Sample records for structural contour maps

  1. Digital data sets for map products produced as part of the Black Hills Hydrology Study, western South Dakota

    USGS Publications Warehouse

    Williamson, Joyce E.; Jarrell, Gregory J.; Clawges, Rick M.; Galloway, Joel M.; Carter, Janet M.

    2000-01-01

    This compact disk contains digital data produced as part of the 1:100,000-scale map products for the Black Hills Hydrology Study conducted in western South Dakota. The digital data include 28 individual Geographic Information System (GIS) data sets: data sets for the hydrogeologic unit map including all mapped hydrogeologic units within the study area (1 data set) and major geologic structure including anticlines and synclines (1 data set); data sets for potentiometric maps including the potentiometric contours for the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers (5 data sets), wells used as control points for each aquifer (5 data sets), and springs used as control points for the potentiometric contours (1 data set); and data sets for the structure-contour maps including the structure contours for the top of each formation that contains major aquifers (5 data sets), wells and tests holes used as control points for each formation (5 data sets), and surficial deposits (alluvium and terrace deposits) that directly overlie each of the major aquifer outcrops (5 data sets). These data sets were used to produce the maps published by the U.S. Geological Survey.

  2. Structure contour map of the greater Green River basin, Wyoming, Colorado, and Utah

    USGS Publications Warehouse

    Lickus, M.R.; Law, B.E.

    1988-01-01

    The Greater Green River basin of Wyoming, Colorado, and Utah contains five basins and associated major uplifts (fig. 1). Published structure maps of the region have commonly used the top of the Lower Cretaceous Dakota Sandstone as a structural datum (Petroleum Ownership Map Company (POMCO), 1984; Rocky Mountain Association of Geologists, 1972). However, because relatively few wells in this area penetrate the Dakota, the Dakota structural datum has to be constructed by projecting down from shallower wells. Extrapolating in this manner may produce errors in the map. The primary purpose of this report is to present a more reliable structure contour map of the Greater Green River basin based on datums that are penetrated by many wells. The final map shows the large- to small-scale structures present in the Greater Green River basin. The availability of subsurface control and the map scale determined whether or not a structural feature was included on the map. In general, large structures such as the Moxa arch, Pinedale anticline, and other large folds were placed on the map based solely on the structure contours. In comparison, smaller folds and some faults were placed on the map based on structure contours and other reports (Bader 1987; Bradley 1961; Love and Christiansen, 1985; McDonald, 1975; Roehler, 1979; Wyoming Geological Association Oil and Gas Symposium Committee, 1979). State geologic maps and other reports were used to position basin margin faults (Bryant, 1985; Gries, 1983a, b; Hansen 1986; Hintze, 1980; Love and Christiansen, 1985; Tweto, 1979, 1983). In addition, an interpreted east-west-trending regional seismic line by Garing and Tainter (1985), which shows the basin configuration in cross-section, was helpful in locating buried faults, such as the high-angle reverse or thrust fault along the west flank of the Rock Springs uplift.

  3. The Structure of Optimum Interpolation Functions.

    DTIC Science & Technology

    1983-02-01

    Daniel F. Merriam, ed., Plenum Press, 1970. 2. Hiroshi Akima, "Comments on ’Optimal Contour Mapping Using Universal Kriging’ by Ricardo 0. Olea ," (with...Kriging," Mathematical Geology 14 (1982), 249-257. 21 27. Ricardo 0. Olea , "Optimal Contour Mapping Using Universal Kriging," J. of Geophysical Res. 79

  4. Generation of 3-D surface maps in waste storage silos using a structured light source

    NASA Technical Reports Server (NTRS)

    Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.

    1992-01-01

    Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.

  5. Low Permeability Oil and Gas Plays

    EIA Publications

    The map shows boundaries, structure (elevation of the top contours), and isopachs (thickness contours) for major low permeability oil and gas plays in the lower 48 States. Additionally, related oil and gas infrastructure layers are included

  6. The Topography Tub Learning Activity

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.

    2014-12-01

    Understanding the basic elements of a topographic map (i.e. contour lines and intervals) is just a small part of learning how to use this abstract representational system as a resource in geologic mapping. Interpretation of a topographic map and matching its features with real-world structures requires that the system is utilized for visualizing the shapes of these structures and their spatial orientation. To enrich students' skills in visualizing topography from topographic maps a spatial training activity has been developed that uses 3D objects of various shapes and sizes, a sighting tool, a plastic basin, water, and transparencies. In the first part of the activity, the student is asked to draw a topographic map of one of the 3D objects. Next, the student places the object into a plastic tub in which water is added to specified intervals of height. The shoreline at each interval is used to reference the location of the contour line the student draws on a plastic inkjet transparency directly above the object. A key part of this activity is the use of a sighting tool by the student to assist in keeping the pencil mark directly above the shoreline. It (1) ensures the accurate positioning of the contour line and (2) gives the learner experience with using a sight before going out into the field. Finally, after the student finishes drawing the contour lines onto the transparency, the student can compare and contrast the two maps in order to discover where improvements in their visualization of the contours can be made. The teacher and/or peers can also make suggestions on ways to improve. A number of objects with various shapes and sizes are used in this exercise to produce contour lines representing the different types of topography the student may encounter while field mapping. The intended outcome from using this visualization training activity is improvement in performance of visualizing topography as the student moves between the topographic representation and corresponding topography in the field.

  7. Metrics for comparison of crystallographic maps

    DOE PAGES

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; ...

    2014-10-01

    Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects,more » such as regions of high density, are of interest.« less

  8. New maps of Federal coal ( USA).

    USGS Publications Warehouse

    Wayland, R.G.

    1981-01-01

    Compilation and analysis of publicly available data on Federal coal are resulting in voluminous map sets showing coal isopachs, structure contours, and overburden isopachs on each known minable coal bed. As of spring 1981, there are available from the US Geological Survey Open-File Services Section in Denver map sets at 1:24 000 scale or microfiche sets covering approximately 470 of the ultimately 1400 quadrangles in the program. A typical map set has a short text and about 20 plates, including a data sheet; a Federal mineral ownership map; and correlation charts. For each coal bed, there are isopachs, structure contours, stripping limits, and mining ratios extending as far as the data will permit, regardless of coal ownership. Reserve base tonnages and relative development potentials are calculated, but only for unleased Federal coal areas. -from Author

  9. Contour-Driven Atlas-Based Segmentation

    PubMed Central

    Wachinger, Christian; Fritscher, Karl; Sharp, Greg; Golland, Polina

    2016-01-01

    We propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images. PMID:26068202

  10. Selected data for wells and test holes used in structure-contour maps of the Inyan Kara Group, Minnekahta Limestone, Minnelusa Formation, Madison Limestone, and Deadwood Formation in the Black Hills area, South Dakota

    USGS Publications Warehouse

    Carter, J.M.

    1999-01-01

    This report presents selected data on wells and test holes that were used in the construction of structure-contour maps of selected formations that contain major aquifers in the Black Hills area of western South Dakota. Altitudes of the top of the Inyan Kara Group, Minnekahta Limestone, Minnelusa Formation, Madison Limestone, and Deadwood Formation are presented for the wells and test holes presented in this report.

  11. An improved spatial contour tree constructed method

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Zhang, Ling; Guilbert, Eric; Long, Yi

    2018-05-01

    Contours are important data to delineate the landform on a map. A contour tree provides an object-oriented description of landforms and can be used to enrich the topological information. The traditional contour tree is used to store topological relationships between contours in a hierarchical structure and allows for the identification of eminences and depressions as sets of nested contours. This research proposes an improved contour tree so-called spatial contour tree that contains not only the topological but also the geometric information. It can be regarded as a terrain skeleton in 3-dimention, and it is established based on the spatial nodes of contours which have the latitude, longitude and elevation information. The spatial contour tree is built by connecting spatial nodes from low to high elevation for a positive landform, and from high to low elevation for a negative landform to form a hierarchical structure. The connection between two spatial nodes can provide the real distance and direction as a Euclidean vector in 3-dimention. In this paper, the construction method is tested in the experiment, and the results are discussed. The proposed hierarchical structure is in 3-demintion and can show the skeleton inside a terrain. The structure, where all nodes have geo-information, can be used to distinguish different landforms and applied for contour generalization with consideration of geographic characteristics.

  12. Deformable medical image registration of pleural cavity for photodynamic therapy by using finite-element based method

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Dimofte, Andrea; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    When the pleural cavity is opened during the surgery portion of pleural photodynamic therapy (PDT) of malignant mesothelioma, the pleural volume will deform. This impacts the delivered dose when using highly conformal treatment techniques. To track the anatomical changes and contour the lung and chest cavity, an infrared camera-based navigation system (NDI) is used during PDT. In the same patient, a series of computed tomography (CT) scans of the lungs are also acquired before the surgery. The reconstructed three-dimensional contours from both NDI and CTs are imported into COMSOL Multiphysics software, where a finite element-based (FEM) deformable image registration is obtained. The CT contour is registered to the corresponding NDI contour by overlapping the center of masses and aligning their orientations. The NDI contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Deformed Geometry model is applied in COMSOL to obtain a deformed target contour. The distortion of the volume at X, Y and Z is mapped to illustrate the transformation of the target contour. The initial assessment shows that FEM-based image deformable registration can fuse images acquired by different modalities. It provides insights into the deformation of anatomical structures along X, Y and Z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting three-dimensional deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery.

  13. Using perceptual rules in interactive visualization

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Treinish, Lloyd A.

    1994-05-01

    In visualization, data are represented as variations in grayscale, hue, shape, and texture. They can be mapped to lines, surfaces, and glyphs, and can be represented statically or in animation. In modem visualization systems, the choices for representing data seem unlimited. This is both a blessing and a curse, however, since the visual impression created by the visualization depends critically on which dimensions are selected for representing the data (Bertin, 1967; Tufte, 1983; Cleveland, 1991). In modem visualization systems, the user can interactively select many different mapping and representation operations, and can interactively select processing operations (e.g., applying a color map), realization operations (e.g., generating geometric structures such as contours or streamlines), and rendering operations (e.g., shading or ray-tracing). The user can, for example, map data to a color map, then apply contour lines, then shift the viewing angle, then change the color map again, etc. In many systems, the user can vary the choices for each operation, selecting, for example, particular color maps, contour characteristics, and shading techniques. The hope is that this process will eventually converge on a visual representation which expresses the structure of the data and effectively communicates its message in a way that meets the user's goals. Sometimes, however, it results in visual representations which are confusing, misleading, and garish.

  14. The influence of uncertain map features on risk beliefs and perceived ambiguity for maps of modeled cancer risk from air pollution

    PubMed Central

    Myers, Jeffrey D.

    2012-01-01

    Maps are often used to convey information generated by models, for example, modeled cancer risk from air pollution. The concrete nature of images, such as maps, may convey more certainty than warranted for modeled information. Three map features were selected to communicate the uncertainty of modeled cancer risk: (a) map contours appeared in or out of focus, (b) one or three colors were used, and (c) a verbal-relative or numeric risk expression was used in the legend. Study aims were to assess how these features influenced risk beliefs and the ambiguity of risk beliefs at four assigned map locations that varied by risk level. We applied an integrated conceptual framework to conduct this full factorial experiment with 32 maps that varied by the three dichotomous features and four risk levels; 826 university students participated. Data was analyzed using structural equation modeling. Unfocused contours and the verbal-relative risk expression generated more ambiguity than their counterparts. Focused contours generated stronger risk beliefs for higher risk levels and weaker beliefs for lower risk levels. Number of colors had minimal influence. The magnitude of risk level, conveyed using incrementally darker shading, had a substantial dose-response influence on the strength of risk beliefs. Personal characteristics of prior beliefs and numeracy also had substantial influences. Bottom-up and top-down information processing suggest why iconic visual features of incremental shading and contour focus had the strongest visual influences on risk beliefs and ambiguity. Variations in contour focus and risk expression show promise for fostering appropriate levels of ambiguity. PMID:22985196

  15. Map showing structure contours on the top of the upper Jurassic Morrison Formation, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1991-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 2,429 of these wells that penetrate the Minnelusa Formation and equivalents.

  16. Towards molecular design using 2D-molecular contour maps obtained from PLS regression coefficients

    NASA Astrophysics Data System (ADS)

    Borges, Cleber N.; Barigye, Stephen J.; Freitas, Matheus P.

    2017-12-01

    The multivariate image analysis descriptors used in quantitative structure-activity relationships are direct representations of chemical structures as they are simply numerical decodifications of pixels forming the 2D chemical images. These MDs have found great utility in the modeling of diverse properties of organic molecules. Given the multicollinearity and high dimensionality of the data matrices generated with the MIA-QSAR approach, modeling techniques that involve the projection of the data space onto orthogonal components e.g. Partial Least Squares (PLS) have been generally used. However, the chemical interpretation of the PLS-based MIA-QSAR models, in terms of the structural moieties affecting the modeled bioactivity has not been straightforward. This work describes the 2D-contour maps based on the PLS regression coefficients, as a means of assessing the relevance of single MIA predictors to the response variable, and thus allowing for the structural, electronic and physicochemical interpretation of the MIA-QSAR models. A sample study to demonstrate the utility of the 2D-contour maps to design novel drug-like molecules is performed using a dataset of some anti-HIV-1 2-amino-6-arylsulfonylbenzonitriles and derivatives, and the inferences obtained are consistent with other reports in the literature. In addition, the different schemes for encoding atomic properties in molecules are discussed and evaluated.

  17. Identification of irrigated crop types from ERTS-1 density contour maps and color infrared aerial photography. [Wyoming

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.; Evans, M. A.

    1974-01-01

    The author has identified the following significant results. The crop types of a Great Plains study area were mapped from color infrared aerial photography. Each field was positively identified from field checks in the area. Enlarged (50x) density contour maps were constructed from three ERTS-1 images taken in the summer of 1973. The map interpreted from the aerial photography was compared to the density contour maps and the accuracy of the ERTS-1 density contour map interpretations were determined. Changes in the vegetation during the growing season and harvest periods were detectable on the ERTS-1 imagery. Density contouring aids in the detection of such charges.

  18. Structure of the top of the Karnak Limestone Member (Ste. Genevieve) in Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bristol, H.M.; Howard, R.H.

    1976-01-01

    To facilitate petroleum exploration in Illinois, the Illinois State Geological Survey presents a structure map (for most of southern Illinois) of the Karnak Limestone Member--a relatively pure persistent limestone unit (generally 10 to 35 ft thick) in the Ste. Genevieve Limestone of Genevievian age. All available electric logs and selected studies of well cuttings were used in constructing the map. Oil and gas development maps containing Karnak-structure contours are on open file at the ISGS.

  19. What is in a contour map? A region-based logical formalization of contour semantics

    USGS Publications Warehouse

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.

  20. Map showing contours on top of the upper Cretaceous Mowry Shale, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1991-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 4,926 of these wells that penetrate the Minnelusa Formation and equivalents.

  1. Airborne gamma-ray spectrometer and magnetometer survey, Durango B, Colorado. Final report Volume II C. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    This volume contains eight appendices: flight line maps, geology maps, explanation of geologic legend, flight line/geology maps, radiometric contour maps, magnetic contour maps, multi-variant analysis maps, and geochemical factor analysis maps. These appendices pertain to the Durango B detail area.

  2. Airborne gamma-ray spectrometer and magnetometer survey, Durango D, Colorado. Final report Volume II B. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    This volume comprises eight appendices containing the following information for the Durango D detail area: flight line maps, geology maps, explanation of geologic legend, flight line/geology maps, radiometric contour maps, magnetic contour maps, multi-variant analysis maps, and geochemical factor analysis maps.

  3. Airborne gamma-ray spectrometer and magnetometer survey, Durango C, Colorado. Final report Volume II B. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    This volume comprises eight appendices containing the following information for the Durango C detail area: flight line maps, geology maps, explanation of geologic legend, flight line/geology maps, radiometric contour maps, magnetic contour maps, multi-variant analysis maps, and geochemical factor analysis maps.

  4. [The automatic iris map overlap technology in computer-aided iridiagnosis].

    PubMed

    He, Jia-feng; Ye, Hu-nian; Ye, Miao-yuan

    2002-11-01

    In the paper, iridology and computer-aided iridiagnosis technologies are briefly introduced and the extraction method of the collarette contour is then investigated. The iris map can be overlapped on the original iris image based on collarette contour extraction. The research on collarette contour extraction and iris map overlap is of great importance to computer-aided iridiagnosis technologies.

  5. Automatic segmentation of equine larynx for diagnosis of laryngeal hemiplegia

    NASA Astrophysics Data System (ADS)

    Salehin, Md. Musfequs; Zheng, Lihong; Gao, Junbin

    2013-10-01

    This paper presents an automatic segmentation method for delineation of the clinically significant contours of the equine larynx from an endoscopic image. These contours are used to diagnose the most common disease of horse larynx laryngeal hemiplegia. In this study, hierarchal structured contour map is obtained by the state-of-the-art segmentation algorithm, gPb-OWT-UCM. The conic-shaped outer boundary of equine larynx is extracted based on Pascal's theorem. Lastly, Hough Transformation method is applied to detect lines related to the edges of vocal folds. The experimental results show that the proposed approach has better performance in extracting the targeted contours of equine larynx than the results of using only the gPb-OWT-UCM method.

  6. USGS Maps

    USGS Publications Warehouse

    ,

    1994-01-01

    Most USGS topographic maps use brown contours to show the shape and elevation of the terrain. Elevations are usually shown in feet, but on some maps they are in meters. Contour intervals vary, depending mainly on the scale of the map and the type of terrain.

  7. Radiometric Survey in Western Afghanistan: A Website for Distribution of Data

    USGS Publications Warehouse

    Sweeney, Ronald E.; Kucks, Robert P.; Hill, Patricia L.; Finn, Carol A.

    2007-01-01

    Radiometric (uranium content, thorium content, potassium content, and gamma-ray intensity) and related data were digitized from radiometric and survey route location maps of western Afghanistan published in 1976. The uranium content data were digitized along contour lines from 33 maps in a series entitled 'Map of Uranium (Radium) Contents of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The thorium content data were digitized along contour lines from 33 maps in a series entitled 'Map of Thorium Contents of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The potassium content data were digitized along contour lines from 33 maps in a series entitled 'Map of Potassium Contents of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The gamma-ray intensity data were digitized along contour lines from 33 maps in a series entitled 'Map of Gamma-Field of Afghanistan (Western Area),' compiled by V. N. Kirsanov and R. S. Dershimanov. The survey route location data were digitized along flight-lines located on 33 maps in a series entitled 'Survey Routes Location and Contours of Flight Equal Altitudes. Western Area of Afghanistan,' compiled by Z. A. Alpatova, V. G. Kurnosov, and F. A. Grebneva.

  8. Contour mapping of relic structures in the Precambrian basement of the Reelfoot rift, North American midcontinent

    USGS Publications Warehouse

    Dart, R.L.; Swolfs, H.S.

    1998-01-01

    A new contour map of the basement of the Reelfoot rift constructed from drill hole and seismic reflection data shows the general surface configuration as well as several major and minor structural features. The major features are two asymmetric intrarift basins, bounded by three structural highs, and the rift margins. The basins are oriented normal to the northeast trend of the rift. Two of the highs appear to be ridges of undetermined width that extend across the rift. The third high is an isolated dome or platform located between the basins. The minor features are three linear structures of low relief oriented subparallel to the trend of the rift. Two of these, located within the rift basins, may divide the rift basins into paired subbasins. These mapped features may be the remnants of initial extensional rifting, half graben faulting, and basement subsidence. The rift basins are interpreted as having formed as opposing half graben, and the structural highs are interpreted as having formed as associated accommodation zones. Some of these features appear to be reactivated seismogenic structures within the modem midcontinent compressional stress regime. A detailed knowledge of the geometries of the Reelfoot rift's basement features, therefore, is essential when evaluating their seismic risk potential.

  9. SU-E-J-111: Finite Element-Based Deformable Image Registration of Pleural Cavity for Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penjweini, R; Zhu, T

    Purpose: The pleural volumes will deform during surgery portion of the pleural photodynamic therapy (PDT) of lung cancer when the pleural cavity is opened. This impact the delivered dose when using highly conformal treatment techniques. In this study, a finite element-based (FEM) deformable image registration is used to quantify the anatomical variation between the contours for the pleural cavities obtained in the operating room and those determined from pre-surgery computed tomography (CT) scans. Methods: An infrared camera-based navigation system (NDI) is used during PDT to track the anatomical changes and contour the lung and chest cavity. A series of CTsmore » of the lungs, in the same patient, are also acquired before the surgery. The structure contour of lung and the CTs are processed and contoured in Matlab and MeshLab. Then, the contours are imported into COMSOL Multiphysics 5.0, where the FEM-based deformable image registration is obtained using the deformed mesh - moving mesh (ALE) model. The NDI acquired lung contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Results: The reconstructed three-dimensional contours from both NDI and CT can be converted to COMSOL so that a three-dimensional ALE model can be developed. The contours can be registered using COMSOL ALE moving mesh model, which takes into account the deformation along x, y and z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting 3D deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery. Conclusion: Deformable image registration can fuse images acquired by different modalities. It provides insights into the development of phenomenon and variation in normal anatomical structures over time. The initial assessments of three-dimensional registration show good agreement.« less

  10. Map showing contours on the top of the Pennsylvanian and Permian Minnelusa Formation and equivalents, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1990-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 1,480 of these wells that penetrate the Minnelusa Formation and equivalents.

  11. Interpretation of gravity anomalies in the northwest Adirondack lowlands, northern New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revetta, F.A.; O'Brian, B.

    1993-03-01

    Twelve hundred gravity measurements were made in the Adirondack Highlands and northwest Adirondack Lowlands, New York between 44[degree]15 minutes and 44[degree]30 minutes N. Latitude and 75[degree]00 minutes W. Longitude. A Bouguer gravity map constructed from the gravity measurements includes the Carthage-Colton Mylonite Zone, a major structural boundary between the highlands and lowlands. The gravity map indicates the gravity contours trend parallel to the CCMZ along most of its length however in some areas the contours cross the boundary. No clear-cut relationships exists between the CCMZ and gravity contours. The Bouguer gravity map shows several prominent gravity anomalies which correlate withmore » the geology seismicity and mineral deposits in the area. Gravity lows of 20 to 30 g.u. are centered over the Gouverneur, Hyde and Payne Lake Alaskite gneiss bodies. A gravity high of 20 g.u. occurs over the Pleasant Lake gabbro pluton. Gravity highs of 35 and 100 g.u. occur over the Sylvia Lake Zinc District and marble just north of the district. A gravity high at Russell, N.Y. coincides with a cluster of nine earthquake epicenters. Finally a steep gravity gradient separates high density rocks from lower density rocks along the Black Lake fault. Two-dimensional computer modeling of the geologic features is underway and quantitative models of the structures will be presented.« less

  12. Three-Dimensional Geologic Framework Model for a Karst Aquifer System, Hasty and Western Grove Quadrangles, Northern Arkansas

    USGS Publications Warehouse

    Turner, Kenzie J.; Hudson, Mark R.; Murray, Kyle E.; Mott, David N.

    2007-01-01

    Understanding ground-water flow in a karst aquifer benefits from a detailed conception of the three-dimensional (3D) geologic framework. Traditional two-dimensional products, such as geologic maps, cross-sections, and structure contour maps, convey a mental picture of the area but a stronger conceptualization can be achieved by constructing a digital 3D representation of the stratigraphic and structural geologic features. In this study, a 3D geologic model was created to better understand a karst aquifer system in the Buffalo National River watershed in northern Arkansas. The model was constructed based on data obtained from recent, detailed geologic mapping for the Hasty and Western Grove 7.5-minute quadrangles. The resulting model represents 11 stratigraphic zones of Ordovician, Mississippian, and Pennsylvanian age. As a result of the highly dissected topography, stratigraphic and structural control from geologic contacts and interpreted structure contours were sufficient for effectively modeling the faults and folds in the model area. Combined with recent dye-tracing studies, the 3D framework model is useful for visualizing the various geologic features and for analyzing the potential control they exert on the ground-water flow regime. Evaluation of the model, by comparison to published maps and cross-sections, indicates that the model accurately reproduces both the surface geology and subsurface geologic features of the area.

  13. Creation of digital contours that approach the characteristics of cartographic contours

    USGS Publications Warehouse

    Tyler, Dean J.; Greenlee, Susan K.

    2012-01-01

    The capability to easily create digital contours using commercial off-the-shelf (COTS) software has existed for decades. Out-of-the-box raw contours are suitable for many scientific applications without pre- or post-processing; however, cartographic applications typically require additional improvements. For example, raw contours generally require smoothing before placement on a map. Cartographic contours must also conform to certain spatial/logical rules; for example, contours may not cross waterbodies. The objective was to create contours that match as closely as possible the cartographic contours produced by manual methods on the 1:24,000-scale, 7.5-minute Topographic Map series. This report outlines the basic approach, describes a variety of problems that were encountered, and discusses solutions. Many of the challenges described herein were the result of imperfect input raster elevation data and the requirement to have the contours integrated with hydrographic features from the National Hydrography Dataset (NHD).

  14. A Voronoi interior adjacency-based approach for generating a contour tree

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Qiao, Chaofei; Zhao, Renliang

    2004-05-01

    A contour tree is a good graphical tool for representing the spatial relations of contour lines and has found many applications in map generalization, map annotation, terrain analysis, etc. A new approach for generating contour trees by introducing a Voronoi-based interior adjacency set concept is proposed in this paper. The immediate interior adjacency set is employed to identify all of the children contours of each contour without contour elevations. It has advantages over existing methods such as the point-in-polygon method and the region growing-based method. This new approach can be used for spatial data mining and knowledge discovering, such as the automatic extraction of terrain features and construction of multi-resolution digital elevation model.

  15. Photogrammetric portrayal of Mars topography.

    USGS Publications Warehouse

    Wu, S.S.C.

    1979-01-01

    Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.-Author

  16. Photogrammetric portrayal of Mars topography

    NASA Technical Reports Server (NTRS)

    Wu, S. S. C.

    1979-01-01

    Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.

  17. Topographic maps: Tools for planning

    USGS Publications Warehouse

    Kaufman, George A.

    1980-01-01

    Topographic maps are a detailed record of a land area, giving geographic positions and elevations for both natural and man-made features. They show the shape of the land the mountains, valleys, and plains by means of brown contour lines (lines of equal elevation above sea level). In steep mountainous areas, contours are closely spaced; in flatter areas, they are far apart. The elevation of any point on the map can be estimated by referring to the elevations of the contour lines above and below it.

  18. Surface-material maps of Viking landing sites on Mars

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Keller, J. M.

    1991-01-01

    Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed.

  19. A Model to Aid Topo-Map Interpretation

    ERIC Educational Resources Information Center

    Westerback, Mary

    1976-01-01

    Describes how to construct models of contour lines from flexible, colored bell wire. These models are used to illustrate three-dimensional terrain characteristics represented by contour lines printed on a flat map. (MLH)

  20. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    ERIC Educational Resources Information Center

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping.…

  1. Geologic map of the Jasper Quadrangle, Newton and Boone counties, Arkansas

    USGS Publications Warehouse

    Hudson, M.R.; Murray, K.E.; Pezzutti, Deborah

    2001-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Jasper 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Jasper quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Jasper quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  2. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  3. Improved approach to quantitative cardiac volumetrics using automatic thresholding and manual trimming: a cardiovascular MRI study.

    PubMed

    Rayarao, Geetha; Biederman, Robert W W; Williams, Ronald B; Yamrozik, June A; Lombardi, Richard; Doyle, Mark

    2018-01-01

    To establish the clinical validity and accuracy of automatic thresholding and manual trimming (ATMT) by comparing the method with the conventional contouring method for in vivo cardiac volume measurements. CMR was performed on 40 subjects (30 patients and 10 controls) using steady-state free precession cine sequences with slices oriented in the short-axis and acquired contiguously from base to apex. Left ventricular (LV) volumes, end-diastolic volume, end-systolic volume, and stroke volume (SV) were obtained with ATMT and with the conventional contouring method. Additionally, SV was measured independently using CMR phase velocity mapping (PVM) of the aorta for validation. Three methods of calculating SV were compared by applying Bland-Altman analysis. The Bland-Altman standard deviation of variation (SD) and offset bias for LV SV for the three sets of data were: ATMT-PVM (7.65, [Formula: see text]), ATMT-contours (7.85, [Formula: see text]), and contour-PVM (11.01, 4.97), respectively. Equating the observed range to the error contribution of each approach, the error magnitude of ATMT:PVM:contours was in the ratio 1:2.4:2.5. Use of ATMT for measuring ventricular volumes accommodates trabeculae and papillary structures more intuitively than contemporary contouring methods. This results in lower variation when analyzing cardiac structure and function and consequently improved accuracy in assessing chamber volumes.

  4. Ground Water Recharge Estimation Using Water Table Fluctuation Method And By GIS Applications

    NASA Astrophysics Data System (ADS)

    Vajja, V.; Bekkam, V.; Nune, R.; M. v. S, R.

    2007-05-01

    Quite often it has become a debating point that how much recharge is occurring to the groundwater table through rainfall on one hand and through recharge structures such as percolation ponds and checkdams on the other. In the present investigations Musi basin of Andhra Pradesh, India is selected for study during the period 2005-06. Pre-monsoon and Post-monsoon groundwater levels are collected through out the Musi basin at 89 locations covering an area11, 291.69 km2. Geology of the study area and rainfall data during the study period has been collected. The contour maps of rainfall and the change in groundwater level between Pre-monsoon and Post- monsoon have been prepared. First the change in groundwater storage is estimated for each successive strips of areas enclosed between two contours of groundwater level fluctuations. In this calculation Specific yield (Sy) values are adopted based on the local Geology. Areas between the contours are estimated through Arc GIS software package. All such storages are added to compute the total storage for the entire basin. In order to find out the percent of rainfall converted into groundwater storage as well as to find out the ground water recharge due to storageponds, a contour map of rainfall for the study area is prepared and areas between successive contours have been calculated. Based on the Geology map, Infiltration values are adopted for each successive strip of the contour area. Then the amount of water infiltrated into the ground is calculated by adjusting the infiltration values for each strip, so that the total infiltrated water for the entire basin is matched with change in Ground water storage, which is 1314.37 MCM for the upper Musi basin while it is 2827.29 MCM for entire Musi basin. With this procedure on an average 29.68 and 30.66 percent of Rainfall is converted into Groundwater recharge for Upper Musi and for entire Musi basin respectively. In the total recharge, the contribution of rainfall directly to Groundwater recharge is 8.53 and 8.81 percent and the remaining 21.15 and 21.85 percent is due to groundwater recharge from water conservation structures such as check dams, contour bunds, tanks, etc. for Upper Musi and for entire Musi basin respectively. The difference is attributable to the canal recharge in the case of Lower Musi. Therefore the Upper Musi values may be taken as a percent of Rainfall that is converted into Groundwater recharge.

  5. 76 FR 72144 - Standardized and Enhanced Disclosure Requirements for Television Broadcast Licensee Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ..., contour maps; ownership reports and related materials; portions of the Equal Employment Opportunity file... maps; ownership reports and related materials; portions of the Equal Employment Opportunity file held... immediately following the shortened license term. See 47 CFR 73.3526((e)(2), 73.3527(e)(2). Contour Maps (as...

  6. Multisensor Modeling Underwater with Uncertain Information

    DTIC Science & Technology

    1988-07-01

    133 Figure 6.4: Sidescan geometry artifacts ................................ 133 Figure 6.5: Sea MARC I intensity map of Clipperton ...area ................. 136 Figure 6.6: Sea MARC I intensity map of Clipperton area (from Kasiens et al.). .. 137 Figure 6.7: Sea Beam contour map of... Clipperton area .................... 138 Figure 6.8: Sea Beam contour map of Clipperton area (from Gallo ei al.) ....... 139 Figure 6.9: Sea Beam

  7. Automatic fault tracing of active faults in the Sutlej valley (NW-Himalayas, India)

    NASA Astrophysics Data System (ADS)

    Janda, C.; Faber, R.; Hager, C.; Grasemann, B.

    2003-04-01

    In the Sutlej Valley the Lesser Himalayan Crystalline Sequence (LHCS) is actively extruding between the Munsiari Thrust (MT) at the base, and the Karcham Normal Fault (KNF) at the top. The clear evidences for ongoing deformation are brittle faults in Holocene lake deposits, hot springs activity near the faults and dramatically younger cooling ages within the LHCS (Vannay and Grasemann, 2001). Because these brittle fault zones obviously influence the morphology in the field we developed a new method for automatically tracing the intersections of planar fault geometries with digital elevation models (Faber, 2002). Traditional mapping techniques use structure contours (i.e. lines or curves connecting points of equal elevation on a geological structure) in order to construct intersections of geological structures with topographic maps. However, even if the geological structure is approximated by a plane and therefore structure contours are equally spaced lines, this technique is rather time consuming and inaccurate, because errors are cumulative. Drawing structure contours by hand makes it also impossible to slightly change the azimuth and dip direction of the favoured plane without redrawing everything from the beginning on. However, small variations of the fault position which are easily possible by either inaccuracies of measurement in the field or small local variations in the trend and/or dip of the fault planes can have big effects on the intersection with topography. The developed method allows to interactively view intersections in a 2D and 3D mode. Unlimited numbers of planes can be moved separately in 3 dimensions (translation and rotation) and intersections with the topography probably following morphological features can be mapped. Besides the increase of efficiency this method underlines the shortcoming of classical lineament extraction ignoring the dip of planar structures. Using this method, areas of active faulting influencing the morphology, can be mapped near the MT and the KNF suggesting that the most active zones are restricted to the Sutlej Valley. Faber R., 2002: WinGeol - Software for Analyzing and Visualization of Geological data, Department of Geological Sciences, University of Vienna. Vannay, J.-C., Grasemann, B., 2001. Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol. Mag. 138 (3), 253-276.

  8. SU-E-J-109: Accurate Contour Transfer Between Different Image Modalities Using a Hybrid Deformable Image Registration and Fuzzy Connected Image Segmentation Method.

    PubMed

    Yang, C; Paulson, E; Li, X

    2012-06-01

    To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning. The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared. Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely. Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast. © 2012 American Association of Physicists in Medicine.

  9. 3D-QSAR and Molecular Docking Studies on Derivatives of MK-0457, GSK1070916 and SNS-314 as Inhibitors against Aurora B Kinase

    PubMed Central

    Zhang, Baidong; Li, Yan; Zhang, Huixiao; Ai, Chunzhi

    2010-01-01

    Development of anticancer drugs targeting Aurora B, an important member of the serine/threonine kinases family, has been extensively focused on in recent years. In this work, by applying an integrated computational method, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), homology modeling and molecular docking, we investigated the structural determinants of Aurora B inhibitors based on three different series of derivatives of 108 molecules. The resultant optimum 3D-QSAR models exhibited (q2 = 0.605, r2pred = 0.826), (q2 = 0.52, r2pred = 0.798) and (q2 = 0.582, r2pred = 0.971) for MK-0457, GSK1070916 and SNS-314 classes, respectively, and the 3D contour maps generated from these models were analyzed individually. The contour map analysis for the MK-0457 model revealed the relative importance of steric and electrostatic effects for Aurora B inhibition, whereas, the electronegative groups with hydrogen bond donating capacity showed a great impact on the inhibitory activity for the derivatives of GSK1070916. Additionally, the predictive model of the SNS-314 class revealed the great importance of hydrophobic favorable contour, since hydrophobic favorable substituents added to this region bind to a deep and narrow hydrophobic pocket composed of residues that are hydrophobic in nature and thus enhanced the inhibitory activity. Moreover, based on the docking study, a further comparison of the binding modes was accomplished to identify a set of critical residues that play a key role in stabilizing the drug-target interactions. Overall, the high level of consistency between the 3D contour maps and the topographical features of binding sites led to our identification of several key structural requirements for more potency inhibitors. Taken together, the results will serve as a basis for future drug development of inhibitors against Aurora B kinase for various tumors. PMID:21151441

  10. 3D-QSAR and molecular docking studies on derivatives of MK-0457, GSK1070916 and SNS-314 as inhibitors against Aurora B kinase.

    PubMed

    Zhang, Baidong; Li, Yan; Zhang, Huixiao; Ai, Chunzhi

    2010-11-02

    Development of anticancer drugs targeting Aurora B, an important member of the serine/threonine kinases family, has been extensively focused on in recent years. In this work, by applying an integrated computational method, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), homology modeling and molecular docking, we investigated the structural determinants of Aurora B inhibitors based on three different series of derivatives of 108 molecules. The resultant optimum 3D-QSAR models exhibited (q(2) = 0.605, r(2) (pred) = 0.826), (q(2) = 0.52, r(2) (pred) = 0.798) and (q(2) = 0.582, r(2) (pred) = 0.971) for MK-0457, GSK1070916 and SNS-314 classes, respectively, and the 3D contour maps generated from these models were analyzed individually. The contour map analysis for the MK-0457 model revealed the relative importance of steric and electrostatic effects for Aurora B inhibition, whereas, the electronegative groups with hydrogen bond donating capacity showed a great impact on the inhibitory activity for the derivatives of GSK1070916. Additionally, the predictive model of the SNS-314 class revealed the great importance of hydrophobic favorable contour, since hydrophobic favorable substituents added to this region bind to a deep and narrow hydrophobic pocket composed of residues that are hydrophobic in nature and thus enhanced the inhibitory activity. Moreover, based on the docking study, a further comparison of the binding modes was accomplished to identify a set of critical residues that play a key role in stabilizing the drug-target interactions. Overall, the high level of consistency between the 3D contour maps and the topographical features of binding sites led to our identification of several key structural requirements for more potency inhibitors. Taken together, the results will serve as a basis for future drug development of inhibitors against Aurora B kinase for various tumors.

  11. Contour Mapping

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the early 1990s, the Ohio State University Center for Mapping, a NASA Center for the Commercial Development of Space (CCDS), developed a system for mobile mapping called the GPSVan. While driving, the users can map an area from the sophisticated mapping van equipped with satellite signal receivers, video cameras and computer systems for collecting and storing mapping data. George J. Igel and Company and the Ohio State University Center for Mapping advanced the technology for use in determining the contours of a construction site. The new system reduces the time required for mapping and staking, and can monitor the amount of soil moved.

  12. Preliminary thermal-maturity map of the Cameo and Fairfield or equivalent coal zone in the Piceance Creek Basin, Colorado

    USGS Publications Warehouse

    Nuccio, Vito F.; Johnson, Ronald C.

    1983-01-01

    This map was prepared in cooperation with the U.S. Department of Energy's Western Gas Sands Project and was constructed to show the thermal maturity of the Upper Cretaceous Mesaverde Formation (or Group) in the Piceance Creek Basin. The ability of a source rock to generate oil and gas is directly related to its kerogen content and thermal maturity; hence, thermal maturity is commonly used as an exploration tool. This publication consists of two parts: a coal rank map for the basinwide Cameo and Fairfield or equivalent coal zone and three cross sections showing the variation in a coal rank for the entire Mesaverde. Structure contours on the map show the top of the Rollins Sandstone Member of the Mesaverde Formation and its equivalent the Trout Creek Sandstone Member of the Iles Formation of the Mesaverde Group, which immediately underlie the Cameo and Fairfield zone. The structure contours show the fairly strong correlation between structure and coal rank in the basin, suggesting that maximum overburden was the key factor in determining the coal ranks. Even in the southern part of the basin where extensive plutonism occurred during the Oligocene, coal ranks still generally follow structure; indicating that the plutons had little affect on the coals. On the cross sections both the top of the Rollins and Trout Creek, and the top of the Mesaverde Formation/Group are shown. A complete analysis of the entire Mesaverde in the basin would require more information than is presently available.

  13. Fringe-shifting single-projector moiré topography application for cotyle implantate abrasion measurement

    NASA Astrophysics Data System (ADS)

    Rössler, Tomáš; Hrabovský, Miroslav; Pluháček, František

    2005-08-01

    The cotyle implantate is abraded in the body of patient and its shape changes. Information about the magnitude of abrasion is contained in the result contour map of the implantate. The locations and dimensions of abraded areas can be computed from the contours deformation. The method called the single-projector moire topography was used for the contour lines determination. The theoretical description of method is given at first. The design of the experimental set-up follows. The light grating projector was developed to realize the periodic structure on the measured surface. The method of fringe-shifting was carried out to increase the data quantity. The description of digital processing applied to the moire grating images is introduced at the end together with the examples of processed images.

  14. Detection of alteration associated with a porphyry copper deposit in southern Arizona

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.; Siegal, B. S.

    1977-01-01

    Computer processing of Landsat MSS data was performed using contrast stretching and band-to-band ratioing. A false color ratio composite picture showed color anomalies which coincided with known areas of alteration on and about Red Mountain. A helicopter survey of the study area was undertaken using a portable field reflectance spectrometer. One hundred fifty-six spectra were obtained in the 0.4 to 2.5 micrometer wavelength region. The spectra were digitized, and contour maps for 24 wavelength intervals were produced; no spectral anomalies were evident for the known altered areas. A contour map produced from the 1.6 and 2.2 micrometer ratio generally delineated the alteration areas. The 1.3, 1.6, and 2.2 micrometer wavelength data were canonically transformed using a transformation empirically derived from discriminant function analysis of altered and unaltered materials for the Goldfield, Nevada region, and a contour map was produced for the first canonical variable. The known areas of alteration were clearly defined on the contour map.

  15. Experimental vizualization of 2D photonic crystal equi-frequency contours

    NASA Astrophysics Data System (ADS)

    Senderakova, Dagmar; Drzik, Milan; Pisarcik, Matej

    2017-12-01

    Photonic crystals have been extensively studied for their unique optical properties that promise interesting novel devices. Our contribution is focused on a 2D photonic crystal structure formed by Al2O3 layer on silicon substrate, patterned with periodic hexagonal lattice of deep air holes. Azimuthal angle dependences of the specular light reflection were recorded photo-electrically at various angles of icidence and wavelengths. Data obtained were processed via mapping in reciprocal k-space. The method promises a possibility to visualize the equi-frequency contours and get more detailed information about the properties of the sample used.

  16. Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Murray, Kyle E.

    2003-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.

  17. SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Ates, O; Li, X

    Purpose: To develop a tool that can quickly and automatically assess contour quality generated from auto segmentation during online adaptive replanning. Methods: Due to the strict time requirement of online replanning and lack of ‘ground truth’ contours in daily images, our method starts with assessing image registration accuracy focusing on the surface of the organ in question. Several metrics tightly related to registration accuracy including Jacobian maps, contours shell deformation, and voxel-based root mean square (RMS) analysis were computed. To identify correct contours, additional metrics and an adaptive decision tree are introduced. To approve in principle, tests were performed withmore » CT sets, planned and daily CTs acquired using a CT-on-rails during routine CT-guided RT delivery for 20 prostate cancer patients. The contours generated on daily CTs using an auto-segmentation tool (ADMIRE, Elekta, MIM) based on deformable image registration of the planning CT and daily CT were tested. Results: The deformed contours of 20 patients with total of 60 structures were manually checked as baselines. The incorrect rate of total contours is 49%. To evaluate the quality of local deformation, the Jacobian determinant (1.047±0.045) on contours has been analyzed. In an analysis of rectum contour shell deformed, the higher rate (0.41) of error contours detection was obtained compared to 0.32 with manual check. All automated detections took less than 5 seconds. Conclusion: The proposed method can effectively detect contour errors in micro and macro scope by evaluating multiple deformable registration metrics in a parallel computing process. Future work will focus on improving practicability and optimizing calculation algorithms and metric selection.« less

  18. Technique for Chestband Contour Shape-Mapping in Lateral Impact

    PubMed Central

    Hallman, Jason J; Yoganandan, Narayan; Pintar, Frank A

    2011-01-01

    The chestband transducer permits noninvasive measurement of transverse plane biomechanical response during blunt thorax impact. Although experiments may reveal complex two-dimensional (2D) deformation response to boundary conditions, biomechanical studies have heretofore employed only uniaxial chestband contour quantifying measurements. The present study described and evaluated an algorithm by which source subject-specific contour data may be systematically mapped to a target generalized anthropometry for computational studies of biomechanical response or anthropomorphic test dummy development. Algorithm performance was evaluated using chestband contour datasets from two rigid lateral impact boundary conditions: Flat wall and anterior-oblique wall. Comparing source and target anthropometry contours, peak deflections and deformation-time traces deviated by less than 4%. These results suggest that the algorithm is appropriate for 2D deformation response to lateral impact boundary conditions. PMID:21676399

  19. A comparison of contour maps derived from independent methods of measuring lunar magnetic fields

    NASA Technical Reports Server (NTRS)

    Lichtenstein, B. R.; Coleman, P. J., Jr.; Russell, C. T.

    1978-01-01

    Computer-generated contour maps of strong lunar remanent magnetic fields are presented and discussed. The maps, obtained by previously described (Eliason and Soderblom, 1977) techniques, are derived from a variety of direct and indirect measurements from Apollo 15 and 16 and Explorer 35 magnetometer and electron reflection data. A common display format is used to facilitate comparison of the maps over regions of overlapping coverage. Most large scale features of either weak or strong magnetic field regions are found to correlate fairly well on all the maps considered.

  20. Mapping urban geology of the city of Girona, Catalonia

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour lines of the top of the pre-Quaternary basement surface. The most representative complementary maps are the quaternary map, the subsurface bedrock map and the isopach map of thickness of superficial deposits (Quaternary and anthropogenic). The map sheets also include charts and tables of relevant physic-chemical parameters of the geological materials, harmonized downhole lithological columns from selected boreholes, stratigraphic columns, and, photographs and figures illustrating the geology of the mapped area and how urbanization has changed the natural environment. The development of systematic urban geological mapping projects, such as the example of Girona's case, which provides valuable resources to address targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal with in the future.

  1. Topographic mapping of the Moon

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Contour maps of the Moon have been compiled by photogrammetric methods that use stereoscopic combinations of all available metric photographs from the Apollo 15, 16, and 17 missions. The maps utilize the same format as the existing NASA shaded-relief Lunar Planning Charts (LOC-1, -2, -3, and -4), which have a scale of 1:2 750 000. The map contour interval is 500m. A control net derived from Apollo photographs by Doyle and others was used for the compilation. Contour lines and elevations are referred to the new topographic datum of the Moon, which is defined in terms of spherical harmonics from the lunar gravity field. Compilation of all four LOC charts was completed on analytical plotters from 566 stereo models of Apollo metric photographs that cover approximately 20% of the Moon. This is the first step toward compiling a global topographic map of the Moon at a scale of 1:5 000 000. ?? 1985 D. Reidel Publishing Company.

  2. The Effect of Local Orientation Change on the Detection of Contours Defined by Constant Curvature: Psychophysics and Image Statistics.

    PubMed

    Khuu, Sieu K; Cham, Joey; Hayes, Anthony

    2016-01-01

    In the present study, we investigated the detection of contours defined by constant curvature and the statistics of curved contours in natural scenes. In Experiment 1, we examined the degree to which human sensitivity to contours is affected by changing the curvature angle and disrupting contour curvature continuity by varying the orientation of end elements. We find that (1) changing the angle of contour curvature decreased detection performance, while (2) end elements oriented in the direction (i.e., clockwise) of curvature facilitated contour detection regardless of the curvature angle of the contour. In Experiment 2 we further established that the relative effect of end-element orientation on contour detection was not only dependent on their orientation (collinear or cocircular), but also their spatial separation from the contour, and whether the contour shape was curved or not (i.e., C-shaped or S-shaped). Increasing the spatial separation of end-elements reduced contour detection performance regardless of their orientation or the contour shape. However, at small separations, cocircular end-elements facilitated the detection of C-shaped contours, but not S-shaped contours. The opposite result was observed for collinear end-elements, which improved the detection of S- shaped, but not C-shaped contours. These dissociative results confirmed that the visual system specifically codes contour curvature, but the association of contour elements occurs locally. Finally, we undertook an analysis of natural images that mapped contours with a constant angular change and determined the frequency of occurrence of end elements with different orientations. Analogous to our behavioral data, this image analysis revealed that the mapped end elements of constantly curved contours are likely to be oriented clockwise to the angle of curvature. Our findings indicate that the visual system is selectively sensitive to contours defined by constant curvature and that this might reflect the properties of curved contours in natural images.

  3. Introducing etch kernels for efficient pattern sampling and etch bias prediction

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2018-01-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.

  4. Visualising uncertainty: interpreting quantified geoscientific inversion outputs for a diverse user community.

    NASA Astrophysics Data System (ADS)

    Reading, A. M.; Morse, P. E.; Staal, T.

    2017-12-01

    Geoscientific inversion outputs, such as seismic tomography contour images, are finding increasing use amongst scientific user communities that have limited knowledge of the impact of output parameter uncertainty on subsequent interpretations made from such images. We make use of a newly written computer application which enables seismic tomography images to be displayed in a performant 3D graphics environment. This facilitates the mapping of colour scales to the human visual sensorium for the interactive interpretation of contoured inversion results incorporating parameter uncertainty. Two case examples of seismic tomography inversions or contoured compilations are compared from the southern hemisphere continents of Australia and Antarctica. The Australian example is based on the AuSREM contoured seismic wavespeed model while the Antarctic example is a valuable but less well constrained result. Through adjusting the multiple colour gradients, layer separations, opacity, illumination, shadowing and background effects, we can optimise the insights obtained from the 3D structure in the inversion compilation or result. Importantly, we can also limit the display to show information in a way that is mapped to the uncertainty in the 3D result. Through this practical application, we demonstrate that the uncertainty in the result can be handled through a well-posed mapping of the parameter values to displayed colours in the knowledge of what is perceived visually by a typical human. We found that this approach maximises the chance of a useful tectonic interpretation by a diverse scientific user community. In general, we develop the idea that quantified inversion uncertainty can be used to tailor the way that the output is presented to the analyst for scientific interpretation.

