Exploring of PST-TBPM in Monitoring Dynamic Deformation of Steel Structure in Vibration
NASA Astrophysics Data System (ADS)
Chen, Mingzhi; Zhao, Yongqian; Hai, Hua; Yu, Chengxin; Zhang, Guojian
2018-01-01
In order to monitor the dynamic deformation of steel structure in the real-time, digital photography is used in this paper. Firstly, the grid method is used correct the distortion of digital camera. Then the digital cameras are used to capture the initial and experimental images of steel structure to obtain its relative deformation. PST-TBPM (photographing scale transformation-time baseline parallax method) is used to eliminate the parallax error and convert the pixel change value of deformation points into the actual displacement value. In order to visualize the deformation trend of steel structure, the deformation curves are drawn based on the deformation value of deformation points. Results show that the average absolute accuracy and relative accuracy of PST-TBPM are 0.28mm and 1.1‰, respectively. Digital photography used in this study can meet accuracy requirements of steel structure deformation monitoring. It also can warn the safety of steel structure and provide data support for managers’ safety decisions based on the deformation curves on site.
Evaluation of High-Precision Sensors in Structural Monitoring
Erol, Bihter
2010-01-01
One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant. PMID:22163499
Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model
Li, Xiaoqing; Wang, Yu
2018-01-01
Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology. PMID:29351254
Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model.
Xin, Jingzhou; Zhou, Jianting; Yang, Simon X; Li, Xiaoqing; Wang, Yu
2018-01-19
Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology.
NASA Astrophysics Data System (ADS)
Sigurdardottir, Dorotea H.; Stearns, Jett; Glisic, Branko
2017-07-01
The deformed shape is a consequence of loading the structure and it is defined by the shape of the centroid line of the beam after deformation. The deformed shape is a universal parameter of beam-like structures. It is correlated with the curvature of the cross-section; therefore, any unusual behavior that affects the curvature is reflected through the deformed shape. Excessive deformations cause user discomfort, damage to adjacent structural members, and may ultimately lead to issues in structural safety. However, direct long-term monitoring of the deformed shape in real-life settings is challenging, and an alternative is indirect determination of the deformed shape based on curvature monitoring. The challenge of the latter is an accurate evaluation of error in the deformed shape determination, which is directly correlated with the number of sensors needed to achieve the desired accuracy. The aim of this paper is to study the deformed shape evaluated by numerical double integration of the monitored curvature distribution along the beam, and create a method to predict the associated errors and suggest the number of sensors needed to achieve the desired accuracy. The error due to the accuracy in the curvature measurement is evaluated within the scope of this work. Additionally, the error due to the numerical integration is evaluated. This error depends on the load case (i.e., the shape of the curvature diagram), the magnitude of curvature, and the density of the sensor network. The method is tested on a laboratory specimen and a real structure. In a laboratory setting, the double integration is in excellent agreement with the beam theory solution which was within the predicted error limits of the numerical integration. Consistent results are also achieved on a real structure—Streicker Bridge on Princeton University campus.
NASA Technical Reports Server (NTRS)
Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.
2005-01-01
In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article
Engineering and Design: Structural Deformation Surveying
2002-06-01
loading deformations. Long-term measurements are far more common and somewhat more complex given their external nature . Long-term monitoring of a...fitting of structural elements, environmental protection, and development of mitigative measures in the case of natural disasters (land slides, earthquakes...of additional localized monitoring points (i.e., points not intended for routine observation) to determine the nature and extent of large displacements
Development of structural health monitoring and early warning system for reinforced concrete system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iranata, Data, E-mail: iranata-data@yahoo.com, E-mail: data@ce.its.ac.id; Wahyuni, Endah; Murtiadi, Suryawan
Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limitmore » value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results.« less
DOT National Transportation Integrated Search
2014-01-01
Structural Health Monitoring has great potential to provide valuable information about the actual structural condition and can help optimize the management activities. However, few effective and robust monitoring methods exist which hinders a nationw...
MetaSensing's FastGBSAR: ground based radar for deformation monitoring
NASA Astrophysics Data System (ADS)
Rödelsperger, Sabine; Meta, Adriano
2014-10-01
The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early Warning system, to determine the state and danger of a slope or structure. In this paper, the technical principles of the instrument are described and case studies of different monitoring tasks are presented.
Application of GNSS Methods for Monitoring Offshore Platform Deformation
NASA Astrophysics Data System (ADS)
Myint, Khin Cho; Nasir Matori, Abd; Gohari, Adel
2018-03-01
Global Navigation Satellite System (GNSS) has become a powerful tool for high-precision deformation monitoring application. Monitoring of deformation and subsidence of offshore platform due to factors such as shallow gas phenomena. GNSS is the technical interoperability and compatibility between various satellite navigation systems such as modernized GPS, Galileo, reconstructed GLONASS to be used by civilian users. It has been known that excessive deformation affects platform structurally, causing loss of production and affects the efficiency of the machinery on board the platform. GNSS have been proven to be one of the most precise positioning methods where by users can get accuracy to the nearest centimeter of a given position from carrier phase measurement processing of GPS signals. This research is aimed at using GNSS technique, which is one of the most standard methods to monitor the deformation of offshore platforms. Therefore, station modeling, which accounts for the spatial correlated errors, and hence speeds up the ambiguity resolution process is employed. It was found that GNSS combines the high accuracy of the results monitoring the offshore platforms deformation with the possibility of survey.
A BHR Composite Network-Based Visualization Method for Deformation Risk Level of Underground Space
Zheng, Wei; Zhang, Xiaoya; Lu, Qi
2015-01-01
This study proposes a visualization processing method for the deformation risk level of underground space. The proposed method is based on a BP-Hopfield-RGB (BHR) composite network. Complex environmental factors are integrated in the BP neural network. Dynamic monitoring data are then automatically classified in the Hopfield network. The deformation risk level is combined with the RGB color space model and is displayed visually in real time, after which experiments are conducted with the use of an ultrasonic omnidirectional sensor device for structural deformation monitoring. The proposed method is also compared with some typical methods using a benchmark dataset. Results show that the BHR composite network visualizes the deformation monitoring process in real time and can dynamically indicate dangerous zones. PMID:26011618
NASA Astrophysics Data System (ADS)
Talich, Milan
2017-12-01
The paper describes possibilities of the relatively new technics - ground based radar interferometry for precise determining of deformation of structures. Special focus on the vertical deflection of bridge structures and on the horizontal movements of high-rise buildings and structural objects is presented. The technology of ground based radar interferometry can be used in practice to the contactless determination of deformations of structures with accuracy up to 0.01 mm in real time. It is also possible in real time to capture oscillations of the object with a frequency up to 50 Hz. Deformations can be determined simultaneously in multiple places of the object, for example a bridge structure at points distributed on the bridge deck at intervals of one or more meters. This allows to obtain both overall and detailed information about the properties of the structure during the dynamic load and monitoring the impact of movements either individual vehicles or groups. In the case of high-rise buildings, it is possible to monitor the horizontal vibration of the whole object at its different height levels. It is possible to detect and determine the compound oscillations that occur in some types of buildings. Then prevent any damage or even disasters in these objects. In addition to the necessary theory basic principles of using radar interferometry for determining of deformation of structures are given. Practical examples of determining deformation of bridge structures, water towers reservoirs, factory chimneys and wind power plants are also given. The IBIS-S interferometric radar of the Italian IDS manufacturer was used for the measurements.
Vision-based stress estimation model for steel frame structures with rigid links
NASA Astrophysics Data System (ADS)
Park, Hyo Seon; Park, Jun Su; Oh, Byung Kwan
2017-07-01
This paper presents a stress estimation model for the safety evaluation of steel frame structures with rigid links using a vision-based monitoring system. In this model, the deformed shape of a structure under external loads is estimated via displacements measured by a motion capture system (MCS), which is a non-contact displacement measurement device. During the estimation of the deformed shape, the effective lengths of the rigid link ranges in the frame structure are identified. The radius of the curvature of the structural member to be monitored is calculated using the estimated deformed shape and is employed to estimate stress. Using MCS in the presented model, the safety of a structure can be assessed gauge-freely. In addition, because the stress is directly extracted from the radius of the curvature obtained from the measured deformed shape, information on the loadings and boundary conditions of the structure are not required. Furthermore, the model, which includes the identification of the effective lengths of the rigid links, can consider the influences of the stiffness of the connection and support on the deformation in the stress estimation. To verify the applicability of the presented model, static loading tests for a steel frame specimen were conducted. By comparing the stress estimated by the model with the measured stress, the validity of the model was confirmed.
Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures
NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. L.; Tran, Van t.
2007-01-01
Displacement theories are developed for a variety of structures with the goal of providing real-time shape predictions for aerospace vehicles during flight. These theories are initially developed for a cantilever beam to predict the deformed shapes of the Helios flying wing. The main structural configuration of the Helios wing is a cantilever wing tubular spar subjected to bending, torsion, and combined bending and torsion loading. The displacement equations that are formulated are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. Displacement theories for other structures, such as tapered cantilever beams, two-point supported beams, wing boxes, and plates also are developed. The accuracy of the displacement theories is successfully validated by finite-element analysis and classical beam theory using input-strains generated by finite-element analysis. The displacement equations and associated strain-sensing system (such as fiber optic sensors) create a powerful means for in-flight deformation monitoring of aerospace structures. This method serves multiple purposes for structural shape sensing, loads monitoring, and structural health monitoring. Ultimately, the calculated displacement data can be visually displayed to the ground-based pilot or used as input to the control system to actively control the shape of structures during flight.
Structural Design and Monitoring Analysis of Foundation Pit Support in Yiwu Huishang Tiandi
NASA Astrophysics Data System (ADS)
Zhang, Chunsu
2017-08-01
Huishang Tiandi deep foundation pit in Yiwu is a two-story basement,which is located in the downtown area and adjacent to the city center main traffic trunk. The surrounding environment is too com-plex to slope. The excavation depth is large, the formation is weak and complex, and the groundwater level is high.In order to ensure the safety of the foundation wall and the surrounding environment, the deformation of the foundation pit support is strictly controlled, and the deformation and internal force of the foundation supporting structure and the surrounding building are monitored.The deformation law of the foundation pit is obtained through the analysis of the horizontal displacement, the deformation rate of the supporting struc-ture, the surrounding environment of the foundation pit and the internal force of the anchor cable. The relia-bility and rationality of the design of foundation pit support are verified. It is of reference value for the de-sign and construction of other deep foundation pit engineering in Yiwu area.
NASA Astrophysics Data System (ADS)
Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2017-11-01
Severe plastic deformation by equal channel angular pressing has been performed to produce light aluminum and magnesium alloy billets with ultrafine-grained structure. The physical and mechanical properties of the processed alloys are examined by studying their microstructure, measuring microhardness, yield strength, and uniaxial tensile strength. A nondestructive testing technique using three-dimensional X-ray tomography is proposed for detecting internal structural defects and monitoring damage formation in the structure of alloys subjected to severe plastic deformation. The investigation results prove the efficiency of the chosen method and selected mode of producing ultrafine-grained light alloys.
NASA Astrophysics Data System (ADS)
Liao, Kaixing; Li, Jinke; Kong, Xianglong; Sun, Changsen; Zhao, Xuefeng
2017-04-01
After years of operation, the safety of the prestressed concrete containment vessel (PCCV) structure of Nuclear Power Plant (NPP) is an important aspect. In order to detect the strength degradation and the structure deformation, several sensors such as vibrating wire strain gauge, invar wires and pendulums were installed in PCCV. However, the amounts of sensors above are limited due to the cost. Due to the well durability of fiber optic sensors, three kinds of fiber optic sensors were chosen to install on the surface of PCCV to monitor the deformation during Integrated Leakage Rate Test (ILRT). The three kinds of fiber optic sensors which had their own advantages and disadvantages are Fiber Bragg Grating (FBG), white light interferometry (WLI) and Brillouin Optical Time Domain Analysis (BOTDA). According to the measuring data, the three fiber optic sensors worked well during the ILRT. After the ILRT, the monitoring strain was recoverable thus the PCCV was still in the elastic stage. If these three kinds of fiber optic sensors are widely used in the PCCV, the unusual deformations are easier to detect. As a consequence, the three fiber optic sensors have good potential in the structure health monitoring of PCCV.
NASA Astrophysics Data System (ADS)
Hori, T.; Agata, R.; Ichimura, T.; Fujita, K.; Yamaguchi, T.; Takahashi, N.
2017-12-01
Recently, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. For construct a system for monitoring and forecasting, it is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate inter-face and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Unstructured FE non-linear seismic wave simulation code has been developed. This achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. A high fidelity FEM simulation code with mesh generator has also been developed to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. This code has been improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, waveform inversion code for modeling 3D crustal structure has been developed, and the high-fidelity FEM code has been improved to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. We are developing the methods for forecasting the slip velocity variation on the plate interface. Although the prototype is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model. Furthermore, large-scale simulation codes for monitoring are being implemented on the GPU clusters and analysis tools are developing to include other functions such as examination in model errors.
DAM Safety and Deformation Monitoring in Dams
NASA Astrophysics Data System (ADS)
Kalkan, Y.; Bilgi, S.; Potts, L.; Miiama, J.; Mahgoub, M.; Rahman, S.
2013-12-01
Water is the life and necessity to water is increasing day by day with respect to the World population, rising of living standards and destruction of nature. Thus, the importance of water and water structures have been increasing gradually. Dams are among the most important engineering structures used for water supplies, flood controls, agricultural purposes as well as drinking and hydroelectric power. There are about 150.000 large size dams in the World. Especially after the Second World War, higher and larger capacity dams have been constructed. Dams create certain risks like the other manmade structures. No one knows precisely how many dam failures have occurred in the World, whereas hundreds of dam failures have occurred throughout the U.S. history. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some information, safety and the techniques about the deformation monitoring of the dams. Therefore, this study gives essential information about the dam safety and related analysis. Monitoring of dams is crucial since deformation might have occurred as a result of erosion, water load, hydraulic gradients, and water saturation. The case study is the deformation measurements of Ataturk Dam. This dam was constructed on Firat River and it has importance for providing drinking water, hydroelectric power and especially irrigation. In addition, brief information is given about this dam and the methods of geodetic and non-geodetic monitoring measurements applied by various disciplines. Geodetic monitoring methods are emphasized in this study. Some results have been obtained from this method for nearly seven years are presented in this work. In addition, some deformation predictions have been made especially for the cross sections where the maximum deformations took place.
1992-09-01
Vsurveyors’ at the technician level or even without any formal education. In this case, even the most technologically advanced instrumentation will not... technologically advanced instrumentation system will not supply the expected information. UNB Report on Deformation Monitoring, 1992 163 The worldwide review... Technology ( CANMET ) Report 77-15. Lazzarini, T. (1975). "The identification of reference points in trigonometrical and linear networks established for
Displacement and deformation measurement for large structures by camera network
NASA Astrophysics Data System (ADS)
Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu
2014-03-01
A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.
Remote optoelectronic sensors for monitoring of nonlinear surfaces
NASA Astrophysics Data System (ADS)
Petrochenko, Andrew V.; Konyakhin, Igor A.
2015-05-01
Actually during construction of the high building actively are used objects of various nonlinear surface, for example, sinuous (parabolic or hyperbolic) roofs of the sport complexes that require automatic deformation control [1]. This type of deformation has character of deflection that is impossible to monitor objectively with just one optoelectronic sensor (which is fixed on this surface). In this article is described structure of remote optoelectronic sensor, which is part of the optoelectronic monitoring system of nonlinear surface, and mathematical transformation of exterior orientation sensor elements in the coordinates of control points.
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Spangler, Jan L.
2003-01-01
A variational principle is formulated for the inverse problem of full-field reconstruction of three-dimensional plate/shell deformations from experimentally measured surface strains. The formulation is based upon the minimization of a least squares functional that uses the complete set of strain measures consistent with linear, first-order shear-deformation theory. The formulation, which accommodates for transverse shear deformation, is applicable for the analysis of thin and moderately thick plate and shell structures. The main benefit of the variational principle is that it is well suited for C(sup 0)-continuous displacement finite element discretizations, thus enabling the development of robust algorithms for application to complex civil and aeronautical structures. The methodology is especially aimed at the next generation of aerospace vehicles for use in real-time structural health monitoring systems.
GNSS Monitoring of Deformation within heavy civil infrastructure
NASA Astrophysics Data System (ADS)
Montillet, Jean-Philippe; Melbourne, Timothy; Szeliga, Walter; Schrock, Gavin
2015-04-01
The steady increase in precision simultaneous with the decreasing of continuous GPS monitoring has enabled the deployment of receivers for a host of new activities. Here we discuss the precision obtained from several multi-station installations operated over a five-year period on several heavy civil-engineered structures, including two earthen-fill dams and subsiding highway overpass damaged by seismic shaking. In the past 5 years, the Cascadia Hazards Institute (Pacific Northwest Geodetic Array) at Central Washington University together with the Washington department of public utilities (Land Survey) have been monitoring several structures around Seattle area including two dams (Howard Hansen and Tolt). One aim of this study is to test the use of continuous GNSS in order to detect any deformations due to rapid pool level rises or to monitor the safety of a structure when an Earthquake strikes it. In this study, data is processed using Real Time Kinematic GPS with short baseline (d < 500 m) and GPS daily position (PPP). However, multipath is the most limiting factor on accuracy for very precise positioning applications with GPS. It is very often present indoors and outdoors, especially in narrow valleys with a limited view of the sky. As a result, multipath can amount to an error of a few centimetres. Unfortunately, the accuracy requirements of precision deformation monitoring are generally at the sub centimetre level, which is presently a big challenge on an epoch-by-epoch basis with regular, carrier phase techniques. Thus, it needs to be properly mitigated. In this study, several stations are set up on the dams (4 stations on the Tolt reservoir and 10 stations on the Howard Hansen dam), and spatial filtering can then be used to mitigate multipath. In addition, several signal processing techniques are also investigated (i.e. Empirical mode decomposition, sidereal filtering, adaptive filtering). RTK GPS should allow to monitor rapid deformations, whereas GPS daily position is used to detect long-term deformations such as the pool level rises due to the melting of ice cap on surrounding mountains. Note that RTK measurements are processed with the MIT software TRACK and the GPS daily positions estimated with GAMIT-GLOBK.
NASA Astrophysics Data System (ADS)
Hori, Takane; Ichimura, Tsuyoshi; Takahashi, Narumi
2017-04-01
Here we propose a system for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. Although, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2015, SC15) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Fujita et al. (2016, SC16) has improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, AGU Fall Meeting) has improved the high-fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for forecasting the slip velocity variation on the plate interface. Basic concept is given in Hori et al. (2014, Oceanography) introducing ensemble based sequential data assimilation procedure. Although the prototype described there is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model.
Real-time kinematic PPP GPS for structure monitoring applied on the Severn Suspension Bridge, UK
NASA Astrophysics Data System (ADS)
Tang, Xu; Roberts, Gethin Wyn; Li, Xingxing; Hancock, Craig Matthew
2017-09-01
GPS is widely used for monitoring large civil engineering structures in real time or near real time. In this paper the use of PPP GPS for monitoring large structures is investigated. The bridge deformation results estimated using double differenced measurements is used as the truth against which the performance of kinematic PPP in a real-time scenario for bridge monitoring is assessed. The towers' datasets with millimetre level movement and suspension cable dataset with centimetre/decimetre level movement were processed by both PPP and DD data processing methods. The consistency of tower PPP time series indicated that the wet tropospheric delay is the major obstacle for small deflection extraction. The results of suspension cable survey points indicate that an ionospheric-free linear measurement is competent for bridge deformation by PPP kinematic model, the frequency domain analysis yields very similar results using either PPP or DD. This gives evidence that PPP can be used as an alternative method to DD for large structure monitoring when DD is difficult or impossible because of large baseline lengths, power outages or natural disasters. The PPP residual tropospheric wet delays can be applied to improve the capacity of small movement extraction.
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Perissin, Daniele; Salzer, Jacqueline T.; Lundgren, Paul; Lacava, Giusy; Milillo, Giovanni; Serio, Carmine
2016-10-01
The availability of new constellations of synthetic aperture radar (SAR) sensors is leading to important advances in infrastructure monitoring. These constellations offer the advantage of reduced revisit times, providing low-latency data that enable analysis that can identify infrastructure instability and dynamic deformation processes. In this paper we use COSMO-SkyMed (CSK) and TerraSAR-X (TSX) data to monitor seasonal induced deformation at the Pertusillo dam (Basilicata, Italy) using multi-temporal SAR data analysis. We analyzed 198 images spanning 2010-2015 using a coherent and incoherent PS approach to merge COSMO-SkyMed adjacent tracks and TerraSAR-X acquisitions, respectively. We used hydrostatic-seasonal-temporal (HST) and hydrostatic-temperature-temporal (HTT) models to interpret the non-linear deformation at the dam wall using ground measurements together with SAR time-series analysis. Different look geometries allowed us to characterize the horizontal deformation field typically observed at dams. Within the limits of our models and the SAR acquisition sampling we found that most of the deformation at the Pertusillo dam can be explained by taking into account only thermal seasonal dilation and hydrostatic pressure. The different models show slightly different results when interpreting the aging term at the dam wall. The results highlight how short-revisit SAR satellites in combination with models widely used in the literature for interpreting pendulum and GPS data can be used for supporting structural health monitoring and provide valuable information to ground users directly involved in field measurements.
Operational Monitoring of Mines by COSMO-SkyMed PSP SAR Interferometry
NASA Astrophysics Data System (ADS)
Costantini, Mario; Malvarosa, Fabio; Miniati, Federico; de Assis, Luciano Mozer
2016-08-01
Synthetic aperture radar (SAR) interferometry is a powerful technology for detection and monitoring of slow ground surface movements. Monitoring of ground deformations in mining structures is an important application, particularly difficult because the scene changes with time. The persistent scatterer pair (PSP) approach, recently proposed to overcome some limitations of standard persistent scatter interferometry, proved to be effective also for mine monitoring. In this work, after resuming the main ideas of the PSP method, we describe the PSP measurements obtained from high- resolution X-band COSMO-SkyMed data over a large mining area in Minas Gerais state, Brazil. The outcomes demonstrate that dense and accurate ground deformation measurements can be obtained on the mining area and its structures (such as open pits, waste dumps, conveyor belts, water and tailings dams, etc.), achieving a consistent global view including also areas where field instruments are not installed.
NASA Astrophysics Data System (ADS)
Petrochenko, Andrew V.; Konyakhin, Igor A.
2015-06-01
Actually during construction of the high building actively are used objects of various nonlinear surface, for example, sinuous (parabolic or hyperbolic) roofs of the sport complexes that require automatic deformation control [1,2,3,4]. This type of deformation has character of deflection that is impossible to monitor objectively with just one optoelectronic sensor (which is fixed on this surface). In this article is described structure of remote optoelectronic sensor, which is part of the optoelectronic monitoring system of nonlinear surface, and mathematical transformation of exterior orientation sensor elements in the coordinates of control points.
Fiber-optic sensor applications in civil and geotechnical engineering
NASA Astrophysics Data System (ADS)
Habel, Wolfgang R.; Krebber, Katerina
2011-09-01
Different types of fiber-optic sensors based on glass or polymeric fibers are used to evaluate material behavior or to monitor the integrity and long-term stability of load-bearing structure components. Fiber-optic sensors have been established as a new and innovative measurement technology in very different fields, such as material science, civil engineering, light-weight structures, geotechnical areas as well as chemical and high-voltage substations. Very often, mechanical quantities such as deformation, strain or vibration are requested. However, measurement of chemical quantities in materials and structure components, such as pH value in steel reinforced concrete members also provides information about the integrity of concrete structures. A special fiber-optic chemical sensor for monitoring the alkaline state (pH value) of the cementitious matrix in steel-reinforced concrete structures with the purpose of early detection of corrosion-initiating factors is described. The paper presents the use of several fiber-optic sensor technologies in engineering. One example concerns the use of highly resolving concrete-embeddable fiber Fabry-Perot acoustic emission (AE) sensors for the assessment of the bearing behaviour of large concrete piles in existing foundations or during and after its installation. Another example concerns fiber Bragg grating (FBG) sensors attached to anchor steels (micro piles) to measure the strain distribution in loaded soil anchors. Polymer optical fibers (POF) can be — because of their high elasticity and high ultimate strain — well integrated into textiles to monitor their deformation behaviour. Such "intelligent" textiles are capable of monitoring displacement of soil or slopes, critical mechanical deformation in geotechnical structures (dikes, dams, and embankments) as well as in masonry structures during and after earthquakes.
The Transmission Channel Tower Identification and Landslide Disaster Monitoring Based on Insar
NASA Astrophysics Data System (ADS)
Li, G.; Tan, Q.; Xie, C.; Fei, X.; Ma, X.; Zhao, B.; Ou, W.; Yang, Z.; Wang, J.; Fang, H.
2018-04-01
The transmission distance of transmission lines is long, the line affected by the diversity of climate and topography of the corridors of transmission lines, differences in regional geological structure conditions, variability of rock and soil types, and the complexity of groundwater. Under the influence of extreme weather conditions (ice-covered, strong wind, etc.) and sudden geological disasters (such as mudslides, flash floods, earthquakes, etc.), catastrophic damage and basic deformation problems of the tower foundations are prone, and even tower collapse accidents occur in severe cases, which affect the safe operation of transmission lines. Monitoring the deformation of power transmission towers and surrounding grounds, it is critical to ensuring the normal operation of transmission lines by assessing and controlling potential risks in advance. In this paper, using ALOS-2 PALSAR radar satellite data, differential interferometry was used to monitor surface deformation near the Sichuan Jinsu line transmission channel. The analysis found that a significant landslide hazard was found near the transmission channel tower in Yibin-Zhaotong section of Jinsu, Sichuan Province, the cumulative deformation reaches 9cm. The results of this paper can provide new monitoring means for safety monitoring of transmission towers.
Design and Implementation of a Modern Automatic Deformation Monitoring System
NASA Astrophysics Data System (ADS)
Engel, Philipp; Schweimler, Björn
2016-03-01
The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the University of Applied Sciences in Neubrandenburg (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradov, A.; Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490; Yasnikov, I. S.
2014-06-21
We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a commonmore » platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.« less
Analysis of building deformation in landslide area using multisensor PSInSAR™ technique.
Ciampalini, Andrea; Bardi, Federica; Bianchini, Silvia; Frodella, William; Del Ventisette, Chiara; Moretti, Sandro; Casagli, Nicola
2014-12-01
Buildings are sensitive to movements caused by ground deformation. The mapping both of spatial and temporal distribution, and of the degree of building damages represents a useful tool in order to understand the landslide evolution, magnitude and stress distribution. The high spatial resolution of space-borne SAR interferometry can be used to monitor displacements related to building deformations. In particular, PSInSAR technique is used to map and monitor ground deformation with millimeter accuracy. The usefulness of the above mentioned methods was evaluated in San Fratello municipality (Sicily, Italy), which was historically affected by landslides: the most recent one occurred on 14th February 2010. PSInSAR data collected by ERS 1/2, ENVISAT, RADARSAT-1 were used to study the building deformation velocities before the 2010 landslide. The X-band sensors COSMO-SkyMed and TerraSAR-X were used in order to monitor the building deformation after this event. During 2013, after accurate field inspection on buildings and structures, damage assessment map of San Fratello were created and then compared to the building deformation velocity maps. The most interesting results were obtained by the comparison between the building deformation velocity map obtained through COSMO-SkyMed and the damage assessment map. This approach can be profitably used by local and Civil Protection Authorities to manage the post-event phase and evaluate the residual risks.
Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei
2015-03-01
In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing.
NASA Astrophysics Data System (ADS)
Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno
2016-04-01
The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the period from 2010 to 2014 was initially performed. Moreover, the deformation monitoring is continuing with monthly updates of the PSP analysis with new COSMO-SkyMed acquisitions both in ascending and descending geometry. The first results of the preliminary analysis over the archaeological site of Pompeii did not show large areas affected by deformations. However, the COSMO-SkyMed PSP SAR interferometry analysis proved to be very efficient due to its capability of providing a large number of deformation measurements over the archaeological site and structures with relatively small impact and cost. Moreover, in areas affected by collapses in the recent past, deformations were detected. Recent instability processes, both for the unexcavated slopes and for the archaeological structures, have promoted this low-impact analysis, aimed at identifying deformation paths and to prevent sudden collapses. Finally, the results obtained from the satellite techniques, will be also used to implement and improve the ground based geotechnical monitoring and warning system recently installed in selected case studies. Cross analysis between interferometric results, meteorological data and historical data of the site (e.g. collapses, works, etc.) are in progress in order to define provisional model aiming at an early identification of areas subjected to potential instability.
The Fiber Grating Sensors Applied in the Deformation Measurement of Shipborne Antenna Basement
NASA Astrophysics Data System (ADS)
Liu, Yong; Chen, Jiahong; Zhao, Wenhua
2016-02-01
The optical fiber grating sensor is a novel fibre-optical passive device, its reflecting optical spectrum is linearly related with strain. It is broadly applied in the structural monitoring industry. Shipborne antenna basement is the basic supporting structure for the radar tracking movement. The bending deformation of the basement caused by ship attitude changing influences the antenna tracking precision, According to the structure of shipborne antenna basement, a distributed strain testing method based on the fibre grating sensor is approved to measure the bending deformation under the bending force. The strain-angle model is built. The regularity of the strain distribution is obtained. The finite element method is used to analyze the deformation of the antenna basement. The measuring experiment on the contractible basement mould is carried out to verify the availability of the method. The result of the experiment proves that the model is effective to apply in the deformation measurement. It provides an optimized method for the distribution of the fiber grating sensor in the actual measuring process.
A new system for measuring three-dimensional back shape in scoliosis
Pynsent, Paul; Fairbank, Jeremy; Disney, Simon
2008-01-01
The aim of this work was to develop a low-cost automated system to measure the three-dimensional shape of the back in patients with scoliosis. The resulting system uses structured light to illuminate a patient’s back from an angle while a digital photograph is taken. The height of the surface is calculated using Fourier transform profilometry with an accuracy of ±1 mm. The surface is related to body axes using bony landmarks on the back that have been palpated and marked with small coloured stickers prior to photographing. Clinical parameters are calculated automatically and presented to the user on a monitor and as a printed report. All data are stored in a database. The database can be interrogated and successive measurements plotted for monitoring the deformity changes. The system developed uses inexpensive hardware and open source software. Accurate surface topography can help the clinician to measure spinal deformity at baseline and monitor changes over time. It can help the patients and their families to assess deformity. Above all it reduces the dependence on serial radiography and reduces radiation exposure when monitoring spinal deformity. PMID:18247064
NASA Astrophysics Data System (ADS)
Urban, Rudolf; Braun, Jaroslav; Štroner, Martin
2015-05-01
The prestressed thin-walled concrete elements enable the bridge a relatively large span. These structures are advantageous in economic and environmental way due to their thickness and lower consumption of materials. The bending moments can be effectively influenced by using the pre-stress. The experiment was done to monitor deformation of the under load. During the experiment the discrete points were monitored. To determine a large number of points, the intersection photogrammetry combined with precise micro-network were chosen. Keywords:
Special sensors for deformation measurements of different construction materials and structures
NASA Astrophysics Data System (ADS)
Glisic, Branko; Inaudi, Daniele; Kronenberg, Pascal; LLoret, Sandra; Vurpillot, Samuel
1999-05-01
SOFO is a fiber optic sensor system that allows the monitoring of micrometer deformations over measurement bases up to a few meters. It is particularly adapted to measure civil structures built with conventional civil engineering materials (concrete, steel and timber). It has been successfully tested in different types of structures such as bridges, tunnels and piles. The application of the system is however limited in some case when unusual materials are used in the construction and in other cases by the dimensions of standard SOFO sensors. To extend the domain of application of the current system, special sensors have been developed. In this paper we present four special SOFO sensors: long, membrane, thin and stiff sensors. The long sensor has a measurement basis of several tenths of meters and its purpose is the measurement of deformations in massive and large structures (dames, tunnels). The membrane sensor is for use on laminated materials (e.g. membrane roofing) and it is easy to install by simply gluing it to the structure to be monitored. Since standard sensors can not be used for thin mortar layers because of their cross- section, a thin sensor has been developed, too. Finally, the aim of the stiff sensor is to determine the hardening (solidification) time of concrete. This time is determined by comparing the deformations of a stiff and a standard sensor, closely placed in the concrete at the very early age. The design of these sensors is presented along with significant application examples.
NASA Astrophysics Data System (ADS)
Engel, P.; Schweimler, B.
2016-04-01
The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.
DOT National Transportation Integrated Search
2016-01-01
With aging infrastructure, it becomes crucial to make informed decisions about maintenance and : preservation actions, as well as renewal of civil structures. Structural Health Monitoring (SHM) can be : an important aid in this decision process, but ...
Image Analysis Technique for Material Behavior Evaluation in Civil Structures
Moretti, Michele; Rossi, Gianluca
2017-01-01
The article presents a hybrid monitoring technique for the measurement of the deformation field. The goal is to obtain information about crack propagation in existing structures, for the purpose of monitoring their state of health. The measurement technique is based on the capture and analysis of a digital image set. Special markers were used on the surface of the structures that can be removed without damaging existing structures as the historical masonry. The digital image analysis was done using software specifically designed in Matlab to follow the tracking of the markers and determine the evolution of the deformation state. The method can be used in any type of structure but is particularly suitable when it is necessary not to damage the surface of structures. A series of experiments carried out on masonry walls of the Oliverian Museum (Pesaro, Italy) and Palazzo Silvi (Perugia, Italy) have allowed the validation of the procedure elaborated by comparing the results with those derived from traditional measuring techniques. PMID:28773129
Image Analysis Technique for Material Behavior Evaluation in Civil Structures.
Speranzini, Emanuela; Marsili, Roberto; Moretti, Michele; Rossi, Gianluca
2017-07-08
The article presents a hybrid monitoring technique for the measurement of the deformation field. The goal is to obtain information about crack propagation in existing structures, for the purpose of monitoring their state of health. The measurement technique is based on the capture and analysis of a digital image set. Special markers were used on the surface of the structures that can be removed without damaging existing structures as the historical masonry. The digital image analysis was done using software specifically designed in Matlab to follow the tracking of the markers and determine the evolution of the deformation state. The method can be used in any type of structure but is particularly suitable when it is necessary not to damage the surface of structures. A series of experiments carried out on masonry walls of the Oliverian Museum (Pesaro, Italy) and Palazzo Silvi (Perugia, Italy) have allowed the validation of the procedure elaborated by comparing the results with those derived from traditional measuring techniques.
Modelling the Deformation Front of a Fold-Thrust Belt: the Effect of an Upper Detachment Horizon
NASA Astrophysics Data System (ADS)
Burberry, C. M.; Koyi, H.; Nilfouroushan, F.; Cosgrove, J. W.
2008-12-01
Structures found at the deformation fronts of fold-thrust belts are variable in type, geometry and spatial organisation, as can be demonstrated from comparisons between structures in the Zagros Fold-Thrust Belt, Iran and the Sawtooth Range, Montana. A range of influencing factors has been suggested to account for this variation, including the mechanical properties and distribution of any detachment horizons within the cover rock succession. A series of analogue models was designed to test this hypothesis, under conditions scaled to represent the Sawtooth Range, Montana. A brittle sand pack, containing an upper ductile layer with variable geometry, was shortened above a ductile base and the evolution of the deformation front was monitored throughout the deformation using a high-accuracy laser scanner. In none of the experiments did the upper detachment horizon cover the entire model. In experiments where it pinched out perpendicular to the shortening direction, a triangle zone was formed when the deformation front reached the pinch out. This situation is analogous to the Teton Canyon region structures in the Sawtooth Range, Montana, where the Cretaceous Colorado Shale unit pinches out at the deformation front, favouring the development of a triangle zone in this region. When the pinch out was oblique to the shortening direction, a more complex series of structures was formed. However, when shortening stopped before the detachment pinch out was reached, the deformation front structures were foreland-propagating and no triangle zone was observed. This situation is analogous to foreland-propagating thrust structures developed at the deformation front in the Swift Dam region of the Sawtooth Range, Montana and to the development of fault-bend folds at the deformation front of the Zagros Fold-Thrust Belt, Iran. We suggest that the presence of a suitable intermediate detachment horizon within a sediment pile can be invoked as a valid explanation for the development of varied deformation front structures in fold-thrust belts. Specifically, the spatial extent of the upper detachment horizon with respect to the spatial extent of the deformed region is a key influence on the development of deformation front structures. However, we acknowledge that factors such as basement structure and variable sedimentation within the foreland basin may also be key influences on deformation front structures in other fold-thrust belts.
NASA Astrophysics Data System (ADS)
Hori, T.; Ichimura, T.
2015-12-01
Here we propose a system for monitoring and forecasting of crustal activity, especially great interplate earthquake generation and its preparation processes in subduction zone. Basically, we model great earthquake generation as frictional instability on the subjecting plate boundary. So, spatio-temporal variation in slip velocity on the plate interface should be monitored and forecasted. Although, we can obtain continuous dense surface deformation data on land and partly at the sea bottom, the data obtained are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1)&(2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2014, SC14) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 10.7 BlnDOF x 30 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, this meeting) has improved the high fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for forecasting the slip velocity variation on the plate interface. Basic concept is given in Hori et al. (2014, Oceanography) introducing ensemble based sequential data assimilation procedure. Although the prototype described there is for elastic half space model, we will apply it for 3D heterogeneous structure with the high fidelity FE model.
Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles
Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri
2016-01-01
The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264
Local precision nets for monitoring movements of faults and large engineering structures
NASA Technical Reports Server (NTRS)
Henneberg, H. G.
1978-01-01
Along Bocono Fault were installed local high precision geodetic nets to observe the possible horizontal crustal deformations and movements. In the fault area there are few big structures which are also included in the mentioned investigation. In the near future, measurements shall be extended to other sites of Bocono Fault and also to the El Pilar Fault. In the same way and by similar methods high precision geodetic nets are applied in Venezuela to observe the behavior of big structures, as bridges and large dams and of earth surface deformations due to industrial activities.
NASA Astrophysics Data System (ADS)
Milev, A.; Durrheim, R.; Nakatani, M.; Yabe, Y.; Ogasawara, H.; Naoi, M.
2012-04-01
Two underground sites in a deep level gold mine in South Africa were instrumented by the Council for Scientific and Industrial Research (CSIR) with tilt meters and seismic monitors. One of the sites was also instrumented by JApanese-German Underground Acoustic emission Research in South Africa (JAGUARS) with a small network, approximately 40m span, of eight Acoustic Emission (AE) sensors. The rate of tilt, defined as quasi-static deformations, and the seismic ground motion, defined as dynamic deformations, were analysed in order to understand the rock mass behavior around deep level mining. In addition the high frequency AE events recorded at hypocentral distances of about 50m located at 3300m below the surface were analysed. A good correspondence between the dynamic and quasi-static deformations was found. The rate of coseismic and aseismic tilt, as well as seismicity recorded by the mine seismic network, are approximately constant until the daily blasting time, which takes place from about 19:30 until shortly before 21:00. During the blasting time and the subsequent seismic events the coseismic and aseismic tilt shows a rapid increase.Much of the quasi-static deformation, however, occurs independently of the seismic events and was described as 'slow' or aseismic events. During the monitoring period a seismic event with MW 2.2 occurred in the vicinity of the instrumented site. This event was recorded by both the CSIR integrated monitoring system and JAGUARS acoustic emotion network. The tilt changes associated with this event showed a well pronounced after-tilt. The aftershock activities were also well recorded by the acoustic emission and the mine seismic networks. More than 21,000 AE aftershocks were located in the first 150 hours after the main event. Using the distribution of the AE events the position of the fault in the source area was successfully delineated. The distribution of the AE events following the main shock was related to after tilt in order to quantify post slip behavior of the source. An attempt to associate the different type of deformations with the various fracture regions and geological structures around the stopes was carried out. A model, was introduced in which the coseismic deformations are associated with the stress regime outside the stope fracture envelope and very often located on existing geological structures, while the aseismic deformations are associated with mobilization of fractures and stress relaxation within the fracture envelope. Further research to verify this model is strongly recommended. This involves long term underground monitoring using a wide variety of instruments such as tilt, closure and strain meters, a highly sensitive AE fracture monitoring system, as well as strong ground motion monitors. A large amount of numerical modeling is also required.
NASA Astrophysics Data System (ADS)
Kim, Ki-Soo; Cho, Seong-Kyu
2015-07-01
The FBG sensor has globally been commercialized in various fields that is actively applied in Korea as well. Especially it is widely used as a structural monitoring sensor in civil engineering and construction structures due to its advantages including electrical stability, chemical stability and multiplexing. This report aims to introduce safety inspection of the FBG sensor in respect of radioactivity which has been applied to a silo structure for radioactive waste disposal as an example.
Distributed Fiber Optic Sensors For The Monitoring Of A Tunnel Crossing A Landslide
NASA Astrophysics Data System (ADS)
Minardo, Aldo; Picarelli, Luciano; Zeni, Giovanni; Catalano, Ester; Coscetta, Agnese; Zhang, Lei; DiMaio, Caterina; Vassallo, Roberto; Coviello, Roberto; Macchia, Giuseppe Nicola Paolo; Zeni, Luigi
2017-04-01
Optical fiber distributed sensors have recently gained great attention in structural and environmental monitoring due to specific advantages because they share all the classical advantages common to all optical fiber sensors such as immunity to electromagnetic interferences, high sensitivity, small size and possibility to be embedded into the structures, multiplexing and remote interrogation capabilities [1], but also offer the unique feature of allowing the exploitation of a telecommunication grade optical fiber cable as the sensing element to measure deformation and temperature profiles over long distances, without any added devices. In particular, distributed optical fiber sensors based on stimulated Brillouin scattering through the so-called Brillouin Optical Time Domain Analysis (BOTDA), allow to measure strain and temperature profiles up to tens of kilometers with a strain accuracy of ±10µɛ and a temperature accuracy of ±1°C. These sensors have already been employed in static and dynamic monitoring of a variety of structures resulting able to identify and localize many kind of failures [2,3,4]. This paper deals with the application of BOTDA to the monitoring of the deformations of a railway tunnel (200 m long) constructed in the accumulation of Varco d'Izzo earthflow, Potenza city, in the Southern Italian Apennine. The earthflow, which occurs in the tectonized clay shale formation called Varicoloured Clays, although very slow, causes continuous damage to buildings and infrastructures built upon or across it. The railway tunnel itself had to be re-constructed in 1992. Since then, the Italian National Railway monitored the structure by means of localized fissure-meters. Recently, thanks to a collaboration with the rail Infrastructure Manager (RFI), monitoring of various zones of the landslide including the tunnel is based on advanced systems, among which the optical fiber distributed sensors. First results show how the sensing optical fiber cable is able to detect the formation of localized strains and cracks, following the evolution of their width and identifying their location along the tunnel walls. It is worth noticing that the distributed nature of the sensor makes it possible to perform the monitoring with no preliminary information about the possible location of concentrated deformation. The sensing cable is simply glued to the tunnel walls and the system will remotely detect and locate any deformation and fracture wherever they occur along the fiber path, so representing a powerful early warning system. [1] J. M. López-Higuera, L. R. Cobo, A. Q. Incera, A. Cobo, "Fiber Optic Sensors in Structural Health Monitoring", Journal of Lightwave Technology, 29, 2011. [2] L. Zeni, L. Picarelli, B. Avolio, A. Coscetta, R. Papa, G. Zeni, C. Di Maio, R. Vassallo, A. Minardo, "Brillouin Optical Time Domain Analysis for Geotechnical Monitoring", Journal of Rock Mechanics and Geotechnical Engineering, 7, 2015 [3] A. Minardo, G. Porcaro, D. Giannetta, R. Bernini, L. Zeni, "Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors", Applied Optics, 52, 2013 [4] A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, L. Zeni, "Experimental modal analysis of an aluminum rectangular plate by use of the slope-assisted BOTDA method", Smart Materials & Structures, 22, 2014
NASA Astrophysics Data System (ADS)
Kerst, Stijn; Shyrokau, Barys; Holweg, Edward
2018-05-01
This paper proposes a novel semi-analytical bearing model addressing flexibility of the bearing outer race structure. It furthermore presents the application of this model in a bearing load condition monitoring approach. The bearing model is developed as current computational low cost bearing models fail to provide an accurate description of the more and more common flexible size and weight optimized bearing designs due to their assumptions of rigidity. In the proposed bearing model raceway flexibility is described by the use of static deformation shapes. The excitation of the deformation shapes is calculated based on the modelled rolling element loads and a Fourier series based compliance approximation. The resulting model is computational low cost and provides an accurate description of the rolling element loads for flexible outer raceway structures. The latter is validated by a simulation-based comparison study with a well-established bearing simulation software tool. An experimental study finally shows the potential of the proposed model in a bearing load monitoring approach.
Research on public participant urban infrastructure safety monitoring system using smartphone
NASA Astrophysics Data System (ADS)
Zhao, Xuefeng; Wang, Niannian; Ou, Jinping; Yu, Yan; Li, Mingchu
2017-04-01
Currently more and more people concerned about the safety of major public security. Public participant urban infrastructure safety monitoring and investigation has become a trend in the era of big data. In this paper, public participant urban infrastructure safety protection system based on smart phones is proposed. The system makes it possible to public participant disaster data collection, monitoring and emergency evaluation in the field of disaster prevention and mitigation. Function of the system is to monitor the structural acceleration, angle and other vibration information, and extract structural deformation and implement disaster emergency communications based on smartphone without network. The monitoring data is uploaded to the website to create urban safety information database. Then the system supports big data analysis processing, the structure safety assessment and city safety early warning.
NASA Astrophysics Data System (ADS)
Kiflu, H.; Oliver-Cabrera, T.; Robinson, T.; Wdowinski, S.; Kruse, S.
2017-12-01
Sinkholes in Florida cause millions of dollars in damage to infrastructure each year. Methods of early detection of sinkhole-related subsidence are clearly desirable. We have completed two years of monitoring of selected sinkhole-prone areas in west central Florida with XXX data and analysis with XXX algorithms. Filters for selecting targets with high signal-to-noise ratio and subsidence over this time window (XX-2015-XX-2017) are being used to select sites for ground study. A subset of the buildings with InSAR-detected subsidence indicated show clear structural indications of subsidence in the form of cracks in walls and roofs. Comsol Multiphysics models have been developed to describe subsidence at the rates identified from the InSAR analysis (a few mm/year) and on spatial scales observed from surface observations, including structural deformation of buildings and ground penetrating radar images of subsurface deformation (length scales of meters to tens of meters). These models assume cylindrical symmetry and deformation of elastic and poroelastic layers over a growing sphering void.
Monitoring Seawall Deformation With Repeat-Track Space-Borne SAR Images
NASA Astrophysics Data System (ADS)
Pei, Yuanyuan; Wan, Qing; Wei, Lianhuan; Fang, Zhilei; Liao, Mingsheng
2010-10-01
Seawalls are constructed to protect coastal cities from typhoon, flood and sea tide. It is necessary to monitor the deformation of seawalls in real time. Repeat-track space-borne SAR images are useful for environment monitoring, especially ground deformation monitoring. Shanghai sits on the Yangtze River Delta on China's eastern coast. Each year, the city is hit by typhoons from Pacific Ocean and threatened by the flood of the Yangtze River. PS-InSAR technique is carried out to monitor the deformation of the seawalls. Experiment exhibits that the seawalls around Pudong airport and Lingang town suffered serious deformation.
In-process, non-destructive multimodal dynamic testing of high-speed composite rotors
NASA Astrophysics Data System (ADS)
Kuschmierz, Robert; Filippatos, Angelos; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgern W.; Fischer, Andreas
2014-03-01
Fibre reinforced plastic (FRP) rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency, lifetime and loading limits. Due to complex rotor structures, high anisotropy and non-linear behavior of FRP under dynamic loads, an in-process measurement system is necessary to monitor and to investigate the evolution of damages under real operation conditions. A non-invasive, optical laser Doppler distance sensor measurement system is applied to determine the biaxial deformation of a bladed FRP rotor with micron uncertainty as well as the tangential blade vibrations at surface speeds above 300 m/s. The laser Doppler distance sensor is applicable under vacuum conditions. Measurements at varying loading conditions are used to determine elastic and plastic deformations. Furthermore they allow to determine hysteresis, fatigue, Eigenfrequency shifts and loading limits. The deformation measurements show a highly anisotropic and nonlinear behavior and offer a deeper understanding of the damage evolution in FRP rotors. The experimental results are used to validate and to calibrate a simulation model of the deformation. The simulation combines finite element analysis and a damage mechanics model. The combination of simulation and measurement system enables the monitoring and prediction of damage evolutions of FRP rotors in process.
NASA Astrophysics Data System (ADS)
Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.
2017-04-01
Active volcanoes often display cyclic behaviour with alternating quiescent and eruptive periods. Continuously monitoring volcanic processes such as deformation, seismicity and degassing, irrespective of their current status, is crucial for understanding the parameters governing the fluid transport within the edifice and the transitions between different regimes. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging. Here we present for the first time the near-3D surface deformation field derived from high resolution radar interferometry (InSAR) acquired by the satellite TerraSAR-X at a degassing volcano dome and interpret the results in combination with overflight infrared and topographic data. We find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. We present a new method for accurate mapping of heterogeneities in the dome deformation, and comparison to the topography and precisely located surface temperature anomalies. The identified deformation is dominated by strong but highly localized subsidence of the summit dome. Our results highlight the competing effects of the topography, permeability and shallow volcanic structures controlling the degassing pathways. On small spatial scales compaction sufficiently reduced the dome permeability to redirect the fluid flow. High resolution InSAR monitoring of volcanic domes thus provides valuable data for constraining models of their internal structure, degassing pathways and densification processes.
NASA Astrophysics Data System (ADS)
Çaktı, Eser; Ercan, Tülay; Dar, Emrullah
2017-04-01
Istanbul's vast historical and cultural heritage is under constant threat of earthquakes. Historical records report repeated damages to the city's landmark buildings. Our efforts towards earthquake protection of several buildings in Istanbul involve earthquake monitoring via structural health monitoring systems, linear and non-linear structural modelling and analysis in search of past and future earthquake performance, shake-table testing of scaled models and non-destructive testing. More recently we have been using laser technology in monitoring structural deformations and damage in five monumental buildings which are Hagia Sophia Museum and Fatih, Sultanahmet, Süleymaniye and Mihrimah Sultan Mosques. This presentation is about these efforts with special emphasis on the use of laser scanning in monitoring of edifices.
NASA Astrophysics Data System (ADS)
Roohi, S.; Ardalan, A. A.; Khodakarami, M.
2009-04-01
Dams as one of the engineering structures play very important role in human life. Because, from primary human needs such as providing drinking water to professional needs such as water powerhouse creation in order to provide power for industrial centers, hospitals, manufactures and agriculture, have considerable dependent on dams. In addition destruction of a dam can be as dangerous as earthquake. Therefore maintenance, stability control and monitoring deformation of them is indispensable. In order to control stability of dams and their around lands and monitoring deformation a network is created by surveyor, geologist and dam experts on crest and body of dam or on land near the dam. Geodetic observations are done in this network by precise surveying instrument in deferent time then by using linear least square parametric adjustment method, adjusted coordinates with their variance- covariance matrix and error ellipses, redundancy numbers for observation, blunders and … are estimated in each epoch. Then displacement vectors are computed in each point of network, After that by use of Lagrangeian deformation idea and constitution of deformation equations movement, displacement model is determined and strain tensor is computed. we can induce deformation information from strain tensor in different ways such as strain ellipse then interpret deformation that happen in each point of network. Also we can compute rigid rotation from anti-symmetric part of displacement gradient tensor. After processing tow consequence epochs observations of horzontal geodetic network of Hnna dam in southwest of Esfahan, the most semi-major axis of error ellipse is estimated about 0.9mm for point D10, largest displacement is 1.4mm for point C3 that it's semimajor axis of displacement error ellipse is 1.3mm and there is different shear in all of network points exceptional points D2,C3 and C2. There is different dilatation in most of points. These amount of maximum shear and dilatation are justified because of horizontal displacement and subsidence of dam due to pressure of water that conserve behind it. Key word: strain tensor, monitoring deformation, Geodetic network, deformation equation movement, error ellipse, strain ellipse, shear, dilatation
Design method of redundancy of brace-anchor sharing supporting based on cooperative deformation
NASA Astrophysics Data System (ADS)
Liu, Jun-yan; Li, Bing; Liu, Yan; Cai, Shan-bing
2017-11-01
Because of the complicated environment requirement, the support form of foundation pit is diversified, and the brace-anchor sharing support is widely used. However, the research on the force deformation characteristics and the related aspects of the cooperative response of the brace-anchor sharing support is insufficient. The application of redundancy theory in structural engineering has been more mature, but there is little theoretical research on redundancy theory in underground engineering. Based on the idea of collaborative deformation, the paper calculates the ratio of the redundancy degree of the cooperative deformation by using the local reinforcement design method and the structural component redundancy parameter calculation formula based on Frangopol. Combined with the engineering case, through the calculation of the ratio of cooperative deformation redundancy in the joint of brace-anchor sharing support. This paper explores the optimal anchor distribution form under the condition of cooperative deformation, and through the analysis and research of displacement field and stress field, the results of the collaborative deformation are validated by comparing the field monitoring data. It provides theoretical basis for the design of this kind of foundation pit in the future.
Demonstration of subsidence monitoring system
NASA Astrophysics Data System (ADS)
Conroy, P. J.; Gyarmaty, J. H.; Pearson, M. L.
1981-06-01
Data on coal mine subsidence were studied as a basis for the development of subsidence control technology. Installation, monitoring, and evaluation of three subsidence monitoring instrument systems were examined: structure performance, performance of supported systems, and performance of caving systems. Objectives of the instrument program were: (1) to select, test, assemble, install, monitor, and maintain all instrumentation required for implementing the three subsidence monitoring systems; and (2) to evaluate performance of each instrument individually and as part of the appropriate monitoring system or systems. The use of an automatic level and a rod extensometer for measuring structure performance, and the automatic level, steel tape extensometer, FPBX, FPBI, USBM borehole deformation gauge, and vibrating wire stressmeters for measuring the performance of caving systems are recommended.
Deformation Monitoring and Analysis of Lsp Landslide Based on Gbinsar
NASA Astrophysics Data System (ADS)
Zhou, L.; Guo, J.; Yang, F.
2018-05-01
Monitoring and analyzing the deformation of the river landslide in city to master the deformation law of landslide, which is an important means of landslide safety assessment. In this paper, aiming at the stability of the Liu Sha Peninsula Landslide during its strengthening process after the landslide disaster. Continuous and high precision deformation monitoring of the landslide was carried out by GBInSAR technique. Meanwhile, the two-dimensional deformation time series pictures of the landslide body were retrieved by the time series analysis method. The deformation monitoring and analysis results show that the reinforcement belt on the landslide body was basically stable and the deformation of most PS points on the reinforcement belt was within 1 mm. The deformation of most areas on the landslide body was basically within 4 mm, and the deformation presented obvious nonlinear changes. GBInSAR technique can quickly and effectively obtain the entire deformation information of the river landslide and the evolution process of deformation.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2009-01-01
The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.
Geophysical Monitoring of Geodynamic Processes of Central Armenia Earth Crust
NASA Astrophysics Data System (ADS)
Avetyan, R.; Pashayan, R.
2016-12-01
The method of geophysical monitoring of earth crust was introduced. It allows by continuous supervision to track modern geodynamic processes of Armenia. Methodological practices of monitoring come down to allocation of a signal which reflects deformation of rocks. The indicators of deformations are not only deviations of geophysical indicators from certain background values, but also parameters of variations of these indicators. Data on changes of parameters of barometric efficiency and saw tooth oscillations of underground water level before seismic events were received. Low-amplitude periodic fluctuations of water level are the reflection of geodynamic processes taking place in upper levels of earth crust. There were recorded fluctuations of underground water level resulting from luni-solar tides and enabling to control the systems of borehole-bed in changes of voluminous deformations. The slow lowering (raising) of underground water level in the form of trend reflects long-period changes of stress-deformative state of environment. Application of method promotes identification of medium-term precursors on anomalous events of variations of geomagnetic field, change of content of subsoil radon, dynamics of level of underground water, geochemistry and water temperature. Increase of activity of geodynamic processes in Central Armenian tectonic complex is observed to change macro component Na+, Ca2+, Mg2-, CL-, SO42-, HCO3-, H4SiO4, pH and gas - CO2 structure of mineral water. Modern geodynamic movements of earth crust of Armenia are the result of seismic processes and active geodynamics of deep faults of longitudinal and transversal stretching. Key Words: monitoring, hydrogeodynamics, geomagnetic field, seismicity, deformation, earth crust
NASA Astrophysics Data System (ADS)
Costantini, Mario; Francioni, Elena; Trillo, Francesco; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla
2017-04-01
Archaeological sites and cultural heritage are considered as critical assets for the society, representing not only the history of region or a culture, but also contributing to create a common identity of people living in a certain region. In this view, it is becoming more and more urgent to preserve them from climate changes effect and in general from their degradation. These structures are usually just as precious as fragile: remote sensing technology can be useful to monitor these treasures. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on the methodology adopted and implemented in order to use the results operatively for conservation policies in a Italian archaeological site. The analysis is based on the processing of COSMO-SkyMed Himage data by the e-GEOS proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry technology characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artefacts (which are one of the main problems of SAR interferometry). Validations analyses [Costantini et al. 2015] settled that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. Considering the limitations of all the interferometric techniques, in particular the fact that the measurement are along the line of sight (LOS) and the geometric distortions, in order to obtain the maximum information from interferometric analysis, both ascending and descending geometry have been used. The ascending analysis allows selecting measurements points over the top and, approximately, South-West part of the structures, while the descending one over the top and the South-East part of the structures. The interferometric techniques needs to use a stack of SAR images to separate the deformation phase contributions from other spurious components (atmospheric, orbital, etc.). Historical/reference analyses of the period 2011-2014 have been performed to obtain such deformations and to have a start point for the next updates. In fact, starting from the reference analyses the deformation monitoring has then continued with monthly updates of the PSP analysis with new COSMO-SkyMed acquisitions both in ascending and descending geometry. In addition to this traditional monitoring service, the satellite interferometry analysis has been realized over specific time frame that have been selected on the bases of some important events (damages to structures, collapses, works etc.) and the analysis have been correlated with additional site information as weather conditions, critical meteorological events, historical information of the site, etc. The objective is to find a nominal behaviour of the site in response to critical events and/or related to natural degradation of infrastructures in order to prevent damages and guide maintenance activities. The first results of this cross correlated analysis showed that some deformation phenomena are identifiable by SAR satellite interferometric analysis and it has also been possible to validate them on field through a direct survey.
