this paper, the sensing technology based on FBG sensors is employed to monitor the health of composite wound pressure vessel in service. Strain monitoring of the vessel in fatigue tests is carried out with the surface mounted FBG sensors. The experiment result shows that FBG sensors have several excellent performances: it has anti-fatigue capability to accurately measure the cycle strain; it is linear with the inner pressure and can be used as pressure sensor; the wavelength is diverged in the high stress gradient field, so the FBG can be used to measure the non-homogeneous strain field. Based on the fatigue damage mechanism of composite laminates and stiffness degradation model, the variation regularity of cycle strain of composite pressure vessel is studied and the residual stiffness during damage is obtained.

  11. BIRD COMMUNITIES AND HABITAT AS ECOLOGICAL INDICATORS OF FOREST CONDITION IN REGIONAL MONITORING

    EPA Science Inventory

    Ecological indicators for long-term monitoring programs are needed to detect and assess changing environmental conditions, We developed and tested community-level environmental indicators for monitoring forest bird populations and associated habitat. We surveyed 197 sampling plo...

  12. Course Modules on Structural Health Monitoring with Smart Materials

    ERIC Educational Resources Information Center

    Shih, Hui-Ru; Walters, Wilbur L.; Zheng, Wei; Everett, Jessica

    2009-01-01

    Structural Health Monitoring (SHM) is an emerging technology that has multiple applications. SHM emerged from the wide field of smart structures, and it also encompasses disciplines such as structural dynamics, materials and structures, nondestructive testing, sensors and actuators, data acquisition, signal processing, and possibly much more. To…

  13. Automated Low-Cost Photogrammetry for Flexible Structure Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, C. H.; Mills, J. P.; Miller, P. E.

    2012-07-01

    Structural monitoring requires instruments which can provide high precision and accuracy, reliable measurements at good temporal resolution and rapid processing speeds. Long-term campaigns and flexible structures are regarded as two of the most challenging subjects in monitoring engineering structures. Long-term monitoring in civil engineering is generally considered to be labourintensive and financially expensive and it can take significant effort to arrange the necessary human resources, transportation and equipment maintenance. When dealing with flexible structure monitoring, it is of paramount importance that any monitoring equipment used is able to carry out rapid sampling. Low cost, automated, photogrammetric techniques therefore have the potential to become routinely viable for monitoring non-rigid structures. This research aims to provide a photogrammetric solution for long-term flexible structural monitoring purposes. The automated approach was achieved using low-cost imaging devices (mobile phones) to replace traditional image acquisition stations and substantially reduce the equipment costs. A self-programmed software package was developed to deal with the hardware-software integration and system operation. In order to evaluate the performance of this low-cost monitoring system, a shaking table experiment was undertaken. Different network configurations and target sizes were used to determine the best configuration. A large quantity of image data was captured by four DSLR cameras and four mobile phone cameras respectively. These image data were processed using photogrammetric techniques to calculate the final results for the system evaluation.

  14. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    PubMed Central

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  15. Monitoring the condition of natural resources in US national parks.

    PubMed

    Fancy, S G; Gross, J E; Carter, S L

    2009-04-01

    The National Park Service has developed a long-term ecological monitoring program for 32 ecoregional networks containing more than 270 parks with significant natural resources. The monitoring program assists park managers in developing a broad-based understanding of the status and trends of park resources as a basis for making decisions and working with other agencies and the public for the long-term protection of park ecosystems. We found that the basic steps involved in planning and designing a long-term ecological monitoring program were the same for a range of ecological systems including coral reefs, deserts, arctic tundra, prairie grasslands, caves, and tropical rainforests. These steps involve (1) clearly defining goals and objectives, (2) compiling and summarizing existing information, (3) developing conceptual models, (4) prioritizing and selecting indicators, (5) developing an overall sampling design, (6) developing monitoring protocols, and (7) establishing data management, analysis, and reporting procedures. The broad-based, scientifically sound information obtained through this systems-based monitoring program will have multiple applications for management decision-making, research, education, and promoting public understanding of park resources. When combined with an effective education program, monitoring results can contribute not only to park issues, but also to larger quality-of-life issues that affect surrounding communities and can contribute significantly to the environmental health of the nation.

  16. Behavioral pattern identification for structural health monitoring in complex systems

    NASA Astrophysics Data System (ADS)

    Gupta, Shalabh

    Estimation of structural damage and quantification of structural integrity are critical for safe and reliable operation of human-engineered complex systems, such as electromechanical, thermofluid, and petrochemical systems. Damage due to fatigue crack is one of the most commonly encountered sources of structural degradation in mechanical systems. Early detection of fatigue damage is essential because the resulting structural degradation could potentially cause catastrophic failures, leading to loss of expensive equipment and human life. Therefore, for reliable operation and enhanced availability, it is necessary to develop capabilities for prognosis and estimation of impending failures, such as the onset of wide-spread fatigue crack damage in mechanical structures. This dissertation presents information-based online sensing of fatigue damage using the analytical tools of symbolic time series analysis ( STSA). Anomaly detection using STSA is a pattern recognition method that has been recently developed based upon a fixed-structure, fixed-order Markov chain. The analysis procedure is built upon the principles of Symbolic Dynamics, Information Theory and Statistical Pattern Recognition. The dissertation demonstrates real-time fatigue damage monitoring based on time series data of ultrasonic signals. Statistical pattern changes are measured using STSA to monitor the evolution of fatigue damage. Real-time anomaly detection is presented as a solution to the forward (analysis) problem and the inverse (synthesis) problem. (1) the forward problem - The primary objective of the forward problem is identification of the statistical changes in the time series data of ultrasonic signals due to gradual evolution of fatigue damage. (2) the inverse problem - The objective of the inverse problem is to infer the anomalies from the observed time series data in real time based on the statistical information generated during the forward problem. A computer-controlled special

  17. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NASA Astrophysics Data System (ADS)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  18. Development of lightweight structural health monitoring systems for aerospace applications

    NASA Astrophysics Data System (ADS)

    Pearson, Matthew

    This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy

  19. Health monitoring of operational structures -- Initial results

    SciTech Connect

    James, G.; Mayes, R.; Carne, T.; Simmermacher, T.; Goodding, J.

    1995-03-01

    Two techniques for damage localization (Structural Translational and Rotational Error Checking -- STRECH and MAtriX COmpletioN -- MAXCON) are described and applied to operational structures. The structures include a Horizontal Axis Wind Turbine (HAWT) blade undergoing a fatigue test and a highway bridge undergoing an induced damage test. STRECH is seen to provide a global damage indicator to assess the global damage state of a structure. STRECH is also seen to provide damage localization for static flexibility shapes or the first mode of simple structures. MAXCON is a robust damage localization tool using the higher order dynamics of a structure. Several options arc available to allow the procedure to be tailored to a variety of structures.

  20. Health monitoring of operational structures: Initial results

    NASA Astrophysics Data System (ADS)

    James, G.; Mayes, R.; Carne, T.; Simmermacher, T.; Goodding, J.

    Two techniques for damage localization (structural translational and rotational error checking - STRECH, and matrix completion - MAXCON) are described and applied to operational structures. The structures include a horizontal axis wind turbine (HAWT) blade undergoing a fatigue test and a highway bridge undergoing an induced damage test. STRECH is seen to provide a global damage indicator to assess the global damage state of a structure. STRECH is also seen to provide damage localization for static flexibility shapes or the first mode of simple structures. MAXCON is a robust damage localization tool using the higher order dynamics of a structure. Several options arc available to allow the procedure to be tailored to a variety of structures.

  1. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    SciTech Connect

    Kim, Jung-Taek; Luk, Vincent K.

    2005-05-01

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  2. Structural monitoring helps assess deformations in Arctic pipelines

    SciTech Connect

    Nyman, K.J.; Lara, P.F.

    1986-11-10

    Advanced structural monitoring systems can play an important role in the evaluation of arctic pipeline distortions along the alignment. These systems can influence pipeline design requirements, reduce capital costs, and improve operating reliability. Differential soil movements resulting from terrain instabilities are the main features which threaten a pipeline's structural integrity and affect the design of buried pipeline systems in the Arctic. Economic, aesthetic, and safety concerns make conventional buried construction an optimum design choice for an arctic crude-oil or gas-pipeline transportation system. However, variable frozen and thawed soil conditions underlying the pipeline along a discontinuous permafrost corridor pose a challenge to the design and operation of such systems. Crude-oil pipelines which must operate at elevated temperatures can be installed in unfrozen soils or in permafrost soils where initially frozen segments will exhibit limited settlement under the thawed conditions imposed by pipeline construction and operation. Ice-rich portions of the frozen alignment may have an unacceptable settlement potential for a warm buried pipeline. In contrast, natural-gas pipelines can be operated cold to increase throughput capability and to prevent the problems associated with thawing permafrost.

  3. Monitoring of Structural Integrity of Composite Structures by Embedded Optical Fiber Sensors

    NASA Technical Reports Server (NTRS)

    Osei, Albert J.

    2002-01-01

    Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Maintenance yearly costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of

  4. Wireless sensor network for monitoring soil moisture and weather conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  5. 40 CFR 141.625 - Conditions requiring increased monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Stage 2 Disinfection Byproducts... monitoring to dual sample sets once per quarter (taken every 90 days) at all locations if a TTHM sample is >0.080 mg/L or a HAA5 sample is >0.060 mg/L at any location. (b) You are in violation of the MCL when...

  6. Using Vibration Monitoring for Local Fault Detection on Gears Operating Under Fluctuating Load Conditions

    NASA Astrophysics Data System (ADS)

    Stander, C. J.; Heyns, P. S.; Schoombie, W.

    2002-11-01

    Gearboxes often operate under fluctuating load conditions during service. Conventional techniques for monitoring vibration are based on the assumption that changes in the measured structural response are caused by deterioration in the condition of the gearbox. However, this assumption is not valid for fluctuating load conditions. To find a methodology that could deal with such conditions, experiments were conducted on a gearbox test rig with different levels of tooth damage severity and the capability of applying fluctuating loads to the gear system. Different levels of fluctuation in constant loads as well as in sinusoidal, step and chirp loads were considered. The test data were order tracked and time synchronously averaged with the rotation of the shaft in order to compensate for the variation in rotational speed induced by the fluctuating loads. A pseudo-Wigner-Ville distribution was then applied to the test data, in order to identify the influence of the fluctuating load conditions. In this work, a vibration waveform normalisation approach is presented, which enables the use of the pseudo-Wigner-Ville distribution to indicate deteriorating fault conditions under fluctuating load conditions. Statistical parameters and various other features were extracted from the distribution in order to indicate the linear separation of the values for various fault conditions, after applying the vibration waveform normalisation approach. Feature vectors were compiled for the various fault and load conditions. Mahalanobis distances were calculated between the various feature vectors and an average feature vector was compiled from data measured on the undamaged gearbox. It was proved that the Mahalanobis distance could be used as a single parameter, which can readily be monotonically trended to indicate the progression of a fault condition under fluctuating load conditions. It was shown that a single layer perceptron network could be trained with the perceptron learning rule

  7. An online substructure identification method for local structural health monitoring

    NASA Astrophysics Data System (ADS)

    Hou, Jilin; Jankowski, Łukasz; Ou, Jinping

    2013-09-01

    This paper proposes a substructure isolation method, which uses time series of measured local response for online monitoring of substructures. The proposed monitoring process consists of two key steps: construction of the isolated substructure, and its identification. The isolated substructure is an independent virtual structure, which is numerically isolated from the global structure by placing virtual supports on the interface. First, the isolated substructure is constructed by a specific linear combination of time series of its measured local responses. Then, the isolated substructure is identified using its local natural frequencies extracted from the combined responses. The substructure is assumed to be linear; the outside part of the global structure can have any characteristics. The method has no requirements on the initial state of the structure, and so the process can be carried out repetitively for online monitoring. Online isolation and monitoring is illustrated in a numerical example with a frame model, and then verified in a cantilever beam experiment.

  8. Embedded Sensor Array Development for Composite Structure Integrity Monitoring

    SciTech Connect

    Kumar, A.; Bryan, W. L.; Clonts, L. G.; Franks, S.

    2007-06-26

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Accellent Technologies, Inc. (the "Participant") was for the development of an embedded ultrasonic sensor system for composite structure integrity monitoring.

  9. Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions

    NASA Astrophysics Data System (ADS)

    Stander, C. J.; Heyns, P. S.

    2005-07-01

    Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.

  10. Monitor weather conditions for cloud seeding control. [Colorado River Basin

    NASA Technical Reports Server (NTRS)

    Kahan, A. M. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The near real-time DCS platform data transfer to the time-share compare is a working reality. Six stations are now being automatically monitored and displayed with a system delay of 3 to 8 hours from time of data transmission to time of data accessibility on the computer. The DCS platform system has proven itself a valuable tool for near real-time monitoring of mountain precipitation. Data from Wolf Creek Pass were an important input in making the decision when to suspend seeding operations to avoid exceeding suspension criteria in that area. The DCS platforms, as deployed in this investigation, have proven themselves to be reliable weather resistant systems for winter mountain environments in the southern Colorado mountains.

  11. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    PubMed Central

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  12. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    PubMed

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  13. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    PubMed

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  14. Advanced instrumentation for acousto-ultrasonic based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik

    2016-04-01

    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  15. Wireless health monitoring of cracks in structures with MEMS-IDT sensors

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Sung; Vinoy, K. J.; Varadan, Vijay K.

    2002-07-01

    The integration of MEMS, IDTs and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real- time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characteristics and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC, providing a low power microsystem. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection

  16. On structural health monitoring of aircraft adhesively bonded repairs

    NASA Astrophysics Data System (ADS)

    Pavlopoulou, Sofia

    The recent interest in life extension of ageing aircraft and the need to address the repair challenges in the new age composite ones, led to the investigation of new repair methodologies such as adhesively bonded repair patches. The present thesis focuses on structural health monitoring aspects of the repairs, evaluating their performance with guided ultrasonic waves aiming to develop a monitoring strategy which would eliminate unscheduled maintenance and unnecessary inspection costs. To address the complex nature of the wave propagation phenomena, a finite element based model identified the existing challenges by exploring the interaction of the excitation waves with different levels of damage. The damage sensitivity of the first anti-symmetric mode was numerically investigated. An external bonded patch and a scarf repair, were further tested in static and dynamic loadings, and their performance was monitored with Lamb waves, excited by surface-bonded piezoelectric transducers.. The response was processed by means of advanced pattern recognition and data dimension reduction techniques such as novelty detection and principal component analysis. An optimisation of these tools enabled an accurate damage detection under complex conditions. The phenomena of mode isolation and precise arrival time determination under a noisy environment and the problem of inadequate training data were investigated and solved through appropriate transducer arrangements and advanced signal processing respectively. The applicability of the established techniques was demonstrated on an aluminium repaired helicopter tail stabilizer. Each case study utilised alternative non-destructive techniques for validation such as 3D digital image correlation, X-ray radiography and thermography. Finally a feature selection strategy was developed through the analysis of the instantaneous properties of guided waves for damage detection purposes..

  17. Monitoring of inner wall condition in mass-production plasma etching process using a load impedance monitoring system

    NASA Astrophysics Data System (ADS)

    Kasashima, Yuji; Kurita, Hiroyuki; Kimura, Naoya; Ando, Akira; Uesugi, Fumihiko

    2015-06-01

    This work describes the detection of changes in the inner wall condition of mass-production plasma etching equipment using a load impedance monitoring system. The system detects the change in the imaginary part of the load impedance from a 50-Ω transmission line when the inner wall condition changes following exposure to the atmosphere. The results demonstrate that the system can be used as a practical method for real-time and noninvasive monitoring of the wall condition of etching chambers. This method will contribute to improvements in production yield and overall equipment effectiveness, and the development of predictive maintenance in semiconductor manufacturing.

  18. Monitoring the Financial Condition of Colleges and Universities. AAHE-ERIC Higher Education Research Currents.

    ERIC Educational Resources Information Center

    Taylor, Barbara

    1984-01-01

    Efforts to monitor the financial condition of colleges and universities have arisen from concerns about the effects of economic and demographic pressures. Researchers have attempted to monitor financial condition through two types of research: subjective studies and objective financial indicator studies. Subjective analyses can be useful for…

  19. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... COMMISSION Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants AGENCY: Nuclear... Techniques for Electric Cables Used in Nuclear Power Plants.'' This guide describes techniques that the staff of the NRC considers acceptable for condition monitoring of electric cables for nuclear power...

  20. Development of structural health monitoring systems for railroad bridge testbeds

    NASA Astrophysics Data System (ADS)

    Park, Hyun-Jun; Min, Jiyoung; Yun, Chung-Bang; Shin, Min-Ho; Kim, Yong-Su; Park, Su-Yeol

    2011-04-01

    Recently a challenging project has been carried out for construction of a national network for safety management and monitoring of civil infrastructures in Korea. As a part of the project, structural health monitoring (SHM) systems have been established on railroad bridges employing various types of sensors such as accelerometers, optical fiber sensors, and piezoelectric sensors. This paper presents the current status of railroad bridge health monitoring testbeds. Emerging sensors and monitoring technologies are under investigation. They are local damage detection using PZT-based electro-mechanical impedances; vibration-based global monitoring using accelerations, FBG-based dynamic strains; and wireless sensor data acquisition systems. The monitoring systems provide real-time measurements under train-transit and environmental loadings, and can be remotely accessible and controllable via the web. Long-term behaviors of the railroad bridge testbeds are investigated, and guidelines for safety management are to be established by combining numerical analysis and signal processing of the measured data.

  1. Structural Monitoring of Metro Infrastructure during Shield Tunneling Construction

    PubMed Central

    Ran, L.; Ye, X. W.; Ming, G.; Dong, X. B.

    2014-01-01

    Shield tunneling construction of metro infrastructure will continuously disturb the soils. The ground surface will be subjected to uplift or subsidence due to the deep excavation and the extrusion and consolidation of the soils. Implementation of the simultaneous monitoring with the shield tunnel construction will provide an effective reference in controlling the shield driving, while how to design and implement a safe, economic, and effective structural monitoring system for metro infrastructure is of great importance and necessity. This paper presents the general architecture of the shield construction of metro tunnels as well as the procedure of the artificial ground freezing construction of the metro-tunnel cross-passages. The design principles for metro infrastructure monitoring of the shield tunnel intervals in the Hangzhou Metro Line 1 are introduced. The detailed monitoring items and the specified alarming indices for construction monitoring of the shield tunneling are addressed, and the measured settlement variations at different monitoring locations are also presented. PMID:25032238

  2. Development of structural health monitoring techniques using dynamics testing

    SciTech Connect

    James, G.H. III

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  3. Corrosion sensor for monitoring the service condition of chloride-contaminated cement mortar.

    PubMed

    Lu, Shuang; Ba, Heng-Jing

    2010-01-01

    A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures.

  4. Security monitoring system based on a line structure Sagnac interferometer with 3×3 coupler

    NASA Astrophysics Data System (ADS)

    Ruan, Li; He, Cunfu; Wu, Bin

    2016-06-01

    Damage action, such as human disruption, is one of the major threats to pipeline operation. It is essential to monitor perturbation behavior and locate the position in real time. A pipeline security monitoring system is proposed using a line structure Sagnac distributed optic fiber interferometer with a 3×3 coupler that can modulate the optic signal phase without special modulation and demodulation. The optic structure of the system is simplified, signal processing accuracy improved, and the effect of polarization reduced. The working principle of the monitoring in ideal conditions and phase demodulation are analyzed and the location of the possible damage point is formulated. Simulation and validation tests confirm the feasibility of the proposed monitoring system and indicate that the low frequency signals <1 kHz can be detected effectively. A disturbance can be accurately located over long monitoring distances.

  5. Feature and Statistical Model Development in Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Inho

    All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network

  6. Conceptual framework of a remote wireless health monitoring system for large civil structures

    NASA Astrophysics Data System (ADS)

    Pines, Darryll J.; Lovell, Philip A.

    1998-10-01

    Recent advances in smart materials and structures sensor technology offer many unique opportunities to assess the structural integrity of large civil structures. However, the remote operational environment of large civil structures, such as highways, buildings and bridges, makes condition-based health monitoring for damage assessment difficult in the event of a natural disaster. During such disasters, electrical power is lost and cellular phone lines are under heavy usage. This limits the retrieval of very important sensor data. However, recent rulings by the Federal Communication Commission coupled with advances in wireless communication products have now made it possible to circumvent existing wired and cellular infrastructure to retrieve data from smart sensors remotely and more economically. This paper discusses a novel approach using smart sensors and wireless communication technology to monitor the health of large civil structures remotely. Specifically, a remote health monitoring system for large civil structures is developed using spread spectrum wireless modems, data communication software and conventional strain sensors. This system is used to monitor the loads on a laboratory test specimen with a bolted lap joint from as far away as one mile. Commands are issued from a notebook personal computer to instruct the health monitoring system to either excite the structure or acquire data from sensors mounted externally to the structure. Data from measurements made on the structure are then transmitted wirelessly back to a notebook computer for processing and analysis using damage detection algorithms.

  7. Structural health monitoring activities at National Laboratories

    SciTech Connect

    Farrar, C.R.; Doebling, S.W.; James, G.H.; Simmermacher, T.

    1997-09-01

    Sandia National Laboratories and Los Alamos National Laboratory have on-going programs to assess damage in structures and mechanical systems from changes in their dynamic characteristics. This paper provides a summary of how both institutes became involved with this technology, their experience in this field and the directions that their research in this area will be taking in the future.

  8. Performance of a fiber optic polarimetric sensor in health monitoring of different smart structures

    NASA Astrophysics Data System (ADS)

    Hegde, Gopalkrishna M.; Asundi, Anand K.

    2003-10-01

    Fiber reinforced structures and machines are becoming increasingly popular in recent years, as they facilitate nondestructive damage detection in these systems. Fiber Optic Polarimetric Sensor (FOPS) is an interesting device in real time structural health monitoring. In this paper the authors present their experimental results on the health monitoring of aluminum, concrete and composite structures using FOPS. The sensor monitors the change in state of polarization of the light beam traversing in the fiber under dynamic loading. The dynamic response of high-birefringence fiber has been evaluated for the three types of structures by embedding the fiber into the specimen. The performances of FOPS is damage detection of the three smart structures under impact loading condition are compared.

  9. I35W collapse, rebuild, and structural health monitoring - challenges associated with structural health monitoring of bridge systems

    SciTech Connect

    French, C. E.; Hedegaard, B.; Shield, C. K.; Stolarski, H.

    2011-06-23

    During evening rush hour traffic on August 1, 2007, the major interstate highway bridge carrying I35W over the Mississippi River in Minneapolis catastrophically failed, tragically taking the lives of thirteen people and injuring many more. The steel truss bridge, constructed in 1967, was undergoing deck reconstruction during the collapse, and was estimated to carry more than 140,000 vehicles daily. This tragedy generated great interest in employment of structural health monitoring systems. The I35W St. Anthony Falls Bridge, a post-tensioned concrete box bridge constructed to replace the collapsed steel truss bridge, contains over 500 instruments to monitor the structural behavior. Numerical models of the bridge are being developed and calibrated to the collected data obtained from truck load tests and thermal effects. The data obtained over the first few years of monitoring are being correlated with the calibrated models and used to develop the baseline bridge behavior. This information is being used to develop a system to monitor and interpret the long-term behavior of the bridge. This paper describes the instrumentation, preliminary results from the data and model calibration, the plan for developing long-term monitoring capabilities, and the challenges associated with structural health monitoring of bridge systems. In addition, opportunities and directions for future research required to fully realize the objectives of structural health monitoring are described.

  10. On-Line Modal State Monitoring of Slowly Time-Varying Structures

    NASA Technical Reports Server (NTRS)

    Johnson, Erik A.; Bergman, Lawrence A.; Voulgaris, Petros G.

    1997-01-01

    Monitoring the dynamic response of structures is often performed for a variety of reasons. These reasons include condition-based maintenance, health monitoring, performance improvements, and control. In many cases the data analysis that is performed is part of a repetitive decision-making process, and in these cases the development of effective on-line monitoring schemes help to speed the decision-making process and reduce the risk of erroneous decisions. This report investigates the use of spatial modal filters for tracking the dynamics of slowly time-varying linear structures. The report includes an overview of modal filter theory followed by an overview of several structural system identification methods. Included in this discussion and comparison are H-infinity, eigensystem realization, and several time-domain least squares approaches. Finally, a two-stage adaptive on-line monitoring scheme is developed and evaluated.

  11. Optimal sensor placement in structural health monitoring using discrete optimization

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Büyüköztürk, Oral

    2015-12-01

    The objective of optimal sensor placement (OSP) is to obtain a sensor layout that gives as much information of the dynamic system as possible in structural health monitoring (SHM). The process of OSP can be formulated as a discrete minimization (or maximization) problem with the sensor locations as the design variables, conditional on the constraint of a given sensor number. In this paper, we propose a discrete optimization scheme based on the artificial bee colony algorithm to solve the OSP problem after first transforming it into an integer optimization problem. A modal assurance criterion-oriented objective function is investigated to measure the utility of a sensor configuration in the optimization process based on the modal characteristics of a reduced order model. The reduced order model is obtained using an iterated improved reduced system technique. The constraint is handled by a penalty term added to the objective function. Three examples, including a 27 bar truss bridge, a 21-storey building at the MIT campus and the 610 m high Canton Tower, are investigated to test the applicability of the proposed algorithm to OSP. In addition, the proposed OSP algorithm is experimentally validated on a physical laboratory structure which is a three-story two-bay steel frame instrumented with triaxial accelerometers. Results indicate that the proposed method is efficient and can be potentially used in OSP in practical SHM.

  12. Monitoring of initial patterns and structures in an artificial catchment

    NASA Astrophysics Data System (ADS)

    Schaaf, Wolfgang; Gerwin, Werner; Biemelt, Detlef; Fischer, Anton

    2010-05-01

    To combine process-oriented research on initial development of ecosystems with interactions and co-development of spatial patterns and structures the Transregional Collaborative Research Centre (SFB/TRR) 38 (www.tu-cottbus.de/sfb_trr) was established as an initiative of three universities (BTU Cottbus, TU Munich and ETH Zurich). The objective of the SFB/TRR 38 is to enhance our understanding of structure genesis in ecosystems and of process dynamics as well as their interactions during the initial development phase. The aim is to integrate these feedback mechanisms in the analysis of water and element budgets at the catchment scale and to implement them into models. To allow the clear definition of starting conditions at ´point zeró and to be able to integrate spatially distributed processes and patterns to larger units, an artificial catchment was constructed in the mining area of Lusatia/Germany as the main research site (Gerwin et al. 2009a). With an area of about 6 ha, this catchment ´Chicken Creeḱ is to our knowledge the largest artificial catchment worldwide. It was constructed as a 2-4 m layer of post-glacial sandy to loamy sediments overlying a 1-2 m layer of Tertiary clay that forms a shallow pan and seals the whole catchment at the base. No further measures of restoration like planting, amelioration or fertilization were carried out to allow natural succession and undisturbed development. Due to the artificial construction, boundary conditions of this site are clearly defined including well documented inner structures as compared to natural catchments. It is assumed that the interaction of patterns and processes during initial development will proceed from simpler to more complex states of the systems and that different stages along this phase can be identified at the catchment level. Changes within the catchment are intensively monitored since 2005, when construction finished (Gerwin et al. 2009b), including intensive on-site measurements and micro

  13. The Causal Structure of Utility Conditionals

    ERIC Educational Resources Information Center

    Bonnefon, Jean-Francois; Sloman, Steven A.

    2013-01-01

    The psychology of reasoning is increasingly considering agents' values and preferences, achieving greater integration with judgment and decision making, social cognition, and moral reasoning. Some of this research investigates utility conditionals, ‘"if 'p' then 'q'’" statements where the realization of "p" or "q" or both is valued by some agents.…

  14. Optical methods for hydrogen degassing monitoring in urban conditions

    NASA Astrophysics Data System (ADS)

    Timchenko, E. V.; Timchenko, P. E.; Zherdeva, L. A.; Tregub, N. V.; Selezneva, E. A.; Yakovlev, V. N.

    2015-12-01

    Results of a study of variations in optical parameters of bioindicators that grow in the regions of hydrogen degassing in Samara are presented. Raman spectroscopy and confocal fluorescence microscopy were used as the main methods of the study. Features of Raman spectra of plants that grow in zones with presence/ absence of deep hydrogen emissions have been ascertained. The main variations have been recorded at wavenumbers of 1380, 1522, 1547, and 1600 cm-1, which are responsible for stretching vibrations in lignin and β-carotene and chlorophyll a and cellulose in plant leaves. Confocal fluorescence microscopy showed an increase in the chloroplasts in leaves of plants which grow at hydrogen degassing territories. An optical coefficient was introduced, on the basis of which the Samara region was monitored.

  15. Structural Conditions of Reform-oriented Pedagogics.

    ERIC Educational Resources Information Center

    Luhmann, Niklas; Schorr, Karl Eberhard

    1988-01-01

    Describes educational reforms as structural necessities in a differentiated system; not simply historical events or recurrent pushes of dissatisfied idealism. Stating that the current system can increase in complexity but not in excellence, the authors suggest the following distinctions be used to improve its pedagogy: system--environment,…

  16. Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multiwavelet analysis method

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zhang, Chunlin; Zhang, Xiaoyan; Zi, Yanyang; He, Shuilong; Yang, Zhe

    2015-03-01

    Satellite communication antennas are key devices of a measurement ship to support voice, data, fax and video integration services. Condition monitoring of mechanical equipment from the vibration measurement data is significant for guaranteeing safe operation and avoiding the unscheduled breakdown. So, condition monitoring system for ship-based satellite communication antennas is designed and developed. Planetary gearboxes play an important role in the transmission train of satellite communication antenna. However, condition monitoring of planetary gearbox still faces challenges due to complexity and weak condition feature. This paper provides a possibility for planetary gearbox condition monitoring by proposing ensemble a multiwavelet analysis method. Benefit from the property on multi-resolution analysis and the multiple wavelet basis functions, multiwavelet has the advantage over characterizing the non-stationary signal. In order to realize the accurate detection of the condition feature and multi-resolution analysis in the whole frequency band, adaptive multiwavelet basis function is constructed via increasing multiplicity and then vibration signal is processed by the ensemble multiwavelet transform. Finally, normalized ensemble multiwavelet transform information entropy is computed to describe the condition of planetary gearbox. The effectiveness of proposed method is first validated through condition monitoring of experimental planetary gearbox. Then this method is used for planetary gearbox condition monitoring of ship-based satellite communication antennas and the results support its feasibility.

  17. Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring

    NASA Astrophysics Data System (ADS)

    Baglee, D.; Knowles, M. J.

    2012-05-01

    Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.

  18. A remote condition monitoring system for wind-turbine based DG systems

    NASA Astrophysics Data System (ADS)

    Ma, X.; Wang, G.; Cross, P.; Zhang, X.

    2012-05-01

    In this paper, a remote condition monitoring system is proposed, which fundamentally consists of real-time monitoring modules on the plant side, a remote support centre and the communications between them. The paper addresses some of the key issues related on the monitoring system, including i) the implementation and configuration of a VPN connection, ii) an effective database system to be able to handle huge amount of monitoring data, and iii) efficient data mining techniques to convert raw data into useful information for plant assessment. The preliminary results have demonstrated that the proposed system is practically feasible and can be deployed to monitor the emerging new energy generation systems.

  19. Early-age monitoring of cement structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping

    2006-03-01

    With more and more broad applications of the cement-based structures such as neat cement paste, cement mortar and concrete in civil engineering, people hope to find out what their performances should like. The in-service performances of cement-based structures are highly affected by their hardening process during the early-age. But it is still a big problem for traditional sensors to be used to monitor the early curing of cement-based structures due to such disadvantages as difficulties to install sensors inside the concrete, limited measuring points, poor durability and interference of electromagnetic wave and so on. In this paper, according to the sensing properties of the Fiber Bragg Grating sensors and self-characters of the cement-based structures, we have successfully finished measuring and monitoring the early-age inner-strain and temperature changes of the neat cement paste, concrete with and without restrictions, mass concrete structures and negative concrete, respectively. Three types of FBG-based sensors have been developed to monitor the cement-based structures. Besides, the installation techniques and the embedding requirements of FBG sensors in cement-based structures are also discussed. Moreover, such kind of technique has been used in practical structure, 3rd Nanjing Yangtze Bridge, and the results show that FBG sensors are well proper for measuring and monitoring the temperature and strain changes including self-shrinkage, dry shrinkage, plastic shrinkage, temperature expansion, frost heaving and so on inside different cement-based structures. This technique provides us a new useful measuring method on early curing monitoring of cement-based structures and greater understanding of details of their hardening process.

  20. Optical coherent sensor for monitoring and measurement of engineering structures

    NASA Astrophysics Data System (ADS)

    Łukaszewski, Dariusz; Sałbut, Leszek; Dziuban, Jan A.

    2010-05-01

    Among many coherent optical methods one should distinguished Grating Interferometry (GI) which allows accurate in-plane displacement measurements and Digital Speckle Pattern Interferometry (DSPI) used for in-plane and out-of-plane measurements. Development of sensors based on both methods mentioned above as complementary ones will provide user universal group of sensors from which depending on measurement requirements such as measuring range, object surface profile and measurement conditions the most appropriate can be chosen. In-plane displacement measurements are of interested of different branches of industry - from micro (i.e.: characterization of MEMS or MOEMS) to civil engineering (i.e.: Structural Health Monitoring systems). In the paper the new optical coherent sensor for in-plane displacement and strain measurements is presented. The sensor combines GI and DSPI methods in one device which can be used for testing of objects with different types of surfaces. GI requires the specimen grating attached at the surface but provides very good measurement accuracy however DSPI can be applied for testing of objects with rough surfaces but due to higher noise gives lower accuracy. The sensor can work in three modes: as GI only, DSPI only and both GI and DSPI simultaneously. The third mode can by useful when the specimen grating is attached on the part of object under test only. In the paper the theoretical background of the sensor is presented. For confirmation of GI/DSPI sensor possibilities the specially designed demonstrator is described and the exemplary results obtained during its laboratory tests are shown. Successful application of proposed sensor is possible due to its miniaturization, simplicity of operation by user (compact structure and automation of measurement procedure) and low cost. The last mentioned condition will be possible due to low cost replication techniques with usage of silicon technology.

  1. Airborne thermography for condition monitoring of a public baths building

    NASA Astrophysics Data System (ADS)

    Mattsson, Mats; Hellman, Erik; Ljungberg, Sven-Ake

    2001-03-01

    Airborne and ground-based thermography surveys have been performed in order to detect moisture and energy related problems in the construction of a public swimming bath building. This paper describes the information potential and the advantages and limitations using a standard IR-camera and traditional inspection methods to gather information for retrofit priorities. The damage conditions indicated in the thermal images are confirmed by field inspections and photographic documentation.