  5. Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume

    NASA Astrophysics Data System (ADS)

    Depaolo, Donald J.; Bryce, Julia G.; Dodson, Allen; Shuster, David L.; Kennedy, B. Mack

    2001-07-01

    New He isotopic data from the HSDP pilot hole core, lava accumulation rate models, and data from the literature are used to develop a 200,000 year isotopic record for the lava erupted from the Mauna Loa volcano. This record, coupled with an analogous record from Mauna Kea from the Hawaii Scientific Drilling Project (HSDP) pilot hole project and other literature data from the GEOROC database, are used to construct a "map" of lava isotopic compositions for the island of Hawaii. The isotopic map is converted to a map of the He and Nd isotopic compositions of melts from the mantle plume, which can be compared with a published melt supply map derived from geodynamic modeling. The resulting map of the plume indicates that values of helium 3He/4He > 20 Ra are confined to the core of the plume (radius ≈ 20-25 km) and correspond to potential temperatures >1565°C, suggesting the He isotopic signal is derived from deep in the mantle. The 3He/4He map has closed contours down to 10 Ra; the contours are teardrop-shaped and elongated in the general direction of plate motion. The closed contours indicate that most of the plume He signal is lost during the early stages of melting, which is consistent with helium behaving as a strongly incompatible element (KHe ≤ 0.001). The ɛNd contours (and by inference the contours for Sr, Pb, Hf, and Os) do not all close on the scale of the island of Hawaii but instead partially follow material flow lines within the plume beneath the lithosphere. The plume signal for Nd extends circa 100 km in the direction of plate motion, which is consistent with the moderately incompatible behavior of Nd (KNd ≈ 0.02). Downstream from the plume core epicenter, plume Nd occurs with asthenospheric He; this could be mistaken for an additional plume component, whereas it may be only a manifestation of differing incompatibility. Data from Mauna Loa suggest the presence of a low-3He/4He plume component that has low ɛNd and high 87Sr/86Sr. The plume map suggests that this component may be a blob (circa 20 km scale), located between Mauna Loa and Hualalai and separated from the main plume core by a zone of more asthenosphere-like material. The HSDP data preclude a proposed model where this material represents a ring of entrained material from the lower mantle. The orientation of the elongation of contours on the plume He and Nd isotope maps (˜N45°W) does not match the modern plate motion as measured by GPS (N65°W) nor does it match the trend of the ridge axis between Maui and Loihi (N30°W). The geochemical evidence, as well as the locations and growth histories of the Hawaiian volcanoes, suggest that the plume, as well as the Pacific plate, has been moving at a velocity of several centimeters per year over the past 1 to 2 million years.

  6. Experimental conformational energy maps of proteins and peptides.

    PubMed

    Balaji, Govardhan A; Nagendra, H G; Balaji, Vitukudi N; Rao, Shashidhar N

    2017-06-01

    We have presented an extensive analysis of the peptide backbone dihedral angles in the PDB structures and computed experimental Ramachandran plots for their distributions seen under a various constraints on X-ray resolution, representativeness at different sequence identity percentages, and hydrogen bonding distances. These experimental distributions have been converted into isoenergy contour plots using the approach employed previously by F. M. Pohl. This has led to the identification of energetically favored minima in the Ramachandran (ϕ, ψ) plots in which global minima are predominantly observed either in the right-handed α-helical or the polyproline II regions. Further, we have identified low energy pathways for transitions between various minima in the (ϕ,ψ) plots. We have compared and presented the experimental plots with published theoretical plots obtained from both molecular mechanics and quantum mechanical approaches. In addition, we have developed and employed a root mean square deviation (RMSD) metric for isoenergy contours in various ranges, as a measure (in kcal.mol -1 ) to compare any two plots and determine the extent of correlation and similarity between their isoenergy contours. In general, we observe a greater degree of compatibility with experimental plots for energy maps obtained from molecular mechanics methods compared to most quantum mechanical methods. The experimental energy plots we have investigated could be helpful in refining protein structures obtained from X-ray, NMR, and electron microscopy and in refining force field parameters to enable simulations of peptide and protein structures that have higher degree of consistency with experiments. Proteins 2017; 85:979-1001. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. 27 CFR 9.230 - Ballard Canyon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... straight line approximately 1.25 miles, crossing onto the Zaca Creek map, to the marked “Ball” 801-foot....45 miles, crossing onto the Solvang map, to a marked, unnamed 775-foot peak, T6N/R31W; then (6... the 400-foot contour line approximately 1.5 miles, to the contour line's first intersection with...

  8. The Case of the Flooded Island.

    ERIC Educational Resources Information Center

    McGinnis, Randy

    1989-01-01

    Presents a hands-on activity for bridging the gap between the exposure to three-dimensional topography and contour mapping. This activity describes the use of a volcano-making activity and offers laboratory sheets that can be duplicated for student use. Argues that students learn the concept of contour mapping better in a guided fashion that holds…

  9. Geologic setting of the low-level burial grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, K.A.; Jaeger, G.K.; Slate, J.L.

    1994-10-13

    This report describes the regional and site specific geology of the Hanford Sites low-level burial grounds in the 200 East and West Areas. The report incorporates data from boreholes across the entire 200 Areas, integrating the geology of this area into a single framework. Geologic cross-sections, isopach maps, and structure contour maps of all major geological units from the top of the Columbia River Basalt Group to the surface are included. The physical properties and characteristics of the major suprabasalt sedimentary units also are discussed.

  10. Object-oriented approach to the automatic segmentation of bones from pediatric hand radiographs

    NASA Astrophysics Data System (ADS)

    Shim, Hyeonjoon; Liu, Brent J.; Taira, Ricky K.; Hall, Theodore R.

    1997-04-01

    The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The development of this system draws principles from object-oriented design, model- guided analysis, and feedback control. A system architecture called 'the object segmentation machine' was implemented incorporating these design philosophies. The system is aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. These models include object structure models, shape models, 1-D wrist profiles, and gray level histogram models. Shape analysis is performed first by using an arc-length orientation transform to break down a given contour into elementary segments and curves. Then an interpretation tree is used as an inference engine to map known model contour segments to data contour segments obtained from the transform. Spatial and anatomical relationships among contour segments work as constraints from shape model. These constraints aid in generating a list of candidate matches. The candidate match with the highest confidence is chosen to be the current intermediate result. Verification of intermediate results are perform by a feedback control loop.

  11. Extensional Tectonics and Sedimentary Architecture Using 3-D Seismic Data: An Example from Hydrocarbon-Bearing Mumbai Offshore Basin, West Coast of India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, D. K.; Bhowmick, P. K.; Mishra, P.

    2016-12-01

    In offshore sedimentary basins, analysis of 3-D seismic data tied with well log data can be used to deduce robust isopach and structure contour maps of different stratigraphic formations. The isopach maps give depocenters whereas structure contour maps give structural relief at a specific time. Combination of these two types of data helps us decipher horst-graben structures, sedimentary basin architecture and tectono-stratigraphic relations through Tertiary time. Restoration of structural cross sections with back-stripping of successively older stratigraphic layers leads to better understand tectono-sedimentary evolution of a basin. The Mumbai (or Bombay) Offshore Basin is the largest basin off the west coast of India and includes Bombay High giant oil/gas field. Although this field was discovered in 1974 and still producing, the basin architecture vis-à-vis structural evolution are not well documented. We take the approach briefly outlined above to study in detail three large hydrocarbon-bearing structures located within the offshore basin. The Cretaceous Deccan basalt forms the basement and hosts prodigal thickness (> 8 km at some localities) of Tertiary sedimentary formations.A two stage deformation is envisaged. At the first stage horst and graben structures formed due to approximately E-W extensional tectonics. This is most spectacularly seen at the basement top level. The faults associated with this extension strike NNW. At the second stage of deformation a set of ENE-striking cross faults have developed leading to the formation of transpressional structures at places. High rate of early sedimentation obliterated horst-graben architecture to large extent. An interesting aspect emerges is that the all the large-scale structures have rather low structural relief. However, the areal extent of such structures are very large. Consequently, these structures hold commercial quantities of oil/gas.

  12. Pattern sampling for etch model calibration

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2017-06-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels as well as the choice of calibration patterns is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels -"internal, external, curvature, Gaussian, z_profile" - designed to capture the finest details of the resist contours and represent precisely any etch bias. By evaluating the etch kernels on various structures it is possible to map their etch signatures in a multi-dimensional space and analyze them to find an optimal sampling of structures to train an etch model. The method was specifically applied to a contact layer containing many different geometries and was used to successfully select appropriate calibration structures. The proposed kernels evaluated on these structures were combined to train an etch model significantly better than the standard one. We also illustrate the usage of the specific kernel "z_profile" which adds a third dimension to the description of the resist profile.

  13. Altitude of the Top of the Madison Limestone in the Black Hills area, South Dakota, 1999

    USGS Publications Warehouse

    Carter, Janet M.; Redden, Jack A.

    2000-01-01

    This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and groundwater in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study arca arc Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top (structure contours) of the Madison Limestone within the area of the Black Hills Hydrology Study. The depth to the top of the Madison Limestone can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation. However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.

  14. Altitude of the Top of the Deadwood Formation in the Black Hills area, South Dakota, 1999

    USGS Publications Warehouse

    Carter, Janet M.; Redden, Jack A.

    2000-01-01

    This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top (structure contours) of the Deadwood Formation within the area of the Black Hills Hydrology Study. The depth to the top of the Deadwood Formation can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation, However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.

  15. Altitude of the Top of the Minnelusa Formation in the Black Hills area, South Dakota, 1999

    USGS Publications Warehouse

    Carter, Janet M.; Redden, Jack A.

    2000-01-01

    This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top (structure contours) of the Minnelusa Formation within the area of the Black Hills Hydrology Study. The depth to the top of the Minnelusa Formation can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation. However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.

  16. Altitude of the Top of the Minnekahta Limestone in the Black Hills area, South Dakota, 1999

    USGS Publications Warehouse

    Carter, Janet M.; Redden, Jack A.

    2000-01-01

    This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and groundwater in the Black Hills area of South Dakota (Driscoli, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of environment and Natural Resources, and the West Dakota Water development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara. Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top(structure contours) of the Minnekahta limestone within the area of the Black Hills Hydrology Study. The depth to the top of the Minnekahta Limestone can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation. However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.

  17. Closed geometric models in medical applications

    NASA Astrophysics Data System (ADS)

    Jagannathan, Lakshmipathy; Nowinski, Wieslaw L.; Raphel, Jose K.; Nguyen, Bonnie T.

    1996-04-01

    Conventional surface fitting methods give twisted surfaces and complicates capping closures. This is a typical character of surfaces that lack rectangular topology. We suggest an algorithm which overcomes these limitations. The analysis of the algorithm is presented with experimental results. This algorithm assumes the mass center lying inside the object. Both capping closure and twisting are results of inadequate information on the geometric proximity of the points and surfaces which are proximal in the parametric space. Geometric proximity at the contour level is handled by mapping the points along the contour onto a hyper-spherical space. The resulting angular gradation with respect to the centroid is monotonic and hence avoids the twisting problem. Inter-contour geometric proximity is achieved by partitioning the point set based on the angle it makes with the respective centroids. Avoidance of capping complications is achieved by generating closed cross curves connecting curves which are reflections about the abscissa. The method is of immense use for the generation of the deep cerebral structures and is applied to the deep structures generated from the Schaltenbrand- Wahren brain atlas.

  18. Risk maps for navigation in liver surgery

    NASA Astrophysics Data System (ADS)

    Hansen, C.; Zidowitz, S.; Schenk, A.; Oldhafer, K.-J.; Lang, H.; Peitgen, H.-O.

    2010-02-01

    The optimal transfer of preoperative planning data and risk evaluations to the operative site is challenging. A common practice is to use preoperative 3D planning models as a printout or as a presentation on a display. One important aspect is that these models were not developed to provide information in complex workspaces like the operating room. Our aim is to reduce the visual complexity of 3D planning models by mapping surgically relevant information onto a risk map. Therefore, we present methods for the identification and classification of critical anatomical structures in the proximity of a preoperatively planned resection surface. Shadow-like distance indicators are introduced to encode the distance from the resection surface to these critical structures on the risk map. In addition, contour lines are used to accentuate shape and spatial depth. The resulting visualization is clear and intuitive, allowing for a fast mental mapping of the current resection surface to the risk map. Preliminary evaluations by liver surgeons indicate that damage to risk structures may be prevented and patient safety may be enhanced using the proposed methods.

  19. Absolute color scale for improved diagnostics with wavefront error mapping.

    PubMed

    Smolek, Michael K; Klyce, Stephen D

    2007-11-01

    Wavefront data are expressed in micrometers and referenced to the pupil plane, but current methods to map wavefront error lack standardization. Many use normalized or floating scales that may confuse the user by generating ambiguous, noisy, or varying information. An absolute scale that combines consistent clinical information with statistical relevance is needed for wavefront error mapping. The color contours should correspond better to current corneal topography standards to improve clinical interpretation. Retrospective analysis of wavefront error data. Historic ophthalmic medical records. Topographic modeling system topographical examinations of 120 corneas across 12 categories were used. Corneal wavefront error data in micrometers from each topography map were extracted at 8 Zernike polynomial orders and for 3 pupil diameters expressed in millimeters (3, 5, and 7 mm). Both total aberrations (orders 2 through 8) and higher-order aberrations (orders 3 through 8) were expressed in the form of frequency histograms to determine the working range of the scale across all categories. The standard deviation of the mean error of normal corneas determined the map contour resolution. Map colors were based on corneal topography color standards and on the ability to distinguish adjacent color contours through contrast. Higher-order and total wavefront error contour maps for different corneal conditions. An absolute color scale was produced that encompassed a range of +/-6.5 microm and a contour interval of 0.5 microm. All aberrations in the categorical database were plotted with no loss of clinical information necessary for classification. In the few instances where mapped information was beyond the range of the scale, the type and severity of aberration remained legible. When wavefront data are expressed in micrometers, this absolute scale facilitates the determination of the severity of aberrations present compared with a floating scale, particularly for distinguishing normal from abnormal levels of wavefront error. The new color palette makes it easier to identify disorders. The corneal mapping method can be extended to mapping whole eye wavefront errors. When refraction data are expressed in diopters, the previously published corneal topography scale is suggested.

  20. Structure-contour maps on the top of the Mississippian carbonates and on top of the upper Cambrian and lower Ordovician Arbuckle Group, Joplin 1 degree by 2 degrees Quadrangle, Kansas and Missouri

    USGS Publications Warehouse

    Blair, Kevin P.; Berendsen, Pieter; Seeger, Cheryl M.

    1992-01-01

    This publication is a part of the folio of maps of the Joplin 1° X 2° quadrangle, Kansas and Missouri, which was prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio to date include the U.S. Geological Survey Miscellaneous Field Studies Maps MF-2125-A and B (Erickson and others, 1990; Grisafe and Rueff, 1992). Additional maps showing other geologic aspects of the Joplin quadrangle will be published as U.S. Geological Survey maps bearing this same serial number with different letter suffixes (MF-2125-D, -E, and so forth).

  1. Pedagogical efficiency of melodic contour mapping technology as it relates to vocal timbre in singers of classical music repertoire.

    PubMed

    Barnes-Burroughs, Kathryn; Anderson, Edward E; Hughes, Thomas; Lan, William Y; Dent, Karl; Arnold, Sue; Dolter, Gerald; McNeil, Kathy

    2007-11-01

    The purpose of this investigation was to ascertain the pedagogical viability of computer-generated melodic contour mapping systems in the classical singing studio, as perceived by their resulting effect (if any) on vocal timbre when a singer's head and neck remained in a normal singing posture. The evaluation of data gathered during the course of the study indicates that the development of consistent vocal timbre produced by the classical singing student may be enhanced through visual/kinesthetic response to melodic contour inversion mapping, as it balances the singer's perception of melodic intervals in standard musical notation. Unexpectedly, it was discovered that the system, in its natural melodic contour mode, may also be useful for teaching a student to sing a consistent legato line. The results of the study also suggest that the continued development of this new technology for the general teaching studio, designed to address standard musical notation and a singer's visual/kinesthetic response to it, may indeed be useful.

  2. Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon

    NASA Astrophysics Data System (ADS)

    Wiley, T. J.; McClaughry, J. D.

    2012-12-01

    Lidar-based 3-foot digital elevation models (DEMs) and derivatives (slopeshade, hillshade, contours) were used to help map geology across 1700 km2 (650 mi2) near Hood River and Medford, Oregon. Techniques classically applied to interpret coarse DEMs and small-scale topographic maps were adapted to take advantage of lidar's high resolution. Penetration and discrimination of plant cover by the laser system allowed recognition of fine patterns and textures related to underlying geologic units and associated soils. Surficial geologic maps were improved by the ability to examine tiny variations in elevation and slope. Recognition of low-relief features of all sizes was enhanced where pixel elevation ranges of centimeters to meters, established by knowledge of the site or by trial, were displayed using thousands of sequential colors. Features can also be depicted relative to stream level by preparing a DEM that compensates for gradient. Near Medford, lidar-derived contour maps with 1- to 3-foot intervals revealed incised bajada with young, distal lobes defined by concentric contour lines. Bedrock geologic maps were improved by recognizing geologic features associated with surface textures and patterns or topographic anomalies. In sedimentary and volcanic terrain, structure was revealed by outcrops or horizons lying at one stratigraphic level. Creating a triangulated irregular network (TIN) facet from positions of three or more such points gives strike and dip. Each map area benefited from hundreds of these measurements. A more extensive DEM in the plane of the TIN facet can be subtracted from surface elevation (lidar DEM) to make a DEM with elevation zero where the stratigraphic horizon lies at the surface. The distribution of higher and lower stratigraphic horizons can be shown by highlighting areas similarly higher or lower on the same DEM. Poor fit of contacts or faults projected between field traverses suggest the nature and amount of intervening geologic structure. Intrusive bodies were locally delimited by linear mounds where contact metamorphism hardened soft, fractured country rock. Bedrock faults were revealed where fault traces formed topographic anomalies or where topography associated with stratigraphic horizons or bedding-parallel textural fabrics was offset. This was important for identification of young faults and associated earthquake hazards. Previously unknown Holocene faults southwest of Hood River appear as subtle lineaments redirecting modern drainages or offsetting glacial moraines or glaciated bedrock. West of Medford, the presence young faulting was confirmed by elevation data that showed bedrock in the channel of the Rogue River at higher elevations below Gold Ray dam than in boreholes upstream. Such obscure structural features would have gone unrecognized using traditional topographic analysis or field reconnaissance. Fieldwork verified that lidar techniques improved our early geologic models, resolution of geologic features, and mapping of surficial and bedrock geology between traverses.

  3. Soils of Walker Branch Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lietzke, D.A.

    1994-03-01

    The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1,200 usingmore » a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed.« less

  4. Finding Your Way with Map and Compass

    USGS Publications Warehouse

    ,

    2001-01-01

    A topographic map tells you where things are and how to get to them, whether you're hiking, biking, hunting, fishing, or just interested in the world around you. These maps describe the shape of the land. They define and locate natural and manmade features like woodlands, waterways, important buildings, and bridges. They show the distance between any two places, and they also show the direction from one point to another. Distances and directions take a bit of figuring, but the topography and features of the land are easy to determine. The topography is shown by contours. These are imaginary lines that follow the ground surface at a constant elevation; they are usually printed in brown, in two thicknesses. The heavier lines are called index contours, and they are usually marked with numbers that give the height in feet or meters. The contour interval, a set difference in elevation between the brown lines, varies from map to map; its value is given in the margin of each map. Contour lines that are close together represent steep slopes. Natural and manmade features are represented by colored areas and by a set of standard symbols on all U.S. Geological Survey (USGS) topographic maps. Woodlands, for instance, are shown in a green tint; waterways, in blue. Buildings may be shown on the map as black squares or outlines. Recent changes in an area may be shown by a purple overprint. A road may be printed in red or black solid or dashed lines, depending on its size and surface. A list of symbols is available from the Earth Science Information Center (ESIC).

  5. Understanding nanocellulose chirality and structure–properties relationship at the single fibril level

    PubMed Central

    Usov, Ivan; Nyström, Gustav; Adamcik, Jozef; Handschin, Stephan; Schütz, Christina; Fall, Andreas; Bergström, Lennart; Mezzenga, Raffaele

    2015-01-01

    Nanocellulose fibrils are ubiquitous in nature and nanotechnologies but their mesoscopic structural assembly is not yet fully understood. Here we study the structural features of rod-like cellulose nanoparticles on a single particle level, by applying statistical polymer physics concepts on electron and atomic force microscopy images, and we assess their physical properties via quantitative nanomechanical mapping. We show evidence of right-handed chirality, observed on both bundles and on single fibrils. Statistical analysis of contours from microscopy images shows a non-Gaussian kink angle distribution. This is inconsistent with a structure consisting of alternating amorphous and crystalline domains along the contour and supports process-induced kink formation. The intrinsic mechanical properties of nanocellulose are extracted from nanoindentation and persistence length method for transversal and longitudinal directions, respectively. The structural analysis is pushed to the level of single cellulose polymer chains, and their smallest associated unit with a proposed 2 × 2 chain-packing arrangement. PMID:26108282

  6. Lagrangian displacement tracking using a polar grid between endocardial and epicardial contours for cardiac strain imaging.

    PubMed

    Ma, Chi; Varghese, Tomy

    2012-04-01

    Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.

  7. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... intersection with the 1,400-foot contour line, section 3, T12N, R7W (Clearlake Highlands Quadrangle); then (2) Proceed east-southeasterly along the meandering 1,400-foot contour line onto the Lower Lake map south of Anderson Flat, then reverse direction with the contour line and continue westerly, leaving the Lower Lake...

  8. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... intersection with the 1,400-foot contour line, section 3, T12N, R7W (Clearlake Highlands Quadrangle); then (2) Proceed east-southeasterly along the meandering 1,400-foot contour line onto the Lower Lake map south of Anderson Flat, then reverse direction with the contour line and continue westerly, leaving the Lower Lake...

  9. Impact of Machine-Translated Text on Entity and Relationship Extraction

    DTIC Science & Technology

    2014-12-01

    20 1 1. Introduction Using social network analysis tools is an important asset in...semantic modeling software to automatically build detailed network models from unstructured text. Contour imports unstructured text and then maps the text...onto an existing ontology of frames at the sentence level, using FrameNet, a structured language model, and through Semantic Role Labeling ( SRL

  10. Optimal Search Strategy for the Definition of a DNAPL Source

    DTIC Science & Technology

    2009-08-01

    29. Flow field results for stochastic model (colored contours) and potentiometric map created by hydrogeologist using well water level measurements...potentiometric map created by hydrogeologist using well water level measurements (black contours). 5.1.3. Source search algorithm Figure 30 shows the 15...and C. D. Tankersley, “Forecasting piezometric head levels in the Floridian aquifer: A Kalman filtering approach”, Water Resources Research, 29(11

  11. Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at -90K

    NASA Technical Reports Server (NTRS)

    Mule, Peter; Hill, Michael D.; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg. at 90 GHz.) map of the Cosmic Microwave Background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of -90 K is a critical element to ensure mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric metrology data taken under vacuum with the reflectors at -90 K. Contour maps showing reflector distortion were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.

  12. Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at Approximately 90 K

    NASA Technical Reports Server (NTRS)

    Mule, Peter; Hill, Michael D.; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of approximately 90 K is a critical element to ensuring mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric (PG) metrology data taken under vacuum with the reflectors at approximately 90 K. Contour maps showing reflector distortion analytical extrapolations were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.

  13. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    The groundwater-level measurements were used to construct a generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system. Groundwater-level altitudes measured in nonflowing and flowing wells used to construct the potentiometric-surface map ranged from 6,451 to 7,307 feet (excluding four unmeasured flowing wells used for contour construction purposes). The potentiometric-surface map indicates that groundwater in the study area generally moves from north to south, but this pattern of flow is altered locally by groundwater divides, groundwater discharge to the Green River, and possibly to a tributary river (Big Sandy River) and two reservoirs (Fontenelle and Big Sandy Reservoirs).

  14. Orientation-Cue Invariant Population Responses to Contrast-Modulated and Phase-Reversed Contour Stimuli in Macaque V1 and V2

    PubMed Central

    An, Xu; Gong, Hongliang; Yin, Jiapeng; Wang, Xiaochun; Pan, Yanxia; Zhang, Xian; Lu, Yiliang; Yang, Yupeng; Toth, Zoltan; Schiessl, Ingo; McLoughlin, Niall; Wang, Wei

    2014-01-01

    Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is the orientation of second-order contours represented at the population level in macaque V1 and V2? Here we compared the population responses in macaque V1 and V2 to two types of second-order contour stimuli generated either by modulation of contrast or phase reversal with those to first-order contour stimuli. Using intrinsic signal optical imaging, we found that the orientation of second-order contour stimuli was represented invariantly in the orientation columns of both macaque V1 and V2. A physiologically constrained spatio-temporal energy model of V1 and V2 neuronal populations could reproduce all the recorded population responses. These findings suggest that, at the population level, the primate early visual system processes the orientation of second-order contours initially through a linear spatio-temporal filter mechanism. Our results of population responses to different second-order contour stimuli support the idea that the orientation maps in primate V1 and V2 can be described as a spatial-temporal energy map. PMID:25188576

  15. Isostatic gravity map with simplified geology of the Los Angeles 30 x 60 minute quadrangle

    USGS Publications Warehouse

    Wooley, R.J.; Yerkes, R.F.; Langenheim, V.E.; Chuang, F.C.

    2003-01-01

    This isostatic residual gravity map is part of the Southern California Areal Mapping Project (SCAMP) and is intended to promote further understanding of the geology in the Los Angeles 30 x 60 minute quadrangle, California, by serving as a basis for geophysical interpretations and by supporting both geological mapping and topical (especially earthquake) studies. Local spatial variations in the Earth's gravity field (after various corrections for elevation, terrain, and deep crustal structure explained below) reflect the lateral variation in density in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. The map shows contours of isostatic gravity overlain on a simplified geology including faults and rock types. The map is draped over shaded-relief topography to show landforms.

  16. Individual tree crown delineation using localized contour tree method and airborne LiDAR data in coniferous forests

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Yu, Bailang; Wu, Qiusheng; Huang, Yan; Chen, Zuoqi; Wu, Jianping

    2016-10-01

    Individual tree crown delineation is of great importance for forest inventory and management. The increasing availability of high-resolution airborne light detection and ranging (LiDAR) data makes it possible to delineate the crown structure of individual trees and deduce their geometric properties with high accuracy. In this study, we developed an automated segmentation method that is able to fully utilize high-resolution LiDAR data for detecting, extracting, and characterizing individual tree crowns with a multitude of geometric and topological properties. The proposed approach captures topological structure of forest and quantifies topological relationships of tree crowns by using a graph theory-based localized contour tree method, and finally segments individual tree crowns by analogy of recognizing hills from a topographic map. This approach consists of five key technical components: (1) derivation of canopy height model from airborne LiDAR data; (2) generation of contours based on the canopy height model; (3) extraction of hierarchical structures of tree crowns using the localized contour tree method; (4) delineation of individual tree crowns by segmenting hierarchical crown structure; and (5) calculation of geometric and topological properties of individual trees. We applied our new method to the Medicine Bow National Forest in the southwest of Laramie, Wyoming and the HJ Andrews Experimental Forest in the central portion of the Cascade Range of Oregon, U.S. The results reveal that the overall accuracy of individual tree crown delineation for the two study areas achieved 94.21% and 75.07%, respectively. Our method holds great potential for segmenting individual tree crowns under various forest conditions. Furthermore, the geometric and topological attributes derived from our method provide comprehensive and essential information for forest management.

  17. Altitude of the top of the Inyan Kara Group in the Black Hills area, South Dakota

    USGS Publications Warehouse

    Carter, Janet M.; Redden, Jack A.

    2000-01-01

    This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top (structure contours) of the Inyan Kara Group within the area of the Black Hills Hydrology Study. The depth to the top of the Inyan Kara Group can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation. However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.

  18. Surface topography of the Greenland Ice Sheet from satellite radar altimetry

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.

    1989-01-01

    Surface elevation maps of the southern half of the Greenland subcontinent are produced from radar altimeter data acquired by the Seasat satellite. A summary of the processing procedure and examples of return waveform data are given. The elevation data are used to generate a regular grid which is then computer contoured to provide an elevation contour map. Ancillary maps show the statistical quality of the elevation data and various characteristics of the surface. The elevation map is used to define ice flow directions and delineate the major drainage basins. Regular maps of the Jakobshavns Glacier drainage basin and the ice divide in the vicinity of Crete Station are presented. Altimeter derived elevations are compared with elevations measured both by satellite geoceivers and optical surveying.

  19. Automated mapping of the ocean floor using the theory of intrinsic random functions of order k

    USGS Publications Warehouse

    David, M.; Crozel, D.; Robb, James M.

    1986-01-01

    High-quality contour maps can be computer drawn from single track echo-sounding data by combining Universal Kriging and the theory of intrinsic random function of order K (IRFK). These methods interpolate values among the closely spaced points that lie along relatively widely spaced lines. The technique provides a variance which can be contoured as a quantitative measure of map precision. The technique can be used to evaluate alternative survey trackline configurations and data collection intervals, and can be applied to other types of oceanographic data. ?? 1986 D. Reidel Publishing Company.

  20. Plotting Lightning-Stroke Data

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Garst, R. A.

    1986-01-01

    Data on lightning-stroke locations become easier to correlate with cloudcover maps with aid of new graphical treatment. Geographic region divided by grid into array of cells. Number of lightning strokes in each cell tabulated, and value representing density of lightning strokes assigned to each cell. With contour-plotting routine, computer draws contours of lightning-stroke density for region. Shapes of contours compared directly with shapes of storm cells.

  1. Shear Wave Velocity, Depth to Bedrock, and Fundamental Resonance Applied to Bedrock Mapping using MASW and H/V Analysis

    NASA Astrophysics Data System (ADS)

    Gonsiewski, J.

    2015-12-01

    Mapping bedrock depth is useful for earthquake hazard analysis, subsurface water transport, and other applications. Recently, collaborative experimentation provided an opportunity to explore a mapping method. Near surface glacial till shear wave velocity (Vs) where data is available from an array of 3-component seismometers were studied for this experiment. Vs is related to depth to bedrock (h) and fundamental resonance (Fo); Fo = Vs/(4h). The H/V spectral peak frequency of recordings from a 3-component seismometer yields a fundamental resonance estimate. Where a suitable average Vs is established, the depth to bedrock can be calculated at every seismometer. 3-component seismometer data was provided by Spectraseis. Geophones, seismographs, and an extra 3-component seismometer were provided by Wright State University for this study. For Vs analysis, three MASW surveys were conducted near the seismometer array. SurfSeis3© was used for processing MASW data. Overtones from complicated bedrock structure and great bedrock depth are improved by combining overtones from multiple source offsets from each survey. From MASW Vs and depth to bedrock results, theoretical fundamental resonance (Fo) was calculated and compared with the H/V peak spectral frequency measured by a seismometer at selected sites and processed by Geopsy processing software. Calculated bedrock depths from all geophysical data were compared with measured bedrock depths at nearby water wells and oil and gas wells provided by ODNR. Vs and depth to bedrock results from MASW produced similar calculated fundamental resonances to the H/V approximations by respective seismometers. Bedrock mapping was performed upon verifying the correlation between the theoretical fundamental resonance and H/V peak frequencies. Contour maps were generated using ArcGIS®. Contour lines interpolated from local wells were compared with the depths calculated from H/V analysis. Bedrock depths calculated from the seismometer array correlate with the major trends indicated by the surrounding wells. A final contour map was developed from depth to bedrock measured by all wells and depths calculated from the average Vs and estimated resonance at select Spectraseis 3-component seismometers.

  2. Early Detection of Breast Cancer via Multi-plane Correlation Breast Imaging

    DTIC Science & Technology

    2008-04-01

    pathology that the radiologists are looking for, leading to high rate of false positives. An imaging technique which may alleviate the limiting factor of...received on 07/24/06. Five mastectomy specimens were subsequently obtained from the pathology laboratory at the Duke hospital and imaged for this... pathology , thus providing a 2D contour map of the possible locations of the lesion. To evaluate the performance of MCI, the 2D contour map was compared

  3. Geologic structure of shallow maria. [topography of lunar maria

    NASA Technical Reports Server (NTRS)

    Dehon, R. A.; Waskom, J. A.

    1975-01-01

    Isopach maps and structural contour maps of the eastern mare basins (30 deg N to 30 deg S; 0 deg to 100 deg E), constructed from measurements of partially buried craters, are presented and discussed. The data, which are sufficiently scattered to yield gross thickness variations, are restricted to shallow maria with less than 1500-2000 m of mare basalts. The average thickness of basalt in the irregular maria is between 200 and 400 m. Correlations between surface topography, basalt thickness, and basin floor structure are apparent in most of the basins that were studied. The mare surface is commonly depressed in regions of thick mare basalts; mare ridges are typically located in regions of pronounced thickness changes; and arcuate mare rilles are confined to thin mare basalts. Most surface structures are attributed to shallow stresses developed within the mare basalts during consolidation and volume reduction.

  4. Estimation of contour motion and deformation for nonrigid object tracking

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Porikli, Fatih; Chellappa, Rama

    2007-08-01

    We present an algorithm for nonrigid contour tracking in heavily cluttered background scenes. Based on the properties of nonrigid contour movements, a sequential framework for estimating contour motion and deformation is proposed. We solve the nonrigid contour tracking problem by decomposing it into three subproblems: motion estimation, deformation estimation, and shape regulation. First, we employ a particle filter to estimate the global motion parameters of the affine transform between successive frames. Then we generate a probabilistic deformation map to deform the contour. To improve robustness, multiple cues are used for deformation probability estimation. Finally, we use a shape prior model to constrain the deformed contour. This enables us to retrieve the occluded parts of the contours and accurately track them while allowing shape changes specific to the given object types. Our experiments show that the proposed algorithm significantly improves the tracker performance.

  5. Mars synthetic topographic mapping

    USGS Publications Warehouse

    Wu, S.S.C.

    1978-01-01

    Topographic contour maps of Mars are compiled by the synthesis of data acquired from various scientific experiments of the Mariner 9 mission, including S-band radio-occulation, the ultraviolet spectrometer (UVS), the infrared radiometer (IRR), the infrared interferometer spectrometer (IRIS) and television imagery, as well as Earth-based radar information collected at Goldstone, Haystack, and Arecibo Observatories. The entire planet is mapped at scales of 1:25,000,000 and 1:25,000,000 using Mercator, Lambert, and polar stereographic map projections. For the computation of map projections, a biaxial spheroid figure is adopted. The semimajor and semiminor axes are 3393.4 and 3375.7 km, respectively, with a polar flattening of 0.0052. For the computation of elevations, a topographic datum is defined by a gravity field described in terms of spherical harmonics of fourth order and fourth degree combined with a 6.1-mbar occulation pressure surface. This areoid can be approximated by a triaxial ellipsoid with semimajor axes of A = 3394.6 km and B = 3393.3 km and a semiminor axis of C = 3376.3 km. The semimajor axis A intersects the Martian surface at longitude 105??W. The dynamic flattening of Mars is 0.00525. The contour intercal of the maps is 1 km. For some prominent features where overlapping pictures from Mariner 9 are available, local contour maps at relatively larger scales were also compiled by photogrammetric methods on stereo plotters. ?? 1978.

  6. Airborne gamma-ray spectrometer and magnetometer survey, Durango A, B, C, and D, Colorado. Volume I. Detail area. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the Durango A, Durango B, Durango C, and Durango D Detail Areas of southwestern Colorado. The Durango A Detail Area is within the coverage of the Needle Mountains and Silverton 15' map sheets, and the Pole Creek Mountain, Rio Grande Pyramid, Emerald Lake, Granite Peak, Vallecito Reservoir, and Lemon Reservoir 7.5' map sheets of the National Topographic Map Series (NTMS). The Durango B Detail Area is within the coverage of the Silverton 15' map sheet and the Wetterhorn Peak, Uncompahgre Peak, Lake City, Redcloudmore » Peak, Lake San Cristobal, Pole Creek Mountain, and Finger Mesa 7.5' map sheets of the NTMS. The Durango C Detail Area is within the coverage of the Platoro and Wolf Creek Pass 15' map sheets of the NTMS. The Durango D Detail Area is within the coverage of the Granite Lake, Cimarrona Peak, Bear Mountain, and Oakbrush Ridge 7.5' map sheets of the NTMS. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, gridded, and contoured to produce maps of the radiometric variables, uranium, potassium, and thorium; their ratios; and the residual magnetic field. These maps have been analyzed in order to produce a multi-variant analysis contour map based on the radiometric response of the individual geological units. A geochemical analysis has been performed, using the radiometric and magnetic contour maps, the multi-variant analysis map, and factor analysis techniques, to produce a geochemical analysis map for the area.« less

  7. State of Louisiana - Highlighting low-lying areas derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation highlighting the State of Louisiana and depicts the surrounding areas using muted elevation colors. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data are a mixture of data and were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of mostly 10-meter contour-derived DEM data and some small areas of higher-resolution LIght Detection And Ranging (LIDAR) data along parts of the coastline. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and parish boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2007.

  8. On the Relationship between Variational Level Set-Based and SOM-Based Active Contours

    PubMed Central

    Abdelsamea, Mohammed M.; Gnecco, Giorgio; Gaber, Mohamed Medhat; Elyan, Eyad

    2015-01-01

    Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses. PMID:25960736

  9. Statistical analysis and mapping of water levels in the Biscayne aquifer, water conservation areas, and Everglades National Park, Miami-Dade County, Florida, 2000–2009

    USGS Publications Warehouse

    Prinos, Scott T.; Dixon, Joann F.

    2016-02-25

    Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990–1999 and 2000–2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990–1999 and 2000–2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000–2009 than during 1990–1999; and that inland water levels were generally lower during 2000–2009 than during 1990–1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990–1999. Mean October water levels during 2000–2009 were generally higher than during 1990–1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.

  10. Procedural Documentation and Accuracy Assessment of Bathymetric Maps and Area/Capacity Tables for Small Reservoirs

    USGS Publications Warehouse

    Wilson, Gary L.; Richards, Joseph M.

    2006-01-01

    Because of the increasing use and importance of lakes for water supply to communities, a repeatable and reliable procedure to determine lake bathymetry and capacity is needed. A method to determine the accuracy of the procedure will help ensure proper collection and use of the data and resulting products. It is important to clearly define the intended products and desired accuracy before conducting the bathymetric survey to ensure proper data collection. A survey-grade echo sounder and differential global positioning system receivers were used to collect water-depth and position data in December 2003 at Sugar Creek Lake near Moberly, Missouri. Data were collected along planned transects, with an additional set of quality-assurance data collected for use in accuracy computations. All collected data were imported into a geographic information system database. A bathymetric surface model, contour map, and area/capacity tables were created from the geographic information system database. An accuracy assessment was completed on the collected data, bathymetric surface model, area/capacity table, and contour map products. Using established vertical accuracy standards, the accuracy of the collected data, bathymetric surface model, and contour map product was 0.67 foot, 0.91 foot, and 1.51 feet at the 95 percent confidence level. By comparing results from different transect intervals with the quality-assurance transect data, it was determined that a transect interval of 1 percent of the longitudinal length of Sugar Creek Lake produced nearly as good results as 0.5 percent transect interval for the bathymetric surface model, area/capacity table, and contour map products.

  11. Geohydrologic units of the Gulf Coastal Plain in Arkansas

    USGS Publications Warehouse

    Petersen, J.C.; Broom, M.E.; Bush, W.V.

    1985-01-01

    This report describes geohydrologic units of the Jurassic, Cretaceous, Tertiary and Quaternary Systems and of the Paleozoic Era in the Gulf Coastal Plain in Arkansas. Structure contour maps on top of the Paleozoic rocks, Trinity Group, Tokio Formation, Nacatoch Sand, Midway Group, Wilcox Group, Carrizo Sand, Cane River Formation. Sparta Sand, and the Memphis Sand are included. Thickness maps of the Wilcox Group, Carrizo Sand, Cane River Formation, Sparta Sand, and the Memphis Sand and maps showing lines of equal dissolved-solids concentrations of the Nacatoch Sand, Wilcox Group, Carrizo Sand, Cane River Formation, and Sparta Sand are also included. The dissolved-solids maps are at about a 1:2 million scale. All other maps are at a 1:1 million scale. Brief descriptions of the geohydrologic units mentioned above and of the Cook Mountain and Cockfield Formations and the Jackson Group are also included. (USGS)

  12. The effect of handedness on spatial and motor representation of pitch patterns in pianists

    PubMed Central

    2018-01-01

    This study investigated the effect of handedness on pianists’ abilities to adjust their keyboard performance skills to new spatial and motor mappings. Left- and right-handed pianists practiced simple melodies on a regular MIDI piano keyboard (practice) and were then asked to perform these with modified melodic contours (the same or reversed melodic contour causing a change of fingering) and on a reversed MIDI piano keyboard (test). The difference of performance duration between the practice and the test phase as well as the amount of errors played were used as test measures. Overall, a stronger effect for modified melodic contours than for the reversed keyboard was observed. Furthermore, we observed a trend of left-handed pianists to be quicker and more accurate in playing melodies when reversing their fingering with reversed contours in their left-hand performances. This suggests that handedness may influence pianists’ skill to adjust to new spatial and motor mappings. PMID:29718946

  13. Aerial images visual localization on a vector map using color-texture segmentation

    NASA Astrophysics Data System (ADS)

    Kunina, I. A.; Teplyakov, L. M.; Gladkov, A. P.; Khanipov, T. M.; Nikolaev, D. P.

    2018-04-01

    In this paper we study the problem of combining UAV obtained optical data and a coastal vector map in absence of satellite navigation data. The method is based on presenting the territory as a set of segments produced by color-texture image segmentation. We then find such geometric transform which gives the best match between these segments and land and water areas of the georeferenced vector map. We calculate transform consisting of an arbitrary shift relatively to the vector map and bound rotation and scaling. These parameters are estimated using the RANSAC algorithm which matches the segments contours and the contours of land and water areas of the vector map. To implement this matching we suggest computing shape descriptors robust to rotation and scaling. We performed numerical experiments demonstrating the practical applicability of the proposed method.

  14. Fractal interrelationships in field and seismic data. Quarterly report, September 21 - December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, T.H.; Dominic, J.; Halverson, J.

    1995-12-31

    Under task 1 contour irregularities traced over both study areas in the previous quarter were scanned into the computer and digitized at a 30 meter interval. Patters mapped in both the Granny Creek and Middle Mountain field areas are presented in Figures 1 and 2 respectively. One of the hypotheses of this research project is that contour irregularities must be controlled by a combination of sedimentation features, lithologic variation, and local structure and fracture distribution. The most promising result obtained thus far in this study are those reported under Tasks 4 and 5, seismic analysis. If further tests continue tomore » support the observation that increased fractal dimension reflects the presence of detached structure, the analytical techniques employed here may be of use in the routine evaluation of seismic data to locate subtle traps. The observations may allow one to predict the variation of fractal dimension within a subsurface fracture network based on seismic observation of resolvable structural parameters. Such predictions would provide a working hypothesis, which could be modified within the context of available subsurface data.« less

  15. Investigating the complex structural integrity of the Zeit Bay Field, Gulf of Suez, Egypt, using interpretation of 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Afife, M.; Salem, M.; Aziz, M. Abdel

    2017-07-01

    Zeit Bay Field is one of the most important oil-bearing fields in the Gulf of Suez, Egypt, producing oil from the fractured basement rocks. Due to the complex structural setting of the area and the classical exploration concept that was based mainly on 2D seismic survey data, the area suffered from limited hydrocarbon interest for several years. During this time, most of the drilled wells hit structural highs and resulted in several dry holes. The present study is based on the interpretation of more recently acquired 3D seismic survey data as, matched with the available well logs, used to understand the complex structural setting of the Zeit Bay Field and provide insight into the entrapment style of the implied hydrocarbons. Several selected seismic cross sections were constructed, to extract subsurface geologic information, using available seismic profiles and wells. In addition, structure contour maps (isochronous maps, converted to depth maps) were constructed for the peaks of the basement, Nubian Sandstone, Kareem and Belayim Formations. Folds (anticlines and synclines) and faults (dip-slip) are identified on these maps, both individually and in groups, giving rise to step-like belts, as well as graben and horst blocks.

  16. Phased-array ultrasonic surface contour mapping system and method for solids hoppers and the like

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.

    1994-01-01

    A real time ultrasonic surface contour mapping system is provided including a digitally controlled phased-array of transmitter/receiver (T/R) elements located in a fixed position above the surface to be mapped. The surface is divided into a predetermined number of pixels which are separately scanned by an arrangement of T/R elements by applying phase delayed signals thereto that produce ultrasonic tone bursts from each T/R that arrive at a point X in phase and at the same time relative to the leading edge of the tone burst pulse so that the acoustic energies from each T/R combine in a reinforcing manner at point X. The signals produced by the reception of the echo signals reflected from point X back to the T/Rs are also delayed appropriately so that they add in phase at the input of a signal combiner. This combined signal is then processed to determine the range to the point X using density-corrected sound velocity values. An autofocusing signal is developed from the computed average range for a complete scan of the surface pixels. A surface contour map is generated in real time form the range signals on a video monitor.

  17. A Bouguer Gravity Anomaly Map of Africa.

    DTIC Science & Technology

    A Bouguer Gravity Anomaly Map of Africa has been compiled using only terrestrial data. The map is a contoured representation of one degree x one...The anomaly pattern shown on the map is discussed and evaluated with respect to regional and local tectonic and geologic patterns. The entire Bouguer

  18. Gulf of Mexico region - Highlighting low-lying areas derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of the area surrounding the Gulf of Mexico. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s data) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of 10-meter contour-derived DEM data or higher-resolution LIDAR data. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2005.

  19. Imaging isodensity contours of molecular states with STM

    NASA Astrophysics Data System (ADS)

    Reecht, Gaël; Heinrich, Benjamin W.; Bulou, Hervé; Scheurer, Fabrice; Limot, Laurent; Schull, Guillaume

    2017-11-01

    We present an improved way for imaging the density of states of a sample with a scanning tunneling microscope, which consists in mapping the surface topography while keeping the differential conductance (dI/dV) constant. When archetypical C60 molecules on Cu(111) are imaged with this method, these so-called iso-dI/dV maps are in excellent agreement with theoretical simulations of the isodensity contours of the molecular orbitals. A direct visualization and unambiguous identification of superatomic C60 orbitals and their hybridization is then possible.

  20. Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.

    PubMed

    Meroni, Alice; Lazzaro, Federico; Muzi-Falconi, Marco; Podestà, Alessandro

    2018-01-01

    We describe a method to extract quantitative information on DNA structural and configurational properties from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol can be also used to characterize other statistical parameters from AFM topographies.

  1. Estimates of future inundation of salt marshes in response to sea-level rise in and around Acadia National Park, Maine

    USGS Publications Warehouse

    Nielsen, Martha G.; Dudley, Robert W.

    2013-01-01

    Salt marshes are ecosystems that provide many important ecological functions in the Gulf of Maine. The U.S. Geological Survey investigated salt marshes in and around Acadia National Park from Penobscot Bay to the Schoodic Peninsula to map the potential for landward migration of marshes using a static inundation model of a sea-level rise scenario of 60 centimeters (cm; 2 feet). The resulting inundation contours can be used by resource managers to proactively adapt to sea-level rise by identifying and targeting low-lying coastal areas adjacent to salt marshes for conservation or further investigation, and to identify risks to infrastructure in the coastal zone. For this study, the mapping of static inundation was based on digital elevation models derived from light detection and ranging (LiDAR) topographic data collected in October 2010. Land-surveyed control points were used to evaluate the accuracy of the LiDAR data in the study area, yielding a root mean square error of 11.3 cm. An independent accuracy assessment of the LiDAR data specific to salt-marsh land surfaces indicated a root mean square error of 13.3 cm and 95-percent confidence interval of ± 26.0 cm. LiDAR-derived digital elevation models and digital color aerial photography, taken during low tide conditions in 2008, with a pixel resolution of 0.5 meters, were used to identify the highest elevation of the land surface at each salt marsh in the study area. Inundation contours for 60-cm of sea-level rise were delineated above the highest marsh elevation for each marsh. Confidence interval contours (95-percent,± 26.0 cm) were delineated above and below the 60-cm inundation contours, and artificial structures, such as roads and bridges, that may present barriers to salt-marsh migration were mapped. This study delineated 114 salt marshes totaling 340 hectares (ha), ranging in size from 0.11 ha (marshes less than 0.2 ha were mapped only if they were on Acadia National Park property) to 52 ha, with a median size of 1.0 ha. Inundation contours were mapped at 110 salt marshes. Approximately 350 ha of low-lying upland areas adjacent to these marshes will be inundated with 60 cm of sea-level rise. Many of these areas are currently freshwater wetlands. There are potential barriers to marsh migration at 27 of the 114 marshes. Although only 23 percent of the salt marshes in the study are on ANP property, about half of the upland areas that will be inundated are within ANP; most of the predicted inundated uplands (approximately 170 ha) include freshwater wetlands in the Northeast Creek and Bass Harbor Marsh areas. Most of the salt marshes analyzed do not have a significant amount of upland area available for migration. Seventy-five percent of the salt marshes have 20 meters or less of adjacent upland that would be inundated along most of their edges. All inundation contours, salt marsh locations, potential barriers, and survey data are stored in geospatial files for use in a geographic information system and are a part of this report.

  2. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  3. A pilot study comparing custom contoured and planar support surfaces for pressure ulcer risk over the heels for night time postural management using interface pressure mapping and discomfort scores.