The use of photogrammetric and stereophotogrammetric methods in aerodynamic experiments
NASA Astrophysics Data System (ADS)
Shmyreva, V. N.; Iakovlev, V. A.
The possibilities afforded by photogrammetry and stereophotogrammetry in current aerodynamic experiments, methods of image recording, and observation data processing are briefly reviewed. Some specific experiments illustrating the application of stereophotogrammetry are described. The applications discussed include the monitoring of model position in wind tunnels, determination of model deformations and displacements, determination of the deformations of real structural elements in static strength tests, and solution of a variety of problems in hydrodynamics.
1992-09-01
deformations in underground mines has been developed in Canada in cooperation with the Canada Centre for Mineral and Energy Technology ( CANMET ). The... technological developments in both geodetic and geotechnical instrumentation, at a cost one may achieve almost any, practically needed, instrumental...Due to the ever growing technological progress in all fields of engineering and, connected with it, the growing demand for higher accuracy, efficiency
Experimental application of OMA solutions on the model of industrial structure
NASA Astrophysics Data System (ADS)
Mironov, A.; Mironovs, D.
2017-10-01
It is very important and sometimes even vital to maintain reliability of industrial structures. High quality control during production and structural health monitoring (SHM) in exploitation provides reliable functioning of large, massive and remote structures, like wind generators, pipelines, power line posts, etc. This paper introduces a complex of technological and methodical solutions for SHM and diagnostics of industrial structures, including those that are actuated by periodic forces. Solutions were verified on a wind generator scaled model with integrated system of piezo-film deformation sensors. Simultaneous and multi-patch Operational Modal Analysis (OMA) approaches were implemented as methodical means for structural diagnostics and monitoring. Specially designed data processing algorithms provide objective evaluation of structural state modification.
Thermal Curing Process Monitoring of the Composite Material Using the FBG sensor
NASA Astrophysics Data System (ADS)
Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong
2018-03-01
The raw composite material will suffer complex chemical and morphological changes during the thermal curing process, and it is difficult to monitor the curing process and curing effect. In this paper, the FBG sensor was embedded in the raw composite material to monitor the whole curing process. The experiment results showed that the FBG sensor can monitor the resin transformation and residual deformation of the composite material, and the FBG sensor can be applied to monitor the thermal curing process of the composite structure.
High-temperature-measuring device
Not Available
1981-01-27
A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.
High temperature measuring device
Tokarz, Richard D.
1983-01-01
A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.
NASA Astrophysics Data System (ADS)
Vázquez-Suñé, E.; Serrano-Juan, A.; Pujades, E.; Crosetto, M.
2016-12-01
Construction processes require monitoring to ensure safety and to control the new and existing structures. The most accurate and spread monitoring method to measure displacements is levelling, a point-like surveying technique that tipically allows for tens of discrete in-situ sub-millimetric measures per squared kilometer. Another emerging technique for mapping soil deformation is the Interferometric Synthetic Aperture Radar (InSAR), which is based on SAR images acquired from orbiting satellites. This remote sensing technique can provide better spatial point density than levelling, more extensive spatial coverage and cheaper acquisitions. This paper analyses, compares and discusses levelling and InSAR measurements when they are used to measure the soil deformation induced by the dewatering associated to underground constructions in urban areas. To do so, an experiment was performed in the future railway station of La Sagrera, Barcelona (Spain), in which levelling and InSAR were used to accurately quantify ground deformation by dewatering. Results showed that soil displacements measured by levelling and InSAR were not always consisting. InSAR measurements were more accurate with respect the soil deformation produced by the dewatering while levelling was really useful to determine the real impact of the construction on the nearby buildings.
Processing-optimised imaging of analog geological models by electrical capacitance tomography
NASA Astrophysics Data System (ADS)
Ortiz Alemán, C.; Espíndola-Carmona, A.; Hernández-Gómez, J. J.; Orozco Del Castillo, MG
2017-06-01
In this work, the electrical capacitance tomography (ECT) technique is applied in monitoring internal deformation of geological analog models, which are used to study structural deformation mechanisms, in particular for simulating migration and emplacement of allochtonous salt bodies. A rectangular ECT sensor was used for internal visualization of analog geologic deformation. The monitoring of analog models consists in the reconstruction of permittivity images from the capacitance measurements obtained by introducing the model inside the ECT sensor. A simulated annealing (SA) algorithm is used as a reconstruction method, and is optimized by taking full advantage of some special features in a linearized version of this inverse approach. As a second part of this work our SA image reconstruction algorithm is applied to synthetic models, where its performance is evaluated in comparison to other commonly used algorithms such as linear back-projection and iterative Landweber methods. Finally, the SA method is applied to visualise two simple geological analog models. Encouraging results were obtained in terms of the quality of the reconstructed images, as interfaces corresponding to main geological units in the analog model were clearly distinguishable in them. We found reliable results quite useful for real time non-invasive monitoring of internal deformation of analog geological models.
Nishiyama, Michiko; Igawa, Hirotaka; Kasai, Tokio; Watanabe, Naoyuki
2015-02-10
In this paper, we propose a delayed transmission/reflection ratiometric reflectometry (DTR(3)) scheme using a long-gauge fiber Bragg grating (FBG), which can be used for dynamic structural deformation monitoring of structures of between a few to tens of meters in length, such as airplane wings and helicopter blades. FBG sensors used for multipoint sensing generally employ wavelength division multiplexing techniques utilizing several Bragg central wavelengths; by contrast, the DTR(3) interrogator uses a continuous pulse array based on a pseudorandom number code and a long-gauge FBG utilizing a single Bragg wavelength and composed of simple hardware devices. The DTR(3) scheme can detect distributed strain at a 50 cm spatial resolution using a long-gauge FBG with a 100 Hz sampling rate. We evaluated the strain sensing characteristics of the long-gauge FBG when attached to a 2.5 m aluminum bar and a 5.5 m helicopter blade model, determining these structure natural frequencies in free vibration tests and their distributed strain characteristics in static tests.
NASA Astrophysics Data System (ADS)
Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.
2017-09-01
The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the vicinity of the southern margin. As a result, some of the cGPS stations in the vicinity of the OVC are more important for measuring deformation related to volcanic processes than others. The results have important implications for how any future observed deformation at the OVC is observed and interpreted.
Challenges and the state of the technology for printed sensor arrays for structural monitoring
NASA Astrophysics Data System (ADS)
Joshi, Shiv; Bland, Scott; DeMott, Robert; Anderson, Nickolas; Jursich, Gregory
2017-04-01
Printed sensor arrays are attractive for reliable, low-cost, and large-area mapping of structural systems. These sensor arrays can be printed on flexible substrates or directly on monitored structural parts. This technology is sought for continuous or on-demand real-time diagnosis and prognosis of complex structural components. In the past decade, many innovative technologies and functional materials have been explored to develop printed electronics and sensors. For example, an all-printed strain sensor array is a recent example of a low-cost, flexible and light-weight system that provides a reliable method for monitoring the state of aircraft structural parts. Among all-printing techniques, screen and inkjet printing methods are well suited for smaller-scale prototyping and have drawn much interest due to maturity of printing procedures and availability of compatible inks and substrates. Screen printing relies on a mask (screen) to transfer a pattern onto a substrate. Screen printing is widely used because of the high printing speed, large selection of ink/substrate materials, and capability of making complex multilayer devices. The complexity of collecting signals from a large number of sensors over a large area necessitates signal multiplexing electronics that need to be printed on flexible substrate or structure. As a result, these components are subjected to same deformation, temperature and other parameters for which sensor arrays are designed. The characteristics of these electronic components, such as transistors, are affected by deformation and other environmental parameters which can lead to erroneous sensed parameters. The manufacturing and functional challenges of the technology of printed sensor array systems for structural state monitoring are the focus of this presentation. Specific examples of strain sensor arrays will be presented to highlight the technical challenges.
High resolution monitoring of hydrology and deformation in a unstable slope
NASA Astrophysics Data System (ADS)
Nevers, Pierre; Provost, Floriane; Kromer, Ryan; Bertrand, Catherine; Malet, Jean-Philippe; Marc, Vincent; Gaillardet, Jérôme; Gance, Julien; Abellan, Antonio; Jaboyedoff, Michel
2017-04-01
The Séchilienne landslide is located on the right bank of the Romanche River, South East of Grenoble (Isère, France). The active zone of the gravitational instability involves several millions of cubic meters. The geology consists in fractured hard rocks (micaschists) with double permeability and strong spatial heterogeneities. The deformation of the unstable slope is monitored by on-site extensometric gauges, inclinometers, GNSS and remotely by a terrestrial radar and a total station. Hydro-chemio-mechanical processes controlling the reactivation of the landslide are influenced by the evolution of the landslide deformation in space and time, and the water circulation in the highly heterogeneous fractured media. A hydrogeochemical monitoring of the unsaturated zone in the fractured hard rock has been carried out since 2010. This monitoring is supported by the French Landslide Observatory (OMIV) and consists in continuous measurements of physico-chemical parameters on two groundwater outlets (T°C, EC, flow rate) and weekly samplings of the waters for quality monitoring. Water chemistry is a good proxy to locate in time and space the origin of the infiltrated water. This tool is used to understand the complex relationships between chemical weathering, hydromechanical changes and weakening/deformation of the unstable material. This monitoring indicates a correlation between water chemistry, rainwater infiltration and rock mass deformation highlighting the impacts of rock-water interactions on the landslide dynamics. But a distributed information over area is still needed because the heterogeneities of the slope and the few sampling points currently prevent a detailed understanding of the global mechanisms involved. To better understand and constrain the hydrogeological and hydro-chemio-mechanical behavior of the slope, a multi-method monitoring of a flood wave infiltration has been carried out in early 2016 in order to distinguish possible signals related to significant displacements. Displacements were monitored by a GB-InSAR and a terrestrial laser scanner in order to obtain a global image of the deformation at high frequency (less than 1 hour). Repeated time-lapse geoelectrical profiles along four sections have been acquired each two hours on relevant plots which are suspected to be the main water flow paths from the surface to the depth. Water quality changes were monitored at high frequency in order to provide information on the water residence time. This first dataset gives insight into the moving volumes of rock and fluids. Imagery geophysics identifies a signal of fluid circulation in a fracture with a fast transit. The chemical signal identifies the heterogeneous functioning of the drainage system (drain/low permeable structure) with a fast transit.
Photoactive and self-sensing P3HT-based thin films for strain and corrosion monitoring
NASA Astrophysics Data System (ADS)
Ryu, Donghyeon; Loh, Kenneth J.
2014-03-01
Structural systems deteriorate due to excessive deformation and corrosive environments. If damage is left undetected, they can propagate to cause sudden collapse. However, one of the main difficulties of monitoring damage progression is that, for example, excessive/plastic deformation and corrosion are drastically different physical processes. Strain is a mechanical phenomenon, whereas corrosion is a complex electrochemical process. The current strategy for structural health monitoring (SHM) is to use either different types of sensors or to employ system identification for quantifying overall changes to the structure. In this study, an alternative SHM paradigm is proposed in that a single, multifunctional material would be able to selectively sense different but simultaneously occurring structural damage. In particular, a photoactive and self-sensing thin film was developed for monitoring strain and corrosion. Another unique aspect was that the films were self-sensing and did not depend on external electrical energy for operations. First, the thin films were fabricated using photoactive poly(3-hexylthiophene) (P3HT) and other functional polymers using spin-coating and layerby- layer assembly. Second, the fabricated thin films were interrogated using an ultraviolet-visible (UV-Vis) spectrophotometer for quantifying their optical response to applied external stimuli, such as strain and exposure to pH buffer solutions. Lastly, the multifunctional thin films were tested and validated for strain and pH sensing. Interrogation of these separate responses was achieved by illuminating the thin films different wavelengths of light and then measuring the corresponding electrical current generated.
Salzer, Jacqueline T.; Thelen, Weston A.; James, Mike R.; Walter, Thomas R.; Moran, Seth C.; Denlinger, Roger P.
2016-01-01
The surface deformation field measured at volcanic domes provides insights into the effects of magmatic processes, gravity- and gas-driven processes, and the development and distribution of internal dome structures. Here we study short-term dome deformation associated with earthquakes at Mount St. Helens, recorded by a permanent optical camera and seismic monitoring network. We use Digital Image Correlation (DIC) to compute the displacement field between successive images and compare the results to the occurrence and characteristics of seismic events during a 6 week period of dome growth in 2006. The results reveal that dome growth at Mount St. Helens was repeatedly interrupted by short-term meter-scale downward displacements at the dome surface, which were associated in time with low-frequency, large-magnitude seismic events followed by a tremor-like signal. The tremor was only recorded by the seismic stations closest to the dome. We find a correlation between the magnitudes of the camera-derived displacements and the spectral amplitudes of the associated tremor. We use the DIC results from two cameras and a high-resolution topographic model to derive full 3-D displacement maps, which reveals internal dome structures and the effect of the seismic activity on daily surface velocities. We postulate that the tremor is recording the gravity-driven response of the upper dome due to mechanical collapse or depressurization and fault-controlled slumping. Our results highlight the different scales and structural expressions during growth and disintegration of lava domes and the relationships between seismic and deformation signals.
Monitoring of Deformation in Ground Before and After Tunnel Excavation
NASA Astrophysics Data System (ADS)
Eren, Mehmet; Hilmi Erkoç, Muharrem
2017-04-01
As population increase in metropolitan city, we need transportation and transmission tunnel. In this context, the engineers and administors attach impotance to building and planning underground-tunnel. Moreover, we must at regular intervals monitoring to deformation in underground-tunnel for quality and safety. Firstly, a deformation monitoring network is designed as perpendicular to the tunnel main axis. Secondly, the prescribed number of deformation measurements must be made. Finally, the deformation analysis is evaluated and its results is interpreted. This study investigates how deformation in monitoring network during and after tunnel excavate change.For this purpose, a deformation monitoring network of 18 object point and 4 reference point was established. Object points networks was designed steeply to the tunnel main axis as 3 cross section. Each cross section consisted of 3 point left, 2 point right and 1 point at the flowing line. Initial conditional measurement was made before tunnel excavation. Then the deformation measurement was made 5 period (1 period measured after tunnel excavate). All data sets were adjusted according to free adjustment method. The results from the investigation considering the tunnel line, a symmetrical subsidence was observed. The following day of tunnel excavation, we were observed %68 per of the total deformation. At the end of the last period measurements, %99 per of the total deformation was detected. Keywords: Tunnel, Deformation, Subsidence, Excavation
Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Tessler, Alexander
2007-01-01
Two finite element based computational methods, Smoothing Element Analysis (SEA) and the inverse Finite Element Method (iFEM), are reviewed, and examples of their use for structural health monitoring are discussed. Due to their versatility, robustness, and computational efficiency, the methods are well suited for real-time structural health monitoring of future space vehicles, large space structures, and habitats. The methods may be effectively employed to enable real-time processing of sensing information, specifically for identifying three-dimensional deformed structural shapes as well as the internal loads. In addition, they may be used in conjunction with evolutionary algorithms to design optimally distributed sensors. These computational tools have demonstrated substantial promise for utilization in future Structural Health Management (SHM) systems.
Monitoring the Deformation of High-Rise Buildings in Shanghai Luijiazui Zone by Tomo-Psinsar
NASA Astrophysics Data System (ADS)
Zhou, L. F.; Ma, P. F.; Xia, Y.; Xie, C. H.
2018-05-01
In this study, we utilize a Tomography-based Persistent Scatterers Interferometry (Tomo-PSInSAR) approach for monitoring the deformation performances of high-rise buildings, i.e. SWFC and Jin Mao Tower, in Shanghai Lujiazui Zone. For the purpose of this study, we use 31 Stripmap acquisitions from TerraSAR-X missions, spanning from December 2009 to February 2013. Considering thermal expansion, creep and shrinkage are two long-term movements that occur in high-rise buildings with concrete structures, we use an extended 4-D SAR phase model, and three parameters (height, deformation velocity, and thermal amplitude) are estimated simultaneously. Moreover, we apply a two-tier network strategy to detect single and double PSs with no need for preliminary removal of the atmospheric phase screen (APS) in the study area, avoiding possible error caused by the uncertainty in spatiotemporal filtering. Thermal expansion is illustrated in the thermal amplitude map, and deformation due to creep and shrinkage is revealed in the linear deformation velocity map. The thermal amplitude map demonstrates that the derived thermal amplitude of the two high-rise buildings both dilate and contract periodically, which is highly related to the building height due to the upward accumulative effect of thermal expansion. The linear deformation velocity map reveals that SWFC is subject to deformation during the new built period due to creep and shrinkage, which is height-dependent movements in the linear velocity map. It is worth mention that creep and shrinkage induces movements that increase with the increasing height in the downward direction. In addition, the deformation rates caused by creep and shrinkage are largest at the beginning and gradually decrease, and at last achieve a steady state as time goes infinity. On the contrary, the linear deformation velocity map shows that Jin Mao Tower is almost stable, and the reason is that it is an old built building, which is not influenced by creep and shrinkage as the load is relaxed and dehydration proceeds. This study underlines the potential of the Tomo-PSInSAR solution for the monitoring deformation performance of high-rise buildings, which offers a quantitative indicator to local authorities and planners for assessing potential damages.
Ultra fine grained Ti prepared by severe plastic deformation
NASA Astrophysics Data System (ADS)
Lukáč, F.; Čížek, J.; Knapp, J.; Procházka, I.; Zháňal, P.; Islamgaliev, R. K.
2016-01-01
The positron annihilation spectroscopy was employed for characterisation of defects in pure Ti with ultra fine grained (UFG) structure. UFG Ti samples were prepared by two techniques based on severe plastic deformation (SPD): (i) high pressure torsion (HPT) and (ii) equal channel angular pressing (ECAP). Although HPT is the most efficient technique for grain refinement, the size of HPT-deformed specimens is limited. On the other hand, ECAP is less efficient in grain refinement but enables to produce larger samples more suitable for industrial applications. Characterisation of defects by positron annihilation spectroscopy was accompanied by hardness testing in order to monitor the development of mechanical properties of UFG Ti.
a Novel Instrument to Monitor Lanslides Deformation
NASA Astrophysics Data System (ADS)
Pasuto, A.; Mantovani, M.; Schenato, L.; Scherneck, H.
2013-12-01
Landslides are more widespread than any other geological event and have high ranking among the natural disasters in terms of casualties and economical damages. Deforestation and constructions of new settlements and infrastructures, as direct consequences of population growth, and the increasing frequency of extreme meteorological events, due to the global climatic changing, could lead to a more severe impact of landslides on human life and activities in the next future. Risk reduction generally comes through countermeasures, both structural and non-structural, that directly act on the developing process or tend to reduce the effects on the fabric of the city and of the environment. Nevertheless countermeasures have often shown their flimsiness especially if they are carried out on disruptions hard to stabilize for their dimensions, kinematics and morpho-evolutive conditions. In these cases there are basically two options: the relocation of the element at risk or the surveillance of the evolution of the instability process by means of a monitoring system. Monitoring therefore represents a powerful tool in both the surveillance of the territory and the management of the emergencies coming from geo-hydrological hazard. In this study we propose the development and testbedding of a novel, low-cost wireless smart sensor network for remote monitoring of land surface deformations. The purpose is to create a flexible and scalable monitoring system in order to overcome some of the limitations of the existing devices and to strongly reduce the costs. The system consists in a master station that works as a control and measuring unit, and a series of sensors (motes) placed over the unstable areas. The master station transmits a microwave signal and receives the response from each mote measuring their relative position and inferring any deformation occurred between successive interrogations. Moreover the motes can work as bridges so that even those that are not directly visible from the master station can be linked to the network, assisting to create a more suitable mesh in terms of shape, dimension and extension in order to properly characterize the deformation process. The attempt is to create a monitoring system suitable for any kind of landslide, that can couple the benefits of a remote-sensing technique with the reliability of in situ measurements for the purpose of providing a realistic and accurate representation of deformation patterns, which is indispensable to characterize the kinematics of the phenomena and to afford the responsible authorities and risk managers an efficient system for the mitigation of the impending risks.
Operational Modal Analysis of Bridge Structures with Data from GNSS/Accelerometer Measurements.
Xiong, Chunbao; Lu, Huali; Zhu, Jinsong
2017-02-23
Real-time dynamic displacement and acceleration responses of the main span section of the Tianjin Fumin Bridge in China under ambient excitation were tested using a Global Navigation Satellite System (GNSS) dynamic deformation monitoring system and an acceleration sensor vibration test system. Considering the close relationship between the GNSS multipath errors and measurement environment in combination with the noise reduction characteristics of different filtering algorithms, the researchers proposed an AFEC mixed filtering algorithm, which is an combination of autocorrelation function-based empirical mode decomposition (EMD) and Chebyshev mixed filtering to extract the real vibration displacement of the bridge structure after system error correction and filtering de-noising of signals collected by the GNSS. The proposed AFEC mixed filtering algorithm had high accuracy (1 mm) of real displacement at the elevation direction. Next, the traditional random decrement technique (used mainly for stationary random processes) was expanded to non-stationary random processes. Combining the expanded random decrement technique (RDT) and autoregressive moving average model (ARMA), the modal frequency of the bridge structural system was extracted using an expanded ARMA_RDT modal identification method, which was compared with the power spectrum analysis results of the acceleration signal and finite element analysis results. Identification results demonstrated that the proposed algorithm is applicable to analyze the dynamic displacement monitoring data of real bridge structures under ambient excitation and could identify the first five orders of the inherent frequencies of the structural system accurately. The identification error of the inherent frequency was smaller than 6%, indicating the high identification accuracy of the proposed algorithm. Furthermore, the GNSS dynamic deformation monitoring method can be used to monitor dynamic displacement and identify the modal parameters of bridge structures. The GNSS can monitor the working state of bridges effectively and accurately. Research results can provide references to evaluate the bearing capacity, safety performance, and durability of bridge structures during operation.
Operational Modal Analysis of Bridge Structures with Data from GNSS/Accelerometer Measurements
Xiong, Chunbao; Lu, Huali; Zhu, Jinsong
2017-01-01
Real-time dynamic displacement and acceleration responses of the main span section of the Tianjin Fumin Bridge in China under ambient excitation were tested using a Global Navigation Satellite System (GNSS) dynamic deformation monitoring system and an acceleration sensor vibration test system. Considering the close relationship between the GNSS multipath errors and measurement environment in combination with the noise reduction characteristics of different filtering algorithms, the researchers proposed an AFEC mixed filtering algorithm, which is an combination of autocorrelation function-based empirical mode decomposition (EMD) and Chebyshev mixed filtering to extract the real vibration displacement of the bridge structure after system error correction and filtering de-noising of signals collected by the GNSS. The proposed AFEC mixed filtering algorithm had high accuracy (1 mm) of real displacement at the elevation direction. Next, the traditional random decrement technique (used mainly for stationary random processes) was expanded to non-stationary random processes. Combining the expanded random decrement technique (RDT) and autoregressive moving average model (ARMA), the modal frequency of the bridge structural system was extracted using an expanded ARMA_RDT modal identification method, which was compared with the power spectrum analysis results of the acceleration signal and finite element analysis results. Identification results demonstrated that the proposed algorithm is applicable to analyze the dynamic displacement monitoring data of real bridge structures under ambient excitation and could identify the first five orders of the inherent frequencies of the structural system accurately. The identification error of the inherent frequency was smaller than 6%, indicating the high identification accuracy of the proposed algorithm. Furthermore, the GNSS dynamic deformation monitoring method can be used to monitor dynamic displacement and identify the modal parameters of bridge structures. The GNSS can monitor the working state of bridges effectively and accurately. Research results can provide references to evaluate the bearing capacity, safety performance, and durability of bridge structures during operation. PMID:28241472
Miniature stress transducer has directional capability
NASA Technical Reports Server (NTRS)
San Miguel, A.; Silver, R. H.
1965-01-01
Miniature stress transducer uses a semiconductive piezoresistive element to detect stress only on specific axes. Measurement of internal mass stress is based on the compressive deformation of the transducer. The device is applicable to constant stress monitoring in building and dam structural parts.
Monitoring The Stability Of Levees With Time-Series ENVISAT ASAR Images
NASA Astrophysics Data System (ADS)
Pei, Yuanyuan; Liao, Mingsheng; Wang, Teng; Zhang, Lu
2012-01-01
Levees are constructed to protect coastal cities from typhoon, flood, and sea tide. Since the stability of levees is important, it is necessary to monitor their deformation regularly. Repeat-track space-borne SAR images are useful for environment monitoring, especially for ground deformation monitoring. Shanghai resides on the Yangtze River Delta on China’s eastern coast. Each year, the city is hit by typhoons from the Pacific Ocean and threatened by the flood of the Yangtze River. We used Persistent Scatterer Interferometry to monitor the deformation of the levees. Our experiments show that the levees around Pudong airport and Lingang town suffer from serious deformation.
Yarnitzky, G; Yizhar, Z; Gefen, A
2006-01-01
No technology is presently available to provide real-time information on internal deformations and stresses in plantar soft tissues of individuals during evaluation of the gait pattern. Because internal deformations and stresses in the plantar pad are critical factors in foot injuries such as diabetic foot ulceration, this severely limits evaluation of patients. To allow such real-time subject-specific analysis, we developed a hierarchal modeling system which integrates a two-dimensional gross structural model of the foot (high-order model) with local finite element (FE) models of the plantar tissue padding the calcaneus and medial metatarsal heads (low-order models). The high-order whole-foot model provides real-time analytical evaluations of the time-dependent plantar fascia tensile forces during the stance phase. These force evaluations are transferred, together with foot-shoe local reaction forces, also measured in real time (under the calcaneus, medial metatarsals and hallux), to the low-order FE models of the plantar pad, where they serve as boundary conditions for analyses of local deformations and stresses in the plantar pad. After careful verification of our custom-made FE solver and of our foot model system with respect to previous literature and against experimental results from a synthetic foot phantom, we conducted human studies in which plantar tissue loading was evaluated in real time during treadmill gait in healthy individuals (N = 4). We concluded that internal deformations and stresses in the plantar pad during gait cannot be predicted from merely measuring the foot-shoe force reactions. Internal loading of the plantar pad is constituted by a complex interaction between the anatomical structure and mechanical behavior of the foot skeleton and soft tissues, the body characteristics, the gait pattern and footwear. Real-time FE monitoring of internal deformations and stresses in the plantar pad is therefore required to identify elevated deformation/stress exposures toward utilizing it in gait laboratories to protect feet that are susceptible to injury.
Monitoring Bridge Dynamic Deformation in Vibration by Digital Photography
NASA Astrophysics Data System (ADS)
Yu, Chengxin; Zhang, Guojian; Liu, Xiaodong; Fan, Li; Hai, Hua
2018-01-01
This study adopts digital photography to monitor bridge dynamic deformation in vibration. Digital photography in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, we monitor the bridge in static as a zero image. Then, we continuously monitor the bridge in vibration as the successive images. Based on the reference points on each image, PST-TBPM is used to calculate the images to obtain the dynamic deformation values of these deformation points. Results show that the average measurement accuracies are 0.685 pixels (0.51mm) and 0.635 pixels (0.47mm) in X and Z direction, respectively. The maximal deformations in X and Z direction of the bridge are 4.53 pixels and 5.21 pixels, respectively. PST-TBPM is valid in solving the problem that the photographing direction is not perpendicular to the bridge. Digital photography in this study can be used to assess bridge health through monitoring the dynamic deformation of a bridge in vibration. The deformation trend curves also can warn the possible dangers over time.
Dynamic curvature sensing employing ionic-polymer-metal composite sensors
NASA Astrophysics Data System (ADS)
Bahramzadeh, Yousef; Shahinpoor, Mohsen
2011-09-01
A dynamic curvature sensor is presented based on ionic-polymer-metal composite (IPMC) for curvature monitoring of deployable/inflatable dynamic space structures. Monitoring the curvature variation is of high importance in various engineering structures including shape monitoring of deployable/inflatable space structures in which the structural boundaries undergo a dynamic deployment process. The high sensitivity of IPMCs to the applied deformations as well as its flexibility make IPMCs a promising candidate for sensing of dynamic curvature changes. Herein, we explore the dynamic response of an IPMC sensor strip with respect to controlled curvature deformations subjected to different forms of input functions. Using a specially designed experimental setup, the voltage recovery effect, phase delay, and rate dependency of the output voltage signal of an IPMC curvature sensor are analyzed. Experimental results show that the IPMC sensor maintains the linearity, sensitivity, and repeatability required for curvature sensing. Besides, in order to describe the dynamic phenomena such as the rate dependency of the IPMC sensor, a chemo-electro-mechanical model based on the Poisson-Nernst-Planck (PNP) equation for the kinetics of ion diffusion is presented. By solving the governing partial differential equations the frequency response of the IPMC sensor is derived. The physical model is able to describe the dynamic properties of the IPMC sensor and the dependency of the signal on rate of excitations.
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin
2016-11-01
Recently the distributed fibre optic strain sensing (DFOSS) technique has been applied to monitor deformations of various earth structures. However, the reliability of soil deformation measurements remains unclear. Here we present an integrated DFOSS- and photogrammetry-based test study on the deformation behaviour of a soil foundation model to highlight the role of strain sensing fibre-soil interface in DFOSS-based geotechnical monitoring. Then we investigate how the fibre-soil interfacial behaviour is influenced by environmental changes, and how the strain distribution along the fibre evolves during progressive interface failure. We observe that the fibre-soil interfacial bond is tightened and the measurement range of the fibre is extended under high densities or low water contents of soil. The plastic zone gradually occupies the whole fibre length when the soil deformation accumulates. Consequently, we derive a theoretical model to simulate the fibre-soil interfacial behaviour throughout the progressive failure process, which accords well with the experimental results. On this basis, we further propose that the reliability of measured strain can be determined by estimating the stress state of the fibre-soil interface. These findings may have important implications for interpreting and evaluating fibre optic strain measurements, and implementing reliable DFOSS-based geotechnical instrumentation.
NASA Astrophysics Data System (ADS)
Zhang, Guojian; Yu, Chengxin; Ding, Xinhua
2018-01-01
In this study, digital photography is used to monitor the instantaneous deformation of a masonry wall in seismic oscillation. In order to obtain higher measurement accuracy, the image matching-time baseline parallax method (IM-TBPM) is used to correct errors caused by the change of intrinsic and extrinsic parameters of digital cameras. Results show that the average errors of control point C5 are 0.79mm, 0.44mm and 0.96mm in X, Z and comprehensive direction, respectively. The average errors of control point C6 are 0.49mm, 0.44mm and 0.71mm in X, Z and comprehensive direction, respectively. These suggest that IM-TBPM can meet the accuracy requirements of instantaneous deformation monitoring. In seismic oscillation the middle to lower of the masonry wall develops cracks firstly. Then the shear failure occurs on the middle of masonry wall. This study provides technical basis for analyzing the crack development pattern of masonry structure in seismic oscillation and have significant implications for improved construction of masonry structures in earthquake prone areas.
Computed parameters : moisture content for unbound materials at seasonal monitoring program sites
DOT National Transportation Integrated Search
2000-01-01
Moisture content plays a significant role in the performance of pavements. Variation in the amount of moisture in the subgrade can change the volume of swelling soil, which may result in detrimental deformation of the pavement structure. An increase ...
A civil structural monitoring system based on fiber grating sensors
NASA Astrophysics Data System (ADS)
Zhang, Yan; Cai, Haiwen; Pastore, Robert; Ju, Jing; Zeng, Debing; Yin, Zhifan; Cui, Hong-Liang
2003-08-01
Optical fiber sensors based on Fiber Bragg Grating (FBG) technology have found many applications in the area of civil structural monitoring systems, such as in bridge monitoring and maintenance. FBG sensors can measure the deformation, overload and cracks on bridge with a high sensitivity. In this paper we report on our recent work a structural monitoring system using FBG sensors. Basic theoretical background and design of the system is described here, including the light source, FBG sensors, demodulator sensors, signal detection and processing schemes. The system will be installed on a major arch bridge currently under construction in Shanghai, China for long-term in situ health monitoring. The system schematic arrangement on the bridge is introduced in brief. Simulation experiments in the laboratory were carried out to test the performance of FBG strain sensors. The sensor response shows excellent linearity against the strain imposed on it. Traffic and overload monitoring on bridge using FBG sensors is also discussed and planned for the near future.
Determination Method of Bridge Rotation Angle Response Using MEMS IMU.
Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi
2016-11-09
To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges.
A bio-inspired memory model for structural health monitoring
NASA Astrophysics Data System (ADS)
Zheng, Wei; Zhu, Yong
2009-04-01
Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system.
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Tapete, Deodato; Cigna, Francesca; Perissin, Daniele; Salzer, Jacqueline; Lundgren, Paul; Fielding, Eric; Burgmann, Roland; Biondi, Filippo; Milillo, Giovanni; Serio, Carmine
2016-10-01
Structural health monitoring (SHM) of engineered structures consists of an automated or semi-automated survey system that seeks to assess the structural condition of an anthropogenic structure. The aim of an SHM system is to provide insights into possible induced damage or any inherent signals of deformation affecting the structure in terms of detection, localization, assessment, and prediction. During the last decade there has been a growing interest in using several remote sensing techniques, such as synthetic aperture radar (SAR), for SHM. Constellations of SAR satellites with short repeat time acquisitions permit detailed surveys temporal resolution and millimetric sensitivity to deformation that are at the scales relevant to monitoring large structures. The all-weather multi-temporal characteristics of SAR make its products suitable for SHM systems, especially in areas where in situ measurements are not feasible or not cost effective. To illustrate this capability, we present results from COSMO-SkyMed (CSK) and TerraSAR-X SAR observations applied to the remote sensing of engineered structures. We show how by using multiple-geometry SAR-based products which exploit both phase and amplitude of the SAR signal we can address the main objectives of an SHM system including detection and localization. We highlight that, when external data such as rain or temperature records are available or simple elastic models can be assumed, the SAR-based SHM capability can also provide an interpretation in terms of assessment and prediction. We highlight examples of the potential for such imaging capabilities to enable advances in SHM from space, focusing on dams and cultural heritage areas.
NASA Astrophysics Data System (ADS)
Zhang, Yonghong; Zhang, Jixian; Wu, Hongan; Lu, Zhong; Guangtong, Sun
2011-10-01
Ground subsidence, mainly caused by over exploitation of groundwater and other underground resources, such as oil, gas and coal, occurs in many cities in China. The annual direct loss associated with subsidence across the country is estimated to exceed 100 million US dollar. Interferometric SAR (InSAR) is a powerful tool to map ground deformation at an unprecedented level of spatial detail. It has been widely used to investigate the deformation resulting from earthquakes, volcanoes and subsidence. Repeat-pass InSAR, however, may fail due to impacts of spatial decorrelation, temporal decorrelation and heterogeneous refractivity of atmosphere. In urban areas, a large amount of natural stable radar reflectors exists, such as buildings and engineering structures, at which radar signals can remain coherent during a long time interval. Interferometric point target analysis (IPTA) technique, also known as persistent scatterers (PS) InSAR is based on these reflectors. It overcomes the shortfalls in conventional InSAR. This paper presents a procedure for urban subsidence monitoring with IPTA. Calculation of linear deformation rate and height residual, and the non-linear deformation estimate, respectively, are discussed in detail. Especially, the former is highlighted by a novel and easily implemented 2-dimensional spatial search algorithm. Practically useful solutions that can significantly improve the robustness of IPTA, are recommended. Finally, the proposed procedure is applied to mapping the ground subsidence in Suzhou city, Jiangsu province, China. Thirty-four ERS-1/2 SAR scenes are analyzed, and the deformation information over 38,881 point targets between 1992 and 2000 are generated. The IPTA-derived deformation estimates correspond well with leveling measurements, demonstrating the potential of the proposed subsidence monitoring procedure based on IPTA technique. Two shortcomings of the IPTA-based procedure, e.g., the requirement of large number of SAR images and assumed linear plus non-linear deformation model, are discussed as the topics of further research.
NASA Technical Reports Server (NTRS)
Miller, M. Meghan
1998-01-01
Accomplishments: (1) Continues GPS monitoring of surface change during and following the fortuitous occurrence of the M(sub w) = 7.3 Landers earthquake in our network, in order to characterize earthquake dynamics and accelerated activity of related faults as far as 100's of kilometers along strike. (2) Integrates the geodetic constraints into consistent kinematic descriptions of the deformation field that can in turn be used to characterize the processes that drive geodynamics, including seismic cycle dynamics. In 1991, we installed and occupied a high precision GPS geodetic network to measure transform-related deformation that is partitioned from the Pacific - North America plate boundary northeastward through the Mojave Desert, via the Eastern California shear zone to the Walker Lane. The onset of the M(sub w) = 7.3 June 28, 1992, Landers, California, earthquake sequence within this network poses unique opportunities for continued monitoring of regional surface deformation related to the culmination of a major seismic cycle, characterization of the dynamic behavior of continental lithosphere during the seismic sequence, and post-seismic transient deformation. During the last year, we have reprocessed all three previous epochs for which JPL fiducial free point positioning products available and are queued for the remaining needed products, completed two field campaigns monitoring approx. 20 sites (October 1995 and September 1996), begun modeling by development of a finite element mesh based on network station locations, and developed manuscripts dealing with both the Landers-related transient deformation at the latitude of Lone Pine and the velocity field of the whole experiment. We are currently deploying a 1997 observation campaign (June 1997). We use GPS geodetic studies to characterize deformation in the Mojave Desert region and related structural domains to the north, and geophysical modeling of lithospheric behavior. The modeling is constrained by our existing and continued GPS measurements, which will provide much needed data on far-field strain accumulation across the region and on the deformational response of continental lithosphere during and following a large earthquake, forming the basis for kinematic and dynamic modeling of secular and seismic-cycle deformation. GPS geodesy affords both regional coverage and high precision that uniquely bear on these problems.
Dynamic monitoring of compliant bodies impacting the water surface through local strain measurements
NASA Astrophysics Data System (ADS)
Panciroli, Riccardo; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano
2016-04-01
The understanding and the experimental characterization of the evolution of impulsive loading is crucial in several fields in structural, mechanical and ocean engineering, naval architecture and aerospace. In this regards, we developed an experimental methodology to reconstruct the deformed shape of compliant bodies subjected to impulsive loadings, as those encountered in water entry events, starting from a finite number of local strain measurements performed through Fiber Bragg Gratings. The paper discusses the potential applications of the proposed methodology for: i) real-time damage detection and structural health monitoring, ii) fatigue assessment and iii) impulsive load estimation.
Monitoring displacements of an earthen dam using GNSS and remote sensing
NASA Astrophysics Data System (ADS)
Dardanelli, Gino; La Loggia, Goffredo; Perfetti, Nicola; Capodici, Fulvio; Puccio, Luigi; Maltese, Antonino
2014-10-01
This paper shows the results of a scientific research in which a GNSS continuous monitoring system for earth-dam deformations has been developed, then, deformations have been related with reservoir water surface and level. The experiment was conducted near Bivona (Sicily, Italy), on the Castello dam (Magazzolo Lake). On the top of the dam three control points were placed and three GNSS permanent stations were installed. The three stations continuously transmitted data to the control centre of the University of Palermo. The former has been determined using freely available satellite data (specifically Landsat 7 SLC-Off) collected during the whole study period (DOYs 101 to 348 2011). Issues related with the un-scanned rows filling and to better distinguish water from land pixels on the shoreline. The aim of this work is various: first of all, we want to evaluate whether the GPS post processing techniques can provide static results comparable to other monitoring techniques, such as spirit levelling. The study could take a significant importance given that the Italian legislation until today does not provide for the use of this technology to manage or monitor dams displacements or other civil engineering constructions. The use of GPS data in structural monitoring could in fact reduce some management costs. Usually the conventional GPS monitoring methods, where a base station GPS receiver must be located near the dam, did not ensure that the accuracy of results have been independent from the displacement of the crown (top end of dam). In this paper, a new approach in the area of study of the GNSS permanent network has been engaged to solve these problems. Field-testing results show that the new GNSS approach has excellent performances, and the monitoring of different section of the dam could reveal important information on its deformation, that its not operationally possible to retrieve elsewhere. The post-processing accuracy positioning is around 1-5 mm for the deformations monitoring of the Castello dam. Displacements of different sections of the dam reveal different behaviour (in time and periodicity) that looks to be related with water surface (and level) retrieved from remote sensing.
NASA Astrophysics Data System (ADS)
Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane; Lavenant, Nicolas
2015-12-01
Fractured aquifers which bear valuable water resources are often difficult to characterize with classical hydrogeological tools due to their intrinsic heterogeneities. Here we implement ground surface deformation tools (tiltmetry and optical leveling) to monitor groundwater pressure changes induced by a classical hydraulic test at the Ploemeur observatory. By jointly analyzing complementary time constraining data (tilt) and spatially constraining data (vertical displacement), our results strongly suggest that the use of these surface deformation observations allows for estimating storativity and structural properties (dip, root depth, and lateral extension) of a large hydraulically active fracture, in good agreement with previous studies. Hence, we demonstrate that ground surface deformation is a useful addition to traditional hydrogeological techniques and opens possibilities for characterizing important large-scale properties of fractured aquifers with short-term well tests as a controlled forcing.
Time Domain Reflectometry (TDR) monitoring system for deep seated landslides
NASA Astrophysics Data System (ADS)
Singer, J.; Thuro, K.; Festl, J.
2012-04-01
In the 1980s Time Domain Reflectometry (TDR) has been introduced as a subsurface deformation monitoring system in boreholes, which allows identifying and localizing discrete deformation zones with high accuracy. While TDR offers several advantages as e.g. low costs and the possibility to continuously monitor deformation along the complete borehole,TDR was not used widespread due to the fact that the amount of deformation sometimes could not be determined accurately and in some cases no deformation was detected at all. By the definition of calibrated installation standards and the usage of advanced signal analysis methods, it is possible to overcome this and a reliable quantification of deformation using TDR is possible. In the ongoing research the attempt is made to define different TDR measuring system configurations (measuring cable and grout combinations), where each is designated for a specific geological environment. These set-ups are then calibrated in laboratory shear tests and finally tested in field, if possible by comparing them with inclinometer measurements. To date monitoring data of three different deep seated landslides in the European Alps (Gschliefgraben, Aggenalm and Triesenberg) have been collected. The field test results clearly show that the new TDR system can fulfill the expectations and the deformation can be determined with sub-centimeter accuracy if one basic prerequisite concerning the mode of deformation is fulfilled: TDR can only be used when localized shear deformation is present. Since TDR data easily can be acquired continuously as well as remotely, it is possible to use a TDR measuring system as a valuable part of a monitoring system for landslide early warning. Since 2008 such a monitoring system is in operation at the Aggenalm landslide, where the TDR subsurface deformation measurements supplement the information on surface deformation from geotechnical and geodetic measuring systems to a 3D early warning system for instable slopes.
Seismic damage identification for steel structures using distributed fiber optics.
Hou, Shuang; Cai, C S; Ou, Jinping
2009-08-01
A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.
Geodetic deformation monitoring at Pendidikan Diponegoro Dam
NASA Astrophysics Data System (ADS)
Yuwono, Bambang Darmo; Awaluddin, Moehammad; Yusuf, M. A.; Fadillah, Rizki
2017-07-01
Deformation monitoring is one indicator to assess the feasibility of Dam. In order to get the correct result of the deformation, it is necessary to determine appropriate deformation monitoring network and the observation data should be analyse and evaluated carefully. Measurement and analysis of deformation requires relatively accurate data and the precision is high enough, one of the observation method that used is GPS (Global Positioning System). The research was conducted at Pendidikan Undip Dams is Dam which is located in Tembang. Diponegoro Dam was built in 2013 and a volume of 50.86 m3 of water, inundation normal width of up to 13,500 m2. The main purpose of these building is not only for drainage but also for education and micro hydro power plant etc. The main goal of this reasearch was to monitor and analyze the deformation at Pendidikan Undip Dam and to determaine whether GPS measurement could meet accuracy requirement for dam deformation measurements. Measurements were made 2 times over 2 years, 2015 and 2016 using dual frequency GPS receivers with static methods and processed by Scientific Software GAMIT 10.6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludwig, K; Li, J; Venigalla, P
2016-06-15
Purpose: Investigate the feasibility of using weekly MRI to assess dose to organs at risk utilizing deformable image registration. Methods: Sixteen H&N patients with oropharyngeal cancer were imaged on a 3T MR scanner using T2W and mDIXON sequence. Patients were imaged on a weekly basis in treatment position. Parotids (LP & RP), submandibular glands (LS, RS), and oral cavity (OC) were delineated on the weekly MR and reviewed by a board certified radiation oncologist. The original planning CT (pCT), RT-Dose, and RT-Structures were deformed and registered to each weekly MRIs. The deformed CTs and RT-Structures were imported to the treatmentmore » planning system (TPS) and rigidly registered to the pCT. Forward dose calculation of the original RT-Plan was used to estimate the delivered dose on the deformed CT. The dose volume histograms (DVH) statistics were performed to compare planned dose, deformed dose, and forward calculated dose. In addition, Dice similarity metric (DSM) was used to compare deformed and reference structures. Results: The average (min,max) DSM between deformed and reference structures was 0.71 (0.69,0.93); 0.70 (0.64,0.89); 0.65 (0.48,0.86); 0.63 (0.37,0.89); and 0.63 (0.58,0.87); for LP, RP, LS, RS, and OC respectively. The respective average relative structures volumes changed at a weekly rate of −4.99%; −4.40%; +3.45%; +1.46%; −1.39%, respectively. The percentage difference %(min,max) between estimated delivered dose and planned dose was +3.94 (−51.3,+30.5); +6.33 (−58.6,+82.7); +2.46 (−38.9,+37.6,); +2.38(−49.0,+28.9); +3.55(−17.0,+43.1). Conclusion: The recalculated dose based on weekly MRI deviated from planned dose for all OARs. Meanwhile, the deformed dose did not reflect the subtle changes in OARs as compared to the recalculated dose. This study demonstrates the feasibility of using weekly MRI to monitor volumetric changes which has important implications on actual delivered dose.« less
Monitoring and Deformation Analysis of Groynes Using Tls at the River Elbe
NASA Astrophysics Data System (ADS)
Tschirschwitz, F.; Mechelke, K.; Jansch, H.; Kersten, T. P.
2016-06-01
To enter the Port of Hamburg, one of Europe's busiest ports all vessels need to navigate around 145 km along the Elbe river, a tide influenced navigation channel. To protect the Elbe shoreline from erosion and to channel the waterway groynes (rigid hydraulic structures) have been built along the river. In the past years since ca. 2001 there has been a large increase in damage of groynes structural integrity at parts of the German waterways. The reason for this was determined in the ever growing size of container vessels passing by and inducing long periodical primary waves which have such a force that they erode the groynes rock structure. To analyse and improve the groynes structural resistance for vessel-induced long periodical wave loads an in-situ study is carried out at Juelssand, located at the Elbe river estuary. Over a period of two years the change of the geometrical structure of two different groyne shapes is monitored automatically by utilising two terrestrial laser scanners mounted in protective housings, located each on a 12 m high platform. The self-contained monitoring systems perform scanning of the two groynes one to two times a day at low tide, as the structures are fully submerged at high tide. The long-periodical wave loads are also determined using pressure sensors in each groyne. To correlate the captured data with vessel events and analyse the effects, vessel related parameters are recorded utilizing the Automatic Identification System (AIS). This paper describes the automated processes for the data acquisition and focusses on the deformation that is calculated using current, extended and new algorithms of the Point Cloud Library. It shows the process chain from the acquisition of raw scan files from an elevated station to the filtering of point cloud, the registration, the calculation of pointwise changes and the aggregation to a grid for later correlation with ship parameters. When working outdoor in all kinds of weather conditions, the processes and equipment need to be robust and account for various cases and situations. This is especially applicable for the algorithms, which need to be adaptable to different scenarios like wet surfaces or snow and unwelcome objects ranging from flotsam to birds sitting on the groyne. At the current stage of the research, deformation in the magnitude of a couple of decimetres is observable. The orientation and location of the deformation is on the seaward side and corresponds to the lower distance of vessels leaving the harbour.
Monitoring on Xi'an ground fissures deformation with TerraSAR-X data
Zhao, C.; Zhang, Q.; Zhu, W.; Lu, Z.
2012-01-01
Owing to the fine resolution of TerraSAR-X data provided since 2007, this paper applied 6 TerraSAR data (strip mode) during 3rd Dec. 2009 to 23rd Mar. 2010 to detect and monitor the active fissures over Xi'an region. Three themes have been designed for high precision detection and monitoring of Xi'an-Chang'an fissures, as small baseline subsets (SBAS) to test the atmospheric effects of differential interferograms pair stepwise, 2-pass differential interferogram with very short baseline perpendicular to generate the whole deformation map with 44 days interval, and finally, corner reflector (CR) technique was used to closely monitor the relative deformation time series between two CRs settled crossing two ground fissures. Results showed that TerraSAR data are a good choice for small-scale ground fissures detection and monitoring, while special considerations should be taken for their great temporal and baseline decorrelation. Secondly, ground fissures in Xi'an were mostly detected at the joint section of stable and deformable regions. Lastly, CR-InSAR had potential ability to monitor relative deformation crossing fissures with millimeter precision.
NASA Astrophysics Data System (ADS)
Fanelli, Pierluigi; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano
2017-02-01
Various mechanical, ocean, aerospace and civil engineering problems involve solid bodies impacting the water surface and often result in complex coupled dynamics, characterized by impulsive loading conditions, high amplitude vibrations and large local deformations. Monitoring in such problems for purposes such as remaining fatigue life estimation and real time damage detection is a technical and scientific challenge of primary concern in this context. Open issues include the need for developing distributed sensing systems able to operate at very high acquisition frequencies, to be utilized to study rapidly varying strain fields, with high resolution and very low noise, while scientific challenges mostly relate to the definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals. Building on previous work by some of the authors, we propose an enhanced method for real time deformed shape reconstruction using distributed FBG strain measurements in curved bodies subjected to impulsive loading and we establish a new framework for applying this method for structural health monitoring purposes, as the main focus of the work. Experiments are carried out on a cylinder impacting the water at various speeds, proving improved performance in displacement reconstruction of the enhanced method compared to its previous version. A numerical study is then carried out considering the same physical problem with different delamination damages affecting the body. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is thoroughly investigated. Overall, the results presented in the paper show the potential of distributed FBG strain measurements for real time structural health monitoring of curved bodies under impulsive hydrodynamic loading, defining damage sensitive features in terms of strain or displacement reconstruction errors at selected locations along the structure.
NASA Astrophysics Data System (ADS)
Nicolas, Yves; Paques, Marcel; Knaebel, Alexandra; Steyer, Alain; Munch, Jean-Pierre; Blijdenstein, Theo B. J.; van Aken, George A.
2003-08-01
An oscillatory shear configuration was developed to improve understanding of structural evolution during deformation. It combines an inverted confocal scanning laser microscope (CSLM) and a special sample holder that can apply to the sample specific deformation: oscillatory shear or steady strain. In this configuration, a zero-velocity plane is created in the sample by moving two plates in opposite directions, thereby providing stable observation conditions of the structural behavior under deformation. The configuration also includes diffusion wave spectroscopy (DWS) to monitor the network properties via particle mobility under static and dynamic conditions. CSLM and DWS can be performed simultaneously and three-dimensional images can be obtained under static conditions. This configuration is mainly used to study mechanistic phenomena like particle interaction, aggregation, gelation and network disintegration, interactions at interfaces under static and dynamic conditions in semisolid food materials (desserts, dressings, sauces, dairy products) and in nonfood materials (mineral emulsions, etc.). Preliminary data obtained with this new oscillatory shear configuration are described that demonstrate their capabilities and the potential contribution to other areas of application also.
Hybrid atomistic simulation of fluid uptake in a deformable solid
NASA Astrophysics Data System (ADS)
Moghadam, Mahyar M.; Rickman, J. M.
2014-01-01
Fluid imbibition via diffusion in a deformable solid results in solid stresses that may, in turn, alter subsequent fluid uptake. To examine this interplay between diffusional and elastic fields, we employed a hybrid Monte Carlo-molecular dynamics scheme to model the coupling of a fluid reservoir to a deformable solid, and then simulated the resulting fluid permeation into the solid. By monitoring the instantaneous structure factor and solid dimensions, we were able to determine the compositional strain associated with imbibition, and the diffusion coefficient in the Fickian regime was obtained from the time dependence of the fluid uptake. Finally, for large, mobile fluid atoms, a non-Fickian regime was highlighted and possible mechanisms for this behavior were identified.
NASA Astrophysics Data System (ADS)
Chan, Chun-Kai; Loh, Chin-Hsiung; Wu, Tzu-Hsiu
2015-04-01
In civil engineering, health monitoring and damage detection are typically carry out by using a large amount of sensors. Typically, most methods require global measurements to extract the properties of the structure. However, some sensors, like LVDT, cannot be used due to in situ limitation so that the global deformation remains unknown. An experiment is used to demonstrate the proposed algorithms: a one-story 2-bay reinforce concrete frame under weak and strong seismic excitation. In this paper signal processing techniques and nonlinear identification are used and applied to the response measurements of seismic response of reinforced concrete structures subject to different level of earthquake excitations. Both modal-based and signal-based system identification and feature extraction techniques are used to study the nonlinear inelastic response of RC frame using both input and output response data or output only measurement. From the signal-based damage identification method, which include the enhancement of time-frequency analysis of acceleration responses and the estimation of permanent deformation using directly from acceleration response data. Finally, local deformation measurement from dense optical tractor is also use to quantify the damage of the RC frame structure.
Determination Method of Bridge Rotation Angle Response Using MEMS IMU
Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi
2016-01-01
To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges. PMID:27834871
Wireless sensor networks for heritage object deformation detection and tracking algorithm.
Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu
2014-10-31
Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.
Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm
Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu
2014-01-01
Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection. PMID:25365458
Precursory Slope Deformation around Landslide Area Detected by Insar Throughout Japan
NASA Astrophysics Data System (ADS)
Nakano, T.; Wada, K.; Yamanaka, M.; Kamiya, I.; Nakajima, H.
2016-06-01
Interferometric Synthetic Aperture Radar (InSAR) technique is able to detect a slope deformation around landslide (e.g., Singhroy et al., 2004; Une et al., 2008; Riedel and Walther, 2008; Sato et al., 2014). Geospatial Information Authority (GSI) of Japan has been performing the InSAR analysis regularly by using ALOS/PALSAR data and ALOS-2/PALSAR-2 data throughout Japan. There are a lot of small phase change sites except for crustal deformation with earthquake or volcano activity in the InSAR imagery. Most of the phase change sites are located in landslide area. We conducted field survey at the 10 sites of those phase change sites. As a result, we identified deformation of artificial structures or linear depressions caused by mass movement at the 9 sites. This result indicates that InSAR technique can detect on the continual deformation of landslide block for several years. GSI of Japan will continue to perform the InSAR analysis throughout Japan. Therefore, we will be able to observe and monitor precursory slope deformation around landslide areas throughout Japan.
NASA Astrophysics Data System (ADS)
Xing, X.; Yuan, Z.; Chen, L. F.; Yu, X. Y.; Xiao, L.