  2. Wireless Structural Sensing for Health Monitoring and Control Applications

    NASA Astrophysics Data System (ADS)

    Lynch, J. P.

    2003-12-01

    The economic and societal impact of civil structures under-performing during large earthquakes can be significant. While in recent years the structural engineering community has made great strides in advancing knowledge of structural behavior under extreme loads, a need still exists for the rapid assessment of structural performance during seismic events. Numerous options are commercially available to facility owners who wish to install a structural monitoring system within their structures. However, these structural monitoring systems are defined by their use of coaxial cables for the transfer of response measurements from sensors to centralized data servers. The installation and maintenance of cables within a civil structure often drive system costs high thereby preventing widespread industry adoption. In response to these limitations, the integration of information technologies such as wireless communications and microcontrollers have been explored for the creation of alternative structural monitoring systems defined by low installation costs and decentralized computational frameworks. In particular, a novel wireless structural monitoring system assembled from a dense network of inexpensive wireless sensing units has been designed and fabricated. The wireless sensing unit architecture consists of three functional components: a data acquisition interface for the collection of data from attached sensors, a computational core for data interrogation, and a wireless communication channel for the transfer of data to the sensor network. The use of wireless modems drastically reduces the efforts and costs of system installations rendering the technology attractive for widespread adoption in a broad class of civil structures. A second innovation of the system is the inclusion of computational power within each wireless sensing unit allowing for local execution of embedded engineering analyses. In particular, analyses for the detection of damage in structures (structural

  3. Structural health monitoring with fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Güemes, Alfredo; Fernandez-Lopez, Antonio

    2014-05-01

    SHM is defined as the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure. Most common damages on aircrafts are local cracks and delaminations, that do not change strongly the overall strain field, but that will act as the failure initiation point. Fiber optic sensors act primarily as strain sensors, so unless damage happens very close to the sensor location, it may go undetected. Currently, three main approaches for detecting damage from strain measurements are being investigated: 1) High resolution fibre optic distributed sensing (OFDR Rayleigh scattering). 2) Strain mapping with a dense network of sensors. Statistical analysis tools, like PCA, have been successfully used. 3) Hybrid FBG/PZT systems. FBGs must detect the ultrasonic elastic waves.

  4. Health Monitoring and Management for Manufacturing Workers in Adverse Working Conditions.

    PubMed

    Xu, Xiaoya; Zhong, Miao; Wan, Jiafu; Yi, Minglun; Gao, Tiancheng

    2016-10-01

    In adverse working conditions, environmental parameters such as metallic dust, noise, and environmental temperature, directly affect the health condition of manufacturing workers. It is therefore important to implement health monitoring and management based on important physiological parameters (e.g., heart rate, blood pressure, and body temperature). In recent years, new technologies, such as body area networks, cloud computing, and smart clothing, have allowed the improvement of the quality of services. In this article, we first give five-layer architecture for health monitoring and management of manufacturing workers. Then, we analyze the system implementation process, including environmental data processing, physical condition monitoring and system services and management, and present the corresponding algorithms. Finally, we carry out an evaluation and analysis from the perspective of insurance and compensation for manufacturing workers in adverse working conditions. The proposed scheme will contribute to the improvement of workplace conditions, realize health monitoring and management, and protect the interests of manufacturing workers. PMID:27624491

  5. Health Monitoring and Management for Manufacturing Workers in Adverse Working Conditions.

    PubMed

    Xu, Xiaoya; Zhong, Miao; Wan, Jiafu; Yi, Minglun; Gao, Tiancheng

    2016-10-01

    In adverse working conditions, environmental parameters such as metallic dust, noise, and environmental temperature, directly affect the health condition of manufacturing workers. It is therefore important to implement health monitoring and management based on important physiological parameters (e.g., heart rate, blood pressure, and body temperature). In recent years, new technologies, such as body area networks, cloud computing, and smart clothing, have allowed the improvement of the quality of services. In this article, we first give five-layer architecture for health monitoring and management of manufacturing workers. Then, we analyze the system implementation process, including environmental data processing, physical condition monitoring and system services and management, and present the corresponding algorithms. Finally, we carry out an evaluation and analysis from the perspective of insurance and compensation for manufacturing workers in adverse working conditions. The proposed scheme will contribute to the improvement of workplace conditions, realize health monitoring and management, and protect the interests of manufacturing workers.

  6. Heart rate monitoring and control in altered gravity conditions.

    PubMed

    Di Rienzo, M; Parati, G; Rizzo, F; Meriggi, P; Merati, G; Faini, A; Castiglioni, P

    2007-01-01

    On the basis of indirect evidences it has been hypothesized that during space missions the almost complete absence of gravity might impair the baroreflex control of circulation. In the first part of this paper we report results obtained from a series of experiments carried out to directly verify this hypothesis during the 16-day STS 107 Shuttle flight. Spontaneous baroreflex sensitivity was assessed in four astronauts before flight (baseline) and at days 0-1, 6-7 and 12-13 during flight, both at rest and while performing moderate exercise. Our results indicate that at rest the baroreflex sensitivity significantly increased in the early flight phase, as compared to pre-flight values and tended to return to baseline in the mid-late phase of flight. During exercise, baroreflex sensitivity was lower than at rest, without any difference among pre-flight and in-flight values. These findings seem to exclude the hypothesis of an impairment of the baroreflex control of heart rate during exposure to microgravity, at least over a time window of 16 days. In the second part of the paper we propose a novel textile-based methodology for heart rate and other vital signs monitoring during gravity stress. The positive results obtained from its use during parachute jumps support the use of smart garments for the unobtrusive assessment of physiological parameters in extreme environments. PMID:18003559

  7. Disposable indicators for monitoring lighting conditions in museums.

    PubMed

    Bacci, Mauro; Cucci, Costanza; Dupont, Anne-Laurence; Lavédrine, Bertrand; Picollo, Marcello; Porcinai, Simone

    2003-12-15

    Photoinduced alterations of light-sensitive artifacts represent one of the main problems that conservators and curators have to face for environmental control in museums and galleries. Therefore, increasing attention has been recently devoted to developing strategies of indoor light monitoring, especially aimed at minimizing the cumulated light exposure for the objects on exhibit. In this work a prototype of a light dosimeter, constituted by a photosensitive dyes/polymer mixture applied on a paper substrate, is presented. This indicator, specially designed for a preventive assessment of the risk of damage for highly light-sensitive objects, undergoes a progressive color variation as its exposure to the light increases. Different, easily distinguishable color steps are exhibited depending on the light dose received, so that the dosimeter can be used straightforwardly to have a first, instrumentation-free estimation of the total light exposure. A reflectance spectroscopy study in the 350-860 nm range was carried out on prototype dosimeters exposed to light emitted from a tungsten-halogen lamp to investigate the response of the dosimeter to the light and to study the fading mechanism. Two different approaches were evaluated for the calibration of the prototype: colorimetry and principal component analysis of the reflectance spectra. The usefulness of the two methods in providing a quantitative indication of the light dose received was evaluated.

  8. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  9. A microwave tomography strategy for structural monitoring

    NASA Astrophysics Data System (ADS)

    Catapano, I.; Crocco, L.; Isernia, T.

    2009-04-01

    The capability of the electromagnetic waves to penetrate optical dense regions can be conveniently exploited to provide high informative images of the internal status of manmade structures in a non destructive and minimally invasive way. In this framework, as an alternative to the wide adopted radar techniques, Microwave Tomography approaches are worth to be considered. As a matter of fact, they may accurately reconstruct the permittivity and conductivity distributions of a given region from the knowledge of a set of incident fields and measures of the corresponding scattered fields. As far as cultural heritage conservation is concerned, this allow not only to detect the anomalies, which can possibly damage the integrity and the stability of the structure, but also characterize their morphology and electric features, which are useful information to properly address the repair actions. However, since a non linear and ill-posed inverse scattering problem has to be solved, proper regularization strategies and sophisticated data processing tools have to be adopt to assure the reliability of the results. To pursue this aim, in the last years huge attention has been focused on the advantages introduced by diversity in data acquisition (multi-frequency/static/view data) [1,2] as well as on the analysis of the factors affecting the solution of an inverse scattering problem [3]. Moreover, how the degree of non linearity of the relationship between the scattered field and the electromagnetic parameters of the targets can be changed by properly choosing the mathematical model adopt to formulate the scattering problem has been shown in [4]. Exploiting the above results, in this work we propose an imaging procedure in which the inverse scattering problem is formulated as an optimization problem where the mathematical relationship between data and unknowns is expressed by means of a convenient integral equations model and the sought solution is defined as the global minimum of a

  10. AN EVALUATION OF CONDITION MONITORING TECHNIQUES FOR LOW-VOLTAGE ELECTRIC CABLES

    SciTech Connect

    LOFARO,R.J.; GROVE,E.; SOO,P.

    2000-07-23

    Aging of systems and components in nuclear power plants is a well known occurrence that must be managed to ensure the continued safe operation of these plants. Much of the degradation due to aging is controlled through periodic maintenance and/or component replacement. However, there are components that do not receive periodic maintenance or monitoring once they are installed; electric cables are such a component. To provide a means of monitoring the condition of electric cables, research is ongoing to evaluate promising condition monitoring (CM) techniques that can be used in situ to monitor cable condition and predict remaining life. While several techniques are promising, each has limitations that must be considered in its application. This paper discusses the theory behind several of the promising cable CM techniques being studied, along with their effectiveness for monitoring aging degradation in typical cable insulation materials, such as cross-linked polyethylene and ethylene propylene rubber. Successes and limitations of each technique are also presented.

  11. Investigation of piezoelectric impedance-based health monitoring of structure interface debonding

    NASA Astrophysics Data System (ADS)

    Xiao, Li; Chen, Guofeng; Chen, Xiaoming; Qu, Wenzhong

    2016-04-01

    Various damages might occur during the solid rocket motor (SRM) manufacturing/operational phase, and the debonding of propellant/insulator/composite case interfaces is one of damage types which determine the life of a motor. The detection of such interface debonding damage will be beneficial for developing techniques for reliable nondestructive evaluation (NDE) and structural health monitoring (SHM). Piezoelectric sensors are widely used for structural health monitoring technique. In particular, electromechanical impedance (EMI) techniques give simple and low-cost solutions for detecting damage in various structures. In this work, piezoelectric EMI structural health monitoring technique is applied to identify the debonding condition of propellant/insulator interface structure using finite element method and experimental investigation. A three-dimensional coupled field finite element model is developed using the software ANSYS and the harmonic analysis is conducted for high-frequency impedance analysis procedure. In the experimental study, the impedance signals were measured from PZT and MFC sensors outside attached to composite case monitoring the different debonding conditions between the propellant and insulator. Root mean square deviation (RMSD) based damage index is conducted to quantify the changes i n impedance for different de bonding conditions and frequency range. Simulation and experimental results confirmed that the EMI technique can be used effectively for detecting the debonding damage in SRM and is expected to be useful for future application of real SRM's SHM.

  12. Tooth structural health monitoring with a fiber optic microbend sensor

    NASA Astrophysics Data System (ADS)

    Kishen, A.; Rafique, A.

    2006-02-01

    The purpose of this study is to monitor structural response in intact teeth and teeth with structural loss using a noninvasive fiber optic microbend (FOMB) sensor. In this study a miniature fiber optic microbend sensor is fabricated and tested on intact tooth specimens, tooth specimens in which one-third crown structure was removed, tooth specimens in which access cavity was prepared and tooth specimens in which access cavity and root canal were prepared. The microbend sensor displayed a direct relationship between the applied load and the output light intensity. The rate of change in light intensity with increase in loads corresponded with the structural response of the tooth. This experiment highlights the potential of FOMB sensor technology to quantitatively monitor tooth structural loss during post endodontic restorations.

  13. Structural analysis in real time using continuous monitoring

    NASA Astrophysics Data System (ADS)

    Braunstein, Juergen; Viano, Charles; Hodac, Bernard

    2005-05-01

    OSMOS developed a completely automatic monitoring-system, which is ideal for the determination and monitoring of the structural state of civil engineering structures. Static and dynamic data are recorded as needed and are available via internet for further analysis. In case of bridges, automatic calculation of the axle load of the flowing traffic is implemented, a weigh in motion system (WIMS). When configurable thresholds are exceeded alarms are sent by SMS, e-mail, SNMP-trap for facility-management-systems or by fax.

  14. A NATIONAL PROGRAM FOR MONITORING STREAM CONDITION IN THE WESTERN UNITED STATES

    EPA Science Inventory


    The U.S. Environmental Protection Agency recently initiated a four-year survey of streams in the Western United States as a component of the Environmental Monitoring and Assessment Program (EMAP). EMAP is developing indicators to monitor and assess the condition of ecological...

  15. Monitoring network-design influence on assessment of ecological condition in wadeable streams

    EPA Science Inventory

    We investigated outcomes of three monitoring networks for assessing ecological character and condition of wadeable streams in the Waikato region, New Zealand. Sites were selected 1) based on a professional judgment network, 2) within categories of stream and watershed characteris...

  16. Method and apparatus for conducting structural health monitoring in a cryogenic, high vibration environment

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin (Inventor); Beard, Shawn J. (Inventor); Li, Irene (Inventor)

    2013-01-01

    Sensors affixed to various such structures, where the sensors can withstand, remain affixed, and operate while undergoing both cryogenic temperatures and high vibrations. In particular, piezoelectric single crystal transducers are utilized, and these sensors are coupled to the structure via a low temperature, heat cured epoxy. This allows the transducers to monitor the structure while the engine is operating, even despite the harsh operating conditions. Aspects of the invention thus allow for real time monitoring and analysis of structures that operate in conditions that previously did not permit such analysis. A further aspect of the invention relates to use of piezoelectric single crystal transducers. In particular, use of such transducers allows the same elements to be used as both sensors and actuators.

  17. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different

  18. Monitoring the integrity of filament-wound structures using built-in sensor networks

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Kumar, Amrita; Qing, Xinlin; Beard, Shawn J.; Russell, Samuel S.; Walker, James L.; Delay, Thomas K.

    2003-08-01

    Monitoring the integrity of filament wound composite structures such as solid rocket motors and liquid fuel bottles is important in order to prevent catastrophic failures and to prolong the service life of these structures. To ensure the safety and reliability of rocket components, they require frequent inspection for structural damages that might have occurred during manufacturing, transportation, and storage. The timely and accurate detection, characterization and monitoring of structural cracking, delamination, debonding and other types of damage is a major concern in the operational environment. Utilization of a sensor network system integrated with the structure itself can greatly reduce this inspection burden through fast in-situ data collection and processing. Acellent Technologies, Inc. is currently developing integrated structural monitoring tools for continuous monitoring of composite and metal structures on aircraft and spacecraft. Acellent's integrated structural monitoring system consists of a flexible sensor/actuator network layer called the SMART Layer, supporting diagnostic hardware, and data processing/analysis software. Recently, Acellent has been working with NASA Marshall Space Flight Center to develop ways of embedding the SMART Layer inside filament wound composite bottles. SMART Layers were designed and manufactured for the filament wound bottles and embedded in them during the filament winding process. Acellent has been working on developing a complete structural health monitoring system for the filament wound bottles including data processing tools to interpret the changes in sensor signal caused by changes in the structural condition or material property. A prototype of a filament wound composite bottle with an embedded sensor network has been fabricated and preliminary data analysis tools have been developed.

  19. Monitoring the condition of the Canadian forest environment: The relevance of the concept of 'ecological indicators'.

    PubMed

    Kimmins, J P

    1990-11-01

    The Canadian forest environment is characterized by high spatial and temporal variability, especially in the west. Our forests vary according to climate, landform, and surficial geology, and according to the type, intensity, extent of, and the time since the last disturbance. Most Canadian forests have had a history of repeated acute, episodic disturbance from fire, insects, wind, diseases and/or logging, with a frequency of disturbance varying from a few decades to many centuries. These sources of variability have resulted in a complex and continually changing mosaic of forest conditions and stages of successional development.Monitoring the 'quality' of this dynamic forested landscape mosaic is extremely difficult, and in most cases the concept of a relatively simple index of forest ecosystem quality or condition (i.e. an 'ecological indicator') is probably inappropriate. Such ecological indicators are better suited for monitoring chronic anthropogenically induced disturbances that are continuous in their effect (e.g. 'acid rain', heavy metal pollution, air pollution, and the 'greenhouse effect') in ecosystems that, in the absence of such chronic disturbance, exhibit very slow directional change (e.g. lakes, higher order streams and rivers). Monitoring the effects of a chronic anthropogenic disturbance to forest ecosystems to determine if it is resulting in a sustained, directional alteration of environmental 'quality' will require a definition of the expected pattern of episodic disturbance and recovery therefrom (i.e. patterns of secondary succession in the absence of the chronic disturbance). Only when we have such a 'temporal fingerprint' of forest ecosystem condition for 'normal' patterns of disturbance and recovery can we determine if the ecosystem condition is being degraded by chronic human-induced alteration of the environment. Thus, degradation is assessed in terms of deviations from the expected temporal pattern of conditions rather than in terms of an

  20. Monitoring the condition of the Canadian forest environment: The relevance of the concept of 'ecological indicators'.

    PubMed

    Kimmins, J P

    1990-11-01

    The Canadian forest environment is characterized by high spatial and temporal variability, especially in the west. Our forests vary according to climate, landform, and surficial geology, and according to the type, intensity, extent of, and the time since the last disturbance. Most Canadian forests have had a history of repeated acute, episodic disturbance from fire, insects, wind, diseases and/or logging, with a frequency of disturbance varying from a few decades to many centuries. These sources of variability have resulted in a complex and continually changing mosaic of forest conditions and stages of successional development.Monitoring the 'quality' of this dynamic forested landscape mosaic is extremely difficult, and in most cases the concept of a relatively simple index of forest ecosystem quality or condition (i.e. an 'ecological indicator') is probably inappropriate. Such ecological indicators are better suited for monitoring chronic anthropogenically induced disturbances that are continuous in their effect (e.g. 'acid rain', heavy metal pollution, air pollution, and the 'greenhouse effect') in ecosystems that, in the absence of such chronic disturbance, exhibit very slow directional change (e.g. lakes, higher order streams and rivers). Monitoring the effects of a chronic anthropogenic disturbance to forest ecosystems to determine if it is resulting in a sustained, directional alteration of environmental 'quality' will require a definition of the expected pattern of episodic disturbance and recovery therefrom (i.e. patterns of secondary succession in the absence of the chronic disturbance). Only when we have such a 'temporal fingerprint' of forest ecosystem condition for 'normal' patterns of disturbance and recovery can we determine if the ecosystem condition is being degraded by chronic human-induced alteration of the environment. Thus, degradation is assessed in terms of deviations from the expected temporal pattern of conditions rather than in terms of an

  1. Health Monitoring of Composite Material Structures using a Vibrometry Technique

    NASA Technical Reports Server (NTRS)

    Schulz, Mark J.

    1997-01-01

    Large composite material structures such as aircraft and Reusable Launch Vehicles (RLVS) operate in severe environments comprised of vehicle dynamic loads, aerodynamic loads, engine vibration, foreign object impact, lightning strikes, corrosion, and moisture absorption. These structures are susceptible to damage such as delamination, fiber breaking/pullout, matrix cracking, and hygrothermal strain. To ensure human safety and load-bearing integrity, these structures must be inspected to detect and locate often invisible damage and faults before becoming catastrophic. Moreover, nearly all future structures will need some type of in-service inspection technique to increase their useful life and reduce maintenance and overall costs. Possible techniques for monitoring the health and indicating damage on composite structures include: c-scan, thermography, acoustic emissions using piezoceramic actuators or fiber-optic wires with gratings, laser ultrasound, shearography, holography, x-ray, and others. These techniques have limitations in detecting damage that is beneath the surface of the structure, far away from a sensor location, or during operation of the vehicle. The objective of this project is to develop a more global method for damage detection that is based on structural dynamics principles, and can inspect for damage when the structure is subjected to vibratory loads to expose faults that may not be evident by static inspection. A Transmittance Function Monitoring (TFM) method is being developed in this project for ground-based inspection and operational health monitoring of large composite structures as a RLV. A comparison of the features of existing health monitoring approaches and the proposed TFM method is given.

  2. Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators: Preprint

    SciTech Connect

    Yang, W.; Sheng, S.; Court, R.

    2012-08-01

    To date the existing wind turbine condition monitoring technologies and commercially available systems have not been fully accepted for improving wind turbine availability and reducing their operation and maintenance costs. One of the main reasons is that wind turbines are subject to constantly varying loads and operate at variable rotational speeds. As a consequence, the influences of turbine faults and the effects of varying load and speed are coupled together in wind turbine condition monitoring signals. So, there is an urgent need to either introduce some operational condition de-coupling procedures into the current wind turbine condition monitoring techniques or develop a new operational condition independent wind turbine condition monitoring technique to maintain high turbine availability and achieve the expected economic benefits from wind. The purpose of this paper is to develop such a technique. In the paper, three operational condition independent criteria are developed dedicated for monitoring the operation and health condition of wind turbine generators. All proposed criteria have been tested through both simulated and practical experiments. The experiments have shown that these criteria provide a solution for detecting both mechanical and electrical faults occurring in wind turbine generators.

  3. High speed fiber grating sensors for structural monitoring

    NASA Astrophysics Data System (ADS)

    Udd, Eric

    2014-06-01

    This paper provides an overview of selected applications of high speed structural monitoring using fiber grating sensors. Rapid and effective diagnostic capabilities are necessary to respond to changes in structural integrity that may affect safety. In the case of aerospace structures operating at high velocity rapid response has the potential to mitigate catastrophic failure. Similar safety issues apply to civil structures where timely decisions are critical to operations of bridges, dams and buildings. Rapid responses for oil and gas, medical and environmental monitoring applications are also highly important. A great deal of progress has been made in improving the quality and capabilities of high speed fiber grating sensor systems. Some of these systems will be discussed.

  4. Acoustic emission of offshore structures, attenuation - noise - crack monitoring

    SciTech Connect

    Lovaas, S.

    1985-01-01

    No NDT crack detection methods have up to now proved to be the method which can overrule the others. We shall probably in the future in the offshore industry see a combination of various structure monitoring systems, remotely operated vehicles (ROV) with NDT-equipment and also the use of divers. The author believes that in some 5 - 10 years ROVs will perform much of the routine inspection, and mobile monitoring instrumentation will be concentrated to some hot spot areas, already detected defects or any repairs. The main areas for AE are monitoring of pressure vessels and fibre reinforced plastics. For application on offshore structures some fullscale trials have been performed (with practical problems) as well as some laboratory studies. Norwegian institutions seem to have a leading role today in the research of offshore applications. Norsk Hydro participated in a signature analysis project at Sintef/Veritas some years ago.

  5. Autonomous structural health monitoring technique for interplanetary drilling applications using laser Doppler velocimeters

    NASA Astrophysics Data System (ADS)

    Statham, Shannon M.

    The research work presented in this thesis is devoted to the formulation and field testing of a dynamics-based structural health monitoring system for an interplanetary subsurface exploration drill system. Structural health monitoring is the process of detecting damage or other types of defects in structural and mechanical systems that have the potential to adversely affect the current or future performance of these systems. Interplanetary exploration missions, specifically to Mars, involve operations to search for water and other signs of extant or past life. Such missions require advanced robotic systems that are more susceptible to structural and mechanical failures, which motivates a need for structural health monitoring techniques relevant to interplanetary exploration systems. Strict design requirements for interplanetary exploration missions create unique research problems and challenges compared with structural health monitoring procedures and techniques developed to date. These challenges include implementing sensors and devices that will not interfere with the drilling operation, producing "real-time" diagnostics of the drilling condition, and developing an automation procedure for complete autonomous operations. The first research area involves modal analysis experiments to understand the dynamic characteristics of interplanetary drill structural systems in operation. These experiments also validate the use of Laser Doppler Velocimeter sensors in real-time structural health monitoring and prove the drill motor system adequately excites the drill for dynamic measurements and modal analysis while the drill is in operation. The second research area involves the development of modal analysis procedures for rotating structures using a Chebyshev signal filter to remove harmonic component and other noise from the rotating drill signal. This filter is necessary to accurately analyze the condition of the rotating drill auger tube while in operation. The third

  6. Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.

    2016-01-01

    The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.

  7. STRUCTURAL INTEGRITY MONITORING FOR IMPROVED DRINKING WATER INFRASTRUCTURE SUSTAINABILITY

    EPA Science Inventory

    Structural integrity monitoring (SIM) is the systematic detection, location, and quantification of pipe wall damage or associated indicators. Each of the adverse situations below has the potential to be reduced by more effective and economical SIM of water mains:
    1) the dr...

  8. STRUCTURAL HEALTH MONITORING OF COMPOSITE LAMINATES WITH EMBEDDED PIEZOELECTRIC FIBERS

    SciTech Connect

    Lissenden, Cliff J.; Puthillath, Padma K.; Blackshire, James L.

    2009-03-03

    The actuation of ultrasonic guided waves in a carbon fiber reinforced polymer plate from embedded metal core piezoelectric fibers is studied for structural health monitoring applications. A linear array of fibers embedded at the midplane can generate guided waves transverse to the fiber direction. Finite element simulations show that a significant source influence is associated with the small diameter piezoelectric fibers.

  9. A bio-inspired memory model for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zhu, Yong

    2009-04-01

    Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system.

  10. Some practical issues in remote structural health monitoring

    NASA Astrophysics Data System (ADS)

    Han, L.; Newhook, J. P.; Mufti, A. A.

    2005-05-01

    Structural health monitoring (SHM) activities in civil engineering grow at a rapid pace and mature in both research and field applications. Internet technology was successfully incorporated into structural health monitoring, which makes it possible to manage real-time sensing data and centralize the remote structural monitoring systems. With the increase in size and complexity of the monitored structures, more sensors and data acquisition equipment is involved. This paper addresses some specific issues related to long distance small signal transmission and Ethernet IP sharing between different devices. The issue of data volume versus storage space and communication bandwidth is discussed especially in the application of web camera image transfer and recording. The approaches are illustrated through reference to two current case studies, which include a bridge and a statue. It can be seen that these practical solutions employed by ISIS Canada are easy to implement and reduce the cost for the maintenance of SHM systems. The paper also discusses future activities and research needs related to the reliability and security of the SHM system.

  11. Comparison of output-only methods for condition monitoring of industrials systems

    NASA Astrophysics Data System (ADS)

    Rutten, C.; Nguyen, V.-H.; Golinval, J.-C.

    2011-07-01

    In the field of structural health monitoring or machine condition monitoring, the activation of nonlinear dynamic behavior complicates the procedure of damage or fault detection. Blind source separation (BSS) techniques are known as efficient methods for damage diagnosis. However, most of BSS techniques repose on the assumption of the linearity of the system and the need of many sensors. This article presents some possible extensions of those techniques that may improve the damage detection, e.g. Enhanced-Principal Component Analysis (EPCA), Kernel PCA (KPCA) and Blind Modal Identification (BMID). The advantages of EPCA rely on its rapidity of use and its reliability. The KPCA method, through the use of nonlinear kernel functions, allows to introduce nonlinear dependences between variables. BMID is adequate to identify and to detect damage for generally damped systems. In this paper, damage is firstly examined by Stochastic Subspace Identification (SSI); then the detection is achieved by comparing subspace features between the reference and a current state through statistics and the concept of subspace angle. Industrial data are used as illustration of the methods.

  12. Comparison of multispectral remote-sensing techniques for monitoring subsurface drain conditions. [Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Goettelman, R. C.; Grass, L. B.; Millard, J. P.; Nixon, P. R.

    1983-01-01

    The following multispectral remote-sensing techniques were compared to determine the most suitable method for routinely monitoring agricultural subsurface drain conditions: airborne scanning, covering the visible through thermal-infrared (IR) portions of the spectrum; color-IR photography; and natural-color photography. Color-IR photography was determined to be the best approach, from the standpoint of both cost and information content. Aerial monitoring of drain conditions for early warning of tile malfunction appears practical. With careful selection of season and rain-induced soil-moisture conditions, extensive regional surveys are possible. Certain locations, such as the Imperial Valley, Calif., are precluded from regional monitoring because of year-round crop rotations and soil stratification conditions. Here, farms with similar crops could time local coverage for bare-field and saturated-soil conditions.

  13. Application of Condition-Based Monitoring Techniques for Remote Monitoring of a Simulated Gas Centrifuge Enrichment Plant

    SciTech Connect

    Hooper, David A; Henkel, James J; Whitaker, Michael

    2012-01-01

    This paper presents research into the adaptation of monitoring techniques from maintainability and reliability (M&R) engineering for remote unattended monitoring of gas centrifuge enrichment plants (GCEPs) for international safeguards. Two categories of techniques are discussed: the sequential probability ratio test (SPRT) for diagnostic monitoring, and sequential Monte Carlo (SMC or, more commonly, particle filtering ) for prognostic monitoring. Development and testing of the application of condition-based monitoring (CBM) techniques was performed on the Oak Ridge Mock Feed and Withdrawal (F&W) facility as a proof of principle. CBM techniques have been extensively developed for M&R assessment of physical processes, such as manufacturing and power plants. These techniques are normally used to locate and diagnose the effects of mechanical degradation of equipment to aid in planning of maintenance and repair cycles. In a safeguards environment, however, the goal is not to identify mechanical deterioration, but to detect and diagnose (and potentially predict) attempts to circumvent normal, declared facility operations, such as through protracted diversion of enriched material. The CBM techniques are first explained from the traditional perspective of maintenance and reliability engineering. The adaptation of CBM techniques to inspector monitoring is then discussed, focusing on the unique challenges of decision-based effects rather than equipment degradation effects. These techniques are then applied to the Oak Ridge Mock F&W facility a water-based physical simulation of a material feed and withdrawal process used at enrichment plants that is used to develop and test online monitoring techniques for fully information-driven safeguards of GCEPs. Advantages and limitations of the CBM approach to online monitoring are discussed, as well as the potential challenges of adapting CBM concepts to safeguards applications.

  14. Structural Health Monitoring for Impact Damage in Composite Structures.

    SciTech Connect

    Roach, Dennis P.; Raymond Bond; Doug Adams

    2014-08-01

    Composite structures are increasing in prevalence throughout the aerospace, wind, defense, and transportation industries, but the many advantages of these materials come with unique challenges, particularly in inspecting and repairing these structures. Because composites of- ten undergo sub-surface damage mechanisms which compromise the structure without a clear visual indication, inspection of these components is critical to safely deploying composite re- placements to traditionally metallic structures. Impact damage to composites presents one of the most signi fi cant challenges because the area which is vulnerable to impact damage is generally large and sometimes very dif fi cult to access. This work seeks to further evolve iden- ti fi cation technology by developing a system which can detect the impact load location and magnitude in real time, while giving an assessment of the con fi dence in that estimate. Fur- thermore, we identify ways by which impact damage could be more effectively identi fi ed by leveraging impact load identi fi cation information to better characterize damage. The impact load identi fi cation algorithm was applied to a commercial scale wind turbine blade, and results show the capability to detect impact magnitude and location using a single accelerometer, re- gardless of sensor location. A technique for better evaluating the uncertainty of the impact estimates was developed by quantifying how well the impact force estimate meets the assump- tions underlying the force estimation technique. This uncertainty quanti fi cation technique was found to reduce the 95% con fi dence interval by more than a factor of two for impact force estimates showing the least uncertainty, and widening the 95% con fi dence interval by a fac- tor of two for the most uncertain force estimates, avoiding the possibility of understating the uncertainty associated with these estimates. Linear vibration based damage detection tech- niques were investigated in the

  15. Wireless Zigbee strain gage sensor system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  16. Monitoring the Geneseo Nuclear Structure Lab with VISION

    NASA Astrophysics Data System (ADS)

    Nicklaw, R.; Padalino, S.; McLean, J.

    2002-10-01

    VISION (Virtual Instrument System Information) is a LabVIEW based program designed to monitor a 2 MV Van de Graaff accelerator in the Geneseo Nuclear Structure Laboratory (GNSL). The purpose of the system is to monitor and notify the user of potentially critical situations in the lab. Main parameters of interest are the water coolant temperatures in the diffusion pumps, pressures within the vacuum chambers, and Van de Graaff operational parameters. LabVIEW reads these values and then displays them on monitors located throughout the laboratory. The user can set alarm limits on the relevant parameters, and when exceeded notifies the user verbally and visually. Recent additions to the VISION program include the water level sensor, calibration of the pressure readings, a web server application, and data logging. The VISION system is Internet accessible ^1, data from the main screen is displayed over the web for remote monitoring of the accelerator. Another useful monitoring tool is the data logger, which writes acquired data to a formatted text document at specified intervals. A future goal for VISION is to not only monitor, but to control aspects of the GNSL with LabVIEW. ^1 Webpage accessible at: http://s69n144.sci.geneseo.edu/vision.htm * Research funded in part by the United States Department of Energy

  17. Structural health monitoring method for curved concrete bridge box girders

    NASA Astrophysics Data System (ADS)

    Glišić, Branko; Posenato, Daniele; Inaudi, Daniele; Figini, Angelo

    2008-03-01

    Curved concrete bridge girders have very complex internal forces, stress and strain distribution. As a consequence of their shape, not only the usual bending moments and shear forces are generated, but also important torsion moments are created. These moments "rotate" the axes of principal tensional stresses increasing the risk of cracking. Post-tensioning can prevent the cracks, but the added compression forces introduced in different directions increase the complexity of stress and strain fields. Therefore, the curved post-tensioned concrete girders must be particularly designed and carefully constructed. However, the real structural behavior should be verified, and risks and uncertainties related to structural design and quality of construction minimized. Structural health monitoring is a natural solution for these issues. Structural health monitoring method, based on the use of fiber optic interferometric technology including long-gage sensors and inclinometers, is presented in this paper. A 36 meters long curved post-tensioned bridge box girder is equipped with so-called parallel and so-called crossed sensor topologies, and inclinometers, in order to monitor axial strain, both horizontal and vertical curvature changes, torsion, average shear strain and rotations in both vertical plans. Important parts of structure life such as construction, post-tensioning and first years of service are registered, analyzed and presented.

  18. A nonlinear cointegration approach with applications to structural health monitoring

    NASA Astrophysics Data System (ADS)

    Shi, H.; Worden, K.; Cross, E. J.

    2016-09-01

    One major obstacle to the implementation of structural health monitoring (SHM) is the effect of operational and environmental variabilities, which may corrupt the signal of structural degradation. Recently, an approach inspired from the community of econometrics, called cointegration, has been employed to eliminate the adverse influence from operational and environmental changes and still maintain sensitivity to structural damage. However, the linear nature of cointegration may limit its application when confronting nonlinear relations between system responses. This paper proposes a nonlinear cointegration method based on Gaussian process regression (GPR); the method is constructed under the Engle-Granger framework, and tests for unit root processes are conducted both before and after the GPR is applied. The proposed approach is examined with real engineering data from the monitoring of the Z24 Bridge.