    PubMed

    Hosking, J

    2017-08-01

    Custom contouring techniques are effective for reducing pressure ulcer risk in wheelchair seating. These techniques may assist the management of pressure ulcer risk during sleep for night time postural management. To investigate the effectiveness of custom contoured night time postural management components against planar support surfaces for pressure ulcer risk measures over the heels. Supine posture was captured from five healthy participants using vacuum consolidation and 3-dimensional laser scanning. Custom contoured abduction wedges were carved from polyurethane and chipped foams. Pressure mapping and the visual analog scale were used to evaluate the effectiveness of the contoured foams in reducing pressure and discomfort under the posterior heel against standard planar support surfaces. Custom contoured shapes significantly reduced interface pressures (p < 0.05) and discomfort scores (p < 0.05) when compared to planar support surfaces. Polyurethane foam was the most effective material but it did not differ significantly from chipped foam. Linear regression revealed a significant relationship between the Peak Pressure Index and discomfort scores (r = 0.997, p = 0.003). The findings of this pilot study suggested that custom contoured shapes were more effective than planar surfaces at reducing pressure ulcer risk surrogate measures over the posterior heels with polyurethane foam being the most effective material investigated. It is recommended that Evazote foam should not be used as a support surface material for night time postural management. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. SU-E-J-103: Propagation of Rectum and Bladder Contours for Tandem and Ring (T&R) HDR Treatment Using Deformable Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Y; Chao, M; Sheu, R

    2015-06-15

    Purpose: To investigate the feasibility of using DIR to propagate the manually contoured rectum and bladder from the 1st insertion to the new CT images on subsequent insertions and evaluate the segmentation performance. Methods: Ten cervical cancer patients, who were treated by T&R brachytherapy in 3–4 insertions, were retrospectively collected. In each insertion, rectum and bladder were manually delineated on the planning CT by a physicist and verified by a radiation oncologist. Using VelocityAI (Velocity Medical Solutions, Atlanta, GA), a rigid registration was firstly employed to match the bony structures between the first insertion and each of the following insertions,more » then a multi-pass B-spine DIR was carried out to further map the sub volume that encompasses rectum and bladder. The resultant deformation fields propagated contours, and dice similarity coefficient (DSC) was used to quantitatively evaluate the agreement between the propagated contours and the manually-delineated organs. For the 3rd insertion, we also evaluated if the segmentation performance could be improved by propagating the contours from the most recent insertion, i.e., the 2nd insertion. Results: On average, the contour propagation took about 1 minute. The average and standard deviation of DSC over all insertions and patients was 0.67±0.10 (range: 0.44–0.81) for rectum, and 0.78±0.07 (range: 0.63–0.87) for bladder. For the 3rd insertion, propagating contours from the 2nd insertion could improve the segmentation performance in terms of DSC from 0.63±0.10 to 0.72±0.08 for rectum, and from 0.77±0.07 to 0.79±0.06 for bladder. A Wilcoxon signed rank test indicated that the improvement was statistically significant for rectum (p = 0.004). Conclusion: The preliminary results demonstrate that deformable image registration could efficiently and accurately propagate rectum and bladder contours between CT images in different T&R brachytherapy fractions. We are incorporating the propagated contours into our learning-based method to further segment these organs.« less

  5. Geologic Map of Upper Cretaceous and Tertiary Strata and Coal Stratigraphy of the Paleocene Fort Union Formation, Rawlins-Little Snake River Area, South-Central Wyoming

    USGS Publications Warehouse

    Hettinger, R.D.; Honey, J.G.; Ellis, M.S.; Barclay, C.S.V.; East, J.A.

    2008-01-01

    This report provides a map and detailed descriptions of geologic formations for a 1,250 square mile region in the Rawlins-Little Snake River coal field in the eastern part of the Washakie and Great Divide Basins of south-central Wyoming. Mapping of geologic formations and coal beds was conducted at a scale of 1:24,000 and compiled at a scale of 1:100,000. Emphasis was placed on coal-bearing strata of the China Butte and Overland Members of the Paleocene Fort Union Formation. Surface stratigraphic sections were measured and described and well logs were examined to determine the lateral continuity of individual coal beds; the coal-bed stratigraphy is shown on correlation diagrams. A structure contour and overburden map constructed on the uppermost coal bed in the China Butte Member is also provided.

  6. Water-level data from wells and test holes through 1991 and potentiometric contours as of 1991 for Yucca Flat, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Hale, Glenn S.; Trudeau, Douglas A.; Savard, Charles S.

    1995-01-01

    The underground nuclear-testing program of the U.S. Department of Energy takes place at the Nevada Test Site, about 65 miles northwest of Las Vegas, Nev. Water levels in Yucca Flat may be affected by underground nuclear testing. The purpose of this map report is to present water-level data collected from wells and test holes through December 1991, and to present potentiometric contours representing 1991 water-table conditions in Yucca Flat. Water-level data from 91 sites are shown on the map and include information from 54 sites shown on a 1983 map. Water levels ranged from 519.5 to 2,162.9-feet below land surface. Potentiometric contours are drawn from water-level data to represent the altitude of the water table. Water-level altitudes ranged from about 2,377 ft to 2,770 ft above sea level in the central part of Yucca Flat and from about 4,060 ft to 2,503 ft above sea level in the western and northern parts of Yucca Flat. The water-level data were contoured considering the hydrologic setting, including the concept that water levels within the Cenozoic hydrologic units in the central part of the study area are elevated with respect to water levels in the adjacent and underlying Paleozoic hydrologic units. The most notable feature in the central part of the area is the presence of four ground-water mounds not shown on the 1983 map.

  7. Collecting Data to Construct an Isoline Map

    ERIC Educational Resources Information Center

    Lohrengel, C. Frederick, II.; Larson, Paul R.

    2017-01-01

    National Geography Standard 1 requires that students learn:"How to use maps and other geographic representations, geospatial technologies, and spatial thinking to understand and communicate information" (Heffron and Downs 2012). These concepts have real-world applicability. For example, elevation contour maps are common in many…

  8. Active contours on statistical manifolds and texture segmentation

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman

    2005-01-01

    A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto a set of probability density functions. In this novel framework, color or texture features are measured at each image point and their statistical...

  9. Cognitive Processes in Interpreting the Contour-Line Portrayal of Terrain Relief.

    ERIC Educational Resources Information Center

    Cross, Kenneth D.; And Others

    Designed to gain a more thorough understanding of the cognitive processes involved and apply this knowledge in defining improved teaching strategies, this study of contour interpretation (referred to as "position fixing") required 12 subjects to locate their position on a map after being transported, blindfolded, to test sites where…

  10. Active contours on statistical manifolds and texture segmentaiton

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman

    2005-01-01

    A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto-a set of probability density functions. In this novel framework, color or texture features are measured at each Image point and their statistical...

  11. A Novel Method for Reconstructing Broken Contour Lines Extracted from Scanned Topographic Maps

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Liu, Pingzhi; Yang, Yun; Wei, Haiping; An, Xiaoya

    2018-05-01

    It is known that after segmentation and morphological operations on scanned topographic maps, gaps occur in contour lines. It is also well known that filling these gaps and reconstruction of contour lines with high accuracy and completeness is not an easy problem. In this paper, a novel method is proposed dedicated in automatic or semiautomatic filling up caps and reconstructing broken contour lines in binary images. The key part of end points' auto-matching and reconnecting is deeply discussed after introducing the procedure of reconstruction, in which some key algorithms and mechanisms are presented and realized, including multiple incremental backing trace to get weighted average direction angle of end points, the max constraint angle control mechanism based on the multiple gradient ranks, combination of weighted Euclidean distance and deviation angle to determine the optimum matching end point, bidirectional parabola control, etc. Lastly, experimental comparisons based on typically samples are complemented between proposed method and the other representative method, the results indicate that the former holds higher accuracy and completeness, better stability and applicability.

  12. Topogrid Derived 10 Meter Resolution Digital Elevation Model of Charleston, and Parts of Berkeley, Colleton, Dorchester and Georgetown Counties, South Carolina

    USGS Publications Warehouse

    Chirico, Peter G.

    2005-01-01

    EXPLANATION The purpose of developing a new 10m resolution digital elevation model (DEM) of the Charleston Region was to more accurately depict geologic structure, surfical geology, and landforms of the Charleston County Region. Previously, many areas northeast and southwest of Charleston were originally mapped with a 20 foot contour interval. As a result, large areas within the National Elevation Dataset (NED) depict flat terraced topography where there was a lack of higher resolution elevation data. To overcome these data voids, the new DEM is supplemented with additional elevation data and break-lines derived from aerial photography and topographic maps. The resultant DEM is stored as a raster grid at uniform 10m horizontal resolution. The elevation model contained in this publication was prodcued utilizing the ANUDEM algorthim. ANUDEM allows for the inclusion of contours, streams, rivers, lake and water body polygons as well as spot height data to control the development of the elevation model. A preliminary statistical analysis using over 788 vertical elevation check points, primarily located in the northeastern part of the study area, derived from USGS 7.5 Minute Topographic maps reveals that the final DEM, has a vertical accuracy of ?3.27 meters. A table listing the elevation comparison between the elevation check points and the final DEM is provided.

  13. Digital terrain tapes: user guide

    USGS Publications Warehouse

    ,

    1980-01-01

    DMATC's digital terrain tapes are a by-product of the agency's efforts to streamline the production of raised-relief maps. In the early 1960's DMATC developed the Digital Graphics Recorder (DGR) system that introduced new digitizing techniques and processing methods into the field of three-dimensional mapping. The DGR system consisted of an automatic digitizing table and a computer system that recorded a grid of terrain elevations from traces of the contour lines on standard topographic maps. A sequence of computer accuracy checks was performed and then the elevations of grid points not intersected by contour lines were interpolated. The DGR system produced computer magnetic tapes which controlled the carving of plaster forms used to mold raised-relief maps. It was realized almost immediately that this relatively simple tool for carving plaster molds had enormous potential for storing, manipulating, and selectively displaying (either graphically or numerically) a vast number of terrain elevations. As the demand for the digital terrain tapes increased, DMATC began developing increasingly advanced digitizing systems and now operates the Digital Topographic Data Collection System (DTDCS). With DTDCS, two types of data elevations as contour lines and points, and stream and ridge lines are sorted, matched, and resorted to obtain a grid of elevation values for every 0.01 inch on each map (approximately 200 feet on the ground). Undefined points on the grid are found by either linear or or planar interpolation.

  14. TU-C-17A-03: An Integrated Contour Evaluation Software Tool Using Supervised Pattern Recognition for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Tan, J; Kavanaugh, J

    Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-timemore » and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding unnecessary manual verification for physicians/dosimetrists. In addition, its nature as a compact and stand-alone tool allows for future extensibility to include additional functions for physicians’ clinical needs.« less

  15. Investigations of FAK inhibitors: a combination of 3D-QSAR, docking, and molecular dynamics simulations studies.

    PubMed

    Cheng, Peng; Li, Jiaojiao; Wang, Juan; Zhang, Xiaoyun; Zhai, Honglin

    2018-05-01

    Focal adhesion kinase (FAK) is one kind of tyrosine kinases that modulates integrin and growth factor signaling pathways, which is a promising therapeutic target because of involving in cancer cell migration, proliferation, and survival. To investigate the mechanism between FAK and triazinic inhibitors and design high activity inhibitors, a molecular modeling integrated with 3D-QSAR, molecular docking, molecular dynamics simulations, and binding free energy calculations was performed. The optimum CoMFA and CoMSIA models showed good reliability and satisfactory predictability (with Q 2  = 0.663, R 2  = 0.987, [Formula: see text] = 0.921 and Q 2  = 0.670, R 2  = 0.981, [Formula: see text] = 0.953). Its contour maps could provide structural features to improve inhibitory activity. Furthermore, a good consistency between contour maps, docking, and molecular dynamics simulations strongly demonstrates that the molecular modeling is reliable. Based on it, we designed several new compounds and their inhibitory activities were validated by the molecular models. We expect our studies could bring new ideas to promote the development of novel inhibitors with higher inhibitory activity for FAK.

  16. TU-AB-303-02: A Novel Surrogate to Identify Anatomical Changes During Radiotherapy of Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gros, S; Roeske, J; Surucu, M

    Purpose: To develop a novel method to monitor external anatomical changes in head and neck cancer patients in order to help guide adaptive radiotherapy decisions. Methods: The method, developed in MATLAB, reveals internal anatomical changes based on variations observed in external anatomy. Weekly kV-CBCT scans from 11 Head and neck patients were retrospectively analyzed. The pre-processing step first corrects each CBCT for artifacts and removes pixels from the immobilization mask to produce an accurate external contour of the patient’s skin. After registering the CBCTs to the initial planning CT, the external contours from each CBCT (CBCTn) are transferred to themore » first week — reference — CBCT{sub 1}. Contour radii, defined as the distances between an external contour and the central pixel of each CBCT slice, are calculated for each scan at angular increments of 1 degree. The changes in external anatomy are then quantified by the difference in radial distance between the external contours of CBCT1 and CBCTn. The radial difference is finally displayed on a 2D intensity map (angle vs radial distance difference) in order to highlight regions of interests with significant changes. Results: The 2D radial difference maps provided qualitative and quantitative information, such as the location and the magnitude of external contour divergences and the rate at which these deviations occur. With this method, anatomical changes due to tumor volume shrinkage and patient weight loss were clearly identified and could be correlated with the under-dosage of targets or over-dosage of OARs. Conclusion: This novel method provides an efficient tool to visualize 3D external anatomical modification on a single 2D map. It quickly pinpoints the location of differences in anatomy during the course of radiotherapy, which can help determine if a treatment plan needs to be adapted.« less

  17. A comparison of spatial analysis methods for the construction of topographic maps of retinal cell density.

    PubMed

    Garza-Gisholt, Eduardo; Hemmi, Jan M; Hart, Nathan S; Collin, Shaun P

    2014-01-01

    Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed 'by eye'. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation 'respects' the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the 'noise' caused by artefacts and permits a clearer representation of the dominant, 'real' distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome.

  18. Dilated contour extraction and component labeling algorithm for object vector representation

    NASA Astrophysics Data System (ADS)

    Skourikhine, Alexei N.

    2005-08-01

    Object boundary extraction from binary images is important for many applications, e.g., image vectorization, automatic interpretation of images containing segmentation results, printed and handwritten documents and drawings, maps, and AutoCAD drawings. Efficient and reliable contour extraction is also important for pattern recognition due to its impact on shape-based object characterization and recognition. The presented contour tracing and component labeling algorithm produces dilated (sub-pixel) contours associated with corresponding regions. The algorithm has the following features: (1) it always produces non-intersecting, non-degenerate contours, including the case of one-pixel wide objects; (2) it associates the outer and inner (i.e., around hole) contours with the corresponding regions during the process of contour tracing in a single pass over the image; (3) it maintains desired connectivity of object regions as specified by 8-neighbor or 4-neighbor connectivity of adjacent pixels; (4) it avoids degenerate regions in both background and foreground; (5) it allows an easy augmentation that will provide information about the containment relations among regions; (6) it has a time complexity that is dominantly linear in the number of contour points. This early component labeling (contour-region association) enables subsequent efficient object-based processing of the image information.

  19. Study of Large-Scale Wave Structure and Development of Equatorial Plasma Bubbles Using the C/NOFS Satellite

    DTIC Science & Technology

    2012-10-31

    19241-FR-12-438 October 2012 3 Figure 1 . Two maps showing isodensity contours of the F layer, which were obtained with ALTAIR during the PSSR...REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 ...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 31-10-2012 2. REPORT TYPE

  20. Computation of Flow and Heat Transfer in Flow Around a 180 deg Bend,

    DTIC Science & Technology

    1985-10-01

    LDA explorations have helped provide more extensive mappings of the flow structure. Enayet et al [2] measured the distribution Qf streamwise mean and...appreciated care. Authors are listed alphabetically. References 1. Rowe, M. J. Fluid Mech. 43, 771, 1970. j 2. Enayet , M.M., Gibson, M.M., Taylor...the pressure and yaw contours obtained by Rowe shed no light on the turbulent characteristics of the flow.I .3i - x - - 3. Enayet , et al. [12] have

  1. Structural interpretation from horizontal seismic sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, A.R.

    1983-03-01

    The interpreter of a 3D survey must use a data volume. Horizontal slices through a data volume, called Seiscrop sections, have unique properties and structural interpretation from them is fast, convenient, and effective. An event on a Seiscrop section displays local strike, a property which permits direct contouring of a structural surface without any timing and posting. The width of an event on a Seiscrop section is a composition of the frequency of the data and the structural dip. Event terminations indicate faults or other discontinuities when they are transverse to structural strike. Faults parallel to structural strike are muchmore » less evident on a single Seiscrop section but become apparent with the relative movement of events from section to section. In practical mapping, we normally contour one fault block before proceeding to the next with the correlation between them being established from the vertical sections. With dual polarity variable area displays, the interpreter can perceive five amplitude levels and normally picks the edge of a trough. With color amplitude Seiscrop sections, it is possible to pick on the crest of any event. With color phase sections the interpreter can pick at any arbitrary but consistent point on the seismic waveform. Subtle structural features are commonly revealed on horizontal sections which may never have been noticed if working from vertical sections alone.« less

  2. Topographic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. Topographic Map of Quadrangle 3468, Chak Wardak Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. Topographic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. Topographic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. Topographic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. Topographic Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. Topographic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. Topographic Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Topographic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. Topographic Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. Topographic Map of Quadrangle 3670, Jam-Kashem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. Topographic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. Topographic Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. Topographic Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. Topographic Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. Topographic Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. Topographic Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Topographic Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. Updated tops file for Cretaceous and lower Tertiary units, Piceance Basin, northwest Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Dietrich, John D.; Mercier, Tracey J.

    2015-08-04

    Each entry for the base of the Long Point Bed was obtained at a location where the mapped Long Point Bed intersects a contour line on the published maps. Precision of each elevation is therefore dependent on the precision of the maps and the placement of the mapped contact by the authors.

  1. Isopach map of the interval from surface elevation to the top of the Pennsylvanian and Permian Minnelusa Formation and equivalents, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Crysdale, B.L.

    1990-01-01

    This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 1,480 of these wells that penetrate the Minnelusa Formation and equivalents.

  2. Semi-automated extraction of longitudinal subglacial bedforms from digital terrain models - Two new methods

    NASA Astrophysics Data System (ADS)

    Jorge, Marco G.; Brennand, Tracy A.

    2017-07-01

    Relict drumlin and mega-scale glacial lineation (positive relief, longitudinal subglacial bedforms - LSBs) morphometry has been used as a proxy for paleo ice-sheet dynamics. LSB morphometric inventories have relied on manual mapping, which is slow and subjective and thus potentially difficult to reproduce. Automated methods are faster and reproducible, but previous methods for LSB semi-automated mapping have not been highly successful. Here, two new object-based methods for the semi-automated extraction of LSBs (footprints) from digital terrain models are compared in a test area in the Puget Lowland, Washington, USA. As segmentation procedures to create LSB-candidate objects, the normalized closed contour method relies on the contouring of a normalized local relief model addressing LSBs on slopes, and the landform elements mask method relies on the classification of landform elements derived from the digital terrain model. For identifying which LSB-candidate objects correspond to LSBs, both methods use the same LSB operational definition: a ruleset encapsulating expert knowledge, published morphometric data, and the morphometric range of LSBs in the study area. The normalized closed contour method was separately applied to four different local relief models, two computed in moving windows and two hydrology-based. Overall, the normalized closed contour method outperformed the landform elements mask method. The normalized closed contour method performed on a hydrological relief model from a multiple direction flow routing algorithm performed best. For an assessment of its transferability, the normalized closed contour method was evaluated on a second area, the Chautauqua drumlin field, Pennsylvania and New York, USA where it performed better than in the Puget Lowland. A broad comparison to previous methods suggests that the normalized relief closed contour method may be the most capable method to date, but more development is required.

  3. Electronic structure of dense Pb overlayers on Si(111) investigated using angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Choi, W. H.; Koh, H.; Rotenberg, E.; Yeom, H. W.

    2007-02-01

    Dense Pb overlayers on Si(111) are important as the wetting layer for anomalous Pb island growth as well as for their own complex “devil’s-staircase” phases. The electronic structures of dense Pb overlayers on Si(111) were investigated in detail by angle-resolved photoemission. Among the series of ordered phases found recently above one monolayer, the low-coverage 7×3 and the high-coverage 14×3 phases are studied; they are well ordered and form reproducibly in large areas. The band dispersions and Fermi surfaces of the two-dimensional (2D) electronic states of these overlayers are mapped out. A number of metallic surface-state bands are identified for both phases with complex Fermi contours. The basic features of the observed Fermi contours can be explained by overlapping 2D free-electron-like Fermi circles. This analysis reveals that the 2D electrons near the Fermi level of the 7×3 and 14×3 phases are mainly governed by strong 1×1 and 3×3 potentials, respectively. The origins of the 2D electronic states and their apparent Fermi surface shapes are discussed based on recent structure models.

  4. Tactile Earth and Space Science Materials for Students with Visual Impairments: Contours, Craters, Asteroids, and Features of Mars

    ERIC Educational Resources Information Center

    Rule, Audrey C.

    2011-01-01

    New tactile curriculum materials for teaching Earth and planetary science lessons on rotation=revolution, silhouettes of objects from different views, contour maps, impact craters, asteroids, and topographic features of Mars to 11 elementary and middle school students with sight impairments at a week-long residential summer camp are presented…

  5. Topological methods for the comparison of structures using LDR-brachytherapy of the prostate as an example.

    PubMed

    Schiefer, H; von Toggenburg, F; Seelentag, W W; Plasswilm, L; Ries, G; Schmid, H-P; Leippold, T; Krusche, B; Roth, J; Engeler, D

    2009-08-21

    The dose coverage of low dose rate (LDR)-brachytherapy for localized prostate cancer is monitored 4-6 weeks after intervention by contouring the prostate on computed tomography and/or magnetic resonance imaging sets. Dose parameters for the prostate (V100, D90 and D80) provide information on the treatment quality. Those depend strongly on the delineation of the prostate contours. We therefore systematically investigated the contouring process for 21 patients with five examiners. The prostate structures were compared with one another using topological procedures based on Boolean algebra. The coincidence number C(V) measures the agreement between a set of structures. The mutual coincidence C(i, j) measures the agreement between two structures i and j, and the mean coincidence C(i) compares a selected structure i with the remaining structures in a set. All coincidence parameters have a value of 1 for complete coincidence of contouring and 0 for complete absence. The five patients with the lowest C(V) values were discussed, and rules for contouring the prostate have been formulated. The contouring and assessment were repeated after 3 months for the same five patients. All coincidence parameters have been improved after instruction. This shows objectively that training resulted in more consistent contouring across examiners.

  6. SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, R; Yang, J; Pan, T

    Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fusedmore » using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need for auto-segmented contours of indistinguishable small structures.« less

  7. Scoping of Flood Hazard Mapping Needs for Belknap County, New Hampshire

    DTIC Science & Technology

    2006-01-01

    DEM Digital Elevation Model DFIRM Digital Flood Insurance Rate Map DOQ Digital Orthophoto Quadrangle DOQQ Digital Ortho Quarter Quadrangle DTM...Agriculture Imag- ery Program (NAIP) color Digital Orthophoto Quadrangles (DOQs)). Remote sensing, base map information, GIS data (for example, contour data...found on USGS topographic maps. More recently developed data were derived from digital orthophotos providing improved base map accuracy. NH GRANIT is

  8. Scoping of Flood Hazard Mapping Needs for Coos County, New Hampshire

    DTIC Science & Technology

    2006-01-01

    Technical Partner DEM Digital Elevation Model DFIRM Digital Flood Insurance Rate Map DOQ Digital Orthophoto Quadrangle DOQQ Digital Ortho Quarter Quadrangle...color Digital Orthophoto Quadrangles (DOQs)). Remote sensing, base map information, GIS data (for example, contour data, E911 data, Digital Elevation...the feature types found on USGS topographic maps. More recently developed data were derived from digital orthophotos providing improved base map

  9. The National Council for Geographic Education Competency-Based Geography Test. Secondary Level. Form I. Parts I, II, and III.

    ERIC Educational Resources Information Center

    Kurfman, Dana G.; And Others

    A 3-part test measures the geography knowledge, skills, and understanding of secondary level students. Part 1, map skills and location, contains 20 questions involving the use of three maps: an imaginary sketch map, a contour map, and a political map of the world. Part 2 consists of 20 questions covering physical geography. Students analyze…

  10. Segmentation algorithm on smartphone dual camera: application to plant organs in the wild

    NASA Astrophysics Data System (ADS)

    Bertrand, Sarah; Cerutti, Guillaume; Tougne, Laure

    2018-04-01

    In order to identify the species of a tree, the different organs that are the leaves, the bark, the flowers and the fruits, are inspected by botanists. So as to develop an algorithm that identifies automatically the species, we need to extract these objects of interest from their complex natural environment. In this article, we focus on the segmentation of flowers and fruits and we present a new method of segmentation based on an active contour algorithm using two probability maps. The first map is constructed via the dual camera that we can find on the back of the latest smartphones. The second map is made with the help of a multilayer perceptron (MLP). The combination of these two maps to drive the evolution of the object contour allows an efficient segmentation of the organ from a natural background.

  11. Ground-penetrating radar--A tool for mapping reservoirs and lakes

    USGS Publications Warehouse

    Truman, C.C.; Asmussen, L.E.; Allison, H.D.

    1991-01-01

    Ground-penetrating radar was evaluated as a tool for mapping reservoir and lake bottoms and providing stage-storage information. An impulse radar was used on a 1.4-ha (3.5-acre) reservoir with 31 transects located 6.1 m (20 feet) apart. Depth of water and lateral extent of the lake bottom were accurately measured by ground-penetrating radar. A linear (positive) relationship existed between measured water depth and ground-penetrating radar-determined water depth (R2=0.989). Ground-penetrating radar data were used to create a contour map of the lake bottom. Relationships between water (contour) elevation and water surface area and volume were established. Ground-penetrating radar proved to be a useful tool for mapping lakes, detecting lake bottom variations, locating old stream channels, and determining water depths. The technology provides accurate, continuous profile data in a relatively short time compared to traditional surveying and depth-sounding techniques.

  12. Topological Cacti: Visualizing Contour-based Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio

    2011-05-26

    Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nestingbehavior and topology-often represented in form of a contour tree-have been used extensively for visualization and analysis. However, traditional contour trees onlyencode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use thesegmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well asother co-located functions. We introducemore » a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of acontour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields ofvarying dimension and different measures to demonstrate the effectiveness of the approach.« less

  13. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  14. Spatial Visualization in Introductory Geology Courses

    NASA Astrophysics Data System (ADS)

    Reynolds, S. J.

    2004-12-01

    Visualization is critical to solving most geologic problems, which involve events and processes across a broad range of space and time. Accordingly, spatial visualization is an essential part of undergraduate geology courses. In such courses, students learn to visualize three-dimensional topography from two-dimensional contour maps, to observe landscapes and extract clues about how that landscape formed, and to imagine the three-dimensional geometries of geologic structures and how these are expressed on the Earth's surface or on geologic maps. From such data, students reconstruct the geologic history of areas, trying to visualize the sequence of ancient events that formed a landscape. To understand the role of visualization in student learning, we developed numerous interactive QuickTime Virtual Reality animations to teach students the most important visualization skills and approaches. For topography, students can spin and tilt contour-draped, shaded-relief terrains, flood virtual landscapes with water, and slice into terrains to understand profiles. To explore 3D geometries of geologic structures, they interact with virtual blocks that can be spun, sliced into, faulted, and made partially transparent to reveal internal structures. They can tilt planes to see how they interact with topography, and spin and tilt geologic maps draped over digital topography. The GeoWall system allows students to see some of these materials in true stereo. We used various assessments to research the effectiveness of these materials and to document visualization strategies students use. Our research indicates that, compared to control groups, students using such materials improve more in their geologic visualization abilities and in their general visualization abilities as measured by a standard spatial visualization test. Also, females achieve greater gains, improving their general visualization abilities to the same level as males. Misconceptions that students carry obstruct learning, but are largely undocumented. Many students, for example, cannot visualize that the landscape in which rock layers were deposited was different than the landscape in which the rocks are exposed today, even in the Grand Canyon.

  15. The evaluation of multi-structure, multi-atlas pelvic anatomy features in a prostate MR lymphography CAD system

    NASA Astrophysics Data System (ADS)

    Meijs, M.; Debats, O.; Huisman, H.

    2015-03-01

    In prostate cancer, the detection of metastatic lymph nodes indicates progression from localized disease to metastasized cancer. The detection of positive lymph nodes is, however, a complex and time consuming task for experienced radiologists. Assistance of a two-stage Computer-Aided Detection (CAD) system in MR Lymphography (MRL) is not yet feasible due to the large number of false positives in the first stage of the system. By introducing a multi-structure, multi-atlas segmentation, using an affine transformation followed by a B-spline transformation for registration, the organ location is given by a mean density probability map. The atlas segmentation is semi-automatically drawn with ITK-SNAP, using Active Contour Segmentation. Each anatomic structure is identified by a label number. Registration is performed using Elastix, using Mutual Information and an Adaptive Stochastic Gradient optimization. The dataset consists of the MRL scans of ten patients, with lymph nodes manually annotated in consensus by two expert readers. The feature map of the CAD system consists of the Multi-Atlas and various other features (e.g. Normalized Intensity and multi-scale Blobness). The voxel-based Gentleboost classifier is evaluated using ROC analysis with cross validation. We show in a set of 10 studies that adding multi-structure, multi-atlas anatomical structure likelihood features improves the quality of the lymph node voxel likelihood map. Multiple structure anatomy maps may thus make MRL CAD more feasible.

  16. Gaining a Better Understanding of Estuarine Circulation and Improving Data Visualization Skills Through a Hands-on Contouring Exercise

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Kenna, T. C.

    2008-12-01

    The creation and accurate interpretation of graphs is becoming a lost art among students. The availability of numerous graphing software programs makes the act of graphing data easy but does not necessarily aide students in interpreting complex visual data. This is especially true for contour maps; which have become a critical skill in the earth sciences and everyday life. In multiple classes, we have incorporated a large-scale, hands-on, contouring exercise of temperature, salinity, and density data collected in the Hudson River Estuary. The exercise allows students to learn first-hand how to plot, analyze, and present three dimensional data. As part of a day-long sampling expedition aboard an 80' research vessel, students deploy a water profiling instrument (Seabird CTD). Data are collected along a transect between the Verrazano and George Washington Bridges. The data are then processed and binned at 0.5 meter intervals. The processed data is then used during a later laboratory period for the contouring exercise. In class, students work in groups of 2 to 4 people and are provided with the data, a set of contouring instructions, a piece of large (3' x 3') graph paper, a ruler, and a set of colored markers. We then let the groups work together to determine the details of the graphs. Important steps along the way are talking to the students about X and Y scales, interpolation, and choices of contour intervals and colors. Frustration and bottlenecks are common at the beginning when students are unsure how to even begin with the raw data. At some point during the exercise, students start to understand the contour concept and each group usually produces a finished contour map in an hour or so. Interestingly, the groups take pride in the coloring portion of the contouring as it indicates successful interpretation of the data. The exercise concludes with each group presenting and discussing their contour plot. In almost every case, the hands-on graphing has improved the "students" visualization skills. Contouring has been incorporated into the River Summer (www.riversumer.org, http://www.riversumer.org/) program and our Environmental Measurements laboratory course. This has resulted in the exercise being utilized with undergraduates, high-school teachers, graduate students, and college faculty. We are in the process of making this curricular module available online to educators.

  17. Shape-matching soft mechanical metamaterials.

    PubMed

    Mirzaali, M J; Janbaz, S; Strano, M; Vergani, L; Zadpoor, A A

    2018-01-17

    Architectured materials with rationally designed geometries could be used to create mechanical metamaterials with unprecedented or rare properties and functionalities. Here, we introduce "shape-matching" metamaterials where the geometry of cellular structures comprising auxetic and conventional unit cells is designed so as to achieve a pre-defined shape upon deformation. We used computational models to forward-map the space of planar shapes to the space of geometrical designs. The validity of the underlying computational models was first demonstrated by comparing their predictions with experimental observations on specimens fabricated with indirect additive manufacturing. The forward-maps were then used to devise the geometry of cellular structures that approximate the arbitrary shapes described by random Fourier's series. Finally, we show that the presented metamaterials could match the contours of three real objects including a scapula model, a pumpkin, and a Delft Blue pottery piece. Shape-matching materials have potential applications in soft robotics and wearable (medical) devices.

  18. Floods of 1971 and 1972 on Glover Creek and Little River in southeastern Oklahoma

    USGS Publications Warehouse

    Thomas, Wilbert O.; Corley, Robert K.

    1973-01-01

    Heavy rains of December 9-10, 1971, and Oct. 30-31, 1972, caused outstanding floods on Glover Creek and Little River in McCurtain County in southeastern Oklahoma. This report presents hydrologic data that document the extent of flooding, flood profiles, and frequency of flooding on reaches of both streams. The data presented provide a technical basis for formulating effective flood-plain zoning that will minimize existing and future flood problems. The report also can be useful for locating waste-disposal and water-treatment facilities, and for the development of recreational areas. The area studied includes the reach of Little River on the Garvin and Idabel 7 1/2-minute quadrangles (sheet 1) and the reach of Glover Creek on the southwest quarter of the Golden 15-minute quadrangle (sheet 2). The flood boundaries delineated on the maps are the limits of flooding during the December 1971 and October 1972 floods. Any attempt to delineate the flood boundaries on streams in the study area other than Glover Creek and Little River was considered to be beyond the scope of this report. The general procedure used in defining the flood boundaries was to construct the flood profiles from high-water marks obtained by field surveys and by records at three stream-gaging stations (two on Little River and one on Glover Creek.). The extent of flooding was delineated on the topographic maps by using the flood profiles to define the flood elevations at various points along the channel and locating the elevations on the map by interpolating between contours (lines of equal ground elevation). In addition, flood boundaries were defined in places by field survey, aerial photographs, and information from local residents. The accuracy of the flood boundaries is consistent with the scale and contour interval of the maps (1 inch = 2,000 feet; contour interval 10 and 20 feet), which means the flood boundaries are drawn as accurately as possible on maps having 10- and 20-foot contour intervals.

  19. Water-level data from wells and test holes through 1991 and potentiometric contours as of 1991 for Yucca Flat, Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, G.S.; Trudeau, D.A.; Savard, C.S.

    The underground nuclear testing program of the US Department of Energy (USDOE) takes place at the Nevada Test Site (NTS), about 65 mi north-west of Las Vegas, Nevada. Underground nuclear tests at Yucca Flat, one of the USDOE test areas at NTS, have affected hydrologic conditions, including groundwater levels. The purpose of this map report, prepared in cooperation with USDOE, is to present selected water-level data collected from wells and test holes through December 1991, and to show potentiometric contours representing 1991 water-table conditions in the Yucca Flat area. The more generic term, potentiometric contours, is used herein rather thanmore » ``water-table contours`` because the hydrologic units contributing water to wells and test holes may not accurately represent the water table. The water table is that surface in an unconfined water body at which the pressure is atmospheric. It is defined by the altitude at which non- perched ground water is first found in wells and test holes. Perched ground water is defined as unconfined ground water separated from an underlying body of ground water by an unsaturated zone. This map report updates information on water levels in some wells and test holes and the resulting water-table contours in rocks of Cenozoic and Paleozoic age shown by Doty and Thordarson for 1980 conditions.« less

  20. An evaluation of the contouring abilities of medical dosimetry students for the anatomy of a prostate cancer patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Kevin S., E-mail: kscollin@siu.edu

    2012-10-01

    Prostate cancer is one of the most common diseases treated in a radiation oncology department. One of the major predictors of the treatment outcome and patient side effects is the accuracy of the anatomical contours for the treatment plan. Therefore, the purpose of this study was to determine which anatomical structures are most often contoured correctly and incorrectly by medical dosimetry students. The author also wanted to discover whether a review of the contouring rules would increase contouring accuracy. To achieve this, a male computed tomography dataset consisting of 72 transverse slices was sent to students for contouring. The studentsmore » were instructed to import this dataset into their treatment planning system and contour the following structures: skin, bladder, rectum, prostate, penile bulb, seminal vesicles, left femoral head, and right femoral head. Upon completion of the contours, the contour file was evaluated against a 'gold standard' contour set using StructSure software (Standard Imaging, Inc). A review of the initial contour results was conducted and then students were instructed to contour the dataset a second time. The results of this study showed significant differences between contouring sessions. These results and the standardization of contouring rules should benefit all individuals who participate in the treatment planning of cancer patients.« less

  1. Peculiarities of changes in the soil cover of landscapes adjacent to a megalopolis

    NASA Astrophysics Data System (ADS)

    Lazareva, Margarita; Aparin, Boris; Sukhacheva, Elena

    2017-04-01

    The progressive growth of cities has a significant impact on the soil cover of territories adjacent to the same. Megalopolises are centers of anthropogenic impact on the soils. Generally, forms and intensity of the urban impact on the soil cover weaken with increasing distance from the city's boundaries. In this respect, ample opportunities for the analysis of urban impact on the adjacent territories are provided by the study of the soil cover in the Leningrad Region (the LR). Saint Petersburg is a major European megalopolis, which is the administrative center of the LR. The time period of Saint Petersburg's impact on the environment does not exceed 300 years, which allows us to identify very clearly the character and areas of its impact on the soil cover. Over the past decades, there have been significant changes in the soils and the soil cover of the LR. In a large territory, there appeared new anthropogenic soils and soil cover organization forms, having no natural analogues, with a dramatic increase in the surface area of degraded soils. To access the current state of soil cover, to identify the role of anthropogenic factors of changes in this state; to carry out land reclamation, remediation and rehabilitation measures; to perform land cadastral valuation etc., we need an information resource containing data on the current state of soils and soil cover in the LR, the key element of which should be a map. We carried out mapping and created a 1:200 000 digital soil map (DSM) for the LR's territories. Diagnostics of soil contours were performed using traditionally drawn-up (paper) maps of soils and soil-formation factors; satellite images (Google, Yandex); data of remote sensing (Spot 5, Landsat 7,8); digital maps of main soil-formation factors (topographical ones, etc.). The digital soil map of the LR has been created in the geographic information system - QGIS. The map clarifies the contours of natural soils and soil combinations, and shows, for the first time, the contours of: - non-soil formations; - soils of the initial soil formation; - soils of agricultural lands within their existing boundaries; - soils and soil combinations that are specific for human settlements and horticultural land plots; - fallow lands; - anthropogenically disturbed soils. During the analysis of the created digital medium-scale soil map, we identified some changes in the soil cover of the territories adjacent to Saint Petersburg. Virtually in all the landscapes, we found a large number of soil cover structures, the components of which, along with natural soils, are anthropogenically disturbed soils, anthropogenic soils and non-soil formations. We revealed that the human impact on the soil cover is manifested within the range that varies from insignificant changes in soil parameters to radical transformations of the soil profile, complete destruction of soil and "creation" of new soil forms and soil cover organization forms. We have developed a typology of anthropogenically changed and anthropogenically created soil cover structures, taking into consideration the types of the economic impact on and the quality of environmental functions performed by the soils.

  2. Technical report on the surface reconstruction of stacked contours by using the commercial software

    NASA Astrophysics Data System (ADS)

    Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Park, Jin Seo

    2007-03-01

    After drawing and stacking contours of a structure, which is identified in the serially sectioned images, three-dimensional (3D) image can be made by surface reconstruction. Usually, software is composed for the surface reconstruction. In order to compose the software, medical doctors have to acquire the help of computer engineers. So in this research, surface reconstruction of stacked contours was tried by using commercial software. The purpose of this research is to enable medical doctors to perform surface reconstruction to make 3D images by themselves. The materials of this research were 996 anatomic images (1 mm intervals) of left lower limb, which were made by serial sectioning of a cadaver. On the Adobe Photoshop, contours of 114 anatomic structures were drawn, which were exported to Adobe Illustrator files. On the Maya, contours of each anatomic structure were stacked. On the Rhino, superoinferior lines were drawn along all stacked contours to fill quadrangular surfaces between contours. On the Maya, the contours were deleted. 3D images of 114 anatomic structures were assembled with their original locations preserved. With the surface reconstruction technique, developed in this research, medical doctors themselves could make 3D images of the serially sectioned images such as CTs and MRIs.

  3. A database paradigm for the management of DICOM-RT structure sets using a geographic information system

    NASA Astrophysics Data System (ADS)

    Shao, Weber; Kupelian, Patrick A.; Wang, Jason; Low, Daniel A.; Ruan, Dan

    2014-03-01

    We devise a paradigm for representing the DICOM-RT structure sets in a database management system, in such way that secondary calculations of geometric information can be performed quickly from the existing contour definitions. The implementation of this paradigm is achieved using the PostgreSQL database system and the PostGIS extension, a geographic information system commonly used for encoding geographical map data. The proposed paradigm eliminates the overhead of retrieving large data records from the database, as well as the need to implement various numerical and data parsing routines, when additional information related to the geometry of the anatomy is desired.

  4. 27 CFR 9.188 - Horse Heaven Hills.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of viticultural significance. (b) Approved Maps. The appropriate maps for determining the boundaries... Canyon, Spring Canyon, Sand Ridge, and Willow Creek) to the point where the 1,700-foot contour line intersects Sand Ridge Road in section 4, T5N, R22E, on the Douty Canyon map; then (4) Continue north...

  5. Shaded seafloor relief, backscatter strength, and surficial geology; German Bank, Scotian Shelf, offshore Nova Scotia

    USGS Publications Warehouse

    Todd, B.J.; Valentine, Page C.

    2010-01-01

    This map is part of a three-map series of German Bank, located on the Scotian Shelf off southern Nova Scotia.  This map is the product of a number of surveys (1997-2003) that used a multibeam sonar system to map 5321 km2 of the seafloor.  Other surveys collected geological data for scientific interpretation.  This map sheet shows the seafloor topography of German Bank in shaded-relief view and seafloor depth (coded by colour) at a scale of 1:1000,000.  Topographic contours generated from the multibeam data are shown (in white) on the colour-coded multibeam topography at a depth interval of 20 m.  Bathymetic contours (in blue) outside the multibeam survey area, presented at a depth interval of 10 m, are from the Natural Resource Map series (Canadian Hydrographic Service, 1967, 1971a, 1971b, 1972). Sheet 2 shows coloured backscatter strength in shaded-relief view.  Sheet 3 shows seafloor topography in shaded-relief view with colour-coded surficial geological units.

  6. Evaluation of atlas-based auto-segmentation software in prostate cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenham, Stuart, E-mail: stuart.greenham@ncahs.health.nsw.gov.au; Dean, Jenna; Fu, Cheuk Kuen Kenneth

    2014-09-15

    The performance and limitations of an atlas-based auto-segmentation software package (ABAS; Elekta Inc.) was evaluated using male pelvic anatomy as the area of interest. Contours from 10 prostate patients were selected to create atlases in ABAS. The contoured regions of interest were created manually to align with published guidelines and included the prostate, bladder, rectum, femoral heads and external patient contour. Twenty-four clinically treated prostate patients were auto-contoured using a randomised selection of two, four, six, eight or ten atlases. The concordance between the manually drawn and computer-generated contours were evaluated statistically using Pearson's product–moment correlation coefficient (r) and clinicallymore » in a validated qualitative evaluation. In the latter evaluation, six radiation therapists classified the degree of agreement for each structure using seven clinically appropriate categories. The ABAS software generated clinically acceptable contours for the bladder, rectum, femoral heads and external patient contour. For these structures, ABAS-generated volumes were highly correlated with ‘as treated’ volumes, manually drawn; for four atlases, for example, bladder r = 0.988 (P < 0.001), rectum r = 0.739 (P < 0.001) and left femoral head r = 0.560 (P < 0.001). Poorest results were seen for the prostate (r = 0.401, P < 0.05) (four atlases); however this was attributed to the comparison prostate volume being contoured on magnetic resonance imaging (MRI) rather than computed tomography (CT) data. For all structures, increasing the number of atlases did not consistently improve accuracy. ABAS-generated contours are clinically useful for a range of structures in the male pelvis. Clinically appropriate volumes were created, but editing of some contours was inevitably required. The ideal number of atlases to improve generated automatic contours is yet to be determined.« less

  7. Description, instructions, and verification for Basinsoft, a computer program to quantify drainage- basin characteristics

    USGS Publications Warehouse

    Harvey, Craig A.; Eash, David A.

    1996-01-01

    Statistical comparison tests indicate Basinsoft quantifications are not significantly different from manual topographic-map measurements for 9 of 10 basin characteristics tested. The results also indicate that elevation contours generated by ARC/INFO from l:250,000-scale digital elevation model (DEM) data are over-generalized when compared to elevation contours shown on l:250,000-scale topographic maps, and that quantification of basin-slope thus is underestimated using DEM data. A qualitative comparison test indicated that the Basinsoft module used to quantify basin slope is valid and that differences in the quantification of basin slope are due to sourcedata differences.

  8. Determination of a Limited Scope Network's Lightning Detection Efficiency

    NASA Technical Reports Server (NTRS)

    Rompala, John T.; Blakeslee, R.

    2008-01-01

    This paper outlines a modeling technique to map lightning detection efficiency variations over a region surveyed by a sparse array of ground based detectors. A reliable flash peak current distribution (PCD) for the region serves as the technique's base. This distribution is recast as an event probability distribution function. The technique then uses the PCD together with information regarding: site signal detection thresholds, type of solution algorithm used, and range attenuation; to formulate the probability that a flash at a specified location will yield a solution. Applying this technique to the full region produces detection efficiency contour maps specific to the parameters employed. These contours facilitate a comparative analysis of each parameter's effect on the network's detection efficiency. In an alternate application, this modeling technique gives an estimate of the number, strength, and distribution of events going undetected. This approach leads to a variety of event density contour maps. This application is also illustrated. The technique's base PCD can be empirical or analytical. A process for formulating an empirical PCD specific to the region and network being studied is presented. A new method for producing an analytical representation of the empirical PCD is also introduced.

  9. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2007

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2007. Potentiometric contours are based on water-level measurements collected at 566 wells during the period May 4-June 11 near the end of the dry season, however most of the water level data for this map were collected by the U.S. Geological Survey during the period May 21-25, 2007. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  10. Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming.

    PubMed

    Chiu, Stephanie J; Toth, Cynthia A; Bowes Rickman, Catherine; Izatt, Joseph A; Farsiu, Sina

    2012-05-01

    This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique.

  11. Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming

    PubMed Central

    Chiu, Stephanie J.; Toth, Cynthia A.; Bowes Rickman, Catherine; Izatt, Joseph A.; Farsiu, Sina

    2012-01-01

    This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique. PMID:22567602

  12. DOE Eastern Gas Shales Project: Dunkirk study. Quarterly report of technical progress, July, August, September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, J.A.; Abel, K.D.; Piotrowski, R.G.

    Ten cross sections were completed and drafted, and blueline copies were sent to DOE, Morgantown, WV, for review. These cross sections were used as the basis with which all other logs in the study area were correlated. The data has been encoded from 228 logs that were used. Two isopach, 2 structure contour, and 3 lithofacies maps have been completed and are awaiting drafting. A production and show map has been drafted and blueline copies were sent to DOE, Morgantown, WV, for review. The schedule of work was delayed due to the state budget problems the need to correct workmore » previously completed and sent to DOE, Morgantown, WV, and lack of a reproduction contract.« less

  13. BOREAS HYD-8 DEM Data Over the NSA-MSA and SSA-MSA in the UTM Projection

    NASA Technical Reports Server (NTRS)

    Wang, Xue-Wen; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Band, L. E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS HYD-8 team focused on describing the scaling behavior of water and carbon flux processes at local and regional scales. These DEMs were produced from digitized contours at a cell resolution of 100 meters. Vector contours of the area were used as input to a software package that interpolates between contours to create a DEM representing the terrain surface. The vector contours had a contour interval of 25 feet. The data cover the BOREAS MSAs of the SSA and NSA and are given in a UTM map projection. Most of the elevation data from which the DEM was produced were collected in the 1970s or 1980s. The data are stored in binary, image format files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J; Wu, Q.J.; Yin, F

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into fivemore » groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant #R21CA161389 and a master research grant by Varian Medical System.« less

  15. Saliency detection using mutual consistency-guided spatial cues combination

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Ning, Chen; Xu, Lizhong

    2015-09-01

    Saliency detection has received extensive interests due to its remarkable contribution to wide computer vision and pattern recognition applications. However, most existing computational models are designed for detecting saliency in visible images or videos. When applied to infrared images, they may suffer from limitations in saliency detection accuracy and robustness. In this paper, we propose a novel algorithm to detect visual saliency in infrared images by mutual consistency-guided spatial cues combination. First, based on the luminance contrast and contour characteristics of infrared images, two effective saliency maps, i.e., the luminance contrast saliency map and contour saliency map are constructed, respectively. Afterwards, an adaptive combination scheme guided by mutual consistency is exploited to integrate these two maps to generate the spatial saliency map. This idea is motivated by the observation that different maps are actually related to each other and the fusion scheme should present a logically consistent view of these maps. Finally, an enhancement technique is adopted to incorporate spatial saliency maps at various scales into a unified multi-scale framework to improve the reliability of the final saliency map. Comprehensive evaluations on real-life infrared images and comparisons with many state-of-the-art saliency models demonstrate the effectiveness and superiority of the proposed method for saliency detection in infrared images.