2018-04-01
The stability control is one of the major technical difficulties in the field of highway subgrade construction engineering. Building deformation model is a crucial step for InSAR time series deformation monitoring. Most of the InSAR deformation models for deformation monitoring are pure empirical mathematical models, without considering the physical mechanism of the monitored object. In this study, we take rheology into consideration, inducing rheological parameters into traditional InSAR deformation models. To assess the feasibility and accuracy for our new model, both simulation and real deformation data over Lungui highway (a typical highway built on soft clay subgrade in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. In order to solve the unknows of the non-linear rheological model, three algorithms: Gauss-Newton (GN), Levenberg-Marquarat (LM), and Genetic Algorithm (GA), are utilized and compared to estimate the unknown parameters. Considering both the calculation efficiency and accuracy, GA is chosen as the final choice for the new model in our case study. Preliminary real data experiment is conducted with use of 17 TerraSAR-X Stripmap images (with a 3-m resolution). With the new deformation model and GA aforementioned, the unknown rheological parameters over all the high coherence points are obtained and the LOS deformation (the low-pass component) sequences are generated.
Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.
Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai
2015-12-16
We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.
NASA Astrophysics Data System (ADS)
Milev, A. M.; Yabe, Y.; Naoi, M. M.; Nakatani, M.; Durrheim, R. J.; Ogasawara, H.; Scholz, C. H.
2010-12-01
Two underground sites in a deep level gold mine in South Africa were instrumented by the Council for Scientific and Industrial Research (CSIR) with tilt meters and seismic monitors. One of the sites was also instrumented by JApanese-German Underground Acoustic emission Research in South Africa (JAGUARS) with a small network, approx. 40 m span, of eight Acoustic Emission (AE) sensors. The rate of tilt, defined as quasi-static deformations, and the seismic ground motion, defined as dynamic deformations, were analysed in order to understand the rock mass behavior around deep level mining. In addition the high frequency AE events recorded at hypocentral distances of about 50m were analysed. This was the first implementation of high frequency AE events at such a great depth (3300m below the surface). A good correspondence between the dynamic and quasi-static deformations was found. The rate of coseismic and aseismic tilt, as well as seismicity recorded by the mine seismic network, are approximately constant until the daily blasting time, which takes place from about 19:30 until shortly before 21:00. During the blasting time and the subsequent seismic events the coseismic and aseismic tilt shows a rapid increase indicated by a rapid change of the tilt during the seismic event. Much of the quasi-static deformation, however, occurs independently of the seismic events and was described as ‘slow’ or aseismic events. During the monitoring period a seismic event with MW 1.9 (2.1) occurred in the vicinity of the instrumented site. This event was recorded by both the CSIR integrated monitoring system and JAGUARS acoustic emotion network. The tilt changes associated with this event showed a well pronounced after-tilt. More than 21,000 AE aftershocks were located in the first 150 hours after the main event. Using the distribution of the AE events the position of the fault in the source area was successfully delineated. The distribution of the AE events following the main shock was related to after tilt in order to quantify post slip behavior of the source. There was no evidence found for coseismic expansion of the source after the main slip. An attempt to associate the different type of deformations with the various fracture regions and geological structures around the stopes was carried out. A model, was introduced in which the coseismic deformations are associated with the stress regime outside the stope fracture envelope and very often located on existing geological structures, while the aseismic deformations are associated with mobilization of fractures and stress relaxation within the fracture envelope.
Optimal design of tunable phononic bandgap plates under equibiaxial stretch
NASA Astrophysics Data System (ADS)
Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M. S.; Guest, James K.
2016-05-01
Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite element method. Following earlier studies by the authors, specialized GA algorithm, topology mapping, assessment and analysis techniques are employed to get feasible porous topologies of assumed thick PhP, efficiently.
Global link between deformation and volcanic eruption quantified by satellite imagery
Biggs, J.; Ebmeier, S. K.; Aspinall, W. P.; Lu, Z.; Pritchard, M. E.; Sparks, R. S. J.; Mather, T. A.
2014-01-01
A key challenge for volcanological science and hazard management is that few of the world’s volcanoes are effectively monitored. Satellite imagery covers volcanoes globally throughout their eruptive cycles, independent of ground-based monitoring, providing a multidecadal archive suitable for probabilistic analysis linking deformation with eruption. Here we show that, of the 198 volcanoes systematically observed for the past 18 years, 54 deformed, of which 25 also erupted. For assessing eruption potential, this high proportion of deforming volcanoes that also erupted (46%), together with the proportion of non-deforming volcanoes that did not erupt (94%), jointly represent indicators with ‘strong’ evidential worth. Using a larger catalogue of 540 volcanoes observed for 3 years, we demonstrate how this eruption–deformation relationship is influenced by tectonic, petrological and volcanic factors. Satellite technology is rapidly evolving and routine monitoring of the deformation status of all volcanoes from space is anticipated, meaning probabilistic approaches will increasingly inform hazard decisions and strategic development. PMID:24699342
Global link between deformation and volcanic eruption quantified by satellite imagery.
Biggs, J; Ebmeier, S K; Aspinall, W P; Lu, Z; Pritchard, M E; Sparks, R S J; Mather, T A
2014-04-03
A key challenge for volcanological science and hazard management is that few of the world's volcanoes are effectively monitored. Satellite imagery covers volcanoes globally throughout their eruptive cycles, independent of ground-based monitoring, providing a multidecadal archive suitable for probabilistic analysis linking deformation with eruption. Here we show that, of the 198 volcanoes systematically observed for the past 18 years, 54 deformed, of which 25 also erupted. For assessing eruption potential, this high proportion of deforming volcanoes that also erupted (46%), together with the proportion of non-deforming volcanoes that did not erupt (94%), jointly represent indicators with 'strong' evidential worth. Using a larger catalogue of 540 volcanoes observed for 3 years, we demonstrate how this eruption-deformation relationship is influenced by tectonic, petrological and volcanic factors. Satellite technology is rapidly evolving and routine monitoring of the deformation status of all volcanoes from space is anticipated, meaning probabilistic approaches will increasingly inform hazard decisions and strategic development.
Deformation and failure information from composite materials via acoustic emission
NASA Technical Reports Server (NTRS)
Hamstad, M. A.
1978-01-01
The paper reviews some principles of applying acoustic emission (AE) to the study of fiber-composite materials and structures. This review covers the basics of using AE to monitor the deformation and fracture processes that occur when fiber-composite materials are stressed. Also, new results in some areas of current research interest are presented. The following areas are emphasized: study of couplants for AE testing of composites, evaluation of a special immersion-type AE transducer, and wave propagation complications and the development of techniques for locating AE sources in Kevlar 49/epoxy composite pre
2011-12-30
improvements also significantly increase anomaly strength while sharpening the anomaly edges to create stronger and more pronounced tectonic structures. The...continental deformation and crustal thickening is occurring, the wave speeds are substantially slower. This Asian north-to-south, fast-to-slow wave speed
2015-01-05
in a research position that will apply her skills at granular experiment and modeling to important issues related to pharmaceutical processing...MONITOR’S ACRONYM(S) (ES) ARO U.S. Anny Research Office 11 . SPONSOR/MONITOR’S REPORT P.O. Box 12211 NUMBER(S) Research Triangle Park, NC 27709-2211...decision, unless so designated by other documentation. 14. ABSTRACT This project, j oint with Antoinette Tordesillas ofUniversity of Melbomn e
Preparation and measurement of FBG-based length, temperature, and vibration sensors
NASA Astrophysics Data System (ADS)
Mikel, Bretislav; Helan, Radek; Buchta, Zdenek; Jelinek, Michal; Cip, Ondrej
2016-12-01
We present system of structure health measurement by optical fiber sensors based on fiber Bragg gratings. Our system is focused to additionally install to existing buildings. We prepared first set-up of the system to monitoring of the nuclear power plant containment shape deformation. The presented system can measure up to several tens of sensors simultaneously. Each sensor contains optical fiber grating to measurement of change of length and the other independed fiber grating to monitor the temperature and the other ineligible effects.
NASA Astrophysics Data System (ADS)
Abellan, A.; Carrea, D.; Jaboyedoff, M.; Riquelme, A.; Tomas, R.; Royan, M. J.; Vilaplana, J. M.; Gauvin, N.
2014-12-01
The acquisition of dense terrain information using well-established 3D techniques (e.g. LiDAR, photogrammetry) and the use of new mobile platforms (e.g. Unmanned Aerial Vehicles) together with the increasingly efficient post-processing workflows for image treatment (e.g. Structure From Motion) are opening up new possibilities for analysing, modeling and predicting rock slope failures. Examples of applications at different scales ranging from the monitoring of small changes at unprecedented level of detail (e.g. sub millimeter-scale deformation under lab-scale conditions) to the detection of slope deformation at regional scale. In this communication we will show the main accomplishments of the Swiss National Foundation project "Characterizing and analysing 3D temporal slope evolution" carried out at Risk Analysis group (Univ. of Lausanne) in close collaboration with the RISKNAT and INTERES groups (Univ. of Barcelona and Univ. of Alicante, respectively). We have recently developed a series of innovative approaches for rock slope analysis using 3D point clouds, some examples include: the development of semi-automatic methodologies for the identification and extraction of rock-slope features such as discontinuities, type of material, rockfalls occurrence and deformation. Moreover, we have been improving our knowledge in progressive rupture characterization thanks to several algorithms, some examples include the computing of 3D deformation, the use of filtering techniques on permanently based TLS, the use of rock slope failure analogies at different scales (laboratory simulations, monitoring at glacier's front, etc.), the modelling of the influence of external forces such as precipitation on the acceleration of the deformation rate, etc. We have also been interested on the analysis of rock slope deformation prior to the occurrence of fragmental rockfalls and the interaction of this deformation with the spatial location of future events. In spite of these recent advances, a great challenge still remains in the development of new algorithms for more accurate techniques for 3D point cloud treatment (e.g. filtering, segmentation, etc.) aiming to improve rock slope characterization and monitoring, a series of exciting research findings are expected in the forthcoming years.
Characterization of wafer-level bonded hermetic packages using optical leak detection
NASA Astrophysics Data System (ADS)
Duan, Ani; Wang, Kaiying; Aasmundtveit, Knut; Hoivik, Nils
2009-07-01
For MEMS devices required to be operated in a hermetic environment, one of the main reliability issues is related to the packaging methods applied. In this paper, an optical method for testing low volume hermetic cavities formed by anodic bonding between glass and SOI (silicon on insulator) wafer is presented. Several different cavity-geometry structures have been designed, fabricated and applied to monitor the hermeticity of wafer level anodic bonding. SOI wafer was used as the cap wafer on which the different-geometry structures were fabricated using standard MEMS technology. The test cavities were bonded using SOI wafers to glass wafers at 400C and 1000mbar pressure inside a vacuum bonding chamber. The bonding voltage varies from 200V to 600V. The bonding strength between glass and SOI wafer was mechanically tested using shear tester. The deformation amplitudes of the cavity cap surface were monitored by using an optical interferometer. The hermeticity of the glass-to-SOI wafer level bonding was characterized through observing the surface deformation in a 6 months period in atmospheric environment. We have observed a relatively stable micro vacuum-cavity.
Cömert, Alper; Hyttinen, Jari
2015-05-15
With advances in technology and increasing demand, wearable biosignal monitoring is developing and new applications are emerging. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. The sources of the motion artifact lie in the skin-electrode interface. Reducing the motion and deformation at this interface should have positive effects on signal quality. In this study, we aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode. We compare four textile electrodes with different support structure designs: a soft padding larger than the electrode area, a soft padding larger than the electrode area with a novel skin deformation restricting design, a soft padding the same size as the electrode area, and a rigid support the same size as the electrode. With five subjects and two electrode locations placed over different kinds of tissue at various mounting forces, we simultaneously measured the motion artifact, a motion affected ECG, and the real-time skin-electrode impedance during the application of controlled motion to the electrodes. The design of the electrode support structure has an effect on the generated motion artifact; good design with a skin stabilizing structure makes the electrodes physically more motion artifact resilient, directly affecting signal quality. Increasing the applied mounting force shows a positive effect up to 1,000 gr applied force. The properties of tissue under the electrode are an important factor in the generation of the motion artifact and the functioning of the electrodes. The relationship of motion artifact amplitude to the electrode movement magnitude is seen to be linear for smaller movements. For larger movements, the increase of motion generated a disproportionally larger artifact. The motion artifact and the induced impedance change were caused by the electrode motion and contained the same frequency components as the applied electrode motion pattern. We found that stabilizing the skin around the electrode using an electrode structure that manages to successfully distribute the force and movement to an area beyond the borders of the electrical contact area reduces the motion artifact when compared to structures that are the same size as the electrode area.
NASA Astrophysics Data System (ADS)
Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi; Ismail, B. S.
2013-11-01
Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between June and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and TSS observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi
2013-11-27
Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between Junemore » and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and TSS observations.« less
Soil-pipe interaction modeling for pipe behavior prediction with super learning based methods
NASA Astrophysics Data System (ADS)
Shi, Fang; Peng, Xiang; Liu, Huan; Hu, Yafei; Liu, Zheng; Li, Eric
2018-03-01
Underground pipelines are subject to severe distress from the surrounding expansive soil. To investigate the structural response of water mains to varying soil movements, field data, including pipe wall strains in situ soil water content, soil pressure and temperature, was collected. The research on monitoring data analysis has been reported, but the relationship between soil properties and pipe deformation has not been well-interpreted. To characterize the relationship between soil property and pipe deformation, this paper presents a super learning based approach combining feature selection algorithms to predict the water mains structural behavior in different soil environments. Furthermore, automatic variable selection method, e.i. recursive feature elimination algorithm, were used to identify the critical predictors contributing to the pipe deformations. To investigate the adaptability of super learning to different predictive models, this research employed super learning based methods to three different datasets. The predictive performance was evaluated by R-squared, root-mean-square error and mean absolute error. Based on the prediction performance evaluation, the superiority of super learning was validated and demonstrated by predicting three types of pipe deformations accurately. In addition, a comprehensive understand of the water mains working environments becomes possible.
Fiber optics in composite materials: materials with nerves of glass
NASA Astrophysics Data System (ADS)
Measures, Raymond M.
1990-08-01
A Fiber Optic BasedSmart Structure wiipossess a structurally integrated optical microsensor system for determining its state. This built-in sensor system should, in real-time, be able to: evaluate the strain or deformation of a structure, monitor if its vibrating or subject to excessive loads, check its temperature and warn of the appearance of any hot spots. In addition a Smart Structure should maintain a vigilant survelliance over its structural integrity. The successful development of Smart StructureTechnolgy could lead to: aircraft that are safer, lighter, more efficient, easier to maintain and to service; pipelines, pressure vessels and storage tanks that constantly monitor their structuralintegrity and immediately issue an alert ifany problem is detected; space platforms that check forpressure leaks, unwanted vibration, excess thermal buildup, and deviation from some preassigned shape.This technology is particularly appropriate for composite materials where internal damage generated by: impacts, manufacturing flaws, excessive loading or fatigue could be detected and assessed. In service monitoring of structural loads, especially in regions like wing roots of aircraft, could be ofconsiderable benefit in helping to avoid structural overdesign and reduce weight. Structurally imbedded optical fibers sensors might also serve to monitor the cure state of composite thermosets during their fabrication and thereby contribute to improved quality control of these products.
NASA Astrophysics Data System (ADS)
D'Aranno, Peppe J. V.; Marsella, Maria; Scifoni, Silvia; Scutti, Marianna; Sonnessa, Alberico; Bonano, Manuela
2015-10-01
Remote sensing data play an important role for the environmental monitoring because they allow to provide systematic information on very large areas and for a long period of time. Such information must be analyzed, validated and incorporated into proper modeling tools in order to become useful for performing risk assessment analysis. These approaches has been already applied in the field of natural hazard evaluation (i.e. for monitoring seismic, volcanic areas and landslides). However, not enough attention has been devoted to the development of validated methods for implementing quantitative analysis on civil structures. This work is dedicated to the comprehensive utilization of ERS / ENVISAT data store ESA SAR used to detect deformation trends and perform back-analysis of the investigated structures useful to calibrate the damage assessment models. After this preliminary analysis, SAR data of the new satellite mission (ie Cosmo SkyMed) were adopted to monitor the evolution of existent surface deformation processes and to detect new occurrence. The specific objective was to set up a data processing and data analysis chain tailored on a service that sustains the safe maintenance of the built-up environment, including critical construction such as public (schools, hospital, etc), strategic (dam, highways, etc) and also the cultural heritage sites. The analysis of the test area, in the southeastern sector of Roma, has provided three different levels and sub-levels of products from metropolitan area scale (territorial analysis), settlement scale (aggregated analysis) to single structure scale (damage degree associated to the structure).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Sankaran; Agarwal, Vivek; Neal, Kyle
Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant that is subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of fourmore » elements: monitoring, data analytics, uncertainty quantification and prognosis. This report focuses on degradation caused by ASR (alkali-silica reaction). Controlled specimens were prepared to develop accelerated ASR degradation. Different monitoring techniques – thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) -- were used to detect the damage caused by ASR. Heterogeneous data from the multiple techniques was used for damage diagnosis and prognosis, and quantification of the associated uncertainty using a Bayesian network approach. Additionally, MapReduce technique has been demonstrated with synthetic data. This technique can be used in future to handle large amounts of observation data obtained from the online monitoring of realistic structures.« less
System, method and computer-readable medium for locating physical phenomena
Weseman, Matthew T [Idaho Falls, ID; Rohrbaugh, David T [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID
2008-02-26
A method, system and computer product for detecting the location of a deformation of a structure includes baselining a defined energy transmitting characteristic for each of the plurality of laterally adjacent conductors attached to the structure. Each of the plurality of conductors includes a plurality of segments coupled in series and having an associated unit value representative of the defined energy transmitting characteristic. The plurality of laterally adjacent conductors includes a plurality of identity groups with each identity group including at least one of the plurality of segments from each of the plurality of conductors. Each of the plurality of conductors are monitored for a difference in the defined energy transmitting characteristic when compared with a baseline energy transmitting characteristic for each of the plurality of conductors. When the difference exceeds a threshold value, a location of the deformation along the structure is calculated.
Use of Sentinel-1 SAR data to monitor Mosul dam vulnerability
NASA Astrophysics Data System (ADS)
Riccardi, Paolo; Tessari, Giulia; Lecci, Daniele; Floris, Mario; Pasquali, Paolo
2017-04-01
The structural monitoring of dams is an important practice to guarantee their safety. Moreover, the water reservoir and the efficient operation and safety of surrounding areas need to be monitored. Considering the importance of large dams as multipurpose infrastructure for flood control, energy production, water supply and irrigation, ensuring their longevity is a key aspect on their management. Therefore, it is of great importance to detect dam deterioration potentially resulting in its shutdown or failure, preventing life and economic losses. Traditional dam monitoring requires the identification of soil movements, tilt, displacements, structural stress and strain behaviour. Since the '90, innovative remote sensing techniques based on satellite Synthetic Aperture Radar (SAR) data were developed to detect and monitor surface displacements. The main advantages of SAR data are the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the advancement. Moreover, the availability of SAR satellite acquisitions from the 1990s enables to reconstruct the historical evolution of dam behaviour. Furthermore, the use of SAR Interferometry (InSAR) techniques, Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR), produce accurate velocity maps and displacement time-series. The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. An iconic case demonstrating the relevance of remote sensing observations is the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, thus the risk for the population is very high. It is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security issues. It consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core. It was completed in 1984 and started generating power on 1986. Since then, frequent consolidation works have been carried out pumping cement mixtures into the soil foundation to keep it stable and prevent it from sinking and then breaking apart. To overcome the impossibility of directly monitoring the structure, analysis of recent deformation affecting the Mosul dam is achieved considering C-band Sentinel-1 SAR data, acquired from the end of 2014 to the present. These 20-m ground resolution data can provide a millimetric precision on displacements. Furthermore, ESA archive available SAR data (ERS and Envisat) are considered to reconstruct the temporal evolution of the deformations. In this work, different stacks of data are processed applying SBAS and PS A-DInSAR techniques; deformation fields obtained from SAR data are evaluated to assess the temporal evolution of the strains affecting the structure. Obtained results represent the preliminary stage of a multidisciplinary project, finalised to assess possible damages affecting a dam through remote sensing and civil engineering surveys.
Monitoring of landslide deformation based on the coherent targets of high resolution InSAR data
NASA Astrophysics Data System (ADS)
Fan, Jinghui; Xia, Ye; Zhao, Hongli; Li, Man; Wang, Yi; Guo, Xiaofang; Tu, Pengfei; Liu, Guang; Lin, Hao
2014-05-01
Landslides are a kind of typical natural disaster in China, which pose serious threats to civil lives, property and living environment. Therefore, the identification, monitoring and prevention of landslides have been considered as a long-term geological work for the public welfare. In this article, 8 TerraSAR-X high resolution strip-map mode images, acquired in the period from January to March 2012 and covering Fanjinping landslide in Zigui county, Hubei province, were used to test the usability in monitoring the deformation of single landslide. The results of two-pass DInSAR sketched the region and the shape of the deformation field of Fanjiaping landslide. Corner reflectors' linear deformation rate using CRInSAR method could be approximately validated by the in-situ GPS measurements. From the coherent pixels' linear deformation rate map, it was inferred that the deformation could be more obvious in the tail of the Muyubao landslide while the lowest frontier of this landslide might prevent the slide. Due to its shorter revisiting period and high bandwidth,,the high resolution TerraSAR-X images can keep better coherence than previous satellite SAR data in the test area and provide basic guarantee to monitor the deformation of single landslides.
Self-learning health monitoring algorithm in composite structures
NASA Astrophysics Data System (ADS)
Grassia, Luigi; Iannone, Michele; Califano, America; D'Amore, Alberto
2018-02-01
The paper describes a system that it is able of monitoring the health state of a composite structure in real time. The hardware of the system consists of a wire of strain sensors connected to a control unit. The software of the system elaborates the strain data and in real time is able to detect the presence of an eventual damage of the structures monitored with the strain sensors. The algorithm requires as input only the strains of the monitored structured measured on real time, i.e. those strains coming from the deformations of the composite structure due to the working loads. The health monitoring system does not require any additional device to interrogate the structure as often used in the literature, instead it is based on a self-learning procedure. The strain data acquired when the structure is healthy are used to set up the correlations between the strain in different positions of structure by means of neural network. Once the correlations between the strains in different position have been set up, these correlations act as a fingerprint of the healthy structure. In case of damage the correlation between the strains in the position of the structure near the damage will change due to the change of the stiffness of the structure caused by the damage. The developed software is able to recognize the change of the transfer function between the strains and consequently is able to detect the damage.
High Resolution Rapid Revisits Insar Monitoring of Surface Deformation
NASA Astrophysics Data System (ADS)
Singhroy, V.; Li, J.; Charbonneau, F.
2014-12-01
Monitoring surface deformation on strategic energy and transportation corridors requires high resolution spatial and temporal InSAR images for mitigation and safety purposes. High resolution air photos, lidar and other satellite images are very useful in areas where the landslides can be fatal. Recently, radar interferometry (InSAR) techniques using more rapid revisit images from several radar satellites are increasingly being used in active deformation monitoring. The Canadian RADARSAT Constellation (RCM) is a three-satellite mission that will provide rapid revisits of four days interferometric (InSAR) capabilities that will be very useful for complex deformation monitoring. For instance, the monitoring of surface deformation due to permafrost activity, complex rock slide motion and steam assisted oil extraction will benefit from this new rapid revisit capability. This paper provide examples of how the high resolution (1-3 m) rapid revisit InSAR capabilities will improve our monitoring of surface deformation and provide insights in understanding triggering mechanisms. We analysed over a hundred high resolution InSAR images over a two year period on three geologically different sites with various configurations of topography, geomorphology, and geology conditions. We show from our analysis that the more frequent InSAR acquisitions are providing more information in understanding the rates of movement and failure process of permafrost triggered retrogressive thaw flows; the complex motion of an asymmetrical wedge failure of an active rock slide and the identification of over pressure zones related to oil extraction using steam injection. Keywords: High resolution, InSAR, rapid revisits, triggering mechanisms, oil extraction.
Digital Image Correlation of Concrete Slab at University of Tennessee, Knoxville
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Sankaran; Agarwal, Vivek; Pham, Binh T.
Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Some degradation mechanisms of concrete manifest themselves via swelling or by other shape deformation of the concrete. Specifically, degradation of concrete structure damaged by ASR is viewed as one of the dominant factors impacting the structural integrity of aging nuclear power plants. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenancemore » decisions. Number of nondestructive examination techniques (i.e., thermography, digital image correlation, mechanical deformation measurements, nonlinear impact resonance (DIC) acoustic spectroscopy, and vibro-acoustic modulation) is used to detect the damage caused by ASR. DIC techniques have been increasing in popularity, especially in micro- and nano-scale mechanical testing applications due to its relative ease of implementation and use. Advances in computer technology and digital cameras help this method moving forward. To ensure the best outcome of the DIC system, important factors in the experiment are identified. They include standoff distance, speckle size, speckle pattern, and durable paint. These optimal experimental options are selected basing on a thorough investigation. The resulting DIC deformation map indicates that this technique can be used to generate data related to degradation assessment of concrete structure damaged by the impact of ASR.« less
NASA Astrophysics Data System (ADS)
Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.
2017-12-01
Dome building activity is common at many volcanoes and due to the gravitational instability, a dome represents one of the most hazardous volcanic phenomena. Shallow volcanic processes as well as rheological and structural changes of the dome affecting the fluid transport have been linked to transitions in eruptive activity. Also, hydrothermal alteration may affect the structural integrity of the dome, increasing the potential for collapse. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging due to difficult access and poor coverage. Here we present for the first time the near-vertical and near-horizontal surface deformation field of a quiescent summit dome and the relationships with degassing and topographic patterns. Our results are derived from high resolution satellite radar interferometry (InSAR) time series based on a year of TerraSAR-X SpotLight acquisitions and Structure from Motion (SfM) processing of overflight infrared data at Volcán de Colima, Mexico. The identified deformation is dominated by localized heterogeneous subsidence of the summit dome exceeding rates of 15 cm/yr, and strongly decreasing over the year 2012, up to the renewal of explosive and extrusive activity in early 2013. We tentatively attribute the deformation to the degassing, cooling and contraction of the dome and shallow conduit material. We also find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. The combined interpretation of the deformation and infrared data reveals a complex spatial relationship between the degassing pathways and the deformation. While we observe no deformation across the crater rim fumaroles, discontinuities in the deformation field are more commonly observed around the dome rim fumaroles and occasionally on the dome upper surface. We propose that the deformation pattern is also linked to processes controlling the fumarole formation and distribution (topography, permeability and volcanic activity), and the lack of direct relationships may be explained by how the influence of these processes varies across the volcanic summit. The presented work provides a new approach for safely monitoring the activity and stability of internal dome structures, as well as for constraining and validating models of dome degassing pathways and densification processes.
NASA Astrophysics Data System (ADS)
Nobile, Adriano; Monsieurs, Elise; Dewitte, Olivier; d'Oreyes, Nicolas; Kervyn, Francois
2016-04-01
The western branch of the East African Rift System, in Central Africa, is characterized by the presence of several geohazards: earthquakes, volcanoes, and landslides. Every year, landslides cause fatalities, structural and functional damage to infrastructure and private properties with serious disruptions of the organization of societies and severe impact on the populations. These impacts are particularly important in the city of Bukavu (DR Congo) located within the Rift, on the southern shore of Lake Kivu. Large slow-moving landslides continuously affect highly populated slopes in the city. However little is known about their actual kinematics and the processes at play. Here we use multi-temporal InSAR technique to monitor these ground deformations. Using 50 Cosmo-SkyMed SAR images, acquired between March - October 2015 with a revisiting time of 8 days (ascending and descending orbits), we produce displacement-rate maps and ground deformation time series using the PS technique. Movements with a velocity >5cm/yr are detected, which is consistent with field observations. DGPS measurements, taken at 21 benchmarks in the area during the same period, allow validating the results. Similar ground deformation rates are found for the period 2002-2008 using Envisat ASAR images. Furthermore, comparison with rainfall monitoring data acquire on site should help us to understand the influence of water and the tropical seasonality in the slide mechanisms.
NASA Astrophysics Data System (ADS)
Tessari, G.; Riccardi, P.; Pasquali, P.
2017-12-01
Monitoring of dam structural health is an important practice to control the structure itself and the water reservoir, to guarantee efficient operation and safety of surrounding areas. Ensuring the longevity of the structure requires the timely detection of any behaviour that could deteriorate the dam and potentially result in its shutdown or failure.The detection and monitoring of surface displacements is increasingly performed through the analysis of satellite Synthetic Aperture Radar (SAR) data, thanks to the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the new space missions equipped with high spatial resolution sensors. The availability of SAR satellite acquisitions from the early 1990s enables to reconstruct the historical evolution of dam behaviour, defining its key parameters, possibly from its construction to the present. Furthermore, the progress on SAR Interferometry (InSAR) techniques through the development of Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR) allows to obtain accurate velocity maps and displacement time-series.The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. In such cases, A-DInSAR constitutes a reliable diagnostic tool of dam structural health to avoid any extraordinary failure that may lead to loss of lives.In this contest, an emblematic case will be analysed as test case: the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, causing possible risks for the population security. In fact, it is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security problems. The dam consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core, and it was completed in 1984.The deformation fields obtained from SAR data are evaluated to assess the temporal evolution of the strains affecting the structure. Obtained results represent the preliminary stage of a multidisciplinary project, finalized to assess possible damages affecting a dam through remote sensing and civil engineering surveys.
NASA Astrophysics Data System (ADS)
Bruno, N.; Coïsson, E.; Cotti, M.
2017-05-01
This paper presents the use of laser scanner derived data for the study of the structural disorders in the central nave of the Parma Cathedral. An accurate three-dimensional model of the entire nave was realized to investigate deformations, in order to reconstruct the original conformation and the subsequent evolutions, also in comparison with previous surveys. Specifically, for the analysis presented in the paper, seven scans were performed, one for each bay: the results allowed to compare the deformations on the seven vaults, on the transverse and diagonal arches, giving first hints on the possible differences in the behaviour between the different elements. The measures on the levels of floor and pillars bases were analysed in a historical monitoring approach, in order to retrace the evolution of the differential settlements in time, since the construction of the building. Moreover, a structural analysis has been carried out on one transverse arch with distinct element analysis, with two different approaches. In one case, the structure was inserted exactly as surveyed, and then subjected to the actions. In the second case, the original geometry, before the deformation, was retraced through a parametric approach and the structural analysis basically started at the beginning of the building's life, thus trying to model not only the present structural situation, but also the path which led to the current deformation. The results were particularly meaningful as they showed that in the first case, disregarding the footsteps of history, the stress pattern inside the masonry was very different from the one obtained in the second case, which is more likely to represent the present conditions.
Deformation Monitoring of Waste-Rock-Backfilled Mining Gob for Ground Control
Zhao, Tongbin; Zhang, Yubao; Zhang, Zhenyu; Li, Zhanhai; Ma, Shuqi
2017-01-01
Backfill mining is an effective option to mitigate ground subsidence, especially for mining under surface infrastructure, such as buildings, dams, rivers and railways. To evaluate its performance, continual long-term field monitoring of the deformation of backfilled gob is important to satisfy strict public scrutiny. Based on industrial Ethernet, a real-time monitoring system was established to monitor the deformation of waste-rock-backfilled gob at −700 m depth in the Tangshan coal mine, Hebei Province, China. The designed deformation sensors, based on a resistance transducer mechanism, were placed vertically between the roof and floor. Stress sensors were installed above square steel plates that were anchored to the floor strata. Meanwhile, data cables were protected by steel tubes in case of damage. The developed system continually harvested field data for three months. The results show that industrial Ethernet technology can be reliably used for long-term data transmission in complicated underground mining conditions. The monitoring reveals that the roof subsidence of the backfilled gob area can be categorized into four phases. The bearing load of the backfill developed gradually and simultaneously with the deformation of the roof strata, and started to be almost invariable when the mining face passed 97 m. PMID:28475168
Deformation Monitoring of Waste-Rock-Backfilled Mining Gob for Ground Control.
Zhao, Tongbin; Zhang, Yubao; Zhang, Zhenyu; Li, Zhanhai; Ma, Shuqi
2017-05-05
Backfill mining is an effective option to mitigate ground subsidence, especially for mining under surface infrastructure, such as buildings, dams, rivers and railways. To evaluate its performance, continual long-term field monitoring of the deformation of backfilled gob is important to satisfy strict public scrutiny. Based on industrial Ethernet, a real-time monitoring system was established to monitor the deformation of waste-rock-backfilled gob at -700 m depth in the Tangshan coal mine, Hebei Province, China. The designed deformation sensors, based on a resistance transducer mechanism, were placed vertically between the roof and floor. Stress sensors were installed above square steel plates that were anchored to the floor strata. Meanwhile, data cables were protected by steel tubes in case of damage. The developed system continually harvested field data for three months. The results show that industrial Ethernet technology can be reliably used for long-term data transmission in complicated underground mining conditions. The monitoring reveals that the roof subsidence of the backfilled gob area can be categorized into four phases. The bearing load of the backfill developed gradually and simultaneously with the deformation of the roof strata, and started to be almost invariable when the mining face passed 97 m.
NASA Astrophysics Data System (ADS)
Sato, H. P.; Nakajima, H.; Nakano, T.; Daimaru, H.
2014-12-01
Synthetic Aperture Radar (SAR) is the technique to obtain ground surface images using microwave that is emitted from and received on the antenna. The Kuchi-Sakamoto area, 2.2 km2 in precipitous mountains, central Japan, has suffered from frequent landslides, and slow landslide surface deformation has been monitored by on-site extensometer; however, such the monitoring method cannot detect the deformation in the whole area. Because satellite InSAR is effective tool to monitor slow landslide suface deformation, it is a promising tool for detecting precursor deformation and preparing effective measures against serious landslide disasters. In this study Advanced Land Observing Satellite (ALOS) / Phased Array type L-band SAR (PALSAR) data were used, and InSAR images were produced from the PALSAR data that were observed between 5 Sep 2008 and 21 Oct 2008 (from descending orbit) and between 20 Jul 2008 and 7 Sep 2009 (from ascending orbit). InSAR image from descending orbit was found to detect clear precursor landslide surface deformation on a slope; however, InSAR image on ascending orbit did not always detect clear precursor deformation. It is thought to be related with atmospheric moisture condition, length of observation baseline and so on. Furthermore, after phase unwrapping on InSAR images, 2.5-dimensional deformation was analized. This analysis needed both ascending and descending InSAR images and culculated quasi east-west deformation component (Figs. (a) and (b)) and quasi up-down deformation component (Figs. (c) and (d)). The resulting 2.5D calculation gave westward deformation and mixture of upward and downward deformations on the precursor landslide surface deformation slope (blue circles in Figs. (c) and (d)), where remarkable disrupted deep landslide occurred during Nov 2012 and 25 Jun 2013, judging from result of airborne LiDAR survey and field survey; the occurrence date is not precisely identified. The figure remains the issue that eliminating "real" precursor deformation from other candidate deformations. Preparation of this paper was supported by part of Individual Research Fund in College of Humanities and Sciences, Nihon University and part of Grants-in-Aid for Scientific Research, Challenging Exploratory (#25560185, Principal Investigator: Dr. Hiromu Daimaru).
Volcano geodesy: Challenges and opportunities for the 21st century
Dzurisin, D.
2000-01-01
Intrusions of magma beneath volcanoes deform the surrounding rock and, if the intrusion is large enough, the overlying ground surface. Numerical models generally agree that, for most eruptions, subsurface volume changes are sufficient to produce measurable deformation at the surface. Studying this deformation can help to determine the location, volume, and shape of a subsurface magma body and thus to anticipate the onset and course of an eruption. This approach has been successfully applied at many restless volcanoes, especially basaltic shields and silicic calderas, using various geodetic techniques and sensors. However, its success at many intermediate-composition strato-volcanoes has been limited by generally long repose intervals, steep terrain, and structural influences that complicate the history and shape of surface deformation. These factors have made it difficult to adequately characterize deformation in space and time at many of the world's dangerous volcanoes. Recent technological advances promise to make this task easier by enabling the acquisition of geodetic data of high spatial and temporal resolution from Earth-orbiting satellites. Synthetic aperture radar interferometry (InSAR) can image ground deformation over large areas at metre-scale resolution over time-scales of a month to a few years. Global Positioning System (GPS) stations can provide continuous information on three-dimensional ground displacements at a network of key sites -information that is especially important during volcanic crises. By using InSAR to determine the shape of the displacement field and GPS to monitor temporal changes at key sites, scientists have a much better chance to capture geodetic signals that have so far been elusive at many volcanoes. This approach has the potential to provide longer-term warnings of impending volcanic activity than is possible with other monitoring techniques.
Assessing Videogrammetry for Static Aeroelastic Testing of a Wind-Tunnel Model
NASA Technical Reports Server (NTRS)
Spain, Charles V.; Heeg, Jennifer; Ivanco, Thomas G.; Barrows, Danny A.; Florance, James R.; Burner, Alpheus W.; DeMoss, Joshua; Lively, Peter S.
2004-01-01
The Videogrammetric Model Deformation (VMD) technique, developed at NASA Langley Research Center, was recently used to measure displacements and local surface angle changes on a static aeroelastic wind-tunnel model. The results were assessed for consistency, accuracy and usefulness. Vertical displacement measurements and surface angular deflections (derived from vertical displacements) taken at no-wind/no-load conditions were analyzed. For accuracy assessment, angular measurements were compared to those from a highly accurate accelerometer. Shewhart's Variables Control Charts were used in the assessment of consistency and uncertainty. Some bad data points were discovered, and it is shown that the measurement results at certain targets were more consistent than at other targets. Physical explanations for this lack of consistency have not been determined. However, overall the measurements were sufficiently accurate to be very useful in monitoring wind-tunnel model aeroelastic deformation and determining flexible stability and control derivatives. After a structural model component failed during a highly loaded condition, analysis of VMD data clearly indicated progressive structural deterioration as the wind-tunnel condition where failure occurred was approached. As a result, subsequent testing successfully incorporated near- real-time monitoring of VMD data in order to ensure structural integrity. The potential for higher levels of consistency and accuracy through the use of statistical quality control practices are discussed and recommended for future applications.
Self-actuating and self-diagnosing plastically deforming piezo-composite flapping wing MAV
NASA Astrophysics Data System (ADS)
Harish, Ajay B.; Harursampath, Dineshkumar; Mahapatra, D. Roy
2011-04-01
In this work, we propose a constitutive model to describe the behavior of Piezoelectric Fiber Reinforced Composite (PFRC) material consisting of elasto-plastic matrix reinforced by strong elastic piezoelectric fibers. Computational efficiency is achieved using analytical solutions for elastic stifness matrix derived from Variational Asymptotic Methods (VAM). This is extended to provide Structural Health Monitoring (SHM) based on plasticity induced degradation of flapping frequency of PFRC. Overall this work provides an effective mathematical tool that can be used for structural self-health monitoring of plasticity induced flapping degradation of PFRC flapping wing MAVs. The developed tool can be re-calibrated to also provide SHM for other forms of failures like fatigue, matrix cracking etc.
NASA Astrophysics Data System (ADS)
Viscardi, Massimo; Arena, Maurizio; Barra, Giuseppina; Vertuccio, Luigi; Ciminello, Monica; Guadagno, Liberata
2018-03-01
Nowadays, smart composites based on different nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a more possible alternative solution to conventional smart materials, mainly for their improved electrical properties. Great attention is being given by the research community in designing highly sensitive strain sensors for more and more ambitious challenges: in such context, interest fields related to carbon nanotubes have seen extraordinary development in recent years. The authors aim to provide the most contemporary overview possible of carbon nanotube-based strain sensors for aeronautical application. A smart structure as a morphing wing needs an embedded sensing system in order to measure the actual deformation state as well as to "monitor" the structural conditions. Looking at more innovative health monitoring tools for the next generation of composite structures, a resin strain sensor has been realized. The epoxy resin was first analysed by means of a micro-tension test, estimating the electrical resistance variations as function of the load, in order to demonstrate the feasibility of the sensor. The epoxy dogbone specimen has been equipped with a standard strain gauge to quantify its strain sensitivity. The voltamperometric tests highlight a good linearity of the electrical resistance value as the load increases at least in the region of elastic deformation of the material. Such intrinsic piezoresistive performance is essentially attributable to the re-arrangement of conductive percolating network formed by MWCNT, induced by the deformation of the material due to the applied loads. The specimen has been prepared within this investigation, to demonstrate its performance for a future composite laminate typical of aerospace structures. The future carbon-fiber sensor can replace conventional metal foil strain gauges in aerospace applications. Furthermore, dynamic tests will be carried out to detect any non-reversible changes to the sensing response.
The influence of geologic structures on deformation due to ground water withdrawal.
Burbey, Thomas J
2008-01-01
A 62 day controlled aquifer test was conducted in thick alluvial deposits at Mesquite, Nevada, for the purpose of monitoring horizontal and vertical surface deformations using a high-precision global positioning system (GPS) network. Initial analysis of the data indicated an anisotropic aquifer system on the basis of the observed radial and tangential deformations. However, new InSAR data seem to indicate that the site may be bounded by an oblique normal fault as the subsidence bowl is both truncated to the northwest and offset from the pumping well to the south. A finite-element numerical model was developed using ABAQUS to evaluate the potential location and hydromechanical properties of the fault based on the observed horizontal deformations. Simulation results indicate that for the magnitude and direction of motion at the pumping well and at other GPS stations, which is toward the southeast (away from the inferred fault), the fault zone (5 m wide) must possess a very high permeability and storage coefficient and cross the study area in a northeast-southwest direction. Simulated horizontal and vertical displacements that include the fault zone closely match observed displacements and indicate the likelihood of the presence of the inferred fault. This analysis shows how monitoring horizontal displacements can provide valuable information about faults, and boundary conditions in general, in evaluating aquifer systems during an aquifer test.
Geotechnical Monitoring of the Automobile Road
NASA Astrophysics Data System (ADS)
Matsiy, Vladimir
2017-12-01
In the present article, the results of geotechnical monitoring of A-147 automobile road “Dzhubga-Sochi” are given. Some sections of the automobile road suffered from the landslide adjustment movements; it resulted in many deformations of the retaining structures, the damages of the roadbed and ground crawling over the retaining walls. The observation data made it possible to specify the borders of the active landslide and to form a forecast of the landslide activity in the sections of the automobile roads. Due to monitoring being carried out, there was substantiated the necessity to correct the service forms and records connected with the automobile road reconstruction.
Ionospheric effects on DInSAR measurements of interseismic deformation in China
NASA Astrophysics Data System (ADS)
Gong, W.; Shan, X.; Song, X.; Liao, H.; Meyer, F. J.
2017-12-01
Interseismic deformation signals are small ground displacement that is critical to monitor the strain accumulates of major faults to foresee the potential seismic hazard. Accurate measurements of surface deformation could help recognize and interpret even subtle displacement and to give a better understanding of active fault behavior. However, the value and applicability of InSAR for inter-seismic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations (atmospheric disturbance), both reducing the sensitivity and accuracy of the technique. Ionospheric signal, a major part of atmospheric disturbance in InSAR, is related to the density of free electrons along the ray path, thus, that is dependent on the SAR signal frequency. Ionosphere induced phase distortions can lead to azimuth/range defocusing, geometry distortions and interferometric phase distortions. Some ionosphere phenomenon have been reported more severe at equatorial region and polar zones, e.g., ionosphere irregularity, while for middle latitude regions like West China it has not been thoroughly analyzed. Thus, this study is focus on the evaluation of ionosphere impacts in middle latitude zone, and its impacts in monitoring interseismic deformation in West China. The outcome would be useful to provide an empiric prior error condition of ionosphere disturbance, which can further benefit InSAR result interpretation and geophysical inversion, as well as the SAR data arrangement in future operational-(cloud) InSAR processing system. The study focus on two parts: 1. We will analyze the temporal-spatial variation of ionosphere and its magnitude at middle latitude zone, and investigate its impacts to current satellite SAR (C-band (Sentinel-1) and L-band (ALOS2) dataset) in earthquake-related deformation studies, especially inter-seismic study. 2. Ionosphere phase patterns at mid latitudes is typically small and the structure is compatibly smooth. This study will summarize the general spatial pattern of ionospheric phase at middle latitude zone and its impacts in fault displacement studies.
NASA Astrophysics Data System (ADS)
Walter, Diana; Wegmuller, Urs; Spreckels, Volker; Busch, Wolfgang
2008-11-01
The main objective of the projects "Determination of ground motions in mining areas by interferometric analyses of ALOS data" (ALOS ADEN 3576, ESA) and "Monitoring of mining induced surface deformation" (ALOS-RA-094, JAXA) is to evaluate PALSAR data for surface deformation monitoring, using interferometric techniques. We present monitoring results of surface movements for an active hard coal colliery of the German hard coal mining company RAG Deutsche Steinkohle (RAG). Underground mining activities lead to ground movements at the surface with maximum subsidence rates of about 10cm per month for the test site. In these projects the L-band sensor clearly demonstrates the good potential for deformation monitoring in active mining areas, especially in rural areas. In comparison to C-band sensors we clearly observe advantages in resolving the high deformation gradients that are present in this area and we achieve a more complete spatial coverage than with C-band. Extensive validation data based on levelling data and GPS measurements are available within RAǴs GIS based database "GeoMon" and thus enable an adequate analysis of the quality of the interferometric results. Previous analyses confirm the good accuracy of PALSAR data for deformation monitoring in mining areas. Furthermore, we present results of special investigations like precision geocoding of PALSAR data and corner reflector analysis. At present only DInSAR results are obtained due to the currently available number of PALSAR scenes. For the future we plan to also apply Persistent Scatterer Interferometry (PSI) using longer series of PALSAR data.
Development of a diaphragmatic motion-based elastography framework for assessment of liver stiffness
NASA Astrophysics Data System (ADS)
Weis, Jared A.; Johnsen, Allison M.; Wile, Geoffrey E.; Yankeelov, Thomas E.; Abramson, Richard G.; Miga, Michael I.
2015-03-01
Evaluation of mechanical stiffness imaging biomarkers, through magnetic resonance elastography (MRE), has shown considerable promise for non-invasive assessment of liver stiffness to monitor hepatic fibrosis. MRE typically requires specialized externally-applied vibratory excitation and scanner-specific motion-sensitive pulse sequences. In this work, we have developed an elasticity imaging approach that utilizes natural diaphragmatic respiratory motion to induce deformation and eliminates the need for external deformation excitation hardware and specialized pulse sequences. Our approach uses clinically-available standard of care volumetric imaging acquisitions, combined with offline model-based post-processing to generate volumetric estimates of stiffness within the liver and surrounding tissue structures. We have previously developed a novel methodology for non-invasive elasticity imaging which utilizes a model-based elasticity reconstruction algorithm and MR image volumes acquired under different states of deformation. In prior work, deformation was external applied through inflation of an air bladder placed within the MR radiofrequency coil. In this work, we extend the methodology with the goal of determining the feasibility of assessing liver mechanical stiffness using diaphragmatic respiratory motion between end-inspiration and end-expiration breath-holds as a source of deformation. We present initial investigations towards applying this methodology to assess liver stiffness in healthy volunteers and cirrhotic patients. Our preliminary results suggest that this method is capable of non-invasive image-based assessment of liver stiffness using natural diaphragmatic respiratory motion and provides considerable enthusiasm for extension of our approach towards monitoring liver stiffness in cirrhotic patients with limited impact to standard-of-care clinical imaging acquisition workflow.
Thermal Excitation System for Shearography (TESS)
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.; Bullock, Michael W.
1996-01-01
One of the most convenient and effective methods of stressing a part or structure for shearographic evaluation is thermal excitation. This technique involves heating the part, often convectively with a heat gun, and then monitoring with a shearography device the deformation during cooling. For a composite specimen, unbonds, delaminations, inclusions, or matrix cracking will deform during cooling differently than other more structurally sound regions and thus will appear as anomalies in the deformation field. However, one of the difficulties that cause this inspection to be dependent on the operator experience is the conventional heating process. Fanning the part with a heat gun by hand introduces a wide range of variability from person to person and from one inspection to the next. The goal of this research effort was to conduct research in the methods of thermal excitation for shearography inspection. A computerized heating system was developed for inspection of 0.61 m (24 in.) square panels. The Thermal Excitation System for Shearography (TESS) provides radiant heating with continuous digital measurement of the surface temperature profile to ensure repeatability. The TESS device functions as an accessory to any electronic shearography device.
Ultrasound evaluation of foot deformities in infants.
Miron, Marie-Claude; Grimard, Guy
2016-02-01
Foot deformity in infants is the most common congenital musculoskeletal condition. A precise diagnosis can sometimes be impossible to establish clinically. Radiologic imaging plays a major role in the evaluation of musculoskeletal abnormalities. However conventional imaging techniques, such as plain radiographs of the foot, are of very little help in this age group because of the lack of ossification of the tarsal bones. US presents a significant advantage because it permits the visualization of cartilaginous structures. This leads to the detailed assessment of foot deformities in infants. Furthermore, US can also be used as a dynamic imaging modality. Different scanning views are beneficial to evaluate the complete anatomy of the foot; depending on the suspected clinical diagnosis, some planes are more informative to display the pathological features of a specific deformity. We describe the US findings of five of the most common foot deformities referred to our pediatric orthopedic clinic (clubfoot, simple metatarsus adductus, skewfoot, and oblique and vertical talus). For each deformity we propose a specific imaging protocol based on US to provide an accurate diagnosis. US is a complementary tool to the clinical examination for determining the diagnosis and the severity of the deformity and also for monitoring the efficacy of treatment. Radiologists investigating foot deformities in infants should consider using US for the detailed assessment of the foot in this age group.
NASA Astrophysics Data System (ADS)
Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen
1993-07-01
A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.
Health monitoring with optical fiber sensors: from human body to civil structures
NASA Astrophysics Data System (ADS)
Pinet, Éric; Hamel, Caroline; Glišić, Branko; Inaudi, Daniele; Miron, Nicolae
2007-04-01
Although structural health monitoring and patient monitoring may benefit from the unique advantages of optical fiber sensors (OFS) such as electromagnetic interferences (EMI) immunity, sensor small size and long term reliability, both applications are facing different realities. This paper presents, with practical examples, several OFS technologies ranging from single-point to distributed sensors used to address the health monitoring challenges in medical and in civil engineering fields. OFS for medical applications are single-point, measuring mainly vital parameters such as pressure or temperature. In the intra-aortic balloon pumping (IABP) therapy, a miniature OFS can monitor in situ aortic blood pressure to trigger catheter balloon inflation/deflation in counter-pulsation with heartbeats. Similar sensors reliably monitor the intracranial pressure (ICP) of critical care patients, even during surgical interventions or examinations under medical resonance imaging (MRI). Temperature OFS are also the ideal monitoring solution for such harsh environments. Most of OFS for structural health monitoring are distributed or have long gage length, although quasi-distributed short gage sensors are also used. Those sensors measure mainly strain/load, temperature, pressure and elongation. SOFO type deformation sensors were used to monitor and secure the Bolshoi Moskvoretskiy Bridge in Moscow. Safety of Plavinu dam built on clay and sand in Latvia was increased by monitoring bitumen joints displacement and temperature changes using SMARTape and Temperature Sensitive Cable read with DiTeSt unit. A similar solution was used for monitoring a pipeline built in an unstable area near Rimini in Italy.
Ground Subsidence Monitoring with MT-InSAR and Mechanism Inversion Over Xi'an, China
NASA Astrophysics Data System (ADS)
Peng, M. M.; Zhao, C. Y.; Zhang, Q.; Zhang, J.; Liu, Y. Y.
2018-04-01
The ancient Xi'an, China, has been suffering severe land subsidence and ground fissure hazards since the 1960s, which has affected the safety of Subways. Multi-sensor SAR data are conducted to monitor the latest complex ground deformation and its influence on subway line No.3 over Xi'an. Annual deformation rates have been retrieved to reveal the spatiotemporal evolution of ground subsidence in Xi'an city from 2013 to 2017. Meanwhile, the correlation between land subsidence and ground fissures are analyzed by retrieving the deformation differences in both sides of the fissures. Besides, the deformation along subway line No. 3 is analyzed, and the fast deformation section is quantitatively studied. Finally, a flat lying sill model with distributed contractions is implemented to model the InSAR deformation over YHZ subsidence center, which manifests that the ground deformation is mainly caused by groundwater withdrawal.
Charge modeling of ionic polymer-metal composites for dynamic curvature sensing
NASA Astrophysics Data System (ADS)
Bahramzadeh, Yousef; Shahinpoor, Mohsen
2011-04-01
A curvature sensor based on Ionic Polymer-Metal Composite (IPMC) is proposed and characterized for sensing of curvature variation in structures such as inflatable space structures in which using low power and flexible curvature sensor is of high importance for dynamic monitoring of shape at desired points. The linearity of output signal of sensor for calibration, effect of deflection rate at low frequencies and the phase delay between the output signal and the input deformation of IPMC curvature sensor is investigated. An analytical chemo-electro-mechanical model for charge dynamic of IPMC sensor is presented based on Nernst-Planck partial differential equation which can be used to explain the phenomena observed in experiments. The rate dependency of output signal and phase delay between the applied deformation and sensor signal is studied using the proposed model. The model provides a background for predicting the general characteristics of IPMC sensor. It is shown that IPMC sensor exhibits good linearity, sensitivity, and repeatability for dynamic curvature sensing of inflatable structures.
NASA Astrophysics Data System (ADS)
Montuori, Antonio; Anderlini, Letizia; Palano, Mimmo; Albano, Matteo; Pezzo, Giuseppe; Antoncecchi, Ilaria; Chiarabba, Claudio; Serpelloni, Enrico; Stramondo, Salvatore
2018-07-01
In this study, we tested the "land-subsidence monitoring guidelines" proposed by the Italian Ministry of Economic Development (MISE), to study ground deformations along on-shore hydrocarbon reservoirs. We propose protocols that include the joint use of Global Positioning System (GPS) and multi-temporal Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques, for a twofold purpose: a) monitoring land subsidence phenomena along selected areas after defining the background of ground deformations; b) analyzing possible relationships between hydrocarbon exploitation and anomalous deformation patterns. Experimental results, gathered along the Ravenna coastline (northern Italy) and in the southeastern Sicily (southern Italy), show wide areas of subsidence mainly related to natural and anthropogenic processes. Moreover, ground deformations retrieved through multi-temporal DInSAR time series exhibit low sensitivity as well as poor spatial and temporal correlation with hydrocarbon exploitation activities. Results allow evaluating the advantages and limitations of proposed protocols, to improve the techniques and security standards established by MISE guidelines for monitoring on-shore hydrocarbon reservoirs.
NASA Astrophysics Data System (ADS)
Zhao, Chaoying; Zhang, Qin; He, Yang; Peng, Jianbing; Yang, Chengsheng; Kang, Ya
2016-04-01
Small baseline subsets interferometric synthetic aperture radar technique is analyzed to detect and monitor the loess landslide in the southern bank of the Jinghe River, Shaanxi province, China. Aiming to achieve the accurate preslide time-series deformation results over small spatial scale and abrupt temporal deformation loess landslide, digital elevation model error, coherence threshold for phase unwrapping, and quality of unwrapping interferograms must be carefully checked in advance. In this experience, land subsidence accompanying a landslide with the distance <1 km is obtained, which gives a sound precursor for small-scale loess landslide detection. Moreover, the longer and continuous land subsidence has been monitored while deformation starting point for the landslide is successfully inverted, which is key to monitoring the similar loess landslide. In addition, the accelerated landslide deformation from one to two months before the landslide can provide a critical clue to early warning of this kind of landslide.
Measurement of rock mass deformation with grouted coaxial antenna cables
NASA Astrophysics Data System (ADS)
Dowding, C. H.; Su, M. B.; O'Connor, K.
1989-01-01
Techniques presented herein show how reflected voltage pulses from coaxial antenna cable grouted in rock masses can be employed to quantify the type and magnitude of rock mass deformation. This measurement is similar to that obtained from a combined full profile extensometer (to measure local extension) and inclinometer (to measure local shearing). Rock mass movements deform the grouted cable, which locally changes cable capacitance and thereby the reflected wave form of the voltage pulse. Thus, by monitoring changes in these reflection signatures, it is possible to monitor rock mass deformation. This paper presents laboratory measurements necessary to quantitatively interpret the reflected voltage signatures. Cables were sheared and extended to correlate measured cable deformation with reflected voltage signals. Laboratory testing included development of grout mixtures with optimum properties for field installation and performance of a TDR (Time Domain Reflectometry) monitoring system. Finally, the interpretive techniques developed through laboratory measurements were applied to previously collected field data to extract hitherto unrealized information.