  19. [A portable impedance meter for monitoring liquid compartments of human body under space flight conditions].

    PubMed

    Noskov, V B; Nikolaev, D V; Tuĭkin, S A; Kozharinov, V I; Grachev, V A

    2007-01-01

    A portable two-frequency tetrapolar impedance meter was developed to study the state of liquid compartments of human body under zero-gravity conditions. The portable impedance meter makes it possible to monitor the hydration state of human body under conditions of long-term space flight on board international space station.

  20. Converting signals to knowledge in structural health monitoring systems

    NASA Astrophysics Data System (ADS)

    Brownjohn, James M. W.; Moyo, Pilate; Omenzetter, Piotr; Chakraboorty, Sushanta

    2005-04-01

    Academic approaches in structural health monitoring (SHM) usually focus on fine detail or on aspects of the technology such as sensors and data collection, and areas that may be less useful to operators than information about the level of performance of their structures. The steps in the process of SHM such as data management, data mining, conversion to knowledge of structural behaviour and integrity are frequently absent, and even the most operationally successful SHM systems may lack the component where deep understanding on the nature of the structure performance is obtained. This paper presents experience gained in a number of SHM exercises where static and dynamic response data have been interpreted, with or without the aid of calibrated structural models, in order to characterise the mechanisms at work and the experiences of the structure.

  1. Monitoring and evaluating civil structures using measured vibration

    NASA Astrophysics Data System (ADS)

    Straser, Erik G.; Kiremidjian, Anne S.

    1996-04-01

    The need for a rapid assessment of the state of critical and conventional civil structures, such as bridges, control centers, airports, and hospitals, among many, has been amply demonstrated during recent natural disasters. Research is underway at Stanford University to develop a state-of-the-art automated damage monitoring system for long term and extreme event monitoring based on both ambient and forced response measurements. Such research requires a multi-disciplinary approach harnessing the talents and expertise of civil, electrical, and mechanical engineering to arrive at a novel hardware and software solution. Recent advances in silicon micro-machining and microprocessor design allow for the economical integration of sensing, processing, and communication components. Coupling these technological advances with parameter identification algorithms allows for the realization of extreme event damage monitoring systems for civil structures. This paper addresses the first steps toward the development of a near real-time damage diagnostic and monitoring system based on structural response to extreme events. Specifically, micro-electro-mechanical- structures (MEMS) and microcontroller embedded systems (MES) are demonstrated to be an effective platform for the measurement and analysis of civil structures. Experimental laboratory tests with small scale model specimens and a preliminary sensor module are used to evaluate hardware and obtain structural response data from input accelerograms. A multi-step analysis procedure employing ordinary least squares (OLS), extended Kalman filtering (EKF), and a substructuring approach is conducted to extract system characteristics of the model. Results from experimental tests and system identification (SI) procedures as well as fundamental system design issues are presented.

  2. Comparison of the conditioning of high gradient accelerating structures

    NASA Astrophysics Data System (ADS)

    Degiovanni, Alberto; Wuensch, Walter; Giner Navarro, Jorge

    2016-03-01

    Accelerating gradients in excess of 100 MV /m , at very low breakdown rates, have been successfully achieved in numerous prototype CLIC accelerating structures. The conditioning and operational histories of several structures, tested at KEK and CERN, have been compared and there is clear evidence that the conditioning progresses with the number of rf pulses and not with the number of breakdowns. This observation opens the possibility that the optimum conditioning strategy, which minimizes the total number of breakdowns the structure is subject to without increasing conditioning time, may be to never exceed the breakdown rate target for operation. The result is also likely to have a strong impact on efforts to understand the physical mechanism underlying conditioning and may lead to preparation procedures which reduce conditioning time.

  3. Ultrasonic wave-based structural health monitoring embedded instrument.

    PubMed

    Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests. PMID:24387467

  4. Ultrasonic wave-based structural health monitoring embedded instrument

    NASA Astrophysics Data System (ADS)

    Aranguren, G.; Monje, P. M.; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  5. Ultrasonic wave-based structural health monitoring embedded instrument.

    PubMed

    Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  6. Piezo impedance sensors to monitor degradation of biological structure

    NASA Astrophysics Data System (ADS)

    Annamdas, Kiran Kishore Kumar; Annamdas, Venu Gopal Madhav

    2010-04-01

    In some countries it is common to have wooden structures in their homes, especially Japan. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Re-visiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood (green material) was accepted as excellent rehabilitation material, after any disaster. In recent times, the recycling materials extracted from inorganic, biodegradable wastes are converted into blocks or sheets, and are also used to assist public in rehabilitation camps. The key issue which decreases the life of these rehabilitated structure including green materials (like wood) is unnecessary degradation or deterioration over time due to insect or acid attack or rain/ice fall. The recycling material also needs monitoring to protect them against acid or rain/ice attacks. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was subjected to degradation in presence of acids. Variations in mass of plank are studied.

  7. Ultrasonic wave-based structural health monitoring embedded instrument

    SciTech Connect

    Aranguren, G.; Monje, P. M.; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-15

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  8. Structural health monitoring MEMS sensors using elasticity-based beam vibrations

    NASA Astrophysics Data System (ADS)

    Plankis, Alivia

    The worsening problem of aging and deficient infrastructure in this nation and across the world has demonstrated the need for an improved system to monitor and maintain these structures. The field of structural health monitoring has grown in recent years to address this issue. The goal of this field is to continually monitor the condition of a structure to detect and mitigate damage that may occur. Many structural health monitoring methods have been developed and most of these require sensor systems to collect the necessary information to assess the current strength and integrity of a structure. The motivation for this thesis is a proposed new microelectromechanical systems (MEMS) sensor with applications in civil infrastructure sensing. The work required was to determine accurate estimates of the resonant frequencies for a fixed-fixed silicon bridge within the device so that further testing and development could proceed. Additional knowledge and information were essential, though, before these requested calculations could be performed confidently. First, a thorough review of current structural health monitoring concepts and methods was performed to better understand the field in which this device would be applied and what incentive existed to develop a new sensor. Second, an in-depth investigation of vibrational beam mechanics theories was completed to ensure the accuracy of the frequency results for the new MEMS sensor. This study analyzed the influence of three assumptions employed in the Euler-Bernoulli, Rayleigh, and Timoshenko beam theories by comparing their results to a three-dimensional, elasticity-based approximation for vibrational frequencies and mode shapes. The results of this study showed that all three theories are insufficient when a fixed support is involved, so the elasticity-based approximation was utilized to calculate the frequencies for the bridge component in the MEMS device. These results have been passed on to the developers so that the

  9. Autonomous self-powered structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Anton, Steven R.; Zhang, David; Kumar, Amrita; Inman, Daniel J.; Ooi, Teng K.

    2010-03-01

    Structural health monitoring technology is perceived as a revolutionary method of determining the integrity of structures involving the use of multidisciplinary fields including sensors, materials, system integration, signal processing and interpretation. The core of the technology is the development of self-sufficient systems for the continuous monitoring, inspection and damage detection of structures with minimal labor involvement. A major drawback of the existing technology for real-time structural health monitoring is the requirement for external electrical power input. For some applications, such as missiles or combat vehicles in the field, this factor can drastically limit the use of the technology. Having an on-board electrical power source that is independent of the vehicle power system can greatly enhance the SHM system and make it a completely self-contained system. In this paper, using the SMART layer technology as a basis, an Autonomous Self-powered (ASP) Structural Health Monitoring (SHM) system has been developed to solve the major challenge facing the transition of SHM systems into field applications. The architecture of the self-powered SHM system was first designed. There are four major components included in the SHM system: SMART Layer with sensor network, low power consumption diagnostic hardware, rechargeable battery with energy harvesting device, and host computer with supporting software. A prototype of the integrated self-powered active SHM system was built for performance and functionality testing. Results from the evaluation tests demonstrated that a fully charged battery system is capable of powering the SHM system for active scanning up to 10 hours.

  10. Application of structural health monitoring technologies to bio-systems: current status and path forward

    NASA Astrophysics Data System (ADS)

    Bhalla, Suresh; Srivastava, Shashank; Suresh, Rupali; Moharana, Sumedha; Kaur, Naveet; Gupta, Ashok

    2015-03-01

    This paper presents a case for extension of structural health monitoring (SHM) technologies to offer solutions for biomedical problems. SHM research has made remarkable progress during the last two/ three decades. These technologies are now being extended for possible applications in the bio-medical field. Especially, smart materials, such as piezoelectric ceramic (PZT) patches and fibre-Bragg grating (FBG) sensors, offer a new set of possibilities to the bio-medical community to augment their conventional set of sensors, tools and equipment. The paper presents some of the recent extensions of SHM, such as condition monitoring of bones, monitoring of dental implant post surgery and foot pressure measurement. Latest developments, such as non-bonded configuration of PZT patches for monitoring bones and possible applications in osteoporosis detection, are also discussed. In essence, there is a whole new gamut of new possibilities for SHM technologies making their foray into the bi-medical sector.

  11. Wireless sensor systems and methods, and methods of monitoring structures

    DOEpatents

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.

    2007-02-20

    A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.

  12. Distributed fiber optic sensors embedded in technical textiles for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Krebber, Katerina; Lenke, Philipp; Liehr, Sascha; Noether, Nils; Wendt, Mario; Wosniok, Aleksander

    2010-09-01

    Technical textiles with embedded distributed fiber optic sensors have been developed for the purposes of structural health monitoring in geotechnical and civil engineering. The distributed fiber optic sensors are based on Brillouin scattering in silica optical fibers and OTDR in polymer optical fibers. Such "smart" technical textiles can be used for reinforcement of geotechnical and masonry structures and the embedded fiber optic sensors can provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, structural health monitoring of critical geotechnical and civil infrastructures can be realized. The paper highlights the results achieved in this innovative field in the framework of several German and European projects.

  13. Monitoring of suspended sediments, sediment conditions and aquatic biota during the functional check of bottom outlets

    NASA Astrophysics Data System (ADS)

    Haun, Stefan; Seitz, Lydia; Stockinger, Wolfram; Riedl, Martin; Schletterer, Martin

    2016-04-01

    Reservoirs are used to store water for multiple purposes and are therefore of great importance for our society. Regularly inspections of the dam structure and the bottom outlets are necessary to ensure a safe operation of these structures. The release of water from the reservoirs for this procedure often results in high suspended sediment concentrations downstream by the remobilization of deposited sediments, which may result further in negative effects on the downstream located habitats. Due to a careful elaborated monitoring concept, e.g. regarding the opening procedure of the bottom outlets, it is possible to change the management strategy and to avoid or to minimize ecological impacts. Within this study a monitoring concept is developed and implemented to observe occurring suspended sediment concentrations during the opening of the bottom outlets of a small reservoir in the alpine region. The measurement concept includes suspended sediment concentration and discharge measurements at the two upstream located tributaries as well as suspended sediment concentration measurements downstream. Two stations are selected downstream with a distance of 750 m and 2,000 m from the dam. To ensure a complete series of concentrations over time bottom samples, Imhoff-cones as well as turbidity meters are implemented. Whereas the turbidity meters ensure a permanent observation of the conditions (will be calibrated with laboratory results from the bottle samples), the Imhoff-cones make it possible to intervene right away into the process of releasing water. A second focus lies on the downstream located river bed, which is monitored before and after the opening of the bottom outlets in order to assess morphodynamical changes such as river bed clogging occurs. Therefore sediment samples with the so called freeze-panel technique are collected before and after the opening of the bottom outlets to quantify possible changes of the bed material. The results show that downstream habitats

  14. The fast beam condition monitor BCM1F backend electronics upgraded MicroTCA-based architecture

    NASA Astrophysics Data System (ADS)

    Zagozdzinska, Agnieszka A.; Bell, Alan; Dabrowski, Anne E.; Guthoff, Moritz; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Lokhovitskiy, Arkady; Leonard, Jessica L.; Loos, Robert; Miraglia, Marco; Penno, Marek; Pozniak, Krzysztof T.; Przyborowski, Dominik; Stickland, David; Trapani, Pier Paolo; Romaniuk, Ryszard; Ryjov, Vladimir; Walsh, Roberval

    2014-11-01

    The Beam Radiation Instrumentation and Luminosity Project of the CMS experiment, consists of several beam monitoring systems. One system, the upgraded Fast Beams Condition Monitor, is based on 24 single crystal CVD diamonds with a double-pad sensor metallization and a custom designed readout. Signals for real-time monitoring are transmitted to the counting room, where they are received and processed by new back-end electronics designed to extract information on LHC collision, beam induced background and activation products. The Slow Control Driver is designed for the front-end electronics configuration and control. The system architecture and the upgrade status will be presented.

  15. Fiber optic sensors for evaluation and monitoring of civil structures

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Fuhr, Peter L.; Udd, Eric; Inaudi, Daniele

    1999-12-01

    This paper gives an overview of the primary issues of structural health and evaluation monitoring for civil structures, such as bridges, dams, buildings and roadways, and role that fiber optic sensors play in the monitoring efforts. Some of the quantities that need to be measured are displacement, velocity, acceleration, jerk, force, stress, strain, temperature, fracture, moisture, fatigue, and chemical state, i.e. corrosion. Fiber optic sensors have the capability to measure most, if not all, of these quantities. Fiber optic sensors exploit a variety of physical principles through which physical quantities are measured. The particular types of fiber sensors that will be discussed in this paper are: intensity-based, modal domain interferometric, Bragg grating, white light interferometric, and Brillouin backscatter. The operating principles and application results from field and laboratory studies are presented.

  16. Pipelining in structural health monitoring wireless sensor network

    NASA Astrophysics Data System (ADS)

    Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim

    2010-04-01

    Application of wireless sensor network (WSN) for structural health monitoring (SHM), is becoming widespread due to its implementation ease and economic advantage over traditional sensor networks. Beside advantages that have made wireless network preferable, there are some concerns regarding their performance in some applications. In long-span Bridge monitoring the need to transfer data over long distance causes some challenges in design of WSN platforms. Due to the geometry of bridge structures, using multi-hop data transfer between remote nodes and base station is essential. This paper focuses on the performances of pipelining algorithms. We summarize several prevent pipelining approaches, discuss their performances, and propose a new pipelining algorithm, which gives consideration to both boosting of channel usage and the simplicity in deployment.

  17. Fast beam conditions monitor BCM1F for the CMS experiment

    NASA Astrophysics Data System (ADS)

    Bell, A.; Castro, E.; Hall-Wilton, R.; Lange, W.; Lohmann, W.; Macpherson, A.; Ohlerich, M.; Rodriguez, N.; Ryjov, V.; Schmidt, R. S.; Stone, R. L.

    2010-03-01

    The CMS Beam Conditions and Radiation Monitoring System, BRM, will support beam tuning, protect the CMS detector from adverse beam conditions, and measure the accumulated dose close to or inside all sub-detectors. It is composed of different sub-systems measuring either the particle flux near the beam pipe with time resolution between nano- and microseconds or the integrated dose over longer time intervals. This paper presents the Fast Beam Conditions Monitor, BCM1F, which is designed for fast flux monitoring measuring both beam halo and collision products. BCM1F is located inside the CMS pixel detector volume close to the beam-pipe. It uses sCVD diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals. The commissioning of the system and its successful operation during the first beams of the LHC are described.

  18. Conditional cooperation and costly monitoring explain success in forest commons management.

    PubMed

    Rustagi, Devesh; Engel, Stefanie; Kosfeld, Michael

    2010-11-12

    Recent evidence suggests that prosocial behaviors like conditional cooperation and costly norm enforcement can stabilize large-scale cooperation for commons management. However, field evidence on the extent to which variation in these behaviors among actual commons users accounts for natural commons outcomes is altogether missing. Here, we combine experimental measures of conditional cooperation and survey measures on costly monitoring among 49 forest user groups in Ethiopia with measures of natural forest commons outcomes to show that (i) groups vary in conditional cooperator share, (ii) groups with larger conditional cooperator share are more successful in forest commons management, and (iii) costly monitoring is a key instrument with which conditional cooperators enforce cooperation. Our findings are consistent with models of gene-culture coevolution on human cooperation and provide external validity to laboratory experiments on social dilemmas.

  19. Preschool Children Learn about Causal Structure from Conditional Interventions

    ERIC Educational Resources Information Center

    Schulz, Laura E.; Gopnik, Alison; Glymour, Clark

    2007-01-01

    The conditional intervention principle is a formal principle that relates patterns of interventions and outcomes to causal structure. It is a central assumption of experimental design and the causal Bayes net formalism. Two studies suggest that preschoolers can use the conditional intervention principle to distinguish causal chains, common cause…

  20. Damage detection in bridges through fiber optic structural health monitoring

    NASA Astrophysics Data System (ADS)

    Doornink, J. D.; Phares, B. M.; Wipf, T. J.; Wood, D. L.

    2006-10-01

    A fiber optic structural health monitoring (SHM) system was developed and deployed by the Iowa State University (ISU) Bridge Engineering Center (BEC) to detect gradual or sudden damage in fracture-critical bridges (FCBs). The SHM system is trained with measured performance data, which are collected by fiber optic strain sensors to identify typical bridge behavior when subjected to ambient traffic loads. Structural responses deviating from the trained behavior are considered to be signs of structural damage or degradation and are identified through analytical procedures similar to control chart analyses used in statistical process control (SPC). The demonstration FCB SHM system was installed on the US Highway 30 bridge near Ames, IA, and utilizes 40 fiber bragg grating (FBG) sensors to continuously monitor the bridge response when subjected to ambient traffic loads. After the data is collected and processed, weekly evaluation reports are developed that summarize the continuous monitoring results. Through use of the evaluation reports, the bridge owner is able to identify and estimate the location and severity of the damage. The information presented herein includes an overview of the SHM components, results from laboratory and field validation testing on the system components, and samples of the reduced and analyzed data.

  1. A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions

    NASA Astrophysics Data System (ADS)

    Antoniadou, I.; Manson, G.; Staszewski, W. J.; Barszcz, T.; Worden, K.

    2015-12-01

    This paper deals with the condition monitoring of wind turbine gearboxes under varying operating conditions. Generally, gearbox systems include nonlinearities so a simplified nonlinear gear model is developed, on which the time-frequency analysis method proposed is first applied for the easiest understanding of the challenges faced. The effect of varying loads is examined in the simulations and later on in real wind turbine gearbox experimental data. The Empirical Mode Decomposition (EMD) method is used to decompose the vibration signals into meaningful signal components associated with specific frequency bands of the signal. The mode mixing problem of the EMD is examined in the simulation part and the results in that part of the paper suggest that further research might be of interest in condition monitoring terms. For the amplitude-frequency demodulation of the signal components produced, the Hilbert Transform (HT) is used as a standard method. In addition, the Teager-Kaiser energy operator (TKEO), combined with an energy separation algorithm, is a recent alternative method, the performance of which is tested in the paper too. The results show that the TKEO approach is a promising alternative to the HT, since it can improve the estimation of the instantaneous spectral characteristics of the vibration data under certain conditions.

  2. Rapid condition assessment of structural condition after a blast using state-space identification

    NASA Astrophysics Data System (ADS)

    Eskew, Edward; Jang, Shinae

    2015-04-01

    After a blast event, it is important to quickly quantify the structural damage for emergency operations. In order improve the speed, accuracy, and efficiency of condition assessments after a blast, the authors have previously performed work to develop a methodology for rapid assessment of the structural condition of a building after a blast. The method involved determining a post-event equivalent stiffness matrix using vibration measurements and a finite element (FE) model. A structural model was built for the damaged structure based on the equivalent stiffness, and inter-story drifts from the blast are determined using numerical simulations, with forces determined from the blast parameters. The inter-story drifts are then compared to blast design conditions to assess the structures damage. This method still involved engineering judgment in terms of determining significant frequencies, which can lead to error, especially with noisy measurements. In an effort to improve accuracy and automate the process, this paper will look into a similar method of rapid condition assessment using subspace state-space identification. The accuracy of the method will be tested using a benchmark structural model, as well as experimental testing. The blast damage assessments will be validated using pressure-impulse (P-I) diagrams, which present the condition limits across blast parameters. Comparisons between P-I diagrams generated using the true system parameters and equivalent parameters will show the accuracy of the rapid condition based blast assessments.

  3. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  4. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  5. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  6. 42 CFR 485.627 - Condition of participation: Organizational structure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... participation: Organizational structure. (a) Standard: Governing body or responsible individual. The CAH has a... 42 Public Health 5 2010-10-01 2010-10-01 false Condition of participation: Organizational structure. 485.627 Section 485.627 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT...

  7. 42 CFR 485.627 - Condition of participation: Organizational structure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... participation: Organizational structure. (a) Standard: Governing body or responsible individual. The CAH has a... 42 Public Health 5 2011-10-01 2011-10-01 false Condition of participation: Organizational structure. 485.627 Section 485.627 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT...

  8. Wireless system for structural health monitoring based on Lamb waves

    NASA Astrophysics Data System (ADS)

    Lieske, U.; Dietrich, A.; Schubert, L.; Frankenstein, B.

    2012-04-01

    Structural health monitoring systems are increasingly used for comprehensive fatigue tests and surveillance of large scale structures. In this paper we describe the development and validation of a wireless system for SHM application based on Lamb-waves. The system is based on a wireless sensor network and focuses especially on low power measurement, signal processing and communication. The sensor nodes were realized by compact, sensor near signal processing structures containing components for analog preprocessing of acoustic signals, their digitization and network communication. The core component is a digital microprocessor ARM Cortex-M3 von STMicroelectronics, which performs the basic algorithms necessary for data acquisition synchronization and filtering. The system provides network discovery and multi-hop and self-healing mechanisms. If the distance between two communicating devices is too big for direct radio transmission, packets are routed over intermediate devices automatically. The system represents a low-power and low-cost active structural health monitoring solution. As a first application, the system was installed on a CFRP structure.

  9. Progress toward an advanced condition monitoring system for reusable rocket engines

    NASA Technical Reports Server (NTRS)

    Maram, J.; Barkhoudarian, S.

    1987-01-01

    A new generation of advanced sensor technologies will allow the direct measurement of critical/degradable rocket engine components' health and the detection of degraded conditions before component deterioration affects engine performance, leading to substantial improvements in reusable engines' operation and maintenance. When combined with a computer-based engine condition-monitoring system, these sensors can furnish a continuously updated data base for the prediction of engine availability and advanced warning of emergent maintenance requirements. Attention is given to the case of a practical turbopump and combustion device diagnostic/prognostic health-monitoring system.

  10. Monitoring lining and hearth conditions at Inland`s No. 7 blast furnace

    SciTech Connect

    Quisenberry, P.; Grant, M.; Carter, W.

    1997-12-31

    The paper describes: furnace statistics; mini-reline undertaken in November, 1993; the stack condition; throat gunning; stabilizing the graphite bricks; the hearth condition; reactions to temperature excursions; future instrumentation; and hot blast system areas of concern. The present data from monitoring systems and inspections indicate that the furnace should be able to operate well beyond the expectation for the 1993 mini-reline (3--5 years) with: (1) consistent, high quality raw materials; (2) instrumentation, diagnostic, remedial, and preventative techniques developed; and (3) stopping quickly any water leaks into the furnace. The longevity of this campaign has undoubtedly been a result of this monitoring program.

  11. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  12. Health monitoring of composite structures throughout the life cycle

    NASA Astrophysics Data System (ADS)

    Chilles, James; Croxford, Anthony; Bond, Ian

    2016-04-01

    This study demonstrates the capability of inductively coupled piezoelectric sensors to monitor the state of health throughout the lifetime of composite structures. A single sensor which generated guided elastic waves was embedded into the stacking sequence of a large glass fiber reinforced plastic plate. The progress of cure was monitored by measuring variations in the amplitude and velocity of the waveforms reflected from the plate's edges. Baseline subtraction techniques were then implemented to detect barely visible impact damage (BVID) created by a 10 Joule impact, at a distance of 350 mm from the sensor embedded in the cured plate. To investigate the influence of mechanical loading on sensor performance, a single sensor was embedded within a glass fiber panel and subjected to tensile load. The panel was loaded up to a maximum strain of 1%, in increments of 0.1% strain. Guided wave measurements were recorded by the embedded sensor before testing, when the panel was under load, and after testing. The ultrasonic measurements showed a strong dependence on the applied load. Upon removal of the mechanical load the guided wave measurements returned to their original values recorded before testing. The results in this work show that embedded piezoelectric sensors can be used to monitor the state of health throughout the life-cycle of composite parts, even when subjected to relatively large strains. However the influence of load on guided wave measurements has implications for online monitoring using embedded piezoelectric transducers.

  13. Crack monitoring capability of plastic optical fibers for concrete structures

    NASA Astrophysics Data System (ADS)

    Zhao, Jinlei; Bao, Tengfei; Chen, Rui

    2015-08-01

    Optical fibers have been widely used in structural health monitoring. Traditional silica fibers are easy to break in field applications due to their brittleness. Thus, silica fibers are proposed to be replaced by plastic optical fibers (POFs) in crack monitoring in this study. Moreover, considering the uncertainty of crack propagation direction in composite materials, the influence of the angles between fibers and cracks on the monitoring capability of plastic optical fibers is studied. A POF sensing device was designed and the relationship between light intensity loss and crack width under different fiber/crack angles was first measured through the device. Then, three-point bend tests were conducted on concrete beams. POFs were glued to the bottom surfaces of the beams and light intensity loss with crack width was measured. Experimental results showed that light intensity loss in plastic optical fibers increased with crack width increase. Therefore, application of plastic optical fibers in crack monitoring is feasible. Moreover, the results also showed that the sensitivity of the POF crack sensor decreased with the increase of angles between fibers and cracks.

  14. Advances in Micromechanics Modeling of Composites Structures for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Moncada, Albert

    Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focuses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and

  15. Aspects of model-based rocket engine condition monitoring and control

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.; Helmicki, Arthur J.

    1994-01-01

    A rigorous propulsion system modelling method suitable for control and condition monitoring purposes is developed. Previously developed control oriented methods yielding nominal models for gaseous medium propulsion systems are extended to include both nominal and anomalous models for liquid mediums in the following two ways. First, thermodynamic and fluid dynamic properties for liquids such as liquid hydrogen are incorporated into the governing equations. Second, anomalous conditions are captured in ways compatible with existing system theoretic design tools so that anomalous models can be constructed. Control and condition monitoring based methods are seen as an improvement over some existing modelling methods because such methods typically do not rigorously lead to low order models nor do they provide a means for capturing anomalous conditions. Applications to the nominal SSME HPFP and degraded HPFP serve to illustrate the approach.

  16. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  17. Passive and Active Sensing Technologies for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  18. Impedance based sensor technology to monitor stiffness of biological structures

    NASA Astrophysics Data System (ADS)

    Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kishore Kumar

    2010-04-01

    In countries like USA or Japan it is not so uncommon to have wooden structures in their homes. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Revisiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood is accepted as excellent rehabilitation material, after any disaster. The recycling materials extracted from in-organic, biodegradable wastes, also can be used for rehabilitation. The key issue which dampens the life of these rehabilitated structure including green materials (like wood) is unnecessary deposits (nails, screws, bolts etc)/damages due to insect attack. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was used to study changes due to metallic (steel nails) deposits at various locations. A study of weight deposits on aluminum plate was used for comparisons.

  19. Recommendations for strengthening the infrared technology component of any condition monitoring program

    NASA Astrophysics Data System (ADS)

    Nicholas, Jack R., Jr.; Young, R. K.

    1999-03-01

    This presentation provides insights of a long term 'champion' of many condition monitoring technologies and a Level III infra red thermographer. The co-authors present recommendations based on their observations of infra red and other components of predictive, condition monitoring programs in manufacturing, utility and government defense and energy activities. As predictive maintenance service providers, trainers, informal observers and formal auditors of such programs, the co-authors provide a unique perspective that can be useful to practitioners, managers and customers of advanced programs. Each has over 30 years experience in the field of machinery operation, maintenance, and support the origins of which can be traced to and through the demanding requirements of the U.S. Navy nuclear submarine forces. They have over 10 years each of experience with programs in many different countries on 3 continents. Recommendations are provided on the following: (1) Leadership and Management Support (For survival); (2) Life Cycle View (For establishment of a firm and stable foundation for a program); (3) Training and Orientation (For thermographers as well as operators, managers and others); (4) Analyst Flexibility (To innovate, explore and develop their understanding of machinery condition); (5) Reports and Program Justification (For program visibility and continued expansion); (6) Commitment to Continuous Improvement of Capability and Productivity (Through application of updated hardware and software); (7) Mutual Support by Analysts (By those inside and outside of the immediate organization); (8) Use of Multiple Technologies and System Experts to Help Define Problems (Through the use of correlation analysis of data from up to 15 technologies. An example correlation analysis table for AC and DC motors is provided.); (9) Root Cause Analysis (Allows a shift from reactive to proactive stance for a program); (10) Master Equipment Identification and Technology Application (To

  20. Monitoring of WUT grand hall roof in conditions of high temperature changes

    NASA Astrophysics Data System (ADS)

    Wozniak, M.

    2009-04-01

    The geodetic control measurements of changes in object's geometry should satisfy high accuracy and reliability. New tacheometers equipped with Automatic Target Recognition automatically moves the telescope to the center of the prism and supports control points measurements. The accuracy of using ATR system and stability of instrument in precise measurements were controlled in laboratory and field conditions. This paper will present the results of monitoring measurements using Leica TDA 5005 during investigations of roof geometry in conditions of high temperature changes.

  1. Railway track component condition monitoring using optical fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Buggy, S. J.; James, S. W.; Staines, S.; Carroll, R.; Kitson, P.; Farrington, D.; Drewett, L.; Jaiswal, J.; Tatam, R. P.

    2016-05-01

    The use of optical fibre Bragg grating (FBG) strain sensors to monitor the condition of safety critical rail components is investigated. Fishplates, switchblades and stretcher bars on the Stagecoach Supertram tramway in Sheffield in the UK have been instrumented with arrays of FBG sensors. The dynamic strain signatures induced by the passage of a tram over the instrumented components have been analysed to identify features indicative of changes in the condition of the components.

  2. A mobile-agent based wireless sensing network for structural monitoring applications

    SciTech Connect

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2008-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field.

  3. A non-invasive probe for online-monitoring of turgor pressure changes under field conditions.

    PubMed

    Westhoff, M; Reuss, R; Zimmermann, D; Netzer, Y; Gessner, A; Gessner, P; Zimmermann, G; Wegner, L H; Bamberg, E; Schwartz, A; Zimmermann, U

    2009-09-01

    An advanced non-invasive, field-suitable and inexpensive leaf patch clamp pressure probe for online-monitoring of the water relations of intact leaves is described. The probe measures the attenuated output patch clamp pressure, P(p), of a clamped leaf in response to an externally applied input pressure, P(clamp). P(clamp) is generated magnetically. P(p) is sensed by a pressure sensor integrated into the magnetic clamp. The magnitude of P(p) depends on the transfer function, T(f), of the leaf cells. T(f) consists of a turgor pressure-independent (related to the compression of the cuticle, cell walls and other structural elements) and a turgor pressure-dependent term. T(f) is dimensionless and assumes values between 0 and 1. Theory shows that T(f) is a power function of cell turgor pressure P(c). Concomitant P(p) and P(c) measurements on grapevines confirmed the relationship between T(f) and P(c). P(p) peaked if P(c) approached zero and assumed low values if P(c) reached maximum values. The novel probe was successfully tested on leaves of irrigated and non-irrigated grapevines under field conditions. Data show that slight changes in the microclimate and/or water supply (by irrigation or rain) are reflected very sensitively in P(p).

  4. A Recursive Multiscale Correlation-Averaging Algorithm for an Automated Distributed Road Condition Monitoring System

    SciTech Connect

    Ndoye, Mandoye; Barker, Alan M; Krogmeier, James; Bullock, Darcy

    2011-01-01

    A signal processing approach is proposed to jointly filter and fuse spatially indexed measurements captured from many vehicles. It is assumed that these measurements are influenced by both sensor noise and measurement indexing uncertainties. Measurements from low-cost vehicle-mounted sensors (e.g., accelerometers and Global Positioning System (GPS) receivers) are properly combined to produce higher quality road roughness data for cost-effective road surface condition monitoring. The proposed algorithms are recursively implemented and thus require only moderate computational power and memory space. These algorithms are important for future road management systems, which will use on-road vehicles as a distributed network of sensing probes gathering spatially indexed measurements for condition monitoring, in addition to other applications, such as environmental sensing and/or traffic monitoring. Our method and the related signal processing algorithms have been successfully tested using field data.

  5. Wake-up transceivers for structural health monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Kumberg, T.; Kokert, J.; Younesi, V.; Koenig, S.; Reindl, L. M.

    2016-04-01

    In this article we present a wireless sensor network to monitor the structural health of a large-scale highway bridge in Germany. The wireless sensor network consists of several sensor nodes that use wake-up receivers to realize latency free and low-power communication. The sensor nodes are either equipped with very accurate tilt sensor developed by Northrop Grumman LITEF GmbH or with a Novatel OEM615 GNSS receiver. Relay nodes are required to forward measurement data to a base station located on the bridge. The base station is a gateway that transmits the local measurement data to a remote server where it can be further analyzed and processed. Further on, we present an energy harvesting system to supply the energy demanding GNSS sensor nodes to realize long term monitoring.

  6. Fiber optic sensors for structural health monitoring of air platforms.

    PubMed

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  7. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  8. Fiber optic sensors for structural health monitoring of air platforms.

    PubMed

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  9. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  10. Monitoring diapause development in the Colorado potato beetle, Leptinotarsa decemlineata, under field conditions using molecular biomarkers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multiplex PCR protocol was developed using five diapause-regulated genes to monitor diapause development of the Colorado potato beetle under field conditions. A total of 870 beetles from the Red River Valley of North Dakota and Minnesota, USA, were screened for three consecutive years. Out of the ...

  11. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    SciTech Connect

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  12. 7 CFR 623.16 - Monitoring and enforcement of easement terms and conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Monitoring and enforcement of easement terms and conditions. 623.16 Section 623.16 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY...

  13. Implementation of an Integrated, Portable Transformer Condition Monitoring Instrument in the Classroom and On-Site

    ERIC Educational Resources Information Center

    Chatterjee, B.; Dey, D.; Chakravorti, S.