  16. Trend-surface analysis of morphometric parameters: A case study in southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Grohmann, Carlos Henrique

    2005-10-01

    Trend-surface analysis was carried out on data from morphometric parameters isobase and hydraulic gradient. The study area, located in the eastern border of Quadrilátero Ferrífero, southeastern Brazil, presents four main geomorphological units, one characterized by fluvial dissection, two of mountainous relief, with a scarp of hundreds of meters of fall between them, and a flat plateau in the central portion of the fluvially dissected terrains. Morphometric maps were evaluated in GRASS-GIS and statistics were made on R statistical language, using the spatial package. Analysis of variance (ANOVA) was made to test the significance of each surface and the significance of increasing polynomial degree. The best results were achieved with sixth-order surface for isobase and second-order surface for hydraulic gradient. Shape and orientation of residual maps contours for selected trends were compared with structures inferred from several morphometric maps, and a good correlation is present.

  17. Use of Magsat anomaly data for crustal structure and mineral resources in the US midcontinent

    NASA Technical Reports Server (NTRS)

    Carmichael, R. S. (Principal Investigator)

    1981-01-01

    Magnetic profiles on individual satellites tracks were examined to identify bad (nonterrestrially-based) data points r profiles. Anomaly profiles for the same satellite track, but at different passes were compared for parallel tracks and for tracks that cross. The selected and processed data were plotted and contoured to develop a preliminary magnetic anomaly map. The map is similar in general morphology to NASA's Magsat global scalar anomaly map, but has more detail which is related to crustal properties. Efforts have begun to interpret the satellite magnetic anomalies in terms of crustal character. The correlation of magnetics with crustal petrology may have a much larger tectonic implication. Th possibility of there being an ultramafic lower crust along one zone as a consequence of a continental collision/subduction which helped form the midcontinent craton in Precambrian times is being investigated.

  18. Reproducibility of isopach data and estimates of dispersal and eruption volumes

    NASA Astrophysics Data System (ADS)

    Klawonn, M.; Houghton, B. F.; Swanson, D.; Fagents, S. A.; Wessel, P.; Wolfe, C. J.

    2012-12-01

    Total erupted volume and deposit thinning relationships are key parameters in characterizing explosive eruptions and evaluating the potential risk from a volcano as well as inputs to volcanic plume models. Volcanologists most commonly estimate these parameters by hand-contouring deposit data, then representing these contours in thickness versus square root area plots, fitting empirical laws to the thinning relationships and integrating over the square root area to arrive at volume estimates. In this study we analyze the extent to which variability in hand-contouring thickness data for pyroclastic fall deposits influences the resulting estimates and investigate the effects of different fitting laws. 96 volcanologists (3% MA students, 19% PhD students, 20% postdocs, 27% professors, and 30% professional geologists) from 11 countries (Australia, Ecuador, France, Germany, Iceland, Italy, Japan, New Zealand, Switzerland, UK, USA) participated in our study and produced hand-contours on identical maps using our unpublished thickness measurements of the Kilauea Iki 1959 fall deposit. We computed volume estimates by (A) integrating over a surface fitted through the contour lines, as well as using the established methods of integrating over the thinning relationships of (B) an exponential fit with one to three segments, (C) a power law fit, and (D) a Weibull function fit. To focus on the differences from the hand-contours of the well constrained deposit and eliminate the effects of extrapolations to great but unmeasured thicknesses near the vent, we removed the volume contribution of the near vent deposit (defined as the deposit above 3.5 m) from the volume estimates. The remaining volume approximates to 1.76 *106 m3 (geometric mean for all methods) with maximum and minimum estimates of 2.5 *106 m3 and 1.1 *106 m3. Different integration methods of identical isopach maps result in volume estimate differences of up to 50% and, on average, maximum variation between integration methods of 14%. Volume estimates with methods (A), (C) and (D) show strong correlation (r = 0.8 to r = 0.9), while correlation of (B) with the other methods is weaker (r = 0.2 to r = 0.6) and correlation between (B) and (C) is not statistically significant. We find that the choice of larger maximum contours leads to smaller volume estimates due to method (C), but larger estimates with the other methods. We do not find statistically significant correlation between volume estimations and participants experience level, number of chosen contour levels, nor smoothness of contours. Overall, application of the different methods to the same maps leads to similar mean volume estimates, but the different methods show different dependencies and varying spread of volume estimates. The results indicate that these key parameters are less critically dependent on the operator and their choices of contour values, intervals etc., and more sensitive to the selection of technique to integrate these data.

  19. Spatial frequency maps of power flow in metamaterials and photonic crystals: Investigating backward-wave modes across the electromagnetic spectrum

    NASA Astrophysics Data System (ADS)

    Aghanejad, Iman; Markley, Loïc

    2017-11-01

    We present spatial frequency maps of power flow in metamaterials and photonic crystals in order to provide insights into their electromagnetic responses and further our understanding of backward power in periodic structures. Since 2001, many different structures across the electromagnetic spectrum have been presented in the literature as exhibiting an isotropic negative effective index. Although these structures all exhibit circular or spherical equifrequency contours that resemble those of left-handed media, here we show through k -space diagrams that the distribution of power in the spatial frequency domain can vary considerably across these structures. In particular, we show that backward power arises from high-order right-handed harmonics in photonic crystals, magnetodielectric crystals, and across the layers of coupled-plasmonic-waveguide metamaterials, while arising from left-handed harmonic pairs in split-ring resonator and wire composites, plasmonic crystals, and along the layers of coupled-plasmonic-waveguide metamaterials. We also show that the fishnet structure exhibits the same left-handed harmonic pairs as the latter group. These observations allow us to categorize different metamaterials according to their spatial spectral source of backward power and identify the mechanism behind negative refraction at a given interface. Finally, we discuss how k -space maps of power flow can be used to explain the high or low transmittance of power into different metamaterial or photonic crystal structures.

  20. Mapping of Soil-Ecological Conditions of a Medium-Size Industrial City (Birobidzhan City, Jewish Autonomous Oblast, FarEast of Russia as an Example)

    NASA Astrophysics Data System (ADS)

    Kalmanova, V. B.; Matiushkina, L. A.

    2018-01-01

    The authors analyze soil relations with other elements of the city ecosystem (the position in the landscape, soil-forming rocks and lithology, vegetation and its state) to develop the legend and map of soils in the City of Birobidzhan (scale 1:25 000). The focus of study is the morphological structure of urban soils with different degree of disturbance of these relations under the impact of technical effects, economic and recreational activities of the city population. The soil cover structure is composed of four large ecological groups of soils: natural untransformed, natural with a disturbed surface, anthropogenic soils and technogenic surface formations. Using cartometry of the mapped soil contours the authors created the scheme of soil-ecological city zoning, which in a general way depicts the state of soil ecological functions in the city as well as identified zones of soils with preserved, partially and fully distured ecological functions and zones of local geochemical anomalies at the initial formation stage (environmental risk zones).

  1. Potentiometric surface map of the Floridan Aquifer in the St Johns River Water Management District and vicinity, Florida, September, 1977

    USGS Publications Warehouse

    Watkins, F.A.; Laughlin, C.P.; Hayes, E.C.

    1977-01-01

    This map presents the potentiometric surface of the Floridan aquifer in the St. Johns River Water Management District and vicinity for September 1977. The Floridan aquifer is the principal source of potable water in the area. Water-level measurements were made on approximately 900 wells and springs. The potentiometric surface is shown by 5-foot contours except in the Fernandina Beach area where 10- and 20-foot contours are used to show the deep cone of depression. This is the first map covering the entire St. Johns River Water Management District and vicinity for September, a high water-level period. The potentiometric surface ranged from 130 feet above mean sea level in Polk County to 131 feet below sea level in Nassau County. (Woodard-USGS)

  2. Topology of microwave background fluctuations - Theory

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III; Park, Changbom; Bies, William E.; Bennett, David P.; Juszkiewicz, Roman

    1990-01-01

    Topological measures are used to characterize the microwave background temperature fluctuations produced by 'standard' scenarios (Gaussian) and by cosmic strings (non-Gaussian). Three topological quantities: total area of the excursion regions, total length, and total curvature (genus) of the isotemperature contours, are studied for simulated Gaussian microwave background anisotropy maps and then compared with those of the non-Gaussian anisotropy pattern produced by cosmic strings. In general, the temperature gradient field shows the non-Gaussian behavior of the string map more distinctively than the temperature field for all topology measures. The total contour length and the genus are found to be more sensitive to the existence of a stringy pattern than the usual temperature histogram. Situations when instrumental noise is superposed on the map, are considered to find the critical signal-to-noise ratio for which strings can be detected.

  3. WE-AB-BRA-05: Fully Automatic Segmentation of Male Pelvic Organs On CT Without Manual Intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y; Lian, J; Chen, R

    Purpose: We aim to develop a fully automatic tool for accurate contouring of major male pelvic organs in CT images for radiotherapy without any manual initialization, yet still achieving superior performance than the existing tools. Methods: A learning-based 3D deformable shape model was developed for automatic contouring. Specifically, we utilized a recent machine learning method, random forest, to jointly learn both image regressor and classifier for each organ. In particular, the image regressor is trained to predict the 3D displacement from each vertex of the 3D shape model towards the organ boundary based on the local image appearance around themore » location of this vertex. The predicted 3D displacements are then used to drive the 3D shape model towards the target organ. Once the shape model is deformed close to the target organ, it is further refined by an organ likelihood map estimated by the learned classifier. As the organ likelihood map provides good guideline for the organ boundary, the precise contouring Result could be achieved, by deforming the 3D shape model locally to fit boundaries in the organ likelihood map. Results: We applied our method to 29 previously-treated prostate cancer patients, each with one planning CT scan. Compared with manually delineated pelvic organs, our method obtains overlap ratios of 85.2%±3.74% for the prostate, 94.9%±1.62% for the bladder, and 84.7%±1.97% for the rectum, respectively. Conclusion: This work demonstrated feasibility of a novel machine-learning based approach for accurate and automatic contouring of major male pelvic organs. It shows the potential to replace the time-consuming and inconsistent manual contouring in the clinic. Also, compared with the existing works, our method is more accurate and also efficient since it does not require any manual intervention, such as manual landmark placement. Moreover, our method obtained very similar contouring results as the clinical experts. Project is partially support by a grant from NCI 1R01CA140413.« less

  4. Geothermal Energy Resources of Navy/Marine Corps Installations on the Atlantic and Gulf Coastal Plain.

    DTIC Science & Technology

    1980-03-01

    Geological Survey ( AAPG -USGS) thermal gradient map of North America, at a scale of 1:5,000,000, gives the hypothesized average depth (by contours) in...file reports; USGS topographic and geologic maps; AAPG -USGS special geologic maps; APL/JHU reports; VPI-SU progress re- ports to DOE/DGE; technical

  5. Gradient-based reliability maps for ACM-based segmentation of hippocampus.

    PubMed

    Zarpalas, Dimitrios; Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-04-01

    Automatic segmentation of deep brain structures, such as the hippocampus (HC), in MR images has attracted considerable scientific attention due to the widespread use of MRI and to the principal role of some structures in various mental disorders. In this literature, there exists a substantial amount of work relying on deformable models incorporating prior knowledge about structures' anatomy and shape information. However, shape priors capture global shape characteristics and thus fail to model boundaries of varying properties; HC boundaries present rich, poor, and missing gradient regions. On top of that, shape prior knowledge is blended with image information in the evolution process, through global weighting of the two terms, again neglecting the spatially varying boundary properties, causing segmentation faults. An innovative method is hereby presented that aims to achieve highly accurate HC segmentation in MR images, based on the modeling of boundary properties at each anatomical location and the inclusion of appropriate image information for each of those, within an active contour model framework. Hence, blending of image information and prior knowledge is based on a local weighting map, which mixes gradient information, regional and whole brain statistical information with a multi-atlas-based spatial distribution map of the structure's labels. Experimental results on three different datasets demonstrate the efficacy and accuracy of the proposed method.

  6. The Qartaba Anticline (central Mount Lebanon): Implications for the tectonic evolution of onshore Lebanon

    NASA Astrophysics Data System (ADS)

    Asmar, Chloe; Grasemann, Bernhard; Nader, Fadi; Tari, Gabor

    2013-04-01

    The area of Lebanon includes three major physiographic elements (Mount Lebanon, the Anti-Lebanon mountain chain, and the Bekaa Valley in between). The western Lebanese ranges (Mount Lebanon) stretch along the coast of the Mediterranean Sea. The prominent Qartaba Anticline is located on the western side of the northern Mount Lebanon. The studied part of this anticline (~20 km long, ~5 km wide) represents a large-scale box-fold structure bounded by two SW- and NE-vergent monoclines. The mechanism and timing of folding of the Qartaba Anticline are still debated and are not well understood. During several field visits hundreds of structural measurements were made in the study area in order to better constrain the three-dimensional shape of the Qartaba structure. The data show that the eastern and western flanks of the anticline represent oppositely verging monoclines with average dip values increasing from around 15° at the outer limits of the structure to 30° towards the middle of the flanks and reaching values up to 90° at the uppermost flanks. The strata become more or less horizontal on the top of the structure, a few hundreds meters away from the limbs of the monoclines. Therefore the whole structure resembles a large scale box-fold. Although several generations of brittle faults cross cut the Qartaba structure, no large scale faults have been identified in the field, which could be interpreted as directly related to the folding process itself. Instead, the folding and the limb rotation are strongly associated with dissolution-precipitation deformation mechanisms showing multi-generations of axial plane stylolites at high angles to the bedding planes within the hinge zones of the flanking monoclines. Pronounced stratigraphic boundaries, such as the one between the Middle to Upper Jurassic Kesrouane and Bhannes Formations, have been taken as reference surfaces in previous reports in order to construct structural and isopach contour maps of the Qartaba structure. In this study, contours were digitized from available maps as well as stratigraphic and structural cross sections. Dip/strike measurements taken in the field combined with measurements derived from high-resolution satellite images were also utilized in the digitized maps. The new three dimensional structural model of the Qartaba Anticline contains important information about the subsurface geology and features susbtantial implications for the tectonic evolution of the broader area in Lebanon (part of eastern margin of the Levant Basin).

  7. Structural Maps of the V-17 Beta Regio Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. t.; Head, James W.

    2008-01-01

    These represent slices of the geologic map into 7 time-stratigraphic levels whose descriptions are found in [3-6]. From older to younger they are: 1) Tessera material unit (t), 2) Densely fractured plains material unit (pdf), 3) Fractured and ridged plains material unit (pfr), 4) Tessera transitional terrain structural unit (tt), 5) Fracture belts structural unit (fb), 6) Shield plains (psh) and plains with wrinkle ridges (pwr) material units combined, and 7) Lobate (pl) and smooth (ps) plains material units combined and, approximately contemporaneous with them, the structural unit of rifted terrain (rt). Each slice shows the generalized pattern of structures typical of these units. Figures 1-7 show the seven maps and Figure 8 shows the combined map illustrating what is shown in the seven maps. To visualize the Beta Regio uplift outlines, the major structure of this area, we show the +0.5 km and +2.5 km contour lines, corresponding respectively to the base and the mid-height of the uplift. It is seen in Figures 1-2 and 4 the trends of t, pdf and tt occupy relatively small areas and their structures seen in these small windows appear rather variable and with almost no orientation heritage with time. Figure 3 shows that swarms of ridge belts trend mostly NW and go through the Beta structure with no alignment with it, suggesting that this structure did not yet exist at this time. Figure 5 shows that fracture belts align along the northern base of the Beta uplift suggesting onset of the formation of this structure. Figure 6 shows that wrinkle ridges do not show alignment with the Beta uplift suggesting that this already forming structure was not high enough to exert topographic stress in its vicinity. Figure 7 shows that the Beta uplift has Devana Chasma as an axial rift zone, suggesting a genetic link between the uplift and rifting. Figure 8 shows that structural trends in this area significantly changed with time.

  8. NASA ARIA Project Maps Deformation of Earth Surface from Nepal Quake

    NASA Image and Video Library

    2015-05-02

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the European Union's Copernicus Sentinel-1A satellite, operated by the European Space Agency and also available from the Alaska Satellite Facility (https://www.asf.alaska.edu), to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 12-day interval between two Sentinel-1 images acquired on April 17 and April 29, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 8 inches (20 centimeters) of surface motion. The contours show the land around Kathmandu has moved upward by more than 40 inches (1 meter). Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The background image is from Google Earth. The map contains Copernicus data (2015). http://photojournal.jpl.nasa.gov/catalog/PIA19535

  9. Regional maps of subsurface geopressure gradients of the onshore and offshore Gulf of Mexico basin

    USGS Publications Warehouse

    Burke, Lauri A.; Kinney, Scott A.; Dubiel, Russell F.; Pitman, Janet K.

    2013-01-01

    The U.S. Geological Survey created a comprehensive geopressure-gradient model of the regional pressure system spanning the onshore and offshore Gulf of Mexico basin, USA. This model was used to generate ten maps that included (1) five contour maps characterizing the depth to the surface defined by the first occurrence of isopressure gradients ranging from 0.60 psi/ft to 1.00 psi/ft, in 0.10-psi/ft increments; and (2) five supporting maps illustrating the spatial density of the data used to construct the contour maps. These contour maps of isopressure-gradients at various increments enable the identification and quantification of the occurrence, magnitude, location, and depth of the subsurface pressure system, which allows for the broad characterization of regions exhibiting overpressured, underpressured, and normally pressured strata. Identification of overpressured regions is critical for exploration and evaluation of potential undiscovered hydrocarbon accumulations based on petroleum-generation pressure signatures and pressure-retention properties of reservoir seals. Characterization of normally pressured regions is essential for field development decisions such as determining the dominant production drive mechanisms, evaluating well placement and drainage patterns, and deciding on well stimulation methods such as hydraulic fracturing. Identification of underpressured regions is essential for evaluating the feasibility of geological sequestration and long-term containment of fluids such as supercritical carbon dioxide for alternative disposal methods of greenhouse gases. This study is the first, quantitative investigation of the regional pressure systems of one of the most important petroleum provinces in the United States. Although this methodology was developed for pressure studies in the Gulf of Mexico basin, it is applicable to any basin worldwide.

  10. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2005

    USGS Publications Warehouse

    Kinnaman, Sandra L.

    2006-01-01

    INTRODUCTION This map depicts the potentiometric surface of the upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2005. Potentiometric contours are based on water level measurements collected at 598 wens during the period May 5 - 31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate upper Floridan aquifer responds mainly to rainfall, and more locally, to ground water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground water withdrawals locally have lowered the potentiometric surface. Ground water in the upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  11. The Whole World In Your Hands: Using an Interactive Virtual Reality Sandbox for Geospatial Education and Outreach

    NASA Astrophysics Data System (ADS)

    Clucas, T.; Wirth, G. S.; Broderson, D.

    2014-12-01

    Traditional geospatial education tools such as maps and computer screens don't convey the rich topography present on Earth. Translating lines on a contour lines on a topo map to relief in a landscape can be a challenging concept to convey.A partnership between Alaska EPSCoR and the Geographic Information Network of Alaska has successfully constructed an Interactive Virtual Reality Sandbox, an education tool that in real-time projects and updates topographic contours on the surface of a sandbox. The sandbox has been successfully deployed at public science events as well as professional geospatial and geodesy conferences. Landscape change, precipitation, and evaporation can all be modeled, much to the delight of our enthusiasts, who range in age from 3 to 90. Visually, as well as haptically, demonstrating the effects of events (such as dragging a hand through the sand) on a landscape, as well as the intuitive realization of meaning of topographic contour lines, has proven to be engaging.

  12. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2009

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2009. Potentiometric contours are based on water-level measurements collected at 625 wells during the period May 14 - May 29, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to groundwater withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Groundwater withdrawals locally have lowered the potentiometric surface. Groundwater in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  13. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2006

    USGS Publications Warehouse

    Kinnaman, Sandra L.

    2006-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2006. Potentiometric contours are based on water-level measurements collected at 599 wells during the period May 14-31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  14. Potentiometric surface of the Upper Floridan aquifer in the St. Johns River water management district and vicinity, Florida, September 2005

    USGS Publications Warehouse

    Kinnaman, Sandra L.

    2006-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2005. Potentiometric contours are based on water-level measurements collected at 643 wells during the period September 12-28, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  15. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2006

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2006. Potentiometric contours are based on water-level measurements collected at 571 wells during the period September 11-29, near the end of the wet season. Some contours are inferred from previouspotentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  16. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2008

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2008. Potentiometric contours are based on water-level measurements collected at 589 wells during the period September 15-25, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  17. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2007

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  18. New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies.

    PubMed

    Farid, Ramy; Day, Tyler; Friesner, Richard A; Pearlstein, Robert A

    2006-05-01

    We created a homology model of the homo-tetrameric pore domain of HERG using the crystal structure of the bacterial potassium channel, KvAP, as a template. We docked a set of known blockers with well-characterized effects on channel function into the lumen of the pore between the selectivity filter and extracellular entrance using a novel docking and refinement procedure incorporating Glide and Prime. Key aromatic groups of the blockers are predicted to form multiple simultaneous ring stacking and hydrophobic interactions among the eight aromatic residues lining the pore. Furthermore, each blocker can achieve these interactions via multiple docking configurations. To further interpret the docking results, we mapped hydrophobic and hydrophilic potentials within the lumen of each refined docked complex. Hydrophilic iso-potential contours define a 'propeller-shaped' volume at the selectivity filter entrance. Hydrophobic contours define a hollow 'crown-shaped' volume located above the 'propeller', whose hydrophobic 'rim' extends along the pore axis between Tyr652 and Phe656. Blockers adopt conformations/binding orientations that closely mimic the shapes and properties of these contours. Blocker basic groups are localized in the hydrophilic 'propeller', forming electrostatic interactions with Ser624 rather than a generally accepted pi-cation interaction with Tyr652. Terfenadine, cisapride, sertindole, ibutilide, and clofilium adopt similar docked poses, in which their N-substituents bridge radially across the hollow interior of the 'crown' (analogous to the hub and spokes of a wheel), and project aromatic/hydrophobic portions into the hydrophobic 'rim'. MK-499 docks with its longitudinal axis parallel to the axis of the pore and 'crown', and its hydrophobic groups buried within the hydrophobic 'rim'.

  19. Topographic Map of Quadrangle 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. Topographic Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  1. Topographic Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. Topographic Map of Quadrangles 3560 and 3562, Sir-Band (402), Khawja-Jir (403), and Bala-Murghab (404) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. Topographic Map of Quadrangles 3770 and 3870, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. Topographic Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. Topographic Map of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. Topographic Map of Quadrangle 3470 and the Northern Edge of 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afg

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. Topographic Map of Quadrangles 3772, 3774, 3672, and 3674, Gaz-Khan (313), Sarhad (314), Kol-I-Chaqmaqtin (315), Khandud (319), Deh-Ghulaman (320), and Erftah (321) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. Topographic Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. Topographic Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Topographic Map of Quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. Topographic Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. Topographic Map of Quadrangles 3460 and 3360, Kol-I-Namaksar (407), Ghuryan (408), Kawir-I-Naizar (413), and Kohe-Mahmudo-Esmailjan (414) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. A Comparison of Spatial Analysis Methods for the Construction of Topographic Maps of Retinal Cell Density

    PubMed Central

    Garza-Gisholt, Eduardo; Hemmi, Jan M.; Hart, Nathan S.; Collin, Shaun P.

    2014-01-01

    Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed ‘by eye’. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation ‘respects’ the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the ‘noise’ caused by artefacts and permits a clearer representation of the dominant, ‘real’ distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome. PMID:24747568

  14. Automatic structural matching of 3D image data

    NASA Astrophysics Data System (ADS)

    Ponomarev, Svjatoslav; Lutsiv, Vadim; Malyshev, Igor

    2015-10-01

    A new image matching technique is described. It is implemented as an object-independent hierarchical structural juxtaposition algorithm based on an alphabet of simple object-independent contour structural elements. The structural matching applied implements an optimized method of walking through a truncated tree of all possible juxtapositions of two sets of structural elements. The algorithm was initially developed for dealing with 2D images such as the aerospace photographs, and it turned out to be sufficiently robust and reliable for matching successfully the pictures of natural landscapes taken in differing seasons from differing aspect angles by differing sensors (the visible optical, IR, and SAR pictures, as well as the depth maps and geographical vector-type maps). At present (in the reported version), the algorithm is enhanced based on additional use of information on third spatial coordinates of observed points of object surfaces. Thus, it is now capable of matching the images of 3D scenes in the tasks of automatic navigation of extremely low flying unmanned vehicles or autonomous terrestrial robots. The basic principles of 3D structural description and matching of images are described, and the examples of image matching are presented.

  15. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    USGS Publications Warehouse

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-01

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic gradients between aquifer types are downward throughout most of the study area; however, flow from the alluvial-volcanic aquifer into the underlying carbonate aquifer, where both aquifers are present, is believed to be minor because of an intervening confining unit. Limited exchange of water between aquifer types occurs by diffuse flow through the confining unit, by focused flow along fault planes, or by direct flow where the confining unit is locally absent. Interflow between regional aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form intermediate and regional flow systems. The implications of these flow systems in controlling transport of radionuclides away from the underground test areas at the Nevada Test Site are briefly discussed. Additionally, uncertainties in the delineation of aquifers, the development of potentiometric contours, and the identification of flow systems are identified and evaluated. Eleven tributary flow systems and three larger flow systems are mapped in the Nevada Test Site area. Flow systems within the alluvial-volcanic aquifer dominate the western half of the study area, whereas flow systems within the carbonate aquifer are most prevalent in the southeastern half of the study area. Most of the flow in the regional alluvial-volcanic aquifer that moves through the underground testing area on Pahute Mesa is discharged to the land surface at springs and seeps in Oasis Valley. Flow in the regional carbonate aquifer is internally compartmentalized by major geologic structures, primarily thrust faults, which constrain flow into separate corridors. Contaminants that reach the regional carbonate aquifer from testing areas in Yucca and Frenchman Flats flow toward downgradient discharge areas through the Alkali Flat-Furnace Creek Ranch or Ash Meadows flow systems and their tributaries.

  16. Small unmanned aircraft system for remote contour mapping of a nuclear radiation field

    NASA Astrophysics Data System (ADS)

    Guss, Paul; McCall, Karen; Malchow, Russell; Fischer, Rick; Lukens, Michael; Adan, Mark; Park, Ki; Abbott, Roy; Howard, Michael; Wagner, Eric; Trainham, Clifford P.; Luke, Tanushree; Mukhopadhyay, Sanjoy; Oh, Paul; Brahmbhatt, Pareshkumar; Henderson, Eric; Han, Jinlu; Huang, Justin; Huang, Casey; Daniels, Jon

    2017-09-01

    For nuclear disasters involving radioactive contamination, small unmanned aircraft systems (sUASs) equipped with nuclear radiation detection and monitoring capability can be very important tools. Among the advantages of a sUAS are quick deployment, low-altitude flying that enhances sensitivity, wide area coverage, no radiation exposure health safety restriction, and the ability to access highly hazardous or radioactive areas. Additionally, the sUAS can be configured with the nuclear detecting sensor optimized to measure the radiation associated with the event. In this investigation, sUAS platforms were obtained for the installation of sensor payloads for radiation detection and electro-optical systems that were specifically developed for sUAS research, development, and operational testing. The sensor payloads were optimized for the contour mapping of a nuclear radiation field, which will result in a formula for low-cost sUAS platform operations with built-in formation flight control. Additional emphases of the investigation were to develop the relevant contouring algorithms; initiate the sUAS comprehensive testing using the Unmanned Systems, Inc. (USI) Sandstorm platforms and other acquired platforms; and both acquire and optimize the sensors for detection and localization. We demonstrated contour mapping through simulation and validated waypoint detection. We mounted a detector on a sUAS and operated it initially in the counts per second (cps) mode to perform field and flight tests to demonstrate that the equipment was functioning as designed. We performed ground truth measurements to determine the response of the detector as a function of source-to-detector distance. Operation of the radiation detector was tested using different unshielded sources.

  17. Validation of contour-driven thin-plate splines for tracking fraction-to-fraction changes in anatomy and radiation therapy dose mapping.

    PubMed

    Schaly, B; Bauman, G S; Battista, J J; Van Dyk, J

    2005-02-07

    The goal of this study is to validate a deformable model using contour-driven thin-plate splines for application to radiation therapy dose mapping. Our testing includes a virtual spherical phantom as well as real computed tomography (CT) data from ten prostate cancer patients with radio-opaque markers surgically implanted into the prostate and seminal vesicles. In the spherical mathematical phantom, homologous control points generated automatically given input contour data in CT slice geometry were compared to homologous control point placement using analytical geometry as the ground truth. The dose delivered to specific voxels driven by both sets of homologous control points were compared to determine the accuracy of dose tracking via the deformable model. A 3D analytical spherically symmetric dose distribution with a dose gradient of approximately 10% per mm was used for this phantom. This test showed that the uncertainty in calculating the delivered dose to a tissue element depends on slice thickness and the variation in defining homologous landmarks, where dose agreement of 3-4% in high dose gradient regions was achieved. In the patient data, radio-opaque marker positions driven by the thin-plate spline algorithm were compared to the actual marker positions as identified in the CT scans. It is demonstrated that the deformable model is accurate (approximately 2.5 mm) to within the intra-observer contouring variability. This work shows that the algorithm is appropriate for describing changes in pelvic anatomy and for the dose mapping application with dose gradients characteristic of conformal and intensity modulated radiation therapy.

  18. Entropy reduction via simplified image contourization

    NASA Technical Reports Server (NTRS)

    Turner, Martin J.

    1993-01-01

    The process of contourization is presented which converts a raster image into a set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimizes noticeable artifacts in the simplified image.

  19. Differential contribution of early visual areas to the perceptual process of contour processing.

    PubMed

    Schira, Mark M; Fahle, Manfred; Donner, Tobias H; Kraft, Antje; Brandt, Stephan A

    2004-04-01

    We investigated contour processing and figure-ground detection within human retinotopic areas using event-related functional magnetic resonance imaging (fMRI) in 6 healthy and naïve subjects. A figure (6 degrees side length) was created by a 2nd-order texture contour. An independent and demanding foveal letter-discrimination task prevented subjects from noticing this more peripheral contour stimulus. The contour subdivided our stimulus into a figure and a ground. Using localizers and retinotopic mapping stimuli we were able to subdivide each early visual area into 3 eccentricity regions corresponding to 1) the central figure, 2) the area along the contour, and 3) the background. In these subregions we investigated the hemodynamic responses to our stimuli and compared responses with or without the contour defining the figure. No contour-related blood oxygenation level-dependent modulation in early visual areas V1, V3, VP, and MT+ was found. Significant signal modulation in the contour subregions of V2v, V2d, V3a, and LO occurred. This activation pattern was different from comparable studies, which might be attributable to the letter-discrimination task reducing confounding attentional modulation. In V3a, but not in any other retinotopic area, signal modulation corresponding to the central figure could be detected. Such contextual modulation will be discussed in light of the recurrent processing hypothesis and the role of visual awareness.

  20. Altitude and configuration of the potentiometric surface in the Triassic sandstones and shales, northeastern Chester County, Pennsylvania, September 1987 through January 1988

    USGS Publications Warehouse

    Senior, Lisa A.; Garges, John A.

    1989-01-01

    The altitude of the water levels in the Triassic sandstones and shales in northeastern Chester County is shown on a map at a scale of 1:24,000. The map is based on water levels in 173 non-pumping drilled and dug wells measured in 1956 and 1965, and on the altitude of two springs that were flowing in November and December 1987. Water level altitudes are contoured at an interval of 20 ft. The surface defined by the contoured water levels may approximately represent the water table. Water table altitudes range from 379 ft to less than 80 ft above sea level. (USGS)

  1. Automated map sharpening by maximization of detail and connectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terwilliger, Thomas C.; Sobolev, Oleg V.; Afonine, Pavel V.

    An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso-contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso-contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures inmore » a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map-sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model withBfactors (atomic displacement factors; ADPs) set to zero. Finally, this model-based metric was used to evaluate map sharpening and to evaluate map-sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.« less

  2. Automated map sharpening by maximization of detail and connectivity

    DOE PAGES

    Terwilliger, Thomas C.; Sobolev, Oleg V.; Afonine, Pavel V.; ...

    2018-05-18

    An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso-contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso-contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures inmore » a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map-sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model withBfactors (atomic displacement factors; ADPs) set to zero. Finally, this model-based metric was used to evaluate map sharpening and to evaluate map-sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.« less

  3. Map Design for Computer Processing: Literature Review and DMA Product Critique.

    DTIC Science & Technology

    1985-01-01

    requirements can be separated contour lines (vegetation shown by iconic symbols) from user preference. versus extracting relief information using only con...tour lines (vegetation shown by tints); 0 extracting vegetation information using iconic sym- PERFORMANCE TESTING bols (relief shown by elevation...show another: trapolating the symbols on a white background) in tim- * in the case of point symbols, iconic forms where ing the performance of tasks

  4. A new edition of the Mars 1:5,000,000 map series

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Mcewen, Alfred S.; Wu, Sherman S. C.

    1991-01-01

    A new edition of the Mars 1:5,000,000 scale map series is in preparation. Two sheets will be made for each quadrangle. Sheet one will show shaded relief, contours, and nomenclature. Sheet 2 will be a full-color photomosaic prepared on the Mars digital image model (MDIM) base co-registered with the Mars low-resolution color database. The latter will have an abbreviated graticule (latitude/longitude ticks only) and no other line overprint. The four major databases used to assemble this series are now virtually complete. These are: (1) Viking-revised shaded relief maps at 1:5,000,000 scale; (2) contour maps at 1:2,000,000 scale; (3) the Mars digital image model; and (4) a color image mosaic of Mars. Together, these databases form the most complete planetwide cartographic definition of Mars that can be compiled with existing data. The new edition will supersede the published Mars 1:5,000,000 scale maps, including the original shaded relief and topographic maps made primarily with Mariner 9 data and the Viking-revised shaded relief and controlled photomosaic series. Publication of the new series will begin in late 1991 or early 1992, and it should be completed in two years.

  5. Bouguer images of the North American craton and its structural evolution

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Bowring, S.; Eddy, M.; Guinness, E.; Leff, C.; Bindschadler, D.

    1984-01-01

    Digital image processing techniques have been used to generate Bouguer images of the North American craton that diplay more of the granularity inherent in the data as compared with existing contour maps. A dominant NW-SE linear trend of highs and lows can be seen extending from South Dakota, through Nebraska, and into Missouri. The structural trend cuts across the major Precambrian boundary in Missouri, separating younger granites and rhyolites from older sheared granites and gneisses. This trend is probably related to features created during an early and perhaps initial episode of crustal assembly by collisional processes. The younger granitic materials are probably a thin cover over an older crust.

  6. 3D-QSAR study and design of 4-hydroxyamino α-pyranone carboxamide analogues as potential anti-HCV agents

    NASA Astrophysics Data System (ADS)

    Li, Wenlian; Xiao, Faqi; Zhou, Mingming; Jiang, Xuejin; Liu, Jun; Si, Hongzong; Xie, Meng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin

    2016-09-01

    The three dimensional-quantitative structure activity relationship (3D-QSAR) study was performed on a series of 4-hydroxyamino α-pyranone carboxamide analogues using comparative molecular similarity indices analysis (COMSIA). The purpose of the present study was to develop a satisfactory model providing a reliable prediction based on 4-hydroxyamino α-pyranone carboxamide analogues as anti-HCV (hepatitis C virus) inhibitors. The statistical results and the results of validation of this optimum COMSIA model were satisfactory. Furthermore, analysis of the contour maps helped to provide guidelines for finding structural requirement. Therefore, the satisfactory results from this study may provide useful guidelines for drug development of anti-HCV inhibitors.

  7. 27 CFR 9.186 - Niagara Escarpment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... significance. (b) Approved Maps. The appropriate maps for determining the boundaries of the “Niagara Escarpment... Ridge Road, and then east on Ridge Road (State Route 104) about 0.15 mile to the road's first... westward along the contour line (through the Escarpment, Ramsey Ridge, and Lewiston Heights subdivisions...

  8. 27 CFR 9.186 - Niagara Escarpment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... significance. (b) Approved Maps. The appropriate maps for determining the boundaries of the “Niagara Escarpment... Ridge Road, and then east on Ridge Road (State Route 104) about 0.15 mile to the road's first... westward along the contour line (through the Escarpment, Ramsey Ridge, and Lewiston Heights subdivisions...

  9. New Synthesis of Ocean Crust Velocity Structure From Two-Dimensional Profiles

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Goff, J.; Carlson, R. L.; Reece, R.

    2017-12-01

    The velocity structure of typical oceanic crust consists of Layer 2, where velocities increase rapidly with depth from seafloor, and Layer 3, which is thicker and has a lower velocity gradient. Previous syntheses have found no correlation of velocity structure with spreading rate, even though we know that magmatic processes differ between slow-spreading and fast-spreading crust. We present a new synthesis of ocean crust velocity structure, compiling observations from two-dimensional studies in the Atlantic, Pacific, and Indian ocean basins. The Layer 2/3 boundary was picked from each publication at a change in gradient either on velocity-depth functions or contour plots (with at least 0.5 km/s contour interval), or from the appropriate layer boundary for layered models. We picked multiple locations at each seismic refraction profile if warranted by model variability. Preliminary results show statistically significant differences in average Layer 2 and Layer 3 thicknesses between slow-spreading and superfast-spreading crust, with Layer 2 thinner and Layer 3 thicker for the higher spreading rate crust. The thickness changes are about equivalent, resulting in no change in mean crustal thickness. The Layer 2/3 boundary is often interpreted as the top of the gabbros; however, a comparison with mapped magma lens depths at the ridge axis shows that the boundary is typically deeper than average axial melt lens depth at superfast-spreading crust, and shallower at intermediate-spreading crust.

  10. Application of filtering techniques in preprocessing magnetic data

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Yi, Yongping; Yang, Hongxia; Hu, Guochuang; Liu, Guoming

    2010-08-01

    High precision magnetic exploration is a popular geophysical technique for its simplicity and its effectiveness. The explanation in high precision magnetic exploration is always a difficulty because of the existence of noise and disturbance factors, so it is necessary to find an effective preprocessing method to get rid of the affection of interference factors before further processing. The common way to do this work is by filtering. There are many kinds of filtering methods. In this paper we introduced in detail three popular kinds of filtering techniques including regularized filtering technique, sliding averages filtering technique, compensation smoothing filtering technique. Then we designed the work flow of filtering program based on these techniques and realized it with the help of DELPHI. To check it we applied it to preprocess magnetic data of a certain place in China. Comparing the initial contour map with the filtered contour map, we can see clearly the perfect effect our program. The contour map processed by our program is very smooth and the high frequency parts of data are disappeared. After filtering, we separated useful signals and noisy signals, minor anomaly and major anomaly, local anomaly and regional anomaly. It made us easily to focus on the useful information. Our program can be used to preprocess magnetic data. The results showed the effectiveness of our program.

  11. Ground-water levels in the alluvial aquifer at Louisville, Kentucky, 1982-87

    USGS Publications Warehouse

    Faust, R.J.; Lyverse, M.A.

    1987-01-01

    Water level data have been collected in the alluvial aquifer at Louisville, Kentucky by the U.S. Geological Survey since 1943. Interpretations of these data have been published in several reports by the Survey, but none have been published since 1983. Contour maps and hydrographs are presented in this report to document and to help interpret water level changes for the period 1982-87. Maps and hydrographs show that groundwater levels generally stabilized in the 1980 's after rising for many years. Two areas of groundwater withdrawals are apparent in the maps and hydrographs. Withdrawals in an industrial area in west Louisville disrupt the typical pattern of the contours to curve landward around the area of withdrawal. Resumption of pumping of groundwater for heating and cooling of some buildings in the downtown area in 1985 caused declines of about 3 to 4 ft in the downtown area. (Author 's abstract)

  12. Seismic properties of the crust and uppermost mantle of North America

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B.; Keller, G. R.

    1983-01-01

    Seismic refraction profiles for the North American continent were compiled. The crustal models compiled data on the upper mantle seismic velocity (P sub n), the crustal thickness (H sub c) and the average seismic velocity of the crystalline crust (V sub p). Compressional wave parameters were compared with shear wave data derived from surface wave dispersion models and indicate an average value for Poisson's ratio of 0.252 for the crust and of 0.273 for the uppermost mantle. Contour maps illustrate lateral variations in crustal thickness, upper mantle velocity and average seismic velocity of the crystalline crust. The distribution of seismic parameters are compared with a smoothed free air anomaly map of North America and indicate that a complidated mechanism of isostatic compensation exists for the North American continent. Several features on the seismic contour maps also correlate with regional magnetic anomalies.

  13. A climatically-derived global soil moisture data set for use in the GLAS atmospheric circulation model seasonal cycle experiment

    NASA Technical Reports Server (NTRS)

    Willmott, C. J.; Field, R. T.

    1984-01-01

    Algorithms for point interpolation and contouring on the surface of the sphere and in Cartesian two-space are developed from Shepard's (1968) well-known, local search method. These mapping procedures then are used to investigate the errors which appear on small-scale climate maps as a result of the all-too-common practice of of interpolating, from irregularly spaced data points to the nodes of a regular lattice, and contouring Cartesian two-space. Using mean annual air temperatures field over the western half of the northern hemisphere is estimated both on the sphere, assumed to be correct, and in Cartesian two-space. When the spherically- and Cartesian-approximted air temperature fields are mapped and compared, the magnitudes (as large as 5 C to 10 C) and distribution of the errors associated with the latter approach become apparent.

  14. The shapes of column density PDFs. The importance of the last closed contour

    NASA Astrophysics Data System (ADS)

    Alves, João; Lombardi, Marco; Lada, Charles J.

    2017-10-01

    The probability distribution function of column density (PDF) has become the tool of choice for cloud structure analysis and star formation studies. Its simplicity is attractive, and the PDF could offer access to cloud physical parameters otherwise difficult to measure, but there has been some confusion in the literature on the definition of its completeness limit and shape at the low column density end. In this letter we use the natural definition of the completeness limit of a column density PDF, the last closed column density contour inside a surveyed region, and apply it to a set of large-scale maps of nearby molecular clouds. We conclude that there is no observational evidence for log-normal PDFs in these objects. We find that all studied molecular clouds have PDFs well described by power laws, including the diffuse cloud Polaris. Our results call for a new physical interpretation of the shape of the column density PDFs. We find that the slope of a cloud PDF is invariant to distance but not to the spatial arrangement of cloud material, and as such it is still a useful tool for investigating cloud structure.

  15. Kriging analysis of mean annual precipitation, Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    Karlinger, M.R.; Skrivan, James A.

    1981-01-01

    Kriging is a statistical estimation technique for regionalized variables which exhibit an autocorrelation structure. Such structure can be described by a semi-variogram of the observed data. The kriging estimate at any point is a weighted average of the data, where the weights are determined using the semi-variogram and an assumed drift, or lack of drift, in the data. Block, or areal, estimates can also be calculated. The kriging algorithm, based on unbiased and minimum-variance estimates, involves a linear system of equations to calculate the weights. Kriging variances can then be used to give confidence intervals of the resulting estimates. Mean annual precipitation in the Powder River basin, Montana and Wyoming, is an important variable when considering restoration of coal-strip-mining lands of the region. Two kriging analyses involving data at 60 stations were made--one assuming no drift in precipitation, and one a partial quadratic drift simulating orographic effects. Contour maps of estimates of mean annual precipitation were similar for both analyses, as were the corresponding contours of kriging variances. Block estimates of mean annual precipitation were made for two subbasins. Runoff estimates were 1-2 percent of the kriged block estimates. (USGS)

  16. Generalized water-level contours, September-October 2000 and March-April 2001, and long-term water-level changes, at the U.S. Air Force Plant 42 and vicinity, Palmdale, California

    USGS Publications Warehouse

    Christensen, Allen H.

    2005-01-01

    Historically, the U.S. Air Force Plant 42 has relied on ground water as the primary source of water owing, in large part, to the scarcity of surface water in the region. Groundwater withdrawal for municipal, industrial, and agricultural use has affected ground-water levels at U.S. Air Force Plant 42, and vicinity. A study to document changes in groundwater gradients and to present historical water-level data was completed by the U.S. Geological Survey in cooperation with the U.S. Air Force. This report presents historical water-level data, hydrographs, and generalized seasonal water-level and water-level contours for September?October 2000 and March?April 2001. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently water availability. During September?October 2000 and March?April 2001 the U.S. Geological Survey and other agencies made a total of 102 water-level measurements, 46 during September?October 2000 and 56 during March?April 2001. These data document recent conditions and, when compared with historical data, document changes in ground-water levels. Two water-level contour maps were drawn: the first depicts water-level conditions for September?October 2000 map and the second depicts water-level conditions for March?April 2001 map. In general, the water-level contour maps show water-level depressions formed as result of ground-water withdrawal. One hundred sixteen long-term hydrographs, using water-level data from 1915 through 2000, were constructed to show water-level trends in the area. The hydrographs indicate that water-level decline occurred throughout the study area, with the greatest declines south of U.S. Air Force Plant 42.

  17. A study of model deflection measurement techniques applicable within the national transonic facility

    NASA Technical Reports Server (NTRS)

    Hildebrand, B. P.; Doty, J. L.

    1982-01-01

    Moire contouring, scanning interferometry, and holographic contouring were examined to determine their practicality and potential to meet performance requirements for a model deflection sensor. The system envisioned is to be nonintrusive, and is to be capable of mapping or contouring the surface of a 1-meter by 1-meter model with a resolution of 50 to 100 points. The available literature was surveyed, and computations and analyses were performed to establish specific performance requirements, as well as the capabilities and limitations of such a sensor within the geometry of the NTF section test section. Of the three systems examined, holographic contouring offers the most promise. Unlike Moire, it is not hampered by limited contour spacing and extraneous fringes. Its transverse resolution can far exceed the limited point sampling resolution of scanning heterodyne interferometry. The availability of the ruby laser as a high power, pulsed, multiple wavelength source makes such a system feasible within the NTF.

  18. 30 CFR 783.25 - Cross sections, maps, and plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...

  19. 30 CFR 783.25 - Cross sections, maps, and plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...

  20. 30 CFR 783.25 - Cross sections, maps, and plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...

  1. 30 CFR 783.25 - Cross sections, maps, and plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...

  2. 30 CFR 783.25 - Cross sections, maps, and plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...

  3. A COMPARISON OF MAPPED ESTIMATES OF LONG-TERM RUNOFF IN THE NORTHEAST UNITED STATES

    EPA Science Inventory

    We evaluated the relative accuracy of four methods of producing maps of long-term runoff for part of the northeast United States: MAN, a manual procedure that incorporates expert opinion in contour placement; RPRIS, an automated procedure based on water balance considerations, Pn...

  4. Surficial geologic map of the Elizabethtown 30' x 60' quadrangle, North Carolina

    USGS Publications Warehouse

    Weems, Robert E.; Lewis, William C.; Crider, E. Allen

    2011-01-01

    The Elizabethtown 30' x 60' quadrangle is located in southeastern North Carolina between Fayetteville and Wilmington. Most of the area is flat to gently rolling, although steep slopes occur locally along some of the larger streams. Total relief in the area is slightly over 210 feet (ft), with elevations ranging from slightly less than 10 ft above sea level along the Black River (east of Rowan in the southeastern corner of the map) to slightly over 220 ft in the northwestern corner northeast of Hope Mills. The principal streams in the area are the Cape Fear, Black, South, and Lumber Rivers, which on average flow from northwest to southeast across the map area. The principal north-south roads are Interstate Route 95, Interstate Route 40, U.S. Route 117, U.S. Route 301, U.S. Route 421, and U.S. Route 701, and the principal east-west roads are N.C. State Route 241 and N.C. State Route 41. This part of North Carolina is primarily rural and agricultural. The largest communities in and adjacent to the area are Elizabethtown, Hope Mills, Clinton, Warsaw, and Lumberton. The map lies entirely within the Atlantic Coastal Plain physiographic province. Outstanding features of this area are the large number of sand-rimmed Carolina bays, five of which contain enough water to constitute natural lakes: Bay Tree Lake, Salter Lake, Little Singletary Lake, Singletary Lake, and White Lake. These are associated with widespread windblown sand deposits on which are grown abundant crops of blueberries. The extent and distribution of these deposits have been estimated based on a combination of augerhole, outcrop, and light-detection and ranging (LIDAR) data. The geology of the Elizabethtown 30' x 60' quadrangle was originally mapped on 32 7.5-minute quadrangles at 1:24,000 scale and then compiled on this 1:100,000-scale base. The base-map topographic contours on this compilation are shown in meters; the cross sections, structure contours, and well and corehole basement elevations have been carried over unconverted from the 1:24,000-scale maps and are shown in feet.

  5. JPRS Report, Science & Technology, USSR: Earth Sciences

    DTIC Science & Technology

    1988-12-06

    Vol 24 No 7, Jul 88] 14 Integral Characteristics of Light Scattering by Large Spherical Particles IE. P. Zege, A. A. Kokhanovskiy; IZVESTIYA AKADEMII...economical that the base not contain a grid model, but the initial contours, represented in vector format, in which case it is called a vector DRM. The...information make it possible to display both screen and vector DRM and from these, retrieve contours in the initial format. The automated forest mapping

  6. Gravity Survey of the Carson Sink - Data and Maps

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high-temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG-5 gravimeter and a LaCoste and Romberg (L&R) Model-G gravimeter. The CG-5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill-hole intercept values. Preliminary Interpretation of Results: The Carson Sink is a complex composite basin with several major depocenters (Figures 15 and 16). Major depocenters are present in the south-central, east-central, and northeastern parts of the basin. The distribution of gravity anomalies suggests a complex pattern of faulting in the subsurface of the basin, with many fault terminations, step-overs, and accommodation zones. The pattern of faulting implies that other, previously undiscovered blind geothermal systems are likely in the Carson Sink. The gravity survey was completed near the end of this project. Thus, more thorough analysis of the data and potential locations of blind geothermal systems is planned for future work.