Mechanochromic behavior of a luminescent silicone rubber under tensile deformation
NASA Astrophysics Data System (ADS)
Kim, Yeon Ju; Lee, Sang Hwan; Jeong, Kwang-Un; Nah, Changwoon
2016-09-01
A novel mechanochromic elastomer based on silicone rubber and coumarin 6 dye have been prepared with various concentrations of the dye ranges from 2wt.% to a maximum of 5wt.% by solution mixing technique. After evaporating the solvent, cured samples were prepared as thin films using compression molding at 170° C. The optimum composition of the dye in rubber composites was determined based on the mechanochromic performance characterized with ultraviolet/visible (UV/Vis) spectrometer, x-ray diffraction (XRD) and spectrofluorometer (FL). The UV/Vis spectrometer monitors the dye aggregation in polymer film during the tensile deformation. The XRD monitors the change in size of dye aggregates. The FL monitors the optical response during tensile deformation due to the re-arrangement of dyes. As increasing a mechanical deformation to the polymeric composite film, UV/Vis absorption intensity was decreased and the FL emission wavelength was moved to decrease wavelength because of breaking dye aggregations. Also, XRD intensity peak was decreased, which dye aggregations were broken after mechanical deformation.
Assessment of DInSAR Potential in Simulating Geological Subsurface Structure
NASA Astrophysics Data System (ADS)
Fouladi Moghaddam, N.; Rudiger, C.; Samsonov, S. V.; Hall, M.; Walker, J. P.; Camporese, M.
2013-12-01
High resolution geophysical surveys, including seismic, gravity, magnetic, etc., provide valuable information about subsurface structuring but they are very costly and time consuming with non-unique and sometimes conflicting interpretations. Several recent studies have examined the application of DInSAR to estimate surface deformation, monitor possible fault reactivation and constrain reservoir dynamic behaviour in geothermal and groundwater fields. The main focus of these studies was to generate an elevation map, which represents the reservoir extraction induced deformation. This research study, however, will focus on developing methods to simulate subsurface structuring and identify hidden faults/hydraulic barriers using DInSAR surface observations, as an innovative and cost-effective reconnaissance exploration tool for planning of seismic acquisition surveys in geothermal and Carbon Capture and Sequestration regions. By direct integration of various DInSAR datasets with overlapping temporal and spatial coverage we produce multi-temporal ground deformation maps with high resolution and precision to evaluate the potential of a new multidimensional MSBAS technique (Samsonov & d'Oreye, 2012). The technique is based on the Small Baseline Subset Algorithm (SBAS) that is modified to account for variation in sensor parameters. It allows integration of data from sensors with different wave-band, azimuth and incidence angles, different spatial and temporal sampling and resolutions. These deformation maps then will be used as an input for inverse modelling to simulate strain history and shallow depth structure. To achieve the main objective of our research, i.e. developing a method for coupled InSAR and geophysical observations and better understanding of subsurface structuring, comparing DInSAR inverse modelling results with previously provided static structural model will result in iteratively modified DInSAR structural model for adequate match with in situ observations. The newly developed and modified algorithm will then be applied in another part of the region where subsurface information is limited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaftan, V. I.; Ustinov, A. V.
The feasibility of using global radio-navigation satellite systems (GNSS) to improve functional safety of high-liability water-development works - dams at hydroelectric power plants, and, consequently, the safety of the population in the surrounding areas is examined on the basis of analysis of modern publications. Characteristics for determination of displacements and deformations with use of GNSS, and also in a complex with other types of measurements, are compared. It is demonstrated that combined monitoring of deformations of the ground surface of the region, and engineering and technical structures is required to ensure the functional safety of HPP, and reliable metrologic assurancemore » of measurements is also required to obtain actual characteristics of the accuracy and effectiveness of GNSS observations.« less
NASA Astrophysics Data System (ADS)
Lee, SangYun; Kim, Kyoohyun; Park, YongKeun
2017-02-01
There is a strong correlation between the dynamic membrane fluctuations and the biomechanical properties of living cells. The dynamic membrane fluctuation consists of submicron displacements, and can be altered by changing the cells' pathophysiological conditions. These results have significant relevance to the understanding of RBC biophysics and pathology, as follows. RBCs must withstand large mechanical deformations during repeated passages through the microvasculature and the fenestrated walls of the splenic sinusoids. This essential ability is diminished with senescence, resulting in physiological destruction of the aging RBCs. Pathological destruction of the red cells, however, occurs in cells affected by a host of diseases such as spherocytosis, malaria, and Sickle cell disease, as RBCs depart from their normal discoid shape and lose their deformability. Therefore, quantifying the RBC deformability insight into a variety of problems regarding the interplay of cell structure, dynamics, and function. Furthermore, the ability to monitor mechanical properties of RBCs is of vital interest in monitoring disease progression or response to treatment as molecular and pharmaceutical approaches for treatment of chronic diseases. Here, we present the measurements of dynamic membrane fluctuations in live cells using quantitative phase imaging techniques. Measuring both the 3-D refractive index maps and the dynamic phase images of live cells are simultaneously measured, from which dynamic membrane fluctuation and deformability of cells are precisely calculated. We also present its applications to various diseases ranging from sickle cell diseases, babesiosis, and to diabetes.
Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.
Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B; Altintas, Ayhan
2014-10-20
We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.
NASA Astrophysics Data System (ADS)
Guo, Kai; Xie, Yongjie; Ye, Hu; Zhang, Song; Li, Yunfei
2018-04-01
Due to the uncertainty of stratospheric airship's shape and the security problem caused by the uncertainty, surface reconstruction and surface deformation monitoring of airship was conducted based on laser scanning technology and a √3-subdivision scheme based on Shepard interpolation was developed. Then, comparison was conducted between our subdivision scheme and the original √3-subdivision scheme. The result shows our subdivision scheme could reduce the shrinkage of surface and the number of narrow triangles. In addition, our subdivision scheme could keep the sharp features. So, surface reconstruction and surface deformation monitoring of airship could be conducted precisely by our subdivision scheme.
Dome Structures Above Sills and Saucer-Shaped Sills: Insights From Experimental Modeling
NASA Astrophysics Data System (ADS)
Planke, S.; Galland, O.; Malthe-Sørenssen, A.
2007-12-01
Saucer-shaped magma and sand intrusions are common features in sedimentary basins. They result from fundamental processes for the emplacement of fluids in shallow sedimentary basins. Seismic data show that the overburden above saucer-shaped intrusions is usually deformed and exhibits a dome-like structure. The formation of such structures, and the associated deformation, are of primary importance in the evolution of petroleum systems. In this presentation, we report on experimental investigation of the deformation processes associated with the intrusion of saucer-shaped intrusions into sedimentary basins. The experimental setup consists of molten low-viscosity oil injected into fine-grained silica flour (see Galland et al., this session). It properly simulates the emplacement of saucer-shaped intrusions and the deformation of the country rock. During experiments, the surface of the model is digitalized through a structured light technique based on moiré projection principle. Such a tool provides topographic maps of the model and allows a periodic (every 1.5 s) monitoring of the model surface. When the model magma starts intruding, a symetrical dome rises above the inlet. As injection proceeds, the dome inflates and widens. Subsequently, the dome evolves to a plateau-like feature, with nearly flat surface and steep edges. The plateau keeps lifting up, but nearly stoppes widening. At the end of the experiments, the intruding liquid erupts at the edge of the plateau. The intrusion formed in the experiment is a typical saucer-shaped sill. The evolution of the deforming surface reflects the evolution of the intrusion. We infer that the first doming phase corresponds to the emplacement of a horizontal basal sill by open fracturing. The dome-to-plateau transition corresponds to a transition of the liquid emplacement mechanism from basal sill to inclined sheet. We suggest that the emplacement of the inclined sheets results from shear fracturing at the dome edge.
Innovative monitoring of 3D warp interlock fabric during forming process
NASA Astrophysics Data System (ADS)
Dufour, C.; Jerkovic, I.; Wang, P.; Boussu, F.; Koncar, V.; Soulat, D.; Grancaric, A. M.; Pineau, P.
2017-10-01
The final geometry of 3D warp interlock fabric needs to be check during the 3D forming step to ensure the right locations of warp and weft yarns inside the final structure. Thus, a new monitoring approach has been proposed based on sensor yarns located in the fabric thickness. To ensure the accuracy of measurements, the observation of the surface deformation of the 3D warp interlock fabric has been joined to the sensor yarns measurements. At the end, it has been revealed a good correlation between strain measurement done globally by camera and locally performed by sensor yarns.
NASA Astrophysics Data System (ADS)
Qu, T.; Lu, P.; Liu, C.; Wan, H.
2016-06-01
Western China is very susceptible to landslide hazards. As a result, landslide detection and early warning are of great importance. This work employs the SBAS (Small Baseline Subset) InSAR Technique for detection and monitoring of large-scale landslides that occurred in Li County, Sichuan Province, Western China. The time series INSAR is performed using descending scenes acquired from TerraSAR-X StripMap mode since 2014 to get the spatial distribution of surface displacements of this giant landslide. The time series results identify the distinct deformation zone on the landslide body with a rate of up to 150mm/yr. The deformation acquired by SBAS technique is validated by inclinometers from diverse boreholes of in-situ monitoring. The integration of InSAR time series displacements and ground-based monitoring data helps to provide reliable data support for the forecasting and monitoring of largescale landslide.
Deformation Monitoring and Bathymetry Analyses in Rock-Fill Dams, a Case Study at Ataturk Dam
NASA Astrophysics Data System (ADS)
Kalkan, Y.; Bilgi, S.
2014-12-01
Turkey has 595 dams constructed between 1936 and 2013 for the purposes of irrigation, flood control, hydroelectric energy and drinking water. A major portion of the dam basins in Turkey are deprived of vegetation and have slope topography on near surrounding area. However, landscaping covered with forest around the dam basin is desirable for erosion control. In fact; the dams, have basins deprived of vegetation, fill up quickly due to sediment transport. Erosion control and forestation are important factors, reducing the sediment, to protect the water basins of the dams and increase the functioning life of the dams. The functioning life of dams is as important as the investment and construction. Nevertheless, in order to provide safety of human life living around, well planned monitoring is essential for dams. Dams are very large and critical structures and they demand the use or application of precise measuring systems. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. Monitoring is an essential component of the dam after construction and during operation and must enable the timely detection of any behavior that could deteriorate the dam, potentially result in its shutdown or failure. Considering the time and labor consumed by long-term measurements, processing and analysis of measured data, importance of the small structural motions at regular intervals could be comprehended. This study provides some information, safety and the techniques about the deformation monitoring of the dams, dam safety and related analysis. The case study is the deformation measurements of Atatürk Dam in Turkey which is the 6th largest dam of world considering the filling volume of embankment. Brief information is given about the dam and the methods of monitoring techniques applied by various disciplines. Some results have been obtained from this method for nearly eight years are presented in this work. In addition, the results of bathymetric surveys between 2005 and 2010 will be compared using the cross sections where the maximum changes occurred on the dam bottom of the reservoir area.
Monitoring Building Deformation with InSAR: Experiments and Validation.
Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng
2016-12-20
Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated.
NASA Astrophysics Data System (ADS)
Craymer, M.; White, D.; Piraszewski, M.; Zhao, Y.; Henton, J.; Silliker, J.; Samsonov, S.
2015-12-01
Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, continuous GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS, InSAR and gravity monitoring. Five monitoring sites were installed in 2012 and another six in 2013, each including GPS and InSAR corner reflector monuments (some collocated on the same monument). The continuous GPS data from these stations have been processed on a daily basis in both baseline processing mode using the Bernese GPS Software and precise point positioning mode using CSRS-PPP. Gravity measurements at each site have also been performed in fall 2013, spring 2014 and fall 2015, and at two sites in fall 2014. InSAR measurements of deformation have been obtained for a 5 m footprint at each site as well as at the corner reflector point sources. Here we present the first results of this geodetic deformation monitoring after commencement of CO2 injection on April 14, 2015. The time series of these sites are examined, compared and analyzed with respect to monument stability, seasonal signals, longer term trends, and any changes in motion and mass since CO2 injection.
Monitoring of Progressive Damage in Buildings Using Laser Scan Data
NASA Astrophysics Data System (ADS)
Puente, I.; Lindenbergh, R.; Van Natijne, A.; Esposito, R.; Schipper, R.
2018-05-01
Vulnerability of buildings to natural and man-induced hazards has become a main concern for our society. Ensuring their serviceability, safety and sustainability is of vital importance and the main reason for setting up monitoring systems to detect damages at an early stage. In this work, a method is presented for detecting changes from laser scan data, where no registration between different epochs is needed. To show the potential of the method, a case study of a laboratory test carried out at the Stevin laboratory of Delft University of Technology was selected. The case study was a quasi-static cyclic pushover test on a two-story high unreinforced masonry structure designed to simulate damage evolution caused by cyclic loading. During the various phases, we analysed the behaviour of the masonry walls by monitoring the deformation of each masonry unit. First a plane is fitted to the selected wall point cloud, consisting of one single terrestrial laser scan, using Principal Component Analysis (PCA). Second, the segmentation of individual elements is performed. Then deformations with respect to this plane model, for each epoch and specific element, are determined by computing their corresponding rotation and cloud-to-plane distances. The validation of the changes detected within this approach is done by comparison with traditional deformation analysis based on co-registered TLS point clouds between two or more epochs of building measurements. Initial results show that the sketched methodology is indeed able to detect changes at the mm level while avoiding 3D point cloud registration, which is a main issue in computer vision and remote sensing.
A case study on displacement analysis of Vasa warship
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Johansson, Filippa; Karlsson, Lenita; Horemuz, Milan
2018-04-01
Monitoring deformation of man-made structures is very important to prevent them from a risk of collapse and save lives. Such a process is also used for monitoring change in historical objects, which are deforming continuously with time. An example of this is the Vasa warship, which was under water for about 300 years. The ship was raised from the bottom of the sea and is kept in the Vasa museum in Stockholm. A geodetic network with points on the museum building and the ship's body has been established and measured for 12 years for monitoring the ship's deformation. The coordinate time series of each point on the ship and their uncertainties have been estimated epoch-wisely. In this paper, our goal is to statistically analyse the ship's hull movements. By fitting a quadratic polynomial to the coordinate time series of each point of the hull, its acceleration and velocity are estimated. In addition, their significance is tested by comparing them with their respective estimated errors after the fitting. Our numerical investigations show that the backside of the ship, having highest elevation and slope, has moved vertically faster than the other places by a velocity and an acceleration of about 2 mm/year and 0.1 mm/year2, respectively and this part of the ship is the weakest with a higher risk of collapse. The central parts of the ship are more stable as the ship hull is almost vertical and closer to the floor. Generally, the hull is moving towards its port and downwards
Improvement of Functional Properties by Sever Plastic Deformation on Parts of Titanium Biomaterials
NASA Astrophysics Data System (ADS)
Czán, Andrej; Babík, Ondrej; Daniš, Igor; Martikáň, Pavol; Czánová, Tatiana
2017-12-01
Main task of materials for invasive implantology is their biocompatibility with the tissue but also requirements for improving the functional properties of given materials are increasing constantly. One of problems of materials biocompatibility is the impossibility to improve of functional properties by change the percentage of the chemical elements and so it is necessary to find other innovative methods of improving of functional properties such as mechanical action in the form of high deformation process. This paper is focused on various methods of high deformation process such as Equal Channel Angular Pressing (ECAP) when rods with record strength properties were obtained.The actual studies of the deformation process properties as tri-axial compress stress acting on workpiece with high speed of deformation shows effects similar to results obtained using the other methods, but in lower levels of stress. Hydrostatic extrusion (HE) is applying for the purpose of refining the structure of the commercially pure titanium up to nano-scale. Experiments showed the ability to reduce the grain size below 100 nm. Due to the significant change in the performance of the titanium materials by severe plastic deformation is required to identify the processability of materials with respect to the identification of created surfaces and monitoring the surface integrity, where the experimental results show ability of SPD technologies application on biomaterials.
NASA Astrophysics Data System (ADS)
Olabode, Solomon Ojo
2014-01-01
Soft sediment deformation structures were recognized in the Maastrichtian shallow marine wave to tide influenced regressive sediments of Ajali Formation in the western flank of Anambra basin, southern Nigerian. The soft sediment deformation structures were in association with cross bedded sands, clay and silt and show different morphological types. Two main types recognised are plastic deformations represented by different types of recumbent folds and injection structure represented by clastic dykes. Other structures in association with the plastic deformation structures include distorted convolute lamination, subsidence lobes, pillars, cusps and sand balls. These structures are interpreted to have been formed by liquefaction and fluidization mechanisms. The driving forces inferred include gravitational instabilities and hydraulic processes. Facies analysis, detailed morphologic study of the soft sediment deformation structures and previous tectonic history of the basin indicate that the main trigger agent for deformation is earthquake shock. The soft sediment deformation structures recognised in the western part of Anambra basin provide a continuous record of the tectonic processes that acted on the regressive Ajali Formation during the Maastrichtian.
NASA Astrophysics Data System (ADS)
Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.
2017-09-01
The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.
Respiratory monitoring system based on fiber optic macro bending
NASA Astrophysics Data System (ADS)
Purnamaningsih, Retno Wigajatri; Widyakinanti, Astari; Dhia, Arika; Gumelar, Muhammad Raditya; Widianto, Arif; Randy, Muhammad; Soedibyo, Harry
2018-02-01
We proposed a respiratory monitoring system for living activities in human body based on fiber optic macro-bending for laboratory scale. The respiration sensor consists of a single-mode optical fiber and operating on a wavelength at around 1550 nm. The fiber optic was integrated into an elastic fabric placed on the chest and stomach of the monitored human subject. Deformations of the flexible textile involving deformations of the fiber optic bending curvature, which was proportional to the chest and stomach expansion. The deformation of the fiber was detected using photodetector and processed using microcontroller PIC18F14K50. The results showed that this system able to display various respiration pattern and rate for sleeping, and after walking and running activities in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poplawski, L; Li, T; Chino, J
Purpose: In brachytherapy, structures surrounding the target have the potential to move between treatments and receive unknown dose. Deformable image registration could overcome challenges through dose accumulation. This study uses two possible deformable dose summation techniques and compares the results to point dose summation currently performed in clinic. Methods: Data for ten patients treated with a Syed template was imported into the MIM software (Cleveland, OH). The deformable registration was applied to structures by masking other image data to a single intensity. The registration flow consisted of the following steps: 1) mask CTs so that each of the structures-of-interest hadmore » one unique intensity; 2) perform applicator — based rigid registration; 3) Perform deformable registration; 4) Refine registration by changing local alignments manually; 5) Repeat steps 1 to 3 until desired structure adequately deformed; 5) Transfer each deformed contours to the first CT. The deformed structure accuracy was determined by a dice similarity coefficient (DSC) comparison with the first fraction. Two dose summation techniques were investigated: a deformation and recalculation on the structure; and a dose deformation and accumulation method. Point doses were used as a comparison value. Results: The Syed deformations have DSC ranging from 0.53 to 0.97 and 0.75 and 0.95 for the bladder and rectum, respectively. For the bladder, contour deformation addition ranged from −34.8% to 0.98% and dose deformation accumulation ranged from −35% to 29.3% difference from clinical calculations. For the rectum, contour deformation addition ranged from −5.2% to 16.9% and the dose deformation accumulation ranged from −29.1% to 15.3% change. Conclusion: Deforming dose for summation leads to different volumetric doses than when dose is recalculated on deformed structures, raising concerns about the accuracy of the deformed dose. DSC alone cannot be used to establish the accuracy of a deformation for brachy dose summation purpose.« less
Structural Transformations in Metallic Materials During Plastic Deformation
NASA Astrophysics Data System (ADS)
Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.
2017-03-01
In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.
Elastic hysteresis phenomena in ULE and Zerodur optical glasses at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, S.C.; Coon, D.N.; Epstein, J.S.
1988-01-01
Elastic hysteresis phenomena were observed in ULE and Zerodur glasses at elevated temperatures up to glass transition. These effects were found under load deformation testing using four-point bending. Permanent creep resulted in Zerodur at 900/degree/C and in ULE at 1000/degree/C. The deformation was monitored at mid-span of the samples with a capacitance-type transducer having 0.01 micrometer resolution. These hysteresis effects may be classified as elastic bimodulus between loading and unloading; that is, two different elastic moduli were observed between loading and unloading. Upon complete unloading, a minimal deformation state promptly returned, indicating little or no viscoelastic creep. The hysteresis effectmore » may be attributed to a change in glass structure as a function of stress state. A description of the test apparatus and procedure, test results for both glasses at several elevated temperatures, and an elementary discussion of continuum theory of constitutive behavior are included. 6 refs., 9 figs.« less
Opto-numerical procedures supporting dynamic lower limbs monitoring and their medical diagnosis
NASA Astrophysics Data System (ADS)
Witkowski, Marcin; Kujawińska, Malgorzata; Rapp, Walter; Sitnik, Robert
2006-01-01
New optical full-field shape measurement systems allow transient shape capture at rates between 15 and 30 Hz. These frequency rates are enough to monitor controlled movements used e.g. for medical examination purposes. In this paper we present a set of algorithms which may be applied for processing of data gathered by fringe projection method implemented for lower limbs shape measurement. The purpose of presented algorithms is to locate anatomical structures based on the limb shape and its deformation in time. The algorithms are based on local surface curvature calculation and analysis of curvature maps changes during the measurement sequence. One of anatomical structure of high medical interest that is possible to scan and analyze, is patella. Tracking of patella position and orientation under dynamic conditions may lead to detect pathological patella movements and help in knee joint disease diagnosis. Therefore the usefulness of the algorithms developed was proven at examples of patella localization and monitoring.
High Temporal Resolution Permafrost Monitoring Using a Multiple Stack Insar Technique
NASA Astrophysics Data System (ADS)
Eppler, J.; Kubanski, M.; Sharma, J.; Busler, J.
2015-04-01
The combined effect of climate change and accelerated economic development in Northern regions increases the threat of permafrost related surface deformation to buildings and transportation infrastructure. Satellite based InSAR provides a means for monitoring infrastructure that may be both remote and spatially extensive. However, permafrost poses challenges for InSAR monitoring due to the complex temporal deformation patterns caused by both seasonal active layer fluctuations and long-term changes in permafrost thickness. These dynamics suggest a need for increasing the temporal resolution of multi-temporal InSAR methods. To address this issue we have developed a method that combines and jointly processes two or more same side geometry InSAR stacks to provide a high-temporal resolution estimate of surface deformation. The method allows for combining stacks from more than a single SAR sensor and for a combination of frequency bands. Data for this work have been collected and analysed for an area near the community of Umiujaq, Quebec in Northern Canada and include scenes from RADARSAT-2, TerraSAR-X and COSMO-SkyMed. Multiple stack based surface deformation estimates are compared for several cases including results from the three sensors individually and for all sensors combined. The test cases show substantially similar surface deformation results which correlate well with surficial geology. The best spatial coverage of coherent targets was achieved when data from all sensors were combined. The proposed multiple stack method is demonstrated to improve the estimation of surface deformation in permafrost affected areas and shows potential for deriving InSAR based permafrost classification maps to aid in the monitoring of Northern infrastructure.
Close-range photogrammetry in underground mining ground control
NASA Astrophysics Data System (ADS)
Benton, Donovan J.; Chambers, Amy J.; Raffaldi, Michael J.; Finley, Seth A.; Powers, Mark J.
2016-09-01
Monitoring underground mine deformation and support conditions has traditionally involved visual inspection and geotechnical instrumentation. Monitoring displacements with conventional instrumentation can be expensive and time-consuming, and the number of locations that can be effectively monitored is generally limited. Moreover, conventional methods typically produce vector rather than tensor descriptions of geometry changes. Tensor descriptions can provide greater insight into hazardous ground movements, particularly in recently excavated openings and in older workings that have been negatively impacted by high stress concentrations, time-dependent deformation, or corrosion of ground support elements. To address these issues, researchers with the National Institute for Occupational Safety and Health, Spokane Mining Research Division are developing and evaluating photogrammetric systems for ground control monitoring applications in underground mines. This research has demonstrated that photogrammetric systems can produce millimeter-level measurements that are comparable to conventional displacement-measuring instruments. This paper provides an overview of the beneficial use of close-range photogrammetry for the following three ground control applications in underground mines: monitoring the deformation of surface support, monitoring rock mass movement, and monitoring the corrosion of surface support. Preliminary field analyses, case studies, limitations, and best practices for these applications are also discussed.
TU-H-CAMPUS-JeP1-05: Dose Deformation Error Associated with Deformable Image Registration Pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surucu, M; Woerner, A; Roeske, J
Purpose: To evaluate errors associated with using different deformable image registration (DIR) pathways to deform dose from planning CT (pCT) to cone-beam CT (CBCT). Methods: Deforming dose is controversial because of the lack of quality assurance tools. We previously proposed a novel metric to evaluate dose deformation error (DDE) by warping dose information using two methods, via dose and contour deformation. First, isodose lines of the pCT were converted into structures and then deformed to the CBCT using an image based deformation map (dose/structure/deform). Alternatively, the dose matrix from the pCT was deformed to CBCT using the same deformation map,more » and then the same isodose lines of the deformed dose were converted into structures (dose/deform/structure). The doses corresponding to each structure were queried from the deformed dose and full-width-half-maximums were used to evaluate the dose dispersion. The difference between the FWHM of each isodose level structure is defined as the DDE. Three head-and-neck cancer patients were identified. For each patient, two DIRs were performed between the pCT and CBCT, either deforming pCT-to-CBCT or CBCT-to-pCT. We evaluated the errors associated by using either of these pathways to deform dose. A commercially available, Demons based DIR was used for this study, and 10 isodose levels (20% to 105%) were used to evaluate the errors in various dose levels. Results: The prescription dose for all patients was 70 Gy. The mean DDE for CT-to-CBCT deformation was 1.0 Gy (range: 0.3–2.0 Gy) and this was increased to 4.3 Gy (range: 1.5–6.4 Gy) for CBCT-to-CT deformation. The mean increase in DDE between the two deformations was 3.3 Gy (range: 1.0–5.4 Gy). Conclusion: The proposed DDF was used to quantitatively estimate dose deformation errors caused by different pathways to perform DIR. Deforming dose using CBCT-to-CT deformation produced greater error than CT-to-CBCT deformation.« less
Carbon fiber epoxy composites for both strengthening and health monitoring of structures.
Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal
2015-05-06
This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the "wet process", which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring.
Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of Structures
Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal
2015-01-01
This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the “wet process”, which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring. PMID:25954955
Monitoring Building Deformation with InSAR: Experiments and Validation
Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng
2016-01-01
Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated. PMID:27999403
Land subsidence detection using synthetic aperture radar (SAR) in Sidoarjo Mudflow area
NASA Astrophysics Data System (ADS)
Yulyta, Sendy Ayu; Taufik, Muhammad; Hayati, Noorlaila
2016-05-01
According to BPLS (Badan Penanggulangan Lumpur Sidoarjo) which is the Sidoarjo Mudflow Management Agency, land subsidence occurred in Porong, Sidoarjo was caused by the rocks bearing capacity decreasing which led by the mud outpouring since 2006. The subsidence varies in many ways depends on the radius of location from the mud flow center point and the geological structure. One of the most efficient technologies to monitor this multi temporal phenomenon is using the Synthetic Aperture Radar (SAR) as an applicative Spatial Geodesy. This study used 4 (four) times series L-Band ALOS PALSAR from 2008 to 2011 Fine Beam Single data (February 2008, January 2009 and February 2010 and January 2011) which then processed by the Differential SAR Interferometry (DInSAR) method to obtain the deformation vector at a radius of 1.5 km from the center of mudflow. The result showed that there was a significant subsidence which annually occurred on southern and western area of Sidoarjo mud flow. The deformation vector that occurred in the year 2008-2011 was up to 20 cm/year or 0.05 cm/day. For verification purpose, we also compared the result obtained from the SAR detection with the data measured by Global Position System (GPS) and some deformation monitoring results obtained from another researchs. The comparison showed a correlation that the subsidence occurred on the same location.
NASA Astrophysics Data System (ADS)
Mahadevan, Sankaran; Neal, Kyle; Nath, Paromita; Bao, Yanqing; Cai, Guowei; Orme, Peter; Adams, Douglas; Agarwal, Vivek
2017-02-01
This research is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in nuclear power plants that are subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification, and prognosis. The current work focuses on degradation caused by ASR (alkali-silica reaction). Controlled concrete specimens with reactive aggregate are prepared to develop accelerated ASR degradation. Different monitoring techniques — infrared thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) — are studied for ASR diagnosis of the specimens. Both DIC and mechanical measurements record the specimen deformation caused by ASR gel expansion. Thermography is used to compare the thermal response of pristine and damaged concrete specimens and generate a 2-D map of the damage (i.e., ASR gel and cracked area), thus facilitating localization and quantification of damage. NIRAS and VAM are two separate vibration-based techniques that detect nonlinear changes in dynamic properties caused by the damage. The diagnosis results from multiple techniques are then fused using a Bayesian network, which also helps to quantify the uncertainty in the diagnosis. Prognosis of ASR degradation is then performed based on the current state of degradation obtained from diagnosis, by using a coupled thermo-hydro-mechanical-chemical (THMC) model for ASR degradation. This comprehensive approach of monitoring, data analytics, and uncertainty-quantified diagnosis and prognosis will facilitate the development of a quantitative, risk informed framework that will support continuous assessment and risk management of structural health and performance.
Rock Slide Monitoring by Using TDR Inclinometers
NASA Astrophysics Data System (ADS)
Drusa, Marián; Bulko, Roman
2016-12-01
The geotechnical monitoring of the slope deformations is widespread at present time. In many geological localities and civil engineering construction areas, monitoring is a unique tool for controlling of negative factors and processes, also inform us about actual state of rock environment or interacting structures. It is necessary for risk assessment. In our case, geotechnical monitoring is controlling rockslide activity around in the future part of motorway. The construction of new highway route D1 from Bratislava to Košice crosses the territory which is affected by a massive rockslide close to Kraľovany village. There was a need to monitor the activity of a large unstable rockslide with deep shear planes. In this case of underground movement activity, the Department of Geotechnics of the University of Žilina installed inclinometers at the unstable area which worked on Time Domain Reflectometry (TDR) principle. Based on provided measurements, effectivity and suitability of TDR inclinometers for monitoring of deep underground movement activity is demonstrated.
Application of smart BFRP bars with distributed fiber optic sensors into concrete structures
NASA Astrophysics Data System (ADS)
Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Zhao, Lihua; Song, Shiwei
2010-04-01
In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting process and worked well. From the measured data, the concrete cracks along the pavement length can be easily monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing performance but also mechanical performance in the concrete structures.
InSAR Monitoring of Surface Deformation in Alberta's Oil Sands
NASA Astrophysics Data System (ADS)
Pearse, J.; Singhroy, V.; Li, J.; Samsonov, S. V.; Shipman, T.; Froese, C. R.
2013-05-01
Alberta's oil sands are among the world's largest deposits of crude oil, and more than 80% of it is too deep to mine, so unconventional in-situ methods are used for extraction. Most in situ extraction techniques, such as Steam-Assisted Gravity Drainage (SAGD), use steam injection to reduce the viscosity of the bitumen, allowing it to flow into wells to be pumped to the surface. As part of the oil sands safety and environmental monitoring program, the energy regulator uses satellite radar to monitor surface deformation associated with in-situ oil extraction. The dense vegetation and sparse infrastructure in the boreal forest of northern Alberta make InSAR monitoring a challenge; however, we have found that surface heave associated with steam injection can be detected using traditional differential InSAR. Infrastructure and installed corner reflectors also allow us to use persistent scatterer methods to obtain time histories of deformation at individual sites. We have collected and processed several tracks of RADARSAT-2 data over a broad area of the oil sands, and have detected surface deformation signals of approximately 2-3 cm per year, with time series that correlate strongly with monthly SAGD steam injection volumes.
Monitoring of a concrete arch bridge during construction
NASA Astrophysics Data System (ADS)
Inaudi, Daniele; Ruefenacht, A.; von Arx, B.; Noher, H. P.; Vurpillot, Samuel; Glisic, Branko
2002-06-01
The Siggenthal Bridge is a concrete arch bridge with an arch span of 117 m, being built over the Limmat River in Baden, Switzerland. This bridge has been instrumented with 58 long- gage SOFO fiber optic deformation sensors, 2 inclinometers and 8 temperature sensors to monitor its deformations, curvatures and displacements during construction and int eh long-term. The sensor have been built installed successfully and the arch was monitored during the removal of the formwork and supports. It was therefore possible to observe the deformations of the arch wen being loaded by its dead load and by the daily temperature fluctuations. The measurements have shown that the temperature changes produce deformations of the same order of magnitude as the dead loads. The out-of-plain displacements obtained by double- integration of the measured curvatures are in good agreement with the direct triangulation measurements. Monitoring was also carried out during the construction of the superstructure, with the associated change of the load distribution in the arch. This paper briefly introduces the functional principle of the long-gage sensors used in this application, illustrates their installation and discusses the measurement results obtained during the bridge construction.
NASA Astrophysics Data System (ADS)
Tessitore, S.; Castiello, G.; Fedi, M.; Florio, G.; Fuschini, V.; Ramondini, M.; Calcaterra, D.
2012-04-01
TeleseTerme plain is characterized by a very articulated stratigraphy (levels of travertine, fluvial-marshy and pyroclastic deposits), that allows the occurrence of underground water circulation with overlapping aquifers. These aquifers are locally in pressure and, because of chemical characteristics and physical properties of the water, they may activate processes of accelerated travertine's corrosion; the consequence is the formation of cavity along the ground water's preferential flow paths, and the activation of subsidence and sinkholes phenomena. In particular test area includes two zones, where in 2002 and 2006 occurred two sinkholes events, classified as "piping sinkholes". The hazard evaluation was carried out trhought an integrated monitoring system, based on "traditional" techniques conduced "in situ", as geological-geomorphological and geophysical (microgravity) surveys, integrated by the most innovative techniques of Remote sensing interferometry(Advanced DInSAR Interferometry Techniques). The last allow to evaluate the ground deformation, characterized by a predominantvertical component (typical deformation of sinkholes and subsidence phenomena), and are well suited to operate a continuous and long monitoring ofvery extended areas. Through an initial analysis of the Permanent Scatterers available in the Telese municipality, we found the envelopes of the areal that contain PS with negative and positive mean velocities; these velocities showed the presence of a possible phenomenon of subsidence detected by ERS and ENVISAT satellites. Through interferometric processing of ENVISAT images, the soil deformations of 2002-2010 year sare evaluated and compared with the data obtainedby survey took "in situ" during the same period. The knowledge of the deformation's evolution of the area made it possible to organize a more focused future monitoring through traditional techniques of relief (with the help of geophysical methodologies). Since the zone affected by sinkhole phenomena is located in urbanized area, microgravity method was preferred to other geophysical methodologies. In fact, seismic, magnetic and electromagnetic techniques are strongly influenced by urban noise and this produces a low value of signal to noise ratio. The gravity exploration, based on the identification of anomalies in the Earth's gravity field by measuring the gravity acceleration, allows to define any inhomogeneities generated by sources at different densities in the subsurface structure, such as underground voids. Based on geological informations, geophysical models of the known cavities are made. Establishing the physical and geometrical characteristics of the voids it was possible compute the amplitudes and wavelengths of the expected geophysical signal, in order to establish the procedures of the executive acquisition phase. If the magnitude of the evolution of the sinkhole phenomenon will be detected by gravity observations, the time-lapse gravity monitoring will be an excellent tool at the base of risk mitigation.
NASA Technical Reports Server (NTRS)
Hurst, Kenneth; Granat, Robert
2005-01-01
We have implmented two multi-station detectors for transient crustal deformation within the Southern California Integrated GPS (SCGIN). One the the primary goals of SCIGN is to detect transient deformation associated with the earthquake cycle in Southern California.
Laser interrogation techniques for high-sensitivity strain sensing by fiber-Bragg-grating structures
NASA Astrophysics Data System (ADS)
Gagliardi, G.; Salza, M.; Ferraro, P.; De Natale, P.
2017-11-01
Novel interrogation methods for static and dynamic measurements of mechanical deformations by fiber Bragg-gratings (FBGs) structures are presented. The sensor-reflected radiation gives information on suffered strain, with a sensitivity dependent on the interrogation setup. Different approaches have been carried out, based on laser-frequency modulation techniques and near-IR lasers, to measure strain in single-FBG and in resonant high-reflectivity FBG arrays. In particular, for the fiber resonator, the laser frequency is actively locked to the cavity resonances by the Pound-Drever-Hall technique, thus tracking any frequency change due to deformations. The loop error and correction signals fed back to the laser are used as strain monitor. Sensitivity limits vary between 200 nɛ/√Hz in the quasi-static domain (0.5÷2 Hz), and between 1 and 4 nɛ/√Hz in the 0.4-1 kHz range for the single-FBG scheme, while strain down to 50 pɛ can be detected by using the laser-cavity-locked method.
NASA Astrophysics Data System (ADS)
Gladkov, A. S.; Lobova, E. U.; Deev, E. V.; Korzhenkov, A. M.; Mazeika, J. V.; Abdieva, S. V.; Rogozhin, E. A.; Rodkin, M. V.; Fortuna, A. B.; Charimov, T. A.; Yudakhin, A. S.
2016-10-01
This paper discusses the composition and distribution of soft-sediment deformation structures induced by liquefaction in Late Pleistocene lacustrine terrace deposits on the southern shore of Issyk-Kul Lake in the northern Tien Shan mountains of Kyrgyzstan. The section contains seven deformed beds grouped in two intervals. Five deformed beds in the upper interval contain load structures (load casts and flame structures), convolute lamination, ball-and-pillow structures, folds and slumps. Deformation patterns indicate that a seismic trigger generated a multiple slump on a gentle slope. The dating of overlying subaerial deposits suggests correlation between the deformation features and strong earthquakes in the Late Pleistocene.
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr; Morris, Hugh; Worth, Margaret; Gaul, Andrew; Jager, Simon; Desgeorges, Yohann
2012-04-01
An innovative three-story timber building, using self-centering, post-tensioned timber shear walls as the main horizontal load resisting system and lightweight non-composite timber-concrete floors, has recently been completed in Nelson, New Zealand. It is expected to be the trailblazer for similar but taller structures to be more widely adopted. Performance based standards require an advanced understanding of building responses and in order to meet the need for in-situ performance data the building has been subjected to forced vibration testing and instrumented for continuous monitoring using a total of approximately 90 data channels to capture its dynamic and long-term responses. The first part of the paper presents a brief discussion of the existing research on the seismic performance of timber frame buildings and footfall induced floor vibrations. An outline of the building structural system, focusing on the novel design solutions, is then discussed. This is followed by the description of the monitoring system. The analysis of monitoring results starts with a discussion of the monitoring of long-term deformations. Next, the assessment of the floor vibration serviceability performance is outlined. Then, the forced vibration tests conducted on the whole building at different construction stages are reviewed. The system identification results from seismic shaking records are also discussed. Finally, updating of a finite element model of the building is conducted.
Optimization of deformation monitoring networks using finite element strain analysis
NASA Astrophysics Data System (ADS)
Alizadeh-Khameneh, M. Amin; Eshagh, Mehdi; Jensen, Anna B. O.
2018-04-01
An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.
Milillo, Pietro; Bürgmann, Roland; Lundgren, Paul; Salzer, Jacqueline; Perissin, Daniele; Fielding, Eric; Biondi, Filippo; Milillo, Giovanni
2016-12-06
We present a detailed survey of the ongoing destabilization process of the Mosul dam. The dam is located on the Tigris river and is the biggest hydraulic structure in Iraq. From a geological point of view the dam foundation is poor due to a site geology formed by alternating strata of highly soluble materials including gypsum, anhydrite, marl and limestone. Here we present the first multi-sensor cumulative deformation map for the dam generated from space-based interferometric synthetic aperture radar measurements from the Italian constellation COSMO-SkyMed and the European sensor Sentinel-1a over the period 2014-2016 that we compare to an older dataset spanning 2004-2010 acquired with the European Envisat satellite. We found that deformation was rapid during 2004-2010, slowed in 2012-2014 and increased since August 2014 when grouting operations stopped due to the temporary capture of the dam by the self proclaimed Islamic State. We model the inferred deformation using a Markov chain Monte Carlo approach to solve for change in volume for simple tensile dislocations. Results from recent and historical geodetic datasets suggests that the volume dissolution rate remains constant when the equivalent volume of total concrete injected during re-grouting operations is included in the calculations.
Milillo, Pietro; Bürgmann, Roland; Lundgren, Paul; Salzer, Jacqueline; Perissin, Daniele; Fielding, Eric; Biondi, Filippo; Milillo, Giovanni
2016-01-01
We present a detailed survey of the ongoing destabilization process of the Mosul dam. The dam is located on the Tigris river and is the biggest hydraulic structure in Iraq. From a geological point of view the dam foundation is poor due to a site geology formed by alternating strata of highly soluble materials including gypsum, anhydrite, marl and limestone. Here we present the first multi-sensor cumulative deformation map for the dam generated from space-based interferometric synthetic aperture radar measurements from the Italian constellation COSMO-SkyMed and the European sensor Sentinel-1a over the period 2014–2016 that we compare to an older dataset spanning 2004–2010 acquired with the European Envisat satellite. We found that deformation was rapid during 2004–2010, slowed in 2012–2014 and increased since August 2014 when grouting operations stopped due to the temporary capture of the dam by the self proclaimed Islamic State. We model the inferred deformation using a Markov chain Monte Carlo approach to solve for change in volume for simple tensile dislocations. Results from recent and historical geodetic datasets suggests that the volume dissolution rate remains constant when the equivalent volume of total concrete injected during re-grouting operations is included in the calculations. PMID:27922128
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Bürgmann, Roland; Lundgren, Paul; Salzer, Jacqueline; Perissin, Daniele; Fielding, Eric; Biondi, Filippo; Milillo, Giovanni
2016-12-01
We present a detailed survey of the ongoing destabilization process of the Mosul dam. The dam is located on the Tigris river and is the biggest hydraulic structure in Iraq. From a geological point of view the dam foundation is poor due to a site geology formed by alternating strata of highly soluble materials including gypsum, anhydrite, marl and limestone. Here we present the first multi-sensor cumulative deformation map for the dam generated from space-based interferometric synthetic aperture radar measurements from the Italian constellation COSMO-SkyMed and the European sensor Sentinel-1a over the period 2014-2016 that we compare to an older dataset spanning 2004-2010 acquired with the European Envisat satellite. We found that deformation was rapid during 2004-2010, slowed in 2012-2014 and increased since August 2014 when grouting operations stopped due to the temporary capture of the dam by the self proclaimed Islamic State. We model the inferred deformation using a Markov chain Monte Carlo approach to solve for change in volume for simple tensile dislocations. Results from recent and historical geodetic datasets suggests that the volume dissolution rate remains constant when the equivalent volume of total concrete injected during re-grouting operations is included in the calculations.
NASA Technical Reports Server (NTRS)
Martin, Richard E.; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Baaklini, George Y.
2005-01-01
Impedance-based structural-health-monitoring uses piezoelectric (PZT) patches that are bonded onto or embedded in a structure. Each individual patch behaves as both an actuator of the surrounding structural area as well as a sensor of the structural response. The size of the excited area varies with the geometry and material composition of the structure, and an active patch is driven by a sinusoidal voltage sweep. When a PZT patch is subjected to an electric field, it produces a mechanical strain; and when it is stressed, it produces an electric charge. Since the patch is bonded to the structure, driving a patch deforms and vibrates the structure. The structure then produces a localized dynamic response. This structural system response is transferred back to the PZT patch, which in turn produces an electrical response. The electromechanical impedance method is based on the principle of electromechanical coupling between the active sensor and the structure, which allows researchers to assess local structural dynamics directly by interrogating a distributed sensor array. Because of mechanical coupling between the sensor and the host structure, this mechanical effect is picked up by the sensor and, through electromechanical coupling inside the active element, is reflected in electrical impedance measured at the sensor s terminals.
Stability of Large Parallel Tunnels Excavated in Weak Rocks: A Case Study
NASA Astrophysics Data System (ADS)
Ding, Xiuli; Weng, Yonghong; Zhang, Yuting; Xu, Tangjin; Wang, Tuanle; Rao, Zhiwen; Qi, Zufang
2017-09-01
Diversion tunnels are important structures for hydropower projects but are always placed in locations with less favorable geological conditions than those in which other structures are placed. Because diversion tunnels are usually large and closely spaced, the rock pillar between adjacent tunnels in weak rocks is affected on both sides, and conventional support measures may not be adequate to achieve the required stability. Thus, appropriate reinforcement support measures are needed, and the design philosophy regarding large parallel tunnels in weak rocks should be updated. This paper reports a recent case in which two large parallel diversion tunnels are excavated. The rock masses are thin- to ultra-thin-layered strata coated with phyllitic films, which significantly decrease the soundness and strength of the strata and weaken the rocks. The behaviors of the surrounding rock masses under original (and conventional) support measures are detailed in terms of rock mass deformation, anchor bolt stress, and the extent of the excavation disturbed zone (EDZ), as obtained from safety monitoring and field testing. In situ observed phenomena and their interpretation are also included. The sidewall deformations exhibit significant time-dependent characteristics, and large magnitudes are recorded. The stresses in the anchor bolts are small, but the extents of the EDZs are large. The stability condition under the original support measures is evaluated as poor. To enhance rock mass stability, attempts are made to reinforce support design and improve safety monitoring programs. The main feature of these attempts is the use of prestressed cables that run through the rock pillar between the parallel tunnels. The efficacy of reinforcement support measures is verified by further safety monitoring data and field test results. Numerical analysis is constantly performed during the construction process to provide a useful reference for decision making. The calculated deformations are in good agreement with the measured data, and the calculated forces of newly added cables show that the designed reinforcement is necessary and ensures sufficient stability. Finally, the role of safety monitoring in the evaluation of rock mass stability and the consideration of tunnel group effect are discussed. The work described in this paper aims to deepen the understanding of rock mass behaviors of large parallel tunnels in weak rocks and to improve the design philosophy.
SAR interferometry monitoring along the ancient Rome City Walls -the PROTHEGO project case study
NASA Astrophysics Data System (ADS)
Carta, Cristina; Cimino, Maria gabriella; Leoni, Gabriele; Marcelli, Marina; Margottini, Claudio; Spizzichino, Daniele
2017-04-01
Led by the Italian Institute for Environmental Protection and Research, in collaboration with NERC British Geological Survey, Geological and Mining Institute of Spain, University of Milano-Bicocca and Cyprus University of Technology, the PROTHEGO project, co-funded in the framework of JPI on Cultural Heritage EU program (2015-2018), brings an innovative contribution towards the analysis of geo-hazards in areas of cultural heritage in Europe. The project apply InSAR techniques to monitor monuments and sites that are potentially unstable due to natural geo-hazard. After the remote sensing investigation, detailed geological interpretation, hazard analysis, local-scale monitoring, advanced modeling and field surveying for some case studies is implemented. The selected case studies are: the Alhambra in Granada (ES); the Choirokoitia village (CY); the Derwent Valley Mills (UK); the Pompei archaeological site and Historical centre of Rome (IT). In this work, in particular, we will focus on ground deformation measurements (obtained by satellite SAR Interferometry) and on their interpretation with respect to the ancient Rome City Walls. The research activities carried out jointly with the Superintendence's technicians, foresee the implementation of a dedicated web GIS platform as a final repository for data storage and spatial data elaboration. The entire circuit of the ancient city walls (both Mura Aureliane and Mura Gianicolensi), was digitalized and georeferenced. All the elements (towers, gates and wall segments) were drawn and collected in order to produce a map of elements at risk. A detailed historical analysis (during the last twenty years) of the ground and structural deformations were performed. A specific data sheet of ruptures was created and fulfilled in order to produce a geographic inventory of past damage. This data sheet contains the following attributes: triggering data; typology of damage; dimension, triggering mechanism; presence of restoration works. More than thirty events were collected. The most frequent damages refers to human impacts, detachment of brick outer surface and wall collapse. The resulting damage layer was compared with different local hazard maps (e.g. landslide; subsidence; seismic) and also with the PS (monitored point) coming from the satellite analysis. The satellite monitoring data and analysis was based on the processing of COSMO-SkyMed image data (from 2011 to 2014). The data were obtained from the Extraordinary Monitoring Project Plan, implemented by the Italian Environmental Ministry. The preliminary analysis did not show large areas affected by deformations. A wide area affected by subsidence phenomena was detected in the south portion of the walls (close to the Ostiense district). While smaller and localized detachments were detected in the northern sector. Starting from these firsts results, COSMO-SkyMed SAR interferometry analysis seems to be very efficient due to its capability of providing a large number of deformation measurements over the whole site and structures with relatively small cost and without any impact. Cross analysis between interferometric results, natural hazard and historical data of the site (e.g. collapses, works) is still in progress in order to define a forecasting model aiming at an early identification of areas subjected to potential instability or sudden collapse
NASA Astrophysics Data System (ADS)
Ulrich, C.; Ajo Franklin, J. B.; Ekblaw, I.; Lindsey, N.; Wagner, A. M.; Saari, S.; Daley, T. M.; Freifeld, B. M.
2016-12-01
As global temperatures continue to rise, permafrost landscapes will experience more rapid changes than other global climate zones. Permafrost thaw is a result of increased temperatures in arctic settings resulting in surface deformation and subsurface hydrology changes. From an engineering perspective, surface deformation poses a threat to the stability of existing infrastructure such as roads, utility piping, and building structures. Preemptively detecting or monitoring subsurface thaw dynamics presents a difficult challenge due to the long time scales as deformation occurs. Increased subsurface moisture content results from permafrost thaw of which electrical resistivity tomography (ERT), soil temperature, and nuclear magnetic resonance (NMR) are directly sensitive. In this experiment we evaluate spatial and temporal changes in subsurface permafrost conditions (moisture content and temperature) at a experimental heating plot in Fairbanks, AK. This study focuses on monitoring thaw signatures using multiple collocated electrical resistivity (ERT), borehole temperature, and borehole nuclear magnetic resonance (NMR) measurements. Timelapse ERT (sensitive to changes in moisture content) was inverted using collocated temperature and NMR to constrain ERT inversions. Subsurface thermal state was monitored with timelapse thermistors, sensitive to soil ice content. NMR was collected in multiple boreholes and is sensitive to changes in moisture content and pore scale distribution. As permafrost thaws more hydrogen, in the form of water, is available resulting in a changing NMR response. NMR requires the availability of liquid water in order to induce spin of the hydrogen molecule, hence, if frozen water molecules will be undetectable. In this study, the permafrost is poised close to 0oC and is mainly silt with small pore dimensions; this combination makes NMR particularly useful due to the possibility of sub-zero thaw conditions within the soil column. Overall this experiment presents a complementary suite of methods that provides feedback on subsurface permafrost state even in cases where soil texture might control unfrozen water content.
NASA Astrophysics Data System (ADS)
Mangiorou, E.
2017-12-01
This paper describes a new method and apparatus for monitoring the distribution of the hydraulic stresses (type stresses I) and the residual stresses (type stresses II and III) in ferromagnetic steels within the elastic region and plastic deformation region, determining the deforming step them and use them for elimination and / or control of the stresses in the steel.
Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition
NASA Astrophysics Data System (ADS)
Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.
2006-03-01
As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.
NASA Astrophysics Data System (ADS)
Manzo, Mariarosaria; De Martino, Prospero; Castaldo, Raffaele; De Luca, Claudio; Dolce, Mario; Scarpato, Giovanni; Tizzani, Pietro; Zinno, Ivana; Lanari, Riccardo
2017-04-01
Ischia Island is a densely populated volcanic area located in the North-Western sector of the Gulf of Napoli (South Italy), whose activity is characterized by eruptions (the last one occurred in 1302 A.D.), earthquakes (the most disastrous ones occurred in 1881 and in 1883), fumarolic-hydrothermal manifestations and ground deformation. In this work we carry out the surface deformation time-series analysis occurring at the Island by jointly exploiting data collected via two different monitoring systems. In particular, we take advantage from the large amount of periodic and continuous geodetic measurements collected by the GPS (campaign and permanent) stations deployed on the Island and belonging to the INGV-OV monitoring network. Moreover, we benefit from the large, free and open archive of C-band SAR data acquired over the Island by the Sentinel-1 constellation of the Copernicus Program, and processed via the advanced Differential SAR Interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS) algorithm [Berardino et al., 2002]. We focus on the 2014-2017 time period to analyze the recent surface deformation phenomena occurring on the Island, thus extending a previous study, aimed at investigating the temporal evolution of the ground displacements affecting the Island and limited to the 1992-2003 time interval [Manzo et al., 2006]. The performed integrated analysis provides relevant spatial and temporal information on the Island surface deformation pattern. In particular, it reveals a rather complex deformative scenario, where localized phenomena overlap/interact with a spatially extended deformation pattern that involves many Island sectors, with no evidence of significant uplift phenomena. Moreover, it shows a good agreement and consistency between the different kinds of data, thus providing a clear picture of the recent dynamics at Ischia Island that can be profitably exploited to deeply investigate the physical processes behind the observed deformation phenomena. Acknowledgments This work is partially supported by the IREA-CNR/Italian Department of Civil Protection agreement and the I-AMICA project (Infrastructure of High Technology for Environmental and Climate Monitoring-PONa3_00363). References Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti (2002), A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 40, 2375-2383, doi:10.1109/TGRS.2002.803792. Manzo, M., G. P. Ricciardi, F. Casu, G. Ventura, G. Zeni, S. Borgström, P. Berardino, C. Del Gaudio, and R. Lanari (2006), Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry, Journal of Volcanology and Geothermal Research, 151, 399-416, doi:10.1016/j.jvolgeores.2005.09.010.
Seafloor Geodetic Monitoring of the Central Andean Subduction Zone: The Geosea Array
NASA Astrophysics Data System (ADS)
Kopp, H.; Lange, D.; Contreras Reyes, E.; Behrmann, J. H.; McGuire, J. J.; Flueh, E. R.
2014-12-01
Seafloor geodesy has been identified as one of the central tools in marine geosciences to monitor seafloor deformation at high resolution. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising a total of 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distance. Vertical motion is obtained from pressure gauges. Integrated inclinometers monitor station settlement in two horizontal directions. Travel time between instruments and the local water sound velocity will be recorded autonomously subsea without system or human intervention for up to 3.5 years. Data from the autonomous network on the seafloor can be retrieved via the integrated high-speed acoustic telemetry link without recovering the seafloor units. In late 2015 GeoSEA will be installed on the Iquique segment of the South America - Nazca convergent plate boundary to monitor crustal deformation. The Iquique seismic gap experienced the 2014 Mw 8.1 Pisagua earthquake, which apparently occurred within a local locking minimum. It is thus crucial to better resolve resolve strain in the forearc between the mainland and the trench in order to improve our understanding of forearc deformation required for hazard assessment. Mobile autonomous seafloor arrays for continuous measurement of active seafloor deformation in hazard zones have the potential to lead to transformative discoveries of plate boundary/fault zone tectonic processes and address a novel element of marine geophysical research.
Microseismic Events Detection on Xishancun Landslide, Sichuan Province, China
NASA Astrophysics Data System (ADS)
Sheng, M.; Chu, R.; Wei, Z.
2016-12-01
On landslide, the slope movement and the fracturing of the rock mass often lead to microearthquakes, which are recorded as weak signals on seismographs. The distribution characteristics of temporal and spatial regional unstability as well as the impact of external factors on the unstable regions can be understand and analyzed by monitoring those microseismic events. Microseismic method can provide some information inside the landslide, which can be used as supplementary of geodetic methods for monitoring the movement of landslide surface. Compared to drilling on landslide, microseismic method is more economical and safe. Xishancun Landslide is located about 60km northwest of Wenchuan earthquake centroid, it keep deforming after the earthquake, which greatly increases the probability of disasters. In the autumn of 2015, 30 seismometers were deployed on the landslide for 3 months with intervals of 200 500 meters. First, we used regional earthquakes for time correction of seismometers to eliminate the influence of inaccuracy GPS clocks and the subsurface structure of stations. Due to low velocity of the loose medium, the travel time difference of microseismic events on the landslide up to 5s. According to travel time and waveform characteristics, we found many microseismic events and converted them into envelopes as templates, then we used a sliding-window cross-correlation technique based on waveform envelope to detect the other microseismic events. Consequently, 100 microseismic events were detected with the waveforms recorded on all seismometers. Based on the location, we found most of them located on the front of the landslide while the others located on the back end. The bottom and top of the landslide accumulated considerable energy and deformed largely, radiated waves could be recorded by all stations. What's more, the bottom with more events seemed very active. In addition, there were many smaller events happened in middle part of the landslide where released less energy, generated signals could be recorded only by a few stations. Based on the distribution of those microseismic events, we found four unstable regions which agreed well with deformed areas monitored by Geodesy methods. The distribution of those microseismic events, should be related to internal structure and movement of the landslide.
Volumetric measurement of rock movement using photogrammetry
Benton, Donovan J.; Iverson, Stephen R.; Martin, Lewis A.; Johnson, Jeffrey C.; Raffaldi, Michael J.
2016-01-01
NIOSH ground control safety research program at Spokane, Washington, is exploring applications of photogrammetry to rock mass and support monitoring. This paper describes two ways photogrammetric techniques are being used. First, photogrammetric data of laboratory testing is being used to correlate energy input and support deformation. This information can be used to infer remaining support toughness after ground deformation events. This technique is also demonstrated in a field application. Second, field photogrammetric data is compared to crackmeter data from a deep underground mine. Accuracies were found to average 8 mm, but have produced results within 0.2 mm of true displacement, as measured by crackmeters. Application of these techniques consists of monitoring overall fault activity by monitoring multiple points around the crackmeter. A case study is provided in which a crackmeter is clearly shown to have provided insufficient information regarding overall fault ground deformation. Photogrammetry is proving to be a useful ground monitoring tool due to its unobtrusiveness and ease of use. PMID:27110429
NASA Astrophysics Data System (ADS)
Afanasjev, A. V.; Abusara, H.; Agbemava, S. E.