    2010-01-01

    The development of integrated, portable, transformer condition monitoring (TCM) equipment for classroom demonstrations as well as for student exercises conducted in the field is discussed. Demonstrations include experimentation with real-world transformers to illustrate concepts such as polarization and depolarization current through oil-paper…

  14. Sensitivity of a Wave Structure to Initial Conditions

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Duval, Walter M. B. (Technical Monitor)

    2000-01-01

    Microgravity experiments aimed at quantifying effects of gentler via controlled sinusoidal forcing transmitted on the interface between two miscible liquids have shown the evolution of a quasi -stationary four-mode wave structure oriented vertically. The sensitivity of the wave structure to phase angle variation is investigated computationally. We show that a slight variation of the phase angle is sufficient to cause a bifurcation to a two-mode structure. The dependence of phase angle on wave structure is attributed to sensitivity on initial conditions due to the strong nonlinearity of the coupled field equations for the parametric space of interest.

  15. Structural health monitoring system design using finite element analysis

    SciTech Connect

    Stinemates, D. W.; Bennett, J. G.

    2002-01-01

    The project described in this report was performed to couple experimental and analytical techniques in the field of structural health monitoring and damage identification. To do this, a finite element model was constructed of a simulated three-story building used for damage identification experiments. The model was used in conjunction with data from the physical structure to research damage identification algorithms. Of particular interest was modeling slip in joints as a function of bolt torque and predicting the smallest change of torque that could be detected experimentally. After being validated with results from the physical structure, the model was used to produce data to test the capabilities of damage identification algorithms. This report describes the finite element model constructed, the results obtained, and proposed future use of the model.

  16. GPS in pioneering dynamic monitoring of long-period structures

    USGS Publications Warehouse

    Celebi, M.; Sanli, A.

    2002-01-01

    Global Positioning System (GPS) technology with 10-20-Hz sampling rates allows scientifically justified dynamic measurements of relative displacements of long-period structures. The displacement response of a simulated tall building in real time and permanent deployment of GPS units at the roof of a building are described. To the authors' best knowledge, this is the first permanent deployment of GPS units (in the world) for continuous dynamic monitoring of a tall building. Data recorded from the building during a windy day is analyzed to determine the structural characteristics. When recorded during extreme motions caused by earthquakes and strong winds, such measurements can be used to compute average drift ratios and changes in dynamic characteristics, and therefore can be used by engineers and building owners or managers to assess the structural integrity and performance by establishing pre-established thresholds. Such information can be used to secure public safety and/or take steps to improve the performance of the building.

  17. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  18. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  19. Seismogeodetic Monitoring of Structural Deformation during Shaketable Experiments

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Saunders, J. K.; Geng, J.; Bock, Y.; Goldberg, D.; Melgar, D.; Restrepo, J. I.; Nema, A.; Fleischman, R. B.; Zhang, Z.; Offield, D. G.; Squibb, M. B.

    2014-12-01

    Accurate low frequency strong motion recordings are important for understanding free field and building response in large engineered structures. We have developed a seismogeodetic monitoring system based on GPS technology for real-time observations of large earthquakes that can also be used for structural monitoring. The data analysis method implements in a tightly-coupled Kalman filter to provide absolute estimates of seismic displacement, velocity, and tilt from GPS and accelerometer observations. Tilt is one of the major error sources that prevents accelerometer data from being integrated correctly to displacements. The technology is currently operational and streaming real-time observations from remote SIO Geodetic Module packages containing MEMS accelerometers at 17 GPS sites in southern California for the purposes of earthquake early warning and rapid response. The instruments were run in real-time on a four-story structure at the UCSD NEES shaketable to test an inertial force-limiting floor anchorage system as an emerging technology for new seismically resistant buildings. Observations were made during a series of earthquake simulations at five points on the roof of the structure, at the base, and at two nearby reference sites off the structure. Two of the points were also observed with observatory-grade Kinemetrics Episensor accelerometers to compare the performance of the MEMS sensors. The unique asymmetric design of the engineered structure deliberately induced large out-of-plane torsion and tilts of the building. This tested the performance of anchorage components to motions in two lateral directions even though the shaketable generated motions in only one component. We performed a seismogeodetic combination of the accelerometer and GPS data in which we simultaneously estimated tilts to take into account the impact of the rotations on vertical tilts of the accelerometers. The seismogeodetic combination reliably recovers drift at the rooftop, demonstrated

  20. Assessing the ecological condition of streams in a southeastern Brazilian basin using a probabilistic monitoring design.

    PubMed

    Jiménez-Valencia, Juliana; Kaufmann, Philip R; Sattamini, Ana; Mugnai, Riccardo; Baptista, Darcilio Fernandes

    2014-08-01

    Prompt assessment and management actions are required if we are to reduce the current rapid loss of habitat and biodiversity worldwide. Statistically valid quantification of the biota and habitat condition in water bodies are prerequisites for rigorous assessment of aquatic biodiversity and habitat. We assessed the ecological condition of streams in a southeastern Brazilian basin. We quantified the percentage of stream length in good, fair, and poor ecological condition according to benthic macroinvertebrate assemblage. We assessed the risk of finding degraded ecological condition associated with degraded aquatic riparian physical habitat condition, watershed condition, and water quality. We describe field sampling and implementation issues encountered in our survey and discuss design options to remedy them. Survey sample sites were selected using a spatially balanced, stratified random design, which enabled us to put confidence bounds on the ecological condition estimates derived from the stream survey. The benthic condition index indicated that 62 % of stream length in the basin was in poor ecological condition, and 13 % of stream length was in fair condition. The risk of finding degraded biological condition when the riparian vegetation and forests in upstream catchments were degraded was 2.5 and 4 times higher, compared to streams rated as good for the same stressors. We demonstrated that the GRTS statistical sampling method can be used routinely in Brazilian rain forests and other South American regions with similar conditions. This survey establishes an initial baseline for monitoring the condition and trends of streams in the region. PMID:24829159

  1. Assessing the ecological condition of streams in a southeastern Brazilian basin using a probabilistic monitoring design.

    PubMed

    Jiménez-Valencia, Juliana; Kaufmann, Philip R; Sattamini, Ana; Mugnai, Riccardo; Baptista, Darcilio Fernandes

    2014-08-01

    Prompt assessment and management actions are required if we are to reduce the current rapid loss of habitat and biodiversity worldwide. Statistically valid quantification of the biota and habitat condition in water bodies are prerequisites for rigorous assessment of aquatic biodiversity and habitat. We assessed the ecological condition of streams in a southeastern Brazilian basin. We quantified the percentage of stream length in good, fair, and poor ecological condition according to benthic macroinvertebrate assemblage. We assessed the risk of finding degraded ecological condition associated with degraded aquatic riparian physical habitat condition, watershed condition, and water quality. We describe field sampling and implementation issues encountered in our survey and discuss design options to remedy them. Survey sample sites were selected using a spatially balanced, stratified random design, which enabled us to put confidence bounds on the ecological condition estimates derived from the stream survey. The benthic condition index indicated that 62 % of stream length in the basin was in poor ecological condition, and 13 % of stream length was in fair condition. The risk of finding degraded biological condition when the riparian vegetation and forests in upstream catchments were degraded was 2.5 and 4 times higher, compared to streams rated as good for the same stressors. We demonstrated that the GRTS statistical sampling method can be used routinely in Brazilian rain forests and other South American regions with similar conditions. This survey establishes an initial baseline for monitoring the condition and trends of streams in the region.

  2. Health Monitoring of Composite Material Structures Using a Vibrometry Technique

    NASA Technical Reports Server (NTRS)

    Schulz, Mark J.

    1998-01-01

    Non-destructive evaluation (NDE) methods for quantifying and locating damage are essential for inspecting structures to ensure safety and reliability. Transmittance function monitoring is a potentially new NDE technique being tested as a tool to detect, quantify, and locate damage on flexible structures. The technique has a large spatial range that is practical for detecting damage on large composite material structures such as a reusable launch vehicle. The Transmittance Function (TF) theory is based on structural dynamics principles that define how vibration at one point in a structure is related to a force at another point. This relationship is called the Frequency Response Function (FRF). A Transmittance Function (TF) is derived as the ratio of FRFs, and can detect damage because the FRFs change due to damage. If one excitation is used for the testing, the force does not need to be measured to compute the TF. In the damage detection procedure, the structure is subjected to wide-band vibration and TFs are computed between different accelerometers to detect changes in the structure, presumably due to damage. In the first year of the project the TF method was tested on a bolted panel, a curved panel, and beams, all made of fiberglass. It was shown that damage could be detected using low frequency vibration, 250 to 1,250 Hz. The technique is sensitive to damage, but it requires storage of historical or pre-damage TFs for the healthy structure. This would become a large data storage requirement for large structures. Thus one objective for the second year of the project was to eliminate the need to store historical data. The second year report gives details of how storage of historical data was eliminated. Further results of testing panel structures are also given.

  3. Health monitoring of aeronautical structures based on vibrations measurements

    NASA Astrophysics Data System (ADS)

    Bovio, Igor; Lecce, Leonardo

    2006-03-01

    Purpose of the paper is to present an innovative application inside the Non Destructive Testing field based on vibrations measurements, developed by the authors during the last three years, and already tested for analysing damage of many structural elements. The proposed new method is based on the acquisition and comparison of Frequency Response Functions (FRFs) of the monitored structure before and after an occurred damage. Structural damage modify the dynamical behaviour of the structure such as mass, stiffened and damping, and consequently the FRFs of the damaged structure in comparison with the FRFs of the sound structure, making possible to identify, to localize and quantify a structural damage. The activities, presented in the paper, mostly focused on a new FRFs processing technique based on the determining of a representative "Damage Index" for identifying and analysing damage both on real scale aeronautical structural components, like large-scale fuselage reinforced panels, and on aeronautical composite panels. Besides it has been carried out a dedicated neural network algorithm aiming at obtaining a "recognition-based learning"; this kind of learning methodology permits to train the neural network in order to let it recognises only "positive" examples discarding as a consequence the "negative" ones. Within the structural NDT a "positive" example means "healthy" state of the analysed structural component and, obviously, a "negative" one means a "damaged" or perturbed state. From an architectural point of view piezoceramic patches have been tested as actuators and sensors. Besides it has been used a laser-scanning vibrometer system to validate the behaviour of the piezoceramic patches.

  4. Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant

    SciTech Connect

    Kumar, Rajeeva; Kumar, Aditya; Dai, Dan; Seenumani, Gayathri; Down, John; Lopez, Rodrigo

    2012-12-31

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developed will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve

  5. Structural Health Monitoring Sensor Development at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Wu, M. C.; Allison, S. G.; DeHaven, S. L.; Ghoshal, A.

    2002-01-01

    NASA is applying considerable effort on the development of sensor technology for structural health monitoring (SHM). This research is targeted toward increasing the safety and reliability of aerospace vehicles, while reducing operating and maintenance costs. Research programs are focused on applications to both aircraft and space vehicles. Sensor technologies under development span a wide range including fiber-optic sensing, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, fiber-optic sensors are one of the leading candidates and are the major focus of this presentation. In addition, recent advances in active and passive acoustic sensing will also be discussed.

  6. Monitoring Surface Condition of Plasma Grid of a Negative Hydrogen Ion Source

    SciTech Connect

    Wada, M.; Kasuya, T.; Tokushige, S.; Kenmotsu, T.

    2011-09-26

    Surface condition of a plasma grid in a negative hydrogen ion source is controlled so as to maximize the beam current under a discharge operation with introducing Cs into the ion source. Photoelectric current induced by laser beams incident on the plasma grid can produce a signal to monitor the surface condition, but the signal detection can be easily hindered by plasma noise. Reduction in size of a detection electrode embedded in the plasma grid can improve signal-to-noise ratio of the photoelectric current from the electrode. To evaluate the feasibility of monitoring surface condition of a plasma gird by utilizing photoelectric effect, a small experimental setup capable of determining quantum yields of a surface in a cesiated plasma environment is being assembled. Some preliminary test results of the apparatus utilizing oxide cathodes are reported.

  7. Monitoring strategies for re-establishment of ecological reference conditions: possibilities and limitations.

    PubMed

    Alve, Elisabeth; Lepland, Aivo; Magnusson, Jan; Backer-Owe, Kristian

    2009-01-01

    The ecological status of an environment should be evaluated by comparison with local "reference conditions", here defined as the pre-industrial ecological status of the 19th century. This pilot study illustrates how micropalaeontological monitoring, using benthic foraminifera (protists) and associated geochemical parameters preserved in inner Oslofjord (Norway) sediments, characterise local reference conditions. In order to optimise the usefulness of the ecological information held by foraminifera and enable characterisation of temporal changes in environmental quality beyond time intervals covered by biological time-series, the Norwegian governmental macrofauna-based classification system is applied on fossil benthic foraminiferal assemblages. Quantitative comparisons demonstrate deteriorating ecological status in response to increased anthropogenic forcing (eutrophication, micropollutants), including a 73% loss in number of foraminiferal species. Despite reduced pollution during the past decades and, at one site, capping of polluted sediments with clean clay, the reference conditions are far from re-established. Micropalaeontological monitoring requires net sediment accumulation basins and careful considerations of taphonomic processes.

  8. Grinding Wheel Condition Monitoring with Hidden Markov Model-Based Clustering Methods

    SciTech Connect

    Liao, T. W.; Hua, G; Qu, Jun; Blau, Peter Julian

    2006-01-01

    Hidden Markov model (HMM) is well known for sequence modeling and has been used for condition monitoring. However, HMM-based clustering methods are developed only recently. This article proposes a HMM-based clustering method for monitoring the condition of grinding wheel used in grinding operations. The proposed method first extract features from signals based on discrete wavelet decomposition using a moving window approach. It then generates a distance (dissimilarity) matrix using HMM. Based on this distance matrix several hierarchical and partitioning-based clustering algorithms are applied to obtain clustering results. The proposed methodology was tested with feature sequences extracted from acoustic emission signals. The results show that clustering accuracy is dependent upon cutting condition. Higher material removal rate seems to produce more discriminatory signals/features than lower material removal rate. The effect of window size, wavelet decomposition level, wavelet basis, clustering algorithm, and data normalization were also studied.

  9. Unified Multi-speed analysis (UMA) for the condition monitoring of aero-engines

    NASA Astrophysics Data System (ADS)

    Nembhard, Adrian D.; Sinha, Jyoti K.

    2015-12-01

    For rotating machinery in which speeds and dynamics constantly change, performing vibration-based condition monitoring can be challenging. Thus, an effort is made here to develop a Unified Multi-speed fault diagnosis technique that can exploit useful vibration information available at various speeds from a rotating machine in a single analysis. Commonly applied indicators are computed from data collected from a rig at different speeds for a baseline case and different faults. Four separate analyses are performed: single speed at a single bearing, integrated features from multiple speeds at a single bearing, single speed for integrated features from multiple bearings and the proposed Unified Multi-speed analysis. The Unified Multi-speed approach produces the most conspicuous separation and isolation among the conditions tested. Observations made here suggest integration of more dynamic features available at different speeds improves the learning process of the tool which could prove useful for aero-engine condition monitoring.

  10. Structures under extreme loading conditions -- 1996. PVP-Volume 325

    SciTech Connect

    Shin, Y.S.; Zukas, J.A.

    1996-12-31

    High-energy excitations are a continuing challenge to experimental, analytical, and computational approaches for learning the behavior of materials and structures under extreme loading conditions. Problems involving underwater explosions and their effects on structures lead off this volume. These are followed by problems traditionally falling in the category of structural dynamics: the buckling and large plastic deformation of structures and structural elements subjected to intense, short-duration distributed or localized loads. As load intensity increases and both load duration and response times decrease, analyses using wave propagation concepts become important. The focus shifts to the local response of the material at the load point rather than the global response of the structure. Many papers herein present experimental, analytical, and numerical solutions to problems of blast and impact loading on diverse structures or structural elements. Others deal with techniques required to generate such loading in the laboratory and the instrumentation required to establish loading conditions and measure response characteristics. This broad coverage of topics should make this a valuable volume for those working in shock and impact loading, high rate material behavior, penetration and perforation, and also hypervelocity impact. Separate abstracts were prepared for some papers in this volume.

  11. Robust condition monitoring and fault diagnosis of rolling element bearings using improved EEMD and statistical features

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Zhu, Zhencai; Li, Wei; Chen, Guoan; Zhou, Gongbo

    2014-02-01

    Condition monitoring and fault diagnosis play an important role in the health management of mechanical equipment. However, the robust performance of data-driven-based methods with unknown fault inputs remains to be further improved. In this paper, a novel approach of condition monitoring and fault diagnosis is proposed for rolling element bearings based on an improved ensemble empirical mode decomposition (IEEMD), which is able to solve the non-intrinsic mode function problem of EEMD. In this method, IEEMD is applied to process the primordial vibration signals collected from rolling element bearings at first. Then the correlation analysis and data fusion technology are introduced to extract statistical features from these decomposition results of IEEMD. Finally, a complete self-zero space model is constructed for the condition monitoring and fault diagnosis of rolling element bearings. Experiments are implemented on a mechanical fault simulator to demonstrate the reliability and effectiveness of the proposed method. The experimental results show that the proposed method can not only diagnose known faults but also monitor unknown faults with strong robust performance.

  12. Realtime Monitoring of the Extreme Oceanic Conditions in the Kangjin Bay, South Sea, Korea

    NASA Astrophysics Data System (ADS)

    Ro, Y.; Jung, K.

    2006-05-01

    Realtime(RT) monitoring system for the oceanic state variables was developed and has been operating since April, 2004 in the Kangjin Bay, South Sea, Korea shown. The RT production of data stream and display on the Internet web page are made possible in continuous functions of various system elements. Detailed technical information for the RT monitoring system can be referred to Ro et al. (2004). The water quality parameters, current and meteorological conditions are continuously monitored with very high sampling resolution (10 min.) throughout the year and are being published on the Internet web pages (http://oceaninfo.co.kr/kangjin). The research project encompass several important subjects focusing on the extreme oceanic conditions such as very cold water mass formation during the wintertime cold outbreak, highly diluted sea water during the dam water discharge in the summertime monsoon and the subsequent formation of the hypoxia in the shallow Kangjin Bay. These are the typical extreme events captured possibly by the RT monitoring system, without which could never have been observed and understood. These extreme conditions would exert dramatic ecological impact to the local aqua-culture ecology. This study would elucidate the series of physico-chemical processes and its implication of the local eco-system. To understand the complicated processes, various research tools have been employed such as numerical modeling of tidal circulation, density-driven current, water-quality and formation of hypoxia, time series analyses of various water quality properties including multi-variate correlation.

  13. Research of on-line monitoring method for insulation condition of power transformer bushing

    NASA Astrophysics Data System (ADS)

    Xia, Jiuyun; Qian, Zheng; Yu, Hao; Yao, Junda

    2016-01-01

    The power transformer is the key equipment of the power system; its insulation condition will directly influence the security and reliability of the power system. Thus, the on-line monitoring of power transformer is urgently required in order to guarantee the normal operation of the power system. Moreover, the dielectric loss factor is a significant parameter reflecting the condition of transformer bushing, so the on-line measurement of dielectric loss factor is really important. In this paper, the phase-to-phase comparison method is selected as the on-line monitoring method based on the overall analysis and discussion of the existing on-line monitoring methods. At first, the harmonic analysis method is utilized to calculate the dielectric loss of each phase of the three-phase transformer bushing, and then the differences of dielectric loss between every two phases are calculated and analyzed. So the insulation condition of each bushing could be achieved based on the careful analysis of different phase-to-phase dielectric loss. The simulation results of phase-to-phase comparison method are carried out in this paper, and the validity is verified. At last, this method is utilized in an actual equipment of on-line monitoring.

  14. Design and Analysis of Architectures for Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  15. Evaluation of embedded FBGs in composite overwrapped pressure vessels for strain based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Pena, Francisco; Strutner, Scott M.; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.

    2014-03-01

    The increased use of composite overwrapped pressure vessels (COPVs) in space and commercial applications, and the explosive nature of pressure vessel ruptures, make it crucial to develop techniques for early condition based damage detection. The need for a robust health monitoring system for COPVs is a high priority since the mechanisms of stress rupture are not fully understood. Embedded Fiber Bragg Grating (FBG) sensors have been proposed as a potential solution that may be utilized to anticipate and potentially avoid catastrophic failures. The small size and light weight of optical fibers enable manufactures to integrate FBGs directly into composite structures for the purpose of structural health monitoring. A challenging aspect of embedding FBGs within composite structures is the risk of potentially impinging the optical fiber while the structure is under load, thus distorting the optical information to be transferred. As the COPV is pressurized, an embedded optical sensor is compressed between the expansion of the inner bottle, and the outer overwrap layer of composite. In this study, FBGs are installed on the outer surface of a COPV bottle as well as embedded underneath a composite overwrap layer for comparison of strain measurements. Experimental data is collected from optical fibers containing multiple FBGs during incremental pressurization cycles, ranging from 0 to 10,000 psi. The graphical representations of high density strain maps provide a more efficient process of monitoring structural integrity. Preliminary results capture the complex distribution of strain, while furthering the understanding of the failure mechanisms of COPVs.

  16. Time-frequency methods for structural health monitoring.

    PubMed

    Pyayt, Alexander L; Kozionov, Alexey P; Mokhov, Ilya I; Lang, Bernhard; Meijer, Robert J; Krzhizhanovskaya, Valeria V; Sloot, Peter M A

    2014-03-12

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and "strange" behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany).

  17. Time-Frequency Methods for Structural Health Monitoring

    PubMed Central

    Pyayt, Alexander L.; Kozionov, Alexey P.; Mokhov, Ilya I.; Lang, Bernhard; Meijer, Robert J.; Krzhizhanovskaya, Valeria V.; Sloot, Peter M. A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and “strange” behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany). PMID:24625740

  18. Structural Health Monitoring: Leveraging Pain in the Human Body

    NASA Astrophysics Data System (ADS)

    Nayak, Subhadarshi

    2012-07-01

    Tissue damage, or the perception thereof, is managed through pain experience. The neurobiological process of pain triggers most effective defense mechanisms for our safety. Structural health monitoring (SHM) is also a very similar function, albeit in engineering systems. SHM technology can leverage many aspects of pain mechanisms to progress in several critical areas. Discrimination between features from the undamaged and damaged structures can follow the threshold gate mechanism of the pain perception. Furthermore, the sensing mechanisms can be adaptive to changes by adjusting the threshold as does the pain perception. A distributed sensor network, often advanced by SHM, can be made fault-tolerant and robust by following the perception way of self-organization and redundancy. Data handling in real life is a huge challenge for large-scale SHM. As sensory data of pain is first cleaned, the threshold is then processed through experiential information gathering and use.

  19. Damage detection and health monitoring of operational structures

    SciTech Connect

    James, G.; Mayes, R.; Carne, T.; Reese, G.

    1994-09-01

    Initial damage detection/health monitoring experiments have been performed on three different operational structures: a fracture critical bridge, a composite wind turbine blade, and an aging aircraft. An induced damage test was performed on the Rio Grande/I40 bridge before its demolition. The composite wind turbine test was fatgued to failure with periodic modal testing performed throughout the testing. The front fuselage of a DC-9 aircraft was used as the testbed for an induced damage test. These tests have yielded important insights into techniques for experimental damage detection on real structures. Additionally, the data are currently being used with current damage detection algorithms to further develop the numerical technology. State of the art testing technologies such as, high density modal testing, scanning laser vibrometry and natural excitation testing have also been utilized for these tests.

  20. Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions

    PubMed Central

    Kolářová, Hana; Ambrůzová, Barbora; Švihálková Šindlerová, Lenka; Klinke, Anna; Kubala, Lukáš

    2014-01-01

    The glycocalyx of the endothelium is an intravascular compartment that creates a barrier between circulating blood and the vessel wall. The glycocalyx is suggested to play an important role in numerous physiological processes including the regulation of vascular permeability, the prevention of the margination of blood cells to the vessel wall, and the transmission of shear stress. Various theoretical models and experimental approaches provide data about changes to the structure and functions of the glycocalyx under various types of inflammatory conditions. These alterations are suggested to promote inflammatory processes in vessels and contribute to the pathogenesis of number of diseases. In this review we summarize current knowledge about the modulation of the glycocalyx under inflammatory conditions and the consequences for the course of inflammation in vessels. The structure and functions of endothelial glycocalyx are briefly discussed in the context of methodological approaches regarding the determination of endothelial glycocalyx and the uncertainty and challenges involved in glycocalyx structure determination. In addition, the modulation of glycocalyx structure under inflammatory conditions and the possible consequences for pathogenesis of selected diseases and medical conditions (in particular, diabetes, atherosclerosis, ischemia/reperfusion, and sepsis) are summarized. Finally, therapeutic strategies to ameliorate glycocalyx dysfunction suggested by various authors are discussed. PMID:24803742

  1. Modulation of endothelial glycocalyx structure under inflammatory conditions.

    PubMed

    Kolářová, Hana; Ambrůzová, Barbora; Svihálková Šindlerová, Lenka; Klinke, Anna; Kubala, Lukáš

    2014-01-01

    The glycocalyx of the endothelium is an intravascular compartment that creates a barrier between circulating blood and the vessel wall. The glycocalyx is suggested to play an important role in numerous physiological processes including the regulation of vascular permeability, the prevention of the margination of blood cells to the vessel wall, and the transmission of shear stress. Various theoretical models and experimental approaches provide data about changes to the structure and functions of the glycocalyx under various types of inflammatory conditions. These alterations are suggested to promote inflammatory processes in vessels and contribute to the pathogenesis of number of diseases. In this review we summarize current knowledge about the modulation of the glycocalyx under inflammatory conditions and the consequences for the course of inflammation in vessels. The structure and functions of endothelial glycocalyx are briefly discussed in the context of methodological approaches regarding the determination of endothelial glycocalyx and the uncertainty and challenges involved in glycocalyx structure determination. In addition, the modulation of glycocalyx structure under inflammatory conditions and the possible consequences for pathogenesis of selected diseases and medical conditions (in particular, diabetes, atherosclerosis, ischemia/reperfusion, and sepsis) are summarized. Finally, therapeutic strategies to ameliorate glycocalyx dysfunction suggested by various authors are discussed.

  2. 24 CFR 221.305 - Condition of the multifamily structure.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AUTHORITIES LOW COST AND MODERATE INCOME MORTGAGE INSURANCE-SAVINGS CLAUSE Contract Rights and Obligations-Low... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Condition of the multifamily structure. 221.305 Section 221.305 Housing and Urban Development Regulations Relating to Housing and...

  3. 24 CFR 221.305 - Condition of the multifamily structure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AUTHORITIES LOW COST AND MODERATE INCOME MORTGAGE INSURANCE-SAVINGS CLAUSE Contract Rights and Obligations-Low... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Condition of the multifamily structure. 221.305 Section 221.305 Housing and Urban Development Regulations Relating to Housing and...

  4. Adaptive sensor array algorithm for structural health monitoring of helmet

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Tian, Ye; Wu, Nan; Sun, Kai; Wang, Xingwei

    2011-04-01

    The adaptive neural network is a standard technique used in nonlinear system estimation and learning applications for dynamic models. In this paper, we introduced an adaptive sensor fusion algorithm for a helmet structure health monitoring system. The helmet structure health monitoring system is used to study the effects of ballistic/blast events on the helmet and human skull. Installed inside the helmet system, there is an optical fiber pressure sensors array. After implementing the adaptive estimation algorithm into helmet system, a dynamic model for the sensor array has been developed. The dynamic response characteristics of the sensor network are estimated from the pressure data by applying an adaptive control algorithm using artificial neural network. With the estimated parameters and position data from the dynamic model, the pressure distribution of the whole helmet can be calculated following the Bazier Surface interpolation method. The distribution pattern inside the helmet will be very helpful for improving helmet design to provide better protection to soldiers from head injuries.

  5. Monitor-outside-a-monitor effect and self-similar fractal structure in the eigenmodes of unstable optical resonators.

    PubMed

    Courtial, J; Padgett, M J

    2000-12-18

    A novel mechanism is proposed for the generation of self-similar structure over a limited range of length scales. Our mechanism, which we call the monitor-outside-a-monitor effect, comprises repeated magnification and addition of small-scale structure. We invoke this mechanism to explain recent observations of fractal structure in the eigenmodes of unstable optical resonators [G. P. Karman et al., Nature (London) 402, 138 (1999)]. PMID:11135986

  6. Flight parameters monitoring system for tracking structural integrity of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Mohammadi, Jamshid; Olkiewicz, Craig

    1994-01-01

    Recent developments in advanced monitoring systems used in conjunction with tracking structural integrity of rotary-wing aircraft are explained. The paper describes: (1) an overview of rotary-wing aircraft flight parameters that are critical to the aircraft loading conditions and each parameter's specific requirements in terms of data collection and processing; (2) description of the monitoring system and its functions used in a survey of rotary-wing aircraft; and (3) description of the method of analysis used for the data. The paper presents a newly-developed method in compiling flight data. The method utilizes the maneuver sequence of events in several pre-identified flight conditions to describe various flight parameters at three specific weight ranges.

  7. A bio-inspired structural health monitoring system based on ambient vibration

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Kang; Kiremidjian, Anne; Lei, Chi-Yang

    2010-11-01

    A structural health monitoring (SHM) system based on naïve Bayesian (NB) damage classification and DNA-like expression data was developed in this research. Adapted from the deoxyribonucleic acid (DNA) array concept in molecular biology, the proposed structural health monitoring system is constructed utilizing a double-tier regression process to extract the expression array from the structural time history recorded during external excitations. The extracted array is symbolized as the various genes of the structure from the viewpoint of molecular biology and reflects the possible damage conditions prevalent in the structure. A scaled down, six-story steel building mounted on the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark. The structural response at different damage levels and locations under ambient vibration was collected to support the database for the proposed SHM system. To improve the precision of detection in practical applications, the system was enhanced by an optimization process using the likelihood selection method. The obtained array representing the DNA array of the health condition of the structure was first evaluated and ranked. A total of 12 groups of expression arrays were regenerated from a combination of four damage conditions. To keep the length of the array unchanged, the best 16 coefficients from every expression array were selected to form the optimized SHM system. Test results from the ambient vibrations showed that the detection accuracy of the structural damage could be greatly enhanced by the optimized expression array, when compared to the original system. Practical verification also demonstrated that a rapid and reliable result could be given by the final system within 1 min. The proposed system implements the idea of transplanting the DNA array concept from molecular biology into the field of SHM.

  8. Time-dependent reliability analysis and condition assessment of structures

    SciTech Connect

    Ellingwood, B.R.

    1997-01-01

    Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process.

  9. Feasibility Investigation on the Development of a Structural Damage Diagnostic and Monitoring System for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Shen, Ji Y.; Sharpe, Lonnie, Jr.

    1998-01-01

    The research activity for this project is mainly to investigate the necessity and feasibility to develop a structural health monitoring system for rocket engines, and to carry out a research plan for further development of the system. More than one hundred technical papers have been searched and reviewed during the period. We concluded after this investigation that adding a new module in NASA's existing automated diagnostic system to monitor the healthy condition of rocket engine structures is a crucial task, and it's possible to develop such a system based upon the vibrational-based nondestructive damage assessment techniques. A number of such techniques have been introduced. Their advantages and disadvantages are also discussed. A global research plan has been figured out. As the first step of the overall research plan, a proposal for the next fiscal year has been submitted.

  10. Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Bernstein, Dennis S.

    2012-01-01

    Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.

  11. Measuring various sizes of H-reflex while monitoring the stimulus condition.

    PubMed

    Hiraoka, Koichi

    2002-11-01

    The purpose of this study was to assess the usefulness of a new technique that measured various sizes of the soleus H-reflex, while monitoring the stimulus condition. Eight healthy volunteers participated in this experiment. In the new technique, an above-motor-threshold conditioning stimulus was given to the tibial nerve 10-12 ms after a below-motor-threshold test stimulus. The conditioning stimulus evoked a direct M-wave, which was followed by a test-stimulus-evoked H-reflex. This reflex was followed by a conditioning stimulus-evoked H-reflex. The amount of the voluntary-contraction-induced facilitation of the H-reflex was similar for both the new technique and conventional technique, in which an above-motor-threshold test stimulus was given without a conditioning stimulus. Using the new technique, we found that the amount of facilitation increased linearly with the size of the test H-reflex. This technique allows us to evoke various sizes of H-reflex while monitoring a stimulus condition, and is useful for measuring H-reflexes during voluntary movement.

  12. An Updated Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    SciTech Connect

    Ramuhalli, Pradeep; Hirt, Evelyn H.; Coles, Garill A.; Bonebrake, Christopher A.; Ivans, William J.; Wootan, David W.; Mitchell, Mark R.

    2014-07-18

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment, as AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors and the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results on augmenting an initial methodology for enhanced risk monitors that integrate real-time information about equipment condition and POF into risk monitors. Methods to propagate uncertainty through the enhanced risk monitor are evaluated. Available data to quantify the level of uncertainty and the POF of key components are examined for their relevance, and a status update of this data evaluation is described. Finally, we describe potential targets for developing new risk metrics that may be useful for studying trade-offs for economic

  13. ARMA modelled time-series classification for structural health monitoring of civil infrastructure

    NASA Astrophysics Data System (ADS)

    Peter Carden, E.; Brownjohn, James M. W.

    2008-02-01

    Structural health monitoring (SHM) is the subject of a great deal of ongoing research leading to the capability that reliable remote monitoring of civil infrastructure would allow a shift from schedule-based to condition-based maintenance strategies. The first stage in such a system would be the indication of an extraordinary change in the structure's behaviour. A statistical classification algorithm is presented here which is based on analysis of a structure's response in the time domain. The time-series responses are fitted with Autoregressive Moving Average (ARMA) models and the ARMA coefficients are fed to the classifier. The classifier is capable of learning in an unsupervised manner and of forming new classes when the structural response exhibits change. The approach is demonstrated with experimental data from the IASC-ASCE benchmark four-storey frame structure, the Z24 bridge and the Malaysia-Singapore Second Link bridge. The classifier is found to be capable of identifying structural change in all cases and of forming distinct classes corresponding to different structural states in most cases.

  14. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops.

    PubMed

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-01-01

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi(®) Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops. PMID:26633418

  15. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops

    PubMed Central

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-01-01

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi® Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops. PMID:26633418

  16. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops.

    PubMed

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-12-03

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi(®) Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops.

  17. Physical Conditions in the Source Region of a Zebra Structure

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.; Stupishin, A. G.

    2016-07-01

    We analyze the physical conditions in the source region of a zebra structure, observed with the Ondřejov radiospectrograph during the 1 August 2010 solar flare. To determine the gyro-frequency harmonic numbers of the observed zebra lines, we compute the magnetic field strength, the electron density, and their spatial scales in the source region of the zebra structure. The region where the flare occurred is analyzed using EUV (171 Å and 335 Å) observations. To determine the conditions in the zebra source region, the magnetic field structure is reconstructed using observed photospheric magnetic field data. By computing the dependence of the magnetic field vs. height in this reconstruction and by comparing the magnetic field strength derived from the zebra structure, we determine the dependence of the electron density vs. height in the zebra source-region. We identify the loops where the zebra structure was generated at heights of about 2.5 - 3.3 Mm. Assuming the barometric law for the electron density, we determine the temperature in the zebra source-region to be T ≈ 2.0 × 104 K. Comparing the obtained values of the temperature and electron density in the zebra source-region with a model of the solar atmosphere, we find that the zebra structure was generated in the transition region, in agreement with our previous results.