  7. A novel surrogate to identify anatomical changes during radiotherapy of head and neck cancer patients.

    PubMed

    Gros, Sébastien A A; Xu, William; Roeske, John C; Choi, Mehe; Emami, Bahman; Surucu, Murat

    2017-03-01

    To develop a novel method to monitor external anatomical changes in head and neck cancer patients in order to triage possible adaptive radiotherapy needs. The presented approach aims to provide information on internal anatomical changes based on variations observed in external anatomy. Setup Cone Beam Computed Tomography (CBCT) images are processed to produce an accurate external contour of the patient's skin. After registering the CBCTs to the reference planning CT, the external contours from each CBCT are transferred to the initial - first week - CBCT. Contour radii, defined as the distances between an external contour and the isocenter projection in each CBCT slice, are calculated for each scan over the full 360 degrees. The changes in external anatomy are then quantified by the difference in radial distance between the external contours of any secondary CBCT relative to the initial CBCT. Finally, the radial difference is displayed in cylindrical coordinates as a 2D intensity map to highlight regions of interests with significant changes. Weekly CBCT scans from 15 head and neck patients were retrospectively analyzed to demonstrate the utility of this approach as a proof of principle. External changes suggested by the 2D radial difference map of an example patient after 23 fractions were then correlated with the changes in the gross tumor volumes and organs at risks. The resulting dosimetric effects were evaluated. An interactive standalone software application has been developed to facilitate the generation and the interpretation of the 2D intensity map. The 2D radial difference maps provided qualitative and quantitative information, such as the location and the magnitude of external contour changes and the rate at which these deviations occur. Out of the 15 patients, 10 presented clear evidence of general external volume shrinkage due to weight loss, and nine patients had at least one site of local shrinkage. Only two patients showed no signs of anatomical change during their entire treatment course. For the example patient, the mean (±σ) radial difference was 6.7 (±3.0) mm for the left parotid and 7.3 (±2.5) mm for the right parotid. The mean dose to the left and right parotids increased from 20.1 Gy to 30 Gy and from 16.3 Gy to 29.6 Gy, respectively. This novel method provides an efficient tool to visualize 3D external anatomical changes on a single 2D map. It quickly pinpoints the location of differences in anatomy during the course of radiotherapy, which can help physicians determine if a treatment plan needs to be adapted. The interactive graphic user interface developed in this study will be evaluated in an adaptive radiotherapy workflow for head and neck patients in a future prospective trial. © 2016 American Association of Physicists in Medicine.

  8. The Cancer Cluster - An unbound collection of groups

    NASA Technical Reports Server (NTRS)

    Geller, M. J.; Beers, T. C.; Bothun, G. D.; Huchra, J. P.

    1983-01-01

    A surface density contour map of the Cancer Cluster derived from galaxy counts in the Zwicky catalog is presented. The contour map shows that the galaxy distribution is clumpy. When this spatial distribution is combined with nearly complete velocity information, the clumps stand out more clearly; there are significant differences in the mean velocities of the clumps which exceed their internal velocity dispersions. The Cancer Cluster is not a proper 'cluster' but is a collection of discrete groups, each with a velocity dispersion of approximately 300 km/s, separating from one another with the cosmological flow. The mass-to-light ratio for galaxies in the main concentration is approximately 320 solar masses/solar luminosities (H sub 0 = 100 km/s Mpc).

  9. Evaluation of using digital gravity field models for zoning map creation

    NASA Astrophysics Data System (ADS)

    Loginov, Dmitry

    2018-05-01

    At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.

  10. TU-H-CAMPUS-JeP1-02: Fully Automatic Verification of Automatically Contoured Normal Tissues in the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarroll, R; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX; Beadle, B

    Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrectmore » contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to flag auto-contours for special review or used with safety margins in a fully automatic treatment planning system.« less

  11. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida, September, 2004

    USGS Publications Warehouse

    Kinnaman, Sandra L.

    2005-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in September 2004. Potentiometric contours are based on water-level measurements collected at 608 wells during the period September 14-October 1, near the end of the wet season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  12. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May, 2004

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Knowles, Leel

    2004-01-01

    INTRODUCTION This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity in May 2001. Potentiometric contours are based on water-level measurements collected at 684 wells during the period May 2 - 30, near the end of the dry season. The shapes of some contours have been inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  13. Thermal contouring of forestry data: Wallops Island

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The contouring of 8-13.5 micrometer thermal data collected over a forestry site in Virginia is described. The data were collected at an altitude of 1000 ft above terrain on November 4, 1970. The site was covered on three approximately parallel lines. The purpose of the contouring was to attempt to delineate pine trees attacked by southern pine bark beetle, and to map other important terrain categories. Special processing steps were required to achieve the correct aspect ratio of the thermal data. The reference for the correction procedure was color infrared photography. Data form and quality are given, processing steps are outlined, a brief interpretation of results is given, and conclusion are presented.

  14. Mapping islands, reefs and shoals in the oceans surrounding Australia

    NASA Technical Reports Server (NTRS)

    Turner, L. G. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Contours of residual errors were depicted in east and north directions. Contours were constructed from residuals which were determined at 22 ground control points. Residuals at two control points were rejected from contour determination, as their magnitudes were not in keeping with surrounding values. Results obtained so far from depth measurement tests are only tentative. Both sucessful and unsuccessful correlations were depicted between the imagery intensities and bathymetric data. Using the results from nine profile comparisons abstracted from a scene over Torres Strait, where water was generally very clear, an empirical relationship between image intensity (1) and water depth (d) was derived: 1 = 30 - 0.75 d.

  15. Geophysical Data Sets in GeoMapApp

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.

    2017-12-01

    GeoMapApp (http://www.geomapapp.org), a free map-based data tool developed at Lamont-Doherty Earth Observatory, provides access to hundreds of integrated geoscience data sets that are useful for geophysical studies. Examples include earthquake and volcano catalogues, gravity and magnetics data, seismic velocity tomographic models, geological maps, geochemical analytical data, lithospheric plate boundary information, geodetic velocities, and high-resolution bathymetry and land elevations. Users can also import and analyse their own data files. Data analytical functions provide contouring, shading, profiling, layering and transparency, allowing multiple data sets to be seamlessly compared. A new digitization and field planning portal allow stations and waypoints to be generated. Sessions can be saved and shared with colleagues and students. In this eLightning presentation we will demonstrate some of GeoMapApp's capabilities with a focus upon subduction zones and tectonics. In the attached screen shot of the Cascadia margin, the contoured depth to the top of the subducting Juan de Fuca slab is overlain on a shear wave velocity depth slice. Geochemical data coloured on Al2O3 and scaled on MgO content is shown as circles. The stack of data profiles was generated along the white line.

  16. Combined 3D-QSAR and molecular docking study on 7,8-dialkyl-1,3-diaminopyrrolo-[3,2-f] Quinazoline series compounds to understand the binding mechanism of DHFR inhibitors

    NASA Astrophysics Data System (ADS)

    Aouidate, Adnane; Ghaleb, Adib; Ghamali, Mounir; Chtita, Samir; Choukrad, M'barek; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar

    2017-07-01

    A series of nineteen DHFR inhibitors was studied based on the combination of two computational techniques namely, three-dimensional quantitative structure activity relationship (3D-QSAR) and molecular docking. The comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were developed using 19 molecules having pIC50 ranging from 9.244 to 5.839. The best CoMFA and CoMSIA models show conventional determination coefficients R2 of 0.96 and 0.93 as well as the Leave One Out cross-validation determination coefficients Q2 of 0.64 and 0.72, respectively. The predictive ability of those models was evaluated by the external validation using a test set of five compounds with predicted determination coefficients R2test of 0.92 and 0.94, respectively. The binding mode between this kind of compounds and the DHFR enzyme in addition to the key amino acid residues were explored by molecular docking simulation. Contour maps and molecular docking identified that the R1 and R2 natures at the pyrazole moiety are the important features for the optimization of the binding affinity to the DHFR receptor. According to the good concordance between the CoMFA/CoMSIA contour maps and docking results, the obtained information was explored to design novel molecules.

  17. 27 CFR 9.41 - Lancaster Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The appropriate maps for determining the boundaries of the Lancaster Valley... through the town of Gap and along Mine Ridge to the 76°07′30″ west longitude line in Paradise Township. (9... Chestnut Ridge, past Millers Run and continuing until the 400 foot contour line intersects an unnamed...

  18. 27 CFR 9.41 - Lancaster Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The appropriate maps for determining the boundaries of the Lancaster Valley... through the town of Gap and along Mine Ridge to the 76°07′30″ west longitude line in Paradise Township. (9... Chestnut Ridge, past Millers Run and continuing until the 400 foot contour line intersects an unnamed...

  19. Route Planning and Route Choice: An Empirical Investigation into Information Processing and Decision Making in Orienteering.

    ERIC Educational Resources Information Center

    Seiler, Roland

    1989-01-01

    Investigates kinds of map information selected and supplementary information desired by experienced orienteers. Reports that, based on lab and field studies, that contour lines were the most important map information, followed by information reducing physical or technical requirements. Concludes action theory is applicable to decision-making…

  20. Geologic and isostatic map of the Nenana Basin area, central Alaska

    USGS Publications Warehouse

    Frost, G.M.; Barnes, D.F.; Stanley, R.G.

    2002-01-01

    Introduction The Nenana Basin area is a prospective petroleum province in central Alaska, and this geologic and isostatic gravity map is part of a petroleum resource assessment of the area. The geology was compiled from published sources (Chapman and others, 1971, 1975a, 1975b, 1982; Chapman and Yeend, 1981; Csejtey and others, 1986; Jones and others, 1983; Pewe and others, 1966; Reed, 1961; and Weber and others, 1992), as shown on the index map (map sheet). Map units are organized and presented according to the scheme of lithotectonic terranes proposed by Jones and others (1987) and Silberling and Jones (1984); we recognize, however, that this terrane scheme is controversial and likely to be revised in the future. In some cases, we combined certain terranes because we were unable to match the terrane boundaries given by Jones and others (1987) and Silberling and Jones (1984) with specific faults shown on existing geologic maps. Postaccretion cover deposits represent overlap assemblages that depositionally overlie accreted terranes. Plutonic igneous rocks shown on this map include several plutons that are clearly postaccretionary, based on isotopic ages and (or) field relations. It is possible that some of the plutons predate accretion, but this has not been demonstrated. According to Jones and others (1982), the terranes in the area of our map were assembled during late Mesozoic or earliest Cenozoic time. The gravity contours are derived from data used in earlier compilations (Barnes, 1961, 1977; Hackett, 1981; Valin and others, 1991; Frost and Stanley, 1991) that are supplemented by some National Oceanic and Atmospheric Administration data along the Alaska Pipeline level line (W.E. Strange, written commun., 1980). The earlier compilations were used for simple Bouguer maps, prepared primarily by non-digital methods, and are superseded by this map. The present map is the result of digital processing that includes the 1967 Geodetic Reference System, the IGSN-71 datum, digital terrain corrections, and conversion to isostatic gravity so that geologic structures on the margin of the Alaska Range are more clearly portrayed (Simpson and others, 1986). Computation procedures are described in part by Barnes (1972, 1984), Jachens and Roberts (1981), and Barnes and others (1994). The calculations used a crustal density of 2.67 g/cm 3 , a density contrast at the base of the isostatic root of 0.4 g/cm 3 , and a root thickness at sea level of 25 km. The distribution of data within the map area is uneven and locally controls the shape of the computer-generated contours. Altimetry was used for most of the elevation control and its inconsistency is responsible for many of the small contour irregularities. Ninety percent of the measurements are estimated to have an accuracy of about 1.5 mgal or about a quarter of the 5 mgal contour interval. Data collection and analysis were assisted by R.V. Allen, R.C. Jachens, M.A. Fisher, T.R. Bruns, J.G. Blank, J.W. Bader, Z.C. Valin, J.W. Cady, R.L. Morin, and P.V. Woodward. The most promising area for petroleum exploration is a prominent 25 mgal isostatic gravity low north of Nenana (T. 2 S., R. 8 W.). This gravity low probably corresponds to the deepest part of a sedimentary basin filled by Cenozoic strata that includes nonmarine fluvial and lacustrine deposits of the Eocene to Miocene Usibelli Group. Smaller gravity lows are associated with outcrops of these sedimentary rocks north of Suntrana (T. 12 S., R. 6-9 W.) and Sable Pass (T. 16 S., R. 11 W.). A broad low on the north flank of the Alaska Range east of the Wood River (T. 10 S., R. 1 E.) indicates another basin under the Tanana lowland that extends eastward off the map area towards Delta Junction, where its presence was confirmed by both gravity and seismic data (Barnes and others, 1991). Gravity modelling suggests that the base of the Usibelli Group in the area north of Nenana (T. 2 S., R. 8 W.) is about 3,000 to 3,350 m beneath t

  1. Bathymetric map of the south part of Great Salt Lake, Utah, 2005

    USGS Publications Warehouse

    Baskin, Robert L.; Allen, David V.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Wildlife Resources, collected bathymetric data for the south part of Great Salt Lake during 2002–04 using a single beam, high-definition fathometer and real-time differential global positioning system. Approximately 7.6 million depth readings were collected along more than 1,050 miles of survey transects for construction of this map. Sound velocities were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed with commercial hydrographic software and exported into geographic information system (GIS) software for mapping. Because of the shallow nature of the lake and the limitations of the instrumentation, contours above an altitude of 4,193 feet were digitized from existing USGS 1:24,000 source-scale digital line graph data.For additional information on methods used to derive the bathymetric contours for this map, please see Baskin, Robert L., 2005, Calculation of area and volume for the south part of Great Salt Lake, Utah, U.S. Geological Survey Open-File Report OFR–2005–1327.

  2. Venus: radar determination of gravity potential.

    PubMed

    Shapiro, I I; Pettengill, G H; Sherman, G N; Rogers, A E; Ingalls, R P

    1973-02-02

    We describe a method for the determination of the gravity potential of Venus from multiple-frequency radar measurements. The method is based on the strong frequency dependence of the absorption of radio waves in Venus' atmosphere. Comparison of the differing radar reflection intensities at several frequencies yields the height of the surface relative to a reference pressure contour; combination with measurements of round-trip echo delays allows the pressure, and hence the gravity potential contour, to be mapped relative to the mean planet radius. Since calibration data from other frequencies are unavailable, the absorption-sensitive Haystack Observatory data have been analyzed under the assumption of uniform surface reflectivity to yield a gravity equipotential contour for the equatorial region and a tentative upper bound of 6 x 10(-4) on the fractional difference of Venus' principal equatorial moments of inertia. The minima in the equipotential contours appear to be associated with topographic minima.

  3. Three-dimensional surface contouring of macroscopic objects by means of phase-difference images.

    PubMed

    Velásquez Prieto, Daniel; Garcia-Sucerquia, Jorge

    2006-09-01

    We report a technique to determine the 3D contour of objects with dimensions of at least 4 orders of magnitude larger than the illumination optical wavelength. Our proposal is based on the numerical reconstruction of the optical wave field of digitally recorded holograms. The required modulo 2pi phase map in any contouring process is obtained by means of the direct subtraction of two phase-contrast images under different illumination angles to create a phase-difference image of a still object. Obtaining the phase-difference images is only possible by using the capability of numerical reconstruction of the complex optical field provided by digital holography. This unique characteristic leads us to a robust, reliable, and fast procedure that requires only two images. A theoretical analysis of the contouring system is shown, with verification by means of numerical and experimental results.

  4. Multisensor Modeling Underwater with Uncertain Information

    DTIC Science & Technology

    1988-09-01

    the Clipperton Zone. The data used for stochastic modeling were supplied by NECOR at the University of Rhode Island . by courtesy of Dr. Dave Gallo of...artifacts ............................. 133 Figure 6.5: Sea MARC I intensity map of Clipperton area ............... .136 Figure 6.6: Sea MARC I intensity...map of Clipperton area (from Kastens et ,11.). .. 137 Figure 6.7: Sea Beam contour map of Clipperton area .................. .138 Figure 6.8: Sea Beam

  5. Topographic map of the Coronae Montes region of Mars - MTM 500k -35/087E OMKTT

    USGS Publications Warehouse

    Rosiek, Mark R.; Redding, Bonnie L.; Galuszca, Donna M.

    2005-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetrically using Viking Orbiter stereo image pairs. The contour interval is 250 m. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  6. Topographic Map of the Northeast Ascraeus Mons Region of Mars - MTM 500k 15/257E OMKT

    USGS Publications Warehouse

    ,

    2004-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetically using Viking Orbiter stereo image pairs. The contour interval is 250 meters. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  7. Topographic Map of the Northwest Ascraeus Mons Region of Mars - MTM 500k 15/252E OMKT

    USGS Publications Warehouse

    ,

    2004-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetically using Viking Orbiter stereo image pairs. The contour interval is 250 meters. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  8. Topographic Map of the Southeast Ascraeus Mons Region of Mars - MTM 500k 10/257E OMKT

    USGS Publications Warehouse

    ,

    2004-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetically using Viking Orbiter stereo image pairs. The contour interval is 250 meters. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  9. Topographic Map of the Southwest Ascraeus Mons Region of Mars - MTM 500k 10/252E OMKT

    USGS Publications Warehouse

    ,

    2004-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetically using Viking Orbiter stereo image pairs. The contour interval is 250 meters. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  10. SINGLE INSTITUTION VARIABILITY IN INTENSITY MODULATED RADIATION TARGET DELINEATION FOR CANINE NASAL NEOPLASIA.

    PubMed

    Christensen, Neil I; Forrest, Lisa J; White, Pamela J; Henzler, Margaret; Turek, Michelle M

    2016-11-01

    Contouring variability is a significant barrier to the accurate delivery and reporting of radiation therapy. The aim of this descriptive study was to determine the variation in contouring radiation targets and organs at risk by participants within our institution. Further, we also aimed to determine if all individuals contoured the same normal tissues. Two canine nasal tumor datasets were selected and contoured by two ACVR-certified radiation oncologists and two radiation oncology residents from the same institution. Eight structures were consistently contoured including the right and left eye, the right and left lens, brain, the gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV). Spinal cord, hard and soft palate, and bulla were contoured on 50% of datasets. Variation in contouring occurred in both targets and normal tissues at risk and was particularly significant for the GTV, CTV, and PTV. The mean metric score and dice similarity coefficient were below the threshold criteria in 37.5-50% and 12.5-50% of structures, respectively, quantitatively indicating contouring variation. This study refutes our hypothesis that minimal variation in target and normal tissue delineation occurs. The variation in contouring may contribute to different tumor response and toxicity for any given patient. Our results also highlight the difficulty associated with replication of published radiation protocols or treatments, as even with replete contouring description the outcome of treatment is still fundamentally influenced by the individual contouring the patient. © 2016 American College of Veterinary Radiology.

  11. A pseudoinverse deformation vector field generator and its applications

    PubMed Central

    Yan, C.; Zhong, H.; Murphy, M.; Weiss, E.; Siebers, J. V.

    2010-01-01

    Purpose: To present, implement, and test a self-consistent pseudoinverse displacement vector field (PIDVF) generator, which preserves the location of information mapped back-and-forth between image sets. Methods: The algorithm is an iterative scheme based on nearest neighbor interpolation and a subsequent iterative search. Performance of the algorithm is benchmarked using a lung 4DCT data set with six CT images from different breathing phases and eight CT images for a single prostrate patient acquired on different days. A diffeomorphic deformable image registration is used to validate our PIDVFs. Additionally, the PIDVF is used to measure the self-consistency of two nondiffeomorphic algorithms which do not use a self-consistency constraint: The ITK Demons algorithm for the lung patient images and an in-house B-Spline algorithm for the prostate patient images. Both Demons and B-Spline have been QAed through contour comparison. Self-consistency is determined by using a DIR to generate a displacement vector field (DVF) between reference image R and study image S (DVFR–S). The same DIR is used to generate DVFS–R. Additionally, our PIDVF generator is used to create PIDVFS–R. Back-and-forth mapping of a set of points (used as surrogates of contours) using DVFR–S and DVFS–R is compared to back-and-forth mapping performed with DVFR–S and PIDVFS–R. The Euclidean distances between the original unmapped points and the mapped points are used as a self-consistency measure. Results: Test results demonstrate that the consistency error observed in back-and-forth mappings can be reduced two to nine times in point mapping and 1.5 to three times in dose mapping when the PIDVF is used in place of the B-Spline algorithm. These self-consistency improvements are not affected by the exchanging of R and S. It is also demonstrated that differences between DVFS–R and PIDVFS–R can be used as a criteria to check the quality of the DVF. Conclusions: Use of DVF and its PIDVF will improve the self-consistency of points, contour, and dose mappings in image guided adaptive therapy. PMID:20384247

  12. Rapid heat-flowing surveying of geothermal areas, utilizing individual snowfalls as calorimeters

    USGS Publications Warehouse

    White, Donald E.

    1969-01-01

    Local differences in rate of heat transfer in vapor and by conduction through the ground in hot spring areas are difficult and time-consuming to measure quantitatively. Individual heavy snowfalls provide a rapid low-cost means of measuring total heat flow from such ground. After a favorable snowfall (heavy, brief duration, little wind, air temperature near 0°C), contacts between snow-covered and snow-free ground are mapped on a suitable base. Each mapped contact, as time elapses after a specific snowfall, is a heat-flow contour representing a decreasing rate of flow. Calibration of each mapped contact or snow line is made possible by the fact that snow remains on insulated surfaces (such as the boardwalks of Yellowstone's thermal areas) long after it has melted on adjacent warm ground. Heat-flow contours mapped to date range from 450 to 5500 μcal/cm2 sec, or 300 to 3700 times the world average of conductive heat flow. The very high rates of heat flow (2000 to > 10,000 μcal/cm2 sec) are probably too high, and the lower heat flows determinable by the method (2 sec) may be too low. Values indicated by the method are, however, probably within a factor of 2 of the total conductive and convective heat flow. Thermal anomalies from infrared imagery are similar in shape to heat-flow contours of a test area near Old Faithful geyser. Snowfall calorimetry provides a rapid means for evaluating the imagery and computer-derived products of the infrared data in terms of heat flow.

  13. Electrophysiological mapping of the accessory olfactory bulb of the rabbit (Oryctolagus cuniculus).

    PubMed

    van Groen, T; Ruardy, L; da Silva, F H

    1986-07-01

    Field potentials elicited by electrical stimulation of the vomeronasal nerve were measured in the accessory olfactory bulb of the rabbit. Maps were made of the distribution of surface field potentials and of the corresponding depth profiles. The surface maps followed closely the contours of the accessory olfactory bulb: at the frontal border the field potential tended to zero and at the center of the structure the field potential attained a maximum. Depth profiles of the field potentials through the accessory olfactory bulb presented a surface-negative wave and, in depth, a positive wave. The polarity reversal occurred at the deep part of the granule cell layer. The zero equipotential line followed closely the curvature of the granule cell layer. Current source density analysis of the depth profiles revealed a main sink at the external plexiform and granule cell layers. This indicates that the main activity in the accessory olfactory bulb is generated by the synapses between the mitral cells and the granule cells as is found in the main olfactory bulb.

  14. Nanotechnology Approaches to Studying Epigenetic Changes in Cancer

    NASA Astrophysics Data System (ADS)

    Riehn, Robert

    2011-03-01

    Placing polyelectrolytes into confined geometries has a profound effect on their molecular configuration. For instance, placing long DNA molecules into channels with a cross-section of about 100 nm 2 stretches them out to about 70% of their contour length. We are using this effect to map epigenetic changes on single DNA and chromatin strands. This mapping on single molecules becomes central in the study of the heterogeneity of cell population in cancer, since rapid change of epigenetic makeup, propagated through rare cancer stem cells, is a hallmark of its progression. We demonstrate the basic building blocks for the single-molecule epigenetic analysis of genomic sized DNA. In particular, we have achieved the mapping of methylated regions in DNA with heterogeneous 5-methyl cytosine modification using a specific fluorescent marker. We further show that chromatin with an intact histone structure can be stretched similar to DNA, and that the epigenetic state of histone tails can be detected using fluorescent antibodies.

  15. Viking Lander Atlas of Mars

    NASA Technical Reports Server (NTRS)

    Liebes, S., Jr.

    1982-01-01

    Half size reproductions are presented of the extensive set of systematic map products generated for the two Mars Viking landing sites from stereo pairs of images radioed back to Earth. The maps span from the immediate foreground to the remote limits of ranging capability, several hundred meters from the spacecraft. The maps are of two kinds - elevation contour and vertical profile. Background and explanatory material important for understanding and utilizing the map collection included covers the Viking Mission, lander locations, lander cameras, the stereo mapping system and input images to this system.

  16. Direct imaging of isofrequency contours in photonic structures

    DOE PAGES

    Regan, E. C.; Igarashi, Y.; Zhen, B.; ...

    2016-11-25

    The isofrequency contours of a photonic crystal are important for predicting and understanding exotic optical phenomena that are not apparent from high-symmetry band structure visualizations. We demonstrate a method to directly visualize the isofrequency contours of high-quality photonic crystal slabs that show quantitatively good agreement with numerical results throughout the visible spectrum. Our technique relies on resonance-enhanced photon scattering from generic fabrication disorder and surface roughness, so it can be applied to general photonic and plasmonic crystals or even quasi-crystals. We also present an analytical model of the scattering process, which explains the observation of isofrequency contours in our technique.more » Furthermore, the isofrequency contours provide information about the characteristics of the disorder and therefore serve as a feedback tool to improve fabrication processes.« less

  17. SU-F-J-97: A Joint Registration and Segmentation Approach for Large Bladder Deformations in Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derksen, A; Koenig, L; Heldmann, S

    Purpose: To improve results of deformable image registration (DIR) in adaptive radiotherapy for large bladder deformations in CT/CBCT pelvis imaging. Methods: A variational multi-modal DIR algorithm is incorporated in a joint iterative scheme, alternating between segmentation based bladder matching and registration. Using an initial DIR to propagate the bladder contour to the CBCT, in a segmentation step the contour is improved by discrete image gradient sampling along all surface normals and adapting the delineation to match the location of each maximum (with a search range of +−5/2mm at the superior/inferior bladder side and step size of 0.5mm). An additional graph-cutmore » based constraint limits the maximum difference between neighboring points. This improved contour is utilized in a subsequent DIR with a surface matching constraint. By calculating an euclidean distance map of the improved contour surface, the new constraint enforces the DIR to map each point of the original contour onto the improved contour. The resulting deformation is then used as a starting guess to compute a deformation update, which can again be used for the next segmentation step. The result is a dense deformation, able to capture much larger bladder deformations. The new method is evaluated on ten CT/CBCT male pelvis datasets, calculating Dice similarity coefficients (DSC) between the final propagated bladder contour and a manually delineated gold standard on the CBCT image. Results: Over all ten cases, an average DSC of 0.93±0.03 is achieved on the bladder. Compared with the initial DIR (0.88±0.05), the DSC is equal (2 cases) or improved (8 cases). Additionally, DSC accuracy of femoral bones (0.94±0.02) was not affected. Conclusion: The new approach shows that using the presented alternating segmentation/registration approach, the results of bladder DIR in the pelvis region can be greatly improved, especially for cases with large variations in bladder volume. Fraunhofer MEVIS received funding from a research grant by Varian Medical Systems.« less

  18. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.

    PubMed

    Fechter, Tobias; Adebahr, Sonja; Baltas, Dimos; Ben Ayed, Ismail; Desrosiers, Christian; Dolz, Jose

    2017-12-01

    Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomical structures. However, this task remains challenging for organs like the esophagus, which have a versatile shape and poor contrast to neighboring tissues. For human experts, segmenting the esophagus from CT images is a time-consuming and error-prone process. To tackle these issues, we propose a random walker approach driven by a 3D fully convolutional neural network (CNN) to automatically segment the esophagus from CT images. First, a soft probability map is generated by the CNN. Then, an active contour model (ACM) is fitted to the CNN soft probability map to get a first estimation of the esophagus location. The outputs of the CNN and ACM are then used in conjunction with a probability model based on CT Hounsfield (HU) values to drive the random walker. Training and evaluation were done on 50 CTs from two different datasets, with clinically used peer-reviewed esophagus contours. Results were assessed regarding spatial overlap and shape similarity. The esophagus contours generated by the proposed algorithm showed a mean Dice coefficient of 0.76 ± 0.11, an average symmetric square distance of 1.36 ± 0.90 mm, and an average Hausdorff distance of 11.68 ± 6.80, compared to the reference contours. These results translate to a very good agreement with reference contours and an increase in accuracy compared to existing methods. Furthermore, when considering the results reported in the literature for the publicly available Synapse dataset, our method outperformed all existing approaches, which suggests that the proposed method represents the current state-of-the-art for automatic esophagus segmentation. We show that a CNN can yield accurate estimations of esophagus location, and that the results of this model can be refined by a random walk step taking pixel intensities and neighborhood relationships into account. One of the main advantages of our network over previous methods is that it performs 3D convolutions, thus fully exploiting the 3D spatial context and performing an efficient volume-wise prediction. The whole segmentation process is fully automatic and yields esophagus delineations in very good agreement with the gold standard, showing that it can compete with previously published methods. © 2017 American Association of Physicists in Medicine.

  19. SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S; Dolly, S; Cai, B

    Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deepmore » modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification. Structured with MVVM pattern, it is highly maintainable and extensible, and support smooth connections with other clinical software tools.« less

  20. Water-Table Levels and Gradients, Nevada, 1947-2004

    USGS Publications Warehouse

    Lopes, Thomas J.; Buto, Susan G.; Smith, J. LaRue; Welborn, Toby L.

    2006-01-01

    In 1999, the U.S. Environmental Protection Agency began a program to protect the quality of ground water in areas other than ground-water protection areas. These other sensitive ground water areas (OSGWA) are areas that are not currently, but could eventually be, used as a source of drinking water. The OSGWA program specifically addresses existing wells that are used for underground injection of motor-vehicle waste. To help determine whether a well is in an OSGWA, the Nevada Division of Environmental Protection needs statewide information on depth to water and the water table, which partly control the susceptibility of ground water to contamination and contaminant transport. This report describes a study that used available maps and data to create statewide maps of water-table and depth-to-water contours and surfaces, assessed temporal changes in water-table levels, and characterized water-table gradients in selected areas of Nevada. A literature search of published water-table and depth-to-water contours produced maps of varying detail and scope in 104 reports published from 1948 to 2004. Where multiple maps covered the same area, criteria were used to select the most recent, detailed maps that covered the largest area and had plotted control points. These selection criteria resulted in water-table and depth-to-water contours that are based on data collected from 1947 to 2004 being selected from 39 reports. If not already available digitally, contours and control points were digitized from selected maps, entered into a geographic information system, and combined to make a statewide map of water-table contours. Water-table surfaces were made by using inverse distance weighting to estimate the water table between contours and then gridding the estimates. Depth-to-water surfaces were made by subtracting the water-table altitude from the land-surface altitude. Water-table and depth-to-water surfaces were made for only 21 percent of Nevada because of a lack of information for 49 of 232 basins and for most consolidated-rock hydrogeologic units. Depth to water is commonly less than 50 feet beneath valley floors, 50 to 500 feet beneath alluvial fans, and more than 500 feet in some areas such as north-central and southern Nevada. In areas without water-table information, greasewood and mapped ground-water discharge areas are good indicators of depth to water less than 100 feet. The average difference between measured depth to water and depth to water estimated from surfaces was 90 feet. More recent and detailed information may be needed than that presented in this report to evaluate a specific site. Temporal changes in water-table levels were evaluated for 1,981 wells with 10 or more years between the first depth-to-water measurement and last measurement made since 1990. The greatest increases in depth to water occurred where the first measurement was less than 200 feet, where the time between first and last measurements was 40 years or less, and for wells between 100 and 600 feet deep. These characteristics describe production wells where ground water is fairly shallow in recently developing areas such as the Las Vegas and Reno metropolitan areas. In basins with little pumping, 90 percent of the changes during the past 100 years are within ?20 feet, which is about the natural variation in the water table due to changes in the climate and recharge. Gradients in unconsolidated sediments of the Great Basin are generally steep near mountain fronts, shallow beneath valley floors, and depend on variables such as the horizontal hydraulic conductivity of adjacent consolidated rocks and recharge. Gradients beneath alluvial fans and valley floors at 58 sites were correlated with selected variables to identify those variables that are statistically related. Water-table measurements at three sites were used to characterize the water table between the valley floor and consolidated rock. Water-table gradients beneath alluvial fan

  1. Real-time Shakemap implementation in Austria

    NASA Astrophysics Data System (ADS)

    Weginger, Stefan; Jia, Yan; Papi Isaba, Maria; Horn, Nikolaus

    2017-04-01

    ShakeMaps provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. They are automatically generated within a few minutes after occurrence of an earthquake. We tested and included the USGS ShakeMap 4.0 (experimental code) based on python in the Antelope real-time system with local modified GMPE and Site Effects based on the conditions in Austria. The ShakeMaps are provided in terms of Intensity, PGA, PGV and PSA. Future presentation of ShakeMap contour lines and Ground Motion Parameter with interactive maps and data exchange over Web-Services are shown.

  2. Atlas of wide-field-of-view outgoing longwave radiation derived from Nimbus 6 Earth radiation budget data set, July 1975 to June 1978

    NASA Technical Reports Server (NTRS)

    Bess, T. Dale; Smith, G. Louis

    1987-01-01

    An atlas of monthly mean outgoing longwave radiation global contour maps and associated spherical harmonic coefficients is presented. The atlas contains 36 months of continuous data from July 1975 to June 1978. The data were derived from the first Earth radiation budget experiment, which was flown on the Nimbus-6 Sun-synchronous satellite in 1975. Only the wide-field-of-view longwave measurements are cataloged in this atlas. The contour maps along with the associated sets of spherical harmonic coefficients form a valuable data set for studying different aspects of our changing climate over monthly, annual, and interannual scales in the time domain, and over regional, zonal, and global scales in the spatial domain.

  3. 2D seismic interpretation and characterization of the Hauterivian-Early Barremian source rock in Al Baraka oil field, Komombo Basin, Upper Egypt

    NASA Astrophysics Data System (ADS)

    Ali, Moamen; Darwish, M.; Essa, Mahmoud A.; Abdelhady, A.

    2018-03-01

    Komombo Basin is located in Upper Egypt about 570 km southeast of Cairo; it is an asymmetrical half graben and the first oil producing basin in Upper Egypt. The Six Hills Formation is of Early Cretaceous age and subdivided into seven members from base to top (A-G); meanwhile the B member is of Hauterivian-Early Barremian and it is the only source rock of Komombo Basin. Therefore, a detailed study of the SR should be carried out, which includes the determination of the main structural elements, thickness, facies distribution and characterization of the B member SR which has not been conducted previously in the study area. Twenty 2D seismic lines were interpreted with three vertical seismic profiles (VSP) to construct the depth structure-tectonic map on the top of the B member and to highlight the major structural elements. The interpretation of depth structure contour map shows two main fault trends directed towards the NW-SE and NE to ENE directions. The NW-SE trend is the dominant one, creating a major half-graben system. Also the depth values range from -8400 ft at the depocenter in the eastern part to -4800 ft at the shoulder of the basin in the northwestern part of the study area. Meanwhile the Isopach contour map of the B member shows a variable thickness ranging between 300 ft to 750 ft. The facies model shows that the B member SR is composed mainly of shale with some sandstone streaks. The B member rock samples were collected from Al Baraka-1 and Al Baraka SE-1 in the eastern part of Komombo Basin. The results indicate that the organic matter content (TOC) has mainly good to very good (1-3.36 wt %), The B member samples have HI values in the range 157-365 (mg HC/g TOC) and dominated by Type II/III kerogen, and is thus considered to be oil-gas prone based on Rock-Eval pyrolysis, Tmax values between 442° and 456° C therefore interpreted to be mature for hydrocarbon generation. Based on the measured vitrinite equivalent reflectance values, the B member SR samples have a range 0.7-1.14%Ro, in the oil generation window.

  4. The effect of dental artifacts, contrast media, and experience on interobserver contouring variations in head and neck anatomy.

    PubMed

    O'Daniel, Jennifer C; Rosenthal, David I; Garden, Adam S; Barker, Jerry L; Ahamad, Anesa; Ang, K Kian; Asper, Joshua A; Blanco, Angel I; de Crevoisier, Renaud; Holsinger, F Christopher; Patel, Chirag B; Schwartz, David L; Wang, He; Dong, Lei

    2007-04-01

    To investigate interobserver variability in the delineation of head-and-neck (H&N) anatomic structures on CT images, including the effects of image artifacts and observer experience. Nine observers (7 radiation oncologists, 1 surgeon, and 1 physician assistant) with varying levels of H&N delineation experience independently contoured H&N gross tumor volumes and critical structures on radiation therapy treatment planning CT images alongside reference diagnostic CT images for 4 patients with oropharynx cancer. Image artifacts from dental fillings partially obstructed 3 images. Differences in the structure volumes, center-of-volume positions, and boundary positions (1 SD) were measured. In-house software created three-dimensional overlap distributions, including all observers. The effects of dental artifacts and observer experience on contouring precision were investigated, and the need for contrast media was assessed. In the absence of artifacts, all 9 participants achieved reasonable precision (1 SD < or =3 mm all boundaries). The structures obscured by dental image artifacts had larger variations when measured by the 3 metrics (1 SD = 8 mm cranial/caudal boundary). Experience improved the interobserver consistency of contouring for structures obscured by artifacts (1 SD = 2 mm cranial/caudal boundary). Interobserver contouring variability for anatomic H&N structures, specifically oropharyngeal gross tumor volumes and parotid glands, was acceptable in the absence of artifacts. Dental artifacts increased the contouring variability, but experienced participants achieved reasonable precision even with artifacts present. With a staging contrast CT image as a reference, delineation on a noncontrast treatment planning CT image can achieve acceptable precision.

  5. Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rautman, Christopher Arthur; Stein, Joshua S.

    2003-01-01

    Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. Thismore » algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.« less

  6. A Voxel-by-Voxel Comparison of Deformable Vector Fields Obtained by Three Deformable Image Registration Algorithms Applied to 4DCT Lung Studies.

    PubMed

    Fatyga, Mirek; Dogan, Nesrin; Weiss, Elizabeth; Sleeman, William C; Zhang, Baoshe; Lehman, William J; Williamson, Jeffrey F; Wijesooriya, Krishni; Christensen, Gary E

    2015-01-01

    Commonly used methods of assessing the accuracy of deformable image registration (DIR) rely on image segmentation or landmark selection. These methods are very labor intensive and thus limited to relatively small number of image pairs. The direct voxel-by-voxel comparison can be automated to examine fluctuations in DIR quality on a long series of image pairs. A voxel-by-voxel comparison of three DIR algorithms applied to lung patients is presented. Registrations are compared by comparing volume histograms formed both with individual DIR maps and with a voxel-by-voxel subtraction of the two maps. When two DIR maps agree one concludes that both maps are interchangeable in treatment planning applications, though one cannot conclude that either one agrees with the ground truth. If two DIR maps significantly disagree one concludes that at least one of the maps deviates from the ground truth. We use the method to compare 3 DIR algorithms applied to peak inhale-peak exhale registrations of 4DFBCT data obtained from 13 patients. All three algorithms appear to be nearly equivalent when compared using DICE similarity coefficients. A comparison based on Jacobian volume histograms shows that all three algorithms measure changes in total volume of the lungs with reasonable accuracy, but show large differences in the variance of Jacobian distribution on contoured structures. Analysis of voxel-by-voxel subtraction of DIR maps shows differences between algorithms that exceed a centimeter for some registrations. Deformation maps produced by DIR algorithms must be treated as mathematical approximations of physical tissue deformation that are not self-consistent and may thus be useful only in applications for which they have been specifically validated. The three algorithms tested in this work perform fairly robustly for the task of contour propagation, but produce potentially unreliable results for the task of DVH accumulation or measurement of local volume change. Performance of DIR algorithms varies significantly from one image pair to the next hence validation efforts, which are exhaustive but performed on a small number of image pairs may not reflect the performance of the same algorithm in practical clinical situations. Such efforts should be supplemented by validation based on a longer series of images of clinical quality.

  7. Army Training and Testing Area Carrying Capacity (ATTACC) LS Factor Calculator User Manual, Version 1.0

    DTIC Science & Technology

    2002-08-01

    of these elevation files depends on the contour interval and map scale of the original contour data. The choice of data source for determining the...the ATTACC LCM Installation CD. Not all versions of the ATTACC LCM Installation CD have the LS Factor Calculator software included. The process for ...PAGE Form Approved OMB No. 0704-0188 Public reporting burder for this collection of information is estibated to average 1 hour per response

  8. Application Of Holographic Interferometry For Investigation Of Microroughness Of Engineering Surfaces

    NASA Astrophysics Data System (ADS)

    Lech, Marek; Mruk, Irena; Stupnicki, Jacek

    1985-01-01

    The paper describes an improved immersion method of holographic interferometry /IMHI/ adjusted for studies of roughness of engineering surfaces. Special optical arrangement, with two types of immersion cells and adequate technique of preparing transparent replicas reproducting with high fidelity details of differently machined surfaces was elaborated. It permits to obtain the contour maps of the surface asperities with intervals between the planes of succesive contour lines within a range of 1 μm. The results obtained for some engineering surfaces are given.

  9. Correlations between contouring similarity metrics and simulated treatment outcome for prostate radiotherapy

    NASA Astrophysics Data System (ADS)

    Roach, D.; Jameson, M. G.; Dowling, J. A.; Ebert, M. A.; Greer, P. B.; Kennedy, A. M.; Watt, S.; Holloway, L. C.

    2018-02-01

    Many similarity metrics exist for inter-observer contouring variation studies, however no correlation between metric choice and prostate cancer radiotherapy dosimetry has been explored. These correlations were investigated in this study. Two separate trials were undertaken, the first a thirty-five patient cohort with three observers, the second a five patient dataset with ten observers. Clinical and planning target volumes (CTV and PTV), rectum, and bladder were independently contoured by all observers in each trial. Structures were contoured on T2-weighted MRI and transferred onto CT following rigid registration for treatment planning in the first trial. Structures were contoured directly on CT in the second trial. STAPLE and majority voting volumes were generated as reference gold standard volumes for each structure for the two trials respectively. VMAT treatment plans (78 Gy to PTV) were simulated for observer and gold standard volumes, and dosimetry assessed using multiple radiobiological metrics. Correlations between contouring similarity metrics and dosimetry were calculated using Spearman’s rank correlation coefficient. No correlations were observed between contouring similarity metrics and dosimetry for CTV within either trial. Volume similarity correlated most strongly with radiobiological metrics for PTV in both trials, including TCPPoisson (ρ  =  0.57, 0.65), TCPLogit (ρ  =  0.39, 0.62), and EUD (ρ  =  0.43, 0.61) for each respective trial. Rectum and bladder metric correlations displayed no consistency for the two trials. PTV volume similarity was found to significantly correlate with rectum normal tissue complication probability (ρ  =  0.33, 0.48). Minimal to no correlations with dosimetry were observed for overlap or boundary contouring metrics. Future inter-observer contouring variation studies for prostate cancer should incorporate volume similarity to provide additional insights into dosimetry during analysis.

  10. Anatomy structure creation and editing using 3D implicit surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbard, Lyndon S.

    2012-05-15

    Purpose: To accurately reconstruct, and interactively reshape 3D anatomy structures' surfaces using small numbers of 2D contours drawn in the most visually informative views of 3D imagery. The innovation of this program is that the number of 2D contours can be very much smaller than the number of transverse sections, even for anatomy structures spanning many sections. This program can edit 3D structures from prior segmentations, including those from autosegmentation programs. The reconstruction and surface editing works with any image modality. Methods: Structures are represented by variational implicit surfaces defined by weighted sums of radial basis functions (RBFs). Such surfacesmore » are smooth, continuous, and closed and can be reconstructed with RBFs optimally located to efficiently capture shape in any combination of transverse (T), sagittal (S), and coronal (C) views. The accuracy of implicit surface reconstructions was measured by comparisons with the corresponding expert-contoured surfaces in 103 prostate cancer radiotherapy plans. Editing a pre-existing surface is done by overdrawing its profiles in image views spanning the affected part of the structure, deleting an appropriate set of prior RBFs, and merging the remainder with the new edit contour RBFs. Two methods were devised to identify RBFs to be deleted based only on the geometry of the initial surface and the locations of the new RBFs. Results: Expert-contoured surfaces were compared with implicit surfaces reconstructed from them over varying numbers and combinations of T/S/C planes. Studies revealed that surface-surface agreement increases monotonically with increasing RBF-sample density, and that the rate of increase declines over the same range. These trends were observed for all surface agreement metrics and for all the organs studied--prostate, bladder, and rectum. In addition, S and C contours may convey more shape information than T views for CT studies in which the axial slice thickness is greater than the pixel size. Surface editing accuracy likewise improves with larger sampling densities, and the rate of improvement similarly declines over the same conditions. Conclusions: Implicit surfaces based on RBFs are accurate representations of anatomic structures and can be interactively generated or modified to correct segmentation errors. The number of input contours is typically smaller than the number of T contours spanned by the structure.« less

  11. Vector Topographic Map Data over the BOREAS NSA and SSA in SIF Format

    NASA Technical Reports Server (NTRS)

    Knapp, David; Nickeson, Jaime; Hall, Forrest G. (Editor)

    2000-01-01

    This data set contains vector contours and other features of individual topographic map sheets from the National Topographic Series (NTS). The map sheet files were received in Standard Interchange Format (SIF) and cover the BOReal Ecosystem-Atmosphere Study (BOREAS) Northern Study Area (NSA) and Southern Study Area (SSA) at scales of 1:50,000 and 1:250,000. The individual files are stored in compressed Unix tar archives.

  12. SU-E-J-134: Optimizing Technical Parameters for Using Atlas Based Automatic Segmentation for Evaluation of Contour Accuracy Experience with Cardiac Structures From NRG Oncology/RTOG 0617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J; Gong, Y; Bar-Ad, V

    Purpose: Accurate contour delineation is crucial for radiotherapy. Atlas based automatic segmentation tools can be used to increase the efficiency of contour accuracy evaluation. This study aims to optimize technical parameters utilized in the tool by exploring the impact of library size and atlas number on the accuracy of cardiac contour evaluation. Methods: Patient CT DICOMs from RTOG 0617 were used for this study. Five experienced physicians delineated the cardiac structures including pericardium, atria and ventricles following an atlas guideline. The consistency of cardiac structured delineation using the atlas guideline was verified by a study with four observers and seventeenmore » patients. The CT and cardiac structure DICOM files were then used for the ABAS technique.To study the impact of library size (LS) and atlas number (AN) on automatic contour accuracy, automatic contours were generated with varied technique parameters for five randomly selected patients. Three LS (20, 60, and 100) were studied using commercially available software. The AN was four, recommended by the manufacturer. Using the manual contour as the gold standard, Dice Similarity Coefficient (DSC) was calculated between the manual and automatic contours. Five-patient averaged DSCs were calculated for comparison for each cardiac structure.In order to study the impact of AN, the LS was set 100, and AN was tested from one to five. The five-patient averaged DSCs were also calculated for each cardiac structure. Results: DSC values are highest when LS is 100 and AN is four. The DSC is 0.90±0.02 for pericardium, 0.75±0.06 for atria, and 0.86±0.02 for ventricles. Conclusion: By comparing DSC values, the combination AN=4 and LS=100 gives the best performance. This project was supported by NCI grants U24CA12014, U24CA180803, U10CA180868, U10CA180822, PA CURE grant and Bristol-Myers Squibb and Eli Lilly.« less

  13. Age-forming aluminum panels

    NASA Technical Reports Server (NTRS)

    Baxter, G. I.

    1976-01-01

    Contoured-stiffened 63 by 337 inch 2124 aluminum alloy panels are machined in-the-flat to make integral, tapered T-capped stringers, parallel with longitudinal centerline. Aging fixture, which includes net contour formers made from lofted contour templates, has eggcrate-like structure for use in forming and checking panels.

  14. An interactive method for digitizing zone maps

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.; Thompson, E. J.

    1975-01-01

    A method is presented for digitizing maps that consist of zones, such as contour or climatic zone maps. A color-coded map is prepared by any convenient process. The map is then read into memory of an Image 100 computer by means of its table scanner, using colored filters. Zones are separated and stored in themes, using standard classification procedures. Thematic data are written on magnetic tape and these data, appropriately coded, are combined to make a digitized image on tape. Step-by-step procedures are given for digitization of crop moisture index maps with this procedure. In addition, a complete example of the digitization of a climatic zone map is given.

  15. 3D-QSAR comparative molecular field analysis on opioid receptor antagonists: pooling data from different studies.

    PubMed

    Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J

    2005-03-10

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the basis of the CoMFA contour maps. The structure-activity relationships (SARs) together with the CoMFA models should find utility for the rational design of subtype-selective opioid receptor antagonists.

  16. CoMFA analyses of C-2 position salvinorin A analogs at the kappa-opioid receptor provides insights into epimer selectivity.

    PubMed

    McGovern, Donna L; Mosier, Philip D; Roth, Bryan L; Westkaemper, Richard B

    2010-04-01

    The highly potent and kappa-opioid (KOP) receptor-selective hallucinogen Salvinorin A and selected analogs have been analyzed using the 3D quantitative structure-affinity relationship technique Comparative Molecular Field Analysis (CoMFA) in an effort to derive a statistically significant and predictive model of salvinorin affinity at the KOP receptor and to provide additional statistical support for the validity of previously proposed structure-based interaction models. Two CoMFA models of Salvinorin A analogs substituted at the C-2 position are presented. Separate models were developed based on the radioligand used in the kappa-opioid binding assay, [(3)H]diprenorphine or [(125)I]6 beta-iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5 alpha-epoxymorphinan ([(125)I]IOXY). For each dataset, three methods of alignment were employed: a receptor-docked alignment derived from the structure-based docking algorithm GOLD, another from the ligand-based alignment algorithm FlexS, and a rigid realignment of the poses from the receptor-docked alignment. The receptor-docked alignment produced statistically superior results compared to either the FlexS alignment or the realignment in both datasets. The [(125)I]IOXY set (Model 1) and [(3)H]diprenorphine set (Model 2) gave q(2) values of 0.592 and 0.620, respectively, using the receptor-docked alignment, and both models produced similar CoMFA contour maps that reflected the stereoelectronic features of the receptor model from which they were derived. Each model gave significantly predictive CoMFA statistics (Model 1 PSET r(2)=0.833; Model 2 PSET r(2)=0.813). Based on the CoMFA contour maps, a binding mode was proposed for amine-containing Salvinorin A analogs that provides a rationale for the observation that the beta-epimers (R-configuration) of protonated amines at the C-2 position have a higher affinity than the corresponding alpha-epimers (S-configuration). (c) 2010. Published by Elsevier Inc.