2018-03-01
Octupole deformed shapes in neutron-rich actinides and superheavy nuclei as well as extremely deformed shapes of the N∼ Z light nuclei have been investigated within the framework of covariant density functional theory. We confirmed the presence of new region of octupole deformation in neutron-rich actinides with the center around Z∼ 96,N∼ 196 but our calculations do not predict octupole deformation in the ground states of superheavy Z≥slant 108 nuclei. As exemplified by the study of 36Ar, the nodal structure of the wavefunction of occupied single-particle orbitals in extremely deformed structures allows to understand the formation of the α-clusters in very light nuclei, the suppression of the α-clusterization with the increase of mass number, the formation of ellipsoidal mean-field type structures and nuclear molecules.
Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring
Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni
2015-01-01
This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro. PMID:26295394
Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring.
Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni
2015-08-19
This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.
The thermal and mechanical deformation study of up-stream pumping mechanical seal
NASA Astrophysics Data System (ADS)
Chen, H. L.; Xu, C.; Zuo, M. Z.; Wu, Q. B.
2015-01-01
Taking the viscosity-temperature relationship of the fluid film into consideration, a 3-D numerical model was established by ANSYS software which can simulate the heat transfer between the upstream pumping mechanical seal stationary and rotational rings and the fluid film between them as well as simulate the thermal deformation, structure deformation and the coupling deformation of them. According to the calculation result, thermal deformation causes the seal face expansion and the maximum thermal deformation appears at the inside of the seal ring. Pressure results in a mechanical deformation, the maximum deformation occurs at the top of the spiral groove and the overall trend is inward the mating face, opposite to the thermal deformation. The coupling deformation indicate that the thermal deformation can be partly counteracted by pressure deformation. Using this model, the relationship between deformation and shaft speed and the sealing liquid pressure was studied. It's found that the shaft speed will both enhance the thermal and structure deformation and the fluid pressure will enhance the structure deformation but has little to do with the thermal deformation. By changing the sealing material, it's found that material with low thermal expansion coefficient and low elastic modulus will suffer less thermal-pressure deformation.
NASA Astrophysics Data System (ADS)
Su, Zhe; Hu, Jyr-Ching; Wang, Erchie; Li, Yongsheng; Yang, Yinghui; Wang, Pei-Ling
2018-01-01
The Ilan Plain, located in Northeast Taiwan, represents a transition zone between oblique collision (between the Luzon Arc and the Eurasian Plate) and backarc extension (the Okinawa Trough). The mechanism for this abrupt transition from arc-continent collision to backarc extension remains uncertain. We used Global Positioning System (GPS), leveling and multi-interferogram Small Baseline Persistent Scatterer Interferometry (SBAS-PSI) data to monitor the interseismic activity in the basin. A common reference site was selected for the data sets. The horizontal component of GPS and the vertical measurements of the leveling data were converted to line-of-sight (LOS) data and compared with the SBAS-PSI data. The comparison shows that the entire Ilan Plain is undergoing rapid subsidence at a maximum rate of -11 ± 2 mm yr-1 in the LOS direction. We speculate that vertical deformation and anthropogenic activity may play important roles in this deformation. We also performed a joint inversion modeling that combined both the DInSAR and strong motion data to constrain the source model of the 2005 Ilan earthquake. The best-fitting model predicts that the Sansing fault caused the 2005 Ilan earthquake. The observed transtensional deformation is dominated by the normal faulting with a minor left-lateral strike-slip motion. We compared our SBAS-PSI results with the short-term (2005-2009) groundwater level changes. The results indicate that although pumping-induced surface subsidence cannot be excluded, tectonic deformation, including rapid southward movement of the Ryukyu arc and backarc extension of the Okinawa Trough, characterizes the opening of the Ilan Plain. Furthermore, a series of normal and left-lateral strike-slip transtensional faults, including the Choshui and Sansing faults, form a bookshelf-like structure that accommodates the extension of the plain. Although situated in a region of complex structural interactions, the Ilan Plain is primarily controlled by extension rather than by shortening. As the massive, pre-existing Philippines-Ryukyu island arc was pierced by the Philippine Sea Plate, the Ilan Plain formed as a remnant backarc basin on the northeastern corner of Taiwan.
NASA Astrophysics Data System (ADS)
Downey, Austin; Garcia-Macias, Enrique; D'Alessandro, Antonella; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo
2017-04-01
Interest in the concept of self-sensing structural materials has grown in recent years due to its potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for monitoring applications due to their numerous possible field applications, their ease of use and long-term stability. Additionally, cement-based sensors offer a unique opportunity for structural health monitoring of civil structures because of their compatibility with new or existing infrastructure. Particularly, the addition of conductive carbon nanofillers into a cementitious matrix provides a self-sensing structural material with piezoresistive characteristics sensitive to deformations. The strain-sensing ability is achieved by correlating the external loads with the variation of specific electrical parameters, such as the electrical resistance or impedance. Selection of the correct electrical parameter for measurement to correlate with features of interest is required for the condition assessment task. In this paper, we investigate the potential of using altering electrical potential in cement-based materials doped with carbon nanotubes to measure strain and detect damage in concrete structures. Experimental validation is conducted on small-scale specimens including a steel-reinforced beam of conductive cement paste. Comparisons are made with constant electrical potential and current methods commonly found in the literature. Experimental results demonstrate the ability of the changing electrical potential at detecting features important for assessing the condition of a structure.
Smart Textiles for Strengthening of Structures
NASA Astrophysics Data System (ADS)
Górski, Marcin; Krzywoń, Rafał; Dawczyński, Szymon; Szojda, Leszek; Salvado, Rita; Lopes, Catarina; Araujo, Pedro; Velez, Fernando Jose; Castro-Gomes, Joao
2016-11-01
This paper presents results of mechanical tests on a prototype of an innovative structural strengthening in form of self-monitoring fabric. Smart textile employs carbon fibers conductivity for measuring strains while monitoring changes of electric resistance under increasing load. A general solution was tested in a series of calibrating tests on strengthening of small size concrete slabs. Promising results of simple specimen, has encouraged the research team to perform the next tests using mastered carbon fibre reinforced fabric. Main tests were performed on natural scale RC beam. Smart textile proved its efficiency in both: strengthening and monitoring of strains during load increase. New strengthening proposal was given 10% increase of loading capacity and the readings of strain changes were similar to those obtained in classical methods. In order to calibrate the prototype and to define range limits of solution usability, textile sensor was tested in areas of large deformations (timber beam) and aswell as very small strains (bridge bearing block). In both cases, the prototype demonstrated excellent performance in the range of importance for structural engineering. This paper also presents an example of use of the smart strengthening in situ, in a real life conditions.
NASA Astrophysics Data System (ADS)
Bakker, O. J.; Gibson, C.; Wilson, P.; Lohse, N.; Popov, A. A.
2015-10-01
Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Goldberg, Robert K.; Lerch, Bradley A.; Saleeb, Atef F.
2009-01-01
Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include (1) diagnostic/detection methodology, (2) prognosis/lifing methodology, (3) diagnostic/prognosis linkage, (4) experimental validation, and (5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multimechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Goldberg, Robert K.; Lerch, Bradley A.; Saleeb, Atef F.
2009-01-01
Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include 1) diagnostic/detection methodology, 2) prognosis/lifing methodology, 3) diagnostic/prognosis linkage, 4) experimental validation and 5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multi-mechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.
NASA Astrophysics Data System (ADS)
Chen, Wenzhao; Cui, Wenping
2018-03-01
The SMW method has many advantages, such as little influence on the surrounding environment, good watertight performance, wide range of application, short construction period, low cost and so on. In this paper, we chose the SMW engineering method combined with anchor cable to support structure in the second phase deep foundation pit of Jinan LuJinDongCheng as the research object, monitored and analysed the horizontal displacement of the pile top, Peripheral surface subsidence and internal force of the anchor cable in the foundation pit. We also discussed the displacement, internal force of anchor cable and the settlement of surrounding environment in the excavation of foundation pit and in different stages of construction. Conclusion:(1)The maximum horizontal displacement of the retaining structure is closely related to the depth and time of excavation, the construction of anchor cable can well limit the deformation of pile body; (2)Groundwater seepage caused by foundation pit dewatering will change the effective stress of soil. The change of groundwater level has an important influence on the working behavior of smw anchor cable supporting structure.
Datum Feature Extraction and Deformation Analysis Method Based on Normal Vector of Point Cloud
NASA Astrophysics Data System (ADS)
Sun, W.; Wang, J.; Jin, F.; Liang, Z.; Yang, Y.
2018-04-01
In order to solve the problem lacking applicable analysis method in the application of three-dimensional laser scanning technology to the field of deformation monitoring, an efficient method extracting datum feature and analysing deformation based on normal vector of point cloud was proposed. Firstly, the kd-tree is used to establish the topological relation. Datum points are detected by tracking the normal vector of point cloud determined by the normal vector of local planar. Then, the cubic B-spline curve fitting is performed on the datum points. Finally, datum elevation and the inclination angle of the radial point are calculated according to the fitted curve and then the deformation information was analyzed. The proposed approach was verified on real large-scale tank data set captured with terrestrial laser scanner in a chemical plant. The results show that the method could obtain the entire information of the monitor object quickly and comprehensively, and reflect accurately the datum feature deformation.
NASA Astrophysics Data System (ADS)
Carreon-Freyre, D.; Cerca, M.; Barrientos, B.; Gutierrez, R.; Blancas, D.
2012-12-01
Major cities of Central Mexico with lowering of land elevation problems are located in inter-volcanic and fault bounded basins within the central Trans-Mexican Volcanic Belt (TMVB). The most representative and studied case of ground deformation is Mexico City, where the Iztapalapa Municipality presents the highest population density. This area is located over the geological contact between the "Sierra de Santa Catarina" volcanic range and a lacustrine plain. Filling of lacustrine basins includes silty and clayey sediments as well as pyroclastic deposits (coarse and fine grained) and volcanic rocks layers. We used Ground Penetrating Radar (GPR) and MASW prospection to evaluate contrasts in the physical properties of fine grained soils and identify geometry of the deformational features and implemented a mechanical system for in situ monitoring in fractured sites. Deformational features in this basin reflect an interplay between the geological history (depositional conditions), load history, seismic activity, and faulting. Plastic mechanical behaviour predominates in these clayey sediments and differential deformation locally triggers brittle fracturing and/or subsidence of the surface. In this work we present the results of monitoring and characterization of ground deformation and fracturing in different sequences, our results show a dynamic interplay between the mechanisms of ground fracturing and the stress history of sedimentary sequences. Relating the mechanical behaviour of the studied sequences with variations of physical and geological properties should be taken into account to estimate land level lowering and risk of fracturing for urban development planning.
NASA Astrophysics Data System (ADS)
Wasowski, J.; Chiaradia, M.; Bovenga, F.; Nutricato, R.; Nitti, D. O.; Milillo, G.; Guerriero, L.
2014-12-01
The improving temporal and spatial resolutions of new generation space-borne X-Band SAR sensors such as COSMO-SkyMed (CSK) constellation, and therefore their better monitoring capabilities, will guarantee increasing and more efficient use of multi-temporal interferometry (MTI) in landslide investigations. Thanks to their finer spatial resolution with respect to C-band data, X-band InSAR applications are very promising also for monitoring smaller landslides and single engineering structures sited on potentially unstable slopes. This work is focused on the detection of precursory signals of an impending slope failure from MTI time series of ground deformations obtained by exploiting 3 m resolution CSK data. We show the case of retrospectively captured pre-failure strains related to the landslide which occurred on January 2014 close to the town of Marina di Andora. The landslide caused the derailment of a train and the interruption of the railway line connecting north-western Italy to France. A dataset of 56 images acquired in STRIPMAP HIMAGE mode by CSK constellation from October 2008 to May 2014 was processed through SPINUA algorithm to derive the ground surface deformation map and the time series of displacement rates for each coherent radar target. We show that a cluster of moving targets coincides with the structures (buildings and terraces) affected by the 2014 landslide. The analysis of the MTI time series further shows that the targets had been moving since 2009, and thus could have provided a forewarning signal about ongoing slope or engineering structure instability. Although temporal landslide prediction remains difficult even via in situ monitoring, the presented case study indicates that MTI relying on high resolution radars such as CSK can provide very useful information for slope hazard mapping and possibly for early warning. Acknowledgments DIF provided contribution to data analysis within the framework of CAR-SLIDE project funded by MIUR (PON01_00536).
NASA Astrophysics Data System (ADS)
Vieira, Gonçalo; Catalão, João; Prates, Gonçalo; Correia, António
2014-05-01
Rockglaciers have been described by various authors in the South Shetlands archipelago (Antarctic Peninsula region), with the main contribution being that of Serrano and Lopez-Martínez (2000), who have described 9 rockglaciers and 11 protalus lobes. However, little is known about the deformation rates of rockglaciers in the region nor about possible changes associated with climate warming. Since the Western Antarctic Peninsula region is one of the areas on Earth which has been warming at a faster rate, monitoring rockglacier deformation should provide insight into the influence of climate change on geomorphodynamics. Hurd rockglacier is located in the south part of Hurd Peninsula, in a glacial cirque with a ridge varying from 227 to 301 m asl that connects directly to False Bay through a series of raised-beach terraces. The bedrock is composed of sandstones, shales and greywackes with a flysch facies, of the Myers Bluff formation. The valley shows steep rockwalls with extensive scree slopes and a small retreating valley glacier with a prominent frontal moraine, from where the rockglacier develops. The rockglacier body is ci 630 m long and 290 m wide and the surface shows frequent pressure ridges and furrows, especially in the lower sector. The rockglacier front is 15-20 m high and shows a slope of 45º (Serrano and López-Martínez 2000). In this poster we present the first data from surface deformation monitoring using stakes and D-GPS measurements conducted annually since 2011. Preliminary results show deformation values of 8 to 15 cm/year. Since 2011 we are also conducting DInSAR analysis using TerraSAR-X imagery and despite problems related mostly to snow cover, we have obtained image pairs allowing to identify deformation in the same order of magnitude of field observations. We expect to be able to present new results from the summer of 2013-14 campaign, which include a more intensive image acquisition plan. Results from a Vertical Electrical Sounding fro 2013 confirming the presence of permafrost, as indicated by Serrano et al (2004) are presented. The preliminary results from the monitoring of Hurd rockglacier and especially the application of DInSAR monitoring techinques indicate that such an approach is valid for monitoring surface deformation in the Maritime Antarctic and that it can be used to identify areas of high deformation rates, without a priori field knowledge. The main limitation is the short snow free period and the irregularity of snow fall events that occur also during the summer. This work was done in the framework of the PTDC/AAG-GLO/3908/2012 program, financed by FCT which the author acknowledge gratefully.
Infrared thermography for condition monitoring - A review
NASA Astrophysics Data System (ADS)
Bagavathiappan, S.; Lahiri, B. B.; Saravanan, T.; Philip, John; Jayakumar, T.
2013-09-01
Temperature is one of the most common indicators of the structural health of equipment and components. Faulty machineries, corroded electrical connections, damaged material components, etc., can cause abnormal temperature distribution. By now, infrared thermography (IRT) has become a matured and widely accepted condition monitoring tool where the temperature is measured in real time in a non-contact manner. IRT enables early detection of equipment flaws and faulty industrial processes under operating condition thereby, reducing system down time, catastrophic breakdown and maintenance cost. Last three decades witnessed a steady growth in the use of IRT as a condition monitoring technique in civil structures, electrical installations, machineries and equipment, material deformation under various loading conditions, corrosion damages and welding processes. IRT has also found its application in nuclear, aerospace, food, paper, wood and plastic industries. With the advent of newer generations of infrared camera, IRT is becoming a more accurate, reliable and cost effective technique. This review focuses on the advances of IRT as a non-contact and non-invasive condition monitoring tool for machineries, equipment and processes. Various conditions monitoring applications are discussed in details, along with some basics of IRT, experimental procedures and data analysis techniques. Sufficient background information is also provided for the beginners and non-experts for easy understanding of the subject.
Models of determining deformations
NASA Astrophysics Data System (ADS)
Gladilin, V. N.
2016-12-01
In recent years, a lot of functions designed to determine deformation values that occur mostly as a result of settlement of structures and industrial equipment. Some authors suggest such advanced mathematical functions approximating deformations as general methods for the determination of deformations. The article describes models of deformations as physical processes. When comparing static, cinematic and dynamic models, it was found that the dynamic model reflects the deformation of structures and industrial equipment most reliably.
NASA Astrophysics Data System (ADS)
Frolova, Irina; Agakhanov, Murad
2018-03-01
The development of computing techniques to analyze underground structures, buildings in high-rise construction that would fully take account of the conditions of their design and operation, as well as the real material properties, is one of the important trends in structural mechanics. For the territory in high-rise construction it is necessary to monitor the deformations of the soil surface. When high-rise construction is recommended to take into account the rheological properties and temperature deformations of the soil, the effect of temperature on the mechanical characteristics of the surrounding massif. Similar tasks also arise in the creation and operation of underground parts of high-rise construction, which are used for various purposes. These parts of the structures are surrounded by rock massifs of various materials. The actual mechanical characteristics of such materials must be taken into account. The objective property of nearly all materials is their non-homogeneity, both natural and technological. The work addresses the matters of building nonhomogeneous media initial models based on the experimental evidence. This made it possible to approximate real dependencies and obtain the appropriate functions in a simple and convenient way.
Long term monitoring of landslide: observation gravitational slope cycles
NASA Astrophysics Data System (ADS)
Palis, Edouard; Lebourg, Thomas; Vidal, Maurin
2016-04-01
Since several years of studies on landslides, we realized the role and subtle interactions that existed between the structural complexity, masses dynamics and complex internal circulation of fluids. Thus, to gain a better understanding of the processes taking place during the evolution of an unstable slope, an observational study is necessary. In this perspective, our team currently monitors slow moving landslide zones. The aim of such a monitoring is to gain a better knowledge of the links between external forcing (meteorological, seismological) and signals going out of the slope (kinematic, vibrations, electrical resistivity). In December 2000, a dramatic event affected the sandy/clayey landslide in the Southern Alpes Maritimes (France). A 10 meters high scarp appeared at the foot of the landslide and affected private yards nearby. This area then became a major concern for local authorities and understand the processes taking place, a scientific challenge. In order to understand the land-sliding reactivations and to quantify the natural cycles of deformations, we analyse the main factors of this complex system. After 10 years of observation we are now able to highlight some of the complex behaviours by the measurement of physical parameters (geophysical monitoring). A permanent 115 m ERT line (5 meters electrode spacing) has been installed and provides an acquisition daily since 2006. The daily acquisitions are now accompanied by continuous measurements from boreholes (thermometers, piezometers, tiltmeters) and pluviometry. We are able to control the whole monitoring from the lab, and all these data are transmitted in real time. The analysis of these large amounts of data over large time series allows the detection of seasonal cycles of surface activity. The deformation taking place can be assimilated to a near-elastic deformation and show a lateral decoupling on both sides of the fault cutting the landslide. These deformation cycles can be associated with the variations of the shallow piezometric level. The analyze of the temporal and spatial evolution of the apparent electrical resistivity revealed: (1) different compartments in depth and the position of the fault cutting the calcareous substratum, (2) the presence of a deeper conductive area link by the fault to the landslide body and interpreted as a saturated zone. In this study we aim at showing that analyzing these different deep clusters of resistivity may help us to understand the surface dynamics of the landslide. This new study explains the major role of the faults within the landslide, as well as the chronology of the water flow in the massif, inducing a delay between atmospheric solicitations and the movement itself. This allows a better understanding of the complex and uneven in time dynamic in such areas. Keywords: landslide, geophysical monitoring, ERT, meteorology, dynamic cycles.
High frequent total station measurements for the monitoring of bridge vibrations
NASA Astrophysics Data System (ADS)
Lienhart, Werner; Ehrhart, Matthias; Grick, Magdalena
2017-03-01
Robotic total stations (RTS) are frequently used for the measurement of temperature induced bridge deformations or during load testing of bridges. In experimental setups, total stations have also been used for the measurement of dynamic bridge deformations. However, with standard configurations the measurement rate is not constant and on average an update rate of 7-10Hz can be achieved. This is not sufficient for the vibration monitoring of bridges considering their natural frequencies which are also in the same range. In this paper, we present different approaches to overcome these problems. In the first two approaches we demonstrate how the measurement rate to prisms can be increased to 20Hz to determine vertical deformations of bridges. Critical aspects like the measurement resolution of the automated target tracking and the correct sequence of steering commands are discussed. In another approach we demonstrate how vertical bridge vibrations can be measured using an image assisted total station (IATS) and corresponding processing techniques. The advantage of image-based methods is that structural features of a bridge like bolts can be used as targets. Therefore, no expensive prisms have to be mounted and access to the bridge is not required. All approaches are verified by laboratory investigations and their suitability is proven in a field experiment on a 74m long footbridge. In this field experiment the natural frequencies derived from the total station measurements are compared to the results of accelerometer measurements.
Unstable plastic deformation of ultrafine-grained copper at 0.5 K
NASA Astrophysics Data System (ADS)
Isaev, N. V.; Grigorova, T. V.; Shumilin, S. E.; Polishchuk, S. S.; Davydenko, O. A.
2017-12-01
We investigate the relation between the strain-hardening rate and flow instability of polycrystalline Cu-OF deformed by tension at a constant rate in a liquid 3He atmosphere. The microstructure of the ultrafine-grained crystal, obtained by the equal-channel angular hydro-extrusion method, was varied by annealing at recovery and recrystallization temperatures and was monitored by x-ray diffraction. It is shown that that the flow instability, manifesting itself as macroscopic stress serrations on the tension curve, appears at a threshold tension sufficient for activation of a dynamic recovery that leads to a decrease of the strain-hardening coefficient. We discuss the effect of grain size and the initial dislocation density on the evolution of the dislocation structure that determines the scale and the statistical properties of the flow instability in the investigated crystals at low temperature.
Wireless Zigbee strain gage sensor system for structural health monitoring
NASA Astrophysics Data System (ADS)
Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce
2009-05-01
A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost, and temperature insensitivity for critical structural applications, which require immediate monitoring and feedback.
Design of a self-calibration high precision micro-angle deformation optical monitoring scheme
NASA Astrophysics Data System (ADS)
Gu, Yingying; Wang, Li; Guo, Shaogang; Wu, Yun; Liu, Da
2018-03-01
In order to meet the requirement of high precision and micro-angle measurement on orbit, a self-calibrated optical non-contact real-time monitoring device is designed. Within three meters, the micro-angle variable of target relative to measuring basis can be measured in real-time. The range of angle measurement is +/-50'', the angle measurement accuracy is less than 2''. The equipment can realize high precision real-time monitoring the micro-angle deformation, which caused by high strength vibration and shock of rock launching, sun radiation and heat conduction on orbit and so on.
Developing geophysical monitoring at Mayon volcano, a collaborative project EOS-PHIVOLCS
NASA Astrophysics Data System (ADS)
Hidayat, D.; Laguerta, E.; Baloloy, A.; Valerio, R.; Marcial, S. S.
2011-12-01
Mayon is an openly-degassed volcano, producing mostly small, frequent eruptions, most recently in Aug-Sept 2006 and Dec 2009. Mayon volcano status is level 1 with low seismicity dominated mostly local and regional tectonic earthquakes with continuous emission of SO2 from its crater. A research collaboration between Earth Observatory of Singapore-NTU and Philippine Institute of Volcanology and Seismology (PHIVOLCS) have been initiated in 2010 with effort to develop a multi-disciplinary monitoring system around Mayon includes geophysical monitoring, gas geochemical monitoring, and petrologic studies. Currently there are 4 broadband seismographs, 3 short period instruments, and 4 tiltmeters. These instruments will be telemetered to the Lignon Hill Volcano Observatory through radio and 3G broadband internet. We also make use of our self-made low-cost datalogger which has been operating since Jan 2011, performing continuous data acquisition with sampling rate of 20 minute/sample and transmitted through gsm network. First target of this monitoring system is to obtain continuous multi parameter data transmitted in real time to the observatory from different instruments. Tectonically, Mayon is located in the Oas Graben, a northwest-trending structural depression. Previous study using InSAR data, showing evidence of a left-lateral oblique slip movement of the fault North of Mayon. Understanding on what structures active deformation is occurring and how deformation signal is currently partitioned between tectonic and volcanic origin is a key for characterizing magma movement in the time of unrest. Preliminary analysis of the tangential components of tiltmeters (particularly the stations 5 and 7.5 NE from the volcano) shows gradual inflation movement over a few months period. The tangential components for tiltmeters are roughly perpendicular to the fault north of Mayon. This may suggest downward tilting of the graben in the northern side of Mayon. Another possibility is that the magmatic system under Mayon is asymmetrical. This hypothesis can be verified later using continuous GPS data for stations perpendicular to the fault and better azimuthal tiltmeter coverage around the volcano. Earthquakes in the area reflect both Mayon volcanic activity and its adjacent tectonic activity. High quality of hypocenter location is essential. Before detailed study of volcano-related seismic events, our broadband seismograph study will refine a velocity model underneath the volcano with the analysis of receiver functions of teleseismic earthquakes. Such information can be also used to better formulate a coherent regional tectonic model and help characterize the seismic sources in the region. Our study presents the depth of Moho and crustal velocity structure including low velocity zones, which hint the depth of magma bodies. Combined analysis of multi-parameter geophysical data will enable the possibility to locate and quantified the fault movement adjacent to Mayon, isolate seismic and deformation signal related to volcanic origin, for better understanding magmatic system of Mayon volcano.
a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning
NASA Astrophysics Data System (ADS)
Li, J.; Wan, Y.; Gao, X.
2012-07-01
With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ran, Hao; de Riese, Tamara; Llorens, Maria-Gema
The forty-year history of the Journal of Structural Geology has recorded an enormous increase in the description, interpretation and modelling of deformation structures. Amongst factors that control deformation and the resulting structures, mechanical anisotropy has proven difficult to tackle. Using a Fast Fourier Transform-based numerical solver for viscoplastic deformation of crystalline materials, we illustrate in this paper how mechanical anisotropy has a profound effect on developing structures, such as crenulation cleavages, porphyroclast geometry and the initiation of shear bands and shear zones.
Ran, Hao; de Riese, Tamara; Llorens, Maria-Gema; ...
2018-05-20
The forty-year history of the Journal of Structural Geology has recorded an enormous increase in the description, interpretation and modelling of deformation structures. Amongst factors that control deformation and the resulting structures, mechanical anisotropy has proven difficult to tackle. Using a Fast Fourier Transform-based numerical solver for viscoplastic deformation of crystalline materials, we illustrate in this paper how mechanical anisotropy has a profound effect on developing structures, such as crenulation cleavages, porphyroclast geometry and the initiation of shear bands and shear zones.
Study of the active deformation of Mitidja (Tell Atlas, Algeria) by GPS
NASA Astrophysics Data System (ADS)
Bacha, Wahab; Masson, Frederic; Yelles-Chaouche, Abdelkrim; Lammali, Kamel; Bellik, Amar; Hamai, Lamine
2013-04-01
A network was created in the Mitidja region around the capital Algiers (Algeria). It has been established to study the deformation of the region and the slow operation of flaws in it. The network was installed by a distribution of GPS stations according to structural domains existing in the region. Twelve bases spread across the study area, have been installed. The measurements were acquired by performing four measurement campaigns in 2006, 2007, 2009 and 2010, with sessions over a month of action. This work allowed the installation of a geodetic network of regional monitoring by methodology GPS in the zone of Mitidja (Tellian Atlas, Algeria). Four observation campaigns were carried out on this area with session's superiors in one month of measurements. The treatment was carried out with software GAMIT-GLOBK, the network is attached to several world stations IGS treated between 2000-2010, indexed in a precise frame of reference ITRF05. The results presented in this memory show a deformation in shortening ≤ 0.5 mm/an in the plain of Mitidja and the surrounding Solid masses.
NASA Astrophysics Data System (ADS)
Mi, S. J.; Li, Y. T.; Wang, F.; Li, L.; Ge, Y.; Luo, L.; Zhang, C. L.; Chen, J. B.
2017-09-01
The Qinghai Tibetan Plateau permafrost has been the largest permafrost region in middle-low latitude in the world for its high altitude. For the large area permafrost, especially surface deformation brought by it, have serious influence on the road engineering, road maintaining and regional economic development. Consequently, it is essential to monitor the surface deformation and study factors that influent it. We monitored an area named Wudaoliang from July 25, 2015 to June 1, 2016 and 15 Sentinel images were obtained during this time. The area we chose is about 35 kilometers long and 2 kilometers wide, and the national road 109 of China passes through the area. The traditional PS-INSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) method is not suitable because less historical images in the research area and leading to the number of PS (Persistent Scatterer) points is not enough to obtain accurate deformation results. Therefore, in this paper, we used another method which named QUASI-PSInSAR (QUASI Persistent Scatterer Interferometric Synthetic Aperture Radar) to acquire deformation for it has the advantage to weaken or eliminate the effects of spatial and temporal correlation, which has proved by other scholar. After processing 15 images in the SARproz software, we got the conclusions that, 1) the biggest deformation velocity in the whole area was about 127.9mm/year and about 109.3 mm/year in the road; 2) apparent deformation which have surface deformation more than 30mm/year was about 1.7Km in the road. Meanwhile, soil moisture(SM), Land surface temperature (LST) and surface water(SW), which are primary parameters of the land surface over the same time were reversed by using Sentinel data, Landsat data and ZY-3 data, respectively. After analyzing SM, LST , SW and deformation, we obtained that wet areas which had bigger SM, lower LST and more SW, had greater percentage of severe deformation than arid areas; besides, deformation pattern were different in arid areas and wet areas. During the research time, frost heaving firstly accounted for a large proportion both in the arid and wet areas with the decrease of downward radiation from July to December; after December, thaw settlement came into prominence with the increase downward radiation in the arid areas, while in the wet areas, surface put into diverse situations because of water transformation leading to severe deformation. In summary, soil moisture is an important factor that influences the surface deformation. This relationship between deformation process and soil moisture will be researched more in our further work.
NASA Astrophysics Data System (ADS)
Nadimpalli, Venkata K.; Nagy, Peter B.
2018-04-01
Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.
Research on Damage Identification of Bridge Based on Digital Image Measurement
NASA Astrophysics Data System (ADS)
Liang, Yingjing; Huan, Shi; Tao, Weijun
2017-12-01
In recent years, the number of the damage bridge due to excessive deformation gradually increased, which caused significant property damage and casualties. Hence health monitoring and the damage detection of the bridge structure based on the deflection measurement are particularly important. The current conventional deflection measurement methods, such as total station, connected pipe, GPS, etc., have many shortcomings as low efficiency, heavy workload, low degree of automation, operating frequency and working time constrained. GPS has a low accuracy in the vertical displacement measurement and cannot meet the dynamic measured requirements of the current bridge engineering. This paper presents a bridge health monitoring and damage detection technology based on digital image measurement method in which the measurement accuracy is sub-millimeter level and can achieve the 24-hour automatic non-destructive monitoring for the deflection. It can be concluded from this paper that it is feasible to use digital image measurement method for identification of the damage in the bridge structure, because it has been validated by the theoretical analysis, the laboratory model and the application of the real bridge.
NASA Astrophysics Data System (ADS)
Bour, O.; Ruelleu, S.; Le Borgne, T.; Boudin, F.; Moreau, F.; Durand, S.; Longuevergne, L.
2011-12-01
Crystalline rocks aquifers are difficult to characterize since flow is mainly localized in few fractures or faults. In particular, the geometry of the main flow paths and the connections of the aquifer with the sub-surface are often poorly constrained. Here, we present results from different geophysical and hydraulic methods to quantify fault zone hydrology of a crystalline confined aquifer (Ploemeur, French Brittany). This outstandingly productive crystalline rock aquifer is exploited at a rate of about 10 6 m3 per year since 1991. The pumping site is located at the intersection of two main structures: the contact zone between granite roof and overlying micaschists, and a steeply dipping fault striking North 20°, with combined dextral strike-slip and normal components. Core samples and borehole optical imagery reveals that the contact zone at the granite roof consists of alternating deformed granitic sheets and enclaves of micaschists, pegmatite and aplite dykes, as well as quartz veins. Locally, this contact is marked by mylonites and pegmatite-bearing breccias that are often but not systematically associated with major borehole inflows. Other significant inflows are localized within single fractures independently of the lithologies encountered. At the borehole scale the structural and hydraulic properties of the aquifer are thus highly variable. At the site scale - typically a kilometer squared - the water levels are monitored in 22 boreholes, 100 meters deep in average. The connectivity of the main flow paths and the hydraulic properties are relatively well constrained and quantified thanks to cross-borehole flowmeter tests and traditional pumping tests. In complement, long-base tiltmeters monitoring and ground-surface leveling allows to monitor sub-surface deformation. It provides a quantification of the hydro-mechanical properties of the aquifer and better constraints about the geometry of the main fault zone. Surprisingly, the storage coefficient of the confined aquifer is relatively high, in agreement with ground-surface deformation measurements that suggest a relativity high compressibility of the fault zone. At larger scale, we show through a high-resolution gravimetric survey that the highly fractured contact between granite and micaschists, which constitutes the main path for groundwater flow, is a gently dipping structure. A 3D gravimetric model confirms also the presence of sub-vertical faults that may constitute important drains for the aquifer recharge. In addition, groundwater temperature monitoring allows to shows that the main water supply comes from a depth of at least 300 meters. Such a depth in a low relief region involves relatively deep groundwater circulation that can be achieved only thanks to major permeable fault zone. This field example shows the advantages and limitations of some traditional and innovative methods to characterize fault zone hydrology in crystalline bedrock aquifers.
PPP Sliding Window Algorithm and Its Application in Deformation Monitoring.
Song, Weiwei; Zhang, Rui; Yao, Yibin; Liu, Yanyan; Hu, Yuming
2016-05-31
Compared with the double-difference relative positioning method, the precise point positioning (PPP) algorithm can avoid the selection of a static reference station and directly measure the three-dimensional position changes at the observation site and exhibit superiority in a variety of deformation monitoring applications. However, because of the influence of various observing errors, the accuracy of PPP is generally at the cm-dm level, which cannot meet the requirements needed for high precision deformation monitoring. For most of the monitoring applications, the observation stations maintain stationary, which can be provided as a priori constraint information. In this paper, a new PPP algorithm based on a sliding window was proposed to improve the positioning accuracy. Firstly, data from IGS tracking station was processed using both traditional and new PPP algorithm; the results showed that the new algorithm can effectively improve positioning accuracy, especially for the elevation direction. Then, an earthquake simulation platform was used to simulate an earthquake event; the results illustrated that the new algorithm can effectively detect the vibrations change of a reference station during an earthquake. At last, the observed Wenchuan earthquake experimental results showed that the new algorithm was feasible to monitor the real earthquakes and provide early-warning alerts.
NASA Astrophysics Data System (ADS)
García-Cañada, Laura; José García-Arias, María; Pereda de Pablo, Jorge; Lamolda, Héctor; López, Carmen
2014-05-01
Ground deformation is one of the most important parameter in volcano monitoring. The detected deformations in volcanic areas can be precursors of a volcanic activity and contribute with useful information to study the evolution of an unrest, eruption or any volcanic process. GPS is the most common technique used to measure volcano deformations. It can be used to detect slow displacement rates or much larger and faster deformations associated with any volcanic process. In volcanoes the deformation is expected to be a mixed of nature; during periods of quiescence it will be slow or not present, while increased activity slow displacement rates can be detected or much larger and faster deformations can be measure due to magma intrusion, for example in the hours to days prior a eruption beginning. In response to the anomalous seismicity detected at El Hierro in July 2011, the Instituto Geográfico Nacional (IGN) improved its volcano monitoring network in the island with continuous GPS that had been used to measure the ground deformation associated with the precursory unrest since summer 2011, submarine eruption (October 2011-March 2012) and the following unrest periods (2012-2013). The continuous GPS time series, together with other techniques, had been used to evaluate the activity and to detect changes in the process. We investigate changes in the direction and module of the deformation obtained by GPS and they show different patterns in every unrest period, very close to the seismicity locations and migrations.
Improved texture measurement during deformation of polycrystalline olivine at high pressure
NASA Astrophysics Data System (ADS)
Dixon, N. A.; Durham, W. B.; Kohlstedt, D. L.; Hunt, S. A.
2014-12-01
Unresolved issues in geodynamics demand a better understanding of the bulk mechanical properties of mantle minerals, and also careful analysis of the complex lattice-scale physics behind these properties. Instead of probing the mechanical properties of a material by testing the relationship between "bulk" stress and strain rate in a sample at a variety of conditions (varying P, T, water content, and other environmental variables), synchrotron x-ray diffraction now allows us to observe, in situ, the active deformation physics in much greater detail. This includes in situ monitoring of plastic anisotropy and local stress heterogeneity, grain size, the development of lattice-preferred orientation (LPO), and even the partitioning of stress between multiple phases in the same polycrystalline sample. Here, we present results obtained with the use of the MTEX toolbox for Matlab and energy-dispersive x-ray diffraction, showing the in situ development of LPO in deforming dry San Carlos olivine samples, at pressures from 2-7 GPa. These measurements hint at the active dislocation mechanisms for these conditions. The ability generate a broad range of mantle conditions in the D-DIA, while precisely measuring the structure and conditions within our sample at the grain and lattice scale, demonstrates the promising future of deformation experiments as a means to understanding the evolution of the deep Earth.
Galloway, D.L.; Hoffmann, J.
2007-01-01
The application of satellite differential synthetic aperture radar (SAR) interferometry, principally coherent (InSAR) and to a lesser extent, persistent-scatterer (PSI) techniques to hydrogeologic studies has improved capabilities to map, monitor, analyze, and simulate groundwater flow, aquifer-system compaction and land subsidence. A number of investigations over the previous decade show how the spatially detailed images of ground displacements measured with InSAR have advanced hydrogeologic understanding, especially when a time series of images is used in conjunction with histories of changes in water levels and management practices. Important advances include: (1) identifying structural or lithostratigraphic boundaries (e.g. faults or transitional facies) of groundwater flow and deformation; (2) defining the material and hydraulic heterogeneity of deforming aquifer-systems; (3) estimating system properties (e.g. storage coefficients and hydraulic conductivities); and (4) constraining numerical models of groundwater flow, aquifer-system compaction, and land subsidence. As a component of an integrated approach to hydrogeologic monitoring and characterization of unconsolidated alluvial groundwater basins differential SAR interferometry contributes unique information that can facilitate improved management of groundwater resources. Future satellite SAR missions specifically designed for differential interferometry will enhance these contributions. ?? Springer-Verlag 2006.
Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian
2015-08-31
Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction.
Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian
2015-01-01
Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction. PMID:26404287
Liang, Wei; Murakawa, Hidekazu
2014-01-01
Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results. PMID:25276856
Liang, Wei; Murakawa, Hidekazu
2014-01-01
Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.
Slip as the basic mechanism for formation of deformation relief structural elements
NASA Astrophysics Data System (ADS)
Lychagin, D. V.; Alfyorova, E. A.
2017-07-01
The experimental results of investigation of the nickel single crystal surface morphology after compression deformation are presented. The quasi-periodic character of the deformation profile, common for shear deformation of different types of relief structural elements, is found. It is demonstrated that the morphological manifestation of these structural elements is determined by local shear systems along octahedral planes. The regularities of the deformation structure in these regions defining the material extrusion and intrusion regions and the specific features of disorientation accumulation are established. If reorientation of local regions takes part in the relief element formation, along with octahedral slip, much stronger growth of the surface area is observed. The possibility of application of two-dimensional and three-dimensional surface roughness parameters for description of deformation relief is considered.
Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald
2015-01-01
Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Structure and Tectonics of the Saint Elias Orogen
NASA Astrophysics Data System (ADS)
Bruhn, R. L.; Pavlis, T. L.; Plafker, G.; Serpa, L.; Picornell, C.
2001-12-01
The Saint Elias orogen of western Canada and southern Alaska is a complex mountain belt formed by transform faulting and subduction between the Pacific and North American plates, and collision of the Yakutat terrane. The orogen is segmented into three regions of different structural style caused by lateral variations in transpression and processes of terrane accretion. Deformation is strain and displacement partitioned throughout the orogen; transcurrent motion is focused along discrete strike-slip faults, and shortening is distributed among reverse faults and folds with sub-horizontal axes. Plunging folds accommodate horizontal shortening and extension in the western part of the orogen. Segment boundaries extend across the Yakutat terrane where they coincide with the courses of huge piedmont glaciers that flow from the topographic backbone of the range onto the coastal plain. The eastern segment is marked by strike-slip faulting along the Fairweather transform fault and by a narrow belt of reverse faulting where the transpression ratio is 0.4:1 shortening to dextral shear. The transpression ratio is 1.7:1 in the central part of the orogen where a broad thin-skinned fold and thrust belt deforms the Yakutat terrane south of the Chugach-Saint Elias (CSE) suture. Dextral shearing is accommodated by strike-slip faulting beneath the Seward and Bagley glaciers in the hanging wall of the CSE suture, and partly by reverse faulting along a structural belt that cuts across the Yakutat terrane along the western edge of the Malaspina Glacier and links to the Pamplona fold and thrust belt offshore. Deformation along this segment boundary is probably also driven by vertical axis bending of the Yakutat microplate during collision. Subduction & accretion in the western segment of the orogen causes re-folding of previously formed structures when they are emplaced into the upper plate of the Alaska-Aleutian mega-thrust. Second phase folds plunge at moderate to steep angles and accretion is marked by only modest amounts of uplift. The structural boundary between the central and western segments of the orogen localizes the course of the Bering piedmont glacier. The structural segments coincide with subdivisions in historical seismicity, particularly ruptures of great to large magnitude earthquakes. The results of this structural study provide the requisite geological framework to design new-generation geophysical monitoring systems to study active deformation within the orogen.
Multi-dimensional SAR tomography for monitoring the deformation of newly built concrete buildings
NASA Astrophysics Data System (ADS)
Ma, Peifeng; Lin, Hui; Lan, Hengxing; Chen, Fulong
2015-08-01
Deformation often occurs in buildings at early ages, and the constant inspection of deformation is of significant importance to discover possible cracking and avoid wall failure. This paper exploits the multi-dimensional SAR tomography technique to monitor the deformation performances of two newly built buildings (B1 and B2) with a special focus on the effects of concrete creep and shrinkage. To separate the nonlinear thermal expansion from total deformations, the extended 4-D SAR technique is exploited. The thermal map estimated from 44 TerraSAR-X images demonstrates that the derived thermal amplitude is highly related to the building height due to the upward accumulative effect of thermal expansion. The linear deformation velocity map reveals that B1 is subject to settlement during the construction period, in addition, the creep and shrinkage of B1 lead to wall shortening that is a height-dependent movement in the downward direction, and the asymmetrical creep of B2 triggers wall deflection that is a height-dependent movement in the deflection direction. It is also validated that the extended 4-D SAR can rectify the bias of estimated wall shortening and wall deflection by 4-D SAR.
NASA Astrophysics Data System (ADS)
Guo, Jianming; Xu, Shiyang; Fan, Hailong
2017-05-01
A neotectonic structural interpretation was conducted in the Fujian Province, west of the Taiwan Strait, by using computer image processing and 3D visualizations to enhance linear structural traces. The major faults in this area can be grouped into two conjugate shear fracture zones, with one trending to the northeast and the other trending to the northwest. PS-InSAR technology uses stable permanent target scatterer points to determine deformation rates and can effectively reduce the influence of spatiotemporal decorrelations and atmospheric anomalies that affect conventional D-InSAR techniques and prevent the formation of interference fringes. This study focuses on the fault zones located in the Quanzhou area of Fujian Province, where the 1604 M7.5-8.0 historic earthquake occurred. In total, 22 scenes of ERS SAR data from 1996 to 1999 were processed using PS-InSAR methods. The results show that the line of sight direction displacement rate of the main fault in the study area is 3-5 mm/yr, which indicates that the faults in this area are still active and subject to earthquake risk.
NASA Astrophysics Data System (ADS)
Jia, Y.; Wang, Z. Mr; Liu, X.; Shan, H.
2017-12-01
Submarine landslides move large volumes of sediment and are often hazardous to offshore installations. Current research into submarine landslides mainly relies on marine surveying techniques. In contrast, in situ observations of the submarine landslide process, specifically seabed deformation, are sparse, and therefore restrict our understanding of submarine landslide mechanisms and the establishment of a disaster warning scheme. The submarine landslide monitoring (SLM) system, which has been designed to partly overcome these pitfalls, can monitor storm-wave-induced submarine landslides in situ and over a long time period. The SLM system comprises two parts: (1) a hydrodynamic monitoring tripod for recording hydrodynamic data and (2) a shape accel array for recording seabed deformation at different depths. This study recorded the development of the SLM system and the results of in situ observation in the Yellow River Delta, China, during the boreal winter of 2014-2015. The results show an abrupt small-scale storm-wave-induced seabed shear deformation; the shear interface is in at least 1.5-m depth and the displacement of sediments at 1.23-m depth is more than 13 mm. The performance of the SLM system confirms the feasibility and stability of this approach. Further, the in situ observations, as well as the laboratory tests, helped reveal the profound mechanism of storm-wave-induced seabed deformation.
Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity
NASA Astrophysics Data System (ADS)
Balik Sanli, F.; Calò, F.; Abdikan, S.; Pepe, A.; Gorum, T.
2014-09-01
As result of the Turkey's economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management.
NASA Astrophysics Data System (ADS)
Czarnogorska, M.; Samsonov, S.; White, D.
2014-11-01
The research objectives of the Aquistore CO2 storage project are to design, adapt, and test non-seismic monitoring methods for measurement, and verification of CO2 storage, and to integrate data to determine subsurface fluid distributions, pressure changes and associated surface deformation. Aquistore site is located near Estevan in Southern Saskatchewan on the South flank of the Souris River and west of the Boundary Dam Power Station and the historical part of Estevan coal mine in southeastern Saskatchewan, Canada. Several monitoring techniques were employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) technique, GPS, tiltmeters and piezometers. The targeted CO2 injection zones are within the Winnipeg and Deadwood formations located at > 3000 m depth. An array of monitoring techniques was employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) with established corner reflectors, GPS, tiltmeters and piezometers stations. We used airborne LIDAR data for topographic phase estimation, and DInSAR product geocoding. Ground deformation maps have been calculated using Multidimensional Small Baseline Subset (MSBAS) methodology from 134 RADARSAT-2 images, from five different beams, acquired during 20120612-20140706. We computed and interpreted nine time series for selected places. MSBAS results indicate slow ground deformation up to 1 cm/year not related to CO2 injection but caused by various natural and anthropogenic causes.
Monitoring Ground Deformation at the Aquistore CO2 Storage Site in SE Saskatchewan, Canada
NASA Astrophysics Data System (ADS)
Samsonov, S. V.; White, D.; Craymer, M. R.; Murnaghan, K.; Chalaturnyk, R. J.
2012-12-01
The scientific objectives of the Aquistore CO2 storage project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. For this an array of monitoring methodologies will be tested, including satellite-, surface- and wellbore-based monitoring systems. Interferometric Synthetic Aperture Radar (InSAR), GPS and tiltmeter monitoring will be used for measuring any ground deformation caused by CO2 injection and the associated subsurface pressure perturbation. In the spring-summer of 2012 we started collecting C-band SAR data from the Canadian Radarsat-2 satellite to provide baseline data over the study site. The Radarsat-2 data is acquired about every six days on average in five different geometries in order to achieve nearly uninterrupted coverage. We acquire ascending and descending spotlight data with sub-meter resolution (1.6x0.8 m), ascending and descending wide ultra fine data with moderate resolution (1.6x2.8 m) and descending fine quad-pol data with coarse resolution (5.2x7.6 m). Over the project life, this SAR coverage will be supplemented by X-band TerraSAR-X data, C-band Sentinel, and L-band ALOS-2 data. Availability of SAR data from all three wave-band sensors should allow us to measure ground deformation with a precision of a few mm/year. For mitigating temporal de-correlation and for improving precision during the winter when there will be snow cover, we will install 13 paired corner reflectors suitable for ascending and descending imaging. Multidimensional time series of ground deformation will be produced using MSBAS techniques (Samsonov and d'Oreye, 2012). PolInSAR methodology will be tested on fine quad-pol data. To obtain higher precision spatial and higher resolution temporal ground motion measurements we will install 13 continuous Global Positioning Systems (cGPS), and 5-6 tiltmeters in the fall of 2012. Various geodetic data will be integrated using the methodology of Samsonov et al., 2007 and resultant ground deformation maps will be used for validation of the geomechanical modelling. Here we will present maps of the injection site showing the locations and installation design of various geodetic sensors and provide initial results of InSAR measurements.
NASA Astrophysics Data System (ADS)
Du, Fangzhu; Li, Dongsheng
2018-03-01
As a new kind of composite structures, the using of steel confined reinforced concrete column attract increasing attention in civil engineer. During the damage process, this new structure offers highly complex and invisible failure mechanism due to the combination effects of steel tubes, concrete, and steel rebar. Acoustic emission (AE) technique has been extensively studied in nondestructive testing (NDT) and is currently applied in civil engineering for structural health monitoring (SHM) and damage evaluation. In the present study, damage property and failure evolution of steel confined and unconfined reinforced concrete (RC) columns are investigated under quasi-static loading through (AE) signal. Significantly improved loading capacity and excellent energy dissipation characteristic demonstrated the practicality of that proposed structure. AE monitoring results indicated that the progressive deformation of the test specimens occur in three stages representing different damage conditions. Sentry function compares the logarithm ratio between the stored strain energy (Es) and the released acoustic energy (Ea); explicitly disclose the damage growth and failure mechanism of the test specimens. Other extended AE features including index of damage (ID), and relax ratio are calculated to quantitatively evaluate the damage severity and critical point. Complicated temporal evolution of different AE features confirms the potential importance of integrated analysis of two or more parameters. The proposed multi-indicators analysis is capable of revealing the damage growth and failure mechanism for steel confined RC columns, and providing critical warning information for structure failure.
Geodetic Volcano Monitoring Research in Canary Islands: Recent Results
NASA Astrophysics Data System (ADS)
Fernandez, J.; Gonzalez, P. J.; Arjona, A.; Camacho, A. G.; Prieto, J. F.; Seco, A.; Tizzani, P.; Manzo, M. R.; Lanari, R.; Blanco, P.; Mallorqui, J. J.
2009-05-01
The Canarian Archipelago is an oceanic island volcanic chain with a long-standing history of volcanic activity (> 40 Ma). It is located off the NW coast of the African continent, lying over a transitional crust of the Atlantic African passive margin. At least 12 eruptions have been occurred on the islands of Lanzarote, Tenerife and La Palma in the last 500 years. Volcanism manifest predominantly as basaltic strombolian monogenetic activity (whole archipelago) and central felsic volcanism (active only in Tenerife Island). We concentrate our studies in the two most active islands, Tenerife and La Palma. In these islands, we tested different methodologies of geodetic monitoring systems. We use a combination of ground- and space-based techniques. At Tenerife Island, a differential interferometric study was performed to detect areas of deformation. DInSAR detected two clear areas of deformation, using this results a survey-based GPS network was designed and optimized to control those deformations and the rest of the island. Finally, using SBAS DInSAR results weak spatial long- wavelength subsidence signals has been detected. At La Palma, the first DInSAR analysis have not shown any clear deformation, so a first time series analysis was performed detecting a clear subsidence signal at Teneguia volcano, as for Tenerife a GPS network was designed and optimized taking into account stable and deforming areas. After several years of activities, geodetic results served to study ground deformations caused by a wide variety of sources, such as changes in groundwater levels, volcanic activity, volcano-tectonics, gravitational loading, etc. These results proof that a combination of ground-based and space-based techniques is suitable tool for geodetic volcano monitoring in Canary Islands. Finally, we would like to strength that those results could have serious implications on the continuous geodetic monitoring system design and implementation for the Canary Islands which is under development nowadays.
Quaternary tectonic evolution of the Pamir-Tian Shan convergence zone, Northwest China
NASA Astrophysics Data System (ADS)
Thompson Jobe, Jessica Ann; Li, Tao; Chen, Jie; Burbank, Douglas W.; Bufe, Aaron
2017-12-01
The Pamir-Tian Shan collision zone in the western Tarim Basin, northwest China, formed from rapid and ongoing convergence in response to the Indo-Eurasian collision. The arid landscape preserves suites of fluvial terraces crossing structures active since the late Neogene that create fault and fold scarps recording Quaternary deformation. Using geologic and geomorphic mapping, differential GPS surveys of deformed terraces, and optically stimulated luminescence dating, we create a synthesis of the active structures that delineate the timing, rate, and migration of Quaternary deformation during ongoing convergence. New deformation rates on eight faults and folds, when combined with previous studies, highlight the spatial and temporal patterns of deformation within the Pamir-Tian Shan convergence zone during the Quaternary. Terraces spanning 130 to 8 ka record deformation rates between 0.1 and 5.6 mm/yr on individual structures. In the westernmost Tarim Basin, where the Pamir and Tian Shan are already juxtaposed, the fastest rates occur on actively deforming structures at the interface of the Pamir-Tian Shan orogens. Farther east, as the separation between the Pamir-Tian Shan orogens increases, the deformation has not been concentrated on a single structure, but rather has been concurrently distributed across a zone of faults and folds in the Kashi-Atushi fold-and-thrust belt and along the NE Pamir margin, where shortening rates vary on individual structures during the Quaternary. Although numerous structures accommodate the shortening and the locus of deformation shifts during the Quaternary, the total shortening across the western Tarim Basin has remained steady and approximately matches the current geodetic rate of 6-9 mm/yr.
NASA Astrophysics Data System (ADS)
Chaussard, E.; Amelung, F.; Aoki, Y.
2012-12-01
Despite the threat posed to millions of people living in the vicinity of volcanoes, only a fraction of the worldwide ~800 potentially active arc volcanoes have geodetic monitoring. Indonesian and Mexican volcanoes are sparsely monitored with ground-based methods but especially dangerous, emphasizing the need for remote sensing monitoring. In this study we take advantage of over 1200 ALOS InSAR images to survey the entire west Sunda and Mexican volcanic arcs, covering a total of 500 000 km2. We use 2 years of data to monitor the background activity of the Indonesian arc, and 4 years of data at four volcanic edifices (Sinabung, Kerinci, Merapi, and Agung), as well as 4 years of data to survey the Mexican arc. We derive time-dependent ground deformation data using the Small Baseline technique with DEM error correction. We detect seven volcanoes with significant deformation in the west-Sunda arc: six inflating volcanoes (Sinabung, Kerinci, Slamet, Lawu, Lamongan, and Agung) and one deflating volcano (Anak Krakatau). Three of the six inflating centers erupted during or after the observation period. We detect inflation prior to Sinabung's first Holocene eruption in September 2010, followed by a small deflation of the summit area. A similar signal is observed at Kerinci before and after its April 2009 eruption. We also detect uplift prior to Slamet's eruption in April 2009. Agung, in Bali, whose last eruption was in 1964, has been inflating steadily between mid 2007 and early 2009, followed by a period with little deformation until mid-2011. Inflation not followed by eruption is also observed at Lamongan and Lawu, both historically active centers. The close relation between periods of activity and observed deformation suggests that edifice inflation is of magmatic origin and represents the pressurization of reservoirs caused by ascent of new magma. We model the observed deformation and show that the seven deforming Indonesian volcanoes have shallow magma reservoirs at ~1-3 km depth below the average regional elevation. We compare the deformation-activity relationship observed in the west-Sunda arc with results from the Mexican arc. We also compare the depths of magma storage estimated in each arc and use a global data-set of reservoir depths at arc volcanoes to try to explain the observed regional trends in magma storage depths.
Fluid-structure interaction analysis of deformation of sail of 30-foot yacht
NASA Astrophysics Data System (ADS)
Bak, Sera; Yoo, Jaehoon; Song, Chang Yong
2013-06-01
Most yacht sails are made of thin fabric, and they have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure. Deformation of the sail shape changes the flow characteristics over the sail, which in turn further deforms the sail shape. Therefore, fluid-structure interaction (FSI) analysis is applied for the precise evaluation or optimization of the sail design. In this study, fluid flow analyses are performed for the main sail of a 30-foot yacht, and the results are applied to loading conditions for structural analyses. By applying the supporting forces from the rig, such as the mast and boom-end outhaul, as boundary conditions for structural analysis, the deformed sail shape is identified. Both the flow analyses and the structural analyses are iteratively carried out for the deformed sail shape. A comparison of the flow characteristics and surface pressures over the deformed sail shape with those over the initial shape shows that a considerable difference exists between the two and that FSI analysis is suitable for application to sail design.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1993-10-05
An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1993-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.