  18. Physical Conditions in the Source Region of a Zebra Structure

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.; Stupishin, A. G.

    2016-08-01

    We analyze the physical conditions in the source region of a zebra structure, observed with the Ondřejov radiospectrograph during the 1 August 2010 solar flare. To determine the gyro-frequency harmonic numbers of the observed zebra lines, we compute the magnetic field strength, the electron density, and their spatial scales in the source region of the zebra structure. The region where the flare occurred is analyzed using EUV (171 Å and 335 Å) observations. To determine the conditions in the zebra source region, the magnetic field structure is reconstructed using observed photospheric magnetic field data. By computing the dependence of the magnetic field vs. height in this reconstruction and by comparing the magnetic field strength derived from the zebra structure, we determine the dependence of the electron density vs. height in the zebra source-region. We identify the loops where the zebra structure was generated at heights of about 2.5 - 3.3 Mm. Assuming the barometric law for the electron density, we determine the temperature in the zebra source-region to be T ≈ 2.0 × 104~K. Comparing the obtained values of the temperature and electron density in the zebra source-region with a model of the solar atmosphere, we find that the zebra structure was generated in the transition region, in agreement with our previous results.

  19. Load monitoring and compensation strategies for guided-waves based structural health monitoring using piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Roy, Surajit; Ladpli, Purim; Chang, Fu-Kuo

    2015-09-01

    Accurate interpretation of in-situ piezoelectric sensor signals is a challenging task. This paper presents the development of a numerical compensation model based on physical insight to address the influence of structural loads on piezo-sensor signals. The model requires knowledge of in-situ strain and temperature distribution in a structure while acquiring piezoelectric sensor signals. The parameters of the numerical model are obtained using experiments on flat aluminum plate under uniaxial tensile loading. It is shown that the model parameters obtained experimentally can be used for different structures, and sensor layout. Furthermore, the combined effects of load and temperature on the piezo-sensor response are also investigated and it is observed that both of these factors have a coupled effect on the sensor signals. It is proposed to obtain compensation model parameters under a range of operating temperatures to address this coupling effect. An important outcome of this study is a new load monitoring concept using in-situ piezoelectric sensor signals to track changes in the load paths in a structure.

  20. Load monitoring and compensation strategies for guided-waves based structural health monitoring using piezoelectric transducers

    SciTech Connect

    Roy, Surajit; Ladpli, Purim; Chang, Fu-Kuo

    2015-09-01

    Accurate interpretation of in-situ piezoelectric sensor signals is a challenging task. This article presents the development of a numerical compensation model based on physical insight to address the influence of structural loads on piezo-sensor signals. The model requires knowledge of in-situ strain and temperature distribution in a structure while acquiring sensor signals. The parameters of the numerical model are obtained using experiments on flat aluminum plate under uniaxial tensile loading. It is shown that the model parameters obtained experimentally can be used for different structures, and sensor layout. Furthermore, the combined effects of load and temperature on the piezo-sensor response are also investigated and it is observed that both of these factors have a coupled effect on the sensor signals. It is proposed to obtain compensation model parameters under a range of operating temperatures to address this coupling effect. An important outcome of this study is a new load monitoring concept using in-situ piezoelectric sensor signals to track changes in the load paths in a structure.

  1. Computational Intelligence Approach to Condition Monitoring: Incremental Learning and Its Application

    NASA Astrophysics Data System (ADS)

    Vilakazi, Christina B.; Marwala, Tshilidzi

    Machine condition monitoring is gaining importance in industry due to the need to increase machine reliability and decrease the possible loss of production due to machine breakdown. Often the data available to build a condition monitoring system does not fully represent the system. It is also often common that the data becomes available in small batches over a period of time. Hence, it is important to build a system that is able to accommodate new data set as it becomes available without compromising the performance of the previously learned data. Two incremental learning algorithm are implemented, the first method uses Fuzzy ARTMAP (FAM) algorithm and the second uses Learn++ algorithm. Experimental results show that both methods can accommodate both new data and new classes.

  2. Monitored conditional release of persons found not guilty by reason of insanity.

    PubMed

    Bloom, J D; Williams, M H; Bigelow, D A

    1991-04-01

    This article reviews the recent literature documenting changes that have taken place in the management and treatment of insanity defense acquittees with the development of conditional release and monitored community treatment. The review demonstrates that conditional release is particularly important as a means of balancing the protection of society with the treatment of insanity defense acquittees in the least restrictive environment. The review also highlights the development of community programs based on treatment models for the chronically mentally ill. In addition, monitored community treatment programs appear cost-effective when compared with hospital-based programs. These factors point to the development in the 1990s of program standards for the release of insanity defense acquittees.

  3. Hardware device for data fusion and novelty detection in condition monitoring

    NASA Astrophysics Data System (ADS)

    Taylor, Odin; MacIntyre, John

    2000-04-01

    The hardware device is known as a Local Fusion System (LFS) and is part of a larger modular condition monitoring solution. The LFS unit will be discussed in detail in this paper, describing how the design has evolved into a real hardware based condition-monitoring device that will be taken to market by one of the project partners. The device is responsible for learning the normal operating state of a machine component and identifying when it changes, in a process called novelty detection. To learn the normal operating state of a machine, the device learns a representation of the sensors that are connected to the unit (which could be of varying types and number) by using a novel neural network based fusion center that will be discussed in detail in this paper. The paper will also look pre- and post-processing issues in a limited hardware environment along with some example development data that if from a real-world machine.

  4. An Uncertainty Quantification Framework for Prognostics and Condition-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Goebel, Kai

    2014-01-01

    This paper presents a computational framework for uncertainty quantification in prognostics in the context of condition-based monitoring of aerospace systems. The different sources of uncertainty and the various uncertainty quantification activities in condition-based prognostics are outlined in detail, and it is demonstrated that the Bayesian subjective approach is suitable for interpreting uncertainty in online monitoring. A state-space model-based framework for prognostics, that can rigorously account for the various sources of uncertainty, is presented. Prognostics consists of two important steps. First, the state of the system is estimated using Bayesian tracking, and then, the future states of the system are predicted until failure, thereby computing the remaining useful life of the system. The proposed framework is illustrated using the power system of a planetary rover test-bed, which is being developed and studied at NASA Ames Research Center.

  5. Cable aging and condition monitoring of radiation resistant nano-dielectrics in advanced reactor applications

    SciTech Connect

    Duckworth, Robert C; Aytug, Tolga; Paranthaman, Mariappan Parans; Kidder, Michelle; Polyzos, Georgios; Leonard, Keith J

    2015-01-01

    Cross-linked polyethylene (XLPE) nanocomposites have been developed in an effort to improve cable insulation lifetime to serve in both instrument cables and auxiliary power systems in advanced reactor applications as well as to provide an alternative for new or retro-fit cable insulation installations. Nano-dielectrics composed of different weight percentages of MgO & SiO2 have been subjected to radiation at accumulated doses approaching 20 MRad and thermal aging temperatures exceeding 100 C. Depending on the composition, the performance of the nanodielectric insulation was influenced, both positively and negatively, when quantified with respect to its electrical and mechanical properties. For virgin unradiated or thermally aged samples, XLPE nanocomposites with 1wt.% SiO2 showed improvement in breakdown strength and reduction in its dissipation factor when compared to pure undoped XLPE, while XLPE 3wt.% SiO2 resulted in lower breakdown strength. When aged in air at 120 C, retention of electrical breakdown strength and dissipation factor was observed for XLPE 3wt.% MgO nanocomposites. Irrespective of the nanoparticle species, XLPE nanocomposites that were gamma irradiated up to the accumulated dose of 18 MRad showed a significant drop in breakdown strength especially for particle concentrations greater than 3 wt.%. Additional attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy measurements suggest changes in the structure of the XLPE SiO2 nanocomposites associated with the interaction of silicon and oxygen. Discussion on the relevance of property changes with respect to cable aging and condition monitoring is presented.

  6. Multi-tiered sensing and data processing for monitoring ship structures

    SciTech Connect

    Farrar, Charles; Salvino, Liming; Lynch, Jerome; Brady, Thomas

    2009-01-01

    A comprehensive structural health monitoring (SHM) system is a critical mechanism to ensure hull integrity and evaluate structural performance over the life of a ship, especially for lightweight high-speed ships. One of the most important functions of a SHM system is to provide real-time performance guidance and reduce the risk of structural damage during operations at sea. This is done by continuous feedback from onboard sensors providing measurements of seaway loads and structural responses. Applications of SHM should also include diagnostic capabilities such as identifying the presence of damage, assessing the location and extent of damage when it does occur in order to plan for future inspection and maintenance. The development of such SHM systems is extremely challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with the missions of high performance ships, the lack of data from known damage conditions, the limited sensing that was not designed specifically for SHM, the management of the vast amounts of data, and the need for continued, real-time data processing. This paper will discuss some of these challenges and several outstanding issues that need to be addressed in the context of applying various SHM approaches to sea trials data measured on an aluminum high-speed catamaran, the HSV-2 Swift. A multi-tiered approach for sensing and data processing will be discussed as potential SHM architecture for future shipboard application. This approach will involve application of low cost and dense sensor arrays such as wireless communications in selected areas of the ship hull in addition to conventional sensors measuring global structural response of the ship. A recent wireless hull monitoring demo on FSF-I SeaFighter will be discussed as an example to show how this proposed architecture is a viable approach for long-term and real-time hull monitoring.

  7. Structural 3d Monitoring Using a New Sinusoidal Fitting Adjustment

    NASA Astrophysics Data System (ADS)

    Detchev, I.; Habib, A.; Lichti, D.; El-Badry, M.

    2016-06-01

    Digital photogrammetric systems combined with image processing techniques have been used for structural monitoring purposes for more than a decade. For applications requiring sub-millimetre level precision, the use of off-the-shelf DSLR cameras is a suitable choice, especially when the low cost of the involved sensors is a priority. The disadvantage in the use of entry level DSLRs is that there is a trade-off between frame rate and burst rate - a high frame rate is either not available or it cannot be sustained long enough. This problem must be overcome when monitoring a structural element undergoing a dynamic test, where a range of loads are cycled through multiple times a second. In order to estimate deflections during such a scenario, this paper proposes a new least-squares adjustment for sinusoidal fitting. The new technique is capable of processing multiple back-to-back bursts of data within the same adjustment, which synthetically increases the de-facto temporal resolution of the system. The paper describes a beam deformation test done in a structures laboratory. The experimental results were assessed in terms of both their precision and accuracy. The new method increased the effective sampling frequency three-fold, which improved the standard deviations of the estimated parameters with up to two orders of magnitude. A residual RMSE as low as 30 μm was attained, and likewise the RMSE of the computed amplitudes between the photogrammetric system and the control laser transducers was as small as 34 μm.

  8. Energy Harvesting for Aerospace Structural Health Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Pearson, M. R.; Eaton, M. J.; Pullin, R.; Featherston, C. A.; Holford, K. M.

    2012-08-01

    Recent research into damage detection methodologies, embedded sensors, wireless data transmission and energy harvesting in aerospace environments has meant that autonomous structural health monitoring (SHM) systems are becoming a real possibility. The most promising system would utilise wireless sensor nodes that are able to make decisions on damage and communicate this wirelessly to a central base station. Although such a system shows great potential and both passive and active monitoring techniques exist for detecting damage in structures, powering such wireless sensors nodes poses a problem. Two such energy sources that could be harvested in abundance on an aircraft are vibration and thermal gradients. Piezoelectric transducers mounted to the surface of a structure can be utilised to generate power from a dynamic strain whilst thermoelectric generators (TEG) can be used to generate power from thermal gradients. This paper reports on the viability of these two energy sources for powering a wireless SHM system from vibrations ranging from 20 to 400Hz and thermal gradients up to 50°C. Investigations showed that using a single vibrational energy harvester raw power levels of up to 1mW could be generated. Further numerical modelling demonstrated that by optimising the position and orientation of the vibrational harvester greater levels of power could be achieved. However using commercial TEGs average power levels over a flight period between 5 to 30mW could be generated. Both of these energy harvesting techniques show a great potential in powering current wireless SHM systems where depending on the complexity the power requirements range from 1 to 180mW.

  9. Health monitoring of reinforced concrete structures based on PZT admittance signal

    NASA Astrophysics Data System (ADS)

    Wang, Dansheng; Zhu, Hongping; Shen, Danyan; Ge, Dongdong

    2009-07-01

    Reinforced concrete (RC) structure is one of most familiar engineering structure styles in the civil engineering community, which often suffer crack damage during their service life because of some factors such as overloading, excessive use, and bad environmental conditions. Thus early detection of crack damage is of special concern for RC structures. Piezoelectric materials have direct and converse piezoelectric effects and can serve as actuators or sensors. A health monitoring method based on PZT admittance signals is addressed in this paper, which use the electromechanical coupling property of piezoelectric materials. An experimental study on health monitoring of a RC beam is implemented based on the PZT admittance signals. In this experiment, the electrical admittances of distributed PZT sheets are measured when the host beams are suffering from variable loads. From the obtained PZT admittance curves one can find that the presence of incipient crack can be captured and the cracking load of the RC beam can also generally determined. By the experimental study it is concluded that the health monitoring technique is quite effective and sensitive for RC structures, which indicates its favorable application foreground in civil engineering field.

  10. Monitoring of Double-Stud Wall Moisture Conditions in the Northeast

    SciTech Connect

    Ueno, K.

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double-stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double-stud walls were monitored in Zone 5A (Massachusetts); three double-stud assemblies were compared.

  11. An efficient recursive least square-based condition monitoring approach for a rail vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Alfi, S.; Bruni, S.

    2016-06-01

    A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic 'input-output' model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software 'ADTreS' are utilised as 'virtual measurements' considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.

  12. Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model

    PubMed Central

    Wang, Guofeng; Yang, Yinwei; Li, Zhimeng

    2014-01-01

    Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability. PMID:25405514

  13. Nonlinearity detection for condition monitoring utilizing higher-order spectral analysis diagnostics

    NASA Astrophysics Data System (ADS)

    Park, Hyeonsu

    In this dissertation, we investigate the theory and application of higher-order spectral analysis techniques to condition monitoring in shipboard electrical power systems. Monitoring and early detection of faults in rotating machines, such as induction motors, are essential for both preventive maintenance and to avoid potentially severe damage. As machines degrade, they often tend to become more nonlinear. This increased nonlinearity results in the introduction of new frequencies which satisfy particular frequency selection rules; the exact selection rule depends on the order of the nonlinearity. In addition, the phases of the newly generated frequencies satisfy a similar phase selection rule. This results in a phase coherence, or phase coupling, between the "original" interacting frequencies and the "new" frequencies. This phase coupling is a true signature of nonlinearity. Since the classical auto-power spectrum contains no phase information, the phase coupling signature associated with nonlinear interactions is not available. However, various higher-order spectra (HOS) are capable of detecting such nonlinear-induced phase coupling. The efficacy of the various proposed HOS-based methodologies is investigated using real-world vibration time-series data from a faulted induction motor driving a dc generator. The fault is controlled by varying a resistor placed in one phase of the three-phase line to the induction motor. First, we propose a novel method using a bispectral change detection (BCD) for condition monitoring. Even though the bicoherence is dominant and powerful in the detection of phase coupling of nonlinearly interacting frequencies, it has some difficulties in its application to machine condition monitoring. Basically, the bicoherence may not be able to distinguish between intrinsic nonlinearities associated with healthy machines and fault-induced nonlinearities. Therefore, the ability to discriminate the fault-only nonlinearities from the intrinsic

  14. Usefulness of LANDSAT data for monitoring plant development and range conditions in California's annual grassland

    NASA Technical Reports Server (NTRS)

    Carneggie, D. M.; Degloria, S. D.; Colwell, R. N.

    1975-01-01

    A network of sampling sites throughout the annual grassland region of California was established to correlate plant growth stages and forage production to climatic and other environmental factors. Plant growth and range conditions were further related to geographic location and seasonal variations. A sequence of LANDSAT data was obtained covering critical periods in the growth cycle. This was analyzed by both photointerpretation and computer aided techniques. Image characteristics and spectral reflectance data were then related to forage production, range condition, range site and changing growth conditions. It was determined that repeat sequences with LANDSAT color composite images do provide a means for monitoring changes in range condition. Spectral radiance data obtained from magnetic tape can be used to determine quantitatively the critical stages in the forage growth cycle. A computer ratioing technique provided a sensitive indicator of changes in growth stages and an indication of the relative differences in forage production between range sites.

  15. Reliability and durability of fiber grating sensors in structural monitoring applications

    NASA Astrophysics Data System (ADS)

    Sennhauser, Urs J.; Broennimann, Rolf; Mauron, Pascal; Nellen, Philipp M.

    1997-09-01

    There is strong interest to develop fiber-optical sensing systems for long term surveillance and structural monitoring. Although many detection schemes have been proposed, industrial acceptance of optical fibers as validated replacement of other sensors is limited. Low cost manufacturability, reliability, and long term stability are very important for usability in concrete and composite material structures. Lifetime for major structures in civil engineering of 50 - 100 years are very demanding on the sensors and require accurate aging models and test data to demonstrate their reliability and durability. Acceleration factors of several orders of magnitude can be achieved under reasonable testing conditions depending on temperature, mechanical stress, humidity, chemical environment and activation energy of the damaging process. We report on accelerated aging tests and failure mechanisms of optical fibers and Bragg gratings at elevated temperature, humidity and mechanical stress. Aging behavior is discussed and results from field measurements of large civil structures are presented.

  16. Fiber optic sensors for process monitoring of composite aerospace structures

    NASA Astrophysics Data System (ADS)

    Menendez Martin, Jose M.; Munoz-Esquer, Pedro; Rodriguez-Lence, Fernando; Guemes, J. Alfredo

    2002-07-01

    There are currently available many software tools for modeling the processing of composite materials, that help designers to evaluate the process constraints and the feasibility of different concepts. Nevertheless, several manufacturing tests are still required for adjustment of the control parameters before production may start. Real time monitoring is the only way to validate the numerical results and to get a deeper knowledge on the process evolution. Final objective would be a closed loop known as 'Intelligent Material Processing'.: process model - in situ sensors - predictive control, able to react on real time to small disturbances, adapting the process parameters for optimal results. This paper concentrates on the sensor development for two aerospace processes, autoclave curing and RTM, and it present the results obtained on a real aircraft structural part, a five meter diameter frame for the fuselage of Airbus A380 . An optical fiber system has been implemented to monitor the movement of the resin flow front during the injection and the internal residual strains. The procedure has the advantage of being very robust, and it may be used for complex geometry of the part. It has been demonstrated the feasibility of the procedure to work at an industrial environment; the results are being used to refine the data on the material properties, as the preform permeability, and to improve the process control.

  17. A wireless laser displacement sensor node for structural health monitoring.

    PubMed

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  18. Health monitoring studies on composite structures for aerospace applications

    SciTech Connect

    James, G.; Roach, D.; Hansche, B.; Meza, R.; Robinson, N.

    1996-02-01

    This paper discusses ongoing work to develop structural health monitoring techniques for composite aerospace structures such as aircraft control surfaces, fuselage sections or repairs, and reusable launch vehicle fuel tanks. The overall project is divided into four tasks: Operational evaluation, diagnostic measurements, information condensation, and damage detection. Five composite plates were constructed to study delaminations, disbonds, and fluid retention issues as the initial step in creating an operational system. These four square feet plates were graphite-epoxy with nomex honeycomb cores. The diagnostic measurements are composed of modal tests with a scanning laser vibrometer at over 500 scan points per plate covering the frequency range up to 2000 Hz. This data has been reduced into experimental dynamics matrices using a generic, software package developed at the University of Colorado at Boulder. The continuing effort will entail performing a series of damage identification studies to detect, localize, and determine the extent of the damage. This work is providing understanding and algorithm development for a global NDE technique for composite aerospace structures.

  19. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    PubMed Central

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements. PMID:24084114

  20. Technical Report on Preliminary Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    SciTech Connect

    Ramuhalli, Pradeep; Coles, Garill A.; Coble, Jamie B.; Hirt, Evelyn H.

    2013-09-17

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. AdvSMRs may provide a longer-term alternative to traditional light-water reactors (LWRs) and SMRs based on integral pressurized water reactor concepts currently being considered. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment. AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors. Some of this loss can be recovered through reduced capital costs through smaller size, fewer components, modular fabrication processes, and the opportunity for modular construction. However, the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments that are a step towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results from an initial methodology for enhanced risk monitors by integrating real-time information about equipment condition and POF into risk monitors.

  1. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  2. Bio-inspired sensor skins for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Tata, Uday; Deshmukh, S.; Chiao, J. C.; Carter, Ronald; Huang, H.

    2009-10-01

    This paper presents the simulation and experimental work that proved the feasibility of using a patch antenna for strain measurement. A patch antenna, besides serving as a data transmitting device, can function as a transducer that directly encodes the strain experienced into its resonant frequency. Printed on a flexible substrate, the antenna sensor is small in size, has a low profile and can be conformal to any attached surface. The technique for interrogating the antenna sensor using a wireless non-contact method is also demonstrated. Without needing electric wiring for power supply and data transmitting, the antenna sensor has a great potential for the realization of engineered sensor skins that imitate the sense of pain for structural health monitoring purposes.

  3. Structural health monitoring of wind turbine blades : SE 265 Final Project.

    SciTech Connect

    Barkley, W. C.; Jacobs, Laura D.; Rutherford, A. C.; Puckett, Anthony

    2006-03-23

    ACME Wind Turbine Corporation has contacted our dynamic analysis firm regarding structural health monitoring of their wind turbine blades. ACME has had several failures in previous years. Examples are shown in Figure 1. These failures have resulted in economic loss for the company due to down time of the turbines (lost revenue) and repair costs. Blade failures can occur in several modes, which may depend on the type of construction and load history. Cracking and delamination are some typical modes of blade failure. ACME warranties its turbines and wishes to decrease the number of blade failures they have to repair and replace. The company wishes to implement a real time structural health monitoring system in order to better understand when blade replacement is necessary. Because of warranty costs incurred to date, ACME is interested in either changing the warranty period for the blades in question or predicting imminent failure before it occurs. ACME's current practice is to increase the number of physical inspections when blades are approaching the end of their fatigue lives. Implementation of an in situ monitoring system would eliminate or greatly reduce the need for such physical inspections. Another benefit of such a monitoring system is that the life of any given component could be extended since real conditions would be monitored. The SHM system designed for ACME must be able to operate while the wind turbine is in service. This means that wireless communication options will likely be implemented. Because blade failures occur due to cyclic stresses in the blade material, the sensing system will focus on monitoring strain at various points.

  4. Structural Health Monitoring in Cylindrical Structures Using Helical Guided Wave Propagation

    NASA Astrophysics Data System (ADS)

    Baltazar, A.; Rojas, E.; Mijarez, R.

    Defect detection and characterization are critical tasks for structural health monitoring of pipe-like engineering structures. Propagation and detection of ultrasonic helical Lamb waves using macro fiber composite (MFC) sensors is studied. Experiments for defect detection and characterization on an aluminum hollow cylinder (114 mm in outer-diameter and 6 mm of wall thickness) were carried out. An experimental setup using MFC sensors coupled to the cylinder's surface in a pitch-catch configuration is presented. Time-frequency representation (TFR) using wavelets is employed to accurately perform mode identification of the ultrasonic captured signals. The initial results indicate that the use of helical waves could allow the monitoring of damage in difficult to access critical areas by locating the sensors only on a small region of the periphery of the cylindrical structure under inspection.

  5. Field monitoring of condition of large electric generators. (Latest citations from the EI Compendex plus database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning monitoring techniques to determine the condition of large electric generators. Electric generators are limited to turbine generators, variously called hydroturbines, turbogenerators and turbosets. Wind turbines and magnetohydrodynamics are not included in this bibliography. Techniques for condition monitoring include noise analysis and acoustic monitoring, vibration and misalignment measurements, bearing oil analyses, and transient torsional changes affecting shafts and rotors. (Contains a minimum of 178 citations and includes a subject term index and title list.)

  6. Synthesis, structure, and properties of glasses under extreme conditions

    NASA Astrophysics Data System (ADS)

    Guerette, Michael J.

    Anomalous mechanical properties of silica glass include stiffening upon heating, initially softening under pressure, and non-linear elastic response to strains. Through understanding structural changes in silica glass under a broad range of temperature, pressure, and strain conditions and how they influence the mechanical properties, insight was gained for how to change the silica glass network to better suit specific uses in extreme conditions. In this dissertation, pressure-quenching routes were used to effectively change the glass atomic packing and to make densified glass. Applied in the non-rigid state near the glass transition temperature, quench pressures up to 8 GPa have been used to achieve density increase of 25% in silica glass. The resulting structure and properties of as-quenched samples have been investigated using XRD, Raman and Brillouin spectroscopy. In-situ Raman and Brillouin light scattering techniques were developed to study the structure, elastic and dynamic properties of silica glass under high temperature, high pressure and high strain conditions. High temperature measurements were carried out in an optical furnace up to 1500°C, a diamond anvil cell was used to carry out high pressure experiments up to 25 GPa, and a two-point bender was used for measuring glasses in excess of 6% strain in both tensile and compressive regions. Pressure-quenching from the non-rigid state near the glass transition temperature imparts structural signatures to densified silica glass that cannot be accomplished through cold compression at room temperature. The unique structures of pressure-quenched silica glass are reflected in decreased anomalous response of silica glass to external stimuli of high temperature or high pressure, and therefore greater thermo-mechanical stability. The nonlinear elastic behavior of silica glass has been directly probed from the compressive to the tensile side of silica fibers in bend by using in-situ Brillouin light scattering. This

  7. Structural Failure Condition for Bifurcated Rubble Pile Asteroids

    NASA Astrophysics Data System (ADS)

    Hirabayashi, M.; Scheeres, D. J.

    2014-12-01

    The present study investigates the structural failure conditions of uniformly rotating bifurcated asteroids with cohesion due to a static spin-up. We apply a newly derived technique (Hirabayashi and Scheeres, submitted) that probes the failure state of an asteroid. The technique determines an upper bound condition for structural failure of a slice normal to the minimum moment of inertia axis. The detailed study of these failure modes for cohesive, rotating rubble pile asteroid is motivated by recent observations of 'active asteroids,' bodies which are seemingly disintegrating and fissioning due to their rapid spin rates (Jewitt et al. 2013, 2014; Hirabayashi et al. 2014). Figure 1 shows the shape of 4486 Mithra. We compare 3 slices, slices 1 and 3 including the knobs and slice 2 being the neck (Fig. 1), to determine a more precise condition for structural failure. Figures 2 and 3 describe the limit of friction angle with cohesion of 0 Pa and 500 Pa, respectively. The narrow solid, dashed, and dotted lines give the limits of slices 1, 2, and 3, respectively. The bold solid lines indicate the limit of the total volume, i.e., the whole volume reaching the failure point, and that of the partial volume, i.e., the most sensitive condition among the slices. The shadowed areas show the structurally stable regions. The results show that Mithra's failure locations change as a function of its spin periods and cohesion. For the cohesionless case, the knobs are more sensitive to structural failure than the neck at a spin period ranging from 3.8 hr to 4.8 hr, while the neck fails first at other spin periods. For the 500 Pa cohesion case, the limits of friction angle shift to higher spin periods. Also, at higher spin periods, we find that a lower friction angle is sometimes stronger than a higher friction angle. This comes from the fact that under constant cohesion a lower friction angle can give wider stable regions below the yield envelope. Our study reveals that there exits a

  8. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New

  9. Optimizing groundwater monitoring systems for landfills with random leaks under heterogeneous subsurface conditions

    NASA Astrophysics Data System (ADS)

    Yenigül, N. B.; Elfeki, A. M. M.; van den Akker, C.; Dekking, F. M.

    2013-12-01

    Landfills are one of the most common human activities threatening the natural groundwater quality. The landfill may leak, and the corresponding plumes may contaminate an area, entailing costly remediation measures. The objective of the installation of monitoring systems at landfill sites is to detect the contaminant plumes before they reach the regulatory compliance boundary in order to enable cost-effective counter measures. In this study, a classical decision analysis approach is linked to a stochastic simulation model to determine the optimal groundwater monitoring system given uncertainties due to the hydrogeological conditions and contaminant source characteristics. A Monte Carlo approach is used to incorporate uncertainties. Hydraulic conductivity and the leak location are the random inputs of the simulation model. The design objectives are to: (1) maximize the detection probability, (2) minimize the area of contamination at the time of detection, and (3) minimize the total cost of the monitoring system. A synthetic test case based on a real-world case in the Netherlands is analyzed. The results show that monitoring systems located close to the source are optimal except for the cases with very high unit installation and sampling cost and/or very cheap unit remediation.

  10. Graphite Based Electrode for ECG Monitoring: Evaluation under Freshwater and Saltwater Conditions

    PubMed Central

    Thap, Tharoeun; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    We proposed new electrodes that are applicable for electrocardiogram (ECG) monitoring under freshwater- and saltwater-immersion conditions. Our proposed electrodes are made of graphite pencil lead (GPL), a general-purpose writing pencil. We have fabricated two types of electrode: a pencil lead solid type (PLS) electrode and a pencil lead powder type (PLP) electrode. In order to assess the qualities of the PLS and PLP electrodes, we compared their performance with that of a commercial Ag/AgCl electrode, under a total of seven different conditions: dry, freshwater immersion with/without movement, post-freshwater wet condition, saltwater immersion with/without movement, and post-saltwater wet condition. In both dry and post-freshwater wet conditions, all ECG-recorded PQRST waves were clearly discernible, with all types of electrodes, Ag/AgCl, PLS, and PLP. On the other hand, under the freshwater- and saltwater-immersion conditions with/without movement, as well as post-saltwater wet conditions, we found that the proposed PLS and PLP electrodes provided better ECG waveform quality, with significant statistical differences compared with the quality provided by Ag/AgCl electrodes. PMID:27092502

  11. Graphite Based Electrode for ECG Monitoring: Evaluation under Freshwater and Saltwater Conditions.

    PubMed

    Thap, Tharoeun; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    We proposed new electrodes that are applicable for electrocardiogram (ECG) monitoring under freshwater- and saltwater-immersion conditions. Our proposed electrodes are made of graphite pencil lead (GPL), a general-purpose writing pencil. We have fabricated two types of electrode: a pencil lead solid type (PLS) electrode and a pencil lead powder type (PLP) electrode. In order to assess the qualities of the PLS and PLP electrodes, we compared their performance with that of a commercial Ag/AgCl electrode, under a total of seven different conditions: dry, freshwater immersion with/without movement, post-freshwater wet condition, saltwater immersion with/without movement, and post-saltwater wet condition. In both dry and post-freshwater wet conditions, all ECG-recorded PQRST waves were clearly discernible, with all types of electrodes, Ag/AgCl, PLS, and PLP. On the other hand, under the freshwater- and saltwater-immersion conditions with/without movement, as well as post-saltwater wet conditions, we found that the proposed PLS and PLP electrodes provided better ECG waveform quality, with significant statistical differences compared with the quality provided by Ag/AgCl electrodes. PMID:27092502

  12. Graphite Based Electrode for ECG Monitoring: Evaluation under Freshwater and Saltwater Conditions.

    PubMed

    Thap, Tharoeun; Yoon, Kwon-Ha; Lee, Jinseok

    2016-04-15

    We proposed new electrodes that are applicable for electrocardiogram (ECG) monitoring under freshwater- and saltwater-immersion conditions. Our proposed electrodes are made of graphite pencil lead (GPL), a general-purpose writing pencil. We have fabricated two types of electrode: a pencil lead solid type (PLS) electrode and a pencil lead powder type (PLP) electrode. In order to assess the qualities of the PLS and PLP electrodes, we compared their performance with that of a commercial Ag/AgCl electrode, under a total of seven different conditions: dry, freshwater immersion with/without movement, post-freshwater wet condition, saltwater immersion with/without movement, and post-saltwater wet condition. In both dry and post-freshwater wet conditions, all ECG-recorded PQRST waves were clearly discernible, with all types of electrodes, Ag/AgCl, PLS, and PLP. On the other hand, under the freshwater- and saltwater-immersion conditions with/without movement, as well as post-saltwater wet conditions, we found that the proposed PLS and PLP electrodes provided better ECG waveform quality, with significant statistical differences compared with the quality provided by Ag/AgCl electrodes.

  13. Multifunctional sensor network for structural state sensing and structural health monitoring

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Ikegami, Roy; Beard, Shawn J.; Zhang, David; Das, Samik; Banerjee, Sourav; Chang, Fu-Kuo

    2010-04-01

    In order to take full advantages of composites and enable future composite structures to operate at their physical limits rather than limits predetermined from computational design assumptions and safety factors, there is a need to develop an embeddable sensing system to allow a structure to "feel" and "think" its structural state. In this paper, the concept of multi-modal sensing capabilities using a network of multifunctional sensors integrated with a structure has been developed. Utilizing this revolutionary concept, future structures can be designed and manufactured to provide multiple modes of information that when synthesized together can provide capabilities for intelligent sensing, environmental adaptation and multi-functionality. To demonstrate the feasibility of multi-modal sensing capabilities with built-in sensor network, one single type of piezoelectric sensor was selected to perform the measurements of dynamic strain, temperature, damage detection and impact monitoring. The uniqueness of the sensing system includes (1) Flexible, multifunctional sensor networks for integration with any type of composite structural component, (2) Scalable sensor network for monitoring of a large composite structure, (3) Reduced number of connecting wires for sensors, (4) Hybrid diagnostics with multiple sensing capabilities, (5) Sensor network self-diagnostics and self-repair for damaged sensor system.

  14. Aging and condition monitoring of electric cables in nuclear power plants

    SciTech Connect

    Lofaro, R.J.; Grove, E.; Soo, P.

    1998-05-01

    There are a variety of environmental stressors in nuclear power plants that can influence the aging rate of components; these include elevated temperatures, high radiation fields, and humid conditions. Exposure to these stressors over long periods of time can cause degradation of components that may go undetected unless the aging mechanisms are identified and monitored. In some cases the degradation may be mitigated by maintenance or replacement. However, some components receive neither and are thus more susceptible to aging degradation, which might lead to failure. One class of components that falls in this category is electric cables. Cables are very often overlooked in aging analyses since they are passive components that require no maintenance. However, they are very important components since they provide power to safety related equipment and transmit signals to and from instruments and controls. This paper will look at the various aging mechanisms and failure modes associated with electric cables. Condition monitoring techniques that may be useful for monitoring degradation of cables will also be discussed.