  17. Investigation of gasoline distributions within petrol stations: spatial and seasonal concentrations, sources, mitigation measures, and occupationally exposed symptoms.

    PubMed

    Sairat, Theerapong; Homwuttiwong, Sahalaph; Homwutthiwong, Kritsana; Ongwandee, Maneerat

    2015-09-01

    We measured levels of VOCs and determined the distributions of benzene concentrations over the area of two petrol stations in all three seasons. Using the concentrations and sampling positions, we created isoconcentration contour maps. The average concentrations ranged 18-1288 μg m(-3) for benzene and 12-81 μg m(-3) for toluene. The contour maps indicate that high-level contours of benzene were found not only at the fuel dispenser areas but also at the storage tank refilling points, open drainage areas where gasoline-polluted wastewater was flowing, and the auto service center located within the station area. An assessment of the benzene to toluene ratio contour plots implicates that airborne benzene and toluene near the fuel dispenser area were attributed to gasoline evaporation although one of the studied stations may be influenced by other VOC sources besides gasoline evaporation. Additionally, during the routine refilling of the underground fuel storage tanks by a tank truck, the ambient levels of benzene and toluene increased tremendously. The implementation of source control by replacing old dispensers with new fuel dispensers that have an efficient cutoff feature and increased delivery speed can reduce spatial benzene concentrations by 77%. Furthermore, a questionnaire survey among 63 service attendants in ten stations revealed that headache was the most reported health complaint with a response rate of 32%, followed by fatigue with 20%. These prominent symptoms could be related to an exposure to high benzene concentrations.

  18. NASA ARIA Project Provides New Look at Earth Surface Deformation from Nepal Quake

    NASA Image and Video Library

    2015-05-04

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the PALSAR-2 instrument on the ALOS-2 satellite operated by the Japan Aerospace Exploration Agency (JAXA) to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 70-day interval between two ALOS-2 images, acquired February 21 and May 2, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 4.7 inches (11.9 centimeters) of surface motion. The contours show the land around Kathmandu has moved toward the satellite by up to 4.6 feet (1.4 meter), or 5.2 feet (1.6 meters) if we assume purely vertical motion. Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The PALSAR-2 data were provided by JAXA through the Committee on Earth Observation Satellite (CEOS) in support of the response effort. The background image is from Google Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19383

  19. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Runkle, Donna; Rea, Alan; Cederstrand, J.R.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries, maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma. Ground water in 1,305 square miles of Quaternary-age alluvial and terrace deposits along the the Cimarron River from Freedom to Guthrie is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. Alluvial and terrace deposits are composed of interfingering lenses of clay, sandy clay, and cross-bedded poorly sorted sand and gravel. The aquifer is composed of hydraulically connected alluvial and terrace deposits that unconformably overlie the Permian-age Formations. The aquifer boundaries are from a ground-water modeling report on the alluvial and terrace aquifer along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma and published digital surficial geology data sets. The aquifer boundary data set was created from digital geologic data sets from maps published at a scale of 1:250,000. The hydraulic conductivity values, recharge rates, and ground-water level elevation contours are from the ground-water modeling report. Water-level elevation contours were digitized from a map at a scale of 1:250,000. The maps were published at a scale of 1:900,000. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  20. Interpretation of Local Gravity Anomalies in Northern New York

    NASA Astrophysics Data System (ADS)

    Revetta, F. A.

    2004-05-01

    About 10,000 new gravity measurements at a station spacing of 1 to 2 Km were made in the Adirondack Mountains, Lake Champlain Valley, St. Lawrence River Valley and Tug Hill Plateau. These closely spaced gravity measurements were compiled to construct computer contoured gravity maps of the survey areas. The gravity measurements reveal local anomalies related to seismicity, faults, mineral resources and gas fields that are not seen in the regional gravity mapping. In northern New York gravity and seismicity maps indicate epicenters are concentrated in areas of the most pronounced gravity anomalies along steep gravity gradients. Zones of weakness along the contacts of these lithologies of different density could possibly account for the earthquakes in this high stress area. Also, a computer contoured gravity map of the 5.3 magnitude Au Sable Forks earthquake of April 20, 2002 indicates the epicenter lies along a north-south trending gravity gradient produced by a high angle fault structure separating a gravity low in the west from high gravity in the east. In the St. Lawrence Valley, the Carthage-Colton Mylonite Zone, a major northeast trending structural boundary between the Adirondack Highlands and Northwest Lowlands, is represented as a steep gravity gradient extending into the eastern shore of Lake Ontario. At Russell, New York near the CCMZ, a small circular shaped gravity high coincides with a cluster of earthquakes. The coincidence of the epicenters over the high may indicate stress amplification at the boundary of a gabbro pluton. The Morristown fault located in the Morristown Quadrangle in St. Lawrence County produces both gravity and magnetic anomalies due to Precambrian Basement faulting. This faulting indicates control of the Morristown fault in the overlying Paleozoics by the Precambrian faults. Gravity and magnetic anomalies also occur over proposed extensions of the Gloucester and Winchester Springs faults into northern New York. Gravity and magnetic surveys were conducted at the closed Benson Mines magnetite mine and the Zinc Mines at Balmat, New York. The gravity and magnetic anomalies at Benson Mines indicate that significant amounts of magnetite remain in the subsurface and the steep gradients indicate a shallow depth. A gravity high of 35 gravity units in the Sylvia Lake Zinc District at Balmat, New York occurs over the upper marble and a 100 gu anomaly occurs just northeast of the zinc district. Abandoned natural gas fields exist along the southern and southwestern boundary of the Tug Hill Plateau. Gravity surveys were conducted in the vicinity of three of these gas fields in the Tug Hill Plateau (Camden, Sandy Creek and Pulaski). The Tug Hill Plateau is thought to be an uplifted-fault-bounded block which, if correct, might account for the existence of those gas fields. The trends of the gravity contours on the gravity maps lends credence to the fault interpretation. Also gravity and magnetic traverses were conducted across faults in the Trenton-Black River. These traverses show gravity anomalies across the faults which indicate control by faulting in the Precambrian.

  1. Interagency Report: Astrogeology 58, television cartography

    USGS Publications Warehouse

    Batson, Raymond M.

    1973-01-01

    The purpose of this paper is to illustrate the processing of digital television pictures into base maps. In this context, a base map is defined as a pictorial representation of planetary surface morphology accurately reproduced on standard map projections. Topographic contour lines, albedo or geologic overprints may be super imposed on these base maps. The compilation of geodetic map controls, the techniques of mosaic compilation, computer processing and airbrush enhancement, and the compilation of con tour lines are discussed elsewhere by the originators of these techniques. A bibliography of applicable literature is included for readers interested in more detailed discussions.

  2. Indications of correlation between gravity measurements and isoseismal maps. A case study of Athens basin (Greece)

    NASA Astrophysics Data System (ADS)

    Dilalos, S.; Alexopoulos, J. D.

    2017-05-01

    In this paper, we discuss the correlation between isoseismal contour maps and gravity residual anomaly maps and how it might contribute to the characterization of vulnerable areas to earthquake damage, especially in urban areas, where the geophysical data collection is difficult. More specifically, we compare a couple of isoseismal maps that have been produced and published after the catastrophic earthquake of 7th September 1999 (5.9R) in Athens, the metropolis of Greece, with the residual map produced from the processing and data reduction of a gravity survey that has been carried out in the Athens basin recently. The geologic and tectonic regime of the Athens basin is quite complicated and it is still being updated with new elements. Basically it is comprised of four different geotectonic units, one of them considered as the autochthon. During the gravity investigation, 807 gravity stations were collected, based on a grid plan with spacing almost 1 km, covering the entire basin and supported by a newly established gravity base network comprised by thirteen bases. Differential DGPS technique was used for the accurate measurement of all the gravity stations and bases coordinates. After the appropriate data reduction and the construction of the Complete Bouguer Anomaly map, we applied FFT filtering in order to remove the regional component and produce the Residual Anomaly Map. The comparison of the Residual Anomaly Map with the isoseismal contours revealed that the areas with the most damage because of the earthquake were located in the areas with the minimum values of the Residual Anomaly Map.

  3. Power maps and wavefront for progressive addition lenses in eyeglass frames.

    PubMed

    Mejía, Yobani; Mora, David A; Díaz, Daniel E

    2014-10-01

    To evaluate a method for measuring the cylinder, sphere, and wavefront of progressive addition lenses (PALs) in eyeglass frames. We examine the contour maps of cylinder, sphere, and wavefront of a PAL assembled in an eyeglass frame using an optical system based on a Hartmann test. To reduce the data noise, particularly in the border of the eyeglass frame, we implement a method based on the Fourier analysis to extrapolate spots outside the eyeglass frame. The spots are extrapolated up to a circular pupil that circumscribes the eyeglass frame and compared with data obtained from a circular uncut PAL. By using the Fourier analysis to extrapolate spots outside the eyeglass frame, we can remove the edge artifacts of the PAL within its frame and implement the modal method to fit wavefront data with Zernike polynomials within a circular aperture that circumscribes the frame. The extrapolated modal maps from framed PALs accurately reflect maps obtained from uncut PALs and provide smoothed maps for the cylinder and sphere inside the eyeglass frame. The proposed method for extrapolating spots outside the eyeglass frame removes edge artifacts of the contour maps (wavefront, cylinder, and sphere), which may be useful to facilitate measurements such as the length and width of the progressive corridor for a PAL in its frame. The method can be applied to any shape of eyeglass frame.

  4. Geologic map of the Devore 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Matti, Jonathan C.

    2001-01-01

    This Open-File Report contains a digital geologic map database of the Devore 7.5' quadrangle, San Bernardino County, California, that includes: 1. ARC/INFO (Environmental Systems Research Institute) version 7.2.1 coverages of the various components of the geologic map 2. A PostScript (.ps) file to plot the geologic map on a topographic base, containing a Correlation of Map Units diagram, a Description of Map Units, an index map, and a regional structure map 3. Portable Document Format (.pdf) files of: a. This Readme; includes an Appendix, containing metadata details found in devre_met.txt b. The same graphic as plotted in 2 above. (Test plots from this .pdf do not produce 1:24,000-scale maps. Adobe Acrobat page-size settings control map scale.) The Correlation of Map Units and Description of Map Units are in the editorial format of USGS Miscellaneous Investigations Series maps (I-maps) but have not been edited to comply with I-map standards. Within the geologic-map data package, map units are identified by such standard geologic-map criteria as formation name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Devore 7.5’ topographic quadrangle in conjunction with the geologic map.

  5. Isopach and structure contour maps of the Burro Canyon(?) Formation in the Chama-El Vado Area, Chama Basin, New Mexico

    USGS Publications Warehouse

    Ridgley, Jennie L.

    1983-01-01

    In the Chama Basin a wequence of conglomerate, sandstone, and red, gray-green, and pale-purple mudstone occurs stratigraphically between the Upper Jurassic Morrison Formation and Upper Cretaceous Dakota Sandstone. This stratigraphic interval has been called the Burro Canyon Formation by several workers (Craig and others, 1959; Smith and others, 1961; Saucier, 1974). Although similarities in lithology and stratigraphic position exist between this unit and the Burro Canyon Formation in Colorado, no direct correlation has been made between the two. For this reason the unit in the Chama Basin is called the Burro Canyon(?) Formation. 

  6. Reconnaissance electrical surveys in the Coso Range, California

    NASA Astrophysics Data System (ADS)

    Jackson, Dallas B.; O'Donnell, James E.

    1980-05-01

    Telluric current, audiomagnetotelluric (AMT), and direct current (dc) methods were used to study the electrical structure of the Coso Range and Coso geothermal area. Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs-Devil's Kitchen geothermal area. The secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5-30 ohm m) interpreted to be hydrothermally altered Sierra Nevada basement rocks containing saline water of a hot water geothermal system. This zone of lowest apparent resistivities over the basement rocks lies within a closed contour of a heat flow anomaly where all values are greater than 10 heat flow units.

  7. Hydrogeologic framework and geologic structure of the Floridan aquifer system and intermediate confining unit in the Lake Okeechobee area, Florida

    USGS Publications Warehouse

    Reese, Ronald S.

    2014-01-01

    The successful implementation of aquifer storage and recovery (ASR) as a water-management tool requires detailed information on the hydrologic and hydraulic properties of the potential water storage zones. This report presents stratigraphic and hydrogeologic sections of the upper part of the Floridan aquifer system and the overlying confining unit or aquifer system in the Lake Okeechobee area, and contour maps of the upper contacts of the Ocala Limestone and the Arcadia Formation, which are represented in the sections. The sections and maps illustrate hydrogeologic factors such as confinement of potential storage zones, the distribution of permeability within the zones, and geologic features that may control the efficiency of injection, storage, and recovery of water, and thus may influence decisions on ASR activities in areas of interest to the Comprehensive Everglades Restoration Plan.

  8. The effort to close the gap: Tracking the development of illusory contour processing from childhood to adulthood with high-density electrical mapping

    PubMed Central

    Altschuler, Ted S.; Molholm, Sophie; Butler, John S.; Mercier, Manuel R.; Brandwein, Alice B.; Foxe, John J.

    2014-01-01

    The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230-400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N= 63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern - engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5 years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. PMID:24365674

  9. 27 CFR 9.181 - McMinnville.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Peavine Road west and then northwest about 1.5 miles to its intersection with Gill Creek in section 18, T4S, R5W (Muddy Valley map); (5) Follow Gill Creek southerly (downstream) for about 0.6 miles to its intersection with the 800-foot contour line in section 18, T4S, R5W, on the Muddy Valley map; (6) From Gill...

  10. 27 CFR 9.181 - McMinnville.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Peavine Road west and then northwest about 1.5 miles to its intersection with Gill Creek in section 18, T4S, R5W (Muddy Valley map); (5) Follow Gill Creek southerly (downstream) for about 0.6 miles to its intersection with the 800-foot contour line in section 18, T4S, R5W, on the Muddy Valley map; (6) From Gill...

  11. Increasing the Performance of a Sliding Discharge Actuator Through the Application of Multiple Potentials

    DTIC Science & Technology

    2011-09-01

    75 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 vi Page V. Conclusions...Map Results . . . . . . . . . . . . . . . . 75 4.24 Case 13 Velocity Contour Map Results . . . . . . . . . . . . . . . . 76 ix Figure Page 4.25 Case 14...expressed in this materail are those of the author and do not necessarily reflect the views of AFOSR. LCDR Steven D Seney Jr v Table of Contents Page

  12. Bathymetric map of the north part of Great Salt Lake, Utah, 2006

    USGS Publications Warehouse

    Baskin, Robert L.; Turner, Jane

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Forestry, Fire, and State Lands, collected bathymetric data for the north part of Great Salt Lake during the spring and early summer of 2006 using a single beam, high-definition fathometer and real-time differential global positioning system. Approximately 5.2 million depth readings were collected along more than 765 miles of survey transects for construction of this map. Sound velocities were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed using commercial hydrographic software and exported into a geographic information system (GIS) software for mapping. Due to the shallow nature of the lake and the limitations of the instrumentation, contours above an altitude of 4,194 feet were digitized from existing USGS 1:24,000 source-scale digital line graph data. The Behrens Trench is approximately located.For additional information on methods used to derive the bathymetric contours for this map, please see Baskin, Robert L., 2006, Calculation of area and volume for the North Part of Great Salt Lake, Utah, U.S. Geological Survey Open-File Report OFR–2006–1359

  13. Lyman-alpha observations of Comet West /1975n/

    NASA Technical Reports Server (NTRS)

    Opal, C. B.; Carruthers, G. R.

    1977-01-01

    The rate of hydrogen production of Comet West is studied through rocket observation of solar Lyman-alpha radiation resonantly scattered by the escaping hydrogen atoms. Two sets of Lyman-alpha exposure sequences are used to obtain computer-smoothed brightness contour (isophote) maps covering a density range of 100:1. A simple radial outflow model is applied to the contour maps to determine the rate of hydrogen production (3.2 by 10 to the 30th power atoms/sec.) Discrepancies between the observed shape of the outer isophotes and predicted models may be explained by optical depth effects, or by the presence of small pieces of the comet's nucleus distributed along the orbit. Hydrogen, carbon, and oxygen production for Comet West and Comet Kohoutek are compared; differences may be accounted for by variations in the composition or evolution of the two comets.

  14. A global atlas of GEOS-3 significant waveheight data and comparison of the data with national buoy data

    NASA Technical Reports Server (NTRS)

    Mcmillan, J. D.

    1981-01-01

    The accuracy of the GEOS-3 significant waveheight estimates compared with buoy measurements of significant waveheight were determined. A global atlas of the GEOS-3 significant waveheight estimates gathered is presented. The GEOS-3 significant waveheight estimation algorithm is derived by analyzing the return waveform characteristics of the altimeter. Convergence considerations are examined, the rationale for a smoothing technique is presented and the convergence characteristics of the smoothed estimate are discussed. The GEOS-3 data are selected for comparison with buoy measurements. The GEOS-3 significant waveheight estimates are assembled in the form of a global atlas of contour maps. Both high and low sea state contour maps are presented, and the data are displayed both by seasons and for the entire duration of the GEOS-3 mission.

  15. Deformations and strains in adhesive joints by moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Wood, J.; John, D.; Lubowinski, S.

    1984-01-01

    Displacement fields in a thick adherend lap joint and a cracked lap shear specimen were measured by high sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherent surfaces. Loading sequences ranged from modest loads to near-failure loads. Quantitative results are given for displacements and certain strains in the adhesive and along the adhesive/adherend boundary lines. The results show nonlinear displacements and strains as a function of loads or stresses and they show viscoelastic or time-dependent response. Moire interferometry is an excellent method for experimental studies of adhesive joint performance. Subwavelength displacement resolution of a few micro-inches, and spatial resolution corresponding to 1600 fringes/inch (64 fringes/mm), were obtained in these studies. The whole-field contour maps offer insights not available from local measurements made by high sensitivity gages.

  16. Research on detection method of UAV obstruction based on binocular vision

    NASA Astrophysics Data System (ADS)

    Zhu, Xiongwei; Lei, Xusheng; Sui, Zhehao

    2018-04-01

    For the autonomous obstacle positioning and ranging in the process of UAV (unmanned aerial vehicle) flight, a system based on binocular vision is constructed. A three-stage image preprocessing method is proposed to solve the problem of the noise and brightness difference in the actual captured image. The distance of the nearest obstacle is calculated by using the disparity map that generated by binocular vision. Then the contour of the obstacle is extracted by post-processing of the disparity map, and a color-based adaptive parameter adjustment algorithm is designed to extract contours of obstacle automatically. Finally, the safety distance measurement and obstacle positioning during the UAV flight process are achieved. Based on a series of tests, the error of distance measurement can keep within 2.24% of the measuring range from 5 m to 20 m.

  17. Hydrologic record extension of water-level data in the Everglades Depth Estimation Network (EDEN), 1991-99

    USGS Publications Warehouse

    Conrads, Paul; Petkewich, Matthew D.; O'Reilly, Andrew M.; Telis, Pamela A.

    2015-01-01

    To hindcast and fill data records, 214 empirical models were developed—189 are linear regression models and 25 are artificial neural network models. The coefficient of determination (R2) for 163 of the models is greater than 0.80 and the median percent model error (root mean square error divided by the range of the measured data) is 5 percent. To evaluate the performance of the hindcast models as a group, contour maps of modeled water-level surfaces at 2-centimeter (cm) intervals were generated using the hindcasted data. The 2-cm contour maps were examined for selected days to verify that water surfaces from the EDEN model are consistent with the input data. The biweekly 2-cm contour maps did show a higher number of issues during days in 1990 as compared to days after 1990. May 1990 had the lowest water levels in the Everglades of the 21-year dataset used for the hindcasting study. To hindcast these record low conditions in 1990, many of the hindcast models would require large extrapolations beyond the range of the predictive quality of the models. For these reasons, it was decided to limit the hindcasted data to the period January 1, 1991, to December 31, 1999. Overall, the hindcasted and gap-filled data are assumed to provide reasonable estimates of station-specific water-level data for an extended historical period to inform research and natural resource management in the Everglades.

  18. Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980

    USGS Publications Warehouse

    Ryals, G.N.

    1980-01-01

    The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS)

  19. Hydrology of the Reelfoot Lake basin, Obion and Lake counties, northwestern Tennessee

    USGS Publications Warehouse

    Robbins, C.H.

    1985-01-01

    Nine maps describe the following water resources aspects of the Reelfoot Lake watershed: Map 1-Surface water gaging stations, lake level, and locations of observation wells, rainfall stations and National Weather Service rainfall stations; Maps 2 and 3-water level contours, river stage, groundwater movement; Maps 4 and 5-grid blocks simulating constant head on the Mississippi River, Reelfoot Lake, Running Reelfoot Bayou, Reelfoot Creek, and Running Slough; Maps 6 and 7-difference between model calculated and observed water levels; and Maps 8 and 9-line of equal groundwater level increase and approximate lake area at pool elevation. (Lantz-PTT)

  20. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

    2008-06-24

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifersmore » underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.« less

  1. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Fenelon, Joseph M.; Laczniak, Randell J.; Halford, Keith J.

    2008-01-01

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types?volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.

  2. Geologic map of the Fifteenmile Valley 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, F.K.; Matti, J.C.

    2001-01-01

    Open-File Report OF 01-132 contains a digital geologic map database of the Fifteenmile Valley 7.5’ quadrangle, San Bernardino County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A PostScript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram, a Description of Map Units, an index map, and a regional structure map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. (Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale.) The Correlation of Map Units (CMU) and Description of Map Units (DMU) is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Fifteenmile Valley 7.5’ topographic quadrangle in conjunction with the geologic map.

  3. Contour-based image warping

    NASA Astrophysics Data System (ADS)

    Chan, Kwai H.; Lau, Rynson W.

    1996-09-01

    Image warping concerns about transforming an image from one spatial coordinate to another. It is widely used for the vidual effect of deforming and morphing images in the film industry. A number of warping techniques have been introduced, which are mainly based on the corresponding pair mapping of feature points, feature vectors or feature patches (mostly triangular or quadrilateral). However, very often warping of an image object with an arbitrary shape is required. This requires a warping technique which is based on boundary contour instead of feature points or feature line-vectors. In addition, when feature point or feature vector based techniques are used, approximation of the object boundary by using point or vectors is required. In this case, the matching process of the corresponding pairs will be very time consuming if a fine approximation is required. In this paper, we propose a contour-based warping technique for warping image objects with arbitrary shapes. The novel idea of the new method is the introduction of mathematical morphology to allow a more flexible control of image warping. Two morphological operators are used as contour determinators. The erosion operator is used to warp image contents which are inside a user specified contour while the dilation operation is used to warp image contents which are outside of the contour. This new method is proposed to assist further development of a semi-automatic motion morphing system when accompanied with robust feature extractors such as deformable template or active contour model.

  4. Mapping of wildlife habitat in Farmington Bay, Utah

    NASA Technical Reports Server (NTRS)

    Jaynes, R. A.; Willie, R. D. (Principal Investigator)

    1982-01-01

    Mapping was accomplished through the interpretation of high-altitude color infrared photography. The feasibility of utilizing LANDSAT digital data to augment the analysis was explored; complex patterns of wildlife habitat and confusion of spectral classes resulted in the decision to make limited use of LANDSAT data in the analysis. The final product is a map which delineates wildlife habitat at a scale of 1:24,000. The map is registered to and printed on a screened U.S.G.S. quadrangle base map. Screened delineations of shoreline contours, mapped from a previous study, are also shown on the map. Intensive field checking of the map was accomplished for the Farmington Bay Waterfowl Management Area in August 1981; other areas on the map received only spot field checking.

  5. Ecological statistics of Gestalt laws for the perceptual organization of contours.

    PubMed

    Elder, James H; Goldberg, Richard M

    2002-01-01

    Although numerous studies have measured the strength of visual grouping cues for controlled psychophysical stimuli, little is known about the statistical utility of these various cues for natural images. In this study, we conducted experiments in which human participants trace perceived contours in natural images. These contours are automatically mapped to sequences of discrete tangent elements detected in the image. By examining relational properties between pairs of successive tangents on these traced curves, and between randomly selected pairs of tangents, we are able to estimate the likelihood distributions required to construct an optimal Bayesian model for contour grouping. We employed this novel methodology to investigate the inferential power of three classical Gestalt cues for contour grouping: proximity, good continuation, and luminance similarity. The study yielded a number of important results: (1) these cues, when appropriately defined, are approximately uncorrelated, suggesting a simple factorial model for statistical inference; (2) moderate image-to-image variation of the statistics indicates the utility of general probabilistic models for perceptual organization; (3) these cues differ greatly in their inferential power, proximity being by far the most powerful; and (4) statistical modeling of the proximity cue indicates a scale-invariant power law in close agreement with prior psychophysics.

  6. TU-AB-202-12: A Novel Method to Map Endoscopic Video to CT for Treatment Planning and Toxicity Analysis in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, W; Yang, J; Beadle, B

    Purpose: Endoscopic examinations are routine procedures for head-and-neck cancer patients. Our goal is to develop a method to map the recorded video to CT, providing valuable information for radiotherapy treatment planning and toxicity analysis. Methods: We map video frames to CT via virtual endoscopic images rendered at the real endoscope’s CT-space coordinates. We developed two complementary methods to find these coordinates by maximizing real-to-virtual image similarity:(1)Endoscope Tracking: moves the virtual endoscope frame-by-frame until the desired frame is reached. Utilizes prior knowledge of endoscope coordinates, but sensitive to local optima. (2)Location Search: moves the virtual endoscope along possible paths through themore » volume to find the desired frame. More robust, but more computationally expensive. We tested these methods on clay phantoms with embedded markers for point mapping and protruding bolus material for contour mapping, and we assessed them qualitatively on three patient exams. For mapped points we calculated 3D-distance errors, and for mapped contours we calculated mean absolute distances (MAD) from CT contours. Results: In phantoms, Endoscope Tracking had average point error=0.66±0.50cm and average bolus MAD=0.74±0.37cm for the first 80% of each video. After that the virtual endoscope got lost, increasing these values to 4.73±1.69cm and 4.06±0.30cm. Location Search had point error=0.49±0.44cm and MAD=0.53±0.28cm. Point errors were larger where the endoscope viewed the surface at shallow angles<10 degrees (1.38±0.62cm and 1.22±0.69cm for Endoscope Tracking and Location Search, respectively). In patients, Endoscope Tracking did not make it past the nasal cavity. However, Location Search found coordinates near the correct location for 70% of test frames. Its performance was best near the epiglottis and in the nasal cavity. Conclusion: Location Search is a robust and accurate technique to map endoscopic video to CT. Endoscope Tracking is sensitive to erratic camera motion and local optima, but could be used in conjunction with anchor points found using Location Search.« less

  7. Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy.

    PubMed

    Terunuma, Toshiyuki; Tokui, Aoi; Sakae, Takeji

    2018-03-01

    Robustness to obstacles is the most important factor necessary to achieve accurate tumor tracking without fiducial markers. Some high-density structures, such as bone, are enhanced on X-ray fluoroscopic images, which cause tumor mistracking. Tumor tracking should be performed by controlling "importance recognition": the understanding that soft-tissue is an important tracking feature and bone structure is unimportant. We propose a new real-time tumor-contouring method that uses deep learning with importance recognition control. The novelty of the proposed method is the combination of the devised random overlay method and supervised deep learning to induce the recognition of structures in tumor contouring as important or unimportant. This method can be used for tumor contouring because it uses deep learning to perform image segmentation. Our results from a simulated fluoroscopy model showed accurate tracking of a low-visibility tumor with an error of approximately 1 mm, even if enhanced bone structure acted as an obstacle. A high similarity of approximately 0.95 on the Jaccard index was observed between the segmented and ground truth tumor regions. A short processing time of 25 ms was achieved. The results of this simulated fluoroscopy model support the feasibility of robust real-time tumor contouring with fluoroscopy. Further studies using clinical fluoroscopy are highly anticipated.

  8. Topographic map of part of the Kasei Valles and Sacra Fossae regions of Mars - MTM 500k 20/287E OMKT

    USGS Publications Warehouse

    Rosiek, Mark R.; Redding, Bonnie L.; Galuszca, Donna M.

    2005-01-01

    This map is part of a series of topographic maps of areas of special scientific interest on Mars. The topography was compiled photogrammetrically using Viking Orbiter stereo image pairs and photoclinometry from a Viking Orbiter image. The contour interval is 250 m. Horizontal and vertical control was established using the USGS Mars Digital Image Model 2.0 (MDIM 2.0) and data from the Mars Orbiter Laser Altimeter (MOLA).

  9. Topographic map of Golden Gate Estates, Collier County, Florida

    USGS Publications Warehouse

    Jurado, Antonio

    1981-01-01

    Construction of canals related to land development in the Golden Gate Estates area of Collier County, Fla., has altered the natural drainage pattern of the watershed. The area of approximately 300 square miles was topographically mapped with a contour interval of 0.5 foot to assist in determining the effects of canal construction on the surface-water and ground-water resources in the watershed. The topographic map was prepared at a scale of 1:48,000 using aerial photography and ground-control points. (USGS)

  10. Volcanology and morphology

    NASA Technical Reports Server (NTRS)

    Bryan, W. B.

    1976-01-01

    Apollo 15 photographs of the southern parts of Serenitatis and Imbrium were used for a study of the morphology and distribution of wrinkle ridges. Volcanic and structural features along the south margin of Serenitatis were also studied, including the Dawes basalt cinder cones. Volcanic and structural features in crater Aitken were investigated as well. Study of crater Goclenius showed a close relationship between morphology of the impact crater and grabens which tend to parallel directions of the lunar grid. Similar trends were observed in the walls of crater Tsiolkovsky and other linear structures. Small craters of possible volcanic origin were also studied. Possible cinder cones were found associated with the Dawes basalt and in the floor of craters Aitken and Goclenius. Small pit craters were observed in the floors of these craters. Attempts were made to obtain contour maps of specific small features and to compare Orbiter and Apollo photographs to determine short term changes associated with other processes.

  11. North Dakota aeromagnetic and gravity maps and data, a web site for distribution of data

    USGS Publications Warehouse

    Sweeney, Ronald E.; Hill, Patricia L.

    2003-01-01

    The North Dakota aeromagnetic grid is constructed from grids that combine information collected in 13 separate aeromagnetic surveys conducted between 1978 and 2001. The data from these surveys are of varying quality. The design and specifications (terrain clearance, sampling rates, line spacing, and reduction procedures) varied from survey to survey depending on the purpose of the project and the technology of that time. Every attempt was made to acquire the data in digital form. Most of the available digital data were obtained from aeromagnetic surveys flown by the U.S. Geological Survey (USGS), flown on contract with the USGS, or were obtained from other federal agencies and state universities. Some of the 1980 data are available only on hand-contoured maps and had to be digitized. These maps were digitized along flight-line/contour-line intersections, which is considered to be the most accurate method of recovering the original data. Digitized data are available as USGS Open File Report 99-557. All surveys have been continued to 304.8 meters (1000 feet) above ground and then blended or merged together.

  12. Water-table contours and depth to water in the southeastern part of the Sweetwater River basin, central Wyoming, 1982

    USGS Publications Warehouse

    Borchert, William B.

    1987-01-01

    This map describes the southeastern part of the Sweetwater River basin; the major aquifer consists of the upper part of the White River formations, all of Tertiary age, and to a small extent, the alluvium of the Quaternary age along the Sweetwater River. The saturated thickness of the aquifer in most of the area, but not including the alluvium ranges from 500 to 3000 ft. The maximum saturated thickness of the alluvium penetrated by test holes was 63 ft. The water-table contours and depths to water are based primarily on groundwater-level measurements made during 1982 in 104 wells, most of which are located south of the Sweetwater River. Land-surface altitudes of springs and water-surface altitudes along the Sweetwater River and perennial reaches of creeks flowing northward from the Green and Ferris Mountains also were used as control for mapping the water table. The perennial reaches shown on the map are assumed hydraulically connected with the water table. They were identified from streamflow gain-and-loss measurements made during April and May 1982. (Author 's abstract)

  13. Joint Denoising/Compression of Image Contours via Shape Prior and Context Tree

    NASA Astrophysics Data System (ADS)

    Zheng, Amin; Cheung, Gene; Florencio, Dinei

    2018-07-01

    With the advent of depth sensing technologies, the extraction of object contours in images---a common and important pre-processing step for later higher-level computer vision tasks like object detection and human action recognition---has become easier. However, acquisition noise in captured depth images means that detected contours suffer from unavoidable errors. In this paper, we propose to jointly denoise and compress detected contours in an image for bandwidth-constrained transmission to a client, who can then carry out aforementioned application-specific tasks using the decoded contours as input. We first prove theoretically that in general a joint denoising / compression approach can outperform a separate two-stage approach that first denoises then encodes contours lossily. Adopting a joint approach, we first propose a burst error model that models typical errors encountered in an observed string y of directional edges. We then formulate a rate-constrained maximum a posteriori (MAP) problem that trades off the posterior probability p(x'|y) of an estimated string x' given y with its code rate R(x'). We design a dynamic programming (DP) algorithm that solves the posed problem optimally, and propose a compact context representation called total suffix tree (TST) that can reduce complexity of the algorithm dramatically. Experimental results show that our joint denoising / compression scheme outperformed a competing separate scheme in rate-distortion performance noticeably.

  14. Contour shape analysis of hollow ion x-ray emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosmej, F. B.; Angelo, P.; Ecole Polytechnique, Laboratoire pour Utilisation des Lasers Intenses, Physique Atomique dans les Plasmas Denses, 91128 Palaiseau Cedex

    2008-10-22

    Hollow ion x-ray transitions originating from the configurations K{sup 0}L{sup N} have been studied via relativistic atomic structure and Stark broadening calculations. The broadening of the total contour is largely influenced by the oscillator strengths distribution over wavelengths rather than by Stark broadening alone. Interference effects between the upper and lower levels are shown to result in a considerable contour narrowing as well as in a shift of the total contour which could be either red or blue.

  15. The effort to close the gap: tracking the development of illusory contour processing from childhood to adulthood with high-density electrical mapping.

    PubMed

    Altschuler, Ted S; Molholm, Sophie; Butler, John S; Mercier, Manuel R; Brandwein, Alice B; Foxe, John J

    2014-04-15

    The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230 and 400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N=63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern-engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Breast mass segmentation in mammograms combining fuzzy c-means and active contours

    NASA Astrophysics Data System (ADS)

    Hmida, Marwa; Hamrouni, Kamel; Solaiman, Basel; Boussetta, Sana

    2018-04-01

    Segmentation of breast masses in mammograms is a challenging issue due to the nature of mammography and the characteristics of masses. In fact, mammographic images are poor in contrast and breast masses have various shapes and densities with fuzzy and ill-defined borders. In this paper, we propose a method based on a modified Chan-Vese active contour model for mass segmentation in mammograms. We conduct the experiment on mass Regions of Interest (ROI) extracted from the MIAS database. The proposed method consists of mainly three stages: Firstly, the ROI is preprocessed to enhance the contrast. Next, two fuzzy membership maps are generated from the preprocessed ROI based on fuzzy C-Means algorithm. These fuzzy membership maps are finally used to modify the energy of the Chan-Vese model and to perform the final segmentation. Experimental results indicate that the proposed method yields good mass segmentation results.

  17. Automatic correction of dental artifacts in PET/MRI

    PubMed Central

    Ladefoged, Claes N.; Andersen, Flemming L.; Keller, Sune. H.; Beyer, Thomas; Law, Ian; Højgaard, Liselotte; Darkner, Sune; Lauze, Francois

    2015-01-01

    Abstract. A challenge when using current magnetic resonance (MR)-based attenuation correction in positron emission tomography/MR imaging (PET/MRI) is that the MRIs can have a signal void around the dental fillings that is segmented as artificial air-regions in the attenuation map. For artifacts connected to the background, we propose an extension to an existing active contour algorithm to delineate the outer contour using the nonattenuation corrected PET image and the original attenuation map. We propose a combination of two different methods for differentiating the artifacts within the body from the anatomical air-regions by first using a template of artifact regions, and second, representing the artifact regions with a combination of active shape models and k-nearest-neighbors. The accuracy of the combined method has been evaluated using 25 F18-fluorodeoxyglucose PET/MR patients. Results showed that the approach was able to correct an average of 97±3% of the artifact areas. PMID:26158104

  18. An Interactive Procedure to Preserve the Desired Edges during the Image Processing of Noise Reduction

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Yu; Huang, Hsuan-Yu; Lee, Lin-Tsang

    2010-12-01

    The paper propose a new procedure including four stages in order to preserve the desired edges during the image processing of noise reduction. A denoised image can be obtained from a noisy image at the first stage of the procedure. At the second stage, an edge map can be obtained by the Canny edge detector to find the edges of the object contours. Manual modification of an edge map at the third stage is optional to capture all the desired edges of the object contours. At the final stage, a new method called Edge Preserved Inhomogeneous Diffusion Equation (EPIDE) is used to smooth the noisy images or the previously denoised image at the first stage for achieving the edge preservation. The Optical Character Recognition (OCR) results in the experiments show that the proposed procedure has the best recognition result because of the capability of edge preservation.

  19. Identifying Resistivity Anomalies of Sungai Batu Ancient River using 3D Contour Map

    NASA Astrophysics Data System (ADS)

    Yusoh, R.; Saad, R.; Saidin, M.; Muhammad, S. B.; Anda, S. T.; Ismail, M. A. M.; Hazreek, Z. A. M.

    2018-04-01

    Electrical resistivity method was undertaken at archeological site at Sungai Batu in Lembah Bujang, located at Sungai Merbok in northwestern of Malaysia. The survey was implemented near the excavation site. This paper shows the results of 5 ground resistivity survey line was carry out using SAS4000 equipment. The wenner-schlumberger array was applied for measurement. Resistivity data are used to obtain valuable information to identify the remain buried archeology. The ground resistivity data were presented in contour map for various depth by using Surfer 13 software visualized clearly the anomalies evidenced for every single depth section. The results from the survey has found the appearance of sedimentation formation that believe happen long time ago after ancient river was buried by sediment from weathering process due to increasing sea level. Otherwise, another anomaly was found in the middle of the survey area which shows high resistivity value about 1000 – 2000 ohm.m

  20. Satellite radar altimetry over ice. Volume 4: Users' guide for Antarctica elevation data from Seasat

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.

    1990-01-01

    A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Greenland are described. This is a user guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating of large-scale contour maps, and the geo-referenced data base is useful for regridding, creating smaller-scale contour maps, and examinating individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.

  1. Electrical conduction of organic ultrathin films evaluated by an independently driven double-tip scanning tunneling microscope.

    PubMed

    Takami, K; Tsuruta, S; Miyake, Y; Akai-Kasaya, M; Saito, A; Aono, M; Kuwahara, Y

    2011-11-02

    The electrical transport properties of organic thin films within the micrometer scale have been evaluated by a laboratory-built independently driven double-tip scanning tunneling microscope, operating under ambient conditions. The two tips were used as point contact electrodes, and current in the range from 0.1 pA to 100 nA flowing between the two tips through the material can be detected. We demonstrated two-dimensional contour mapping of the electrical resistance on a poly(3-octylthiophene) thin films as shown below. The obtained contour map clearly provided an image of two-dimensional electrical conductance between two point electrodes on the poly(3-octylthiophene) thin film. The conductivity of the thin film was estimated to be (1-8) × 10(-6) S cm(-1). Future prospects and the desired development of multiprobe STMs are also discussed.

  2. Study of gravity and magnetic anomalies using MAGSAT data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    The results of modeling satellite-elevation magnetic and gravity data using the constraints imposed by near surface data and seismic evidence shows that the magnetic minimum can be accounted for by either an intracrustal lithologic variation or by an upwarp of the Curie point isotherm. The long wavelength anomalies of the NOO's-vector magnetic survey of the conterminous U.S. were contoured and processed by various frequency filters to enhance particular characteristics. A preliminary inversion of the data was completed and the anomaly field calculated at 450 km from the equivalent magnet sources to compare with the POGO satellite data. Considerable progress was made in studing the satellite magnetic data of South America and adjacent marine areas. Preliminary versions of the 1 deg free-air gravity anomaly map (20 m gal contour interval) and the high cut (lambda approximately 8 deg) filtered anomaly maps are included.

  3. SU-F-J-88: Comparison of Two Deformable Image Registration Algorithms for CT-To-CT Contour Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopal, A; Xu, H; Chen, S

    Purpose: To compare the contour propagation accuracy of two deformable image registration (DIR) algorithms in the Raystation treatment planning system – the “Hybrid” algorithm based on image intensities and anatomical information; and the “Biomechanical” algorithm based on linear anatomical elasticity and finite element modeling. Methods: Both DIR algorithms were used for CT-to-CT deformation for 20 lung radiation therapy patients that underwent treatment plan revisions. Deformation accuracy was evaluated using landmark tracking to measure the target registration error (TRE) and inverse consistency error (ICE). The deformed contours were also evaluated against physician drawn contours using Dice similarity coefficients (DSC). Contour propagationmore » was qualitatively assessed using a visual quality score assigned by physicians, and a refinement quality score (0 0.9 for lungs, > 0.85 for heart, > 0.8 for liver) and similar qualitative assessments (VQS < 0.35, RQS > 0.75 for lungs). When anatomical structures were used to control the deformation, the DSC improved more significantly for the biomechanical DIR compared to the hybrid DIR, while the VQS and RQS improved only for the controlling structures. However, while the inclusion of controlling structures improved the TRE for the hybrid DIR, it increased the TRE for the biomechanical DIR. Conclusion: The hybrid DIR was found to perform slightly better than the biomechanical DIR based on lower TRE while the DSC, VQS, and RQS studies yielded comparable results for both. The use of controlling structures showed considerable improvement in the hybrid DIR results and is recommended for clinical use in contour propagation.« less

  4. A Review of the Positive Influence of Crown Contours on Soft-Tissue Esthetics.

    PubMed

    Kinsel, Richard P; Pope, Bryan I; Capoferri, Daniele

    2015-05-01

    Successful crown restorations duplicate the natural tooth in hue, chroma, value, maverick colors, and surface texture. Equally important is the visual harmony of the facial and proximal soft-tissue contours, which requires the collaborative skills of the restorative dentist, periodontist, and dental technician. The treatment team must understand the biologic structures adjacent to natural dentition and dental implants. This report describes the potential for specifically designed restorative contours to dictate the optimal gingival profile for tooth-supported and implant-supported crowns. Showing several cases, the article explains how esthetic soft-tissue contours enhance the definitive crown restoration, highlights the importance of clinical evaluation of adjacent biologic structures, and discusses keys to predicting when the proximal papilla has the potential to return to a favorable height and shape.

  5. Airborne gamma-ray spectrometer and magnetometer survey: Concrete quadrangle (Washington). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    Twenty-five uranium anomalies meet the minimum statistical requirements as defined. These anomalies are tabulated and are shown on the Uranium Anomaly Interpretation Map. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented. Stacked Profiles showing geologic strips maps along each flight-line, together with sensor data, and ancillary data are presented. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation.

  6. Topographic map of the western region of Dao Vallis in Hellas Planitia, Mars; MTM 500k -40/082E OMKT

    USGS Publications Warehouse

    Rosiek, Mark R.; Redding, Bonnie L.; Galuszka, Donna M.

    2006-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. Contours were derived from a digital terrain model (DTM) compiled on a digital photogrammetric workstation using Viking Orbiter stereo image pairs with orientation parameters derived from an analytic aerotriangulation. The image base for this map employs Viking Orbiter images from orbits 406 and 363. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models.

  7. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsin-Chen; Tan, Jun; Dolly, Steven

    2015-02-15

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy basedmore » on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets were separately employed to test the effectiveness of the proposed contouring error detection strategy. Results: An evaluation tool was implemented to illustrate how the proposed strategy automatically detects the radiation therapy contouring errors for a given patient and provides 3D graphical visualization of error detection results as well. The contouring error detection results were achieved with an average sensitivity of 0.954/0.906 and an average specificity of 0.901/0.909 on the centroid/volume related contouring errors of all the tested samples. As for the detection results on structural shape related contouring errors, an average sensitivity of 0.816 and an average specificity of 0.94 on all the tested samples were obtained. The promising results indicated the feasibility of the proposed strategy for the detection of contouring errors with low false detection rate. Conclusions: The proposed strategy can reliably identify contouring errors based upon inter- and intrastructural constraints derived from clinically approved contours. It holds great potential for improving the radiation therapy workflow. ROC and box plot analyses allow for analytically tuning of the system parameters to satisfy clinical requirements. Future work will focus on the improvement of strategy reliability by utilizing more training sets and additional geometric attribute constraints.« less

  8. Topographic map of the Parana Valles region of Mars MTM 500k -25/337E OMKT

    USGS Publications Warehouse

    ,

    2003-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. MTM 500k –25/347E OMKT: Abbreviation for Mars Transverse Mercator; 1:500,000 series; center of sheet latitude 25° S., longitude 347.5° E. in planetocentric coordinate system (this corresponds to –25/012; latitude 25° S., longitude 12.5° W. in planetographic coordinate system); orthophotomosaic (OM) with color coded (K) topographic contours and nomenclature (T) [Greeley and Batson, 1990]. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km (Kirk and others, 2000). The datum (the 0-km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter (Smith and others, 2001). The image base for this map employs Viking Orbiter images from orbit 651. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models. Integrated Software for Imagers and Spectrometers (ISIS) (Torson and Becker, 1997) provided the software to project the orthophotomosaic into the Transverse Mercator Projection.

  9. Topographic Map of the Northwest Loire Valles Region of Mars MTM 500k -15/337E OMKT

    USGS Publications Warehouse

    ,

    2003-01-01

    This map, compiled photogrammetrically from Viking Orbiter stereo image pairs, is part of a series of topographic maps of areas of special scientific interest on Mars. MTM 500k –15/337E OMKT: Abbreviation for Mars Transverse Mercator; 1:500,000 series; center of sheet latitude 15° S., longitude 337.5° E. in planetocentric coordinate system (this corresponds to –15/022; latitude 15° S., longitude 22.5° W. in planetographic coordinate system); orthophotomosaic (OM) with color coded (K) topographic contours and nomenclature (T) [Greeley and Batson, 1990]. The figure of Mars used for the computation of the map projection is an oblate spheroid (flattening of 1/176.875) with an equatorial radius of 3396.0 km and a polar radius of 3376.8 km (Kirk and others, 2000). The datum (the 0–km contour line) for elevations is defined as the equipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius as determined by Mars Orbiter Laser Altimeter (Smith and others, 2001). The image base for this map employs Viking Orbiter images from orbit 651. An orthophotomosaic was created on the digital photogrammetric workstation using the DTM compiled from stereo models. Integrated Software for Imagers and Spectrometers (ISIS) (Torson and Becker, 1997) provided the software to project the orthophotomosaic into the Transverse Mercator Projection.

  10. Counting Magnetic Bipoles on the Sun by Polarity Inversion

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.

    2004-01-01

    This paper presents a simple and efficient algorithm for deriving images of polarity inversion from NSO/Kitt Peak magnetograms without use of contouring routines and shows by example how these maps depend upon the spatial scale for filtering the raw data. Smaller filtering scales produce many localized closed contours in mixed polarity regions while supergranular and larger filtering scales produce more global patterns. The apparent continuity of an inversion line depends on how the spatial filtering is accomplished, but its shape depends only on scale. The total length of the magnetic polarity inversion contours varies as a power law of the filter scale with fractal dimension of order 1.9. The amplitude but nut the exponent of this power-law relation varies with solar activity. The results are compared to similar analyses of areal distributions of bipolar magnetic regions.

  11. SU-F-J-113: Multi-Atlas Based Automatic Organ Segmentation for Lung Radiotherapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Han, J; Ailawadi, S

    Purpose: Normal organ segmentation is one time-consuming and labor-intensive step for lung radiotherapy treatment planning. The aim of this study is to evaluate the performance of a multi-atlas based segmentation approach for automatic organs at risk (OAR) delineation. Methods: Fifteen Lung stereotactic body radiation therapy patients were randomly selected. Planning CT images and OAR contours of the heart - HT, aorta - AO, vena cava - VC, pulmonary trunk - PT, and esophagus – ES were exported and used as reference and atlas sets. For automatic organ delineation for a given target CT, 1) all atlas sets were deformably warpedmore » to the target CT, 2) the deformed sets were accumulated and normalized to produce organ probability density (OPD) maps, and 3) the OPD maps were converted to contours via image thresholding. Optimal threshold for each organ was empirically determined by comparing the auto-segmented contours against their respective reference contours. The delineated results were evaluated by measuring contour similarity metrics: DICE, mean distance (MD), and true detection rate (TD), where DICE=(intersection volume/sum of two volumes) and TD = {1.0 - (false positive + false negative)/2.0}. Diffeomorphic Demons algorithm was employed for CT-CT deformable image registrations. Results: Optimal thresholds were determined to be 0.53 for HT, 0.38 for AO, 0.28 for PT, 0.43 for VC, and 0.31 for ES. The mean similarity metrics (DICE[%], MD[mm], TD[%]) were (88, 3.2, 89) for HT, (79, 3.2, 82) for AO, (75, 2.7, 77) for PT, (68, 3.4, 73) for VC, and (51,2.7, 60) for ES. Conclusion: The investigated multi-atlas based approach produced reliable segmentations for the organs with large and relatively clear boundaries (HT and AO). However, the detection of small and narrow organs with diffused boundaries (ES) were challenging. Sophisticated atlas selection and multi-atlas fusion algorithms may further improve the quality of segmentations.« less

  12. Forest fragments as barriers to fruit fly dispersal: Anastrepha (Diptera: Tephritidae) populations in orchards and adjacent forest fragments in Puerto Rico.