NASA Astrophysics Data System (ADS)
Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.
2017-12-01
Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed self-consistent Multi-Order Power-Law Approach (MOPLA) to multi-scale field observations, we constrain likely paleo-tectonic controls of orogenic structural evolution rather than predicting a unique, but likely incorrect deformation history.
Reilly, John; Glisic, Branko
2018-03-01
Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.
Surface Enhanced Raman Scattering Monitoring of Chain Alignment in Freely Suspended Nanomembranes
NASA Astrophysics Data System (ADS)
Jiang, Chaoyang; Lio, Wilber Y.; Tsukruk, Vladimir V.
2005-09-01
The molecular chain reorganization in freely standing membranes with encapsulated gold nanoparticles was studied with surface enhanced Raman scattering (SERS) in the course of their elastic deformations. The efficient SERS was enabled by optimizing the design of gold nanoparticle forming chainlike aggregates, thus creating an exceptional ability to conduct in situ monitoring. Small deformations resulted in the radial orientation of side phenyl rings of polymer backbones while larger deflections led to the polymer chains bridging adjacent nanoparticles within one-dimensional aggregates.
System for near real-time crustal deformation monitoring
NASA Technical Reports Server (NTRS)
Macdoran, P. F. (Inventor)
1979-01-01
A system is described for use in detecting earth crustal deformation using an RF interferometer technique for such purposes as earthquake predictive research and eventual operational predictions. A lunar based RF transmission or transmissions from earth orbiting satellites are received at two locations on Earth, and a precise time dependent phase measurement is made of the RF signal as received at the two locations to determine two or three spatial parameters of the antenna relative positions. The received data are precisely time tagged and land-line routed to a central station for real-time phase comparison and analysis. By monitoring the antenna relative positions over an extended period of months or years, crustal deformation of the Earth can be detected.
NASA Astrophysics Data System (ADS)
Camacho, A. G.; Fernández, J.; Cannavò, F.
2018-02-01
We present a software package to carry out inversions of surface deformation data (any combination of InSAR, GPS, and terrestrial data, e.g., EDM, levelling) as produced by 3D free-geometry extended bodies with anomalous pressure changes. The anomalous structures are described as an aggregation of elementary cells (whose effects are estimated as coming from point sources) in an elastic half space. The linear inverse problem (considering some simple regularization conditions) is solved by means of an exploratory approach. This software represents the open implementation of a previously published methodology (Camacho et al., 2011). It can be freely used with large data sets (e.g. InSAR data sets) or with data coming from small control networks (e.g. GPS monitoring data), mainly in volcanic areas, to estimate the expected pressure bodies representing magmatic intrusions. Here, the software is applied to some real test cases.
NASA Astrophysics Data System (ADS)
Palu, J. M.; Burberry, C. M.
2014-12-01
The reactivation potential of pre-existing basement structures affects the geometry of subsequent deformation structures. A conceptual model depicting the results of these interactions can be applied to multiple fold-thrust systems and lead to valuable deformation predictions. These predictions include the potential for hydrocarbon traps or seismic risk in an actively deforming area. The Sawtooth Range, Montana, has been used as a study area. A model for the development of structures close to the Augusta Syncline in the Sawtooth Range is being developed using: 1) an ArcGIS map of the basement structures of the belt based on analysis of geophysical data indicating gravity anomalies and aeromagnetic lineations, seismic data indicating deformation structures, and well logs for establishing lithologies, previously collected by others and 2) an ArcGIS map of the surface deformation structures of the belt based on interpretation of remote sensing images and verification through the collection of surface field data indicating stress directions and age relationships, resulting in a conceptual model based on the understanding of the interaction of the two previous maps including statistical correlations of data and development of balanced cross-sections using Midland Valley's 2D/3D Move software. An analysis of the model will then indicate viable deformation paths where prominent basement structures influenced subsequently developed deformation structures and reactivated faults. Preliminary results indicate that the change in orientation of thrust faults observed in the Sawtooth Range, from a NNW-SSE orientation near the Gibson Reservoir to a WNW-ESE trend near Haystack Butte correlates with pre-existing deformation structures lying within the Great Falls Tectonic Zone. The Scapegoat-Bannatyne trend appears to be responsible for this orientation change and rather than being a single feature, may be composed of up to 4 NE-SW oriented basement strike-slip faults. This indicates that the pre-existing basement features have a profound effect on the geometry of the later deformation. This conceptual model can also be applied to other deformed belts to provide a prediction for the potential hydrocarbon trap locations of the belt as well as their seismic risk.
Deformable complex network for refining low-resolution X-ray structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chong; Wang, Qinghua; Ma, Jianpeng, E-mail: jpma@bcm.edu
2015-10-27
A new refinement algorithm called the deformable complex network that combines a novel angular network-based restraint with a deformable elastic network model in the target function has been developed to aid in structural refinement in macromolecular X-ray crystallography. In macromolecular X-ray crystallography, building more accurate atomic models based on lower resolution experimental diffraction data remains a great challenge. Previous studies have used a deformable elastic network (DEN) model to aid in low-resolution structural refinement. In this study, the development of a new refinement algorithm called the deformable complex network (DCN) is reported that combines a novel angular network-based restraint withmore » the DEN model in the target function. Testing of DCN on a wide range of low-resolution structures demonstrated that it constantly leads to significantly improved structural models as judged by multiple refinement criteria, thus representing a new effective refinement tool for low-resolution structural determination.« less
A novel camera localization system for extending three-dimensional digital image correlation
NASA Astrophysics Data System (ADS)
Sabato, Alessandro; Reddy, Narasimha; Khan, Sameer; Niezrecki, Christopher
2018-03-01
The monitoring of civil, mechanical, and aerospace structures is important especially as these systems approach or surpass their design life. Often, Structural Health Monitoring (SHM) relies on sensing techniques for condition assessment. Advancements achieved in camera technology and optical sensors have made three-dimensional (3D) Digital Image Correlation (DIC) a valid technique for extracting structural deformations and geometry profiles. Prior to making stereophotogrammetry measurements, a calibration has to be performed to obtain the vision systems' extrinsic and intrinsic parameters. It means that the position of the cameras relative to each other (i.e. separation distance, cameras angle, etc.) must be determined. Typically, cameras are placed on a rigid bar to prevent any relative motion between the cameras. This constraint limits the utility of the 3D-DIC technique, especially as it is applied to monitor large-sized structures and from various fields of view. In this preliminary study, the design of a multi-sensor system is proposed to extend 3D-DIC's capability and allow for easier calibration and measurement. The suggested system relies on a MEMS-based Inertial Measurement Unit (IMU) and a 77 GHz radar sensor for measuring the orientation and relative distance of the stereo cameras. The feasibility of the proposed combined IMU-radar system is evaluated through laboratory tests, demonstrating its ability in determining the cameras position in space for performing accurate 3D-DIC calibration and measurements.
Jeon, Hyungkook; Hong, Seong Kyung; Kim, Min Seo; Cho, Seong J; Lim, Geunbae
2017-12-06
Here, we report an omni-purpose stretchable strain sensor (OPSS sensor) based on a nanocracking structure for monitoring whole-body motions including both joint-level and skin-level motions. By controlling and optimizing the nanocracking structure, inspired by the spider sensory system, the OPSS sensor is endowed with both high sensitivity (gauge factor ≈ 30) and a wide working range (strain up to 150%) under great linearity (R 2 = 0.9814) and fast response time (<30 ms). Furthermore, the fabrication process of the OPSS sensor has advantages of being extremely simple, patternable, integrated circuit-compatible, and reliable in terms of reproducibility. Using the OPSS sensor, we detected various human body motions including both moving of joints and subtle deforming of skin such as pulsation. As specific medical applications of the sensor, we also successfully developed a glove-type hand motion detector and a real-time Morse code communication system for patients with general paralysis. Therefore, considering the outstanding sensing performances, great advantages of the fabrication process, and successful results from a variety of practical applications, we believe that the OPSS sensor is a highly suitable strain sensor for whole-body motion monitoring and has potential for a wide range of applications, such as medical robotics and wearable healthcare devices.
NASA Astrophysics Data System (ADS)
Okafor, A. Chukwujekwu; Natarajan, Shridhar
2014-02-01
Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.
NASA Astrophysics Data System (ADS)
Shi, F.; Wang, Y.; Zhang, J.; Yu, T.; Zhu, L.
2017-12-01
Global earthquake occurrence rate falls exponentially from the surface to 300 km depth, and then peaks again near 500 km depth. Unassisted frictional sliding will not function at depth below the brittle-ductile transition depth (10-15 km) because increasing pressure trends to inhibit frictional sliding and increasing temperature promotes ductile flow. Two main hypotheses have been proposed and demonstrated in the laboratory for the generation of earthquakes at depth, including dehydration embrittlement (e.g., Rayleigh and Paterson, 1965) for intermediate-depth (70-300 km) earthquakes, metastable olivine phase transformation induced anticrack faulting (e.g., Green and Burnley, 1989) for deep-focus (410-660 km) earthquakes. However, the possibility of earthquake generation by pyroxene phase transformation, another important constituent mineral in the upper mantle and transition zone has never been explored in the laboratory. Here we report axial deformation experiments on hypersthene [(Mg,Fe)SiO3], which has the same structure as enstatite, with the phase transformation to high-pressure monoclinic phase (same structure as the high-pressure clinoenstatite) occurring at lower pressures, in a deformation-DIA (D-DIA) apparatus interfaced with an acoustic emission (AE) monitoring system. Our results show that hypersthene deformed within its stability field (<2GPa and 1000 oC) behaves in a ductile manner without any AE activity. In contrast, numerous AE events were observed during the deformation of metastable hyposthene in its high pressure monoclinic phase field (>5GPa, 1000-1300 oC). This finding provides an additional viable mechanism for earthquakes at depths >300km and moonquakes at 700 - 1200 km depths. Reference: Barcheck, C. Grace, et al. EPSL,349 (2012): 153-160;van Keken, Peter E., et al.JGR,116.B1 (2011);Green II, H. W., and P. C. Burnley. Nature 341.6244 (1989): 733-737.
NASA Astrophysics Data System (ADS)
Liu, Yuanyuan; Zhao, Chaoying; Zhang, Qin; Yang, Chengsheng
2018-02-01
Qingxu-Jiaocheng, China has been suffering severe land subsidence along with the development of ground fissure, which are controlled by local fault and triggered by groundwater withdrawal. With multi-sensor SAR images, we study the spatiotemporal evolution of ground deformation over Qingxu-Jiaocheng with an IPTA InSAR technique and assess the role of groundwater withdrawal to the observed deformation. Discrete GPS measurements are applied to verify the InSAR results. The RMSE of the differences between InSAR and GPS, i.e. ALOS and GPS and Envisat and GPS, are 5.7 mm and 6.3 mm in the LOS direction, respectively. The east-west and vertical components of the observed deformation from 2007 to 2010 are decomposed by using descending-track Envisat and ascending-track ALOS interferograms, indicating that the east-west component cannot be neglected when the deformation is large or the ground fissure is active. Four phases of land subsidence in the study region are successfully retrieved, and its spatiotemporal evolution is quantitatively analyzed. Lastly, a flat lying sill model with distributed contractions is implemented to model the InSAR deformation over Qingxu-Jiaocheng, which manifests that the ground deformation is mainly caused by groundwater withdrawal. This research provides new insights into the land subsidence monitoring and its mechanism inversion over Qingxu-Jiaocheng region.
NASA Astrophysics Data System (ADS)
Beardsley, A. G.; Avé Lallemant, H. G.; Levander, A.; Clark, S. A.
2006-12-01
The kinematic history of the Leeward Antilles (offshore Venezuela) can be characterized with the integration of onshore outcrop data and offshore seismic reflection data. Deformation structures and seismic interpretation show that oblique convergence and wrench tectonics have controlled the diachronous deformation identified along the Caribbean - South America plate boundary. Field studies of structural features in outcrop indicate one generation of ductile deformation (D1) structures and three generations of brittle deformation (F1 - F3) structures. The earliest deformation (D1/F1) began ~ 110 Ma with oblique convergence between the Caribbean plate and South American plate. The second generation of deformation (F2) structures initiated in the Eocene with the extensive development of strike-slip fault systems along the diffuse plate boundary and the onset of wrench tectonics within a large-scale releasing bend. The most recent deformation (F3) has been observed in the west since the Miocene where continued dextral strike-slip motion has led to the development of a major restraining bend between the Caribbean plate transform fault and the Oca - San Sebastian - El Pilar fault system. Deformation since the late Cretaceous has been accompanied by a total of 135° clockwise rotation. Interpretation of 2D marine reflection data indicates similar onshore and offshore deformation trends. Seismic lines that approximately parallel the coastline (NW-SE striking) show syndepositional normal faulting during F1/F2 and thrust faulting associated with F3. On seismic lines striking NNE-SSW, we interpret inversion of F2 normal faults with recent F3 deformation. We also observe both normal and thrust faults related to F3. The thick sequence of recent basin sedimentation (Miocene - Recent), interpreted from the seismic data, supports the ongoing uplift and erosion of the islands; as suggested by fluid inclusion analysis. Overall, there appears to be a strong correlation between onshore micro- and mesoscopic deformational structures and offshore macro-scale structural features seen in the reflection data. The agreement of features supports our regional deformation and rotation model along the Caribbean - South America obliquely convergent plate boundary.
Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation
NASA Astrophysics Data System (ADS)
Keep, Myra; Hansen, Vicki L.
1994-12-01
Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surfce deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus, northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structural fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength, and inferred amplitude of mapped structures are small, (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implication of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a ``deformation-from-below'' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation
NASA Astrophysics Data System (ADS)
Keep, Myra; Hansen, Vicki L.
1994-12-01
Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surface deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus' northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structure fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength and inferred amplitude of mapped structures are small; (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implications of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a 'deformation-from-below' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
NASA Astrophysics Data System (ADS)
Zuluaga, Luisa F.; Fossen, Haakon; Rotevatn, Atle
2014-11-01
Monoclinal fault propagation folds are a common type of structure in orogenic foreland settings, particularly on the Colorado Plateau. We have studied a portion of the San Rafael monocline, Utah, assumed to have formed through pure thrust- or reverse-slip (blind) fault movement, and mapped a particular sequence of subseismic cataclastic deformation structures (deformation bands) that can be related in terms of geometry, density and orientation to the dip of the forelimb or fold interlimb angle. In simple terms, deformation bands parallel to bedding are the first structures to form, increasing exponentially in number as the forelimb gets steeper. At about 30° rotation of the forelimb, bands forming ladder structures start to cross-cut bedding, consolidating themselves into a well-defined and regularly spaced network of deformation band zones that rotate with the layering during further deformation. In summary, we demonstrate a close relationship between limb dip and deformation band density that can be used to predict the distribution and orientation of such subseismic structures in subsurface reservoirs of similar type. Furthermore, given the fact that these cataclastic deformation bands compartmentalize fluid flow, this relationship can be used to predict or model fluid flow across and along comparable fault-propagation folds.
Non-invasive dynamic measurement of helicopter blades
NASA Astrophysics Data System (ADS)
Serafini, J.; Bernardini, G.; Mattioni, L.; Vezzari, V.; Ficuciello, C.
2017-08-01
This paper presents the development and the application on helicopter blades of a measurement system based on FBG strain gauges. Here, the main goal is the structural characterization of the main rotor blades, with the aim of showing the potentialities of such a system in blades quality check applications, as well as in the development of structural health monitoring and rotor state feedback devices. The device has been used in both non-rotating and rotating tests, and does not require the presence of slip rings or optical joint since it is completely allocated in the rotating system. It has been successfully applied to characterize the frequency response of blades lead-lag, flap and torsion deformations, up to 250 Hz.
NASA Technical Reports Server (NTRS)
Toksoz, M. Nafi; Molnar, Peter
1988-01-01
Intracontinental deformation occurrence and the processes and physical parameters that control the rates and styles of deformation were examined. Studies addressing specific mechanical aspects of deformation were reviewed and the studies of deformation and of the structure of specific areas were studied considering the strength of the material and the gravitational effect.
Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; Gil, Antonio José; Borque, María Jesús; de Lacy, María Clara; Pedrera, Antonio; López-Garrido, Angel Carlos; Alfaro, Pedro; García-Tortosa, Francisco; Ramos, Maria Isabel; Rodríguez-Caderot, Gracia; Rodríguez-Fernández, José; Ruiz-Constán, Ana; de Galdeano-Equiza, Carlos Sanz
2010-01-01
The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship. PMID:22319309
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neylon, J., E-mail: jneylon@mednet.ucla.edu; Qi, X.; Sheng, K.
Purpose: Validating the usage of deformable image registration (DIR) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating DIR algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. Methods: The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside amore » given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass–spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts that may be caused by the biomechanical deformation process. Accuracy and stability of the model response were validated using ground-truth simulations representing soft tissue behavior under local and global deformations. Numerical accuracy of the HN deformations was analyzed by applying nonrigid skeletal transformations acquired from interfraction kVCT images to the model’s skeletal structures and comparing the subsequent soft tissue deformations of the model with the clinical anatomy. Results: The GPU based framework enabled the model deformation to be performed at 60 frames/s, facilitating simulations of posture changes and physiological regressions at interactive speeds. The soft tissue response was accurate with a R{sup 2} value of >0.98 when compared to ground-truth global and local force deformation analysis. The deformation of the HN anatomy by the model agreed with the clinically observed deformations with an average correlation coefficient of 0.956. For a clinically relevant range of posture and physiological changes, the model deformations stabilized with an uncertainty of less than 0.01 mm. Conclusions: Documenting dose delivery for HN radiotherapy is essential accounting for posture and physiological changes. The biomechanical model discussed in this paper was able to deform in real-time, allowing interactive simulations and visualization of such changes. The model would allow patient specific validations of the DIR method and has the potential to be a significant aid in adaptive radiotherapy techniques.« less
Ko Displacement Theory for Structural Shape Predictions
NASA Technical Reports Server (NTRS)
Ko, William L.
2010-01-01
The development of the Ko displacement theory for predictions of structure deformed shapes was motivated in 2003 by the Helios flying wing, which had a 247-ft (75-m) wing span with wingtip deflections reaching 40 ft (12 m). The Helios flying wing failed in midair in June 2003, creating the need to develop new technology to predict in-flight deformed shapes of unmanned aircraft wings for visual display before the ground-based pilots. Any types of strain sensors installed on a structure can only sense the surface strains, but are incapable to sense the overall deformed shapes of structures. After the invention of the Ko displacement theory, predictions of structure deformed shapes could be achieved by feeding the measured surface strains into the Ko displacement transfer functions for the calculations of out-of-plane deflections and cross sectional rotations at multiple locations for mapping out overall deformed shapes of the structures. The new Ko displacement theory combined with a strain-sensing system thus created a revolutionary new structure- shape-sensing technology.
Analysis of active volcanoes from the Earth Observing System
NASA Technical Reports Server (NTRS)
Mouginis-Mark, Peter; Rowland, Scott; Crisp, Joy; Glaze, Lori; Jones, Kenneth; Kahle, Anne; Pieri, David; Zebker, Howard; Krueger, Arlin; Walter, Lou
1991-01-01
The Earth Observing System (EOS) scheduled for launch in 1997 and 1999 is briefly described, and the EOS volcanology investigation objectives are discussed. The volcanology investigation will include long- and short-term monitoring of selected volcanoes, the detection of precursor activity associated with unanticipated eruptions, and a detailed study of on-going eruptions. A variety of instruments on the EOS platforms will enable the study of local- and regional-scale thermal and deformational features of volcanoes, and the chemical and structural features of volcanic eruption plumes and aerosols.
Strain measurements by fiber Bragg grating sensors for in situ pile loading tests
NASA Astrophysics Data System (ADS)
Schmidt-Hattenberger, Cornelia; Straub, Tilmann; Naumann, Marcel; Borm, Günter; Lauerer, Robert; Beck, Christoph; Schwarz, Wolfgang
2003-07-01
A fiber Bragg grating (FBG) sensor network has been installed into a large diameter concrete pile on a real construction site. The intention was to monitor its deformation behavior during several quasi-static loading cycles. The skin friction between pile and subsoil affecting the ultimate bearing capacity of the pile as well as the settlement behavior of the structure under investigation has been derived from our measurements. A comparison between the results of the fiber Bragg grating sensors and conventional concrete strain gages (CSG) has shown excellent correspondence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, G; Souri, S; Rea, A
Purpose: The objective of this study is to verify and analyze the accuracy of a clinical deformable image registration (DIR) software. Methods: To test clinical DIR software qualitatively and quantitatively, we focused on lung radiotherapy and analyzed a single (Lung) patient CT scan. Artificial anatomical changes were applied to account for daily variations during the course of treatment including the planning target volume (PTV) and organs at risk (OAR). The primary CT (pCT) and the structure set (pST) was deformed with commercial tool (ImSimQA-Oncology Systems Limited) and after artificial deformation (dCT and dST) sent to another commercial tool (VelocityAI-Varian Medicalmore » Systems). In Velocity, the deformed CT and structures (dCT and dST) were inversely deformed back to original primary CT (dbpCT and dbpST). We compared the dbpST and pST structure sets using similarity metrics. Furthermore, a binary deformation field vector (BDF) was created and sent to ImSimQA software for comparison with known “ground truth” deformation vector fields (DVF). Results: An image similarity comparison was made by using “ground truth” DVF and “deformed output” BDF with an output of normalized “cross correlation (CC)” and “mutual information (MI)” in ImSimQA software. Results for the lung case were MI=0.66 and CC=0.99. The artificial structure deformation in both pST and dbpST was analyzed using DICE coefficient, mean distance to conformity (MDC) and deformation field error volume histogram (DFEVH) by comparing them before and after inverse deformation. We have noticed inadequate structure match for CTV, ITV and PTV due to close proximity of heart and overall affected by lung expansion. Conclusion: We have seen similarity between pCT and dbpCT but not so well between pST and dbpST, because of inadequate structure deformation in clinical DIR system. This system based quality assurance test will prepare us for adopting the guidelines of upcoming AAPM task group 132 protocol.« less
Basement-driven strike-slip deformation involving a salt-stock canopy system
NASA Astrophysics Data System (ADS)
Dooley, Tim; Jackson, Martin; Hudec, Mike
2016-04-01
NW-striking basement-involved strike-slip zones have been reported or inferred from the northern Gulf of Mexico (GoM). This interpretation is uncertain, because the effects of strike-slip deformation are commonly difficult to recognize in cross sections. Recognition is doubly difficult if the strike-slip zone passes through a diapir field that complicates deformation, and an associated salt canopy that partially decouples shallow deformation from deep deformation. We use physical models to explore the effects of strike-slip deformation above and below a salt-stock canopy system. Canopies of varying maturity grew from a series of 14 feeders/diapirs located on and off the axis of a dextral basement fault. Strike-slip deformation styles in the overburden vary significantly depending on: (1) the location of the diapirs with respect to the basement fault trace, and; (2) the continuity of the canopy system. On-axis diapirs (where the diapirs lie directly above the basement fault) are typically strongly deformed and pinched shut at depth to form sharp S-shapes, whereas their shallow deformation style is that of a open-S-shaped pop-up structure in a restraining bend. The narrow diapir stem acts as a shear zone at depth. Pull-apart structures form between diapirs that are arranged in a right-stepping array tangental to the basement fault trace. These grade along strike into narrow negative flower structures. Off-axis diapirs (diapirs laterally offset from the basement fault but close enough to participate in the deformation) form zones of distributed deformation in the form of arrays of oblique faults (R shears) that converge along strike onto the narrower deformation zones associated with on-axis diapirs. Above an immature, or patchy, canopy system the strike-slip structures closely match sub canopy structures, with the exception of wrench fold formation where the supracanopy roof is thin. In contrast, the surface structures above a mature canopy system consist of a broad zone of PDZ-parallel faults and high-angle wrench folds, strongly decoupled from the subcanopy structure. The exception to this is where there are gaps (windows) in the canopy, allowing coupling to the deeper deformation field. In this mature canopy open-S planforms are muted as deformation is spread over a broader area of coalesced salt sheets, except at the canopy edge and where the supracanopy roof is thin. Supracanopy structures are also influenced by the sutures between the individual salt sheets. Results from this set of analog models are potentially useful as predictive tools to understand the origin and geometry of structures in areas where subsurface data is scarce or data quality is poor.
NASA Astrophysics Data System (ADS)
Das, I.; Bell, R. E.; Creyts, T. T.; Wolovick, M.
2013-12-01
Large deformed ice structures have been imaged at the base of northern Greenland ice sheet by IceBridge airborne radar. Numerous deformed structures lie along the base of both Petermann Glacier and Northeast Ice stream catchments covering 10-13% of the catchment area. These structures may be combinations of basal freeze-on and folded ice that overturns and inverts stratigraphy. In the interior, where the ice velocity is low, the radar imaged height of the deformed structures are frequently a significant fraction of the ice thickness. They are related to basal freeze on and stick-slip at the base of the ice sheet and may be triggered by subglacial water, sediments or local geological conditions. The larger ones (at times up to 700 m thick and 140 km long) perturb the ice stratigraphy and create prominent undulations on the ice surface and modify the local surface mass balance. Here, we investigate the relationship between the deformed structures and surface processes using shallow and deep ice radar stratigraphy. The surface undulations caused by the deformed structures modulate the pattern of local surface snow accumulation. Using normalized differences of several near-surface stratigraphic layers, we have calculated the accumulation anomaly over these deformed structures. The accumulation anomalies can be as high as 20% of the local surface accumulation over some of the larger surface depressions caused by these deformed structures. We observe distinct differences in the phases of the near-surface internal layers on the Petermann and Northeast catchments. These differences indicate that the deformed bodies over Petermann are controlled by conditions at the bed different from the Northeast Ice stream. The distinctly different near-surface stratigraphy over the deformed structures in the Petermann and Northeast catchments have opened up a number of questions including their formation and how they influence the ice dynamics, ice stratigraphy and surface mass balance. In this study we will model the different physical conditions at the bed and ice rheology from their distinct signatures in the near-surface strata. The results will identify the distinct mechanisms that form these bodies and their control over the surface morphology and snow accumulation.
On the coherency of dynamic load estimates for vehicles on flexible structures
NASA Astrophysics Data System (ADS)
Mitra, Mainak; Gordon, Timothy
2014-05-01
This paper develops a novel form of a well-known signal processing technique, so as to be applicable to the interaction between a heavy truck and a supporting bridge structure. Motivated by the problem of structural health monitoring of bridges, a new modal coherency function is defined. This relates the input action of moving wheel loads to the dynamic response of the bridge, including the effects of unevenness of the road surface and the vertical dynamics of the truck suspension. The analysis here is specifically aimed at future experimental testing - the validation of axle load estimators obtained from sensors on the truck. It is applicable even when no independent 'ground truth' for the dynamic loads is available. The approach can be more widely used in the analysis of dynamic interactions involving suspended moving loads on deformable structures, e.g. for structural vibrations due to high-speed trains.
A knitted glove sensing system with compression strain for finger movements
NASA Astrophysics Data System (ADS)
Ryu, Hochung; Park, Sangki; Park, Jong-Jin; Bae, Jihyun
2018-05-01
Development of a fabric structure strain sensor has received considerable attention due to its broad application in healthcare monitoring and human–machine interfaces. In the knitted textile structure, it is critical to understand the surface structural deformation from a different body motion, inducing the electrical signal characteristics. Here, we report the electromechanical properties of the knitted glove sensing system focusing on the compressive strain behavior. Compared with the electrical response of the tensile strain, the compressive strain shows much higher sensitivity, stability, and linearity via different finger motions. Additionally, the sensor exhibits constant electrical properties after repeated cyclic tests and washing processes. The proposed knitted glove sensing system can be readily extended to a scalable and cost-effective production due to the use of a commercialized manufacturing system.
Research on the technologies of cracking-resistance of mass concrete in subway station
NASA Astrophysics Data System (ADS)
Sheng, Yanmin; Li, Shujin; Jiang, Guoquan; Shi, Xiaoqing; Yang, Zhu; Zhu, Zhihang
2018-03-01
This paper takes the theory of multi-field coupling and the model of hydration-temperature-humidity-constraint to assess the effect of cracking-resistance on structural concrete and optimize the controlling index of crack resistance. The effect is caused by structure, material and construction, etc. The preparation technology of high cracking-resistance concrete is formed through the researching on the temperature rising and deformation over the controlling influence of new anti-cracking materials and technologies. A series of technologies on anti-cracking and waterproof in underground structural concrete of urban rail transit are formed based on the above study. The technologies include design, construction, materials and monitoring. Those technologies are used in actual engineering to improve the quality of urban rail transit and this brings significant economic and social benefits.
NASA Astrophysics Data System (ADS)
Myrow, P.; Chen, J.
2013-12-01
A wide variety of unusual penecontemporaneous deformation structures exist in grainstone and flat-pebble conglomerate beds of the Upper Cambrian strata, western Colorado, including slide scarps, thrusted beds, irregular blocks and internally deformed beds. Slide scarps are characterized by concave-up, sharp surfaces that truncate one or more underlying beds. Thrusted beds record movement of a part of a bed onto itself along a moderate to steeply inclined (generally 25°-40°) ramp. The hanging wall lenses in cases show fault-bend geometries, with either intact or mildly deformed bedding. Irregular bedded to internally deformed blocks isolated on generally flat upper bedding surfaces are similar in composition to the underlying beds. These features represent parts of beds that were detached, moved up onto, and some distances across, the laterally adjacent undisturbed bed surfaces. The blocks moved either at the sediment-water interface or intrastratally at shallow depths within overlying muddy deposits. Finally, internally deformed beds have large blocks, fitted fabrics of highly irregular fragments, and contorted lamination, which represent heterogeneous deformation, such as brecciation and liquefaction. The various deformation structures were most probably triggered by earthquakes, considering the nature of deformation (regional distribution of liquefaction structures, and the brittle segmentation and subsequent transportation of semi-consolidated beds) and the reactivation of Mesoproterozoic, crustal-scale shear zones in the central Rockies during the Late Cambrian. Features produced by initial brittle deformation are unusual relative to most reported seismites, and may represent poorly recognized to unrecognized seismogenic structures in the rock record.
Stress Changes and Deformation Monitoring of Longwall Coal Pillars Located in Weak Ground
NASA Astrophysics Data System (ADS)
Yu, Bin; Zhang, Zhenyu; Kuang, Tiejun; Liu, Jinrong
2016-08-01
Coal pillar stability is strongly influenced by the site-specific geological and geotechnical conditions. Many geological structures such as faults, joints, or rock intrusions can be detrimental to mining operations. In order to evaluate the performance of coal pillars under weak roof degraded by igneous rock intrusion, stress and deformation monitoring was conducted in the affected tailgate areas of Nos. 8208 and 8210 longwalls in Tashan coal mine, Shanxi Province, China. The measurements in the 8208 longwall tailgate showed that the mining-induced stresses in 38-m-wide coal chain pillars under the overburden depth of 300-500 m started to increase at about 100 m ahead of the 8208 longwall working face and reached its peak level at approximately 50 m ahead of the longwall face. The peak stress of 9.16 MPa occurred at the depth of 8-9 m into the pillar from the tailgate side wall. In comparison, disturbance of the headgate block pillar area was negligible, indicating the difference of abutment pressure distribution between the tailgate and headgate sites where the adjacent unmined longwall block carried most of the overburden load. However, when the longwall face passed the headgate monitoring site by 360-379 m, the pillar stress increased to a peak value of 21.4 MPa at the pillar depth of 13 m from the gob side mainly due to stress redistribution in the chain pillar. In contrast to the headgate, at the tailgate side, the adjacent goaf was the dominant triggering factor for high stress concentrations in the chain pillar. Convergence measurements in the tailgate during longwall mining further indicated the evolution characteristics of coal pillar deformation, clearly showing that the gateroad deformation is mainly induced by the longwall extraction it serves. When predicting the future pillar loads from the monitored data, two stress peaks appeared across the 38-m-wide tailgate coal pillar, which are separated by the lower stress area within the pillar center. This 10-m-wide elastic pillar core area indicates that the coal pillar may be narrowed to 30 m to improve coal recovery. The measurements further indicate that, if the headgate of the next panel can be developed after the adjacent gob becomes stable, the coal pillar width may be further reduced to 20 m. This study is applicable for the chain pillar design, the gateroad secondary support design ahead of the longwall mining face, and the gateroad preparation of the next longwall panel under similar geological and geotechnical conditions.
NASA Astrophysics Data System (ADS)
Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore
2016-05-01
The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.
Analogue Models Of Volcanic Spreading At Mt. Vesuvius
NASA Astrophysics Data System (ADS)
De Matteo, Ada; Castaldo, Raffaele; D'Auria, Luca; James, Michael; Lane, Steve; Massa, Bruno; Pepe, Susi; Tizzani, Pietro
2015-04-01
Somma-Vesuvius is a quiescent strato-volcano of the Neapolitan district, southern Italy, for which various geophysical and geological evidences (e.g. geodetic measurements, geological and structural data, seismic profiles interpretations and surface deformation analysis with Differential Interferometric Synthetic Aperture Radar (DInSAR)) indicate ongoing spreading deformation. In this research we investigate the spreading deformation and associated surface deformation pattern by performing analogue experiments and comparing the results with actual ground deformation as measured using DInSAR data recorded between 1992 and 2010. Somma-Vesuvius consists of a volcanic cone (Gran Cono) lying within an asymmetric caldera (Somma). The Somma caldera is the result of at least 7 Plinian eruptions, the last of which was the 79 CE. Pompeii eruption. The current cone of Mt. Vesuvius grew within the caldera in the following centuries as the effect of continued explosive and effusive activity of the volcano. The volcano lies on a substratum consisting of a Mesozoic carbonatic basement, overlapped by Holocene clastic sediments and volcanic rocks. Our analogue models were built to simulate the shape of the Somma-Vesuvius top a scale of about 1:100000, emplaced on a sand layer (brittle behaviour) laid on a silicone layer (ductile behaviour). Models are based on the Fluid-dynamics Dimensionless Analysis (FDA), according to the Buckingham-Π theorem. In this context, we considered few dimensionless parameters that allowed the setting of a reliable scaled model. To represent the complex Somma-Vesuvius geometry, an asymmetric model was built by setting a truncated cone (mimicking the topography of Somma edifice) topped by another small cone (mimicking the Gran Cono) shifted off the axis of the main cone. Different experiments were carried out in which the thickness of the basal sand layer and of the silicone one were varied. To quantify the vertical and horizontal displacements the models were monitored with three synchronised digital cameras, enabling sequential 3-D models to be derived using a photogrammetric technique. Finally, our models were compared with the 1992 - 2010 SBAS DInSAR measurements of ground deformations obtained using ERS-ENVISAT satellite images. The results show that analogue models are able to reproduce different styles of volcanic spreading and to reproduce the observed surface and deformation pattern. At the end our models show a deformation rather similar to the actual deformation pattern of the Somma-Vesuvius, both in the direction and in the intensity. Further studies will be devoted at find the best combination of parameters (silicone layer thickness and viscosity) to fit observations and to introduce a tridimensional rigid based topography. These studies will be implemented also with new structural and surface deformation (DinSAR) data and will be integrated with a numerical modelling.
NASA Astrophysics Data System (ADS)
Froger, J.; Remy, D.; Bonvalot, S.; Franco Guerra, M.
2005-12-01
Since the pioneer study on Mount Etna by Massonnet et al., in 1995, several works have illustrated the promising potentiality of Synthetic Aperture Radar Interferometry (INSAR) for the monitoring of volcanoes. In the case of wide, remote or hazardous volcanic areas, in particular, INSAR represents a safer and more economic way to acquire measurements than from ground based geodetic networks. Here we present the preliminary results of an interferometric survey made with ASAR-ENVISAT data on a selection of South American volcanoes where deformation signals had been previously evidenced or are expected. An interesting result is the detection of a present-day active ground deformation on the Azufre-Lastarria area (Chile-Argentina) indicating that process, identified during 1998-2000 by Pritchard and Simmons (2004) from ERS data, is still active. The phase signal visible on ASAR interferograms (03/2003-06/2005) is roughly elliptical with a 45 km NNE-SSW major axis. Its amplitude increases as a function of time and is compatible with ground uplift in the line of sight of the satellite. The ASAR time series (up to 840 days, 7 ASAR images) indicates variable deformation rate that might confirm the hypothesis of a non uniform deformation process. We investigated the origin and the significance of the deformation using various source modelling strategies (analytical and numerical). The observed deformation can be explained by the infilling of an elliptical magmatic reservoir lying between 7 and 10 km depth. The deformation could represent the first stage of a new caldera forming as it is correlated with a large, although subtle, topographic depression surrounded by a crown of monogenetic centers. A short wavelength inflation has also been detected on Lastaria volcano. It could result from the on-going infilling of a small subsurface magmatic reservoir, eventually supplied by the deeper one. All these observations point out the need of a closer monitoring of this area in order to assess future volcanic hazard.
NASA Astrophysics Data System (ADS)
Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin
2017-09-01
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.
Intrinsic polymer optical fiber sensors for high-strain applications
NASA Astrophysics Data System (ADS)
Kiesel, Sharon; Van Vickle, Patrick; Peters, Kara; Hassan, Tasnim; Kowalsky, Mervyn
2006-03-01
This paper presents intrinsic polymer fiber (POF) sensors for high-strain applications such as health monitoring of civil infrastructure systems subjected to earthquake loading or structures with large shape changes such as morphing aircraft. POFs provide a potential maximum strain range of 6-12%, are more flexible that silica optical fibers, and are more durable in harsh chemical or environmental conditions. Recent advances in the fabrication of singlemode POFs have made it possible to extend POFs to interferometric sensor capabilities. Furthermore, the interferometric nature of intrinsic sensors permits high accuracy for such measurements. However, several challenges, addressed in this paper, make the application of the POF interferometer more difficult than its silica counterpart. These include the finite deformation of the POF cross-section at high strain values, nonlinear strain optic effects in the polymer, and the attenuation with strain of the POF. In order to predict the response of the sensor a second-order (in strain) photoelastic effect is derived and combined with the second-order solution of the deformation of the optical fiber when loaded. It is determined that for the small deformation region four constants are required (two mechanical and two photoelastic properties) and for the large deformation region six additional constants are required (two mechanical and four photoelastic properties). This paper also presents initial measurements of the mechanical response of the sensor and comparison to previously reported POFs.
Yang, Qianlong; Zhang, Zhenyu; Liu, Xiaoqian; Ma, Shuqi
2017-01-01
The deformation of underground gateroads tends to be asymmetric and complex. Traditional instrumentation fails to accurately and conveniently monitor the full cross-sectional deformation of underground gateroads. Here, a full cross-sectional laser scanner was developed, together with a visualization software package. The developed system used a polar coordinate measuring method and the full cross-sectional measurement was shown by 360° rotation of a laser sensor driven by an electrical motor. Later on, the potential impact of gateroad wall flatness, roughness, and geometrical profile, as well as coal dust environment on the performance of the developed laser scanner will be evaluated. The study shows that high-level flatness is favorable in the application of the developed full cross-sectional deformation monitoring system. For a smooth surface of gateroad, the sensor cannot receive reflected light when the incidence angle of laser beam is large, causing data loss. Conversely, the roughness surface shows its nature as the diffuse reflection light can be received by the sensor. With regards to coal dust in the measurement environment, fine particles of floating coal dust in the air can lead to the loss of measurement data to some extent, due to scattering of the laser beam. PMID:28590449
Wu, H.-A.; Zhang, Y.-H.; Chen, X.-Y.; Lu, T.; Du, J.; Sun, Z.-H.; Sun, G.-T.
2011-01-01
DInSAR technique based on time series of SAR images has been very popular to monitor ground stow deformation in recent years such as permanent scatterers (PS) method small baseline subsets (SBAS) method and coherent targets (CT) method. By taking advantage of PS method and CT method in this paper small baseline DTnSAR technique is used to investigate the ground deformation of Taiyuan City Shanxi Province from 2003 to 2009 by using 23 ENVISAT ASAR images. The experiment results demonstrate that: (1) during this period four significant subsidence centers have been developed in Taiyuan namely Xiayuan Wujiabu Xiaodian Sunjiazhai. The largest subsidence center is Sunjiazhai with an average subsidence rate of -77. 28 mm/a; (2) The subsidence of the old center Wanbolin has sHowed down. And the subsidence in the northern region has stopped and some areas even rebounded. (3) The change of subsidence centers indicates that the control measures of "closing wells and reducing exploitation" taken by the Taiyuan government has achieved initial effects. (4) The experiment results have been validated with leveling data and the acouracy is 2. 90 mm which shows that the small baseline DInSAR technique can be used to monitor urban ground deformation.
Variable-intercept panel model for deformation zoning of a super-high arch dam.
Shi, Zhongwen; Gu, Chongshi; Qin, Dong
2016-01-01
This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.
NASA Technical Reports Server (NTRS)
Bock, Y.
1982-01-01
Four possible estimators are investigated for the monitoring of crustal deformations from a combination of repeated baseline length measurements and adopted geophysical models, particularly an absolute motion plate model. The first estimator is an extension of the familiar free adjustment. The next two are Bayesian type estimators, one weak and one strong. Finally, a weighted constraint estimator is presented. The properties of these four estimators are outlined and their physical interpretations discussed. A series of simulations are performed to test the four estimators and to determine whether or not to incorporate a plate model for the monitoring of deformations. The application of these estimations to the maintenance of a new conventional terrestrial reference system is discussed.
Earthquakes and sea level - Space and terrestrial metrology on a changing planet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilham, R.
1991-02-01
A review is presented of the stability and scale of crustal deformation metrology which has particular relevance to monitoring deformation associated with sea level and earthquakes. Developments in space geodesy and crustal deformation metrology in the last two decades have the potential to acquire a homogeneous global data set for monitoring relative horizontal and vertical motions of the earth's surface to within several millimeters. New tools discussed for forecasting sea level rise and damaging earthquakes include: very long baseline interferometry, satellite laser ranging, the principles of GPS geodesy, and new sea level sensors. Space geodesy permits a unified global basismore » for future metrology of the earth, and the continued availability of the GPS is currently fundamental to this unification.« less
Observing Bridge Dynamic Deflection in Green Time by Information Technology
NASA Astrophysics Data System (ADS)
Yu, Chengxin; Zhang, Guojian; Zhao, Yongqian; Chen, Mingzhi
2018-01-01
As traditional surveying methods are limited to observe bridge dynamic deflection; information technology is adopted to observe bridge dynamic deflection in Green time. Information technology used in this study means that we use digital cameras to photograph the bridge in red time as a zero image. Then, a series of successive images are photographed in green time. Deformation point targets are identified and located by Hough transform. With reference to the control points, the deformation values of these deformation points are obtained by differencing the successive images with a zero image, respectively. Results show that the average measurement accuracies of C0 are 0.46 pixels, 0.51 pixels and 0.74 pixels in X, Z and comprehensive direction. The average measurement accuracies of C1 are 0.43 pixels, 0.43 pixels and 0.67 pixels in X, Z and comprehensive direction in these tests. The maximal bridge deflection is 44.16mm, which is less than 75mm (Bridge deflection tolerance value). Information technology in this paper can monitor bridge dynamic deflection and depict deflection trend curves of the bridge in real time. It can provide data support for the site decisions to the bridge structure safety.
NASA Astrophysics Data System (ADS)
Yagodzinskyy, Yuriy; Malitckii, Evgenii; Tuomisto, Filip; Hänninen, Hannu
2018-03-01
Single crystals of oxygen-free copper oriented to easy glide of dislocations were tensile tested in order to study the hydrogen effects on the strain localisation in the form of slip bands appearing on the polished specimen surface under tensile straining. It was found that hydrogen increases the plastic flow stress in Stage I of deformation. The dislocation slip localisation in the form of slip bands was observed and analysed using an online optical monitoring system and atomic force microscopy. The fine structure of the slip bands observed with AFM shows that they consist of a number of dislocation slip offsets which spacing in the presence of hydrogen is markedly reduced as compared to that in the hydrogen-free specimens. The tensile tests and AFM observations were accompanied with positron annihilation lifetime measurements showing that straining of pure copper in the presence of hydrogen results in free volume generation in the form of vacancy complexes. Hydrogen-enhanced free-volume generation is discussed in terms of hydrogen interactions with edge dislocation dipoles forming in double cross-slip of screw dislocations in the initial stage of plastic deformation of pure copper.
Motion mechanics of non-adherent giant liposomes with a combined optical and atomic force microscope
NASA Astrophysics Data System (ADS)
Moreno-Flores, Susana; Ortíz, Rocío
2017-11-01
Herein we present an investigation of the motional dynamics of single mesoscopic bodies of biological relevance with an AFM-based macromanipulation tool and an optical microscope. Giant liposomes are prominent case examples as minimal cell models; studying their mechanics provides a means to address the influence of structural components in the mechanical behaviour of living cells. However, they also pose an experimental challenge due to their lightness, fragility, and high mobility. Their entrapment in wells in a fluid of lower density allows their study under conditions of constrained motion, which enables the synchronous measurement of nanoforces with motion tracking. The procedure enables to estimate sliding friction coefficients and masses of vesicles, and sheds light upon the region between the vesicle and the underlying substrate. The present study paves the way for the investigation of motion and deformation mechanics with one combined technique and a single type of experiment traditionally vetoed to objects that can move as well as deform. Such an approach can be directly applied to cells in suspension, adherent cells or cellular 3D-assemblies so as to assess substrate biocompatibility, monitor adhesion, detachment, motility as well as deformability.
NASA Astrophysics Data System (ADS)
Yang, S. Q.; Yang, D. S.; Jing, H. W.; Li, Y. H.; Wang, S. Y.
2012-07-01
To analyse the fracture coalescence behaviour of rock, rectangular prismatic sandstone specimens (80 × 160 × 30 mm in size) containing three fissures were tested under uniaxial compression. The strength and deformation behaviours of the specimens are first analysed by investigating the effects of the ligament angle β2 on the peak strength, peak strain and crack initiation stress of the specimens. To confirm the sequence of crack coalescence, a photographic monitoring technique is used throughout the entire period of deformation. Based on the results, the relationship between the real-time crack coalescence process and the axial stress-strain curve of brittle sandstone specimens is also developed, and this relationship can be used to evaluate the macroscopic deformation characteristics of pre-cracked rock. The equivalent strain evolution fields of the specimen, with α = β1 = 45° and β2 = 90°, are obtained using the digital image correlation technique and show good agreement with the experimental results of pre-cracked brittle sandstone. These experimental results are expected to improve the understanding of fracture mechanisms and be used in rock engineering with intermittent structures, such as deep underground excavated tunnels.
Hilbert-Wolf, Hannah Louise; Roberts, Eric M
2015-01-01
In lieu of comprehensive instrumental seismic monitoring, short historical records, and limited fault trench investigations for many seismically active areas, the sedimentary record provides important archives of seismicity in the form of preserved horizons of soft-sediment deformation features, termed seismites. Here we report on extensive seismites in the Late Quaternary-Recent (≤ ~ 28,000 years BP) alluvial and lacustrine strata of the Rukwa Rift Basin, a segment of the Western Branch of the East African Rift System. We document examples of the most highly deformed sediments in shallow, subsurface strata close to the regional capital of Mbeya, Tanzania. This includes a remarkable, clastic 'megablock complex' that preserves remobilized sediment below vertically displaced blocks of intact strata (megablocks), some in excess of 20 m-wide. Documentation of these seismites expands the database of seismogenic sedimentary structures, and attests to large magnitude, Late Pleistocene-Recent earthquakes along the Western Branch of the East African Rift System. Understanding how seismicity deforms near-surface sediments is critical for predicting and preparing for modern seismic hazards, especially along the East African Rift and other tectonically active, developing regions.
Hilbert-Wolf, Hannah Louise; Roberts, Eric M.
2015-01-01
In lieu of comprehensive instrumental seismic monitoring, short historical records, and limited fault trench investigations for many seismically active areas, the sedimentary record provides important archives of seismicity in the form of preserved horizons of soft-sediment deformation features, termed seismites. Here we report on extensive seismites in the Late Quaternary-Recent (≤ ~ 28,000 years BP) alluvial and lacustrine strata of the Rukwa Rift Basin, a segment of the Western Branch of the East African Rift System. We document examples of the most highly deformed sediments in shallow, subsurface strata close to the regional capital of Mbeya, Tanzania. This includes a remarkable, clastic ‘megablock complex’ that preserves remobilized sediment below vertically displaced blocks of intact strata (megablocks), some in excess of 20 m-wide. Documentation of these seismites expands the database of seismogenic sedimentary structures, and attests to large magnitude, Late Pleistocene-Recent earthquakes along the Western Branch of the East African Rift System. Understanding how seismicity deforms near-surface sediments is critical for predicting and preparing for modern seismic hazards, especially along the East African Rift and other tectonically active, developing regions. PMID:26042601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fourspring, P.M.; Pangborn, R.N.
1996-06-01
X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life ofmore » the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.« less
NASA Astrophysics Data System (ADS)
Amato, Gabriele; Fubelli, Giandomenico; Piccin, Gianluca; Chinellato, Giulia; Iasio, Christian; Mosna, David; Morelli, Corrado
2015-04-01
In the Alpine regions, it is essential and urgent to define an improved and specific set of monitoring methods for the evolution of instability phenomena in order to avoid the closure of the installations because of the occurrence of natural calamities and to ensure the safety of citizens. In this context the SloMove Project aims at consolidate know-how of the ordinary monitoring applications of surface movements, evaluate their pros and cons and optimize the expected technical procedures of investigation. Within the SloMove project, an experimental composite monitoring has been carried out in the touristic site of Maso Corto (South Tyrol, Italy). Structural-Geomorphological Survey, GPS measurements and Time series analysis of SAR Interferometry data have been integrated. The purposes of this experiment are: 1) to reconstruct the geomorphological dynamics and their state of activity; 2) to provide considerations on the role of permafrost as an influential factor for landslide activity. Structural-Geomorphological survey highlighted control of structural asset of the outcropping lithologies on geomorphological markers, such as trenches, counterscarps, outcropping sliding surfaces. The area is characterized by metamorphic rocks, affected by foliation oriented between N350 and N30. Moreover, joints due to frost thaw activity are common in the shallow portions and the presence of two sets of tectonics fractures (N45, 45°-60° and N360, sub-vertical) has been recognized. In order to evaluate the state of permafrost, rock glaciers in the area have been investigated. SAR interferometry data have been processed by TRE® through the SqueeSAR™ analysis using Radarsat and Envisat images acquired during a period between 2003 and 2009. GPS surveys were carried out through the technique of Rapid-Static Relative Positioning during the summer months of 2012 and 2013. Data shows that an area of 2km2, north of Maso Corto, is affected by a Deep Seated Gravitational Slide Deformation that affects the outcropping metamorphic rocks throughout most part of the slope. Deformation facing southeast is extremely slow, reaching a maximum average speed of 10-15 mm/y. A clearly visible sliding surface, rising further upstream, separates stable bedrock by the deformed layer. Structural-Geomorphological Survey allowed to understand the boundaries of the DSGSD that is located on the east flank of the mountain north of the town, where the adjacent re-incised N-S glacial valley rises the maximum deep. Finally, GPS data measured 34 mm/y as the maximum horizontal velocity value of the rock glaciers in the study area. This low displacement rate let us assume that discontinuous, shallow, hot and thin permafrost may be present in the area. The overall analysis of composite survey suggests that the DSGSD formation may result as consequence of deglaciation, subsequent river incision and presence of tectonic discontinuity surfaces, favorably oriented with respect to the maximum slope, whereas the recent degradation of permafrost, due to post-LGM global warming, might have triggered or increased the velocity of the movement. Keywords: integrated monitoring, permafrost, DSGSD, InSAR, GPS, Rock Glacier, Geomorphological Survey, Alps
NASA Astrophysics Data System (ADS)
Wang, Chang; Wu, Hong-lin; Song, Yun-fei; He, Xing; Yang, Yan-qiang; Tan, Duo-wang
2015-11-01
A modified CARS technique with an intense nonresonant femtosecond laser is presented to drive the structural deformation of liquid nitromethane molecules and track their structural relaxation process. The CARS spectra reveal that the internal rotation of the molecule can couple with the CN symmetric stretching vibration and the molecules undergo ultrafast structural deformation of the CH3 groups from 'opened umbrella' to 'closed umbrella' shape, and then experience a structural recovery process within 720 fs.
Auxetic hexachiral structures with wavy ligaments for large elasto-plastic deformation
NASA Astrophysics Data System (ADS)
Zhu, Yilin; Wang, Zhen-Pei; Hien Poh, Leong
2018-05-01
The hexachiral structure is in-plane isotropic in small deformation. When subjected to large elasto-plastic deformation, however, the hexachiral structure tends to lose its auxeticity and/or isotropy—properties which are desirable in many potential applications. The objective of this study is to improve these two mechanical properties, without significantly compromising the effective yield stress, in the regime with significant material and geometrical nonlinearity effects. It is found that the deformation mechanisms underlying the auxeticity and isotropy properties of a hexachiral structure are largely influenced by the extent of rotation of the central ring in a unit cell. To facilitate the development of this deformation mechanism, an improved design with wavy ligaments is proposed. The improved performance of the proposed hexachiral structure is demonstrated. An initial study on possible applications as a protective material is next carried out, where the improved hexachiral design is shown to exhibit higher specific energy absorption capacity compared to the original design, as well as standard honeycomb structures.
NASA Astrophysics Data System (ADS)
Balaji, R.; Sasikumar, M.
2017-09-01
Glass-fibre-reinforced polymer matrix composites are widely used in various industries because of their unique high strength to weight ratio. Unlike metals, strain-induced and damage states of composites are complicated to predict under real-time loading due to their anisotropic nature. With that focus, a piezoresistive nanomaterial-based structural health monitoring system for laminated polymer composites is proposed to measure the strain induced in the composite under real-time loading. Nanometallic nickel-coated glass fibres are embedded into the polymer composites to monitor the strain and damage induced in them. The nanometallic nickel is coated over the glass fibre by a dip coating technique using epoxy as the binding agent. A microcontroller-based electrical resistance measurement system is used to measure the piezoresistive variation in the coated glass fibre under real-time loading. Using the piezoresistance variation of the embedded nanometallic nickel-coated glass fibre, the real-time strain and damage induced in the composite can be correlated. The piezoresistive response of the coated glass fibre is descibed in two phases, the deformation phase and the failure phase, which clearly show the various states of strain and damage induced in the composites.
Lim, Dae-Woon; Kim, Sungjune; Harale, Aadesh; Yoon, Minyoung; Suh, Myunghyun Paik; Kim, Jihan
2017-01-01
Structural deformation and collapse in metal-organic frameworks (MOFs) can lead to loss of long-range order, making it a challenge to model these amorphous materials using conventional computational methods. In this work, we show that a structure–property map consisting of simulated data for crystalline MOFs can be used to indirectly obtain adsorption properties of structurally deformed MOFs. The structure–property map (with dimensions such as Henry coefficient, heat of adsorption, and pore volume) was constructed using a large data set of over 12000 crystalline MOFs from molecular simulations. By mapping the experimental data points of deformed SNU-200, MOF-5, and Ni-MOF-74 onto this structure–property map, we show that the experimentally deformed MOFs share similar adsorption properties with their nearest neighbor crystalline structures. Once the nearest neighbor crystalline MOFs for a deformed MOF are selected from a structure–property map at a specific condition, then the adsorption properties of these MOFs can be successfully transformed onto the degraded MOFs, leading to a new way to obtain properties of materials whose structural information is lost. PMID:28696307
NASA Astrophysics Data System (ADS)
Põldsaar, Kairi
2015-04-01
Soft-sediment deformation structures (SSDS) are documented in several horizons within silt- and sandstones of the Cambrian Series 2 (Dominopolian Stage) Tiskre Formation, and some in the below-deposited argillaceous deposits of the Lükati Formation (northern part of the Baltoscandian Palaeobasin, NW Estonia). The aim of this study was to map, describe, and analyze these deformation features, discuss their deformation mechanism and possible triggers. Load structures (simple load casts, pillows, flame structures, convoluted lamination) with varying shapes and sizes occur in the Tiskre Fm in sedimentary interfaces within medium-bedded peritidal rhythmites (siltstone-argillaceous material) as well as within up to 3 m thick slightly seaward inclined stacked sandstone sequences. Homogenized beds, dish-and-pillar structures, and severely deformed bedding are also found within these stacked units and within a large tidal runoff channel infill. Autoclastic breccias and water-escape channels are rare and occur only in small-scale -- always related to thin, horizontal tidal laminae. Profound sedimentary dykes, sand volcanoes, and thrust faults, which are often related to earthquake triggered soft sediment deformation, were not observed within the studied intervals. Deformation horizon or horizons with large flat-topped pillows often with elongated morphologies occur at or near the boundary between the Tiskre and Lükati formations. Deformation mechanisms identified in this study for the various deformation types are gravitationally unstable reversed density gradient (especially in case of load features that are related to profound sedimentary interfaces) and lateral shear stress due to sediment current drag (in case of deformation structures that not related to loading at any apparent sedimentary interface). Synsedimentary liquefaction was identified as the primary driving force in most of the observed deformation horizons. Clay thixotropy may have contributed in the formation of large sandstone pillows within the Tiskre-Lükati boundary interval at some localities. It is discussed here that the formation of the observed SSDS is genetically related to the restless dynamics of the storm-influenced open marine tidal depositional environment. The most obvious causes of deformation were rapid-deposition, shear and slumping caused by tidal surges, and storm-wave loading.
Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring
Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan
2009-01-01
The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152
Using NASTRAN to solve symmetric structures with nonsymmetric loads
NASA Technical Reports Server (NTRS)
Butler, T. G.
1982-01-01
A method for computation of reflective dihedral symmetry in symmetrical structures under nonsymmetric loads is described. The method makes it possible to confine the analysis to a half, a quarter, or an octagonal segment. The symmetry of elastic deformation is discussed, and antisymmetrical deformation is distinguished from nonsymmetrical deformation. Modes of deformation considered are axial, bending, membrane, and torsional deformation. Examples of one and two dimensional elements are presented and extended to three dimensional elements. The method of setting up a problem within NASTRAN is discussed. The technique is applied to a thick structure having quarter symmetry which was modeled with polyhedra and subjected to five distinct loads having varying degrees of symmetry.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1995-04-18
An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1995-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.
Influence of deformation on structural-phase state of weld material in St3 steel
NASA Astrophysics Data System (ADS)
Smirnov, Alexander; Kozlov, Eduard; Ababkov, Nicolay; Popova, Natalya; Nikonenko, Elena; Ozhiganov, Yevgeniy; Zboykova, Nadezhda; Koneva, Nina
2016-01-01
The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn't lead to the internal stresses that can destroy the sample.
Rifaie-Graham, Omar; Apebende, Edward A; Bast, Livia K; Bruns, Nico
2018-05-01
Sensing of damage, deformation, and mechanical forces is of vital importance in many applications of fiber-reinforced polymer composites, as it allows the structural health and integrity of composite components to be monitored and microdamage to be detected before it leads to catastrophic material failure. Bioinspired and biomimetic approaches to self-sensing and self-reporting materials are reviewed. Examples include bruising coatings and bleeding composites based on dye-filled microcapsules, hollow fibers, and vascular networks. Force-induced changes in color, fluorescence, or luminescence are achieved by mechanochromic epoxy resins, or by mechanophores and force-responsive proteins located at the interface of glass/carbon fibers and polymers. Composites can also feel strain, stress, and damage through embedded optical and electrical sensors, such as fiber Bragg grating sensors, or by resistance measurements of dispersed carbon fibers and carbon nanotubes. Bioinspired composites with the ability to show autonomously if and where they have been damaged lead to a multitude of opportunities for aerospace, automotive, civil engineering, and wind-turbine applications. They range from safety features for the detection of barely visible impact damage, to the real-time monitoring of deformation of load-bearing components. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ant Colony Optimization Analysis on Overall Stability of High Arch Dam Basis of Field Monitoring
Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie
2014-01-01
A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline. PMID:25025089
A Biomechanical Modeling Guided CBCT Estimation Technique
Zhang, You; Tehrani, Joubin Nasehi; Wang, Jing
2017-01-01
Two-dimensional-to-three-dimensional (2D-3D) deformation has emerged as a new technique to estimate cone-beam computed tomography (CBCT) images. The technique is based on deforming a prior high-quality 3D CT/CBCT image to form a new CBCT image, guided by limited-view 2D projections. The accuracy of this intensity-based technique, however, is often limited in low-contrast image regions with subtle intensity differences. The solved deformation vector fields (DVFs) can also be biomechanically unrealistic. To address these problems, we have developed a biomechanical modeling guided CBCT estimation technique (Bio-CBCT-est) by combining 2D-3D deformation with finite element analysis (FEA)-based biomechanical modeling of anatomical structures. Specifically, Bio-CBCT-est first extracts the 2D-3D deformation-generated displacement vectors at the high-contrast anatomical structure boundaries. The extracted surface deformation fields are subsequently used as the boundary conditions to drive structure-based FEA to correct and fine-tune the overall deformation fields, especially those at low-contrast regions within the structure. The resulting FEA-corrected deformation fields are then fed back into 2D-3D deformation to form an iterative loop, combining the benefits of intensity-based deformation and biomechanical modeling for CBCT estimation. Using eleven lung cancer patient cases, the accuracy of the Bio-CBCT-est technique has been compared to that of the 2D-3D deformation technique and the traditional CBCT reconstruction techniques. The accuracy was evaluated in the image domain, and also in the DVF domain through clinician-tracked lung landmarks. PMID:27831866
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fourspring, P.M.; Pangborn, R.N.
1997-12-31
X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if XRDCD could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material.more » Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels.« less
Three-dimensional dynamic deformation monitoring using a laser-scanning system
NASA Astrophysics Data System (ADS)
Al-Hanbali, Nedal N.; Teskey, William F.
1994-10-01
Non-contact dynamic deformation monitoring (e.g. with a laser scanning system) is very useful in monitoring changes in alignment and changes in size and shape of coupled operating machines. If relative movements between coupled operating machines are large, excessive wear in the machines or unplanned shutdowns due to machinery failure will occur. The purpose of non-contact dynamic deformation monitoring is to identify the causes of large movements and point to remedial action that can be taken to prevent them. The laser scanning system is a laser-based 3D vision system. The system-technique is based on an auto- synchronized triangulation scanning scheme. The system provides accurate, fast, and reliable 3D measurements and can measure objects between 0.5 m to 100 m with a field of view of 40 degree(s) X 50 degree(s). The system is flexible in terms of providing control over the scanned area and depth. The system also provides the user with the intensity image in addition to the depth coded image. This paper reports on the preliminary testing of this system to monitor surface movements and target (point) movements. The monitoring resolution achieved for an operating motorized alignment test rig in the lab was 1 mm for surface movements and 0.50 m for target movements. Raw data manipulation, local calibration, and the method of relating measurements to control points will be discussed. Possibilities for improving the resolution and recommendations for future development will also be presented.
Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing
NASA Astrophysics Data System (ADS)
Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin
2016-03-01
New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.
NASA Astrophysics Data System (ADS)
Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.
2009-04-01
Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.
Okubo, Chris H.
2014-01-01
The manifestation of brittle deformation within inactive slumps along the North Menan Butte, a basaltic tuff cone in the Eastern Snake River Plain, is investigated through field and laboratory studies. Microstructural observations indicate that brittle strain is localized along deformation bands, a class of structural discontinuity that is predominant within moderate to high-porosity, clastic sedimentary rocks. Various subtypes of deformation bands are recognized in the study area based on the sense of strain they accommodate. These include dilation bands (no shear displacement), dilational shear bands, compactional shear bands and simple shear bands (no volume change). Measurements of the host rock permeability between the deformation bands indicate that the amount of brittle strain distributed throughout this part of the rock is negligible, and thus deformation bands are the primary means by which brittle strain is manifest within this tuff. Structural discontinuities that are similar in appearance to deformation bands are observed in other basaltic tuffs. Therefore deformation bands may represent a common structural feature of basaltic tuffs that have been widely misclassified as fractures. Slumping and collapse along the flanks of active volcanoes strongly influence their eruptive behavior and structural evolution. Therefore characterizing the process of deformation band and fault growth within basaltic tuff is key to achieving a more complete understanding of the evolution of basaltic volcanoes and their associated hazards.
NASA Astrophysics Data System (ADS)
Bavusi, M.; Dumoulin, J.; Loperte, A.; Rizzo, E.; Soldovieri, F.
2012-04-01
The main facility of Hydrogeosite Laboratory of the Italian National Research Council (Marsico Nuovo, CNR) is a 3m x 7m x 10m reinforced concrete pool filled by siliceous sand designed for hydrologic experiments. One of its peculiarities is the possibility to vary the water table depth by using a proper hydraulic system [1]. In the framework of the FP7 ISTIMES project (Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing), a 3m x 3m layered structure has been purposely built and placed in the pool of the Hydrogeosite Laboratory with the aim to carry out a long term monitoring, by using jointly several electromagnetic sensing technologies, during two different phases simulating the rising of the water table and a mechanical solicitation. Several layers composed the structure from the top to the bottom, such as: 5 cm of asphalt; 5-10 cm of reinforced concrete; 20-25 cm of conglomerate, 55 cm of sand. Moreover, in the sand layer, three (metallic and plastic) pipes of different size were buried to simulate utilities. Ground Penetrating Radar (GPR) surveys were performed by using a the GSSI SIR 3000 system equipped with 400 MHz and 1500 MHz central frequency antennas. Surveys carried out by means of 400 MHz antenna allowed to detect and localize the three pipes (one in plastic and two in metal) and to investigate the effects of the sand water content on their radar signature. Surveys carried out by using 1500 MHz antenna were focused to characterize the shallower layers of the structure. The Hydrogeosite experiment consisted in following stages: • Arising of a water table by infiltration from the bottom; • Water gravity infiltration condescendingly; • Infiltration by peristaltic pump in the very shallow layers of the structure; • Water table drawdown; • Mechanical structure deformation; • Asphalt plate restoration after mechanical solicitation. After each stage a series of GPR surveys was performed. Moreover, a zero setting acquisition was carried out before perturbing the plate. Described experience demonstrates the GPR is a reliable technique for the: • foundation soil characterization and monitoring • Reinforced structural elements monitoring • asphalt/reinforced concrete characterization and monitoring • detection of water infiltration, structural elements, defects • evaluation of restoration intervention. In fact, the GPR technique was able to investigate the layers beyond the asphalt and provides a spatial resolution complying with the needs of the technical problem at hand by use of different antennas. Moreover noticeable performances of this technique can be further improved by implementing 3D processing and MT inversion procedures in order to increase the amount of information by the survey [2]. Acknowledgements. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 225663 Joint Call FP7-ICT-SEC-2007-1 [1] Lapenna, V.; Cuomo, V.; Rizzo, E.; Fiore, S.; Troisi, S.; Straface, S. (2006). A new Large Lab-scale Facility for Hydro-Geophysical Experiments: Hydrogeosite. American Geophysical Union, Fall Meeting 2006, abstract #H31B-1422 [2] Bavusi M., Soldovieri F., Di Napoli R., Loperte A., Di Cesare A., Ponzo F.C and Lapenna V. (2011). Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy. J. Geophys. Eng. 8 S33 doi:10.1088/1742-2132/8/3/S04
Deformation-induced structural transition in body-centred cubic molybdenum
Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.
2014-01-01
Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama–Wassermann and Kurdjumov–Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655
NASA Astrophysics Data System (ADS)
Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.
2018-02-01
The structural and phase transformations in the Al-Li-Cu-Mg-Zr-Sc-Zn alloy have been studied by the electron microscopy after the aging for the maximum strength and in the nanostructured state after severe plastic deformation by high-pressure torsion. It has been shown that severe plastic deformation leads to the formation of a nanostructured state in the alloy, the nature of which is determined by the magnitude of deformation and the degree of completeness of the dynamic recrystallization. It has been established that deformation also causes a change in the phase composition of the alloy. The influence of the structural components of the severely deformed alloy on the level of mechanical properties, such as the hardness, plasticity, elastic modulus, and stiffness has been discussed.
Measuring and analyzing thermal deformations of the primary reflector of the Tianma radio telescope
NASA Astrophysics Data System (ADS)
Dong, Jian; Fu, Li; Liu, Qinghui; Shen, Zhiqiang
2018-06-01
The primary reflector of the Tianma Radio Telescope (TMRT) distorts due to the varying thermal conditions, which dramatically reduces the aperture efficiency of Q-band observations. To evaluate and overcome the thermal effects, a thermal deformations measurement system has been established based on the extended Out-of-Focus holography (e-OOF). The thermal deformations can be measured in approximately 20 min with an illumination-weighted surface root mean square (RMS) accuracy of approximately 50 μm. We have measured the thermal deformations when the backup and front structure were heated by the sun respectively, and used the active surface system to correct the thermal deformations immediately to confirm the measurements. The thermal deformations when the backup structure is heated are larger than those when the front structure is heated. The values of half power beam width (HPBW) are related to the illumination-weighted surface RMS, and can be used to check the thermal deformations. When the backup structure is heated, the aperture efficiencies can remain above 90% of the maximum efficiency at 40 GHz for approximately two hours after one adjustment. While the front structure is heated, the aperture efficiencies can remain above 90% of the maximum efficiency at 40 GHz, and above 95% after one adjustment in approximately three hours.
NASA Astrophysics Data System (ADS)
Jónsdóttir, Kristín; Ófeigsson, Benedikt; Vogfjörd, Kristín; Roberts, Matthew; Barsotti, Sara; Gudmundsson, Gunnar; Hensch, Martin; Bergsson, Bergur; Kjartansson, vilhjálmur; Erlendsson, Pálmi; Friðriksdóttir, Hildur; Hreinsdóttir, Sigrún; Guðmundsson, Magnús; Sigmundsson, Freysteinn; Árnadóttir, Thóra; Heimisson, Elías; Hjorleifsdóttir, Vala; Soring, Jón; Björnsson, Bogi; Oddsson, Björn
2015-04-01
We present a monitoring overview of a rifting event and associated caldera subsidence in a glaciated environment during the Bárðarbunga volcanic crisis. Following a slight increase in seismicity and a weak deformation signal, noticed a few months before the unrest by the SIL monitoring team, an intense seismic swarm began in the subglacial Bárðarbunga caldera on August 16 2014. During the following two weeks, a dyke intruded into the crust beneath the Vatnajökull ice cap, propagating 48 km from the caldera to the east-north-east and north of the glacier where an effusive eruption started in Holuhraun. The eruption is still ongoing at the time of writing and has become the largest eruption in over 200 years in Iceland. The dyke propagation was episodic with a variable rate and on several occasions low frequency seismic tremor was observed. Four ice cauldrons, manifestations of small subglacial eruptions, were detected. Soon after the swarm began the 7x11 km wide caldera started to subside and is still subsiding (although at slower rates) and has in total subsided over 60 meters. Unrest in subglacial volcanoes always calls for interdisciplinary efforts and teamwork plays a key role for efficient monitoring. Iceland has experienced six subglacial volcanic crises since modern digital monitoring started in the early 90s. With every crisis the monitoring capabilities, data interpretations, communication and information dissemination procedures have improved. The Civil Protection calls for a board of experts and scientists (Civil Protection Science Board, CPSB) to share their knowledge and provide up-to-date information on the current status of the volcano, the relevant hazards and most likely scenarios. The evolution of the rifting was monitored in real-time by the joint interpretation of seismic and cGPS data. The dyke propagation could be tracked and new, updated models of the dyke volume were presented at the CPSB meetings, often daily. In addition, deformation data and models based on remote sensing were presented, further supporting the interpretations of lateral movements of magma. The rapid evolution of the dyke called for a quick response to install new seismic and GPS stations to improve constraints for the intrusion (seismic locations and deformation). The subsidence of the caldera called for innovative thinking, resulting in a high-rate cGPS instrument together with a strong motion sensor being installed on the ice surface. Moreover, specially designed broadband glacier seismometers have been installed. Surveillance flights continue to be carried out to monitor ice surface changes and provide important data on caldera deformation. Monitoring information and interpretations of geophysical data have been made accessible to the public. Automated and manually checked earthquake locations are presented on web based maps and updated every five minutes. In addition cGPS time-series and maps showing GPS deformation vectors together with the color coded temporal evolution of the earthquake sequence are presented and updated regularly on IMO's webpage. Several examples of near-real-time data transfer, analysis and online visualization will be presented.
Effect of roof strength in injury mitigation during pole impact.
Friedman, Keith; Hutchinson, John; Mihora, Dennis; Kumar, Sri; Frieder, Russell; Sances, Anthony
2007-01-01
Motor vehicle accidents involving pole impacts often result in serious head and neck injuries to occupants. Pole impacts are typically associated with rollover and side collisions. During such events, the roof structure is often deformed into the occupant survival space. The existence of a strengthened roof structure would reduce roof deformation and accordingly provide better protection to occupants. The present study examines the effect of reinforced (strengthened) roofs using experimental crash study and computer model simulation. The experimental study includes the production cab structure of a pickup truck. The cab structure was loaded using an actual telephone pole under controlled laboratory conditions. The cab structure was subjected to two separate load conditions at the A-pillar and door frame. The contact force and deformation were measured using a force gauge and potentiometer, respectively. A computer finite element model was created to simulate the experimental studies. The results of finite element model matched well with experimental data during two different load conditions. The validated finite element model was then used to simulate a reinforced roof structure. The reinforced roof significantly reduced the structural deformations compared to those observed in the production roof. The peak deformation was reduced by approximately 75% and peak velocity was reduced by approximately 50%. Such a reduction in the deformation of the roof structure helps to maintain a safe occupant survival space.
Kawashima, Yukio; Tachikawa, Masanori
2014-01-14
Ab initio path integral molecular dynamics (PIMD) simulation was performed to understand the nuclear quantum effect on the out-of-plane ring deformation of hydrogen maleate anion and investigate the existence of a stable structure with ring deformation, which was suggested in experimental observation (Fillaux et al., Chem. Phys. 1999, 120, 387-403). The isotope effect and the temperature effect are studied as well. We first investigated the nuclear quantum effect on the proton transfer. In static calculation and classical ab initio molecular dynamics simulations, the proton in the hydrogen bond is localized to either oxygen atom. On the other hand, the proton is located at the center of two oxygen atoms in quantum ab initio PIMD simulations. The nuclear quantum effect washes out the barrier of proton transfer. We next examined the nuclear quantum effect on the motion of hydrogen maleate anion. Principal component analysis revealed that the out-of-plane ring bending modes have dominant contribution to the entire molecular motion. In quantum ab initio PIMD simulations, structures with ring deformation were the global minimum for the deuterated isotope at 300 K. We analyzed the out-of-plane ring bending mode further and found that there are three minima along a ring distortion mode. We successfully found a stable structure with ring deformation of hydrogen maleate for the first time, to our knowledge, using theoretical calculation. The structures with ring deformation found in quantum simulation of the deuterated isotope allowed the proton transfer to occur more frequently than the planar structure. Static ab initio electronic structure calculation found that the structures with ring deformation have very small proton transfer barrier compared to the planar structure. We suggest that the "proton transfer driven" mechanism is the origin of stabilization for the structure with out-of-plane ring deformation.
Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming
2014-01-01
The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (<2 nm) in ductile deformed coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm) and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal. PMID:25126601
Takahata, Kenichi; Gianchandani, Yogesh B.
2008-01-01
This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane room-temperature-vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μm-diameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated. PMID:27879824
NASA Astrophysics Data System (ADS)
Henderson, I.
2004-12-01
Magmatism is often described as being syn-kinematic where one or more increments of intrusion punctuate deformation with successive generations of injections being progressively deformed. Recent studies have also demonstrated that there is a strong link between sites of concentrated magmatism and crustal deformation zones. Pegmatite formation in the Mesoproterozoic of south Norway has always been considered as post-kinematic in nature relative to Sveconorwegian (Grenvillian) deformation (1.13Ga to ~0.85Ga) during accretion of the SW margin of Baltica. We present structural data demonstrating that the pegmatites are kinematically related to fold geometries associated with peak metamorphism and form an integral part of the deformation episode associated with terrane accretion. Undeformed pegmatites are emplaced in sub-horizontal fractures suggesting that the maximum compressive stress was sub-horizontal. The pegmatites display a systematic deformation pattern that is consistent with deformation in the limbs of the isoclinal folds in the country rock into which they intrude. The sense of shear of deformation kinematics on the pegmatites reverse across the isoclinal fold limbs suggesting that the pegmatites are syn-deformational and that they have been injected into fractures intrinsically linked to the fold development. Pegmatites are also deformed into asymmetric anticlinal folds above thrust structures and are cut by thrust structures. We also present data which demonstrates that the style of deformation changes with proximity to the major terrane-bounding thrust structure and that the pegmatites demonstrate classic imbricate style geometries on a regional scale related to regional transpression. This evidence suggests that the pegmatites are syn-deformational and were injected into thrust-related fractures and that the pegmatites are structurally related to Sveconorwegian fold geometries associated with peak metamorphism at approximately 1.14Ga. Deformation was progressive and incremental with longer periods of ductile deformation at low strain rate punctuated by shorter periods of fracturing and pegmatite injection at high strain rate. The pegmatites also, therefore, delineate the orogenic event responsible for overthrusting of the Bamble Terrane with the underlying Telemark Terrane during crustal accretion on the western margin of Fennoscandia. We also present preliminary Re-Os data from some of these pegmatites to date the exact timing of thrusting. This work therefore implies an intimate spatial and temporal relationship between deformation and magmatism during crustal accretion on the western margin of Fennoscandia.
Pits, rifts and slumps: the summit structure of Piton de la Fournaise
NASA Astrophysics Data System (ADS)
Carter, Adam; van Wyk de Vries, Benjamin; Kelfoun, Karim; Bachèlery, Patrick; Briole, Pierre
2007-06-01
A clear model of structures and associated stress fields of a volcano can provide a framework in which to study and monitor activity. We propose a volcano-tectonic model for the dynamics of the summit of Piton de la Fournaise (La Reunion Island, Indian Ocean). The summit contains two main pit crater structures (Dolomieu and Bory), two active rift zones, and a slumping eastern sector, all of which contribute to the actual fracture system. Dolomieu has developed over 100 years by sudden large collapse events and subsequent smaller drops that include terrace formation. Small intra-pit collapse scars and eruptive fissures are located along the southern floor of Dolomieu. The western pit wall of Dolomieu has a superficial inward dipping normal fault boundary connected to a deeper ring fault system. Outside Dolomieu, an oval extension zone containing sub-parallel pit-related fractures extends to a maximum distance of 225 m from the pit. At the summit the main trend for eruptive fissures is N80°, normal to the north south rift zone. The terraced structure of Dolomieu has been reproduced by analogue models with a roof to width ratio of approximately 1, suggesting an original magma chamber depth of about 1 km. Such a chamber may continue to act as a storage location today. The east flank has a convex concave profile and is bounded by strike-slip fractures that define a gravity slump. This zone is bound to the north by strike-slip fractures that may delineate a shear zone. The southern reciprocal shear zone is probably marked by an alignment of large scoria cones and is hidden by recent aa lavas. The slump head intersects Dolomieu pit and may slide on a hydrothermally altered layer known to be located at a depth of around 300 m. Our model has the summit activity controlled by the pit crater collapse structure, not the rifts. The rifts become important on the mid-flanks of the cone, away from pit-related fractures. On the east flank the superficial structures are controlled by the slump. We suggest that during pit subsidence intra-pit eruptions may occur. During tumescence, however, the pit system may become blocked and a flank eruption is more likely. Intrusions along the rift may cause deformation that subsequently increases the slump’s potential to deform. Conversely, slumping may influence the east flank stress distribution and locally control intrusion direction. These predictions can be tested with monitoring data to validate the model and, eventually, improve monitoring.
NASA Astrophysics Data System (ADS)
Özaksoy, Volkan
2017-12-01
This study reports on spectacular deformation structures, including arrays of striated thrusts, discovered by excavation work in Holocene deposits in vicinity of a major neotectonic strike-slip fault in one of the tectonically most active regions of Turkey. The deformation structures were initially considered an evidence of sub-recent tectonic activity, but their detailed multidisciplinary study surprisingly revealed that the deformation of the clay-rich soil and its strongly weathered Jurassic substrate was of nontectonic origin, caused by argilliturbation. This phenomenon of vertisol self-deformation is well-known to pedologists, but may easily be mistaken for tectonic deformation by geologists less familiar with pedogenic processes. The possibility of argilliturbation thus needs to be taken into consideration in palaeoseismological field research wherever the deformed substrate consists of clay-rich muddy deposits. The paper reviews a range of specific diagnostic features that can serve as field criteria for the recognition of nontectonic deformation structures induced by argilliturbation in mud-dominated geological settings.
Modeling of Permeability Structure Using Pore Pressure and Borehole Strain Monitoring
NASA Astrophysics Data System (ADS)
Kano, Y.; Ito, H.
2011-12-01
Hydraulic or transport property, especially permeability, of the rock affect the behavior of the fault during earthquake rupture and also interseismic period. The methods to determine permeability underground are hydraulic test utilizing borehole and packer or core measurement in laboratory. Another way to know the permeability around a borehole is to examine responses of pore pressure to natural loading such as barometric pressure change at surface or earth tides. Using response to natural deformation is conventional method for water resource research. The scale of measurement is different among in-situ hydraulic test, response method, and core measurement. It is not clear that the relationship between permeability values form each method for an inhomogeneous medium such as a fault zone. Supposing the measurement of the response to natural loading, we made a model calculation of permeability structure around a fault zone. The model is 2 dimensional and constructed with vertical high-permeability layer in uniform low-permeability zone. We assume the upper and lower boundaries are drained and no-flow condition. We calculated the flow and deformation of the model for step and cyclic loading by numerically solving a two-dimensional diffusion equation. The model calculation shows that the width of the high-permeability zone and contrast of the permeability between high- and low- permeability zones control the contribution of the low-permeability zone. We made a calculation with combinations of permeability and fault width to evaluate the sensitivity of the parameters to in-situ measurement of permeability. We applied the model calculation to the field results of in-situ packer test, and natural response of water level and strain monitoring carried out in the Kamioka mine. The model calculation shows that knowledge of permeability in host rock is also important to obtain permeability of fault zone itself. The model calculations help to design long-term pore pressure monitoring, in-situ hydraulic test, and core measurement using drill holes to better understand fault zone hydraulic properties.
NASA Astrophysics Data System (ADS)
Karnes, John J.; Benjamin, Ilan
2016-07-01
Molecular dynamics simulations and umbrella sampling free energy calculations are used to examine the thermodynamics, energetics, and structural fluctuations that accompany the transfer of a small hydrophilic ion (Cl-) across the water/nitrobenzene interface. By examining several constrained interface structures, we isolate the energetic costs of interfacial deformation and co-transfer of hydration waters during the ion transfer. The process is monitored using both energy-based solvation coordinates and a geometric coordinate recently introduced by Morita and co-workers to describe surface fluctuations. Our simulations show that these coordinates provide a complimentary description of the water surface fluctuations during the transfer and are necessary for elucidating the mechanism of the ion transfer.
Structure for identifying, locating and quantifying physical phenomena
Richardson, John G.
2006-10-24
A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.
Richardson, John G.
2006-01-24
A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.
NASA Astrophysics Data System (ADS)
Delgado, Manuel J.; Cuccu, Roberto; Rivolta, Giancarlo
2015-05-01
This work is focused on the infrastructure monitoring of areas which had experienced significant urbanization and therefore, also an increase of the exploitation of natural resources. Persistent Scatters Interferometry (PS-InSAR) and Small Baselines (SBAS) approaches are applied to three study areas for which large datasets of SAR images are available in ascending and descending modes to finally deploy deformation maps of different buildings and infrastructures. Valencia, Rome and South Sardinia areas have been selected for this study, having experienced an increase of the exploitation of natural resources in parallel with their urban expansion. Moreover, Rome is a very special case, where Cultural Heritage permeating the city and its surroundings would suggest the necessity of a tool for monitoring the stability of the different sites. This work wants to analyse the potential deformation that had occurred in these areas during the period 1992 to 2010, by applying Persistent Scatters Interferometry to ESA ERS SAR and Envisat ASAR data.
Topal, Savaş; Özkul, Mehmet
2014-01-01
The NW-trending Denizli basin of the SW Turkey is one of the neotectonic grabens in the Aegean extensional province. It is bounded by normal faults on both southern and northern margins. The basin is filled by Neogene and Quaternary terrestrial deposits. Late Miocene- Late Pliocene aged Kolankaya formation crops out along the NW trending Karakova uplift in the Denizli basin. It is a typical fluviolacustrine succession that thickens and coarsens upward, comprising poorly consolidated sand, gravelly sand, siltstone and marl. Various soft-sediment deformation structures occur in the formation, especially in fine- to medium grained sands, silts and marls: load structures, flame structures, clastic dikes (sand and gravely-sand dike), disturbed layers, laminated convolute beds, slumps and synsedimentary faulting. The deformation mechanism and driving force for the soft-sediment deformation are related essentially to gravitational instability, dewatering, liquefaction-liquidization, and brittle deformation. Field data and the wide lateral extent of the structures as well as regional geological data show that most of the deformation is related to seismicity and the structures are interpreted as seismites. The existence of seismites in the Kolankaya Formation is evidence for continuing tectonic activity in the study area during the Neogene and is consistent with the occurrence of the paleoearthquakes of magnitude >5. PMID:25152909
Shi, Jidong; Wang, Liu; Dai, Zhaohe; Zhao, Lingyu; Du, Mingde; Li, Hongbian; Fang, Ying
2018-05-30
Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa -1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen
2014-01-01
The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage. PMID:24379048
Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen
2013-12-27
The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage.
Deformations and Structural Evolution of Mesozoic Complexes in Western Chukotka
NASA Astrophysics Data System (ADS)
Golionko, B. G.; Vatrushkina, E. V.; Verzhbitskii, V. E.; Sokolov, S. D.; Tuchkova, M. I.
2018-01-01
Detailed structural investigations have been carried out in the Pevek district to specify tectonic evolution of the Chukotka mesozoids. The earliest south-verging folds F1 formed in Triassic rocks at the first deformation stage DI. These structures are overlapped by the northern-verging folds F2 and overthrusts pertain to the second deformation stage DII. Folding structures F1 and F2 were deformed by shear folds F3, completing stage DII. The DI and DII structures are complicated by roughly NS-trending normal faults marking deformation stage DIII. It has been established that DI is related to the onset of opening of the Amerasian Basin in the Early Jurassic, or, alternatively, to the later accretion of the Kulpolnei ensimatic arc toward the Chukotka microcontinent. DII marks the collision of Siberia and the Chukotka microcontinent in the Late Neocomian. Normal faulting under the roughly E-W-trending extension during DIII is likely related to rift opening of the Podvodnikov and Makarov-Toll basins in the deep Amerasian Basin. Formation of the Okhotsk-Chukotka volcanoplutonic belt completed the structural evolution of the studied region.
NASA Astrophysics Data System (ADS)
Zinoviev, Sergei
2014-05-01
Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the deformation systems. 2) folded (folded-thrust) deformation systems combine deformation zones with relic lenses of Paleozoid substratum, and predominantly conform systems of the main faults. Despite a high degree of regional deformation the sedimentary-stratified and intrusive-contact relations of geological bodies are stored within the deformation systems, and this differs in the main the collision systems from zones of dynamic metamorphism. 3) regional zones of dynamic metamorphism of Kuznetsk-Altai region are the concentration belts of multiple mechanic deformations and contrast dynamometamorphism of complexes. The formational basis of dynamic metamorphism zones is tectonites of the collision stage. Zones of dynamic metamorphism attract special attention in the structural model of Kuznetsk-Altai region. They not only form the typical tectonic framework of collision sutures, but also contain the main part of ore deposits of this region. Pulse mode of structure formation of Kuznetsk-Altai region is detected. Major collision events in Kuznetsk-Altai region were in the late-Carboniferous-Triassic time (307-310, 295-285, 260-250 and 240-220 Ma). This study was supported by a grant of the Russian Foundation for Basic Research (project nos. 14-05-00117).
Methodology for heritage conservation in Belgium based on multi-temporal interferometry
NASA Astrophysics Data System (ADS)
Bejarano-Urrego, L.; Verstrynge, E.; Shimoni, M.; Lopez, J.; Walstra, J.; Declercq, P.-Y.; Derauw, D.; Hayen, R.; Van Balen, K.
2017-09-01
Soil differential settlements that cause structural damage to heritage buildings are precipitating cultural and economic value losses. Adequate damage assessment as well as protection and preservation of the built patrimony are priorities at national and local levels, so they require advanced integration and analysis of environmental, architectural and historical parameters. The GEPATAR project (GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium) aims to create an online interactive geo-information tool that allows the user to view and to be informed about the Belgian heritage buildings at risk due to differential soil settlements. Multi-temporal interferometry techniques (MTI) have been proven to be a powerful technique for analyzing earth surface deformation patterns through time series of Synthetic Aperture Radar (SAR) images. These techniques allow to measure ground movements over wide areas at high precision and relatively low cost. In this project, Persistent Scatterer Synthetic Aperture Radar Interferometry (PS-InSAR) and Multidimensional Small Baseline Subsets (MSBAS) are used to measure and monitor the temporal evolution of surface deformations across Belgium. This information is integrated with the Belgian heritage data by means of an interactive toolbox in a GIS environment in order to identify the level of risk. At country scale, the toolbox includes ground deformation hazard maps, geological information, location of patrimony buildings and land use; while at local scale, it includes settlement rates, photographic and historical surveys as well as architectural and geotechnical information. Some case studies are investigated by means of on-site monitoring techniques and stability analysis to evaluate the applied approaches. This paper presents a description of the methodology being implemented in the project together with the case study of the Saint Vincent's church which is located on a former colliery zone. For this building, damage is assessed by means of PSInSAR.
Time-resolved acoustic emission tomography in the laboratory: tracking localised damage in rocks
NASA Astrophysics Data System (ADS)
Brantut, N.
2017-12-01
Over the past three decades, there has been tremendous technological developments of laboratory equipment and studies using acoustic emission and ultrasonic monitoring of rock samples during deformation. Using relatively standard seismological techniques, acoustic emissions can be detected, located in space and time, and source mechanisms can be obtained. In parallel, ultrasonic velocities can be measured routinely using standard pulse-receiver techniques.Despite these major developments, current acoustic emission and ultrasonic monitoring systems are typically used separately, and the poor spatial coverage of acoustic transducers precludes performing active 3D tomography in typical laboratory settings.Here, I present an algorithm and software package that uses both passive acoustic emission data and active ultrasonic measurements to determine acoustic emission locations together with the 3D, anisotropic P-wave structure of rock samples during deformation. The technique is analogous to local earthquake tomography, but tailored to the specificities of small scale laboratory tests. The fast marching method is employed to compute the forward problem. The acoustic emission locations and the anisotropic P-wave field are jointly inverted using the Quasi-Newton method.The method is used to track the propagation of compaction bands in a porous sandstone deformed in the ductile, cataclastic flow regime under triaxial stress conditions. Near the yield point, a compaction front forms at one end of the sample, and slowly progresses towards the other end. The front is illuminated by clusters of Acoustic Emissions, and leaves behind a heavily damaged material where the P-wave speed has dropped by up to 20%.The technique opens new possibilities to track in-situ strain localisation and damage around laboratory faults, and preliminary results on quasi-static rupture in granite will be presented.
NASA Astrophysics Data System (ADS)
Giannoglou, V.; Stylianidis, E.
2016-06-01
Scoliosis is a 3D deformity of the human spinal column that is caused from the bending of the latter, causing pain, aesthetic and respiratory problems. This internal deformation is reflected in the outer shape of the human back. The golden standard for diagnosis and monitoring of scoliosis is the Cobb angle, which refers to the internal curvature of the trunk. This work is the first part of a post-doctoral research, presenting the most important researches that have been done in the field of scoliosis, concerning its digital visualisation, in order to provide a more precise and robust identification and monitoring of scoliosis. The research is divided in four fields, namely, the X-ray processing, the automatic Cobb angle(s) calculation, the 3D modelling of the spine that provides a more accurate representation of the trunk and the reduction of X-ray radiation exposure throughout the monitoring of scoliosis. Despite the fact that many researchers have been working on the field for the last decade at least, there is no reliable and universal tool to automatically calculate the Cobb angle(s) and successfully perform proper 3D modelling of the spinal column that would assist a more accurate detection and monitoring of scoliosis.
Christien, F; Telling, M T F; Knight, K S; Le Gall, R
2015-05-01
A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature ramping as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.
JPRS report: Science and technology. Central Eurasia
NASA Astrophysics Data System (ADS)
1994-08-01
Translated articles cover the following topics: boronizing laser treatment of titanium alloys; argon-arc welding-on titanium dowels to inserts for aircraft structures made of composite materials; method of reducing level of thermally stressed state of gas turbine engine blades by selecting optimum thickness distribution of ceramic heat shield coating; certifying modern ceramics for mechanical properties; superplastic ceramic: possibilities for application in modeling pressworking manufacturing processes; monitoring strength of ceramics by acoustic emission; physical and mechanical properties of Al2O3 + ZrO2:Y2O3 composite produced by directional crystallization from melt; influence that microalloying with rare earth elements has on resistance of steels to deformation and fracture under alternating elastic-plastic loading; conceptions of constructing information management networks for distributed objects; concept of a document information system based on an object-oriented subject-area model; underground future of rocket technologies; geoinformation approach to organizing automated information systems for regional-local monitoring of atmospheric pollutants; and possibility of using lidar wind sounding in climatic-ecologic monitoring of limited areas.
Jordanian deformation of SL(2) as a contraction of its Drinfeld-Jimbo deformation
NASA Astrophysics Data System (ADS)
Aghamohammadi, A.; Khorrami, M.; Shariati, A.
1995-04-01
We show that $h$-deformation can be obtained, by a singular limit of a similarity transformation, from $q$-deformation; to be specefic, we obtain $\\GL_h(2)$, its differential structure, its inhomogenous extension, and $\\Uh{\\sl(2)}$ from their $q$-deformed counterparts.
NASA Astrophysics Data System (ADS)
Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki
2017-04-01
A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.
NASA Astrophysics Data System (ADS)
Shalaeva, E. V.; Selyanin, I. O.; Smirnova, E. O.; Smirnov, S. V.; Novachek, D. D.
2018-02-01
The nanoindentation tests have been carried out for the quasicrystalline polygrain Al62.4Cu25.3Fe12.3 alloy with the icosahedral structure i; the load P-displacement h diagrams have been used to estimate the contributions of plastic deformation (monotonic and intermittent), and the structures of the transverse microscopic sections have been studied in the vicinity of indentations by electron microscopy. It is shown that several systems of deformation bands are formed in the elasto-plastic zone in the vicinity of the indentations along the close-packed planes of the i lattice with the five-fold and two-fold symmetry axes; the bands often begin from cracks and manifest the signs of the dislocation structure. The traces of the phase transformation with the formation of the β-phase areas are observed only in a thin layer under an indenter. The effects of intermittent deformation are up to 50% of the total inelastic deformation and are related to the plastic behavior of the quasicrystal-activation and passage of deformation bands and also the formation of undersurface micro- and nanosized cracks.
Strain sensitivity of carbon nanotube cement-based composites for structural health monitoring
NASA Astrophysics Data System (ADS)
D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Rallini, Marco; Materazzi, Annibale L.; Kenny, Josè M.
2016-04-01
Cement-based smart sensors appear particularly suitable for monitoring applications, due to their self-sensing abilities, their ease of use, and their numerous possible field applications. The addition of conductive carbon nanofillers into a cementitious matrix provides the material with piezoresistive characteristics and enhanced sensitivity to mechanical alterations. The strain-sensing ability is achieved by correlating the variation of external loads or deformations with the variation of specific electrical parameters, such as the electrical resistance. Among conductive nanofillers, carbon nanotubes (CNTs) have shown promise for the fabrication of self-monitoring composites. However, some issues related to the filler dispersion and the mix design of cementitious nanoadded materials need to be further investigated. For instance, a small difference in the added quantity of a specific nanofiller in a cement-matrix composite can substantially change the quality of the dispersion and the strain sensitivity of the resulting material. The present research focuses on the strain sensitivity of concrete, mortar and cement paste sensors fabricated with different amounts of carbon nanotube inclusions. The aim of the work is to investigate the quality of dispersion of the CNTs in the aqueous solutions, the physical properties of the fresh mixtures, the electromechanical properties of the hardened materials, and the sensing properties of the obtained transducers. Results show that cement-based sensors with CNT inclusions, if properly implemented, can be favorably applied to structural health monitoring.
Helium release during shale deformation: Experimental validation
Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.
2016-07-01
This paper describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measuredmore » using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.« less
NASA Astrophysics Data System (ADS)
Liang, Chenyue; Neubauer, Franz; Liu, Yongjiang; Jin, Wei; Zeng, Zuoxun; Bernroider, Manfred; Li, Weimin; Wen, Quanbo; Han, Guoqing; Zhao, Yingli
2014-05-01
The ductile shear zone in Xingcheng-Taili area (western Liaoning Province in China) is tectonically located in the eastern section of the northern margin of the North China craton, and dominantly comprises deformed granitic rocks of Neoarchean and Triassic to Late Jurassic age, which were affected by shearing within middle- to low-grade metamorphic conditions. Because a high-temperature metamorphic overprint is lacking, microstructures attesting to low-temperature ductile deformation are well preserved. However, the rocks and its structures have not been previously analyzed in detail except by U-Pb zircon dating and some geochemistry. Here, we describe the deformation characteristics and tectonic evolution of the Xingcheng-Taili ductile shear zone, in order to understand the mode of lithosphericscale reactivation, extension and thinning of the North China craton. The ductile deformation history comprises four successive deformation phases: (1) In the Neoarchean granitic rocks, a steep gneissosity and banded structures trend nearly E-W (D1). (2) A NE-striking sinistral structure of Upper Triassic rocks may indicate a deformation event (D2) in Late Triassic times, which ductile deformation structures superimposed on Neoarchean granitic rocks. (3) A gneissose structure with S-C fabrics as well as an ENE-trending sinistral strike-slip characteristic (D3) developed in Upper Jurassic biotite adamellite and show the deformation characteristics of a shallow crustal level and generated mylonitic fabrics superimposed on previous structures. (4) Late granitic dykes show different deformational behavior, and shortening with D4 folds. The attitude of the foliation S and mineral stretching lineation of three main types of rocks shows remarkable differences in orientation. The shapes of recrystallized quartz grains from three main types of granitic rocks with their jagged and indented boundaries were natural records of deformation conditions (D1to D3). Crystal preferred orientation of quartz determined by electron back scatter diffraction (EBSD) suggest sinistral strike-slip displacement within a temperature at about 400 to 500° C. Quartz mainly shows low-temperature fabrics with dominant {0001}-slip system. As the deformed rocks show obvious deformation overprint, we have estimated flow stresses from dynamically recrystallized grain sizes of quartz separately. But coincident fractal analysis showed that the boundaries of recrystallized grains had statistically self similarities with the numbers of fractal dimension from 1.153 to 1.196 with the range of deformation temperatures from 500 to 600° C, which is corresponding to upper greenschist to lower amphibolite facies conditions. Together with published flow laws to estimated deformation rates between the region of 10-11 - 10-13 S-1depending on the temperature 500 ° C, and the paleo-stress was calculated with grain size of recrystallized quartz to be at 5.0 to 32.3 MPa. Even though the deformation history and kinematics are different, progressive microstructures and texture analysis indicate an overprint by the low-temperature deformation (D3). Typical regional-dynamic metamorphic conditions ere deduced by mineral pair hornblende-plagioclase and phengite barometry identified within the ductile shear zone. The hornblende-plagioclase pair of porphyritic granitic gneiss gives metamorphic conditions of T =450-500 ° C and p=0.39 GPa, which indicate a metamorphic grade of lower-amphibolite facies conditions and a depth of around 13 km estimated following a normal lithostatic pressure. All of the structural characteristics indicate that the Xingcheng-Taili ductile shear zone represents a mainly ENE-striking sinistral ductile strike-slip zone, which formed after intrusion of the Upper Jurassic biotite adamellite and transformed and superimposed previous deformation structures. This deformation event might have occurred in Early Cretaceous times and was related to the lithospheric thinning and extension, due to roll-back of the Pacific plate beneath the eastern North China craton.
Deformation monitoring at Mount St. Helens in 1981 and 1982
Chadwick, W.W.; Swanson, D.A.; Iwatsubo, E.Y.; Heliker, C.C.; Leighley, T.A.
1983-01-01
For several weeks before each eruption of Mount St. Helens in 1981 and 1982, viscous magma rising in the feeder conduit inflated the lava dome and shoved the crater floor laterally against the immobile crater walls, producing ground cracks and thrust faults. The rates of deformation accelerated before eruptions, and thus it was possible to predict eruptions 3 to 19 days in advance. Lack of deformation outside the crater showed that intrusion of magma during 1981 and 1982 was not voluminous.
Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin
2017-09-01
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring
NASA Astrophysics Data System (ADS)
Wujanz, Daniel; Avian, Michael; Krueger, Daniel; Neitzel, Frank
2018-04-01
Current research questions in the field of geomorphology focus on the impact of climate change on several processes subsequently causing natural hazards. Geodetic deformation measurements are a suitable tool to document such geomorphic mechanisms, e.g. by capturing a region of interest with terrestrial laser scanners which results in a so-called 3-D point cloud. The main problem in deformation monitoring is the transformation of 3-D point clouds captured at different points in time (epochs) into a stable reference coordinate system. In this contribution, a surface-based registration methodology is applied, termed the iterative closest proximity algorithm (ICProx), that solely uses point cloud data as input, similar to the iterative closest point algorithm (ICP). The aim of this study is to automatically classify deformations that occurred at a rock glacier and an ice glacier, as well as in a rockfall area. For every case study, two epochs were processed, while the datasets notably differ in terms of geometric characteristics, distribution and magnitude of deformation. In summary, the ICProx algorithm's classification accuracy is 70 % on average in comparison to reference data.
Interseismic Deformation across the Eastern Altyn Tagh Fault from Insar Measurements
NASA Astrophysics Data System (ADS)
Liu, C. J.; Zhao, C. Y.; Ji, L. Y.; Zhang, Z. R.; Sun, H.
2018-04-01
As a new type of earth observation technique, InSAR has a lot of advantages, such as all-weather, all-time, high precision, high density, wide coverage and low cost. It has been widely used in deformation monitoring. Taking the eastern segment of Altyn Tagh fault (ATF) as the object of the research, this paper discussed the application of multi-temporal InSAR technology in the field of interseismic deformation monitoring. We measured the interseismic deformation along the eastern section of ATF using three neighboring descending tracks SAR data from the ERS and Envisat missions. The results show that, first, the validation of InSAR results is better than 2.5 mm/yr, the calibration of InSAR results is about 1.06 mm/yr. Second, the fault slip rate in this segment is about 4-7 mm/yr, and is in the locked condition. Third, The InSAR velocity profile across the fault is the clear asymmetry with respect to ATF, it may be the combined effect of northern (NATF) and southern (SATF) branches of ATF.
Hiding the weakness: structural robustness using origami design
NASA Astrophysics Data System (ADS)
Liu, Bin; Santangelo, Christian; Cohen, Itai
2015-03-01
A non-deformable structure is typically associated with infinitely stiff materials that resist distortion. In this work, we designed a structure with a region that will not deform even though it is made of arbitrarily compliant materials. More specifically, we show that a foldable sheet with a circular hole in the middle can be deformed externally with the internal geometry of the hole unaffected. Instead of strengthening the local stiffness, we fine tune the crease patterns so that all the soft modes that can potentially deform the internal geometry are not accessible through strain on the external boundary. The inner structure is thus protected by the topological mechanics, based on the detailed geometry of how the vertices in the foldable sheet are connected. In this way, we isolate the structural robustness from the mechanical properties of the materials, which introduces an extra degree of freedom for structural design.
Gravity and thermal deformation of large primary mirror in space telescope
NASA Astrophysics Data System (ADS)
Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong
2016-10-01
The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.
NASA Astrophysics Data System (ADS)
Guallini, Luca; Brozzetti, Francesco; Marinangeli, Lucia
2012-08-01
The present study is the first attempt at a detailed structural and kinematic analysis of large-scale deformational systems observed in the South Polar Layered Deposits (SPLDs) in the Promethei Lingula (PL) margins (Mars). By systematically collecting attitude data referable to previously unknown deformational structures and defining the cross-cut relationships of the structures, we reconstructed a deformational history consisting of two superimposed, well-defined stages. The first stage is dominated by large-scale strike-slip and transtensional faults arranged into conjugate systems and delimiting shear zones that show a wide range of subsidiary structures, including normal and reverse faults, drag folds, boudins, S-C tectonites and sub-horizontal interstratal shear planes marked by sygmoidal boudins. Other typical structures referable to this event are ductile folds (locally true convolute folds) and lobes (ball-and-pillow structures) affecting certain marker beds of the succession. We suggest that the structural assemblage might be the expression of a shallow soft-sediment tectonics that possibly occurred during warm periods of the South Pole climate. The second stage seems to affect the weaker and in certain cases pre-deformed stratigraphic levels of the SPLD succession. This stage is mainly characterized by extensional deformations caused by gravity. The consequence of the deformations is the nucleation of Deep-Seated Gravitational Slope Deformations (DSGSDs) marked by typical morphostructures, such as scarps, trenches and bulging basal contractant zones. These phenomena were never observed within an ice cap. According to terrestrial modeling, these slow collapses were caused by (1) the presence of detachment levels (i.e., subhorizontal bedding planes) along which the ice-sheet margins can slide and (2) the development of listric faults within the glacial mass, which merge with sub-horizontal shear planes in the subsurface. The presence of complex deformational systems in the SPLD necessarily implies that a large-scale dynamics of the ice-sheet occurred in the past. The relatively fast internal creep and basal/internal sliding, inferable from the structure assemblage, can be due to partial melting of the ice possibly caused by climatic changes in the Promethei Lingula region. In this manner, we believe that climate heating (which, according to the literature, is likely caused by orbital variations) softened some of the SPLD layers, triggering or accelerating the ice sheet's outward movement. The evidence of a marked disharmonic deformational style through the SPLD succession suggests the possibility of local periodic compositional variations in the sequence.
Effect of deformation on the structural state of piracetam
NASA Astrophysics Data System (ADS)
Kanunnikova, O. M.; Mikhailova, S. S.; Karban', O. V.; Mukhgalin, V. V.; Aksenova, V. V.; Sen'kovskii, B. V.; Pechina, E. A.; Lad'yanov, V. I.
2016-04-01
The effect of various deformation actions on the structure-phase transformations in piracetam of modifications I and II with a sodium acetate addition is studied. Mechanical activation and pressing are shown to cause the polymorphic transformation of modification I into modification II, and modification III forms predominantly during severe plastic deformation by torsion. The structural difference between the piracetam molecules of modifications I and II is found to be retained in aqueous solutions.
NASA Astrophysics Data System (ADS)
Hayman, N. W.; Shafiei, M.; Balhoff, M.; Daigle, H.
2017-12-01
To a first order, sedimentary materials behave in an elastic-plastic manner for most experimental and natural conditions at short time scales. However, long-term patterns of leakage from carbon-capture and storage efforts, and reduced efficiency during unconventional hydrocarbon production, point to a broader range of subsurface behaviors. Our analyses of microstructural and porosity responses to experimental deformation of shale suggest that sedimentary rock deformation is not strictly elastic-plastic. For example, organic matter (OM) in mudrocks can fracture during failure, but elsewhere may be more viscous in the same rock volume. The fracture of OM can be accompanied by some combination of frictional and poroelastic deformation in the surrounding clay aggregates, potentially described by critical-state-line soil mechanics. What is less clear is the possible role of viscoplasticity in sedimentary rock deformation. Though not a good analog material for all rock deformation, the cross-linked polymer Carbopol provides an excellent opportunity to explore controls on viscoplasticity. Above the yield stress, carbopol plastic deformation follows a Herschel-Bulkley model wherein shear stress varies as function of strain rate to a power that is generally <1; i.e. it is a shear-thinning material. The rheology can then be tuned by changing the pH of the gel. Using images obtained from scanning electron microscopy, including using a cryogenic system, we found that a structural transition from a dilute neutralized dispersion to an aggregate of closely packed particulates occurs as the pH of the polymer solution increases. This closely packed microstructure thus controls the yield strength which in turn follows approximately a non-linear relationship with porosity. This "analog material" thus has allowed us to quantify the microstructural length-scales that govern viscoplasticity in this material. Future experiments and numerical modeling can evaluate if a viscoplastic component to sedimentary rock deformation is important during engineering efforts. Such an exploration might focus on porosity-yield stress relationships and the monitoring fracture propagation for a wide range of stress conditions, including those which enhance ductility.
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent
2015-04-01
Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system. The lengthscale of the migration and the nature of invading fluids during these connections is different in every studied example, and can be related to the tectonic nature of the fold, along with the burial depth at the time of deformation. Thus, to decipher fluid-fracture relationships provides insights to better reconstruct the mechanisms of deformation at reservoir-scale.
The ADN project : an integrated seismic monitoring of the northern Ecuadorian subduction
NASA Astrophysics Data System (ADS)
Nocquet, Jean-Mathieu; Yepes, Hugo; Vallee, Martin; Mothes, Patricia; Regnier, Marc; Segovia, Monica; Font, Yvonne; Vaca, Sandro; Bethoux, Nicole; Ramos, Cristina
2010-05-01
The subduction of the Nazca plate beneath South America has caused one of the largest megathrust earthquake sequence during the XXth century with three M>7.7 earthquakes that followed the great 1906 (Mw = 8.8) event. Better understanding the processes leading to the occurrence of large subduction earthquakes requires to monitor the ground motion over a large range of frequencies. We present a new network (ADN) developed under a collaboration between the IRD-GeoAzur (Nice, France) and the IG-EPN (Quito, Ecuador). Each station of the ADN network includes a GPS recording at 5 Hz, an accelerometer and a broadband seismometer. CGPS data will quantify the secular deformation induced by elastic locking along the subduction interface, enabling a detailed modelling of the coupling distribution. CGPS will be used to monitor any transient deformation induced by Episodic Slip Event along the subduction, together with broadband seismometers that can detect any tremors or seismic signatures that may accompany them. In case of any significant earthquake, 5 Hz GPS and accelerometer will provide near field data for earthquake source detailed study. Finally, the broadband seismometers will be used for study of the microseismicity and structure of the subduction zone. The network includes 9 stations, operating since 2008 and covering the coastal area from latitude 1.5°S to the Colombian border. In this poster, we will present preliminary assessment of the data, first hypocenters location, magnitude and focal mechanism determination, as well as results about an episodic slip event detected in winter 2008.
Origin of acoustic emission produced during single point machining
NASA Astrophysics Data System (ADS)
Heiple, C. R.; Carpenter, S. H.; Armentrout, D. L.
1991-05-01
Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emission produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent.
Close coupling of pre- and post-processing vision stations using inexact algorithms
NASA Astrophysics Data System (ADS)
Shih, Chi-Hsien V.; Sherkat, Nasser; Thomas, Peter D.
1996-02-01
Work has been reported using lasers to cut deformable materials. Although the use of laser reduces material deformation, distortion due to mechanical feed misalignment persists. Changes in the lace patten are also caused by the release of tension in the lace structure as it is cut. To tackle the problem of distortion due to material flexibility, the 2VMethod together with the Piecewise Error Compensation Algorithm incorporating the inexact algorithms, i.e., fuzzy logic, neural networks and neural fuzzy technique, are developed. A spring mounted pen is used to emulate the distortion of the lace pattern caused by tactile cutting and feed misalignment. Using pre- and post-processing vision systems, it is possible to monitor the scalloping process and generate on-line information for the artificial intelligence engines. This overcomes the problems of lace distortion due to the trimming process. Applying the algorithms developed, the system can produce excellent results, much better than a human operator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincent, P; Walter, B; Zucca, J
2002-01-29
This final report summarizes the accomplishments of the 2-year LDRD-ER project ''MEDIOS: Modeling Earth Deformation using Interferometric Observations from Space'' (00-ERD-056) which began in FY00 and ended in FY01. The structure of this report consists of this summary part plus two separate journal papers, each having their own UCRL number, which document in more detail the major results in two (of three) major categories of this study. The two categories and their corresponding paper titles are (1) Seismic Hazard Mitigation (''Aseismic Creep Events along the Southern San Andreas Fault System''), and (2) Ground-based Nuclear Explosion Monitoring, or GNEM (''New Signaturesmore » of Underground Nuclear Tests Revealed by Satellite Radar Interferometry''). The third category is Energy Exploitation Applications and does not have a separate journal article associated with it but is described briefly. The purpose of this project was to develop a capability within the Geophysics and Global Security Division to process and analyze InSAR data for the purposes of constructing more accurate ground deformation source models relevant to Hazards, Energy, and NAI applications. Once this was accomplished, an inversion tool was to be created that could be applied to many different types (sources) of surface deformation so that accurate source parameters could be determined for a variety of subsurface processes of interest to customers of the GGS Division. This new capability was desired to help attract new project funding for the division.« less
Extracting full-field dynamic strain response of a rotating wind turbine using photogrammetry
NASA Astrophysics Data System (ADS)
Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter
2015-04-01
Health monitoring of wind turbines is typically performed using conventional sensors (e.g. strain-gages and accelerometers) that are usually mounted to the nacelle or gearbox. Although many wind turbines stop operating due to blade failures, there are typically few to no sensor mounted on the blades. Placing sensors on the rotating parts of the structure is a challenge due to the wiring and data transmission constraints. Within the current work, an approach to monitor full-field dynamic response of rotating structures (e.g. wind turbine blades or helicopter rotors) is developed and experimentally verified. A wind turbine rotor was used as the test structure and was mounted to a block and horizontally placed on the ground. A pair of bearings connected to the rotor shaft allowed the turbine to freely spin along the shaft. Several optical targets were mounted to the blades and a pair of high-speed cameras was used to monitor the dynamics of the spinning turbine. Displacements of the targets during rotation were measured using three-dimensional point tracking. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. While the structure is rotating, only flap displacements of optical targets (displacements out of the rotation plane) were used in strain prediction process. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. The proposed approach enabled the prediction of dynamic response on the outer surface as well as within the inner points of the structure where no other sensor could be easily mounted. In order to validate the proposed approach, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system.