  15. A computerized system for the simultaneous monitoring of place conditioning and locomotor activity in rats.

    PubMed

    Brockwell, N T; Ferguson, D S; Beninger, R J

    1996-02-01

    Place conditioning is one of the most popular behavioral methods for assessing the rewarding properties of various substances. Many substances that are rewarding also influence motor activity. This report describes a computerized system designed to simultaneously monitor both place conditioning and locomotor activity. The system consists of 4 independent conditioning boxes, each equipped with 6 pairs of photosensors connected to an Experiment Controller, an electronic board containing a microprocessor, a programable timer, and 16 K of RAM used to store both instructions and data. The effects of the stimulant (+)-amphetamine were assessed using this system and found to produce a place preference comparable to that obtained from a previously utilized mechanical timer system. The computerized system also demonstrated that amphetamine increased unconditioned activity. There are a number of advantages and broader applications of the new methodology.

  16. Development of structural health monitoring and early warning system for reinforced concrete system

    SciTech Connect

    Iranata, Data E-mail: data@ce.its.ac.id; Wahyuni, Endah; Murtiadi, Suryawan; Widodo, Amien; Riksakomara, Edwin; Sani, Nisfu Asrul

    2015-04-24

    Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limit value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results.

  17. Self-organizing wireless sensor networks for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Basheer, Mohammed R.; Rao, Vittal S.; Derriso, Mark M.

    2003-07-01

    A smart sensor node has been developed which has (a) the ability to sense strain of the structure under observation, (b) process this raw sensor data in cooperation with its neighbors and (c) transmit the information to the end user. This network is designed to be self organizing in the sense of establishing and maintaining the inter node connectivity without the need for human intervention. For the envisioned application of structural health monitoring, wireless communication is the most practical solution for node interconnectivity not only because they eliminate interconnecting cables but also for their ability to establish communication links even in inaccessible regions. But wireless nework brings with it a number of issues such as interference, fault tolerant self organizing, multi-hop communication, energy effieiciency, routing and finally reliable operation in spite of massive complexity of the sysetm. This paper addresses the issue of fault tolerant self organiing in wireless sensor networks. We propose a new architecture called the Redundant Tree Network (RTN). RTN is a hierarchical network which exploits redundant links between nodes to provide reliability.

  18. Singularity detection for structural health monitoring using holder exponents.

    SciTech Connect

    Robertson, A. N.; Farrar, C. R.; Sohn, H.

    2003-01-01

    The majority of structural health monitoring studies reported in the technical literature focus on identifying damage sensitive features that can be extracted from dynamic response data . However, many of these studies assume the structure can be modeled as a linear system before and after damage and use parameters of these models as the damage sensitive features. The study summarized in this paper proposes a damage sensitive feature that takes advantage of the nonlinearities associated with discontinuities introduced into the dynamic response data as a result of certain types of damage. Specifically, the Holder exponent, a measure of the degree to which a signal is differentiable, is the feature that is used to detect the presence of damage and when that damage occurred . A procedure for capturing the time varying nature of the Holder exponent based on wavelet transforms is demonstrated through applications to non-stationary random signals with underlying discontinuities and then to a harmonically excited mechanical system that contains a loose part . Also, a classification procedure is developed to quantify when changes in the Holder exponent are significant . The results presented herein show the Holder exponent to be an effective feature for identifying damage that introduces discontinuities into the measured dynamic response data .

  19. Phase Space Dissimilarity Measures for Structural Health Monitoring

    SciTech Connect

    Bubacz, Jacob A; Chmielewski, Hana T; Pape, Alexander E; Depersio, Andrew J; Hively, Lee M; Abercrombie, Robert K; Boone, Shane

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  20. Bedload monitoring under conditions of ultra-high suspended sediment concentrations

    NASA Astrophysics Data System (ADS)

    Liébault, F.; Jantzi, H.; Klotz, S.; Laronne, J. B.; Recking, A.

    2016-09-01

    The bedload response of the Moulin Ravine, a small alluvial system draining a very active Mediterranean badlands landscape entrenched into Jurassic black marls of the Southern French Prealps, has been investigated using an automatic Reid bedload slot sampler. This site is known for its exceptional sediment transport conditions thanks to a long-term monitoring program that started in the late 1980s, revealing a mean annual bedload yield of 2810 t km-2 yr-1, and suspended sediment concentrations (SSCs) during flow events commonly reaching 100 g L-1. With the deployment of the slot sampler, it has been possible to record instantaneous bedload fluxes during 10 s time increments and to investigate bedload response under flow conditions with ultra-high SSCs. Bedload records cover 4 flashy summer flow events induced by heavy convective storms including a 20-yr return period event. Due to the very high SSC conditions these events challenge bedload monitoring. Even if slot sampling has been recognized as insensitive to fine sediments (silts and clays), it has never been tested in such exceptional muddy flow conditions. The bedload slot sampler performed well in such conditions. A flow-invariant proportion of fines (∼15-20%) was captured in the slot sampler during flows. This proportion is equivalent to its content in the active bedload layer during summer flows, suggesting that fines enter the slot embedded with coarse particles. Instantaneous bedload fluxes recorded in the Moulin are amongst the highest hitherto reported values worldwide, providing evidence of the exceptional sediment transport conditions of marly alpine badlands. The dimensionless entrainment threshold is one order of magnitude higher than commonly reported for gravel-bed rivers, likely reflecting the cohesion effect of fines intruded in the channel surface and subsurface.

  1. Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser

    2012-01-01

    Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the

  2. Monitoring of the environmental conditions inside the dome of the 4m Blanco Telescope at CTIO

    NASA Astrophysics Data System (ADS)

    Els, S. G.; Abbott, T. M. C.; Bustos, E. B.; Seguel, J.; Walker, D. E.; Berdja, A.; Riddle, R.; Schöck, M.; Skidmore, W.; Travouillon, T.

    2010-07-01

    Between February and April 2009 a number of ultrasonic anemometers, temperature probes and dust sensors were operated inside the CTIO Blanco telescope dome. These sensors were distributed in a way that temperature and 3 dimensional wind speeds were monitored along the line of sight of the telescope. During telescope operations, occasional seeing measurements were obtained using the Mosaic CCD imager and the CTIO site monitoring MASS-DIMM system. In addition, also a Lunar Scintillometer (LuSci) was operated over the course of a few nights inside the dome. We describe the instrumental setup and first preliminary results on the linkage of the atmospheric conditions inside the dome to the overall image quality.

  3. Photopyroelectric Monitoring of Olive's Ripening Conditions and Olive Oil Quality Using Pulsed Wideband IR Thermal Source

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Sarahneh, Y.; Saleh, A. M.

    The present study is based on band absorption of radiation from pulsed wideband infrared (IR) thermal source (PWBS) in conjunction with polyvinylidene fluoride film (PVDF). It is the first time to be employed to monitor the ripening state of olive fruit. Olive's characteristics vary at different stages of ripening, and hence, cultivation of olives at the right time is important in ensuring the best oil quality and maximizes the harvest yield. The photopyroelectric (PPE) signal resulting from absorption of wideband infrared (IR) radiation by fresh olive juice indicates the ripening stage of olives, i.e., allows an estimate of the suitable harvest time. The technique was found to be very useful in discriminating between olive oil samples according to geographical region, shelf life, some storage conditions, and deliberate adulteration. Our results for monitoring oil accumulation in olives during the ripening season agree well with the complicated analytical studies carried out by other researchers.

  4. Three dimensional dynamics of rotating structures under mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Bediz, Bekir; Romero, L. A.; Ozdoganlar, O. Burak

    2015-12-01

    This paper presents the spectral-Tchebychev (ST) technique for solution of three dimensional (3D) dynamics of rotating structures. In particular, structures that exhibit coupled dynamic response require a 3D modeling approach to capture their dynamic behavior. Rotational motions further complicate this behavior, inducing coriolis, centrifugal softening, and (nonlinear) stress-stiffening effects. Therefore, a 3D solution approach is needed to accurately capture the rotational dynamics. The presented 3D-ST technique provides a fast-converging and precise solution approach for rotational dynamics of structures with complex geometries and mixed boundary conditions. Specifically, unlike finite elements techniques, the presented technique uses a series expansion approach considering distributed-parameter system equations: The integral boundary value problem for rotating structures is discretized using the spectral-Tchebychev approach. To simplify the domain of the structures, cross-sectional and rotational transformations are applied to problems with curved cross-section and pretwisted geometry. The nonlinear terms included in the integral boundary value problem are linearized around an equilibrium solution using the quasi-static method. As a result, mass, damping, and stiffness matrices, as well as a forcing vector, are obtained for a given rotating structure. Several case studies are then performed to demonstrate the application and effectiveness of the 3D-ST solution. For each problem, the natural frequencies and modes shapes from the 3D-ST solution are compared to those from the literature (when available) and to those from a commercial finite elements software. The case studies include rotating/spinning parallelepipeds under free and mixed boundary conditions, and a cantilevered pretwisted beam (i.e., rotating blade) with an airfoil geometry rotating on a hub. It is seen that the natural frequencies and mode shapes from the 3D-ST technique differ from those from the

  5. Evaluating distributed fibre optic sensors integrated into thermoplastic composites for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Schilder, Constanze; Schukar, Marcus; Steffen, Milan; Krebber, Katerina

    2014-05-01

    Strain sensors used for structural health monitoring (SHM) must provide reliable measurement data during their entire service lifetime. To achieve this for fibre optic sensors integrated into composites, the integration of the sensor has to be adapted according to the process conditions. This paper describes the fabrication of thermoplastic composite samples with integrated distributed fibre optic sensors (DFOS) based on copper-nickel and polyimide coated silica optical fibres. The performance of these DFOS as SHM sensors is evaluated in terms of reliability by measurements derived from comparative measurements with resistance strain gauges and from fatigue tests with 10 million load cycles.

  6. Characterization of sensor performance and durability for structural health monitoring systems

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Giurgiutiu, Victor; Cooney, Adam; Doane, James

    2005-05-01

    A key question that needs to be addressed and answered with regard to successfully implementing Structural Health Monitoring technologies in Air Force systems involves the long-term operability, durability, and survivability of integrated sensor systems and their associated hardware. Whether a sensor system is fully integrated within a structural material, or surface-bonded to the structure, a number of environmental and system level influences will tend to degrade the sensor system"s performance and durability over time. In this effort, an initial sensor durability study was undertaken to better understand the performance and degradation of piezo wafer active sensor (PWAS) systems under adverse mechanical, temperature, and moisture conditions. A novel displacement-field imaging approach was utilized to understand the vibration characteristics of PWAS transducers placed in accelerated vibration, temperature-cycling, and moisture-cycling conditions. The results showed damage in the form of PWAS sensor cracking events, bond degradation and failure, as well as indications of performance variation and reduction due to the accelerated exposure levels. Future activities will focus on identifying critical durability and survivability issues through advanced sensor modeling and additional accelerated testing efforts, with the ultimate goal of improving the robustness of health monitoring systems through improved sensor system design and packaging.

  7. Innovative monitoring campaign of the environmental conditions of the Stibbert museum in Florence

    NASA Astrophysics Data System (ADS)

    Angelini, E.; Civita, F.; Corbellini, S.; Fulginiti, D.; Giovagnoli, A.; Grassini, S.; Parvis, M.

    2016-02-01

    Conservation of ancient metallic artefact displayed inside museums is a complex problem due to the large number of constraints mainly related to the artefacts fruition by people. The development of a simple procedure for monitoring the artefact conservation state promptly highlighting risky conditions without impacting on the normal museum operations could be of interest in the cultural heritage world. This paper describes the interesting results obtained by using a highly sensitive and innovative methodology for evaluating the safety level of the museum indoor areas, and more specifically of the interior of the showcases, with respect to the metallic artefacts. The methodology is based on the use of an innovative smart sensors network and of copper reference samples. The smart sensors network was employed for the continuous monitoring of temperature and relative humidity close to the artefacts, i.e. inside the display showcases. The reference specimens were Cu coated with a 100 nm Cu nanostructured layer put for 1 year in the exhibition rooms inside and outside the showcases and characterised by means of normal imaging, colorimetric and FESEM techniques at regular intervals. The results of the monitoring activity evidenced the higher reactivity to the environmental aggressivity of the nanocoated copper specimen with respect to bulk artefacts and therefore the possibility to use them as alerts to possible corrosion phenomena that may occur to the real artefacts. A proper temperature and relative humidity monitoring inside the showcases and close to each group of artefacts is a powerful though economic and non-invasive way to highlight most of the possible critical display conditions.

  8. Organizational Structures and Data Use in Volunteer Monitoring Organizations (VMOs)

    ERIC Educational Resources Information Center

    Laird, Shelby Gull; Nelson, Stacy A. C.; Stubbs, Harriett S.; James, April L.; Menius, Erika

    2012-01-01

    Complex environmental problems call for unique solutions to monitoring efforts alongside developing a more environmentally literate citizenry. Community-based monitoring (CBM) through the use of volunteer monitoring organizations helps to provide a part of the solution, particularly when CBM groups work with research scientists or government…

  9. Modeling and simulation of heterogeneous electronic system based on smart sensors for aerospace structures health monitoring

    NASA Astrophysics Data System (ADS)

    Álvarez, Paula L.; Aragonés, Raúl; Oliver, Joan; Ferrer, Carles

    2010-04-01

    This paper presents a top-down design methodology for a behavioral modeling System, based on smart sensors for aerospace structures monitoring, implemented on a MATLAB/Simulink environment. The modeled acquisition platform in this aeronautic health monitoring systems (AHMS) is built using the following specific sensors: humidity, pressure, temperature, stress and acceleration. For this application it has been implemented frequency acquisition techniques ensuring optimum noise immunity, particularly: a signal acquisition technique based on voltage to frequency converter, capacitance to frequency and frequency to code converters (VtoF-cC, CtoF-cC). The Simulink model presents a high accuracy level in signal acquisition and conditioning compared to the electrical system simulation behavior.

  10. All-optically driven system in ultrasonic wave-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Wu, Nan; Zhou, Jingcheng; Zhang, Haifeng; Wang, Xingwei

    2016-04-01

    Ultrasonic wave based structural health monitoring (SHM) is an innovative method for nondestructive detection and an area of growing interest. This is due to high demands for wireless detection in the field of structural engineering. Through optically exciting and detecting ultrasonic waves, electrical wire connections can be avoided, and non-contact SHM can be achieved. With the combination of piezoelectric transducer (PZT) (which possesses high heat resistance) and the noncontact detection, this system has a broad range of applications, even in extreme conditions. This paper reports an all-optically driven SHM system. The resonant frequencies of the PZT transducers are sensitive to a variety of structural damages. Experimental results have verified the feasibility of the all-optically driven SHM system.

  11. Conditional random fields for pattern recognition applied to structured data

    DOE PAGES

    Burr, Tom; Skurikhin, Alexei

    2015-07-14

    Pattern recognition uses measurements from an input domain, X, to predict their labels from an output domain, Y. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features between parts of the modelmore » are often correlated. Therefore, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. This paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.« less

  12. Conditional random fields for pattern recognition applied to structured data

    SciTech Connect

    Burr, Tom; Skurikhin, Alexei

    2015-07-14

    Pattern recognition uses measurements from an input domain, X, to predict their labels from an output domain, Y. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building) or “natural” (such as a tree). Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X) is difficult because features between parts of the model are often correlated. Therefore, conditional random fields (CRFs) model structured data using the conditional distribution P(Y|X = x), without specifying a model for P(X), and are well suited for applications with dependent features. This paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches) in the output domain. Second, we identify research topics and present numerical examples.

  13. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2012-04-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  14. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2011-11-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  15. New smart materials to address issues of structural health monitoring.

    SciTech Connect

    Chaplya, Pavel Mikhail

    2004-12-01

    Nuclear weapons and their storage facilities may benefit from in-situ structural health monitoring systems. Appending health-monitoring functionality to conventional materials and structures has been only marginally successful. The purpose of this project was to evaluate feasibility of a new smart material that includes self-sensing health monitoring functions similar to that of a nervous system of a living organism. Reviews of current efforts in the fields of heath-monitoring, nanotechnology, micro-electromechanical systems (MEMS), and wireless sensor networks were conducted. Limitations of the current nanotechnology methods were identified and new approaches were proposed to accelerate the development of self-sensing materials. Wireless networks of MEMS sensors have been researched as possible prototypes of self-sensing materials. Sensor networks were also examined as enabling technologies for dense data collection techniques to be used for validation of numerical methods and material parameter identification. Each grain of the envisioned material contains sensors that are connected in a dendritic manner similar to networks of neurons in a nervous system. Each sensor/neuron can communicate with the neighboring grains. Both the state of the sensor (on/off) and the quality of communication signal (speed/amplitude) should indicate not only a presence of a structural defect but the nature of the defect as well. For example, a failed sensor may represent a through-grain crack, while a lost or degraded communication link may represent an inter-granular crack. A technology to create such material does not exist. While recent progress in the fields of MEMS and nanotechnology allows to envision these new smart materials, it is unrealistic to expect creation of self-sensing materials in the near future. The current state of MEMS, nanotechnology, communication, sensor networks, and data processing technologies indicates that it will take more than ten years for the

  16. Monitoring soil-water and displacement conditions leading to landslide occurrence in partially saturated clays

    NASA Astrophysics Data System (ADS)

    Bittelli, Marco; Valentino, Roberto; Salvatorelli, Fiorenzo; Rossi Pisa, Paola

    2012-11-01

    Shallow landslides frequently occur during transient rainfall infiltration and under partially saturated conditions. However, a detailed analysis of what triggers them, particularly in clayey soils, is often hindered by the lack of field measurements. It is uncommon, in fact, to capture their occurrence in an instrumented natural slope. This paper presents results from an integrated field experiment monitoring the soil-water and displacement conditions that lead to the occurrence of a shallow landslide in partially saturated clays. The integration of a variety of experimental techniques allowed for the examination of interplay between soil hydrological and mechanical properties. This research also evaluates a slope stability model based on the suction stress concept. Since the model was applied after the occurrence of the landslide, the results are interpreted as a hind-casting technique for model evaluation. Nevertheless, the detailed field measurements acquired during the monitoring activity and the occurrence of a landslide during the experiment provided significant information on model parameters and data interpretation. The station provides remote satellite monitoring of data on weather variables, soil water content and soil suction. A time domain reflectometry cable was installed vertically to detect potential soil failure. The experimental area had a high probability of landslide occurrence. Indeed, slope failure occurred during the observation period, showing the effectiveness of the station in detecting the occurrence, time and depth of landslides. The landslide was triggered in consequence of changes in suction stress. The failure plane occurred at a depth of 1.4 m, corresponding to the interface between a superficial layer of higher permeability of 1 to 1.45 m thickness, slipping over a compacted substrate having lower permeability. The analysis allowed for testing of the validity of the model and the description of the triggering mechanisms of the

  17. Developing a structural health monitoring system for nuclear dry cask storage canister

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyi; Lin, Bin; Bao, Jingjing; Giurgiutiu, Victor; Knight, Travis; Lam, Poh-Sang; Yu, Lingyu

    2015-03-01

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. In total, there are over 1482 dry cask storage system (DCSS) in use at US plants, storing 57,807 fuel assemblies. Nondestructive material condition monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health", and more importantly, to guarantee the safe operation of radioactive waste storage systems (RWSS) during their extended usage period. A state-of-the-art nuclear structural health monitoring (N-SHM) system based on in-situ sensing technologies that monitor material degradation and aging for nuclear spent fuel DCSS and similar structures is being developed. The N-SHM technology uses permanently installed low-profile piezoelectric wafer sensors to perform long-term health monitoring by strategically using a combined impedance (EMIS), acoustic emission (AE), and guided ultrasonic wave (GUW) approach, called "multimode sensing", which is conducted by the same network of installed sensors activated in a variety of ways. The system will detect AE events resulting from crack (case for study in this project) and evaluate the damage evolution; when significant AE is detected, the sensor network will switch to the GUW mode to perform damage localization, and quantification as well as probe "hot spots" that are prone to damage for material degradation evaluation using EMIS approach. The N-SHM is expected to eventually provide a systematic methodology for assessing and monitoring nuclear waste storage systems without incurring human radiation exposure.

  18. Remote sensing of vegetation pattern and condition to monitor changes in everglades biogeochemistry

    USGS Publications Warehouse

    Jones, J.W.

    2011-01-01

    Ground-based studies of biogeochemistry and vegetation patterning yield process understanding, but the amount of information gained by ground-based studies can be greatly enhanced by efficient, synoptic, and temporally resolute monitoring afforded by remote sensing. The variety of presently available Everglades vegetation maps reflects both the wide range of application requirements and the need to balance cost and capability. More effort needs to be applied to documenting and understanding vegetation distribution and condition as indicators of biogeochemistry and contamination. Ground-based and remote sensing studies should be modified to maximize their synergy and utility for adaptive management. Copyright ?? 2011 Taylor & Francis Group, LLC.

  19. Remote sensing of vegetation pattern and condition to monitor changes in Everglades biogeochemistry

    USGS Publications Warehouse

    Jones, John W.

    2011-01-01

    Ground-based studies of biogeochemistry and vegetation patterning yield process understanding, but the amount of information gained by ground-based studies can be greatly enhanced by efficient, synoptic, and temporally resolute monitoring afforded by remote sensing. The variety of presently available Everglades vegetation maps reflects both the wide range of application requirements and the need to balance cost and capability. More effort needs to be applied to documenting and understanding vegetation distribution and condition as indicators of biogeochemistry and contamination. Ground-based and remote sensing studies should be modified to maximize their synergy and utility for adaptive management.

  20. In-Situ Monitoring of Particle Growth at PEMFC Cathode under Accelerated Cycling Conditions

    SciTech Connect

    Billinge S. J.; Redmond, E.L.; Setzler, B.P.; Juhas, P.; Fullera, T.F.

    2012-05-01

    An in-situ method to measure changes in catalyst particle size at the cathode of a proton exchange membrane fuel cell is demonstrated. Synchrotron X-rays, 58 keV, were used to measure the pair distribution function on an operating fuel cell and observe the growth of catalyst particles under accelerated degradation conditions. The stability of Pt/C and PtCo/C with different initial particle sizes was monitored over 3000 potential cycles. The increase in particle size was fit to a linear trend as a function of cycles. The most stable electrocatalyst was found to be the alloyed PtCo with the larger initial particle size.

  1. Efficient campaign-type structural health monitoring using wireless smart sensors

    NASA Astrophysics Data System (ADS)

    Li, Jian; Nagayama, Tomonori; Mechitov, Kirill A.; Spencer, Billie F., Jr.

    2012-04-01

    Wireless Smart Sensor Networks (WSSNs) have attracted great attention in recent years for Structural Health Monitoring (SHM), enabling better understanding of the dynamic behavior of large scale civil infrastructures through dense deployment of sensors. With a fraction of the deployment time and cost compared with wired SHM systems, WSSNs can serve as ideal systems for campaign-type monitoring for (i) short-term, in-service performance evaluation, (ii) postdisaster condition assessment, (iii) design optimization of long-term SHM system before permanent deployment, etc. Efficient data collection is generally needed in campaign monitoring due to limited operation time. A number of improvements have been made to the Illinois SHM Project (ISHMP) Services Toolsuite to facilitate efficient data collection for campaign monitoring. A post-sensing time synchronization scheme is proposed to reduce the latency of data collection while maintaining high accuracy of synchronization of collected data. A multi-hop bulk data transfer approach using multiple RF channels is also implemented to achieve high data throughput.

  2. Analysis of concrete containment structures under severe accident loading conditions

    SciTech Connect

    Porter, V.L.

    1993-12-31

    One of the areas of current interest in the nuclear power industry is the response of containment buildings to internal pressures that may exceed design pressure levels. Evaluating the response of structures under these conditions requires computing beyond design load to the ultimate load of the containment. For concrete containments, this requirement means computing through severe concrete cracking and into the regime of wide-spread plastic rebar and/or tendon response. In this regime of material response, an implicit code can have trouble converging. This paper describes some of the author`s experiences with Version 5.2 of ABAQUS Standard and the ABAQUS concrete model in computing the axisymmetric response of a prestressed concrete containment to ultimate global structural failure under high internal pressures. The effects of varying the tension stiffening parameter in the concrete material model and variations of the parameters for the CONTROLS option are discussed.

  3. The crystal structure of ice under mesospheric conditions

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin J.; Malkin, Tamsin L.; Salzmann, Christoph G.

    2015-05-01

    Ice clouds form in the summer high latitude mesopause region, which is the coldest part of the Earth's atmosphere. At these very low temperatures (<150 K) ice can exist in metastable forms, but the nature of these ices remains poorly understood. In this paper we show that ice which is grown at mesospherically relevant temperatures does not have a structure corresponding to the well-known hexagonal form or the metastable cubic form. Instead, the ice which forms under mesospheric conditions is a material in which cubic and hexagonal sequences of ice are randomly arranged to produce stacking disordered ice (ice Isd). The structure of this ice is in the trigonal crystal system, rather than the cubic or hexagonal systems, and is expected to produce crystals with aspect ratios consistent with lidar observations.

  4. Structural integrity inspection and monitoring by magneto-optic sensors

    NASA Astrophysics Data System (ADS)

    Dudziak, Martin J.

    1999-01-01

    Non-destructive testing for cracks, fissures, fatigue stress, and corrosion has been demonstrated using eddy- current induced magnetic fields measurable by sensors with Faraday magneto-optic properties. A novel class of such sensors has been developed, the MODE sensor, using Fe-Ga thin-films of the general form (R, Bi)3 (M, Fe)5-12 with R equals (Y, Lu, Tm, or other rare earth ions) and M equals Ga or Al. These films are characterized by very high uniaxial anisotropic field, Faraday rotation, absorption coefficient, and MO figure of merit, significantly improving sensitivity over previous thin film compositions. These properties enable their use in highly compact portable or remotely operated devices and requiring either no eddy current or else brief microbursts of electric current rather than lengthy application of steady current in order to induce magnetic fields within observed structures. A portable system for the testing of bridge structural components, fuel tanks, gas cylinders, and other metallic structures has been designed. This apparatus makes use of a compact portable computer into which video output from the MODE sensor unit received. Using a conventional software interface the operator is able to view the same structure in real time and to apply an array of image processing refinement techniques for improving the resolution of the image. Images may be stored as a constant video stream or as a set of individual snapshots. Additional features that enhance the utility of the system for mobile inspection tasks are discussed. These include the incorporation of a pattern recognition training algorithm and library for operator-enhanced identification of structural defects and condition assessments, as well as the broadcast of image and location data via wireless link to a central server for distribution to consulting engineers and for access of Microstation-type CAD files via a web browser interface.

  5. Adaptive Methods within a Sequential Bayesian Approach for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Huff, Daniel W.

    Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring approach is based on predicting crack damage state dynamics and modeling crack length observations. Since fatigue loading of a structural component can change while in service, an interacting multiple model technique is employed to estimate probabilities of different loading modes and incorporate this information in the crack length estimation problem. For the observation model, features are obtained from regions of high signal energy in the time-frequency plane and modeled for each crack length damage condition. Although this observation model approach exhibits high classification accuracy, the resolution characteristics can change depending upon the extent of the damage. Therefore, several different transmission waveforms and receiver sensors are considered to create multiple modes for making observations of crack damage. Resolution characteristics of the different observation modes are assessed using a predicted mean squared error criterion and observations are obtained using the predicted, optimal observation modes based on these characteristics. Calculation of the predicted mean square error metric can be computationally intensive, especially if performed in real time, and an approximation method is proposed. With this approach, the real time

  6. Structural performance of HEPA filters under simulated tornado conditions

    SciTech Connect

    Horak, H.L.; Gregory, W.S.; Ricketts, C.I.; Smith, P.R.

    1982-02-01

    This report contains the results of structural tests to determine the response of High Efficiency Particulate Air filters to simulated tornado conditions. The data include the structural limits of the filters, their resistance at high flow rates, and the effects of filter design features and tornado parameters. Considering all the filters tested, the mean break pressure or structural limit was found to be 2.35 pse (16.2 kPa). The maximum value was 2.87 psi (19.8 kPa), and the low value found was 1.31 psi (9.0 kPa). The type of failure was usually a medium break of the downstream filter fold. The type of filters that were evaluated were nuclear grade with design flow rates of 1000 cfm (0.472 m/sup 3//s), standard separators, and folded medium design. The parameters evaluated that are characteristic of the filter included manufacturer, separator type, faceguards, pack tightness, and aerosol loading. Manufacturer and medium properties were found to have a large effect on the structural limits.

  7. Monitoring forest structure at landscape level: a case study of Scots pine forest in NE Turkey.

    PubMed

    Terzioğlu, Salih; Başkent, Emin Zeki; Kadioğullari, Ali Ihsan

    2009-05-01

    This study aims to investigate the change in spatial-temporal configuration of secondary forest succession and generate measurements for monitoring the changes in structural plant diversity in Yalnizçam Scots pine forest in NE Turkey from 1972 to 2005. The successional stages were mapped using the combination of Geographic Information System (GIS), Global Positioning System (GPS), aerial photos and high resolution satellite images (IKONOS). Forest structure and its relationship with structural plant diversity along with its changes over time were characterized using FRAGSTATS. In terms of spatial configuration of seral stages, the total number of fragments increased from 572 to 735, and mean size of patch (MPS) decreased from 154.97 ha to 120.60 ha over 33 years. The situation resulted in forestation serving appropriate conditions for plant diversity in the area. As an overall change in study area, there was a net increase of 1823.3 ha forest during the period with an average annual forestation rate of 55.25 ha year(-1) (0.4% per year). In conclusion, the study revealed that stand type maps of forest management plans in Turkey provide a great chance to monitor the changes in structural plant diversity over time. The study further contributes to the development of a framework for effective integration of biodiversity conservation into Multiple Use Forest Management (MUFM) plans using the successional stages as a critical mechanism. PMID:18553149

  8. Structural Health Monitoring of Composite Wound Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kaul, Raj; Taylor, Scott; Jackson, Kurt; Myers, George; Sharma, A.

    2002-01-01

    The increasing use of advanced composite materials in the wide range of applications including Space Structures is a great impetus to the development of smart materials. Incorporating these FBG sensors for monitoring the integrity of structures during their life cycle will provide valuable information about viability of the usage of such material. The use of these sensors by surface bonding or embedding in this composite will measure internal strain and temperature, and hence the integrity of the assembled engineering structures. This paper focuses on such a structure, called a composite wound pressure vessel. This vessel was fabricated from the composite material: TRH50 (a Mitsubishi carbon fiber with a 710-ksi tensile strength and a 37 Msi modulus) impregnated with an epoxy resin from NEWPORT composites (WDE-3D-1). This epoxy resin in water dispersed system without any solvents and it cures in the 240-310 degrees F range. This is a toughened resin system specifically designed for pressure applications. These materials are a natural fit for fiber sensors since the polyimide outer buffer coating of fiber can be integrated into the polymer matrix of the composite material with negligible residual stress. The tank was wound with two helical patterns and 4 hoop wraps. The order of winding is: two hoops, two helical and two hoops. The wall thickness of the composite should be about 80 mil or less. The tank should burst near 3,000 psi or less. We can measure the actual wall thickness by ultrasonic or we can burst the tank and measure the pieces. Figure 1 shows a cylinder fabricated out of carbon-epoxy composite material. The strain in different directions is measured with a surface bonded fiber Bragg gratings and with embedded fiber Bragg gratings as the cylinder is pressurized to burst pressures. Figure 2 shows the strain as a function of pressure of carbon-epoxy cylinder as it is pressurized with water. Strain is measured in different directions by multiple gratings

  9. Embedded and surface-mounted fiber optic sensors for civil structural monitoring

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Casanova, Nicoletta; Kronenberg, Pascal; Marazzi, Silvio; Vurpillot, Samuel

    1997-05-01

    Civil structural monitoring by optical fiber sensors, require the development of reliable sensors that can be embedded or surface mounted in concrete, mortars, steel, timber and other construction materials as well as in rocks, soils and road pavements. These sensors should be rapid and simple to install in order to avoid any interference with the building site schedule and not to require specialized operators to accomplish the task. The sensors have to be rugged enough to withstand the harsh conditions typically found in civil engineering including, dust, moisture, shocks, EM disturbances and unskilled workman. It is also desirable that the instrumentation survives for tens of years in order to allow a constant monitoring of the structure aging. This contribution presents the results of a four-year effort to develop, test and industrially produce a palette of sensors responding to the above requirements and adapted to different applications and host materials. These sensors include a small version (length up to 2 m) adapted for embedding in mortars, grout and glues, an intermediate version of length between 20 cm and 6 m adapted to direct concrete embedding or surface installation and a long version adapted to measure large deformations (up to 2%) over length up to 30 m and especially adapted for geostructures monitoring.

  10. A PROCESS FOR SELECTING INDICATORS FOR MONITORING CONDITIONS OF RANGELAND HEALTH (COPY)

    EPA Science Inventory

    This paper reports on a process for selecting a suite of indicators that, in combination, can be useful in assessing the ecological conditions of rangelands. Conceptual models that depict the structural and functional properties of ecological processes were used to show the linka...

  11. A dynamical model for condition monitoring and fault diagnostics of spur gears

    SciTech Connect

    Paya, B.; Esat, I.; Badi, M.N.M.

    1996-12-31

    The symptoms of condition monitoring and fault diagnostics of machinery based on the dynamic modelling of spur gears are discussed in this paper. The mathematical model presented in the earlier work, assumes two degree of freedom for each gear and the rotor, and also incorporates a varying gear tooth stiffness. This system is assumed to be in good condition (i.e. no fault present). The results obtained from this analytical model are compared with the ones obtained from an experimental model gearbox. This experimental gearbox consists of two meshing spur gears driven by an electric motor. The comparison of the results are encouraging as fundamental (dominant) frequencies of the analytical results correlates very closely to the experimental ones. It is shown that certain vibration frequency of a real gearbox such as the tooth meshing frequencies can be achieved from its mathematical model.

  12. Temperature effects in ultrasonic Lamb wave structural health monitoring systems.

    PubMed

    Lanza di Scalea, Francesco; Salamone, Salvatore

    2008-07-01

    There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems.

  13. Temperature effects in ultrasonic Lamb wave structural health monitoring systems.

    PubMed

    Lanza di Scalea, Francesco; Salamone, Salvatore

    2008-07-01

    There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems. PMID:18646963

  14. On Assessing the Robustness of Structural Health Monitoring Technologies

    SciTech Connect

    Stull, Christopher J.; Hemez, Francois M.; Farrar, Charles R.