    PubMed

    Jenkins, David A; Kendra, Paul E; Van Bloem, Skip; Whitmire, Stefanie; Mizell, Russ; Goenaga, Ricardo

    2013-04-01

    McPhail-type traps baited with ammonium acetate and putrescine were used to monitor populations of Anastrepha obliqua (Macquart) and Anastrepha suspensa (Loew) in two orchards with hosts of these flies (mango, Mangifera indica L., and carambola, Averrhoa carambola L.), as well as in forest fragments bordering these orchards. Contour maps were constructed to measure population distributions in and around orchards. Our results indicate that Anastrepha populations are focused around host fruit in both space and time, that traps do not draw fruit flies away from hosts, even when placed within 15 m of the host, and that lures continue to function for 6 mo in the field. The contour mapping analyses reveal that populations of fruit flies are focused around ovipositional hosts. Although the trapping system does not have a very long effective sampling range, it is ideal, when used in combination with contour analyses, for assessing fine-scale (on the order of meters) population distributions, including identifying resources around which fly populations are focused or, conversely, assessing the effectiveness of management tools. The results are discussed as they pertain to monitoring and detecting Anastrepha spp. with the McPhail-type trap and ammonium acetate and putrescine baiting system and the dispersal of these flies within Puerto Rico.

  13. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    PubMed Central

    Chen, Hsin-Chen; Jia, Wenyan; Sun, Xin; Li, Zhaoxin; Li, Yuecheng; Fernstrom, John D.; Burke, Lora E.; Baranowski, Thomas; Sun, Mingui

    2015-01-01

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods. PMID:26257473

  14. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Chen; Jia, Wenyan; Sun, Xin; Li, Zhaoxin; Li, Yuecheng; Fernstrom, John D.; Burke, Lora E.; Baranowski, Thomas; Sun, Mingui

    2015-02-01

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods.

  15. Distribution and Aggregate Thickness of Salt Deposits of the United States

    EPA Pesticide Factsheets

    The map shows the distribution and aggregate thickness of salt deposits of the United States. This information is from contour map sheets, scanned and processed for use in a global mineral resource assessment, produced by the U.S. Geological Survey. It is used here to provide a geospatial context to the distribution of rock-salt deposits in the US. It is useful in illustrating sources of chlorides.

  16. Enhancing hydrologic mapping using LIDAR and high resolution aerial photos on the Frances Marion National Forest in coastal South Carolina

    Treesearch

    Andy Maceyka; William F. Hansen

    2016-01-01

    Evaluating hydrology within coastal marine terrace features has always been problematic as watershed boundaries and stream detail are difficult to determine in low gradient terrain with dense bottomland forests. Various studies have improved hydrologic detail using USGS Topographic Contour Maps (Hansen 2001, Eidson and others 2005) or Light Detection and Ranging (LIDAR...

  17. 3D-QSAR studies on 1,2,4-triazolyl 5-azaspiro [2.4]-heptanes as D3R antagonists

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Hui

    2018-07-01

    Dopamine D3 receptor has become an attractive target in the treatment of abused drugs. 3D-QSAR studies were performed on a novel series of D3 receptor antagonists, 1,2,4-triazolyl 5-azaspiro [2.4]-heptanes, using CoMFA and CoMSIA methods. Two predictive 3D-QSAR models have been generated for the modified design of D3R antagonists. Based on the steric, electrostatic, hydrophobic and hydrogen-bond acceptor information of contour maps, key structural factors affecting the bioactivity were explored. This work gives helpful suggestions on the design of novel D3R antagonists with increased activities.

  18. Isopach and structure contour maps of the Burro Canyon(?) Formation in the Mesa Golondrina and Mesa de los Viejos areas, Chama Basin, New Mexico

    USGS Publications Warehouse

    Ridgley, Jennie L.

    1983-01-01

    In the Chama Basin a wequence of conglomerate, sandstone, and red, gray-green, and pale-purple mudstone occurs stratigraphically between the Upper Jurassic Morrison Formation and Upper Cretaceous Dakota Sandstone. This stratigraphic interval has been called the Burro Canyon Formation by several workers (Craig and others, 1959; Smith and others, 1961; Saucier, 1974). Although similarities in lithology and stratigraphic position exist between this unit and the Burro Canyon Formation in Colorado, no direct correlation has been made between the two. For this reason the unit in the Chama Basin is called the Burro Canyon(?) Formation. 

  19. Laser interferometric measurement of ion electrode shape and charge exchange erosion

    NASA Technical Reports Server (NTRS)

    Macrae, Gregory S.; Mercer, Carolyn R.

    1991-01-01

    A projected fringe profilometry system was applied to surface contour measurements of an accelerator electrode from an ion thrustor. The system permitted noncontact, nondestructive evaluation of the fine and gross structure of the electrode. A 3-D surface map of a dished electrode was generated without altering the electrode surface. The same system was used to examine charge exchange erosion pits near the periphery of the electrode to determine the depth, location, and volume of material lost. This electro-optical measurement system allowed rapid, nondestructive, digital data acquisition coupled with automated computer data processing. In addition, variable sensitivity allowed both coarse and fine measurements of objects having various surface finishes.

  20. Characteristics of extreme rainfall events in northwestern Peru during the 1982-1983 El Nino period

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Tisnado, G. M.; Scofield, R. A.

    1987-01-01

    Histograms and contour maps describing the daily rainfall characteristics of a northwestern Peru area most severely affected by the 1982-1983 El Nino event were prepared from daily rainfall data obtained from 66 stations in this area during the El Nino event, and during the same 8-month intervals for the two years preceding and following the event. These data were analyzed, in conjunction with the anlysis of visible and IR satellite images, for cloud characteristics and structure. The results present a comparison of the rainfall characteristics as a function of elevation, geographic location, and the time of year for the El Nino and non-El Nino periods.

  1. Increasing the utility of regional water table maps: a new method for estimating groundwater recharge

    NASA Astrophysics Data System (ADS)

    Gilmore, T. E.; Zlotnik, V. A.; Johnson, M.

    2017-12-01

    Groundwater table elevations are one of the most fundamental measurements used to characterize unconfined aquifers, groundwater flow patterns, and aquifer sustainability over time. In this study, we developed an analytical model that relies on analysis of groundwater elevation contour (equipotential) shape, aquifer transmissivity, and streambed gradient between two parallel, perennial streams. Using two existing regional water table maps, created at different times using different methods, our analysis of groundwater elevation contours, transmissivity and streambed gradient produced groundwater recharge rates (42-218 mm yr-1) that were consistent with previous independent recharge estimates from different methods. The three regions we investigated overly the High Plains Aquifer in Nebraska and included some areas where groundwater is used for irrigation. The three regions ranged from 1,500 to 3,300 km2, with either Sand Hills surficial geology, or Sand Hills transitioning to loess. Based on our results, the approach may be used to increase the value of existing water table maps, and may be useful as a diagnostic tool to evaluate the quality of groundwater table maps, identify areas in need of detailed aquifer characterization and expansion of groundwater monitoring networks, and/or as a first approximation before investing in more complex approaches to groundwater recharge estimation.

  2. Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter

    NASA Technical Reports Server (NTRS)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1977-01-01

    Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.

  3. Preliminary map of peak horizontal ground acceleration for the Hanshin-Awaji earthquake of January 17, 1995, Japan - Description of Mapped Data Sets

    USGS Publications Warehouse

    Borcherdt, R.D.; Mark, R.K.

    1995-01-01

    The Hanshin-Awaji earthquake (also known as the Hyogo-ken Nanbu and the Great Hanshin earthquake) provided an unprecedented set of measurements of strong ground shaking. The measurements constitute the most comprehensive set of strong- motion recordings yet obtained for sites underlain by soft soil deposits of Holocene age within a few kilometers of the crustal rupture zone. The recordings, obtained on or near many important structures, provide an important new empirical data set for evaluating input ground motion levels and site amplification factors for codes and site-specific design procedures world wide. This report describes the data used to prepare a preliminary map summarizing the strong motion data in relation to seismicity and underlying geology (Wentworth, Borcherdt, and Mark., 1995; Figure 1, hereafter referred to as Figure 1/I). The map shows station locations, peak acceleration values, and generalized acceleration contours superimposed on pertinent seismicity and the geologic map of Japan. The map (Figure 1/I) indicates a zone of high acceleration with ground motions throughout the zone greater than 400 gal and locally greater than 800 gal. This zone encompasses the area of most intense damage mapped as JMA intensity level 7, which extends through Kobe City. The zone of most intense damage is parallel, but displaced slightly from the surface projection of the crustal rupture zone implied by aftershock locations. The zone is underlain by soft-soil deposits of Holocene age.

  4. Evaluating the Impact of a Canadian National Anatomy and Radiology Contouring Boot Camp for Radiation Oncology Residents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaswal, Jasbir; D'Souza, Leah; Johnson, Marjorie

    Background: Radiation therapy treatment planning has advanced over the past 2 decades, with increased emphasis on 3-dimensional imaging for target and organ-at-risk (OAR) delineation. Recent studies suggest a need for improved resident instruction in this area. We developed and evaluated an intensive national educational course (“boot camp”) designed to provide dedicated instruction in site-specific anatomy, radiology, and contouring using a multidisciplinary (MDT) approach. Methods: The anatomy and radiology contouring (ARC) boot camp was modeled after prior single-institution pilot studies and a needs-assessment survey. The boot camp incorporated joint lectures from radiation oncologists, anatomists, radiologists, and surgeons, with hands-on contouring instructionmore » and small group interactive seminars using cadaveric prosections and correlative axial radiographs. Outcomes were evaluated using pretesting and posttesting, including anatomy/radiology multiple-choice questions (MCQ), timed contouring sessions (evaluated relative to a gold standard using Dice similarity metrics), and qualitative questions on satisfaction and perceived effectiveness. Analyses of pretest versus posttest scores were performed using nonparametric paired testing. Results: Twenty-nine radiation oncology residents from 10 Canadian universities participated. As part of their current training, 29%, 75%, and 21% receive anatomy, radiology, and contouring instruction, respectively. On posttest scores, the MCQ knowledge scores improved significantly (pretest mean 60% vs posttest mean 80%, P<.001). Across all contoured structures, there was a 0.20 median improvement in students' average Dice score (P<.001). For individual structures, significant Dice improvements occurred in 10 structures. Residents self-reported an improved ability to contour OARs and interpret radiographs in all anatomic sites, 92% of students found the MDT format effective for their learning, and 93% found the boot camp more effective than educational sessions at their own institutions. All of the residents (100%) would recommend this course to others. Conclusions: The ARC boot camp is an effective intervention for improving radiation oncology residents' knowledge and understanding of anatomy and radiology in addition to enhancing their confidence and accuracy in contouring.« less

  5. Evaluating the impact of a Canadian national anatomy and radiology contouring boot camp for radiation oncology residents.

    PubMed

    Jaswal, Jasbir; D'Souza, Leah; Johnson, Marjorie; Tay, KengYeow; Fung, Kevin; Nichols, Anthony; Landis, Mark; Leung, Eric; Kassam, Zahra; Willmore, Katherine; D'Souza, David; Sexton, Tracy; Palma, David A

    2015-03-15

    Radiation therapy treatment planning has advanced over the past 2 decades, with increased emphasis on 3-dimensional imaging for target and organ-at-risk (OAR) delineation. Recent studies suggest a need for improved resident instruction in this area. We developed and evaluated an intensive national educational course ("boot camp") designed to provide dedicated instruction in site-specific anatomy, radiology, and contouring using a multidisciplinary (MDT) approach. The anatomy and radiology contouring (ARC) boot camp was modeled after prior single-institution pilot studies and a needs-assessment survey. The boot camp incorporated joint lectures from radiation oncologists, anatomists, radiologists, and surgeons, with hands-on contouring instruction and small group interactive seminars using cadaveric prosections and correlative axial radiographs. Outcomes were evaluated using pretesting and posttesting, including anatomy/radiology multiple-choice questions (MCQ), timed contouring sessions (evaluated relative to a gold standard using Dice similarity metrics), and qualitative questions on satisfaction and perceived effectiveness. Analyses of pretest versus posttest scores were performed using nonparametric paired testing. Twenty-nine radiation oncology residents from 10 Canadian universities participated. As part of their current training, 29%, 75%, and 21% receive anatomy, radiology, and contouring instruction, respectively. On posttest scores, the MCQ knowledge scores improved significantly (pretest mean 60% vs posttest mean 80%, P<.001). Across all contoured structures, there was a 0.20 median improvement in students' average Dice score (P<.001). For individual structures, significant Dice improvements occurred in 10 structures. Residents self-reported an improved ability to contour OARs and interpret radiographs in all anatomic sites, 92% of students found the MDT format effective for their learning, and 93% found the boot camp more effective than educational sessions at their own institutions. All of the residents (100%) would recommend this course to others. The ARC boot camp is an effective intervention for improving radiation oncology residents' knowledge and understanding of anatomy and radiology in addition to enhancing their confidence and accuracy in contouring. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Ekspansif soil solution in the villages at Trenggalek

    NASA Astrophysics Data System (ADS)

    Triastuti, Nusa Setiani

    2017-11-01

    District 2/3 hills with easy sliding and land survey results showed the soil because it consists of expansive soil Survey some villages who experience insatiability or failure, a secondary analysis of the data gathered from the expert on geology, Trenggalek geological map, Trenggalek geography. Ground location researched several villages, the Terbis village of focus discussion of the landslides and plan of relocation. In the watching a black. Colored soil and easily slide, showed very expansive soil due to montmorrelite. While soil relocation contour relative is more stable because the land of kaolin and invisible water sources that could push the land. Expansive soil in the village of solution should be cheap, easily obtainable, not damaging the fertility of the soil, groundwater should be awake to the source of life, ease of implementation, utilizing local materials and use modest tools and equipment. Under the soil surface do not get there water stored in the soil until deep the water because it will slide the ground. The analysis must meet the 7 items above and steady the contour. Design of building installed sub drain, the shallow bore foundations tied tie beam, floor plate into the unity of the structure.

  7. MapApp: A Java(TM) Applet for Accessing Geographic Databases

    NASA Astrophysics Data System (ADS)

    Haxby, W.; Carbotte, S.; Ryan, W. B.; OHara, S.

    2001-12-01

    MapApp (http://coast.ldeo.columbia.edu/help/MapApp.html) is a prototype Java(TM) applet that is intended to give easy and versatile access to geographic data sets through a web browser. It was developed initially to interface with the RIDGE Multibeam Synthesis. Subsequently, interfaces with other geophysical databases were added. At present, multibeam bathymetry grids, underway geophysics along ship tracks, and the LDEO Borehole Research Group's ODP well logging database are accessible through MapApp. We plan to add an interface with the Ridge Petrology Database in the near future. The central component of MapApp is a world physiographic map. Users may navigate around the map (zoom/pan) without waiting for HTTP requests to a remote server to be processed. A focus request loads image tiles from the server to compose a new map at the current viewing resolution. Areas in which multibeam grids are available may be focused to a pixel resolution of about 200 m. These areas may be identified by toggling a mask. Databases may be accessed through menus, and selected data objects may be loaded into MapApp by selecting items from tables. Once loaded, a bathymetry grid may be contoured or used to create bathymetric profiles; ship tracks and ODP sites may be overlain on the map and their geophysical data plotted in X-Y graphs. The advantage of applets over traditional web pages is that they permit dynamic interaction with data sets, while limiting time consuming interaction with a remote server. Users may customize the graphics display by modifying the scale, or the symbol or line characteristics of rendered data, contour interval, etc. The ease with which users can select areas, view the physiography of areas, and preview data sets and evaluate them for quality and applicability, makes MapApp a valuable tool for education and research.

  8. Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk.

    PubMed

    Thomson, David; Boylan, Chris; Liptrot, Tom; Aitkenhead, Adam; Lee, Lip; Yap, Beng; Sykes, Andrew; Rowbottom, Carl; Slevin, Nicholas

    2014-08-03

    The accurate definition of organs at risk (OARs) is required to fully exploit the benefits of intensity-modulated radiotherapy (IMRT) for head and neck cancer. However, manual delineation is time-consuming and there is considerable inter-observer variability. This is pertinent as function-sparing and adaptive IMRT have increased the number and frequency of delineation of OARs. We evaluated accuracy and potential time-saving of Smart Probabilistic Image Contouring Engine (SPICE) automatic segmentation to define OARs for salivary-, swallowing- and cochlea-sparing IMRT. Five clinicians recorded the time to delineate five organs at risk (parotid glands, submandibular glands, larynx, pharyngeal constrictor muscles and cochleae) for each of 10 CT scans. SPICE was then used to define these structures. The acceptability of SPICE contours was initially determined by visual inspection and the total time to modify them recorded per scan. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm created a reference standard from all clinician contours. Clinician, SPICE and modified contours were compared against STAPLE by the Dice similarity coefficient (DSC) and mean/maximum distance to agreement (DTA). For all investigated structures, SPICE contours were less accurate than manual contours. However, for parotid/submandibular glands they were acceptable (median DSC: 0.79/0.80; mean, maximum DTA: 1.5 mm, 14.8 mm/0.6 mm, 5.7 mm). Modified SPICE contours were also less accurate than manual contours. The utilisation of SPICE did not result in time-saving/improve efficiency. Improvements in accuracy of automatic segmentation for head and neck OARs would be worthwhile and are required before its routine clinical implementation.

  9. Ingenious Snake: An Adaptive Multi-Class Contours Extraction

    NASA Astrophysics Data System (ADS)

    Li, Baolin; Zhou, Shoujun

    2018-04-01

    Active contour model (ACM) plays an important role in computer vision and medical image application. The traditional ACMs were used to extract single-class of object contours. While, simultaneous extraction of multi-class of interesting contours (i.e., various contours with closed- or open-ended) have not been solved so far. Therefore, a novel ACM model named “Ingenious Snake” is proposed to adaptively extract these interesting contours. In the first place, the ridge-points are extracted based on the local phase measurement of gradient vector flow field; the consequential ridgelines initialization are automated with high speed. Secondly, the contours’ deformation and evolvement are implemented with the ingenious snake. In the experiments, the result from initialization, deformation and evolvement are compared with the existing methods. The quantitative evaluation of the structure extraction is satisfying with respect of effectiveness and accuracy.

  10. A new template matching method based on contour information

    NASA Astrophysics Data System (ADS)

    Cai, Huiying; Zhu, Feng; Wu, Qingxiao; Li, Sicong

    2014-11-01

    Template matching is a significant approach in machine vision due to its effectiveness and robustness. However, most of the template matching methods are so time consuming that they can't be used to many real time applications. The closed contour matching method is a popular kind of template matching methods. This paper presents a new closed contour template matching method which is suitable for two dimensional objects. Coarse-to-fine searching strategy is used to improve the matching efficiency and a partial computation elimination scheme is proposed to further speed up the searching process. The method consists of offline model construction and online matching. In the process of model construction, triples and distance image are obtained from the template image. A certain number of triples which are composed by three points are created from the contour information that is extracted from the template image. The rule to select the three points is that the template contour is divided equally into three parts by these points. The distance image is obtained here by distance transform. Each point on the distance image represents the nearest distance between current point and the points on the template contour. During the process of matching, triples of the searching image are created with the same rule as the triples of the model. Through the similarity that is invariant to rotation, translation and scaling between triangles, the triples corresponding to the triples of the model are found. Then we can obtain the initial RST (rotation, translation and scaling) parameters mapping the searching contour to the template contour. In order to speed up the searching process, the points on the searching contour are sampled to reduce the number of the triples. To verify the RST parameters, the searching contour is projected into the distance image, and the mean distance can be computed rapidly by simple operations of addition and multiplication. In the fine searching process, the initial RST parameters are discrete to obtain the final accurate pose of the object. Experimental results show that the proposed method is reasonable and efficient, and can be used in many real time applications.

  11. A Fully Automated Method to Detect and Segment a Manufactured Object in an Underwater Color Image

    NASA Astrophysics Data System (ADS)

    Barat, Christian; Phlypo, Ronald

    2010-12-01

    We propose a fully automated active contours-based method for the detection and the segmentation of a moored manufactured object in an underwater image. Detection of objects in underwater images is difficult due to the variable lighting conditions and shadows on the object. The proposed technique is based on the information contained in the color maps and uses the visual attention method, combined with a statistical approach for the detection and an active contour for the segmentation of the object to overcome the above problems. In the classical active contour method the region descriptor is fixed and the convergence of the method depends on the initialization. With our approach, this dependence is overcome with an initialization using the visual attention results and a criterion to select the best region descriptor. This approach improves the convergence and the processing time while providing the advantages of a fully automated method.

  12. Airborne gamma-ray spectrometer and magnetometer survey, Cape Flattery quadrange (Washington). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    No uranium anomalies meet the minimum statistical requirements as defined. There is no Uranium Anomaly Interpretation Map for the Cape Flattery quadrangle. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation.

  13. Airborne gamma-ray spectrometer and magnetometer survey, Copalis Beach quadrangle (Washington). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    No uranium anomalies meet the minimum statistical requirements as defined. There is no Uranium Anomaly Interpretation Map for the Copalis Beach quadrangle. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation.

  14. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates

    NASA Technical Reports Server (NTRS)

    Mikic, I.; Krucinski, S.; Thomas, J. D.

    1998-01-01

    This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.

  15. SU-F-I-50: Finite Element-Based Deformable Image Registration of Lung and Heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penjweini, R; Kim, M; Zhu, T

    Purpose: Photodynamic therapy (PDT) is used after surgical resection to treat the microscopic disease for malignant pleural mesothelioma and to increase survival rates. Although accurate light delivery is imperative to PDT efficacy, the deformation of the pleural volume during the surgery impacts the delivered light dose. To facilitate treatment planning, we use a finite-element-based (FEM) deformable image registration to quantify the anatomical variation of lung and heart volumes between CT pre-(or post-) surgery and surface contours obtained during PDT using an infrared camera-based navigation system (NDI). Methods: NDI is used during PDT to obtain the information of the cumulative lightmore » fluence on every cavity surface point that is being treated. A wand, comprised of a modified endotrachial tube filled with Intralipid and an optical fiber inside the tube, is used to deliver the light during PDT. The position of the treatment is tracked using an attachment with nine reflective passive markers that are seen by the NDI system. Then, the position points are plotted as three-dimensional volume of the pleural cavity using Matlab and Meshlab. A series of computed tomography (CT) scans of the lungs and heart, in the same patient, are also acquired before and after the surgery. The NDI and CT contours are imported into COMSOL Multiphysics, where the FEM-based deformable image registration is obtained. The NDI and CT contours acquired during and post-PDT are considered as the reference, and the Pre-PDT CT contours are used as the target, which will be deformed. Results: Anatomical variation of the lung and heart volumes, taken at different times from different imaging devices, was determined by using our model. The resulting three-dimensional deformation map along x, y and z-axes was obtained. Conclusion: Our model fuses images acquired by different modalities and provides insights into the variation in anatomical structures over time.« less

  16. A shape-based inter-layer contours correspondence method for ICT-based reverse engineering

    PubMed Central

    Duan, Liming; Yang, Shangpeng; Zhang, Gui; Feng, Fei; Gu, Minghui

    2017-01-01

    The correspondence of a stack of planar contours in ICT (industrial computed tomography)-based reverse engineering, a key step in surface reconstruction, is difficult when the contours or topology of the object are complex. Given the regularity of industrial parts and similarity of the inter-layer contours, a specialized shape-based inter-layer contours correspondence method for ICT-based reverse engineering was presented to solve the above problem based on the vectorized contours. In this paper, the vectorized contours extracted from the slices consist of three graphical primitives: circles, arcs and segments. First, the correspondence of the inter-layer primitives is conducted based on the characteristics of the primitives. Second, based on the corresponded primitives, the inter-layer contours correspond with each other using the proximity rules and exhaustive search. The proposed method can make full use of the shape information to handle industrial parts with complex structures. The feasibility and superiority of this method have been demonstrated via the related experiments. This method can play an instructive role in practice and provide a reference for the related research. PMID:28489867

  17. A shape-based inter-layer contours correspondence method for ICT-based reverse engineering.

    PubMed

    Duan, Liming; Yang, Shangpeng; Zhang, Gui; Feng, Fei; Gu, Minghui

    2017-01-01

    The correspondence of a stack of planar contours in ICT (industrial computed tomography)-based reverse engineering, a key step in surface reconstruction, is difficult when the contours or topology of the object are complex. Given the regularity of industrial parts and similarity of the inter-layer contours, a specialized shape-based inter-layer contours correspondence method for ICT-based reverse engineering was presented to solve the above problem based on the vectorized contours. In this paper, the vectorized contours extracted from the slices consist of three graphical primitives: circles, arcs and segments. First, the correspondence of the inter-layer primitives is conducted based on the characteristics of the primitives. Second, based on the corresponded primitives, the inter-layer contours correspond with each other using the proximity rules and exhaustive search. The proposed method can make full use of the shape information to handle industrial parts with complex structures. The feasibility and superiority of this method have been demonstrated via the related experiments. This method can play an instructive role in practice and provide a reference for the related research.

  18. Contour advection with surgery: A technique for investigating finescale structure in tracer transport

    NASA Technical Reports Server (NTRS)

    Waugh, Darryn W.; Plumb, R. Alan

    1994-01-01

    We present a trajectory technique, contour advection with surgery (CAS), for tracing the evolution of material contours in a specified (including observed) evolving flow. CAS uses the algorithms developed by Dritschel for contour dynamics/surgery to trace the evolution of specified contours. The contours are represented by a series of particles, which are advected by a specified, gridded, wind distribution. The resolution of the contours is preserved by continually adjusting the number of particles, and finescale features are produced that are not present in the input data (and cannot easily be generated using standard trajectory techniques). The reliability, and dependence on the spatial and temporal resolution of the wind field, of the CAS procedure is examined by comparisons with high-resolution numerical data (from contour dynamics calculations and from a general circulation model), and with routine stratospheric analyses. These comparisons show that the large-scale motions dominate the deformation field and that CAS can accurately reproduce small scales from low-resolution wind fields. The CAS technique therefore enables examination of atmospheric tracer transport at previously unattainable resolution.

  19. Contour Connection Method for automated identification and classification of landslide deposits

    NASA Astrophysics Data System (ADS)

    Leshchinsky, Ben A.; Olsen, Michael J.; Tanyu, Burak F.

    2015-01-01

    Landslides are a common hazard worldwide that result in major economic, environmental and social impacts. Despite their devastating effects, inventorying existing landslides, often the regions at highest risk of reoccurrence, is challenging, time-consuming, and expensive. Current landslide mapping techniques include field inventorying, photogrammetric approaches, and use of bare-earth (BE) lidar digital terrain models (DTMs) to highlight regions of instability. However, many techniques do not have sufficient resolution, detail, and accuracy for mapping across landscape scale with the exception of using BE DTMs, which can reveal the landscape beneath vegetation and other obstructions, highlighting landslide features, including scarps, deposits, fans and more. Current approaches to landslide inventorying with lidar to create BE DTMs include manual digitizing, statistical or machine learning approaches, and use of alternate sensors (e.g., hyperspectral imaging) with lidar. This paper outlines a novel algorithm to automatically and consistently detect landslide deposits on a landscape scale. The proposed method is named as the Contour Connection Method (CCM) and is primarily based on bare earth lidar data requiring minimal user input such as the landslide scarp and deposit gradients. The CCM algorithm functions by applying contours and nodes to a map, and using vectors connecting the nodes to evaluate gradient and associated landslide features based on the user defined input criteria. Furthermore, in addition to the detection capabilities, CCM also provides an opportunity to be potentially used to classify different landscape features. This is possible because each landslide feature has a distinct set of metadata - specifically, density of connection vectors on each contour - that provides a unique signature for each landslide. In this paper, demonstrations of using CCM are presented by applying the algorithm to the region surrounding the Oso landslide in Washington (March 2014), as well as two 14,000 ha DTMs in Oregon, which were used as a comparison of CCM and manually delineated landslide deposits. The results show the capability of the CCM with limited data requirements and the agreement with manual delineation but achieving the results at a much faster time.

  20. An automatic gore panel mapping system

    NASA Technical Reports Server (NTRS)

    Shiver, John D.; Phelps, Norman N.

    1990-01-01

    The Automatic Gore Mapping System is being developed to reduce the time and labor costs associated with manufacturing the External Tank. The present chem-milling processes and procedures are discussed. The down loading of the simulation of the system has to be performed to verify that the simulation package will translate the simulation code into robot code. Also a simulation of this system has to be programmed for a gantry robot instead of the articulating robot that is presently in the system. It was discovered using the simulation package that the articulation robot cannot reach all the point on some of the panels, therefore when the system is ready for production, a gantry robot will be used. Also a hydrosensor system is being developed to replace the point-to-point contact probe. The hydrosensor will allow the robot to perform a non-contact continuous scan of the panel. It will also provide a faster scan of the panel because it will eliminate the in-and-out movement required for the present end effector. The system software is currently being modified so that the hydrosensor will work with the system. The hydrosensor consists of a Krautkramer-Branson transducer encased in a plexiglass nozzle. The water stream pumped through the nozzle is the couplant for the probe. Also, software is being written so that the robot will have the ability to draw the contour lines on the panel displaying the out-of-tolerance regions. Presently the contour lines can only be displayed on the computer screens. Research is also being performed on improving and automating the method of scribing the panels. Presently the panels are manually scribed with a sharp knife. The use of a low power laser or water jet is being studied as a method of scribing the panels. The contour drawing pen will be replaced with scribing tool and the robot will then move along the contour lines. With these developments the Automatic Gore Mapping Systems will provide a reduction in time and labor costs associated with manufacturing the External Task. The system also has the potential of inspecting other manufactured parts.

  1. Low dose CBCT reconstruction via prior contour based total variation (PCTV) regularization: a feasibility study

    NASA Astrophysics Data System (ADS)

    Chen, Yingxuan; Yin, Fang-Fang; Zhang, Yawei; Zhang, You; Ren, Lei

    2018-04-01

    Purpose: compressed sensing reconstruction using total variation (TV) tends to over-smooth the edge information by uniformly penalizing the image gradient. The goal of this study is to develop a novel prior contour based TV (PCTV) method to enhance the edge information in compressed sensing reconstruction for CBCT. Methods: the edge information is extracted from prior planning-CT via edge detection. Prior CT is first registered with on-board CBCT reconstructed with TV method through rigid or deformable registration. The edge contours in prior-CT is then mapped to CBCT and used as the weight map for TV regularization to enhance edge information in CBCT reconstruction. The PCTV method was evaluated using extended-cardiac-torso (XCAT) phantom, physical CatPhan phantom and brain patient data. Results were compared with both TV and edge preserving TV (EPTV) methods which are commonly used for limited projection CBCT reconstruction. Relative error was used to calculate pixel value difference and edge cross correlation was defined as the similarity of edge information between reconstructed images and ground truth in the quantitative evaluation. Results: compared to TV and EPTV, PCTV enhanced the edge information of bone, lung vessels and tumor in XCAT reconstruction and complex bony structures in brain patient CBCT. In XCAT study using 45 half-fan CBCT projections, compared with ground truth, relative errors were 1.5%, 0.7% and 0.3% and edge cross correlations were 0.66, 0.72 and 0.78 for TV, EPTV and PCTV, respectively. PCTV is more robust to the projection number reduction. Edge enhancement was reduced slightly with noisy projections but PCTV was still superior to other methods. PCTV can maintain resolution while reducing the noise in the low mAs CatPhan reconstruction. Low contrast edges were preserved better with PCTV compared with TV and EPTV. Conclusion: PCTV preserved edge information as well as reduced streak artifacts and noise in low dose CBCT reconstruction. PCTV is superior to TV and EPTV methods in edge enhancement, which can potentially improve the localization accuracy in radiation therapy.

  2. A pilot prospective feasibility study of organ-at-risk definition using Target Contour Testing/Instructional Computer Software (TaCTICS), a training and evaluation platform for radiotherapy target delineation.

    PubMed

    Kalpathy-Cramer, Jayashree; Bedrick, Steven D; Boccia, Kelly; Fuller, Clifton D

    2011-01-01

    Target volume delineation is a critical, but time-consuming step in the creation of radiation therapy plans used in the treatment of many types of cancer. However, variability in target volume definitions can introduce substantial differences in resulting doses to tumors and critical structures. We developed TaCTICS, a web-based educational training software application targeted towards non-expert users. We report on a small, prospective study to evaluate the utility of this online tool in improving conformance of regions-of-interest (ROIs) with a reference set. Eight residents contoured a set of structures for a head-and-neck cancer case. Subsequently, they were provided access to TaCTICS as well as contouring atlases to allow evaluation of their contours in reference to other users as well as reference ROIs. The residents then contoured a second case using these resources. Volume overlap metrics between the users showed a substantial improvement following the intervention. Additionally, 66% of users reported that they found TaCTICS to be a useful educational tool and all participants reported they would like to use TaCTICS to track their contouring skills over the course of their residency.

  3. High-sensitivity aeromagnetic survey of the US Atlantic continental margin.

    USGS Publications Warehouse

    Behrendt, John C.; Klitgord, Kim D.

    1980-01-01

    The US Geological Survey contracted a high-sensitivity, digital aeromagnetic survey that was flown over the US Atlantic continental margin over a period of 15 months between 1974 and 1976. The 185 000 km of profile data have a relative accuracy approaching a few tenths of a nanotesla, which allowed compilation into maps at a scale of 1:250 000, with a contour interval of 2 nT. Automatic data processing using the Werner method allowed calculations of apparent depth to sources of the magnetic anomalies on all of the profiles, assuming a dike or interface as a source. Comparison of the computed depths to magnetic basement with multichannel seismic profiles across the survey area helped to reduce ambiguities in magnetic depth estimates and enabled interpolation of basement structures between seismic profiles. The resulting map showing depth to basement of the Atlantic continental margin is compatible with available multichannel seismic data, and we consider it a reasonable representation of the base of the sedimentary column. -Authors

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grillot, L.R.; Anderton, P.W.; Haselton, T.M.

    The Espoir oil field, located approximately 13 km offshore Ivory Coast, was discovered in 1980 by a joint venture comprised of Phillips Petroleum Company, AGIP, SEDCO Energy, and PETROCI. Following the discovery, a three-dimensional seismic survey was recorded by GSI in 1981-1982 to provide detailed seismic coverage of Espoir field and adjacent features. The seismic program consisted of 7700 line-km of data acquired in a single survey area that is located on the edge of the continental shelf and extends into deep water. In comparison with previous two-dimensional seismic surveys, the three-dimensional data provided several improvements in interpretation and mappingmore » including: (1) sharper definition of structural features, (2) reliable correlations of horizons and fault traces between closely spaced tracks, (3) detailed time contour maps from time-slice sections, and (4) improved velocity model for depth conversion. The improved mapping helped us identify additional well locations; the results of these wells compared favorably with the interpretation made prior to drilling.« less

  5. Isolating contour information from arbitrary images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1989-01-01

    Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.

  6. Aerial Radiological Survey of Abandoned Uranium Mines (AUM) Map Service, Navajo Nation, 1994-1999, US EPA Region 9

    EPA Pesticide Factsheets

    This map service contains data from aerial radiological surveys of 41 potential uranium mining areas (1,144 square miles) within the Navajo Nation that were conducted during the period from October 1994 through October 1999. The US Environmental Protection Agency (USEPA) Region 9 funded the surveys and the US Department of Energy (USDOE) Remote Sensing Laboratory (RSL) in Las Vegas, Nevada conducted the aerial surveys. The aerial survey data were used to characterize the overall radioactivity and excess Bismuth 214 levels within the surveyed areas.This US EPA Region 9 web service contains the following map layers: Total Terrestrial Gamma Activity Polygons, Total Terrestrial Gamma Activity Contours, Excess Bismuth 214 Contours, Excess Bismuth 214 Polygons, Flight AreasFull FGDC metadata records for each layer can be found by clicking the layer name at the web service endpoint and viewing the layer description.Security Classification: Public. Access Constraints: None. Use Constraints: None. Please check sources, scale, accuracy, currentness and other available information. Please confirm that you are using the most recent copy of both data and metadata. Acknowledgement of the EPA would be appreciated.

  7. Topographic instructions, Book 3, multiplex procedure; Chapter 3 C7a-e

    USGS Publications Warehouse

    Loud, Edward I.

    1952-01-01

    By direct projection of overlapping photographs, printed on glass plates, the multiplex produces an exact optical model, in miniature, of the terrain to be mapped. To create the model, the multiplex projectors must be properly positioned and oriented so that they duplicate the orientation of the aerial camera at the instant of each exposure. By means of a floating mark, horizontal and vertical measurements can be made in the model, and planimetry and contours can be drawn. The applicability of the multiplex to a given mapping project depends largely on the contour interval and compilation scale required, and also depends, to a lesser extent, on the vegetation and terrain cover as it may affect accuracy requirements. The steps in multiplex procedure are orientation, stereotriangulation, and compilation of detail. In orientation, the projectors are arranged so that the projected images form a stereoscopic model which can be adjusted to fit horizontal and vertical control points. In stereotriangulation, three or more multiplex projectors are oriented so that the consecutive models fit existing control, permitting the establishment of additional or intermediate control. In compilation, the features appearing in the model are delineated on the map manuscript.

  8. Nebraska, Kansas, and Oklahoma aeromagnetic and gravity maps and data: a web site for distribution of data

    USGS Publications Warehouse

    Sweeney, Ronald E.; Hill, Patricia L.

    2005-01-01

    The Nebraska, Kansas, and Oklahoma aeromagnetic grid is constructed from grids that combine information collected in 28 separate aeromagnetic surveys conducted between 1954 and 1985. The data from these surveys are of varying quality. The design and specifications (terrain clearance, sampling rates, line spacing, and reduction procedures) varied from survey to survey depending on the purpose of the project and the technology of that time. Every attempt was made to acquire the data in digital form. Most of the available digital data were obtained from aeromagnetic surveys flown by the U.S. Geological Survey (USGS), flown on contract with the USGS, or were obtained from other Federal agencies and State universities. The Kansas data were flown by and acquired from the Kansas Geological Survey. Some of the 1954, 1963, and 1964 data are available only on hand-contoured maps and had to be digitized. These maps were digitized along flight-line/contour-line intersections, which is considered to be the most accurate method of recovering the original data. All surveys have been continued to 304.8 m (1,000 ft) above ground and then blended or merged together.

  9. Character feature integration of Chinese calligraphy and font

    NASA Astrophysics Data System (ADS)

    Shi, Cao; Xiao, Jianguo; Jia, Wenhua; Xu, Canhui

    2013-01-01

    A framework is proposed in this paper to effectively generate a new hybrid character type by means of integrating local contour feature of Chinese calligraphy with structural feature of font in computer system. To explore traditional art manifestation of calligraphy, multi-directional spatial filter is applied for local contour feature extraction. Then the contour of character image is divided into sub-images. The sub-images in the identical position from various characters are estimated by Gaussian distribution. According to its probability distribution, the dilation operator and erosion operator are designed to adjust the boundary of font image. And then new Chinese character images are generated which possess both contour feature of artistical calligraphy and elaborate structural feature of font. Experimental results demonstrate the new characters are visually acceptable, and the proposed framework is an effective and efficient strategy to automatically generate the new hybrid character of calligraphy and font.

  10. Spiral Light Beams and Contour Image Processing

    NASA Astrophysics Data System (ADS)

    Kishkin, Sergey A.; Kotova, Svetlana P.; Volostnikov, Vladimir G.

    Spiral beams of light are characterized by their ability to remain structurally unchanged at propagation. They may have the shape of any closed curve. In the present paper a new approach is proposed within the framework of the contour analysis based on a close cooperation of modern coherent optics, theory of functions and numerical methods. An algorithm for comparing contours is presented and theoretically justified, which allows convincing of whether two contours are similar or not to within the scale factor and/or rotation. The advantages and disadvantages of the proposed approach are considered; the results of numerical modeling are presented.

  11. Lineaments in the Shamakhy-Gobustan and Absheron hydrocarbon containing areas using gravity data

    NASA Astrophysics Data System (ADS)

    Elmas, Ali; Karsli, Hakan; Kadirov, Fakhraddin A.

    2017-12-01

    In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy-Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker-Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy-Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.

  12. Lineaments in the Shamakhy-Gobustan and Absheron hydrocarbon containing areas using gravity data

    NASA Astrophysics Data System (ADS)

    Elmas, Ali; Karsli, Hakan; Kadirov, Fakhraddin A.

    2018-02-01

    In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy-Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker-Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy-Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.

  13. A population-based tissue probability map-driven level set method for fully automated mammographic density estimations.

    PubMed

    Kim, Youngwoo; Hong, Byung Woo; Kim, Seung Ja; Kim, Jong Hyo

    2014-07-01

    A major challenge when distinguishing glandular tissues on mammograms, especially for area-based estimations, lies in determining a boundary on a hazy transition zone from adipose to glandular tissues. This stems from the nature of mammography, which is a projection of superimposed tissues consisting of different structures. In this paper, the authors present a novel segmentation scheme which incorporates the learned prior knowledge of experts into a level set framework for fully automated mammographic density estimations. The authors modeled the learned knowledge as a population-based tissue probability map (PTPM) that was designed to capture the classification of experts' visual systems. The PTPM was constructed using an image database of a selected population consisting of 297 cases. Three mammogram experts extracted regions for dense and fatty tissues on digital mammograms, which was an independent subset used to create a tissue probability map for each ROI based on its local statistics. This tissue class probability was taken as a prior in the Bayesian formulation and was incorporated into a level set framework as an additional term to control the evolution and followed the energy surface designed to reflect experts' knowledge as well as the regional statistics inside and outside of the evolving contour. A subset of 100 digital mammograms, which was not used in constructing the PTPM, was used to validate the performance. The energy was minimized when the initial contour reached the boundary of the dense and fatty tissues, as defined by experts. The correlation coefficient between mammographic density measurements made by experts and measurements by the proposed method was 0.93, while that with the conventional level set was 0.47. The proposed method showed a marked improvement over the conventional level set method in terms of accuracy and reliability. This result suggests that the proposed method successfully incorporated the learned knowledge of the experts' visual systems and has potential to be used as an automated and quantitative tool for estimations of mammographic breast density levels.

  14. An interdisciplinary analysis of multispectral satellite data for selected cover types in the Colorado Mountains, using automatic data processing techniques. [geological lineaments and mineral exploration

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. One capability which has been recognized by many geologists working with space photography is the ability to see linear features and alinements which were previously not apparent. To the exploration geologist, major lineaments seen on satellite images are of particular interest. A portion of ERTS-1 frame 1407-17193 (3 Sept. 1973) was used for mapping lineaments and producing an iso-lineament intersection map. Skylab photography over the area of prime area was not useable due to snow cover. Once the lineaments were mapped, a grid with 2.5 km spacing was overlayed on the map and the lineament intersections occurring within each grid square were counted and the number plotted in the center of the grid square. These numbers were then contoured producing a contour map of equal lineament intersection. It is believed that the areas of high intersection concentration would be the most favorable area for ore mineralization if favorable host rocks are also present. These highly fractured areas would act as conduits for carrying the ore forming solutions to the site of deposition in a favorable host rock. Two of the six areas of high intersection concentration are over areas of present or past mining camps and small claims are known to exist near the others. These would be prime target areas for future mineral exploration.

  15. Generation algorithm of craniofacial structure contour in cephalometric images

    NASA Astrophysics Data System (ADS)

    Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.

    2010-02-01

    Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.

  16. Automated delineation and characterization of drumlins using a localized contour tree approach

    NASA Astrophysics Data System (ADS)

    Wang, Shujie; Wu, Qiusheng; Ward, Dylan

    2017-10-01

    Drumlins are ubiquitous landforms in previously glaciated regions, formed through a series of complex subglacial processes operating underneath the paleo-ice sheets. Accurate delineation and characterization of drumlins are essential for understanding the formation mechanism of drumlins as well as the flow behaviors and basal conditions of paleo-ice sheets. Automated mapping of drumlins is particularly important for examining the distribution patterns of drumlins across large spatial scales. This paper presents an automated vector-based approach to mapping drumlins from high-resolution light detection and ranging (LiDAR) data. The rationale is to extract a set of concentric contours by building localized contour trees and establishing topological relationships. This automated method can overcome the shortcomings of previously manual and automated methods for mapping drumlins, for instance, the azimuthal biases during the generation of shaded relief images. A case study was carried out over a portion of the New York Drumlin Field. Overall 1181 drumlins were identified from the LiDAR-derived DEM across the study region, which had been underestimated in previous literature. The delineation results were visually and statistically compared to the manual digitization results. The morphology of drumlins was characterized by quantifying the length, width, elongation ratio, height, area, and volume. Statistical and spatial analyses were conducted to examine the distribution pattern and spatial variability of drumlin size and form. The drumlins and the morphologic characteristics exhibit significant spatial clustering rather than randomly distributed patterns. The form of drumlins varies from ovoid to spindle shapes towards the downstream direction of paleo ice flows, along with the decrease in width, area, and volume. This observation is in line with previous studies, which may be explained by the variations in sediment thickness and/or the velocity increases of ice flows towards ice front.

  17. Interactive segmentation of tongue contours in ultrasound video sequences using quality maps

    NASA Astrophysics Data System (ADS)

    Ghrenassia, Sarah; Ménard, Lucie; Laporte, Catherine

    2014-03-01

    Ultrasound (US) imaging is an effective and non invasive way of studying the tongue motions involved in normal and pathological speech, and the results of US studies are of interest for the development of new strategies in speech therapy. State-of-the-art tongue shape analysis techniques based on US images depend on semi-automated tongue segmentation and tracking techniques. Recent work has mostly focused on improving the accuracy of the tracking techniques themselves. However, occasional errors remain inevitable, regardless of the technique used, and the tongue tracking process must thus be supervised by a speech scientist who will correct these errors manually or semi-automatically. This paper proposes an interactive framework to facilitate this process. In this framework, the user is guided towards potentially problematic portions of the US image sequence by a segmentation quality map that is based on the normalized energy of an active contour model and automatically produced during tracking. When a problematic segmentation is identified, corrections to the segmented contour can be made on one image and propagated both forward and backward in the problematic subsequence, thereby improving the user experience. The interactive tools were tested in combination with two different tracking algorithms. Preliminary results illustrate the potential of the proposed framework, suggesting that the proposed framework generally improves user interaction time, with little change in segmentation repeatability.

  18. Shape optimization of disc-type flywheels

    NASA Technical Reports Server (NTRS)

    Nizza, R. S.

    1976-01-01

    Techniques were developed for presenting an analytical and graphical means for selecting an optimum flywheel system design, based on system requirements, geometric constraints, and weight limitations. The techniques for creating an analytical solution are formulated from energy and structural principals. The resulting flywheel design relates stress and strain pattern distribution, operating speeds, geometry, and specific energy levels. The design techniques incorporate the lowest stressed flywheel for any particular application and achieve the highest specific energy per unit flywheel weight possible. Stress and strain contour mapping and sectional profile plotting reflect the results of the structural behavior manifested under rotating conditions. This approach toward flywheel design is applicable to any metal flywheel, and permits the selection of the flywheel design to be based solely on the criteria of the system requirements that must be met, those that must be optimized, and those system parameters that may be permitted to vary.

  19. Comparison of 3D quantitative structure-activity relationship methods: Analysis of the in vitro antimalarial activity of 154 artemisinin analogues by hypothetical active-site lattice and comparative molecular field analysis

    NASA Astrophysics Data System (ADS)

    Woolfrey, John R.; Avery, Mitchell A.; Doweyko, Arthur M.

    1998-03-01

    Two three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and hypothetical active site lattice (HASL), were compared with respect to the analysis of a training set of 154 artemisinin analogues. Five models were created, including a complete HASL and two trimmed versions, as well as two CoMFA models (leave-one-out standard CoMFA and the guided-region selection protocol). Similar r2 and q2 values were obtained by each method, although some striking differences existed between CoMFA contour maps and the HASL output. Each of the four predictive models exhibited a similar ability to predict the activity of a test set of 23 artemisinin analogues, although some differences were noted as to which compounds were described well by either model.

  20. GEOSTATISTICAL INTERPOLATION OF CHEMICAL CONCENTRATION. (R825689C037)

    EPA Science Inventory

    Abstract

    Measurements of contaminant concentration at a hazardous waste site typically vary over many orders of magnitude and have highly skewed distributions. This work presents a practical methodology for the estimation of solute concentration contour maps and volume...

  1. Carbonaceous structures in the Tissint Martian Meteorite: evidence of a biogenetic origin

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.

    2015-09-01

    We report for the first time in situ observations of 5-50μm spherical carbonaceous structures in the Tissint Martian meteorite comprising of pyrite (FeS2) cores and carbonaceous outer coatings. The structures are characterized as smooth immiscible spheres with curved boundaries occasionally following the contours of the pyrite inclusion. The structures bear striking resemblance to similar-sized immiscible carbonaceous spheres found in hydrothermal calcite vein deposits in the Mullaghwornia Quarry in central Ireland. Similar structures have been reported in Proterozoic and Ordovician sandstones from Canada as well as in a variety of astronomical sources including carbonaceous chondrites, chondritic IDPs and primitive chondritic meteorites. SEM and X-Ray elemental mapping confirmed the presence of organic carbon filling the crack and cleavage space in the pyroxene substrate, with further evidence of pyrite acting as an attractive substrate for the collection of organic matter. The detection of precipitated carbon collecting around pyrite grains is at variance with an igneous origin as proposed for the reduced organic component in Tissint, and is more consistent with a biogenetic origin.