    2012-08-24

    As Structural Health Monitoring (SHM) continues to gain popularity, both as an area of research and as a tool for use in industrial applications, the number of technologies associated with SHM will also continue to grow. As a result, the engineer tasked with developing a SHM system is faced with myriad hardware and software technologies from which to choose, often adopting an ad hoc qualitative approach based on physical intuition or past experience to making such decisions. This paper offers a framework that aims to provide the engineer with a quantitative approach for choosing from among a suite of candidate SHM technologies. The framework is outlined for the general case, where a supervised learning approach to SHM is adopted, and the presentation will focus on applying the framework to two commonly encountered problems: (1) selection of damage-sensitive features and (2) selection of a damage classifier. The data employed for these problems will be drawn from a study that examined the feasibility of applying SHM to the RAPid Telescopes for Optical Response observatory network.

  15. MEMS ultrasonic transducer for monitoring of steel structures

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2002-06-01

    Ultrasonic methods can be used to monitor crack propagation, weld failure, or section loss at critical locations in steel structures. However, ultrasonic inspection requires a skilled technician, and most commonly the signal obtained at any inspection is not preserved for later use. A preferred technology would use a MEMS device permanently installed at a critical location, polled remotely, and capable of on-chip signal processing using a signal history. We review questions related to wave geometry, signal levels, flaw localization, and electromechanical design issues for microscale transducers, and then describe the design, characterization, and initial testing of a MEMS transducer to function as a detector array. The device is approximately 1-cm square and was fabricated by the MUMPS process. The chip has 23 sensor elements to function in a phased array geometry, each element containing 180 hexagonal polysilicon diaphragms with a typical leg length of 49 microns and an unloaded natural frequency near 3.5 MHz. We first report characterization studies including capacitance-voltage measurements and admittance measurements, and then report initial experiments using a conventional piezoelectric transducer for excitation, with successful detection of signals in an on-axis transmission experiment and successful source localization from phased array performance in an off-axis transmission experiment.

  16. Structural Health Monitoring of Adhesively Bonded Composite Joints

    NASA Astrophysics Data System (ADS)

    Habib, Fady

    In recent years, many aerospace organizations have researched and implemented composite materials to achieve better fuel efficiency as well as reduced maintenance cost. In addition to the use of composites, manufacturers are investigating the use of adhesive bonded joints and composite patch bonded repairs to extend the life of their in-service aircraft. Adhesive joints are superior to traditional mechanical fasteners as they reduce stress concentration zones and overall part count. However, the integrity of an adhesive joint is difficult to inspect. Inspection of adhesive joints may be carried out using interrogation technology such as Structural Health Monitoring (SHM). This thesis focuses on the evaluation of Acoustic-Ultrasonic (AU) SHM technique for the detection of crack and disbond growth. In addition to AU, Capacitance Disbond Detection Technique (CDDT) and the Surface Mountable Crack Detection System (SMCDS) were evaluated for the detection disbonds. Results of the AU system demonstrated that AU technology may be used to detect and quantify crack and disbond growth. It was also found that SMCDS and CDDT both complement each other, as SMCDS identified the location of disbond while CDDT quantify disbond.

  17. Energy Harvesting for Structural Health Monitoring Sensor Networks

    SciTech Connect

    Park, G.; Farrar, C. R.; Todd, M. D.; Hodgkiss, T.; Rosing, T.

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.

  18. Analytical monitoring of soil bioengineering structures in the Tuscan Emilian Apennines of Italy

    NASA Astrophysics Data System (ADS)

    Selli, Lavinia; Guastini, Enrico

    2014-05-01

    Soil bioengineering has been an appropriate solution to deal with erosion problems and shallow landslides in the North Apennines, Italy. The objective of our research was a check about critical aspects of soil bioengineering works. We monitored the works that have been carried out in the Tuscan Emilian Apennines by testing the suitability of different plant species and analyzed in detail timber structures of wooden crib walls. Plant species were mainly Salix alba and Salix purpurea that gave good sprouting and survival rates. However, showed some issues in growing on dry and sunny Apennine lands, where other shrubs like Spanish Broom, blackthorn, cornel-tree and Eglantine would be more indicated. The localized analysis on wooden elements has been led gathering parts from the poles and obtaining samples in order to determine their density. The hypothetical initial density of the wood used in the structure has been estimated, then calculating the residual density. This analysis allows us to determine the general condition of the wood, highlighting the structures in worst condition (the one in Pianaccio show a residual density close to 70%, instead of 90% as found on other structures) and those whose degraded wood has undergone the greatest damage (Pianaccio here too, with 50%, followed by Campoferrario - 60% - and by Pian di Favale with 85%, a rather good value for the most degraded wood in the structure).

  19. Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-10-01

    Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflects the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit

  20. Micro-structured PDMS piezoelectric enhancement through charging conditions

    NASA Astrophysics Data System (ADS)

    Kachroudi, Achraf; Basrour, Skandar; Rufer, Libor; Sylvestre, Alain; Jomni, Fathi

    2016-10-01

    Micro-structured cellular polydimethylsiloxane (PDMS) materials were prepared by a low-cost molding process allowing us to control geometry and sample size. Cellular structures are charged with a triangular quasi-static voltage with amplitudes between 1 kV and 4 kV and a frequency of 0.5 Hz fixed after having evaluated the conditions enhancing the piezoelectric response of the cellular PDMS. The piezo-electret PDMS material charged at room temperature has a piezoelectric coefficient d 33 of 350 pC/N, which is ten times larger than that of polyvinylidene fluoride. The high piezoelectric coefficient with a very low elastic modulus of 300 kPa makes these materials very useful for wearable device applications. The piezoelectric coefficient d 33 of the samples poled at high temperatures improves thermal stability but reduces PDMS piezo-electret piezoelectricity, which is explained by the structure’s stiffness. These results are useful and allow us to set the conditions for the preparation of the piezo-electret materials according to desired applications.

  1. Condition monitoring requirements for the development of a space nuclear propulsion module

    NASA Technical Reports Server (NTRS)

    Wagner, Robert C.

    1993-01-01

    To facilitate the development of a space nuclear propulsion module for manned flights to Mars, requirements must be established early in the technology cycle. The long lead times for the acquisition of the engine system and nuclear test facilities demands that the engine system, size, performance, safety goals and condition monitoring philosophy be defined at the earliest possible time. These systems are highly complex and require a large multi-disciplinary systems engineering team to develop and track the requirements and to ensure that the as-built system reflects the intent of the mission. An effective methodology has been devised coupled with sophisticated computer tools to effectivly develop and interpret the functional requirements. These requirements can then be decomposed down to the specification level for implementation. This paper discusses the application of the methodology and the analyses to develop condition monitoring requirements under a contract with the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) Nuclear Propulsion Office (NPO).

  2. Personal sampler for monitoring of viable viruses; modelling of outdoor sampling conditions

    NASA Astrophysics Data System (ADS)

    Borodulin, A. I.; Desyatkov, B. M.; Lapteva, N. A.; Sergeev, A. N.; Agranovski, I. E.

    A new personal bioaerosol sampler has recently been developed and verified to be very efficient for monitoring of viable airborne bacteria, fungi and viruses. The device is capable of providing high recovery rates even for microorganisms which are rather sensitive to physical and biological stresses. However, some mathematical procedure is required for realistic calculation of an actual concentration of viable bioaerosols in the air taking into account a rate of inactivation of targeted microorganisms, sampling parameters, and results of microbial analysis of collecting liquid from the sampler. In this paper, we develop such procedure along with the model of aerosol propagation for outdoor conditions. Combining these procedures allows one to determine the optimal sampling locations for the best possible coverage of the area to be monitored. A hypothetical episode concerned with terrorists' attack during music concert in the central square of Novosibirsk, Russia was considered to evaluate possible coverage of the area by sampling equipment to detect bioaerosols at various locations within the square. It was found that, for chosen bioaerosol generation parameters and weather conditions, the new personal sampler would be capable to reliably detect pathogens at all locations occupied by crowd, even at distances of up to 600 m from the source.

  3. Testing ZigBee Motes for Monitoring Refrigerated Vegetable Transportation under Real Conditions

    PubMed Central

    Ruiz-Garcia, Luis; Barreiro, Pilar; Robla, Jose Ignacio; Lunadei, Loredana

    2010-01-01

    Quality control and monitoring of perishable goods during transportation and delivery services is an increasing concern for producers, suppliers, transport decision makers and consumers. The major challenge is to ensure a continuous ‘cold chain’ from producer to consumer in order to guaranty prime condition of goods. In this framework, the suitability of ZigBee protocol for monitoring refrigerated transportation has been proposed by several authors. However, up to date there was not any experimental work performed under real conditions. Thus, the main objective of our experiment was to test wireless sensor motes based in the ZigBee/IEEE 802.15.4 protocol during a real shipment. The experiment was conducted in a refrigerated truck traveling through two countries (Spain and France) which means a journey of 1,051 kilometers. The paper illustrates the great potential of this type of motes, providing information about several parameters such as temperature, relative humidity, door openings and truck stops. Psychrometric charts have also been developed for improving the knowledge about water loss and condensation on the product during shipments. PMID:22399917

  4. Application-ready expedited MODIS data for operational land surface monitoring of vegetation condition

    USGS Publications Warehouse

    Brown, Jesslyn; Howard, Daniel M.; Wylie, Bruce K.; Frieze, Aaron; Ji, Lei; Gacke, Carolyn

    2015-01-01

    Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS) system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1), the eMODIS Normalized Difference Vegetation Index (NDVI) maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra) or afternoon (Aqua) orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  5. Design and Realization of Rotating Machinery Conditions Monitoring System Based on Labview

    NASA Astrophysics Data System (ADS)

    Fan, Qiyuan

    Nonlinear dynamic analysis of rotating machinery system has always been the hot spot of the rotational dynamics research. This article sets up a rotating machinery condition monitoring system to realize the measurement of system dynamic characteristic parameters based on NI(National Instruments) virtual instruments technology. The measurement of vibration signal of rotating machinery system is achieved by using NI company general data acquisition module of NI company. Meanwhile, by analyzing and processing the acquired data using Labview 2012, the dynamic characteristics, such as .the speed of the rotating machinery system, the axis trajectory, spectrum parameters, are attained. The measurement results show that the rotating machinery condition monitoring system based on Labview is easy to operate, easy to realize the function extension and maintenance, and that it can be used in the industrial engineering projects with rotation characteristics. Labview as the development tools used by virtual instrument function, is very powerful data acquisition software products support is one of the features of it, so using Labview programming and data acquisition is simple and convenient [1].

  6. Adaptive responses of the cardiovascular system to prolonged spaceflight conditions: assessment with Holter monitoring

    NASA Technical Reports Server (NTRS)

    Baevsky, R. M.; Bennett, B. S.; Bungo, M. W.; Charles, J. B.; Goldberger, A. L.; Nikulina, G. A.

    1997-01-01

    This article presents selected findings obtained with Holter monitoring from two crew members of the expedition, performed during a 175-day space mission on board orbital space station "MIR." Using mathematical processing of daily cardiointervals files, 5-minute sections of records were analyzed consecutively. Then, the average daily values of indices, the average-per-every-eight-hours values (morning, evening, night) and mean values per hour were computed. The results of analysis showed that prolonged exposure of man to microgravity conditions leads to important functional alteration in human neuroautonomic regulatory mechanisms. Both crew members had significant increase of heart rate, the rise of stress index, the decrease in power of the spectrum in the range of respiratory sinus arrhythmia. These marked signs of activation of the sympathetic section of the vegetative nervous system showed individual variations. The analysis of the daily collection of cardiointervals with Holter monitoring allows us to understand and forecast the functional feasibilities of the human organism under a variety of stress conditions associated with acute and chronic microgravity exposure.

  7. Remote monitoring of parental incubation conditions in the greater sandhill crane

    USGS Publications Warehouse

    Gee, G.F.; Hatfield, J.; Howey, P.J.

    1995-01-01

    To monitor incubation conditions in nests of greater sandhill cranes, a radiotransmitting egg was built using six temperature sensors, a position sensor, and a light sensor. Sensor readings were received, along with time of observations, and stored in a computer. The egg was used to monitor incubation in nests of six pairs of cranes during 1987 and 1988. Ambient temperature was also measured. Analysis of covariance (ANCOVA) was used to relate highest egg temperature, core egg temperature, and lowest egg temperature to ambient temperature, time since the egg was last turned, and time since the beginning of incubation. Ambient temperature had the greatest effect on egg temperature (P 0.0001), followed by the time since the beginning of incubation and time since the egg was last turned. Pair effect, the class variable in the ANCOVA. was also very significant (P < 0.0001). A nine-term Fourier series was used to estimate the average core egg temperature versus time of day and was found to fit the data well (r2 = 0.94). The Fourier series will be used to run a mechanical incubator to simulate natural incubation conditions for cranes.

  8. PREFACE: 25th International Congress on Condition Monitoring and Diagnostic Engineering (COMADEM 2012)

    NASA Astrophysics Data System (ADS)

    Ball, Andrew; Mishra, Rakesh; Gu, Fengshou; Rao, Raj B. K. N.

    2012-05-01

    The proactive multidisciplinary conceptual philosophy of Condition Monitoring and Diagnostic Engineering Management (COMADEM) was conceived and has been nurtured, developed and sustained since 1988. Since then, it is gratifying to note that the condition monitoring, diagnostic and prognostic community worldwide (representing industrialists, academics, research and development organizations, professional/private establishments and many hardware/software vending organizations) has warmly welcomed and supported this venture. As is evidenced, many have reaped (and are reaping) the benefits of COMADEM interdiscipline through continuous knowledge discovery, generation and dissemination. We are now proud to celebrate the 25th Annual Event (Silver Jubilee) in Huddersfield, the most beautiful part of the United Kingdom. The theme of this Congress is 'Sustained Prosperity through Proactive Monitoring, Diagnosis, Prognosis and Management'. This proceedings is enriched by contributions from many keynote experts representing many industry and academic establishments worldwide. Authors from more than 30 different countries have pooled their rich multidisciplinary up-to-date knowledge, in order to share their invaluable experience with the COMADEM community. In this proceedings, the readers will find more than 120 refereed papers encompassing a number of topical areas of interest relating to the theme of the congress. The proceedings of COMADEM 2012 will appear in the Open Access Journal of Physics: Conference Series (JPCS), which is part of the IOP Conference Series. All papers published in the IOP Conference Series are fully citable and upon publication will be free to download. We would like to express our deep gratitude to all the keynote speakers, authors, referees, exhibitors, Technical Co-Sponsoring Organizations, Gold Sponsors, IOP Publishers, COMADEM 2012 organizing committee members, delegates and many others on whom the success of this prestigious event depends

  9. Localized structural health monitoring via transmission zero invariance

    NASA Astrophysics Data System (ADS)

    Reich, Gregory William

    2000-11-01

    This thesis presents a method of localized health monitoring based on an invariance property of transmission zeros of substructural frequency response functions. The proposed method has several desirable characteristics which make it attractive for use in damage detection applications. These are the independence from initial parameter estimates, the determination of a unique damage location, and the fact that the method is particularly suited for structural continuum applications where other methods perform poorly. The proposed method is based on a substructuring technique for structural mechanics. The structural equations of motion are cast in a variational framework and are mathematically decomposed into substructures using Lagrange multipliers as boundary constraints. The global dynamics of the system are then written in terms of the independent dynamics of each substructure plus the inter-element dynamics. The frequency response functions of the localized form represent the energy transfer between unique input forces which are derived from the total global force input and output variables which exist independently on a substructure. Because transmission zeros are highly dependent on the input and output of the system under consideration, they exhibit different characteristics in the local form versus the global form. If damage is limited to a change in flexibility, then it can be shown that the transmission zeros of a partition of the full transfer function matrix corresponding to a damaged substructure are invariant to the damage. Transmission zeros of partitions of the transfer function matrix corresponding to healthy substructures likewise can be shown to vary with the damage. Identification of the substructure whose zeros exhibit the least amount of variation between tests results in identification of the damage location. Analytical and experimental examples are used to demonstrate the theory and abilities of the proposed method. In each example, the system

  10. Initial evaluation of an active/passive structural neural system for health monitoring of composite materials

    NASA Astrophysics Data System (ADS)

    Kirikera, G. R.; Lee, J. W.; Schulz, M. J.; Ghoshal, A.; Sundaresan, M. J.; Allemang, R. J.; Shanov, V. N.; Westheider, H.

    2006-10-01

    Structural health monitoring is an underlying technology that can help to ensure safe operation and provide cost effective maintenance of advanced composite structures. While several general methods of health monitoring have evolved in recent years, there is still the goal of reducing the overall cost of applying health monitoring to large structures. Data acquisition hardware typically consumes most of the investment in a structural monitoring system. On a conventional system based on acoustic emission monitoring, a separate high sampling rate data acquisition channel is needed for each sensor to convert analog signals to digital signals to locate damage. Other methods of damage detection are likewise complicated, and require many sensors and actuators, auxiliary signal processing, and data storage instrumentation. This paper proposes a structural neural system that uses firing of sensor neurons to reduce the number of data acquisition channels needed for damage detection. The neural system can perform passive acoustic emission sensing or active wave propagation monitoring. A prototype structural neural system with four sensor inputs was built and tested, and experimental results are presented in the paper. One signal output from the structural neural system is used to predict the location of damage. A second signal provides the time domain response of the sensors. Therefore, passive and active health monitoring can be performed using two channels of data acquisition. The structural neural system significantly reduces the data acquisition hardware required for health monitoring, and combines some of the advantages that exist individually for passive and active health monitoring.

  11. Psycho-physiological monitoring in real and simulated space flight conditions.

    PubMed

    Larina, I M; Bystritzkaya, A F; Smirnova, T M

    1997-07-01

    Earlier in simulating experiments from long isolation of small group in hermetic cabin we were found out the significant interrelation between changes physiological parameters and subjective appraisal of a condition, activity regulating systems of organism, individual variability of a colour choice, and also quality of operator's activity. On the basis of these results we develop a method of psychophysiological monitoring. The important component of a method is study of the variational characteristics of registered parameters, with the purpose of reception of the information about character of transients in organism. The present research is carried out in conditions of 135-daily isolation in a breadboard model MIR station (experiment HUBES). Its PURPOSE was study of dynamic psycho-emotional condition, simultaneously with study physiological and biochemical parameters, describing process of adaptation to complex conditions of ability to live. Besides were analyzed the results of circadian rhythm's researches during space flights of 6 Russian cosmonauts (duration from 70 till 182 days) on orbital MIR station. PMID:11540667

  12. Skeletal Anomaly Monitoring in Rainbow Trout (Oncorhynchus mykiss, Walbaum 1792) Reared under Different Conditions

    PubMed Central

    Boglione, Clara; Pulcini, Domitilla; Scardi, Michele; Palamara, Elisa; Russo, Tommaso; Cataudella, Stefano

    2014-01-01

    The incidence of skeletal anomalies could be used as an indicator of the “quality” of rearing conditions as these anomalies are thought to result from the inability of homeostatic mechanisms to compensate for environmentally-induced stress and/or altered genetic factors. Identification of rearing conditions that lower the rate of anomalies can be an important step toward profitable aquaculture as malformed market-size fish have to be discarded, thus reducing fish farmers’ profits. In this study, the occurrence of skeletal anomalies in adult rainbow trout grown under intensive and organic conditions was monitored. As organic aquaculture animal production is in its early stages, organic broodstock is not available in sufficient quantities. Non-organic juveniles could, therefore, be used for on-growing purposes in organic aquaculture production cycle. Thus, the adult fish analysed in this study experienced intensive conditions during juvenile rearing. Significant differences in the pattern of anomalies were detected between organically and intensively-ongrown specimens, although the occurrence of severe, commercially important anomalies, affecting 2–12.5% of individuals, was comparable in the two systems. Thus, organic aquaculture needs to be improved in order to significantly reduce the incidence of severe anomalies in rainbow trout. PMID:24809347

  13. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  14. Structural change in molten basalt at deep mantle conditions.

    PubMed

    Sanloup, Chrystèle; Drewitt, James W E; Konôpková, Zuzana; Dalladay-Simpson, Philip; Morton, Donna M; Rai, Nachiketa; van Westrenen, Wim; Morgenroth, Wolfgang

    2013-11-01

    Silicate liquids play a key part at all stages of deep Earth evolution, ranging from core and crust formation billions of years ago to present-day volcanic activity. Quantitative models of these processes require knowledge of the structural changes and compression mechanisms that take place in liquid silicates at the high pressures and temperatures in the Earth's interior. However, obtaining such knowledge has long been impeded by the challenging nature of the experiments. In recent years, structural and density information for silica glass was obtained at record pressures of up to 100 GPa (ref. 1), a major step towards obtaining data on the molten state. Here we report the structure of molten basalt up to 60 GPa by means of in situ X-ray diffraction. The coordination of silicon increases from four under ambient conditions to six at 35 GPa, similar to what has been reported in silica glass. The compressibility of the melt after the completion of the coordination change is lower than at lower pressure, implying that only a high-order equation of state can accurately describe the density evolution of silicate melts over the pressure range of the whole mantle. The transition pressure coincides with a marked change in the pressure-evolution of nickel partitioning between molten iron and molten silicates, indicating that melt compressibility controls siderophile-element partitioning.

  15. Structural performance of HEPA filters under simulated tornado conditions

    NASA Astrophysics Data System (ADS)

    Horak, H. L.; Gregory, W. S.; Ricketts, C. I.; Smith, P. R.

    1982-02-01

    The response of high efficiency particulate air filters to simulated tornado conditions was determined. The data include the structural limits of the filters, their resistance at high flow rates, and the effects of filter design features and tornado parameters. Considering all the filters tested, the mean break pressure or structural limit was found to be 2.35 pse (16.2 kPa). The maximum value was 2.87 psi (19.8 kPa), and the low value found was 1.31 psi (9.0 kPa). The type of failure was usually a medium break of the downstream filter fold. The types of filters that were evaluated were nuclear grade with design flow rates of 1000 cfm (0.472 cu m/s), standard separators, and folded medium design. The parameters evaluated that are characteristic of the filter included manufacturer, separator type, face-guards, pack tightness, and aerosol loading. Manufacturer and medium properties were found to have a large effect on the structural limits.

  16. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  17. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  18. Condition index monitoring supports conservation priorities for the protection of threatened grass-finch populations.

    PubMed

    Maute, Kimberly; French, Kristine; Legge, Sarah; Astheimer, Lee; Garnett, Stephen

    2015-01-01

    Conservation agencies are often faced with the difficult task of prioritizing what recovery actions receive support. With the number of species under threat of decline growing globally, research that informs conservation priorities is greatly needed. The relative vulnerability of cryptic or nomadic species is often uncertain, because populations are difficult to monitor and local populations often seem stable in the short term. This uncertainty can lead to inaction when populations are in need of protection. We tested the feasibility of using differences in condition indices as an indication of population vulnerability to decline for related threatened Australian finch sub-species. The Gouldian finch represents a relatively well-studied endangered species, which has a seasonal and site-specific pattern of condition index variation that differs from the closely related non-declining long-tailed finch. We used Gouldian and long-tailed finch condition variation as a model to compare with lesser studied, threatened star and black-throated finches. We compared body condition (fat and muscle scores), haematocrit and stress levels (corticosterone) among populations, seasons and years to determine whether lesser studied finch populations matched the model of an endangered species or a non-declining species. While vulnerable finch populations often had lower muscle and higher fat and corticosterone concentrations during moult (seasonal pattern similar to Gouldian finches), haematocrit values did not differ among populations in a predictable way. Star and black-throated finch populations, which were predicted to be vulnerable to decline, showed evidence of poor condition during moult, supporting their status as vulnerable. Our findings highlight how measures of condition can provide insight into the relative vulnerability of animal and plant populations to decline and will allow the prioritization of efforts towards the populations most likely to be in jeopardy of extinction

  19. Condition index monitoring supports conservation priorities for the protection of threatened grass-finch populations.

    PubMed

    Maute, Kimberly; French, Kristine; Legge, Sarah; Astheimer, Lee; Garnett, Stephen

    2015-01-01

    Conservation agencies are often faced with the difficult task of prioritizing what recovery actions receive support. With the number of species under threat of decline growing globally, research that informs conservation priorities is greatly needed. The relative vulnerability of cryptic or nomadic species is often uncertain, because populations are difficult to monitor and local populations often seem stable in the short term. This uncertainty can lead to inaction when populations are in need of protection. We tested the feasibility of using differences in condition indices as an indication of population vulnerability to decline for related threatened Australian finch sub-species. The Gouldian finch represents a relatively well-studied endangered species, which has a seasonal and site-specific pattern of condition index variation that differs from the closely related non-declining long-tailed finch. We used Gouldian and long-tailed finch condition variation as a model to compare with lesser studied, threatened star and black-throated finches. We compared body condition (fat and muscle scores), haematocrit and stress levels (corticosterone) among populations, seasons and years to determine whether lesser studied finch populations matched the model of an endangered species or a non-declining species. While vulnerable finch populations often had lower muscle and higher fat and corticosterone concentrations during moult (seasonal pattern similar to Gouldian finches), haematocrit values did not differ among populations in a predictable way. Star and black-throated finch populations, which were predicted to be vulnerable to decline, showed evidence of poor condition during moult, supporting their status as vulnerable. Our findings highlight how measures of condition can provide insight into the relative vulnerability of animal and plant populations to decline and will allow the prioritization of efforts towards the populations most likely to be in jeopardy of extinction.

  20. Condition index monitoring supports conservation priorities for the protection of threatened grass-finch populations

    PubMed Central

    Maute, Kimberly; French, Kristine; Legge, Sarah; Astheimer, Lee; Garnett, Stephen

    2015-01-01

    Conservation agencies are often faced with the difficult task of prioritizing what recovery actions receive support. With the number of species under threat of decline growing globally, research that informs conservation priorities is greatly needed. The relative vulnerability of cryptic or nomadic species is often uncertain, because populations are difficult to monitor and local populations often seem stable in the short term. This uncertainty can lead to inaction when populations are in need of protection. We tested the feasibility of using differences in condition indices as an indication of population vulnerability to decline for related threatened Australian finch sub-species. The Gouldian finch represents a relatively well-studied endangered species, which has a seasonal and site-specific pattern of condition index variation that differs from the closely related non-declining long-tailed finch. We used Gouldian and long-tailed finch condition variation as a model to compare with lesser studied, threatened star and black-throated finches. We compared body condition (fat and muscle scores), haematocrit and stress levels (corticosterone) among populations, seasons and years to determine whether lesser studied finch populations matched the model of an endangered species or a non-declining species. While vulnerable finch populations often had lower muscle and higher fat and corticosterone concentrations during moult (seasonal pattern similar to Gouldian finches), haematocrit values did not differ among populations in a predictable way. Star and black-throated finch populations, which were predicted to be vulnerable to decline, showed evidence of poor condition during moult, supporting their status as vulnerable. Our findings highlight how measures of condition can provide insight into the relative vulnerability of animal and plant populations to decline and will allow the prioritization of efforts towards the populations most likely to be in jeopardy of extinction

  1. A Structural and Functional Model of Teachers' Monitoring Skills Development

    ERIC Educational Resources Information Center

    Masalimova, Alfiya R.; Barinova, Nataliya A.

    2016-01-01

    The relevance of the present issue is caused by a strong need to conduct monitoring processes in all types of teaching processes and a poor development of theoretical, content and technological, scientific and methodological material for teachers' monitoring skills development during their teaching practice. The aim of the article is to create and…

  2. Remote Structural Health Monitoring and Advanced Prognostics of Wind Turbines

    SciTech Connect

    Douglas Brown; Bernard Laskowski

    2012-05-29

    The prospect of substantial investment in wind energy generation represents a significant capital investment strategy. In order to maximize the life-cycle of wind turbines, associated rotors, gears, and structural towers, a capability to detect and predict (prognostics) the onset of mechanical faults at a sufficiently early stage for maintenance actions to be planned would significantly reduce both maintenance and operational costs. Advancement towards this effort has been made through the development of anomaly detection, fault detection and fault diagnosis routines to identify selected fault modes of a wind turbine based on available sensor data preceding an unscheduled emergency shutdown. The anomaly detection approach employs spectral techniques to find an approximation of the data using a combination of attributes that capture the bulk of variability in the data. Fault detection and diagnosis (FDD) is performed using a neural network-based classifier trained from baseline and fault data recorded during known failure conditions. The approach has been evaluated for known baseline conditions and three selected failure modes: pitch rate failure, low oil pressure failure and a gearbox gear-tooth failure. Experimental results demonstrate the approach can distinguish between these failure modes and normal baseline behavior within a specified statistical accuracy.

  3. Seismic Monitoring To Assess Performance Of Structures In Near-Real Time: Recent Progress

    SciTech Connect

    Celebi, Mehmet

    2008-07-08

    Earlier papers have described how observed data from classical accelerometers deployed in structures or from differential GPS with high sampling ratios deployed at roofs of tall buildings can be configured to establish seismic health monitoring of structures. In these configurations, drift ratios{sup 1} are the main parametric indicator of damage condition of a structure or component of a structure.Real-time measurement of displacements are acquired either by double integration of accelerometer time-series data, or by directly using GPS. Recorded sensor data is then related to the performance level of a building. Performance-based design method stipulates that for a building the amplitude of relative displacement of the roof of a building (with respect to its base) indicates its performance.Usually, drift ratio is computed using relative displacement between two consecutive floors. When accelerometers are used, a specific software is used to compute displacements and drift ratios in realtime by double integration of accelerometer data from several floors. However, GPS-measured relative displacements are limited to being acquired only at the roof with respect to its reference base. Thus, computed drift ratio is the average drift ratio for the whole building. Until recently, the validity of measurements using GPS was limited to long-period structures (T>1 s) because GPS systems readily available were limited to 10-20 samples per seconds (sps) capability. However, presently, up to 50 sps differential GPS systems are available on the market and have been successfully used to monitor drift ratios [1,2]--thus enabling future usefulness of GPS to all types of structures. Several levels of threshold drift ratios can be postulated in order to make decisions for inspections and/or occupancy.Experience with data acquired from both accelerometers and GPS deployments indicates that they are reliable and provide pragmatic alternatives to alert the owners and other authorized

  4. Seismic Monitoring To Assess Performance Of Structures In Near-Real Time: Recent Progress

    NASA Astrophysics Data System (ADS)

    Ćelebi, Mehmet

    2008-07-01

    Earlier papers have described how observed data from classical accelerometers deployed in structures or from differential GPS with high sampling ratios deployed at roofs of tall buildings can be configured to establish seismic health monitoring of structures. In these configurations, drift ratios1 are the main parametric indicator of damage condition of a structure or component of a structure. Real-time measurement of displacements are acquired either by double integration of accelerometer time-series data, or by directly using GPS. Recorded sensor data is then related to the performance level of a building. Performance-based design method stipulates that for a building the amplitude of relative displacement of the roof of a building (with respect to its base) indicates its performance. Usually, drift ratio is computed using relative displacement between two consecutive floors. When accelerometers are used, a specific software is used to compute displacements and drift ratios in realtime by double integration of accelerometer data from several floors. However, GPS-measured relative displacements are limited to being acquired only at the roof with respect to its reference base. Thus, computed drift ratio is the average drift ratio for the whole building. Until recently, the validity of measurements using GPS was limited to long-period structures (T>1 s) because GPS systems readily available were limited to 10-20 samples per seconds (sps) capability. However, presently, up to 50 sps differential GPS systems are available on the market and have been successfully used to monitor drift ratios [1,2]—thus enabling future usefulness of GPS to all types of structures. Several levels of threshold drift ratios can be postulated in order to make decisions for inspections and/or occupancy. Experience with data acquired from both accelerometers and GPS deployments indicates that they are reliable and provide pragmatic alternatives to alert the owners and other authorized

  5. Mean maps for cosmic web structures in cosmological initial conditions

    NASA Astrophysics Data System (ADS)

    Aung, Han; Cohn, J. D.

    2016-02-01

    Haloes, filaments, sheets and voids in the cosmic web can be defined in terms of the eigenvalues of the smoothed shear tensor and a threshold λth. Using analytic methods, we construct mean maps centred on these types of structures for Gaussian random fields corresponding to cosmological initial conditions. Each map also requires a choice of shear at the origin; we consider three possibilities. We find characteristic sizes, shapes and other properties of the central objects in these mean maps and explore how these properties change with varying the threshold and smoothing scale, i.e. varying the separation of the cosmic web into different kinds of components. The mean maps become increasingly complex as the threshold λth decreases to zero. We also describe scatter around these mean maps, subtleties which can arise in their construction, and some comparisons between haloes in the maps and collapsed haloes at final times.

  6. Wetlands monitoring - hydrological conditions and water quality in selected transects of Biebrza National Park.

    NASA Astrophysics Data System (ADS)

    Stelmaszczyk, Mateusz; Okruszko, Tomasz

    2010-05-01

    Water Framework Directive (WFD) obligates Member States to prevent further deterioration as well as to protect and enhance the status of aquatic ecosystems and wetlands. In order to fulfill one of the WFD objectives - to keep wetlands in good surface water and groundwater status (determined by good ecological, chemical and quantitative status) it is necessary to specify most favourable conditions for them. In that case monitoring of factors responsible for wetlands status in natural areas is a key issue. Further, achieved knowledge of existing relations in ecosystems can be implemented in protection and restoration projects. There are a number of factors influencing diversity of habitats responsible for developing different wetland ecosystems and their sustaining in good ecological status. It's believed that among significant factors such as hydrological conditions, water quality, nutrient availability in the soil, pH value and management (e.g. grazing, mowing) the hydrological conditions are the most important. In presented work authors concentrated on hydrological conditions and water quality and theirs influence on wetland vegetation of Biebrza National Park (BNP). BNP located north-east part of Poland is recognized by many scientist as a unique undisturbed wetland reference area. Five transects located in different basins of BNP were chosen. Transects consist of piezometers in which the water table levels and water quality were measured. Analysis of electroconductivity (EC), alkalinity (HCO3-) and pH were done directly in the field. In the laboratory anions (NO3-, PO43-, Cl-, SO42-) and cations (NH4+, Ca2+, Mg2+, Br+, Li+, Na+, K+) concentration was determined using High Performance Liquid Chromatography (HPLC). D-divers, electronic devices to permanent measurement of groundwater level changes were located in some of the piezometers. Piezometers were located in the sites characterized by different hydrological conditions, from groundwater fed to river fed areas

  7. An Updated Decision Support Interface: A Tool for Remote Monitoring of Crop Growing Conditions

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Budde, M. E.; Rowland, J.; Verdin, J. P.; Funk, C. C.; Landsfeld, M. F.

    2014-12-01

    Remote sensing of agroclimatological variables to monitor food production conditions is a critical component of the Famine Early Warning Systems Network portfolio of tools for assessing food security in the developing world. The Decision Support Interface (DSI) seeks to integrate a number of remotely sensed and modeled variables to create a single, simplified portal for analysis of crop growing conditions. The DSI has been reformulated to incorporate more variables and give the user more freedom in exploring the available data. This refinement seeks to transition the DSI from a "first glance" agroclimatic indicator to one better suited for the differentiation of drought events. The DSI performs analysis of variables over primary agricultural zones at the first sub-national administrative level. It uses the spatially averaged rainfall, normalized difference vegetation index (NDVI), water requirement satisfaction index (WRSI), and actual evapotranspiration (ETa) to identify potential hazards to food security. Presenting this information in a web-based client gives food security analysts and decision makers a lightweight portal for information on crop growing conditions in the region. The crop zones used for the aggregation contain timing information which is critical to the DSI presentation. Rainfall and ETa are accumulated from different points in the crop phenology to identify season-long deficits in rainfall or transpiration that adversely affect the crop-growing conditions. Furthermore, the NDVI and WRSI serve as their own seasonal accumulated measures of growing conditions by capturing vegetation vigor or actual evapotranspiration deficits. The DSI is currently active for major growing regions of sub-Saharan Africa, with intention of expanding to other areas over the coming years.

  8. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  9. Introduction of structural health and safety monitoring warning systems for Shenzhen-Hong Kong Western Corridor Shenzhen Bay Bridge

    NASA Astrophysics Data System (ADS)

    Li, N.; Zhang, X. Y.; Zhou, X. T.; Leng, J.; Liang, Z.; Zheng, C.; Sun, X. F.

    2008-03-01

    Though the brief introduction of the completed structural health and safety monitoring warning systems for Shenzhen-Hongkong western corridor Shenzhen bay highway bridge (SZBHMS), the self-developed system frame, hardware and software scheme of this practical research project are systematically discussed in this paper. The data acquisition and transmission hardware and the basic software based on the NI (National Instruments) Company virtual instruments technology were selected in this system, which adopted GPS time service receiver technology and so on. The objectives are to establish the structural safety monitoring and status evaluation system to monitor the structural responses and working conditions in real time and to analyze the structural working statue using information obtained from the measured data. It will be also provided the scientific decision-making bases for the bridge management and maintenance. Potential technical approaches to the structural safety warning systems, status identification and evaluation method are presented. The result indicated that the performance of the system has achieved the desired objectives, ensure the longterm high reliability, real time concurrence and advanced technology of SZBHMS. The innovate achievement which is the first time to implement in domestic, provide the reference for long-span bridge structural health and safety monitoring warning systems design.

  10. A methodology for hard/soft information fusion in the condition monitoring of aircraft

    NASA Astrophysics Data System (ADS)

    Bernardo, Joseph T.

    2013-05-01

    Condition-based maintenance (CBM) refers to the philosophy of performing maintenance when the need arises, based upon indicators of deterioration in the condition of the machinery. Traditionally, CBM involves equipping machinery with electronic sensors that continuously monitor components and collect data for analysis. The addition of the multisensory capability of human cognitive functions (i.e., sensemaking, problem detection, planning, adaptation, coordination, naturalistic decision making) to traditional CBM may create a fuller picture of machinery condition. Cognitive systems engineering techniques provide an opportunity to utilize a dynamic resource—people acting as soft sensors. The literature is extensive on techniques to fuse data from electronic sensors, but little work exists on fusing data from humans with that from electronic sensors (i.e., hard/soft fusion). The purpose of my research is to explore, observe, investigate, analyze, and evaluate the fusion of pilot and maintainer knowledge, experiences, and sensory perceptions with digital maintenance resources. Hard/soft information fusion has the potential to increase problem detection capability, improve flight safety, and increase mission readiness. This proposed project consists the creation of a methodology that is based upon the Living Laboratories framework, a research methodology that is built upon cognitive engineering principles1. This study performs a critical assessment of concept, which will support development of activities to demonstrate hard/soft information fusion in operationally relevant scenarios of aircraft maintenance. It consists of fieldwork, knowledge elicitation to inform a simulation and a prototype.

  11. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines

    PubMed Central

    Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu

    2016-01-01

    In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved. PMID:27136561

  12. Estimation of critical conditions of polymers based on monitoring the polymer recovery.

    PubMed

    Bhati, S S; Macko, T; Brüll, R

    2016-06-17

    Liquid chromatography at critical conditions (LCCC) is a very attractive chromatographic technique on the border between the size exclusion and liquid adsorption mode of the liquid chromatography. The strong interest in LCCC arises from the fact that it is well suited to analyze the block lengths in segmented copolymers or the heterogeneities with regard to end groups present, for example, in functionalized polymers e.g., telechelics. In this paper a new method for identification of the critical conditions of synthetic polymers is proposed, which requires only one polymer sample with higher molar mass. The method is based on monitoring the recovery of the polymer sample from a column. The composition of the mobile phase is modified until the polymer sample is fully recovered from the column. The corresponding composition of the mobile phase is composition corresponding to LCCC. This new method was applied for the determination of critical conditions for polyethylene, syndiotactic polypropylene and isotactic polypropylene. The results of the new method will be compared to those of classical approaches and advantages will be pointed out.

  13. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines.

    PubMed

    Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu

    2016-04-29

    In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved.

  14. Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines.

    PubMed

    Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu

    2016-01-01

    In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved. PMID:27136561

  15. Monitoring present day climatic conditions in tropical caves using an Environmental Data Acquisition System (EDAS)

    NASA Astrophysics Data System (ADS)

    Sondag, Francis; van Ruymbeke, Michel; Soubiès, François; Santos, Roberto; Somerhausen, André; Seidel, Alexandre; Boggiani, Paulo

    2003-03-01

    This paper presents data from automatic stations which have been installed for monitoring climatic parameters in caves in two areas of Brazil. These devices, initially developed at the Royal Observatory of Belgium to monitor environmental parameters in geophysical observatories, were adapted in our study to operate under tropical cave conditions and to measure temperature, atmospheric pressure and drip rate of stalactites. Similar devices were installed at the surface near to the caves to measure air temperature, atmospheric pressure and rainfall. The results reveal that the drip rate at the tip of stalactites is related to the effective rainfall (water excess). The stable drip regime observed during the dry season seems to be reproducible from one year to the other and could be related to the infiltration of water which has a long residence time in the aquifer. Regular pressure oscillations, with amplitude ranging between 1 and 2 mb, are observed in both of the monitored caves. Spectral analysis of the data suggests that these oscillations are linked to the diurnal and semi-diurnal solar tides (S1 and S2). In one cave, very small temperature variations (0.02-0.05 °C) are also observed with a similar diurnal and semi-diurnal pattern, and we argue that the generating process of the thermal components of the S1 and S2 frequencies is a mixture of thermal convection produced by the surface meteorological variations and of an adiabatic induction of the S2 atmospheric pressure modulation. A very large annual thermal amplitude (13 °C) is observed in the other cave; this is a great motivation to study the stable isotope geochemistry of its speleothems as they probably have recorded past temperature fluctuations linked to paleoclimate variations in this area of south-western Brazil.

  16. Turbulence Structure and Meteorological Conditions at Teide and Roque de LOS Muchachos Observatories (canary Islands)

    NASA Astrophysics Data System (ADS)

    Castro-Almazán, J. A.; García-Lorenzo, B.; Fuensalida, J. J.

    2009-09-01

    The proper characterisation of the turbulence structure in an astronomical site requires an statistical study of the refractive-index structure constant Cn2(h). Our team is monitoring the Cn2(h) profiles since 2002 at the Teide and Roque de los Muchachos observatories (Canary Islands, Spain) with the g-SCIDAR technique. We have compared the turbulence profiles obtained with the radiosonde simultaneous profiles and with the NCEP I reanalysis maps at different levels. We show that turbulence measured at both observatories (being at 160km distant) correlate with the radiosonde data and may be explained through the atmospheric conditions in a synoptical scale. Hence, the statistical predominance of synoptical scaled phenomena may explain the similarity found in the monthly average profiles obtained at both observatories.

  17. Monitoring of hidden fatigue crack growth in multi-layer aircraft structures using high frequency guided waves

    NASA Astrophysics Data System (ADS)

    Chan, H.; Masserey, B.; Fromme, P.

    2015-03-01

    Varying loading conditions of aircraft structures result in stress concentration at fastener holes, where multi-layered components are connected, potentially leading to the development of hidden fatigue cracks in inaccessible layers. High frequency guided waves propagating along the structure allow for the structural health monitoring (SHM) of such components, e.g., aircraft wings. Experimentally the required guided wave modes can be easily excited using standard ultrasonic wedge transducers. However, the sensitivity for the detection of small, potentially hidden, fatigue cracks has to be ascertained. The type of multi-layered model structure investigated consists of two adhesively bonded aluminum plate-strips with a sealant layer. Fatigue experiments were carried out and the growth of fatigue cracks at the fastener hole in one of the metallic layers was monitored optically during cyclic loading. The influence of the fatigue cracks of increasing size on the scattered guided wave field was evaluated. The sensitivity and repeatability of the high frequency guided wave modes to detect and monitor the fatigue crack growth was investigated, using both standard pulse-echo equipment and a laser interferometer. The potential for hidden fatigue crack growth monitoring at critical and difficult to access fastener locations from a stand-off distance was ascertained. The robustness of the methodology for practical in situ ultrasonic monitoring of fatigue crack growth is discussed.

  18. Structural condition assessment and upgrades of FGD systems

    SciTech Connect

    Alsamsam, I.M.; Ridge, J.L.

    1995-09-01

    Since 1990, the Clean Air Act Amendment (CAAA) has mandated emissions control of fossil-fired power plants. Upgrading an existing flue gas desulfurization (FGD) system has proven to be an effective means of reducing emissions to meet the CAAA requirements. It can also be a cost-effective means to reduce emissions beyond the established SO{sub 2} limits. Utilities will be able to capitalize on these situations and possibly generate revenue by trading SO{sub 2} credits. In addition to regulatory requirements, structural upgrades of an FGD system can lower operation and maintenance costs and reduce the risk of unit derates and unplanned outages. In today`s competitive power market, keeping a unit`s FGD system available and online is crucial as the earliest FGD installations approach their twentieth year of service. A structural condition assessment and upgrades program for an FGD island plays a leading role in meeting and exceeding regulatory requirements while achieving other utility goals. This paper draws from the authors` recent experiences to explore such a program and reveals the challenges it presents.

  19. Linear variable filter based oil condition monitoring systems for offshore windturbines

    NASA Astrophysics Data System (ADS)

    Wiesent, Benjamin R.; Dorigo, Daniel G.; Şimşek, Özlem; Koch, Alexander W.

    2011-10-01

    A major part of future renewable energy will be generated in offshore wind farms. The used turbines of the 5 MW class and beyond, often feature a planetary gear with 1000 liters lubricating oil or even more. Monitoring the oil aging process provides early indication of necessary maintenance and oil change. Thus maintenance is no longer time-scheduled but becomes wear dependent providing ecological and economical benefits. This paper describes two approaches based on a linear variable filter (LVF) as dispersive element in a setup of a cost effective infrared miniature spectrometer for oil condition monitoring purposes. Spectra and design criteria of a static multi-element detector and a scanning single element detector system are compared and rated. Both LVF miniature spectrometers are appropriately designed for the suggested measurements but have certain restrictions. LVF multi-channel sensors combined with sophisticated multivariate data processing offer the possibility to use the sensor for a broad range of lubricants just by a software update of the calibration set. An all-purpose oil sensor may be obtained.

  20. Diamond pad detector telescope for beam conditions and luminosity monitoring in ATLAS

    NASA Astrophysics Data System (ADS)

    Mikuž, M.; Cindro, V.; Dolenc, I.; Frais-Kölbl, H.; Gorišek, A.; Griesmayer, E.; Kagan, H.; Kramberger, G.; Mandić, I.; Niegl, M.; Pernegger, H.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-09-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to plan their own monitoring devices in addition to those provided by the machine. ATLAS decided to build a telescope composed of two stations with four diamond pad detector modules each, placed symmetrically around the interaction point at z=±183.8cm and r˜55mm (η˜4.2). Equipped with fast electronics it allows time-of-flight separation of events resulting from beam anomalies from normally occurring p p interactions. In addition it will provide a coarse measurement of the LHC luminosity in ATLAS. Ten detector modules have been assembled and subjected to tests, from characterization of bare diamonds to source and beam tests. Preliminary results of beam test in the CERN PS indicate a signal-to-noise ratio of 14±2.

  1. High-sensitivity chemical derivatization NMR analysis for condition monitoring of aged elastomers.

    SciTech Connect

    Assink, Roger Alan; Celina, Mathias Christopher; Skutnik, Julie Michelle

    2004-06-01

    An aged polybutadiene-based elastomer was reacted with trifluoroacetic anhydride (TFAA) and subsequently analyzed via 19F NMR spectroscopy. Derivatization between the TFAA and hydroxyl functionalities produced during thermo-oxidative aging was achieved, resulting in the formation of trifluoroester groups on the polymer. Primary and secondary alcohols were confirmed to be the main oxidation products of this material, and the total percent oxidation correlated with data obtained from oxidation rate measurements. The chemical derivatization appears to be highly sensitive and can be used to establish the presence and identity of oxidation products in aged polymeric materials. This methodology represents a novel condition monitoring approach for the detection of chemical changes that are otherwise difficult to analyze.

  2. Long-term monitoring of the Sedlec Ossuary - Analysis of hygrothermal conditions

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Balík, Lukáš; Maděra, Jiří; Černý, Robert

    2016-07-01

    The Sedlec Ossuary is one of the twelve UNESCO World Heritage Sites in the Czech Republic. Although the ossuary is listed among the most visited Czech tourist attractions, its technical state is almost critical and a radical renovation is necessary. On this account, hygrothermal performance of the ossuary is experimentally researched in the presented paper in order to get information on moisture sources and to get necessary data for optimized design of renovation treatments and reconstruction solutions that will allow preserve the historical significance of this attractive heritage site. Within the performed experimental analysis, the interior and exterior climatic conditions are monitored over an almost three year period together with relative humidity and temperature profiles measured in the most damage parts of the ossuary chapel. On the basis of measured data, the long-term hygrothermal state of the ossuary building is accessed and the periods of possible surface condensation are identified.

  3. Performance in real condition of photonic crystal sensor based NO2 gas monitoring system

    NASA Astrophysics Data System (ADS)

    Rahmat, M.; Maulina, W.; Rustami, E.; Azis, M.; Budiarti, D. R.; Seminar, K. B.; Yuwono, A. S.; Alatas, H.

    2013-11-01

    In this report we discuss the performance in real condition of an optical based real-time NO2 gas monitoring system. For detecting the gas concentration in the ambient air we have developed an optical sensor based on one-dimensional photonic crystal with two defects that allows the existence of photonic pass band inside the associated photonic band gap. To measure the gas concentration, we dissolve the corresponding NO2 gas into a specific Griess Saltzman reagent solution. The change of gas concentration in the related dissolved-solution can be inspected by the photonic pass band peak variation. It is observed that the wavelength of the photonic pass band peak of the fabricated photonic crystal is nearly coincide with the wavelength of the associated solution highest absorbance. The laboratory test shows that the device works properly, whereas the field measurement test demonstrates accurate results with validation error of 1.56%.

  4. Schema bias in source monitoring varies with encoding conditions: support for a probability-matching account.

    PubMed

    Kuhlmann, Beatrice G; Vaterrodt, Bianca; Bayen, Ute J

    2012-09-01

    Two experiments examined reliance on schematic knowledge in source monitoring. Based on a probability-matching account of source guessing, a schema bias will only emerge if participants do not have a representation of the source-item contingency in the study list, or if the perceived contingency is consistent with schematic expectations. Thus, the account predicts that encoding conditions that affect contingency detection also affect schema bias. In Experiment 1, the schema bias commonly found when schematic information about the sources is not provided before encoding was diminished by an intentional source-memory instruction. In Experiment 2, the depth of processing of schema-consistent and schema-inconsistent source-item pairings was manipulated. Participants consequently overestimated the occurrence of the pairing type they processed in a deep manner, and their source guessing reflected this biased contingency perception. Results support the probability-matching account of source guessing.

  5. Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Perry, M.; Saafi, M.; Fusiek, G.; Niewczas, P.

    2015-04-01

    In this work, we demonstrate hybrid optical-fibre/geopolymer sensors for monitoring temperature, uniaxial strain and biaxial strain in concrete structures. The hybrid sensors detect these measurands via changes in geopolymer electrical impedance, and via optical wavelength measurements of embedded fibre Bragg gratings. Electrical and optical measurements were both facilitated by metal-coated optical fibres, which provided the hybrid sensors with a single, shared physical path for both voltage and wavelength signals. The embedded fibre sensors revealed that geopolymer specimens undergo 2.7 mɛ of shrinkage after one week of curing at 42 °C. After curing, an axial 2 mɛ compression of the uniaxial hybrid sensor led to impedance and wavelength shifts of 7 × 10-2 and -2 × 10-4 respectively. The typical strain resolution in the uniaxial sensor was 100 μ \\varepsilon . The biaxial sensor was applied to the side of a concrete cylinder, which was then placed under 0.6 mɛ of axial, compressive strain. Fractional shifts in impedance and wavelength, used to monitor axial and circumferential strain, were 3 × 10-2 and 4 × 10-5 respectively. The biaxial sensor’s strain resolution was approximately 10 μ \\varepsilon in both directions. Due to several design flaws, the uniaxial hybrid sensor was unable to accurately measure ambient temperature changes. The biaxial sensor, however, successfully monitored local temperature changes with 0.5 °C resolution.

  6. Monitoring Sea Ice Conditions and Use in Arctic Alaska to Enhance Community Adaptation to Change

    NASA Astrophysics Data System (ADS)

    Druckenmiller, M. L.; Eicken, H.

    2010-12-01

    Sea ice changes in the coastal zone, while less conspicuous in relation to the dramatic thinning and retreat of perennial Arctic sea ice, can be more readily linked to local impacts. Shorefast ice is a unique area for interdisciplinary research aimed at improving community adaptation to climate through local-scale environmental observations. Here, geophysical monitoring, local Iñupiat knowledge, and the documented use of ice by the Native hunting community of Barrow, Alaska are combined to relate coastal ice processes and morphologies in the Chukchi Sea to ice stability and community adaption strategies for travel, hunting, and risk assessment. A multi-year effort to map and survey the community’s seasonal ice trails, alongside a detailed record of shorefast ice conditions, provides insight into how hunters evaluate the evolution of ice throughout winter and spring. Various data sets are integrated to relate the annual accretion history of the local ice cover to both measurements of ice thickness and topography and hunter observations of ice types and hazards. By relating changes in the timing of shorefast ice stabilization, offshore ice conditions, and winter wind patterns to ice characteristics in locations where spring bowhead whaling occurs, we are working toward an integrated scientific product compatible with the perspective of local ice experts. A baseline for assessing future change and community climate-related vulnerabilities may not be characterized by single variables, such as ice thickness, but rather by how changes in observable variables manifest in impacts to human activities. This research matches geophysical data to ice-use to establish such a baseline. Documenting human-environment interactions will allow future monitoring to illustrate how strategies for continued community ice-use are indicative of or responsive to change, and potentially capable of incorporating science products as additional sources of useable information.

  7. Proof-of-Concept Application of Impedance-Based Health Monitoring on Space Shuttle Ground Structures

    NASA Technical Reports Server (NTRS)

    Peairs, Daniel M.; Grisso, Benjamin; Inman, Daniel J.; Page, Kenneth R.; Athman, Robert; Margasahayam, Ravi N.

    2003-01-01

    Many of the structures responsible for the launch, ground systems and support operations of the space shuttle are still being used well past their nominal expected design life. This has led to an increased interest in monitoring these structures in order to decrease the risk of eventual breakdown or structural failure. One monitoring method, which has shown promising results for such applications, is the impedance-based structural health monitoring technique. This paper presents results from proof-of-concept tests on the launch pad's orbiter access arm bolted connection, solid rocket booster hold down post, mobile launch platform heat shield and crawler transporter bearing. Modification for future tests are suggested.

  8. Study and Test of a New Bundle-Structure Riser Stress Monitoring Sensor Based on FBG.

    PubMed

    Xu, Jian; Yang, Dexing; Qin, Chuan; Jiang, Yajun; Sheng, Leixiang; Jia, Xiangyun; Bai, Yang; Shen, Xiaohong; Wang, Haiyan; Deng, Xin; Xu, Liangbin; Jiang, Shiquan

    2015-11-24

    To meet the requirements of riser safety monitoring in offshore oil fields, a new Fiber Bragg Grating (FBG)-based bundle-structure riser stress monitoring sensor has been developed. In cooperation with many departments, a 49-day marine test in water depths of 1365 m and 1252 m was completed on the "HYSY-981" ocean oil drilling platform. No welding and pasting were used when the sensor was installed on risers. Therefore, the installation is convenient, reliable and harmless to risers. The continuous, reasonable, time-consistent data obtained indicates that the sensor worked normally under water. In all detailed working conditions, the test results show that the sensor can do well in reflecting stresses and bending moments both in and in magnitude. The measured maximum stress is 132.7 MPa, which is below the allowable stress. In drilling and testing conditions, the average riser stress was 86.6 MPa, which is within the range of the China National Offshore Oil Corporation (CNOOC) mechanical simulation results.

  9. Study and Test of a New Bundle-Structure Riser Stress Monitoring Sensor Based on FBG

    PubMed Central

    Xu, Jian; Yang, Dexing; Qin, Chuan; Jiang, Yajun; Sheng, Leixiang; Jia, Xiangyun; Bai, Yang; Shen, Xiaohong; Wang, Haiyan; Deng, Xin; Xu, Liangbin; Jiang, Shiquan

    2015-01-01

    To meet the requirements of riser safety monitoring in offshore oil fields, a new Fiber Bragg Grating (FBG)-based bundle-structure riser stress monitoring sensor has been developed. In cooperation with many departments, a 49-day marine test in water depths of 1365 m and 1252 m was completed on the “HYSY-981” ocean oil drilling platform. No welding and pasting were used when the sensor was installed on risers. Therefore, the installation is convenient, reliable and harmless to risers. The continuous, reasonable, time-consistent data obtained indicates that the sensor worked normally under water. In all detailed working conditions, the test results show that the sensor can do well in reflecting stresses and bending moments both in and in magnitude. The measured maximum stress is 132.7 MPa, which is below the allowable stress. In drilling and testing conditions, the average riser stress was 86.6 MPa, which is within the range of the China National Offshore Oil Corporation (CNOOC) mechanical simulation results. PMID:26610517

  10. Study and Test of a New Bundle-Structure Riser Stress Monitoring Sensor Based on FBG.

    PubMed

    Xu, Jian; Yang, Dexing; Qin, Chuan; Jiang, Yajun; Sheng, Leixiang; Jia, Xiangyun; Bai, Yang; Shen, Xiaohong; Wang, Haiyan; Deng, Xin; Xu, Liangbin; Jiang, Shiquan

    2015-01-01

    To meet the requirements of riser safety monitoring in offshore oil fields, a new Fiber Bragg Grating (FBG)-based bundle-structure riser stress monitoring sensor has been developed. In cooperation with many departments, a 49-day marine test in water depths of 1365 m and 1252 m was completed on the "HYSY-981" ocean oil drilling platform. No welding and pasting were used when the sensor was installed on risers. Therefore, the installation is convenient, reliable and harmless to risers. The continuous, reasonable, time-consistent data obtained indicates that the sensor worked normally under water. In all detailed working conditions, the test results show that the sensor can do well in reflecting stresses and bending moments both in and in magnitude. The measured maximum stress is 132.7 MPa, which is below the allowable stress. In drilling and testing conditions, the average riser stress was 86.6 MPa, which is within the range of the China National Offshore Oil Corporation (CNOOC) mechanical simulation results. PMID:26610517

  11. Application of the JDL data fusion process model to hard/soft information fusion in the condition monitoring of aircraft

    NASA Astrophysics Data System (ADS)

    Bernardo, Joseph T.

    2014-05-01

    Hard/soft information fusion has been proposed as a way to enhance diagnostic capability for the condition monitoring of machinery. However, there is a limited understanding of where hard/soft information fusion could and should be applied in the condition monitoring of aircraft. Condition-based maintenance refers to the philosophy of performing maintenance when the need arises, based upon indicators of deterioration in the condition of the machinery. The addition of the multisensory capability of human cognition to electronic sensors may create a fuller picture of machinery condition. Since 1988, the Joint Directors of Laboratories (JDL) data fusion process model has served as a framework for information fusion research. Advances are described in the application of hard/soft information fusion in condition monitoring using terms that condition-based maintenance professionals in aviation will recognize. Emerging literature on hard/soft information fusion in condition monitoring is organized into the levels of the JDL data fusion process model. Gaps in the literature are identified, and the author's ongoing research is discussed. Future efforts will focus on building domain-specific frameworks and experimental design, which may provide a foundation for improving flight safety, increasing mission readiness, and reducing the cost of maintenance operations.

  12. Evaluation and improvement in sensor performance and durability for structural health monitoring systems

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Cooney, Adam

    2006-03-01

    For aerospace applications, the successful transition and use of integrated structural health monitoring systems will require durable sensors that can perform in their intended environment for many years. For legacy aircraft the primary means of implementing a sensor system will be through surface mounting or bonding of the sensors to the structure. Previous work has shown that the performance of surface-bonded piezo sensors can degrade due to environmental effects such as vibrations, temperature fluctuations, and substrate flexure motions. This performance degradation included sensor cracking, disbonding, and general loss of efficiency over time. In this activity, the bond and piezo material characteristics of a typical surface-bonded piezo sensor system were studied to understand and improve the long-term durability and survivability of the sensor system. Analytic and computational models were developed and used to understand stress-strain relationships for the bonded sensor system, with a special emphasis being place on coefficient of thermal expansion issues. Accelerated environmental testing was accomplished for simple bonded piezo sensor systems, where a displacement-field imaging technique was used to understand the piezo sensor performance. Future activities will focus on identifying the optimal bond conditions and piezo material type, with the ultimate goal of improving the robustness of health monitoring systems through improved sensor system design and packaging.

  13. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hyuk; Park, Yurim; Kim, Yoon-Young; Shrestha, Pratik; Kim, Chun-Gon

    2015-10-01

    This paper presents an aircraft health and usage monitoring system (HUMS) using fiber Bragg grating (FBG) sensors. This study aims to implement and evaluate the HUMS for in-flight strain monitoring of aircraft structures. An optical-fiber-based HUMS was developed and applied to an ultralight aircraft that has a rectangular wing shape with a strut-braced configuration. FBG sensor arrays were embedded into the wing structure during the manufacturing process for effective sensor implementation. Ground and flight tests were conducted to verify the integrity and availability of the installed FBG sensors and HUMS devices. A total of 74 flight tests were conducted using the HUMS implemented testbed aircraft, considering various maneuvers and abnormal conditions. The flight test results revealed that the FBG-based HUMS was successfully implemented on the testbed aircraft and operated normally under the actual flight test environments as well as providing reliable in-flight strain data from the FBG sensors over a long period of time.

  14. Operation Reliability Assessment for Cutting Tools by Applying a Proportional Covariate Model to Condition Monitoring Information

    PubMed Central

    Cai, Gaigai; Chen, Xuefeng; Li, Bing; Chen, Baojia; He, Zhengjia

    2012-01-01

    The reliability of cutting tools is critical to machining precision and production efficiency. The conventional statistic-based reliability assessment method aims at providing a general and overall estimation of reliability for a large population of identical units under given and fixed conditions. However, it has limited effectiveness in depicting the operational characteristics of a cutting tool. To overcome this limitation, this paper proposes an approach to assess the operation reliability of cutting tools. A proportional covariate model is introduced to construct the relationship between operation reliability and condition monitoring information. The wavelet packet transform and an improved distance evaluation technique are used to extract sensitive features from vibration signals, and a covariate function is constructed based on the proportional covariate model. Ultimately, the failure rate function of the cutting tool being assessed is calculated using the baseline covariate function obtained from a small sample of historical data. Experimental results and a comparative study show that the proposed method is effective for assessing the operation reliability of cutting tools. PMID:23201980

  15. Chemiluminescence as a condition monitoring method for thermal aging and lifetime prediction of an HTPB elastomer.

    SciTech Connect

    Gillen, Kenneth Todd; Minier, Leanna M. G.; Celina, Mathias Christopher; Trujillo, Ana B.

    2007-03-01

    Chemiluminescence (CL) has been applied as a condition monitoring technique to assess aging related changes in a hydroxyl-terminated-polybutadiene based polyurethane elastomer. Initial thermal aging of this polymer was conducted between 110 and 50 C. Two CL methods were applied to examine the degradative changes that had occurred in these aged samples: isothermal 'wear-out' experiments under oxygen yielding initial CL intensity and 'wear-out' time data, and temperature ramp experiments under inert conditions as a measure of previously accumulated hydroperoxides or other reactive species. The sensitivities of these CL features to prior aging exposure of the polymer were evaluated on the basis of qualifying this method as a quick screening technique for quantification of degradation levels. Both the techniques yielded data representing the aging trends in this material via correlation with mechanical property changes. Initial CL rates from the isothermal experiments are the most sensitive and suitable approach for documenting material changes during the early part of thermal aging.

  16. Condition monitoring of 3G cellular networks through competitive neural models.

    PubMed

    Barreto, Guilherme A; Mota, João C M; Souza, Luis G M; Frota, Rewbenio A; Aguayo, Leonardo

    2005-09-01

    We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.

  17. Operational control of radiation conditions in Space Monitoring Data Center of Moscow State University

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Shugay, Yulia; Bobrovnikov, Sergey; Kuznetsov, Nikolay; Barinova, Vera; Myagkova, Irina; Panasyuk, Mikhail

    2016-07-01

    Space Monitoring Data Center (SMDC) of Moscow State University provides mission support for Russian satellites and give operational analysis of radiation conditions in space. SMDC Web-sites (http://smdc.sinp.msu.ru/ and http://swx.sinp.msu.ru/) give access to current data on the level of solar activity, geomagnetic and radiation state of Earth's magnetosphere and heliosphere in near-real time. For data analysis the models of space environment factors working online have been implemented. Interactive services allow one to retrieve and analyze data at a given time moment. Forecasting applications including solar wind parameters, geomagnetic and radiation condition forecasts have been developed. Radiation dose and SEE rate control are of particular importance in practical satellite operation. Satellites are always under the influence of high-energy particle fluxes during their orbital flight. The three main sources of particle fluxes: the Earth's radiation belts, the galactic cosmic rays, and the solar energetic particles (SEP), are taken into account by SMDC operational services to estimate the radiation dose caused by high-energy particles to a satellite at LEO orbits. ISO 15039 and AP8/AE8 physical models are used to estimate effects of galactic cosmic rays and radiation belt particle fluxes. Data of geosynchronous satellites (GOES or Electro-L1) allow to reconstruct the SEP fluxes spectra at a given low Earth orbit taking into account the geomagnetic cut-off depending on geomagnetic activity level.

  18. Monitoring diapause development in the Colorado potato beetle, Leptinotarsa decemlineata, under field conditions using molecular biomarkers.

    PubMed

    Yocum, George D; Rinehart, Joseph P; Larson, Marnie L

    2011-05-01

    A multiplex PCR protocol was developed using five diapause-regulated genes to monitor diapause development of the Colorado potato beetle under field conditions. A total of 870 beetles from the Red River valley of North Dakota and Minnesota, USA, were screened for three consecutive years. Out of the 32 possible expression profiles, eight could be arranged in chronological order of diapause development. These eight profiles account for over 92% of the beetles surveyed. Intra-population variation in diapause phenotypes was observed in the field. Some beetles were already in the diapause initiation phase in June when the day length was greater than 17 h. Inter-seasonal variation in the timing of diapause development was also noted. The greatest differences were before the day length decreased to less than 15 h. Anomalies in the results, e.g., the presence of the diapause maintenance phase profiles in beetles collected on the potato plants, argue that laboratory results are not always equivalent with what is observed under field conditions.

  19. Operation reliability assessment for cutting tools by applying a proportional covariate model to condition monitoring information.

    PubMed

    Cai, Gaigai; Chen, Xuefeng; Li, Bing; Chen, Baojia; He, Zhengjia

    2012-09-25

    The reliability of cutting tools is critical to machining precision and production efficiency. The conventional statistic-based reliability assessment method aims at providing a general and overall estimation of reliability for a large population of identical units under given and fixed conditions. However, it has limited effectiveness in depicting the operational characteristics of a cutting tool. To overcome this limitation, this paper proposes an approach to assess the operation reliability of cutting tools. A proportional covariate model is introduced to construct the relationship between operation reliability and condition monitoring information. The wavelet packet transform and an improved distance evaluation technique are used to extract sensitive features from vibration signals, and a covariate function is constructed based on the proportional covariate model. Ultimately, the failure rate function of the cutting tool being assessed is calculated using the baseline covariate function obtained from a small sample of historical data. Experimental results and a comparative study show that the proposed method is effective for assessing the operation reliability of cutting tools.

  20. Measurement capability of field portable organic vapor monitoring instruments under different experimental conditions.

    PubMed

    Coffey, Christopher C; Pearce, Terri A; Lawrence, Robert B; Hudnall, Judith B; Slaven, James E; Martin, Stephen B

    2009-01-01

    The performance of field portable direct-reading organic vapor monitors (DROVMs) was evaluated under a variety of experimental conditions. Four of the DROVMs had photoionization detectors (ppbRAE, IAQRAE, MultiRAE, and Century Toxic Vapor Analyzer), one had a flame ionization detector (Century Toxic Vapor Analyzer), and one was a single-beam infrared spectrophotometer (SapphIRe). Four of each DROVM (two Century Toxic Vapor Analyzers and SapphIRes) were tested. The DROVMs were evaluated at three temperatures (4 degrees C, 21 degrees C, and 38 degrees C), three relative humidities (30%, 60%, and 90%), and two hexane concentrations (5 ppm and 100 ppm). These conditions were selected to provide a range within the operational parameters of all the instruments. At least four replicate trials were performed across the 18 experimental conditions (3 temperatures x 3 relative humidities x 2 concentrations). To evaluate performance, the 4-hr time-weighted average readings from the DROVMs in a given trial were compared with the average of two charcoal tube concentrations using pairwise comparison. The pairwise comparison criterion was +/-25% measurement agreement between each individual DROVM and the DROVMs as a group and the average charcoal tube concentration. The ppbRAE group performed the best with 40% of all readings meeting the comparison criterion followed by the SapphIRe group at 39%. Among individual DROVMs, the best performer was a SapphIRe, with 57% of its readings meeting the criterion. The data was further analyzed by temperature, humidity, and concentration. The results indicated the performance of some DROVMs may be affected by temperature, humidity, and/or concentration. The ppbRAE group performed best at 21 degrees C with the percentage of readings meeting the criterion increasing to 63%. At the 5 ppm concentration, 44% of the ppbRAE group readings met the criterion, while at 100 ppm, only 35% did. The results indicate that monitors can be used as survey tools