  2. Map of Martian Thorium at Mid-Latitudes

    NASA Image and Video Library

    2003-03-13

    This gamma ray spectrometer map of the mid-latitude region of Mars is based on gamma-rays from the element thorium. Thorium is a naturally radioactive element that exists in rocks and soils in extremely small amounts. The region of highest thorium content, shown in red, is found in the northern part of Acidalia Planitia (50 degrees latitude, -30 degrees longitude). Areas of low thorium content, shown in blue, are spread widely across the planet with significant low abundances located to the north of Olympus Mons (near 55 degrees latitude, -155 degrees longitude), to the east of the Tharsis volcanoes (-10 degrees latitude, -80 degrees longitude) and to the south and east of Elysium Mons (20 degrees latitude, 160 degrees longitude). Contours of constant surface elevation are also shown. The long continuous contour line running from east to west marks the approximate separation of the younger lowlands in the north from the older highlands in the south. http://photojournal.jpl.nasa.gov/catalog/PIA04257

  3. Rocky Mountain Arsenal, Sections 26 and 25 Contamination Survey. Phase 1

    DTIC Science & Technology

    1987-12-01

    mapping specifications for scale, overlap, density, and image quality. Utilizing the aerial photography and ground control described above, orthophoto ...base maps with superimposed contours will be prepared. £ 3-2 RMA06-D.1/TPGEO 1.3 11/20/87 Orthophoto negatives will be prepared directly at the final...cdial lnvestigation/Feasibiliy Studv (RI/FS) at tile Rocky Mountain Arsenal. Tasks 4 and 6 were prepared by ’Environmental Science and Engineering (ESE

  4. Potentiometric surface of the upper Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida, May 1994

    USGS Publications Warehouse

    Schiffer, D.M.; O'Reilly, A. M.; Phelps, G.G.; Bradner, L.A.; Halford, K.J.; Spechler, R.M.

    1994-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 1994. The map is based on water-level measurements made at approximately 1,000 wells and several springs. Data on the map were contoured using 5-foot contour intervals in most areas. The potentiometric surface of this karstic aquifer generally reflects land surface topography. Potentiometric surface highs often correspond to topographic highs, which are areas of surficial recharge to the Upper Floridan aquifer. Springs within topographic lows along with areas of more diffuse upward leakage are natural zones of discharge. Municipal, agricultural, and industrial withdrawals have lowered the potentiometric surface in some areas. The potentiometric surface ranged from 125 feet above sea level in Polk County to 32 feet below sea level in Nassau County. Water levels in May 1994 generally were 0 to 3 feet lower than those measured in May 1993. Water levels in May 1994 in northeast Florida generally were 0 to 3 feet higher than in September 1993, except in the lower St. Johns River basin, where water levels were 0 to 4 feet lower than in September 1993. In the rest of the mapped area, water levels in May 1994 generally were 0 to 4 feet lower than those measured in September 1993.

  5. Revealing chemophoric sites in organophosphorus insecticides through the MIA-QSPR modeling of soil sorption data.

    PubMed

    Daré, Joyce K; Silva, Cristina F; Freitas, Matheus P

    2017-10-01

    Soil sorption of insecticides employed in agriculture is an important parameter to probe the environmental fate of organic chemicals. Therefore, methods for the prediction of soil sorption of new agrochemical candidates, as well as for the rationalization of the molecular characteristics responsible for a given sorption profile, are extremely beneficial for the environment. A quantitative structure-property relationship method based on chemical structure images as molecular descriptors provided a reliable model for the soil sorption prediction of 24 widely used organophosphorus insecticides. By means of contour maps obtained from the partial least squares regression coefficients and the variable importance in projection scores, key molecular moieties were targeted for possible structural modification, in order to obtain novel and more environmentally friendly insecticide candidates. The image-based descriptors applied encode molecular arrangement, atoms connectivity, groups size, and polarity; consequently, the findings in this work cannot be achieved by a simple relationship with hydrophobicity, usually described by the octanol-water partition coefficient. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Constraining explosive volcanism: subjective choices during estimates of eruption magnitude

    USGS Publications Warehouse

    Klawonn, Malin; Houghton, Bruce F.; Swanson, Don; Fagents, Sarah A.; Wessel, Paul; Wolfe, Cecily J.

    2014-01-01

    When estimating the magnitude of explosive eruptions from their deposits, individuals make three sets of critical choices with respect to input data: the spacing of sampling sites, the selection of contour intervals to constrain the field measurements, and the hand contouring of thickness/isomass data, respectively. Volcanologists make subjective calls, as there are no accepted published protocols and few accounts of how these choices will impact estimates of eruption magnitude. Here, for the first time, we took a set of unpublished thickness measurements from the 1959 Kīlauea Iki pyroclastic fall deposit and asked 101 volcanologists worldwide to hand contour the data. First, there were surprisingly consistent volume estimates across maps with three different sampling densities. Second, the variability in volume calculations imparted by individuals’ choices of contours is also surprisingly low and lies between s = 5 and 8 %. Third, volume estimation is insensitive to the extent to which different individuals “smooth” the raw data in constructing contour lines. Finally, large uncertainty is associated with the construction of the thinnest isopachs, which is likely to underestimate the actual trend of deposit thinning. The net result is that researchers can have considerable confidence in using volume or dispersal data from multiple authors and different deposits for comparative studies. These insights should help volcanologists around the world to optimize design and execution of field-based studies to characterize accurately the volume of pyroclastic deposits.

  7. Constraining explosive volcanism: subjective choices during estimates of eruption magnitude

    NASA Astrophysics Data System (ADS)

    Klawonn, Malin; Houghton, Bruce F.; Swanson, Donald A.; Fagents, Sarah A.; Wessel, Paul; Wolfe, Cecily J.

    2014-02-01

    When estimating the magnitude of explosive eruptions from their deposits, individuals make three sets of critical choices with respect to input data: the spacing of sampling sites, the selection of contour intervals to constrain the field measurements, and the hand contouring of thickness/isomass data, respectively. Volcanologists make subjective calls, as there are no accepted published protocols and few accounts of how these choices will impact estimates of eruption magnitude. Here, for the first time, we took a set of unpublished thickness measurements from the 1959 Kīlauea Iki pyroclastic fall deposit and asked 101 volcanologists worldwide to hand contour the data. First, there were surprisingly consistent volume estimates across maps with three different sampling densities. Second, the variability in volume calculations imparted by individuals' choices of contours is also surprisingly low and lies between s = 5 and 8 %. Third, volume estimation is insensitive to the extent to which different individuals "smooth" the raw data in constructing contour lines. Finally, large uncertainty is associated with the construction of the thinnest isopachs, which is likely to underestimate the actual trend of deposit thinning. The net result is that researchers can have considerable confidence in using volume or dispersal data from multiple authors and different deposits for comparative studies. These insights should help volcanologists around the world to optimize design and execution of field-based studies to characterize accurately the volume of pyroclastic deposits.

  8. Complete Bouguer gravity anomaly map of the state of Colorado

    USGS Publications Warehouse

    Abrams, Gerda A.

    1993-01-01

    The Bouguer gravity anomaly map is part of a folio of maps of Colorado cosponsored by the National Mineral Resources Assessment Program (NAMRAP) and the National Geologic Mapping Program (COGEOMAP) and was produced to assist in studies of the mineral resource potential and tectonic setting of the State. Previous compilations of about 12,000 gravity stations by Behrendt and Bajwa (1974a,b) are updated by this map. The data was reduced at a 2.67 g/cm3 and the grid contoured at 3 mGal intervals. This map will aid in the mineral resource assessment by indicating buried intrusive complexes, volcanic fields, major faults and shear zones, and sedimentary basins; helping to identify concealed geologic units; and identifying localities that might be hydrothermically altered or mineralized.

  9. Airborne gamma-ray spectrometer and magnetometer survey: Victoria quadrangle (Washington). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    One uranium anomaly meets the minimum statistical requirements. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation. Anomaly number 1 is over an exposure of the Permian Shuksan metamorphic suite which is predominantly phyllite (Trps).

  10. Maps of interaural delay in the owl's nucleus laminaris

    PubMed Central

    Shah, Sahil; McColgan, Thomas; Ashida, Go; Kuokkanen, Paula T.; Brill, Sandra; Kempter, Richard; Wagner, Hermann

    2015-01-01

    Axons from the nucleus magnocellularis form a presynaptic map of interaural time differences (ITDs) in the nucleus laminaris (NL). These inputs generate a field potential that varies systematically with recording position and can be used to measure the map of ITDs. In the barn owl, the representation of best ITD shifts with mediolateral position in NL, so as to form continuous, smoothly overlapping maps of ITD with iso-ITD contours that are not parallel to the NL border. Frontal space (0°) is, however, represented throughout and thus overrepresented with respect to the periphery. Measurements of presynaptic conduction delay, combined with a model of delay line conduction velocity, reveal that conduction delays can account for the mediolateral shifts in the map of ITD. PMID:26224776

  11. The cartography of Venus with Magellan data

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Morgan, H. F.; Russell, J. F.

    1993-01-01

    Maps of Venus based on Magellan data are being compiled at 1:50,000,000, 1:5,000,000 and 1:1,500,000 scales. Topographic contour lines based on radar altimetry data are overprinted on the image maps, along with feature nomenclature. Map controls are based on existing knowledge of the spacecraft orbit; photogrammetric triangulation, a traditional basis for geodetic control for bodies where framing cameras were used, is not feasible with the radar images of Venus. Preliminary synthetic aperture radar (SAR) image maps have some data gaps and cosmetic inconsistencies, which will be corrected on final compilations. Eventual revision of geodetic controls and of the adopted Venusian spin-axis location will result in geometric adjustments, particularly on large-scale maps.

  12. Modeling of the Foca-Uzunada magnetic anomaly and thermal structure in the gulf of Izmir, western Turkey

    NASA Astrophysics Data System (ADS)

    Aydemir, Attila; Bilim, Funda; Cifci, Gunay; Okay, Seda

    2018-05-01

    The Gulf of Izmir (GoI) is one of the largest gulfs in the Aegean Sea, Turkey. There is a large magnetic anomaly extending in the NE-SW direction between Foca and Uzunada (Uzun Island) in the gulf. Previously, Curie Point Depth (CPD), geothermal gradient, heat-flow and radiogenic heat production maps of the onshore part of the Aegean region were constructed from the aeromagnetic data. In this study, the same maps except radiogenic heat production map are presented for the offshore part and the largest magnetic anomaly in the northern part of the gulf is focused, particularly. As a result, the thermal structure of GoI is clearly defined and according to the results of this study, CPD values were found from 7 km in the NE of Foca to 10 km through the south of the gulf. The geothermal gradient values vary between 50 and 80 °C/km. Maximum heat flow values around the anomaly are calculated as 200 and 215 mW/m2 according to the thermal conductivity coefficients of 2.5 W m-1 K-1 and 2.7 W m-1 K-1, respectively. Although the anomaly is located in the Izmir Gulf; CPD, geothermic gradient, heat flow anomalies are shifted through the north of Foca and Aliaga towns in the Candarli Bay. This prominent anomaly in the Gulf of Izmir is associated with the magmatics that were encountered at 969 m in the Foca-1 well although it was drilled about 2 km away from the outermost closed contour of the magnetic anomaly. The anomaly is also modeled three dimensionally (3D) in this study. In the model map, the top of the causative body is completely located in the outer part of the gulf, and is very shallow at about 0.5 km while its bottom is inclined through the west of Cigli and Menemen. From this viewpoint, it is possible to suggest that the causative body is inclined through the Foca Peninsula. However, its closed contours are in the NE direction, through the Candarli Bay. Top depth of the causative body is also calculated from the basement horizon on the seismic sections crossing this anomaly. Depth calculations are consistent in these sections and confirm the top depths from the modeling study. The basement geometry in the seismic sections also reflects the shape of 3D model geometry, and bottom depth of the magmatics is also verified by the basement depth calculations in seismic sections.

  13. Salt structure and sediment thickness, Texas-Louisiana continental slope, northwestern Gulf of Mexico

    USGS Publications Warehouse

    Martin, Raymond G.

    1973-01-01

    The objectives of this study were to determine the general configuration of the salt surface beneath the Texas-Louisiana continental slope and to isopach the Mesozoic-Cenozoic sedimentary section lying upon it. The structure contour map discloses that the entire slope province between the shelf edge and Sigsbee Escarpment is underlain by salt structures which interconnect at relatively shallow subbottom depths. Salt structures on the slope south of Louisiana and eastern Texas can be grouped according to structural relief and size which define morphological belts of decreasing deformational maturity in a downslope direction. Off northern Mexico and southernmost Texas, salt structures are anticlinal and their trends suggest a structural relationship with the folds of the Mexican Ridge province to the south. Structural trends in the two slope areas meet in the corner of the northwestern gulf where salt structure may have been influenced by a seaward extension of the San Marcos Arch, or an abrupt change in subsalt structural topography. Sediment thickness above the top of salt on the slope averages about 1,400 m (4,620 ft) which is a smaller average than expected from previous estimates. In some synclinal basins between salt structures, sediments may be as thick as 4,000-5,000 m (12,000-17,000 ft). On the average, sedimentary deposits in basins on the upper slope are thicker than on the lower slope. From the isopach map of sediments above salt it is estimated that the U.S. continental slope off Texas and Louisiana contains a sedimentary volume of about 170,000 km3 (41,000 mi3). The bulk of this volume is situated in synclinal basins between domes and principally in those beneath the upper and middle slope regions.

  14. Insight into the structural requirements of proton pump inhibitors based on CoMFA and CoMSIA studies.

    PubMed

    Nayana, M Ravi Shashi; Sekhar, Y Nataraja; Nandyala, Haritha; Muttineni, Ravikumar; Bairy, Santosh Kumar; Singh, Kriti; Mahmood, S K

    2008-10-01

    In the present study, a series of 179 quinoline and quinazoline heterocyclic analogues exhibiting inhibitory activity against Gastric (H+/K+)-ATPase were investigated using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA) methods. Both the models exhibited good correlation between the calculated 3D-QSAR fields and the observed biological activity for the respective training set compounds. The most optimal CoMFA and CoMSIA models yielded significant leave-one-out cross-validation coefficient, q(2) of 0.777, 0.744 and conventional cross-validation coefficient, r(2) of 0.927, 0.914 respectively. The predictive ability of generated models was tested on a set of 52 compounds having broad range of activity. CoMFA and CoMSIA yielded predicted activities for test set compounds with r(pred)(2) of 0.893 and 0.917 respectively. These validation tests not only revealed the robustness of the models but also demonstrated that for our models r(pred)(2) based on the mean activity of test set compounds can accurately estimate external predictivity. The factors affecting activity were analyzed carefully according to standard coefficient contour maps of steric, electrostatic, hydrophobic, acceptor and donor fields derived from the CoMFA and CoMSIA. These contour plots identified several key features which explain the wide range of activities. The results obtained from models offer important structural insight into designing novel peptic-ulcer inhibitors prior to their synthesis.

  15. Perception of intonation in Mandarin Chinese.

    PubMed

    Yuan, Jiahong

    2011-12-01

    There is a tendency across languages to use a rising pitch contour to convey question intonation and a falling pitch contour to convey a statement. In a lexical tone language such as Mandarin Chinese, rising and falling pitch contours are also used to differentiate lexical meaning. How, then, does the multiplexing of the F(0) channel affect the perception of question and statement intonation in a lexical tone language? This study investigated the effects of lexical tones and focus on the perception of intonation in Mandarin Chinese. The results show that lexical tones and focus impact the perception of sentence intonation. Question intonation was easier for native speakers to identify on a sentence with a final falling tone and more difficult to identify on a sentence with a final rising tone, suggesting that tone identification intervenes in the mapping of F(0) contours to intonational categories and that tone and intonation interact at the phonological level. In contrast, there is no evidence that the interaction between focus and intonation goes beyond the psychoacoustic level. The results provide insights that will be useful for further research on tone and intonation interactions in both acoustic modeling studies and neurobiological studies. © 2011 Acoustical Society of America

  16. Estimation of uncertainty for contour method residual stress measurements

    DOE PAGES

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; ...

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulnessmore » of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).« less

  17. Selected configuration tradeoffs of contour optical instruments

    NASA Astrophysics Data System (ADS)

    Warren, J.; Strohbehn, K.; Murchie, S.; Fort, D.; Reynolds, E.; Heyler, G.; Peacock, K.; Boldt, J.; Darlington, E.; Hayes, J.; Henshaw, R.; Izenberg, N.; Kardian, C.; Lees, J.; Lohr, D.; Mehoke, D.; Schaefer, E.; Sholar, T.; Spisz, T.; Willey, C.; Veverka, J.; Bell, J.; Cochran, A.

    2003-01-01

    The Comet Nucleus Tour (CONTOUR) is a low-cost NASA Discovery mission designed to conduct three close flybys of comet nuclei. Selected configuration tradeoffs conducted to balance science requirements with low mission cost are reviewed. The tradeoffs discussed focus on the optical instruments and related spacecraft considerations. Two instruments are under development. The CONTOUR Forward Imager (CFI) is designed to perform optical navigation, moderate resolution nucleus/jet imaging, and imaging of faint molecular emission bands in the coma. The CONTOUR Remote Imager and Spectrometer (CRISP) is designed to obtain high-resolution multispectral images of the nucleus, conduct spectral mapping of the nucleus surface, and provide a backup optical navigation capability. Tradeoffs discussed are: (1) the impact on the optical instruments of not using reaction wheels on the spacecraft, (2) the improved performance and simplification gained by implementing a dedicated star tracker instead of including this function in CFI, (3) the improved flexibility and robustness of switching to a low frame rate tracker for CRISP, (4) the improved performance and simplification of replacing a visible imaging spectrometer by enhanced multispectral imaging in CRISP, and (5) the impact on spacecraft resources of these and other tradeoffs.

  18. Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control.

    PubMed

    Ciofolo, Cybèle; Barillot, Christian

    2009-06-01

    We propose a novel approach for the simultaneous segmentation of multiple structures with competitive level sets driven by fuzzy control. To this end, several contours evolve simultaneously toward previously defined anatomical targets. A fuzzy decision system combines the a priori knowledge provided by an anatomical atlas with the intensity distribution of the image and the relative position of the contours. This combination automatically determines the directional term of the evolution equation of each level set. This leads to a local expansion or contraction of the contours, in order to match the boundaries of their respective targets. Two applications are presented: the segmentation of the brain hemispheres and the cerebellum, and the segmentation of deep internal structures. Experimental results on real magnetic resonance (MR) images are presented, quantitatively assessed and discussed.

  19. GeolOkit 1.0: a new Open Source, Cross-Platform software for geological data visualization in Google Earth environment

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Antoine; Bastin, Christophe; Watlet, Arnaud

    2016-04-01

    GIS software suites are today's essential tools to gather and visualise geological data, to apply spatial and temporal analysis and in fine, to create and share interactive maps for further geosciences' investigations. For these purposes, we developed GeolOkit: an open-source, freeware and lightweight software, written in Python, a high-level, cross-platform programming language. GeolOkit software is accessible through a graphical user interface, designed to run in parallel with Google Earth. It is a super user-friendly toolbox that allows 'geo-users' to import their raw data (e.g. GPS, sample locations, structural data, field pictures, maps), to use fast data analysis tools and to plot these one into Google Earth environment using KML code. This workflow requires no need of any third party software, except Google Earth itself. GeolOkit comes with large number of geosciences' labels, symbols, colours and placemarks and may process : (i) multi-points data, (ii) contours via several interpolations methods, (iii) discrete planar and linear structural data in 2D or 3D supporting large range of structures input format, (iv) clustered stereonets and rose diagram, (v) drawn cross-sections as vertical sections, (vi) georeferenced maps and vectors, (vii) field pictures using either geo-tracking metadata from a camera built-in GPS module, or the same-day track of an external GPS. We are looking for you to discover all the functionalities of GeolOkit software. As this project is under development, we are definitely looking to discussions regarding your proper needs, your ideas and contributions to GeolOkit project.

  20. Geologic map of the Maumee quadrangle, Searcy and Marion Counties, Arkansas

    USGS Publications Warehouse

    Turner, Kenzie J.; Hudson, Mark R.

    2010-01-01

    This map summarizes the geology of the Maumee 7.5-minute quadrangle in northern Arkansas. The map area is in the Ozark plateaus region on the southern flank of the Ozark dome. The Springfield Plateau, composed of Mississippian cherty limestone, overlies the Salem Plateau, composed of Ordovician carbonate and clastic rocks, with areas of Silurian rocks in between. Erosion related to the Buffalo River and its tributaries, Tomahawk, Water, and Dry Creeks, has exposed a 1,200-ft-thick section of Mississippian, Silurian, and Ordovician rocks mildly deformed by faults and folds. An approximately 130-mile-long corridor along the Buffalo River forms the Buffalo National River that is administered by the National Park Service. McKnight (1935) mapped the geology of the Maumee quadrangle as part of a larger 1:125,000-scale map focused on understanding the lead and zinc deposits common in the area. Detailed new mapping for this study was compiled using a Geographic Information System (GIS) at 1:24,000 scale. Site location and elevation were obtained by using a Global Positioning Satellite (GPS) receiver in conjunction with a U.S. Geological Survey 7.5-minute topographic map and barometric altimeter. U.S. Geological Survey 10-m digital elevation model data were used to derive a hill-shade-relief map used along with digital orthophotographs to map ledge-forming units between field sites. Bedding attitudes were measured in drainage bottoms and on well-exposed ledges. Bedding measured at less than 2 degree dip is indicated as horizontal. Structure contours constructed for the base of the Boone Formation are constrained by field-determined elevations on both upper and lower formation contacts.

  1. Geologic Map of Quadrangles 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Fridrich, Chris J.; Lindsay, Charles R.; Snee, Lawrence W.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. Geologic Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Part of Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Maldonado, Florian; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. Geologic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lindsay, Charles R.; Snee, Lawrence W.; Bohannon, Robert G.; Wahl, Ronald R.; Sawyer, David A.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. Geologic Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    USGS Publications Warehouse

    McKinney, Kevin C.; Sawyer, David A.; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. Geologic Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. Geologic Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.; Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. Geologic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lidke, David J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. Geologic Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Wahl, Ronald R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. Geologic Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Geologic Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Wahl, Ronald R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. Geologic Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Stoeser, Douglas B.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. Geologic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lindsay, Charles R.; Snee, Lawrence W.; Bohannon, Robert G.; Wahl, Ronald R.; Sawyer, David A.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. Geologic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Yount, James

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. Geologic Map of Quadrangles 3870 and 3770, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Stoeser, Douglas B.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. Geologic Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. Geologic Map of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Williams, Van S.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. Geologic Map of Quadrangles 3064, 3066, 2964, and 2966, Laki-Bander (611), Jahangir-Naweran (612), Sreh-Chena (707), Shah-Esmail (617), Reg-Alaqadari (618), and Samandkhan-Karez (713) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.; Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. Geologic Map of Quadrangle 3470 and the Northern Edge of Quadrangle 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Geologic Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Maldonado, Florian

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. Geologic Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  1. Geologic Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Sawyer, David A.; Stoeser, Douglas B.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. Geologic Map of Quadrangles 3560, 3562, and 3662, Sir Band (402), Khawja-Jir (403), Bala-Murghab (404), and Darah-I-Shor-I-Karamandi (122) Quadrangles, Afghanistan

    USGS Publications Warehouse

    McKinney, Kevin C.; Lidke, David J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. Geologic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    McKinney, Kevin C.; Sawyer, David A.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. Geologic Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. Geologic Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. Geologic Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. Geologic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. Geologic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Yount, James C.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. Geologic Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    USGS Publications Warehouse

    O'Leary, Dennis W.; Whitney, John W.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Geologic Map of Quadrangle 3468, Chak Wardak-Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.; Turner, Kenzie J.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  11. Geologic Map of Quadrangles 3772, 3774, 3672, and 3674, Gaz-Khan (313), Sarhad (314), Kol-I-Chaqmaqtin (315), Khandud (319), Deh-Ghulaman (320), and Ertfah (321) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Lindsay, Charles R.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. Geologic Map of Quadrangles 3460 and 3360, Kol-I-Namaksar (407), Ghuryan (408), Kawir-I-Naizar (413), and Kohe-Mahmudo-Esmailjan (414) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Williams, Van S.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. Aeroacoustics of contoured and solid/porous conical plug-nozzle supersonic jet flows

    NASA Technical Reports Server (NTRS)

    Dosanjh, D. S.; Das, I. S.

    1985-01-01

    The acoustic far field, the shock-associated noise and characteristics of the repetitive shock structure of supersonic jet flows issuing from a contoured plug-nozzle and uncontoured plug-nozzle having a short conical plug of either a solid or a combination of solid/porous surface with pointed termination operated at a range of supercritical pressure are reported. The contoured and the uncontoured plug-nozzles had the same throat area and the same annular-radius ratio.

  14. Status and future of extraterrestrial mapping programs

    NASA Technical Reports Server (NTRS)

    Batson, R. M.

    1981-01-01

    Extensive mapping programs have been completed for the Earth's Moon and for the planet Mercury. Mars, Venus, and the Galilean satellites of Jupiter (Io, Europa, Ganymede, and Callisto), are currently being mapped. The two Voyager spacecraft are expected to return data from which maps can be made of as many as six of the satellites of Saturn and two or more of the satellites of Uranus. The standard reconnaissance mapping scales used for the planets are 1:25,000,000 and 1:5,000,000; where resolution of data warrants, maps are compiled at the larger scales of 1:2,000,000, 1:1,000,000 and 1:250,000. Planimetric maps of a particular planet are compiled first. The first spacecraft to visit a planet is not designed to return data from which elevations can be determined. As exploration becomes more intensive, more sophisticated missions return photogrammetric and other data to permit compilation of contour maps.

  15. Nearshore bathymetric mapping along a 7-mile reach of Lake Sharpe shoreline near Lower Brule, South Dakota, 2013

    USGS Publications Warehouse

    Thompson, Ryan F.

    2014-01-01

    Shoreline erosion rates along Lake Sharpe, a Missouri River reservoir, near the community of Lower Brule, South Dakota, were studied previously during 2011–12 by the U.S. Geological Survey, the Lower Brule Sioux Tribe, and Oglala Lakota College. The rapid shoreline retreat has caused many detrimental effects along the shoreline of Lake Sharpe, including losses of cultural sites, recreation access points, wildlife habitat, irrigated cropland, and landmass. The Lower Brule Sioux Tribe is considering options to reduce or stop erosion. One such option for consideration is the placement of discontinuous rock breakwater structures in shallow water to reduce wave action at shore. Information on the depth of water and stability characteristics of bottom material in nearshore areas of Lake Sharpe is needed by the Lower Brule Sioux Tribe to develop structural mitigation alternatives. To help address this need, a bathymetric survey of nearshore areas of Lake Sharpe near Lower Brule, South Dakota, was completed in 2013 by the U.S. Geological Survey in cooperation with the Lower Brule Sioux Tribe.HYPACK® hydrographic survey software was used to plan data collection transects for a 7-mile reach of Lake Sharpe shoreline near Lower Brule, South Dakota. Regular data collection transects and oblique transects were planned to allow for quality-assurance/quality-control comparisons.Two methods of data collection were used in the bathymetric survey: (1) measurement from a boat using bathymetric instrumentation where water was more than 2 feet deep, and (2) wading using Real-Time Kinematic Global Navigation Satellite System equipment on shore and where water was shallower than 2 feet deep. A dual frequency, 24- or 200-kilohertz narrow beam, depth transducer was used in conjunction with a Teledyne Odom CV100 dual frequency echosounder for boat-based data collection. In water too shallow for boat navigation, the elevation and nature of the reservoir bottom were mapped using Real-Time Kinematic Global Navigation Satellite System equipment.Once the data collection effort was completed, data editing was performed in HYPACK® to remove erroneous data points and to apply water-surface elevations. Maps were developed separately for water depth and bottom elevation for the study area. Lines of equal water depth for 2, 3, 3.5, 4, and 5 feet from the water surface to the lake bottom were mapped in nearshore areas of Lake Sharpe. Overall, water depths stay shallow for quite a distance from shore. In the 288 transects that crossed a 2 foot depth line, this depth occurred an average of 88 feet from shore. Similarly, in the 317 transects that crossed a 3 foot depth line, this did not occur until an average of 343 feet from shore. Elevation contours of the lake bottom were mapped primarily for elevations ranging from 1,419 to 1,416 feet above North American Vertical Datum of 1988.Horizontal errors of the Real-Time Kinematic Global Navigation Satellite System equipment for the study area are essentially inconsequential because water depth and bottom elevation were determined to change relatively slowly. The estimated vertical error associated with the Real-Time Kinematic Global Navigation Satellite System equipment for the study area ranges from 0.6 to 0.9 inch. This vertical error is small relative to the accuracy of the bathymetric data.Accuracy assessments of the data collected for this study were computed according to the National Standard for Spatial Data Accuracy. The maps showing the lines of equal water depth and elevation contours of the lake bottom are able to support a 1-foot contour interval at National Standards for Spatial Data Accuracy vertical accuracy standards, which require a vertical root mean squared error of 0.30 foot or better and a fundamental vertical accuracy calculated at the 95-percent confidence level of 0.60 foot or better.

  16. Salient contour extraction from complex natural scene in night vision image

    NASA Astrophysics Data System (ADS)

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lian-fa

    2014-03-01

    The theory of center-surround interaction in non-classical receptive field can be applied in night vision information processing. In this work, an optimized compound receptive field modulation method is proposed to extract salient contour from complex natural scene in low-light-level (LLL) and infrared images. The kernel idea is that multi-feature analysis can recognize the inhomogeneity in modulatory coverage more accurately and that center and surround with the grouping structure satisfying Gestalt rule deserves high connection-probability. Computationally, a multi-feature contrast weighted inhibition model is presented to suppress background and lower mutual inhibition among contour elements; a fuzzy connection facilitation model is proposed to achieve the enhancement of contour response, the connection of discontinuous contour and the further elimination of randomly distributed noise and texture; a multi-scale iterative attention method is designed to accomplish dynamic modulation process and extract contours of targets in multi-size. This work provides a series of biologically motivated computational visual models with high-performance for contour detection from cluttered scene in night vision images.

  17. Development and Validation of a Heart Atlas to Study Cardiac Exposure to Radiation Following Treatment for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Mary, E-mail: maryfeng@umich.ed; Moran, Jean M.; Koelling, Todd

    2011-01-01

    Purpose: Cardiac toxicity is an important sequela of breast radiotherapy. However, the relationship between dose to cardiac structures and subsequent toxicity has not been well defined, partially due to variations in substructure delineation, which can lead to inconsistent dose reporting and the failure to detect potential correlations. Here we have developed a heart atlas and evaluated its effect on contour accuracy and concordance. Methods and Materials: A detailed cardiac computed tomography scan atlas was developed jointly by cardiology, cardiac radiology, and radiation oncology. Seven radiation oncologists were recruited to delineate the whole heart, left main and left anterior descending interventricularmore » branches, and right coronary arteries on four cases before and after studying the atlas. Contour accuracy was assessed by percent overlap with gold standard atlas volumes. The concordance index was also calculated. Standard radiation fields were applied. Doses to observer-contoured cardiac structures were calculated and compared with gold standard contour doses. Pre- and post-atlas values were analyzed using a paired t test. Results: The cardiac atlas significantly improved contour accuracy and concordance. Percent overlap and concordance index of observer-contoured cardiac and gold standard volumes were 2.3-fold improved for all structures (p < 0.002). After application of the atlas, reported mean doses to the whole heart, left main artery, left anterior descending interventricular branch, and right coronary artery were within 0.1, 0.9, 2.6, and 0.6 Gy, respectively, of gold standard doses. Conclusions: This validated University of Michigan cardiac atlas may serve as a useful tool in future studies assessing cardiac toxicity and in clinical trials which include dose volume constraints to the heart.« less

  18. Altitude of the water table in the alluvial and Wilcox aquifers in the vicinity of Richland and Tehuacana creeks and the Trinity River, Texas, December 1979

    USGS Publications Warehouse

    Garza, Sergio

    1980-01-01

    This map shows the altitude of the water table in the alluvial and Wilcox aquifers in the vicinity of Richland and Tehuacana Creeks and the Trinity River, Tex., in December 1979. The water-table contours were constructed on the basis of water-level control derived from an inventory of shallow wells in the area, topographic maps, and field locations of numerous small springs and seeps. (USGS)

  19. Converting Topographic Maps into Digital Form to Aid in Archeological Research in the Peten, Guatemala

    NASA Technical Reports Server (NTRS)

    Aldrich, Serena R.

    1999-01-01

    The purpose of my project was to convert a topographical map into digital form so that the data can be manipulated and easily accessed in the field. With the data in this particular format, Dr. Sever and his colleagues can highlight the specific features of the landscape that they require for their research of the ancient Mayan civilization. Digital elevation models (DEMs) can also be created from the digitized contour features adding another dimension to their research.

  20. World maps of predicted electron intensities for the ITOS-A/NOAA-1 spacecraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1972-01-01

    Maps of electron fluxes 10,000, 1 million, and 10 million particles/sq cm/sec are presented for an ITOS-A/NOAA-1 circular orbit, inclination of 79 deg, and altitude of 1463 km. The uncertainty in the flux values is about a factor of 3, and the error in contour plotting may be plus or minus 2 deg in latitude and plus or minus 3 deg in longitude. The fractional lifetime spent within the different intensity regions is graphed.

  1. The area of isodensity contours in cosmological models and galaxy surveys

    NASA Technical Reports Server (NTRS)

    Ryden, Barbara S.; Melott, Adrian L.; Craig, David A.; Gott, J. Richard, III; Weinberg, David H.

    1989-01-01

    The contour crossing statistic, defined as the mean number of times per unit length that a straight line drawn through the field crosses a given contour, is applied to model density fields and to smoothed samples of galaxies. Models in which the matter is in a bubble structure, in a filamentary net, or in clusters can be distinguished from Gaussian density distributions. The shape of the contour crossing curve in the initially Gaussian fields considered remains Gaussian after gravitational evolution and biasing, as long as the smoothing length is longer than the mass correlation length. With a smoothing length of 5/h Mpc, models containing cosmic strings are indistinguishable from Gaussian distributions. Cosmic explosion models are significantly non-Gaussian, having a bubbly structure. Samples from the CfA survey and the Haynes and Giovanelli (1986) survey are more strongly non-Gaussian at a smoothing length of 6/h Mpc than any of the models examined. At a smoothing length of 12/h Mpc, the Haynes and Giovanelli sample appears Gaussian.

  2. [Environmental Education Units.] Photography for Kids. Vacant Lot Studies. Contour Mapping.

    ERIC Educational Resources Information Center

    Minneapolis Independent School District 275, Minn.

    Techniques suitable for use with elementary school students when studying field environment are described in these four booklets. Techniques for photography (construction of simple cameras, printing on blueprint and photographic paper, use of simple commercial cameras, development of exposed film); for measuring microclimatic factors (temperature,…

  3. Applications of FM-CW laser radar to antenna contour mapping

    NASA Technical Reports Server (NTRS)

    Slotwinski, A. R.

    1989-01-01

    The FM-CW coherent laser radar concept, based on the FM radar principle which makes use of the coherence and lunability of injection laser diodes, is discussed. Laser radar precision/time tradeoffs, block diagrams, system performance, fiber optic system implantation, and receiver improvements are briefly described.

  4. Cognitive Load Theory and the Effects of Transient Information on the Modality Effect

    ERIC Educational Resources Information Center

    Leahy, Wayne; Sweller, John

    2016-01-01

    Based on cognitive load theory and the "transient information effect," this paper investigated the "modality effect" while interpreting a contour map. The length and complexity of auditory and visual text instructions were manipulated. Experiment 1 indicated that longer audio text information within a presentation was inferior…

  5. A New Way of Presenting Atomic Orbitals

    ERIC Educational Resources Information Center

    Bordass, W. T.; Linnett, J. W.

    1970-01-01

    Describes how the isometric projection with a transparent grid showing the x, y, and z axes drawn at 120 degrees each other is used. This method of presenting atomic orbitals was developed using the Cambridge University Titan computer and has the advantage over contour maps in that there is no distortion. (LS)

  6. Sulfur accumulation and atmospherically deposited sulfate in the Lake States.

    Treesearch

    Mark B. David; George Z. Gernter; David F. Grigal; Lewis F. Ohmann

    1989-01-01

    Characterizes the mass of soil sulfur (adjusted for nitrogen), and atmospherically deposited sulfate along an acid precipitation gradient from Minnesota to Michigan. The relationship of these variables, presented graphically through contour mapping, suggests that patterns of atmospheric wet sulfate deposition are reflected in soil sulfur pools.

  7. 77 FR 36331 - Noise Exposure Maps; Cleveland Hopkins International Airport, Cleveland, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... NEM graphics for flight tracks are presented in Figure 2, Jet Aircraft Radar and Model Tracks for...). Narrative discussion of the flight tracks is in Chapter 2, Development of Noise Contours, inclusive of... land use control and planning responsibilities of local government. These local responsibilities are...

  8. Middle Grade Students' Interpretations of Contourmaps

    ERIC Educational Resources Information Center

    Carter, Glenda; Cook, Michelle; Park, John C.; Wiebe, Eric N.; Butler, Susan M.

    2008-01-01

    This study examined eighth graders' approach to three tasks implemented to assist students with learning to interpret contour maps. Students' approach to and interpretation of these three tasks were analyzed qualitatively. When students were rank ordered according to their scores on a standardized test of spatial ability, the Minnesota Paper Form…

  9. MONITORING CHANGES IN STRESSED ECOSYSTEMS USING SPATIAL PATTERNS OF ANT COMMUNITIES

    EPA Science Inventory

    We examined the feasibility of using changes in spatial patterns of ants-distribution on experimental plots as an indicator of response to environmental stress. We produced contour maps based on relative abundances of the three most common genera of ants based on pit-fall trap ca...

  10. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    DOE PAGES

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; ...

    2015-06-23

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co 5Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co 11Zr 2” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculationsmore » showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co 5Zr phase and larger than that of the low-temperature Co 5.25Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.« less

  11. The specificity of cortical region KO to depth structure.

    PubMed

    Tyler, Christopher W; Likova, Lora T; Kontsevich, Leonid L; Wade, Alex R

    2006-03-01

    Functional MRI studies have identified a cortical region designated as KO between retinotopic areas V3A/B and motion area V5 in human cortex as particularly responsive to motion-defined or kinetic borders. To determine the response of the KO region to more general aspects of structure, we used stereoscopic depth borders and disparate planes with no borders, together with three stimulus types that evoked no depth percept: luminance borders, line contours and illusory phase borders. Responses to these stimuli in the KO region were compared with the responses in retinotopically defined areas that have been variously associated with disparity processing in neurophysiological and fMRI studies. The strongest responses in the KO region were to stimuli evoking perceived depth structure from either disparity or motion cues, but it showed negligible responses either to luminance-based contour stimuli or to edgeless disparity stimuli. We conclude that the region designated as KO is best regarded as a primary center for the generic representation of depth structure rather than any kind of contour specificity.

  12. Soils of Walker Branch Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lietzke, D.A.

    1994-01-01

    The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1200 usingmore » a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed. WBW is underlain by dolostones of the Knox Group, but only a very small part of the surface area contains outcroppings of rock and most outcrops were located in the lower part. Soil mapping revealed the presence of both ancient alluvium and ancient colluvium deposits, not recognized in previous soil surveys, that have been preserved in high-elevation stable portions of present-day landforms. An erosional geomorphic process of topographic inversion requiring several millions of years within the Pleistocene is necessary to bring about the degree of inversion that is expressed in the watershed. Indeed, some of these ancient alluvial and colluvial remnants may date back into the Tertiary. Also evident in the watershed, and preserved in the broad, nearly level bottoms of dolines, are multiple deposits of silty material either devoid or nearly devoid of coarse fragments. Recent research indicates that most of this silty material is the result of slope wash processed during the Holocene Age. Residual soils of the watershed were related to the underlying geologic formations by their morphology and types of chert. Colluvial soils were identified and mapped whenever the colluvium thickness exceeded 20 in. (50 cm). Except for the ancient colluvial soils (colluvium without a present-day source area), colluvial soils were not separated according to their geologic age, but stacked colluvial deposits are located in low footslope landforms. Colluvial soils in the watershed were identified and mapped according to their morphologic properties that would influence the perching and subsurface movement of water. Alluvial soils were restricted to present floodplains, low fan terraces, and low fan deltas. Nearly all alluvial soils contained very young surficial sediments derived from slopewash resulting from land clearing and subsequent agricultural activities.« less

  13. Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices.

    PubMed

    Chen, Liyuan; Shen, Chenyang; Zhou, Zhiguo; Maquilan, Genevieve; Thomas, Kimberly; Folkert, Michael R; Albuquerque, Kevin; Wang, Jing

    2018-06-01

    Because in PET imaging cervical tumors are close to the bladder with high capacity for the secreted 18 FDG tracer, conventional intensity-based segmentation methods often misclassify the bladder as a tumor. Based on the observation that tumor position and area do not change dramatically from slice to slice, we propose a two-stage scheme that facilitates segmentation. In the first stage, we used a graph-cut based algorithm to obtain initial contouring of the tumor based on local similarity information between voxels; this was achieved through manual contouring of the cervical tumor on one slice. In the second stage, initial tumor contours were fine-tuned to more accurate segmentation by incorporating similarity information on tumor shape and position among adjacent slices, according to an intensity-spatial-distance map. Experimental results illustrate that the proposed two-stage algorithm provides a more effective approach to segmenting cervical tumors in 3D 18 FDG PET images than the benchmarks used for comparison. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A hybrid approach of using symmetry technique for brain tumor segmentation.

    PubMed

    Saddique, Mubbashar; Kazmi, Jawad Haider; Qureshi, Kalim

    2014-01-01

    Tumor and related abnormalities are a major cause of disability and death worldwide. Magnetic resonance imaging (MRI) is a superior modality due to its noninvasiveness and high quality images of both the soft tissues and bones. In this paper we present two hybrid segmentation techniques and their results are compared with well-recognized techniques in this area. The first technique is based on symmetry and we call it a hybrid algorithm using symmetry and active contour (HASA). In HASA, we take refection image, calculate the difference image, and then apply the active contour on the difference image to segment the tumor. To avoid unimportant segmented regions, we improve the results by proposing an enhancement in the form of the second technique, EHASA. In EHASA, we also take reflection of the original image, calculate the difference image, and then change this image into a binary image. This binary image is mapped onto the original image followed by the application of active contouring to segment the tumor region.

  15. An energy analysis of torrefaction for upgrading microalga residue as a solid fuel.

    PubMed

    Chen, Wei-Hsin; Huang, Ming-Yueh; Chang, Jo-Shu; Chen, Chun-Yen; Lee, Wen-Jhy

    2015-06-01

    The torrefaction characteristics and energy utilization of microalga Chlamydomonas sp. JSC4 (C. sp. JSC4) residue under the combination of temperature and duration are studied by examining contour maps. The torrefaction temperature on the contour line of solid yield has a trend to linearly decrease with increasing duration. An index of relative energy efficiency (REE) is introduced to identify the performance of energy utilization for upgrading biomass. For a fixed energy yield, the optimal operation can be found to maximize the heating value of the biomass and minimize the solid yield. The energy utilization under the combination of a high temperature and a short duration is more efficient than that of a low temperature and a long duration. The maximum REE along the contour line of energy yield is always exhibited at the highest temperature (300°C) where the energy efficiency can be enlarged by a factor of at least 2.36. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Unsupervised Detection of Planetary Craters by a Marked Point Process

    NASA Technical Reports Server (NTRS)

    Troglio, G.; Benediktsson, J. A.; Le Moigne, J.; Moser, G.; Serpico, S. B.

    2011-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images is being acquired. Preferably, automatic and robust processing techniques need to be used for data analysis because of the huge amount of the acquired data. Here, the aim is to achieve a robust and general methodology for crater detection. A novel technique based on a marked point process is proposed. First, the contours in the image are extracted. The object boundaries are modeled as a configuration of an unknown number of random ellipses, i.e., the contour image is considered as a realization of a marked point process. Then, an energy function is defined, containing both an a priori energy and a likelihood term. The global minimum of this function is estimated by using reversible jump Monte-Carlo Markov chain dynamics and a simulated annealing scheme. The main idea behind marked point processes is to model objects within a stochastic framework: Marked point processes represent a very promising current approach in the stochastic image modeling and provide a powerful and methodologically rigorous framework to efficiently map and detect objects and structures in an image with an excellent robustness to noise. The proposed method for crater detection has several feasible applications. One such application area is image registration by matching the extracted features.

  17. Automated recognition of microcalcification clusters in mammograms

    NASA Astrophysics Data System (ADS)

    Bankman, Isaac N.; Christens-Barry, William A.; Kim, Dong W.; Weinberg, Irving N.; Gatewood, Olga B.; Brody, William R.

    1993-07-01

    The widespread and increasing use of mammographic screening for early breast cancer detection is placing a significant strain on clinical radiologists. Large numbers of radiographic films have to be visually interpreted in fine detail to determine the subtle hallmarks of cancer that may be present. We developed an algorithm for detecting microcalcification clusters, the most common and useful signs of early, potentially curable breast cancer. We describe this algorithm, which utilizes contour map representations of digitized mammographic films, and discuss its benefits in overcoming difficulties often encountered in algorithmic approaches to radiographic image processing. We present experimental analyses of mammographic films employing this contour-based algorithm and discuss practical issues relevant to its use in an automated film interpretation instrument.

  18. Re-evaluation and updating of the seismic hazard of Lebanon

    NASA Astrophysics Data System (ADS)

    Huijer, Carla; Harajli, Mohamed; Sadek, Salah

    2016-01-01

    This paper presents the results of a study undertaken to evaluate the implications of the newly mapped offshore Mount Lebanon Thrust (MLT) fault system on the seismic hazard of Lebanon and the current seismic zoning and design parameters used by the local engineering community. This re-evaluation is critical, given that the MLT is located at close proximity to the major cities and economic centers of the country. The updated seismic hazard was assessed using probabilistic methods of analysis. The potential sources of seismic activities that affect Lebanon were integrated along with any/all newly established characteristics within an updated database which includes the newly mapped fault system. The earthquake recurrence relationships of these sources were developed from instrumental seismology data, historical records, and earlier studies undertaken to evaluate the seismic hazard of neighboring countries. Maps of peak ground acceleration contours, based on 10 % probability of exceedance in 50 years (as per Uniform Building Code (UBC) 1997), as well as 0.2 and 1 s peak spectral acceleration contours, based on 2 % probability of exceedance in 50 years (as per International Building Code (IBC) 2012), were also developed. Finally, spectral charts for the main coastal cities of Beirut, Tripoli, Jounieh, Byblos, Saida, and Tyre are provided for use by designers.

  19. The prediction and mapping of geoidal undulations from GEOS-3 altimetry. [gravity anomalies

    NASA Technical Reports Server (NTRS)

    Kearsley, W.

    1978-01-01

    From the adjusted altimeter data an approximation to the geoid height in ocean areas is obtained. Methods are developed to produce geoid maps in these areas. Geoid heights are obtained for grid points in the region to be mapped, and two of the parameters critical to the production of an accurate map are investigated. These are the spacing of the grid, which must be related to the half-wavelength of the altimeter signal whose amplitude is the desired accuracy of the contour; and the method adopted to predict the grid values. Least squares collocation was used to find geoid undulations on a 1 deg grid in the mapping area. Twenty maps, with their associated precisions, were produced and are included. These maps cover the Indian Ocean, Southwestern and Northeastern portions of the Pacific Ocean, and Southwest Atlantic and the U.S. Calibration Area.

  20. Segmentation editing improves efficiency while reducing inter-expert variation and maintaining accuracy for normal brain tissues in the presence of space-occupying lesions

    PubMed Central

    Deeley, MA; Chen, A; Datteri, R; Noble, J; Cmelak, A; Donnelly, EF; Malcolm, A; Moretti, L; Jaboin, J; Niermann, K; Yang, Eddy S; Yu, David S; Dawant, BM

    2013-01-01

    Image segmentation has become a vital and often rate limiting step in modern radiotherapy treatment planning. In recent years the pace and scope of algorithm development, and even introduction into the clinic, have far exceeded evaluative studies. In this work we build upon our previous evaluation of a registration driven segmentation algorithm in the context of 8 expert raters and 20 patients who underwent radiotherapy for large space-occupying tumors in the brain. In this work we tested four hypotheses concerning the impact of manual segmentation editing in a randomized single-blinded study. We tested these hypotheses on the normal structures of the brainstem, optic chiasm, eyes and optic nerves using the Dice similarity coefficient, volume, and signed Euclidean distance error to evaluate the impact of editing on inter-rater variance and accuracy. Accuracy analyses relied on two simulated ground truth estimation methods: STAPLE and a novel implementation of probability maps. The experts were presented with automatic, their own, and their peers’ segmentations from our previous study to edit. We found, independent of source, editing reduced inter-rater variance while maintaining or improving accuracy and improving efficiency with at least 60% reduction in contouring time. In areas where raters performed poorly contouring from scratch, editing of the automatic segmentations reduced the prevalence of total anatomical miss from approximately 16% to 8% of the total slices contained within the ground truth estimations. These findings suggest that contour editing could be useful for consensus building such as in developing delineation standards, and that both automated methods and even perhaps less sophisticated atlases could improve efficiency, inter-rater variance, and accuracy. PMID:23685866

Top