NASA Astrophysics Data System (ADS)
Sung, Wen-Pei; Shih, Ming-Hsiang
2016-04-01
Global warming phenomena are increasingly serious, the El Niño and La Niña continue to occur repeatedly, causing the irregular drought and flood problem repeatedly. Mountain form of Taiwan is steep and storage ability of rainwater is insufficient to supply the livelihood of people and usage of industry which need to rely on rainwater reservoir. Thus, to ensure the water supply and self-reliance energy supply, one of ways to keep water resource is to build reservoir. Nevertheless, Taiwan is located on Pacific seismic belt; additionally, geological conditions are not fine, over-developed in the hills lead to more natural disasters in the future. Thus, strong shakes and typhoons which caused a degree of severe landslides around dam lead to reduce catchment of dam to result in affecting the safety of dam. Otherwise, the cracks and rusts in dam, induced by the defects of material, bad construction and seismic excitation respectively, thus, the mechanics phenomena of dam and its affiliated structures with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of dam. This research is aimed at the safety evaluation technique of dam and its affiliated structures to develop three dimensional digital image correlation techniques for monitoring the safety of dam and its affiliated structures. Namely, developing the unmanned mobile on two axis of digital image correlation method is to detect the digital images from geometric scanning techniques for dam structure. This developed technique combined with Unmanned Aerial Vehicle (UAV) to develop the near filed scanning and monitoring techniques for local deformation and cracks on dam and its affiliated structures.
DOT National Transportation Integrated Search
2012-03-01
Continuous monitoring of subsurface ground movements is accomplished with in-place instruments utilizing automated data acquisition methods. These typically include TDR (Time Domain Reflectometry) or assemblies of several servo-accelerometer-based, e...
Structural defects in natural plastically deformed diamonds: Evidence from EPR spectroscopy
NASA Astrophysics Data System (ADS)
Mineeva, R. M.; Titkov, S. V.; Speransky, A. V.
2009-06-01
Structural defects formed as a result of plastic deformation in natural diamond crystals have been studied by EPR spectroscopy. The spectra of brown, pink-brown, black-brown, pink-purple, and gray plastically deformed diamonds of type Ia from deposits in Yakutia and the Urals were recorded. The results of EPR spectroscopy allowed us to identify various deformation centers in the structure of natural diamonds and to show that nitrogen centers were transformed under epigenetic mechanical loading. Abundant A centers, consisting of two isomorphic nitrogen atoms located in neighboring structural sites, were destroyed as a result of this process to form a series of N1, N4, W7, M2, and M3 nitrogen centers. Such centers are characterized by an anisotropic spatial distribution and a positive charge, related to the mechanism of their formation. In addition, N2 centers (probably, deformation-produced dislocations decorated by nitrogen) were formed in all plastically deformed diamonds and W10 and W35 centers (the models have not been finally ascertained) were formed in some of them. It has been established that diamonds with various types of deformation-induced color contain characteristic associations of these deformation centers. The diversity of associations of deformation centers indicates appreciable variations in conditions of disintegration of deep-seated rocks, transfer of diamonds to the Earth’s surface, and formation of kimberlitic deposits. Depending on the conditions of mechanical loading, the diamond crystals were plastically deformed by either dislocation gliding or mechanical twinning. Characteristic features of plastic deformation by dislocation gliding are the substantial prevalence of the N2 centers over other deformation centers and the occurrence of the high-spin W10 and W35 centers. The attributes of less frequent plastic deformation by mechanical twinning are unusual localization of the M2 centers and, in some cases, the N1 centers in microtwinned lamellae. Numerous data on models of deformation centers in natural diamonds, including the M2 and M3 centers, which were observed in the studied collection for the first time, are discussed.
Method for Real-Time Structure Shape-Sensing
NASA Technical Reports Server (NTRS)
Ko, William L. (Inventor); Richards, William Lance (Inventor)
2009-01-01
The invention is a method for obtaining the displacement of a flexible structure by using strain measurements obtained by stain sensor,. By obtaining the displacement of structures in this manner, one may construct the deformed shape of the structure and display said deformed shape in real-time, enabling active control of the structure shape if desired.
Deciphering the shape and deformation of secondary structures through local conformation analysis
2011-01-01
Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons. PMID:21284872
Deciphering the shape and deformation of secondary structures through local conformation analysis.
Baussand, Julie; Camproux, Anne-Claude
2011-02-01
Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.
NASA Astrophysics Data System (ADS)
Tinterri, Roberto; Muzzi Magalhaes, Pierre; Tagliaferri, Alessio; Cunha, Rogerio S.; Laporta, Michele
2015-04-01
Soft-sediment deformations, such as convolute laminations, load structures and water escapes are very rapid deformations that occur in unconsolidated sediments near the depositional surface during or shortly after deposition and before significant diagenesis. These types of deformations develop when primary stratifications are deformed by a system of driving forces, while the sediment is temporarily in a weakened state due to the action of a deformation mechanism know as liquidization. This deformation occurs if the applied stress exceeds the sediment strength, either through an increase in the applied stress or through a temporary reduction in sediment strength. Liquidization mechanisms can be triggered by several agents, such as seismic shaking, rapid sedimentation with high-fallout rates or cyclic-pressure variations associated with storm waves or breaking waves. Consequently, soft-sediment deformations can be produced by different processes and form ubiquitous sedimentary structures characterizing many sedimentary environments. However, even though these types of structures are relatively well-known in terms of geometry and sedimentary characteristics, many doubts arise when the understanding of deformation and trigger mechanisms is attempted. As stressed also by the recent literature, the main problem lies in the fact that the existing approaches for the identification of triggering agents rely on criteria that are not diagnostic or not applicable to outcrop-based studies, because they are not always based on detailed facies analysis related to a paleoenvironmental-context approach. For this reason, this work discusses the significance of particular types of soft-sediment deformations that are very common in turbidite deposits, namely convolute laminations and load structures, especially on the basis of a deep knowledge of the stratigraphic framework and geological setting in which these structures are inserted. More precisely, detailed facies analyses of the turbidites containing these deformative structures show that they are genetically linked to contained-reflected beds in structurally-confined basins, suggesting a trigger mechanism associated with the cyclic-wave loading produced by flow impacts or reflected bores and internal waves related to ponded turbidity currents. The data that can demonstrate this hypothesis come from the foredeep turbidites of the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southwestern France), where a basin scale high-resolution stratigraphic framework with bed-by-bed correlations is now available. These data show that the lateral and vertical distribution of convolute laminae and load structures is not random but has an evident depositional logic related to reflection processes against bounding slopes. Therefore, the main objectives of this work are: 1) to show that convolute laminae and load structures are strictly associated with other sedimentary structures that are unequivocally related to reflection and rebound processes of turbidity currents against morphological obstacles; 2) to show that their lateral and vertical distribution increases concomitantly with the number of contained-reflected beds in the proximity of structurally-controlled morphological highs; 3) to show that the increase in contained-reflected beds with convolute laminae is strictly related to the increase in the synsedimentary-structural uplifts producing more pronounced morphologic highs; 4) to discuss the processes that link soft-sediment deformations with cyclic-wave loading related to internal waves and bores produced by reflection processes.
Large Deformation Analysis of a High Steep Slope Relating to the Laxiwa Reservoir, China
NASA Astrophysics Data System (ADS)
Lin, Peng; Liu, Xiaoli; Hu, Senying; Li, Pujian
2016-06-01
The unstable rock slope in the Laxiwa reservoir area of the Yellow River upstream, China, shows the signs of gravitational and water-impounding induced large deformations over an area of 1.15 × 105 m2. Slope movements have been measured daily at more than 560 observation points since 2009, when the reservoir was first impounded. At two of these points, an average daily movement of around 60-80 mm has ever been observed since the beginning of the impounding. Based on the observed deformations and the geology of the site, a fluid-solid coupling model was then adopted to investigate the existing rockslide activity to better understand the mechanism underlying the large deformations. The results from the field observation, kinematic analysis and numerical modeling indicate that the slope instability is dominated by the strong structurally controlled unstable rock mass. Based on an integrated overview of these analyses, a new toppling mode, i.e. the so-called `conjugate block' mode, is proposed to explain the large deformation mechanism of the slope. The conjugate block is formed by a `dumping block' and toppling blocks. The large deformation of the slope is dominated by (1) a toppling component and (2) a subsiding bilinear wedge induced by planar sliding along the deep-seated faults. Following a thorough numerical analysis, it is concluded that small collapses of rock blocks along the slope will be more frequent with the impounding process continuing and the water level fluctuating during the subsequent operation period. Based on a shear strength reduction method and field monitoring, four controlling faults are identified and the instability of the loose structure in the surface layer is analyzed and discussed. The factor of safety against the sliding failure along the deep seated fractures in the slope is 1.72, which reveals that (1) the collapse of the free-standing fractured blocks cannot be ruled out and the volume of the unstable blocks may be greater than 100,000 m3; (2) the collapse of the whole slope, i.e. with the volume being greater than 92 million m3, or a very large collapse involving several million m3, is considered to be of very low likelihood, unless there are extreme conditions, such as earthquakes and exceptionally heavy rain.
Deformation field correction for spatial normalization of PET images
Bilgel, Murat; Carass, Aaron; Resnick, Susan M.; Wong, Dean F.; Prince, Jerry L.
2015-01-01
Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet the current state of the art in PET-to-PET registration is limited to the application of conventional deformable registration methods that were developed for structural images. A method is presented for the spatial normalization of PET images that improves their anatomical alignment over the state of the art. The approach works by correcting the deformable registration result using a model that is learned from training data having both PET and structural images. In particular, viewing the structural registration of training data as ground truth, correction factors are learned by using a generalized ridge regression at each voxel given the PET intensities and voxel locations in a population-based PET template. The trained model can then be used to obtain more accurate registration of PET images to the PET template without the use of a structural image. A cross validation evaluation on 79 subjects shows that the proposed method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations. PMID:26142272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id; Notonegoro, Hamdan Akbar
The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initialmore » hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.« less
NASA Astrophysics Data System (ADS)
Mitchell, Michael R.; Leibler, Stanislas
2018-05-01
The abundance of available static protein structural data makes the more effective analysis and interpretation of this data a valuable tool to supplement the experimental study of protein mechanics. Structural displacements can be difficult to analyze and interpret. Previously, we showed that strains provide a more natural and interpretable representation of protein deformations, revealing mechanical coupling between spatially distinct sites of allosteric proteins. Here, we demonstrate that other transformations of displacements yield additional insights. We calculate the divergence and curl of deformations of the transmembrane channel KcsA. Additionally, we introduce quantities analogous to bend, splay, and twist deformation energies of nematic liquid crystals. These transformations enable the decomposition of displacements into different modes of deformation, helping to characterize the type of deformation a protein undergoes. We apply these calculations to study the filter and gating regions of KcsA. We observe a continuous path of rotational deformations physically coupling these two regions, and, we propose, underlying the allosteric interaction between these regions. Bend, splay, and twist distinguish KcsA gate opening, filter opening, and filter-gate coupling, respectively. In general, physically meaningful representations of deformations (like strain, curl, bend, splay, and twist) can make testable predictions and yield insights into protein mechanics, augmenting experimental methods and more fully exploiting available structural data.
McBride, J.H.
1997-01-01
Deformation within the United States mid-continent is frequently expressed as quasilinear zones of faulting and folding, such as the La Salle deformation belt, a northwest-trending series of folds cutting through the center of the Illinois basin. Seismic reflection profiles over the southern La Salle deformation belt reveal the three-dimensional structural style of deformation in the lower Paleozoic section and uppermost Precambrian(?) basement. Individual profiles and structural contour maps show for the first time that the folds of the La Salle deformation belt are underlain at depth by reverse faults that disrupt and offset intrabasement structure, offset the top of interpreted Precambrian basement, and accommodate folding of overlying Paleozoic strata. The folds do not represent development of initial dips by strata deposited over a preexisting basement high. Rather, the structures resemble subdued "Laramide-style" forced folds, in that Paleozoic stratal reflectors appear to be flexed over a fault-bounded basement uplift with the basement-cover contact folded concordantly with overlying strata. For about 40 km along strike, the dominant faults reverse their dip direction, alternating between east and west. Less well expressed antithetic or back thrusts appear to be associated with the dominant faults and could together describe a positive flower structure. The overall trend of this part of the La Salle deformation belt is disrupted by along-strike discontinuities that separate distinct fold culminations. Observations of dual vergence and along-strike discontinuities suggest an original deformation regime possibly involving limited transpression associated with distant late Paleozoic Appalachian-Ouachita mountain building. Moderate-magnitude earthquakes located west of the western flank of the La Salle deformation belt have reverse and strike-slip mechanisms at upper trustai depths, which might be reactivating deep basement faults such as observed in this study. The La Salle deformation belt is not necessarily typical of other well-known major midcontinent fault and fold zones, such as the Nemaha ridge, over which Paleozoic and younger sediments appear to simply be draped.
Technology and application of 3D tunnel information monitoring
NASA Astrophysics Data System (ADS)
Li, Changqing; Deng, Hongliang; Chen, Ge; Wang, Simiao; Guo, Yang; Wu, Shenglin
2015-12-01
It is very necessary that Implement information monitoring and dynamic construction because of Complex geological environment and lack of basic information in the process of tunnel construction. The monitoring results show that 3 d laser scanning technology and information management system has important theoretical significance and application value to ensure the safety of tunnel construction, rich construction theory and technology. It can be known in real time the deformation information and the construction information in near tunnel workplace and the whole tunnel section in real time. In the meantime, it can be known the deformation regularity in the tunnel excavation process and the early warning and forecasting in the form of graphic and data. In order to determine the reasonable time and provide basis for supporting parameters and lining.
NASA Astrophysics Data System (ADS)
Chen, Y.; Guo, L.; Wu, J. J.; Chen, Q.; Song, S.
2014-12-01
In Differential Interferometric Synthetic Aperture Radar (D-InSAR) atmosphere effect including troposphere and ionosphere is one of the dominant sources of error in most interferograms, which greatly reduced the accuracy of deformation monitoring. In recent years tropospheric correction especially Zwd in InSAR data processing has ever got widely investigated and got efficiently suppressed. And thus we focused our study on ionospheric correction using two different methods, which are split-spectrum technique and Nequick model, one of the three dimensional electron density models. We processed Wenchuan ALOS PALSAR images, and compared InSAR surface deformation after ionospheric modification using the two approaches mentioned above with ground GPS subsidence observations to validate the effect of split-spectrum method and NeQuick model, further discussed the performance and feasibility of external data and InSAR itself during the study of the elimination of InSAR ionospheric effect.
NASA Astrophysics Data System (ADS)
Korznikova, E. A.; Baimova, Yu. A.; Kistanov, A. A.; Dmitriev, S. V.; Korznikov, A. V.
2014-09-01
The method of molecular dynamics has been used to study the influence of initial perturbations on the evolution of grain boundaries during the shear plastic deformation of a two-dimensional polycrystalline material with nanoscale grains. It has been shown that short-term thermalization-induced small perturbations result in noticeable differences in grain boundaries configurations at the deformation of 0.05 and the polycrystal completely loses its initial grain boundary structure at the deformation of 0.4.
NASA Astrophysics Data System (ADS)
Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Santos, Athos R.; Galo, Mauricio; Camargo, Paulo O.; Silva, Arnaldo Q.; Silva, Guilherme G.
2014-10-01
We present an investigation of surface deformation using Differential SAR Interferometry (DInSAR) time-series carried out in an active open pit iron mine, the N5W, located in the Carajás Mineral Province (Brazilian Amazon region), using 33 TerraSAR-X (TSX-1) scenes. This mine has presented a historical of instability and surface monitoring measurements over sectors of the mine (pit walls) have been done based on ground based radar. Two complementary approaches were used: the standard DInSAR configuration, as an early warning of the slope instability conditions, and the DInSAR timeseries analysis. In order to decrease the topographic phase error a high resolution DEM was generated based on a stereo GeoEye-1 pair. Despite the fact that a DinSAR contains atmospheric and topographic phase artifacts and noise, it was possible to detect deformation in some interferometric pairs, covering pit benches, road ramps and waste piles. The timeseries analysis was performed using the 31 interferometric pairs, which were selected based on the highest mean coherence of a stack of 107 interferograms, presenting less phase unwrapping errors. The time-series deformation was retrieved by the Least-Squares (LS) solution using an extension of the Singular Value Decomposition (SVD), with a set of additional weighted constrain on the acceleration deformation. The atmospheric phase artifacts were filtered in the space-time domain and the DEM height errors were estimated based on the normal baseline diversity. The DInSAR time-series investigation showed good results for monitoring surface displacement in the N5W mine located in a tropical rainforest environment, providing very useful information about the ground movement for alarm, planning and risk assessment.
Using LiCSAR as a fast-response system for the detection and the monitoring of volcanic unrest
NASA Astrophysics Data System (ADS)
Albino, F.; Biggs, J.; Hatton, E. L.; Spaans, K.; Gaddes, M.; McDougall, A.
2017-12-01
Based on the Smithsonian Institution volcano database, a total of 13256 volcanoes exist on Earth with 1273 having evidence of eruptive or unrest activity during the Holocene. InSAR techniques have proven their ability to detect and to quantify volcanic ground deformation on a case-by-case basis. However, the use of InSAR for the daily monitoring of every active volcano requires the development of automatic processing that can provide information in a couple of hours after a new radar acquisition. The LiCSAR system (http://comet.nerc.ac.uk/COMET-LiCS-portal/) answers this requirement by processing the vast amounts of data generated daily by the EU's Sentinel-1 satellite constellation. It provides now high-resolution deformation data for the entire Alpine-Himalayan seismic belt. The aim of our study is to extend LiCSAR system to the purpose of volcano monitoring. For each active volcano, the last Sentinel products calculated (phase, coherence and amplitude) will be available online in the COMET Volcano Deformation Database. To analyse this large amount of InSAR products, we develop an algorithm to automatically detect ground deformation signals as well as changes in coherence and amplitude in the time series. This toolbox could be a powerful fast-response system for helping volcanological observatories to manage new or ongoing volcanic crisis. Important information regarding the spatial and the temporal evolution of each ground deformation signal will also be added to the COMET database. This will benefit to better understand the conditions in which volcanic unrest leads to an eruption. Such worldwide survey enables us to establish a large catalogue of InSAR products, which will also be suitable for further studies (mapping of new lava flows, modelling of magmatic sources, evaluation of stress interactions).
NASA Astrophysics Data System (ADS)
Nikitina, E. N.; Glezer, A. M.; Ivanov, Yu. F.; Aksenova, K. V.; Gromov, V. E.; Kazimirov, S. A.
2017-10-01
The evolution of the phase composition and the imperfect substructure of the 30Kh2N2MFA bainitic structural steel subjected to compressive deformation by 36% is quantitatively analyzed. It is shown that deformation is accompanied by an increase in the scalar dislocation density, a decrease in the longitudinal fragment sizes, an increase in the number of stress concentrators, the dissolution of cementite particles, and the transformation of retained austenite.
NASA Astrophysics Data System (ADS)
Pai, H.; Burnett, J.; Sladek, C.; Wing, M.; Feigl, K. L.; Selker, J. S.; Tyler, S.; Team, P.
2016-12-01
UAS systems equipped with a variety of spectral imaging devices are increasingly incorporated in spatial environmental assessments of continental surfaces (e.g., digital elevation maps, vegetative coverage classifications, surface temperatures). This presented work performed by the UAS team at the Center for Transformative Environmental Monitoring Programs (AirCTEMPS) examines the potential to measure small (sub-cm) deformation from a geothermal injection experiment at Brady's geothermal field in western Nevada (USA). Areal mapping of the 700 x 270 m area of interest was conducted with a nadir pointing Sony A5100 digital camera onboard an autopiloted quadcopter. A total of 16 ground control points were installed using a TopCon GR3 GPS receiver. Two such mapping campaigns were conducted with one before and one after an anticipated surface deformation event. A digital elevation map (DEM) for each time period was created from over 1500 images having 80% overlap/sidelap by using structure from motion (SfM) via Agisoft Photoscan software. The resulting DEM resolution was 8 mm/pixel with residual aerial triangulation errors was < 5 mm. We present preliminary results from an optimized workflow which achieved errors and average differential DEM heights between campaigns at the cm-scale which is broader than the maximum expected deformation. Despite the disconnect between error and deformation severity, this study presents a unique application of sub-cm UAS-based DEMs and further distinguishes itself by comparing results to concurrent Interferometric Synthetic Radar (InSAR). The intent of our study and presentation of results is to streamline, cross-validate, and share methods to encourage further adoption of UAS imagery into the standard toolkit for environmental surface sensing across spatial scales.
Acquired midfoot deformity and function in individuals with diabetes and peripheral neuropathy.
Hastings, Mary K; Mueller, Michael J; Woodburn, James; Strube, Michael J; Commean, Paul; Johnson, Jeffrey E; Cheuy, Victor; Sinacore, David R
2016-02-01
Diabetes mellitus related medial column foot deformity is a major contributor to ulceration and amputation. However, little is known about the relationship between medial column alignment and function and the integrity of the soft tissues that support and move the medial column. The purposes of this study were to determine the predictors of medial column alignment and function in people with diabetes and peripheral neuropathy. 23 participants with diabetes and neuropathy had radiographs, heel rise kinematics, magnetic resonance imaging and isokinetic muscle testing to measure: 1) medial column alignment (Meary's angle--the angle between the 1st metatarsal longitudinal axis and the talar head and neck), 2) medial column function (forefoot relative to hindfoot plantarflexion during heel rise), 3) intrinsic foot muscle and fat volume, ratio of posterior tibialis to flexor digitorum tendon volume, 4) plantar fascia function (Meary's angle change from toes flat to extended) and 5) plantarflexor peak torque. Predictors of medial column alignment and function were determined using simultaneous entry multiple regression. Posterior tibialis to flexor digitorum tendon volume ratio and intrinsic foot muscle volume were significant predictors of medial column alignment (P<.05), accounting for 44% of the variance. Intrinsic foot fat volume and plantarflexor peak torque were significant predictors of medial column function (P<.05), accounting for 37% of the variance. Deterioration of medial column supporting structures predicted alignment and function. Prospective research is required to monitor alignment, structure, and function over time to inform early intervention strategies to prevent deformity, ulceration, and amputation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Blachowski, Jan; Grzempowski, Piotr; Milczarek, Wojciech; Nowacka, Anna
2015-04-01
Monitoring, mapping and modelling of mining induced terrain deformations are important tasks for quantifying and minimising threats that arise from underground extraction of useful minerals and affect surface infrastructure, human safety, the environment and security of the mining operation itself. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and expanding with the progress in geographical information technologies. These include for example: terrestrial geodetic measurements, Global Navigation Satellite Systems, remote sensing, GIS based modelling and spatial statistics, finite element method modelling, geological modelling, empirical modelling using e.g. the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The presentation shows the results of numerical modelling and mapping of mining terrain deformations for two cases of underground mining sites in SW Poland, hard coal one (abandoned) and copper ore (active) using the functionalities of the Deformation Information System (DIS) (Blachowski et al, 2014 @ http://meetingorganizer.copernicus.org/EGU2014/EGU2014-7949.pdf). The functionalities of the spatial data modelling module of DIS have been presented and its applications in modelling, mapping and visualising mining terrain deformations based on processing of measurement data (geodetic and GNSS) for these two cases have been characterised and compared. These include, self-developed and implemented in DIS, automation procedures for calculating mining terrain subsidence with different interpolation techniques, calculation of other mining deformation parameters (i.e. tilt, horizontal displacement, horizontal strain and curvature), as well as mapping mining terrain categories based on classification of the values of these parameters as used in Poland. Acknowledgments. This work has been financed from the National Science Centre Project "Development of a numerical method of mining ground deformation modelling in complex geological and mining conditions" UMO-2012/07/B/ST10/04297 executed at the Faculty of Geoengineering, Mining and Geology of the Wroclaw University of Technology (Poland).
NASA Astrophysics Data System (ADS)
Fourspring, Patrick Michael
X-ray double crystal diffractometry (XRDCD) and X-ray scanning diffractometry (XRSD) were used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if X-ray diffraction could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0-10 mum), subsurface (10-300 mum), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. The results from the XRSD data show similar but less coherent trends than the results from the XRDCD data. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.
Tuning transport properties on graphene multiterminal structures by mechanical deformations
NASA Astrophysics Data System (ADS)
Latge, Andrea; Torres, Vanessa; Faria, Daiara
The realization of mechanical strain on graphene structures is viewed as a promise route to tune electronic and transport properties such as changing energy band-gaps and promoting localization of states. Using continuum models, mechanical deformations are described by effective gauge fields, mirrored as pseudomagnetic fields that may reach quite high values. Interesting symmetry features are developed due to out of plane deformations on graphene; lift sublattice symmetry was predicted and observed in centrosymmetric bumps and strained nanobubbles. Here we discuss the effects of Gaussian-like strain on a hexagonal graphene flake connected to three leads, modeled as perfect graphene nanoribbons. The Green function formalism is used within a tight-binding approximation. For this particular deformation sharp resonant states are achieved depending on the strained structure details. We also study a fold-strained structure in which the three leads are deformed extending up to the very center of the hexagonal flake. We show that conductance suppressions can be controlled by the strain intensity and important transport features are modeled by the electronic band structure of the leads.
SVAS3: Strain Vector Aided Sensorization of Soft Structures.
Culha, Utku; Nurzaman, Surya G; Clemens, Frank; Iida, Fumiya
2014-07-17
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations.
NASA Astrophysics Data System (ADS)
Onorato, M. Romina; Perucca, Laura; Coronato, Andrea; Rabassa, Jorge; López, Ramiro
2016-10-01
In this paper, evidence of paleoearthquake-induced soft-sediment deformation structures associated with the Magallanes-Fagnano Fault System in the Isla Grande de Tierra del Fuego, southern Argentina, has been identified. Well-preserved soft-sediment deformation structures were found in a Holocene sequence of the Udaeta pond. These structures were analyzed in terms of their geometrical characteristics, deformation mechanism, driving force system and possible trigger agent. They were also grouped in different morphological types: sand dykes, convolute lamination, load structures and faulted soft-sediment deformation features. Udaeta, a small pond in Argentina Tierra del Fuego, is considered a Quaternary pull-apart basin related to the Magallanes-Fagnano Fault System. The recognition of these seismically-induced features is an essential tool for paleoseismic studies. Since the three main urban centers in the Tierra del Fuego province of Argentina (Ushuaia, Río Grande and Tolhuin) have undergone an explosive growth in recent years, the results of this study will hopefully contribute to future analyses of the seismic risk of the region.
Optical Voltage Sensing Using DNA Origami
2018-01-01
We explore the potential of DNA nanotechnology for developing novel optical voltage sensing nanodevices that convert a local change of electric potential into optical signals. As a proof-of-concept of the sensing mechanism, we assembled voltage responsive DNA origami structures labeled with a single pair of FRET dyes. The DNA structures were reversibly immobilized on a nanocapillary tip and underwent controlled structural changes upon application of an electric field. The applied field was monitored through a change in FRET efficiency. By exchanging the position of a single dye, we could tune the voltage sensitivity of our DNA origami structure, demonstrating the flexibility and versatility of our approach. The experimental studies were complemented by coarse-grained simulations that characterized voltage-dependent elastic deformation of the DNA nanostructures and the associated change in the distance between the FRET pair. Our work opens a novel pathway for determining the mechanical properties of DNA origami structures and highlights potential applications of dynamic DNA nanostructures as voltage sensors. PMID:29430924
A Wireless Intracranial Brain Deformation Sensing System for Blast-Induced Traumatic Brain Injury
Song, S.; Race, N. S.; Kim, A.; Zhang, T.; Shi, R.; Ziaie, B.
2015-01-01
Blast-induced traumatic brain injury (bTBI) has been linked to a multitude of delayed-onset neurodegenerative and neuropsychiatric disorders, but complete understanding of their pathogenesis remains elusive. To develop mechanistic relationships between bTBI and post-blast neurological sequelae, it is imperative to characterize the initiating traumatic mechanical events leading to eventual alterations of cell, tissue, and organ structure and function. This paper presents a wireless sensing system capable of monitoring the intracranial brain deformation in real-time during the event of a bTBI. The system consists of an implantable soft magnet and an external head-mounted magnetic sensor that is able to measure the field in three dimensions. The change in the relative position of the soft magnet WITH respect to the external sensor as the result of the blast wave induces changes in the magnetic field. The magnetic field data in turn is used to extract the temporal and spatial motion of the brain under the blast wave in real-time. The system has temporal and spatial resolutions of 5 μs and 10 μm. Following the characterization and validation of the sensor system, we measured brain deformations in a live rodent during a bTBI. PMID:26586273
NASA Astrophysics Data System (ADS)
Wen, Jici; Wei, Yujie; Cheng, Yang-Tse
2018-07-01
Monitoring in real time the stress state in high capacity electrodes during charge-discharge processes is pivotal to the performance assessment and structural optimization of advanced batteries. The wafer curvature measurement technique broadly employed in thin-film industry, together with stress analysis using the Stoney equation, has been successfully adopted to measure in situ the stress in thin film electrodes. How large plastic deformation or interfacial delamination during electrochemical cycles in such electrodes affects the applicability of Stoney equation remains unclear. Here we develop a robust electrochemical-mechanical coupled numerical procedure to investigate the influence of large plastic deformation and interfacial failure on the measured stress in thin film electrodes. We identify how the constitutive behavior of electrode materials and film-substrate interfacial properties affect the measured stress-capacity curves of electrodes, and hence establish the relationship of electrode material parameters with the characteristics of stress-capacity curves. Using Li-ions batteries as examples, we show that plastic deformation and interfacial delamination account for the asymmetric stress-capacity loops seen in in situ stress measurements. The methods used here, along with the finite-element code in the supplementary material, may be used to model the electrode behavior as a function of the state of charge.
NASA Astrophysics Data System (ADS)
Hill, Rodney
1999-02-01
This analysis concerns closed-ended tubes of circular section which are loaded by internal fluid pressure together with an external axial force. These may be applied in proportions that can be varied at will by servo-control during a single experiment. More generally it is envisaged that the servo-control can respond to changes in tube radius when these are monitored by a diametral extensometer. A main objective is to determine how the choice of control affects the regime of homogeneous deformation. Another is to consolidate an understanding of the transition to inhomogeneous deformation mediated by eigenmodes. The general approach is along similar lines to part I and takes the analysis appreciably farther in important respects. The constitutive basis is broadly classical, but yield functions spanning the whole of stress space are not called upon, primarily because of the extreme scarcity of good experimental data. There are counter-balancing benefits from this abstention : (i) the governing equations can be handled far more readily ; (ii) the structure of the mathematics as a whole is more transparent ; (iii) the final conclusions are valid for materials whose path-dependent behaviour is much more complex than can be accommodated by the simple theories reviewed in Part I.
Large-deformation and high-strength amorphous porous carbon nanospheres
NASA Astrophysics Data System (ADS)
Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing
2016-04-01
Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.
NASA Astrophysics Data System (ADS)
Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred
2016-12-01
This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.
A structural dynamics study of a wing-pylon-tiltrotor system
NASA Astrophysics Data System (ADS)
Khader, N.; Abu-Mallouh, R.
1992-12-01
A simple structural model for a three-bladed tiltrotor-pylon-wing assembly is presented, which accounts for chordwise, transverse, and torsional wing deformations, rigid pylon pitching motion with respect to the wing tip cross-section in its deformed position, lead-lag, flap, and torsional deformations of rotor blades. The model considers equivalent viscous damping associated with blade and wing elastic deformations and with rigid pylon pitching motion. It is established that blade-to wing bending rigidity ratio, pylon pitching frequency, equivalent viscous damping associated with blade elastic deformations, and rotational speed, are the most important design parameters, whose effect on system frequencies and stability boundaries is evaluated.
Plastic Deformation of Magnesium Alloy Subjected to Compression-First Cyclic Loading
NASA Astrophysics Data System (ADS)
Lee, Soo Yeol; Gharghouri, Michael A.; Root, John H.
In-situ neutron diffraction has been employed to study the deformation mechanisms in a precipitation-hardened and extruded Mg-8.5wt.% Al alloy subjected to compression followed by reverse tension. The starting texture is such that the basal poles of most grains are oriented normal to the extrusion axis and a small portion of grains are oriented with the basal pole parallel to the extrusion axis. Diffraction peak intensities for several grain orientations monitored in-situ during deformation show that deformation twinning plays an important role in the elastic-plastic transition and subsequent plastic deformation behavior. Significant non-linear behavior is observed during unloading after compression and appears to be due to detwinning. This effect is much stronger after compressive loading than after tensile loading.
Monitoring the spatial and temporal evolution of slope instability with Digital Image Correlation
NASA Astrophysics Data System (ADS)
Manconi, Andrea; Glueer, Franziska; Loew, Simon
2017-04-01
The identification and monitoring of ground deformation is important for an appropriate analysis and interpretation of unstable slopes. Displacements are usually monitored with in-situ techniques (e.g., extensometers, inclinometers, geodetic leveling, tachymeters and D-GPS), and/or active remote sensing methods (e.g., LiDAR and radar interferometry). In particular situations, however, the choice of the appropriate monitoring system is constrained by site-specific conditions. Slope areas can be very remote and/or affected by rapid surface changes, thus hardly accessible, often unsafe, for field installations. In many cases the use of remote sensing approaches might be also hindered because of unsuitable acquisition geometries, poor spatial resolution and revisit times, and/or high costs. The increasing availability of digital imagery acquired from terrestrial photo and video cameras allows us nowadays for an additional source of data. The latter can be exploited to visually identify changes of the scene occurring over time, but also to quantify the evolution of surface displacements. Image processing analyses, such as Digital Image Correlation (known also as pixel-offset or feature-tracking), have demonstrated to provide a suitable alternative to detect and monitor surface deformation at high spatial and temporal resolutions. However, a number of intrinsic limitations have to be considered when dealing with optical imagery acquisition and processing, including the effects of light conditions, shadowing, and/or meteorological variables. Here we propose an algorithm to automatically select and process images acquired from time-lapse cameras. We aim at maximizing the results obtainable from large datasets of digital images acquired with different light and meteorological conditions, and at retrieving accurate information on the evolution of surface deformation. We show a successful example of application of our approach in the Swiss Alps, more specifically in the Great Aletsch area, where slope instability was recently reactivated due to the progressive glacier retreat. At this location, time-lapse cameras have been installed during the last two years, ranging from low-cost and low-resolution webcams to more expensive high-resolution reflex cameras. Our results confirm that time-lapse cameras provide quantitative and accurate measurements of surface deformation evolution over space and time, especially in situations when other monitoring instruments fail.
DOT National Transportation Integrated Search
2014-08-01
This report describes the instrumentation and data acquisition for a three-span continuous, curved post-tensioned box-girder : bridge in Connecticut. The computer-based remote monitoring system was developed to collect information on the deformations...
Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)
2014-01-01
A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.
NASA Astrophysics Data System (ADS)
Zhu, Yun; Li, Zhen; Li, Yue-ming
2018-05-01
A study on dynamical characteristics of a ternary locally resonant phononic crystal (PC) plate (i.e., hard scatterer with soft coating periodically disperse in stiff host matrix) is carried out in this paper. The effect of thermal deformation on the structure stiffness, which plays an important role in the PC's dynamical characteristics, is considered. Results show that both the start and the stop frequency of bandgap shift to higher range with the thermal deformation. In particular, the characteristics of band structure change suddenly at critical buckling temperature. The effect of thermal deformation could be utilized for tuning of phononic band structures, which can promote their design and further applications.
Molecular Modeling for Calculation of Mechanical Properties of Epoxies with Moisture Ingress
NASA Technical Reports Server (NTRS)
Clancy, Thomas C.; Frankland, Sarah J.; Hinkley, J. A.; Gates, T. S.
2009-01-01
Atomistic models of epoxy structures were built in order to assess the effect of crosslink degree, moisture content and temperature on the calculated properties of a typical representative generic epoxy. Each atomistic model had approximately 7000 atoms and was contained within a periodic boundary condition cell with edge lengths of about 4 nm. Four atomistic models were built with a range of crosslink degree and moisture content. Each of these structures was simulated at three temperatures: 300 K, 350 K, and 400 K. Elastic constants were calculated for these structures by monitoring the stress tensor as a function of applied strain deformations to the periodic boundary conditions. The mechanical properties showed reasonably consistent behavior with respect to these parameters. The moduli decreased with decreasing crosslink degree with increasing temperature. The moduli generally decreased with increasing moisture content, although this effect was not as consistent as that seen for temperature and crosslink degree.
Research of dynamical Characteristics of slow deformation Waves as Massif Responses on Explosions
NASA Astrophysics Data System (ADS)
Hachay, Olga; Khachay, Oleg; Shipeev, Oleg
2013-04-01
The research of massif state with use of approaches of open system theory [1-3] was developed for investigation the criterions of dissipation regimes for real rock massifs, which are under heavy man-caused influence. For realization of that research we used the data of seismic catalogue of Tashtagol mine. As a result of the analyze of that data we defined character morphology of phase trajectories of massif response, which was locally in time in a stable state: on the phase plane with coordinates released by the massif during the dynamic event energy E and lg(dE/dt) there is a local area as a ball of twisted trajectories and some not great bursts from that ball, which are not greater than 105 joules. In some time intervals that burst can be larger, than 105 joules, achieving 106 joules and yet 109 joules. [3]. Evidently there are two reciprocal depend processes: the energy accumulation in the attracted phase trajectories area and resonance fault of the accumulated energy. But after the fault the system returns again to the same attracted phase trajectories area. For analyzing of the thin structure of the chaotic area we decided to add the method of processing of the seismic monitoring data by new parameters. We shall consider each point of explosion as a source of seismic or deformation waves. Using the kinematic approach of seismic information processing we shall each point of the massif response use as a time point of the first arrival of the deformation wave for calculation of the wave velocity, because additionally we know the coordinates of the fixed response and the coordinates of explosion. The use of additional parameter-velocity of slow deformation wave propagation allowed us with use method of phase diagrams identify their hierarchic structure, which allow us to use that information for modeling and interpretation the propagation seismic and deformation waves in hierarchic structures. It is researched with use of that suggested processing method the thin structure of the chaotic area for two responses of the massif on a high energetic explosion in the northern and southern parts of it. The results are significant for understanding the high energetic rock shock and evaluation a criterion for massif stability estimation. The work is supported by the grant RFBR 10-05-00013 and Integration Project 2012-2014 with SB RAS Key words: massif response, slow deformation waves, seismic mine catalogue, analyze of observed data, phase diagrams. References 1. Naimark Y.I.,Landa P.S. Stochastic and chaotic oscillations//Moscow: Book House "LIBROKOM", 2009.-p.424. 2. Chulichkov A.I. Mathematical models of nonlinear dynamics.Moscow: Fizmatlit, 2003.-p.294. 3. Hachay O.A.,Khachay O.Y.,Klimko V.K.,Shipeev O.V. Reflection of synergetic features of rock massif state under man-caused influence after the data of mine seismological catalogue.// Mine informational and analytical bulletin MSMU,6, 2010,p.259-271.
Long term landslide monitoring with Ground Based SAR
NASA Astrophysics Data System (ADS)
Monserrat, Oriol; Crosetto, Michele; Luzi, Guido; Gili, Josep; Moya, Jose; Corominas, Jordi
2014-05-01
In the last decade, Ground-Based (GBSAR) has proven to be a reliable microwave Remote Sensing technique in several application fields, especially for unstable slopes monitoring. GBSAR can provide displacement measurements over few squared kilometres areas and with a very high spatial and temporal resolution. This work is focused on the use of GBSAR technique for long term landslide monitoring based on a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. In this work, two alternative ways for exploiting the D-GBSAR technique will be presented: the DInSAR technique and the Amplitude based Technique. The former is based on the exploitation of the phase component of the acquired SAR images and it allows providing millimetric precision on the deformation estimates. However, this technique presents several limitations like the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component that can make it non applicable in some cases, specially when working in natural environments. The second approach, that is based on the use of the amplitude component of GB-SAR images combined with a image matching technique, will allow the estimation of the displacements over specific targets avoiding two of the limitations commented above: the phase unwrapping and atmosphere contribution but reducing the deformation measurement precision. Two successful examples of D-GBSAR landslide monitoring will be analysed and discussed: the first example is based on DInSAR and concerns to an urban landslide located in Barberà de la Conca (Catalonia, Spain). This village has experienced deformations since 2011 that have caused cracks in the church and several buildings. The results of a one year and half monitoring will be shown. The second example is based on the amplitude based approach and concerns to the active landslide of Vallcebre (Eastern Pyrenees, Spain). For this site, the results of eight campaigns during a period of 19 months were performed. During this period displacements of up to 80 cm were measured.
Measurement of deformations of models in a wind tunnel
NASA Astrophysics Data System (ADS)
Charpin, F.; Armand, C.; Selvaggini, R.
Techniques used at the ONERA Modane Center to monitor geometric variations in scale-models in wind tunnel trials are described. The methods include: photography of reflections from mirrors embedded in the model surface; laser-based torsiometry with polarized mirrors embedded in the model surface; predictions of the deformations using numerical codes for the model surface mechanical characteristics and the measured surface stresses; and, use of an optical detector to monitor the position of luminous fiber optic sources emitting from the model surfaces. The data enhance the confidence that the wind tunnel aerodynamic data will correspond with the in-flight performance of full scale flight surfaces.
Ji, Kang Hyeun; Herring, Thomas A.; Llenos, Andrea L.
2013-01-01
Long Valley Caldera in eastern California is an active volcanic area and has shown continued unrest in the last three decades. We have monitored surface deformation from Global Positioning System (GPS) data by using a projection method that we call Targeted Projection Operator (TPO). TPO projects residual time series with secular rates and periodic terms removed onto a predefined spatial pattern. We used the 2009–2010 slow deflation as a target spatial pattern. The resulting TPO time series shows a detailed deformation history including the 2007–2009 inflation, the 2009–2010 deflation, and a recent inflation that started in late-2011 and is continuing at the present time (November 2012). The recent inflation event is about four times faster than the previous 2007–2009 event. A Mogi source of the recent event is located beneath the resurgent dome at about 6.6 km depth at a rate of 0.009 km3/yr volume change. TPO is simple and fast and can provide a near real-time continuous monitoring tool without directly looking at all the data from many GPS sites in this potentially eruptive volcanic system.
Vertebral column resection for the treatment of severe spinal deformity.
Lenke, Lawrence G; Sides, Brenda A; Koester, Linda A; Hensley, Marsha; Blanke, Kathy M
2010-03-01
The ability to treat severe pediatric and adult spinal deformities through an all-posterior vertebral column resection (VCR) has obviated the need for a circumferential approach in primary and revision surgery, but there is limited literature evaluating this new approach. Our purpose was therefore to provide further support of this technique. We reviewed 43 patients who underwent a posterior-only VCR using pedicle screws, anteriorly positioned cages, and intraoperative spinal cord monitoring between 2002 and 2006. Diagnoses included severe scoliosis, global kyphosis, angular kyphosis, or kyphoscoliosis. Forty (93%) procedures were performed at L1 or cephalad in the spinal cord (SC) territory. Seven patients (18%) lost intraoperative neurogenic monitoring evoked potentials (NMEPs) data during correction with data returning to baseline after prompt surgical intervention. All patients after surgery were at their baseline or showed improved SC function, whereas no one worsened. Two patients had nerve root palsies postoperatively, which resolved spontaneously at 6 months and 2 weeks. Spinal cord monitoring (specifically NMEP) is mandatory to prevent neurologic complications. Although technically challenging, a single-stage approach offers dramatic correction in both primary and revision surgery of severe spinal deformities. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Tunnel Point Cloud Filtering Method Based on Elliptic Cylindrical Model
NASA Astrophysics Data System (ADS)
Zhua, Ningning; Jiaa, Yonghong; Luo, Lun
2016-06-01
The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points), therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.
Deformation offshore Northern Chile monitored by a seafloor geodetic network (GeoSEA)
NASA Astrophysics Data System (ADS)
Hannemann, Katrin; Lange, Dietrich; Kopp, Heidrun; Petersen, Florian; Contreras-Reyes, Eduardo
2017-04-01
The Nazca-South American plate boundary around 21°S has last ruptured in an earthquake in 1877 and was identified as a seismic gap prior to the 2014 Iquique earthquake (Mw=8.1). The southern portion of this segment is still unbroken. The geodetic monitoring of the Chilean subduction zone is crucial to understand the deformation processes in this area. Most geodetic measurements rely on GPS and are therefore limited to onshore campaigns. In December 2015, we installed the GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array around 21°S of the Nazca-South American plate boundary with RV SONNE to extend the geodetic observations to the offshore areas. The GeoSEA array consists of autonomous acoustic seafloor transponders mounted on 4 m high tripods. These transponders are able to continuously measure the two-way travel time of acoustic signals between station pairs (baselines) and the properties of the sea water (sound speed, temperature and pressure) at each transponder. These measurements are used to retrieve the distances between the transponders and give insights into the deformation of the seafloor. At the Chilean subduction zone, we installed in total 23 transponders in 3 subarrays with interstation distances of up to 2500 m. On the middle continental slope in 2300 m water depth, an array consisting of 8 transponders measures across crustal faults seen in AUV mapping. A second array of 5 stations located on the outer rise monitors extension across normal plate-bending faults. The deepest deployment in 5000 m water depth located on the lower continental slope with 10 stations is designed to measure diffuse strain build-up. The transponders are intended to monitor the seafloor deformation for 3.5 years. In November 2016 during a cruise of RV Langseth, the first 11 months of data were successfully uploaded via an acoustic modem. Furthermore, an additional component of the network, GeoSURF, a self-steering autonomous vehicle (wave glider), was successfully used to monitor system health and to upload parts of the data from the seafloor stations. The first 11 months of data show a good signal quality and the baseline precision is ± 5 mm. The data reveals no deformation above the resolution limits of the individual distance measurements.
Effect of Severe Plastic Deformation on Structure and Properties of Al-Sc-Ta and Al-Sc-Ti Alloys
NASA Astrophysics Data System (ADS)
Berezina, Alla; Monastyrska, Tetiana; Davydenko, Olexandr; Molebny, Oleh; Polishchuk, Sergey
2017-03-01
The comparative analysis of the effect of monotonous and non-monotonous severe plastic deformations (SPD) on the structure and properties of aluminum alloys has been carried out. Conventional hydrostatic extrusion (HE) with a constant deformation direction and equal-channel angular hydroextrusion (ECAH) with an abrupt change in the deformation direction were chosen for the cases of monotonous and non-monotonous SPD, respectively. Model cast hypoeutectic Al-0.3%Sc alloys and hypereutectic Al-0.6%Sc alloys with Ta and Ti additives were chosen for studying. It was demonstrated that SPD of the alloys resulted in the segregation of the material into active and inactive zones which formed a banded structure. The active zones were shown to be bands of localized plastic deformation. The distance between zones was found to be independent of the accumulated strain degree and was in the range of 0.6-1 μm. Dynamic recrystallization in the active zones was observed using TEM. The dynamic recrystallization was accompanied by the formation of disclinations, deformation bands, low-angle, and high-angle boundaries, i.e., rotational deformation modes developed. The dynamic recrystallization was more intense during the non-monotonous deformation as compared with the monotonous one, which was confirmed by the reduction of texture degree in the materials after ECAH.
NASA Astrophysics Data System (ADS)
Kobayashi, Tomokazu
2018-05-01
Although it is difficult to monitor the spatial extent and temporal evolution of local and small-magnitude ground inflation, this information is vital to assess the potential for phreatic eruption. Herein, we demonstrate the detection of locally distributed ground deformation preceding the enhancement of geothermal activity in the Midagahara volcano, Japan, through the application of single-look-based interferometric synthetic aperture radar analysis. In the Jigoku-dani geothermal area, the ground deformation proceeded at a low speed of 4 cm/year at most with a spatial extent of 500 m in the east-west direction and 250 m in the north-south direction. The deformation can be recognized to progress from 2007, at the latest, to 2010, after which the geothermal activity increased, with the collapse of sulfur towers and the appearance of active fumaroles and boiling water on the ground surface. The most deformed area corresponds to the geothermal area with the highest activity observed on the ground surface. Assuming a sill opening model, the deformation source is estimated to be located at a depth of 50 m from the surface with a speed of 7 cm/year at most, which is consistent with the depth of the highly conductive medium inferred from magnetotelluric analyses. This may suggest that volcanic fluid and/or heat was injected into the fluid-rich medium from depth and caused the ground inflation. Our results demonstrate that high-spatial-resolution deformation data can be an effective tool to monitor subsurface pressure conditions with pinpoint spatial accuracy during the build-up to phreatic eruptions.
A new drag spool for measuring basal sliding and till deformation
NASA Astrophysics Data System (ADS)
Truffer, M.; Pomraning, D.; Dushime, B.; Amundson, J. M.; Motyka, R. J.; Larsen, C.
2017-12-01
Direct observation of subglacial processes are challenging due to significant problems of access. A primary method of access are boreholes drilled through the ice with hot water. A variety of instruments have been developed to monitor ice deformation, till deformation, sliding of ice over subglacial till, water pressure in boreholes, and pore water pressure in subglacial till. It is not common to measure all of these parameters in one single borehole. However, ignorance about one of these parameters can hamper the interpretation of others. For example, it is desirable to monitor all components of basal motion (ice deformation near the base, till deformation, and sliding) simultaneously. Here we present a newly developed drag spool that attempts this. The spool consists of an anchor that is hammered into subglacial till. The anchor is instrumented with tilt sensors and a pore water pressure sensor. It is connected to a probe in the bottom part of the ice via a signal wire. This main probe measures the payout of the signal wire as well as tilt in the basal ice and water pressure in the borehole. A prototype of this instrument was tested on Taku Glacier, Alaska, under about 200 m of ice and operated successfully for several months. Data show deformation of ice and the upper till layer. Sliding at the interface is intermittent and accounts for less than 10% of the observed surface motion. Deformation of ice and till occurs more continuously but is interrupted by specific events. These events are sometimes - but not always - related to speed-up events at the surface. This indicates that occasionally the basal system evolves on spatial scales that are not sufficiently large to be observed at the surface.
NASA Astrophysics Data System (ADS)
Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong
2017-04-01
Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft-material-based composites under pure bending deformation, we expect to uniformly explain the whole process of buckling occurrence, evolution and finally failure, especially for the early evolution characteristics of fiber microbuckling inside the microstructures. The research results are meaningful for the practical applications for SMPC deployable structures in space. Considering the deformation mechanisms of SMPCs, the local post-microbuckling is required for the unidirectional fiber reinforced composite materials, at the conditions of its large geometrical deflection. The cross section of SMPC is divided into three areas: non-buckling stretching area, non-buckling compressive area, and buckling compressive area. Three variables are considered: critical buckling position, and neutral plane, the fiber buckling half-wavelength. Considering the condition of the small strain and large displacement, the strain energy expression of the SMP/fiber system was derived, which contains two types, e.g., strain energy of SMP and fiber. According to the minimum energy principle, the expression for all key parameters were derived, including the critical buckling curvature, neutral plane position, the buckling half-wavelength, fiber buckling amplitude, and strain.
A q-deformation of the Bogoliubov transformations
NASA Astrophysics Data System (ADS)
Arraut, Ivan; Segovia, Carlos
2018-02-01
An approach for q-deformed Bogoliubov transformations is presented. Assuming a left-right module action together with an *-operation and deformed commutation relations, we construct a q-deformation of the nonlinear Bogoliubov transformation. Finally, we introduce a Hopf structure when q is a root of unity.
Investigation of the effects of aeroelastic deformations on the radar cross section of aircraft
NASA Astrophysics Data System (ADS)
McKenzie, Samuel D.
1991-12-01
The effects of aeroelastic deformations on the radar cross section (RCS) of a T-38 trainer jet and a C-5A transport aircraft are examined and characterized. Realistic representations of structural wing deformations are obtained from a mechanical/computer aided design software package called NASTRAN. NASTRAN is used to evaluate the structural parameters of the aircraft as well as the restraints and loads associated with realistic flight conditions. Geometries for both the non-deformed and deformed airframes are obtained from the NASTRAN models and translated into RCS models. The RCS is analyzed using a numerical modeling code called the Radar Cross Section - Basic Scattering Code, version 2 which was developed at the Ohio State University and is based on the uniform geometric theory of diffraction. The code is used to analyze the effects of aeroelastic deformations on the RCS of the aircraft by comparing the computed RCS representing the deformed airframe to that of the non-deformed airframe and characterizing the differences between them.
Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression
NASA Astrophysics Data System (ADS)
Huo, Yuanming; He, Tao; Chen, Shoushuang; Wu, Riming
2018-05-01
High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650-850°C and at strain rates of 0.1-10.0 s-1. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650-750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.
Study of the crater deformation of the CODELCO/Andina mine using the satellite and ground data
NASA Astrophysics Data System (ADS)
Caverlotti-Silva, M. A.; Arellano-Baeza, A. A.
2011-12-01
The correct monitoring of the subsidence of the craters related to the underground mine exploitation is one of the most important endeavors of the satellite remote sensing. The ASTER and LANDSAT satellite images have been used to study the deformation of the crater of the CODELCO/Andina mine, Valparaiso Region, Chile. The high-resolution satellite images were used to detect changes in the lineament patterns related to the subsidence. These results were compared with the ground deformation extracted from the GPS and topography station networks. It was found that sudden changes in the lineament patterns appear when the ground deformation overcomes a definite threshold.
Huang, Sha; Hou, Han Wei; Kanias, Tamir; Sertorio, Jonas Tadeu; Chen, Huichao; Sinchar, Derek; Gladwin, Mark T; Han, Jongyoon
2015-01-21
In this study, the effects of prolonged storage on several biophysical properties of red blood cells (RBCs) were investigated. Single cell deformability was used as an important criterion in determining subgroups of RBCs evolved during storage lesion. A deformability-based microfluidic cell sorting technology was applied, which demonstrates the ability to enrich and separate the less deformable subpopulations of stored blood. These less deformable RBC subpopulations were then associated with other important markers such as osmotic fragility indicating cell integrity as well as microparticle content. This work demonstrates a systematic methodology to both monitor and improve banked blood quality, thereby reducing risks related to blood transfusion.
Using InSAR to Observe Sinkhole Activity in Central Florida
NASA Astrophysics Data System (ADS)
Oliver-Cabrera, T.; Wdowinski, S.; Kruse, S.; Kiflu, H. G.
2017-12-01
Sinkhole collapse in Florida is a major geologic hazard, threatening human life and causing substantial damage to property. Detecting sinkhole deformation before a collapse is an important but difficult task; most techniques used to monitor sinkholes are spatially constrained to relatively small areas (tens to hundred meters). To overcome this limitation, we use Interferometric Synthetic Aperture Radar (InSAR), which is a very useful technique for detecting localized deformation while covering vast areas. InSAR results show localized deformation at several houses and commercial buildings in different locations along the study sites. We use a subsurface imaging technique, ground penetrating radar, to verify sinkhole existence beneath the observed deforming areas.
NASA Astrophysics Data System (ADS)
Salomon, Martina Lan; Grasemann, Bernhard; Plan, Lukas; Gier, Susanne; Schöpfer, Martin P. J.
2018-05-01
We investigate episodic soft-sediment deformation structures cross-cut by normal faults preserved in unlithified finely laminated calcite rich sediments in the Hirlatz cave in the Northern Calcareous Alps (Austria). These sediments comprise varve-like alternations of brighter carbonate/quartz rich layers, and darker clay mineral rich layers. The deformed sediments contain abundant millimeter to centimeter-scale soft-sediment structures (load casts, ball-and-pillow structures), sheet slumps (thrust faults and folds), erosive channels filled with slides and chaotic slumps. After deposition and soft-sediment deformation normal faults developed within the entire sedimentary succession, an event that probably correlates with an offset of c. 10 cm of the passage wall above the outcrop. Our major conclusions are: (i) The sediments have a glacial origin and were deposited in the Hirlatz cave under phreatic fluvio-lacustrine conditions. The deposition and the soft-sediment deformation occurred most likely during the last glaciation (i.e. around 25 ka ago); (ii) The liquefaction and formation of the soft-sediment structures in water-saturated stratified layers was triggered by episodic seismic events; (iii) The internally deformed sediments were later displaced by normal faults; (iv) A possible source for the seismic events is the active sinistral Salzach-Ennstal-Mariazeller-Puchberger (SEMP) strike-slip fault which is located about 10 km south of the outcrop and plays a major role in accommodating the extrusion of the Eastern Alps towards the Pannonian Basin. To our knowledge, the described structures are the first report of liquefaction and seismically induced soft-sediment deformations in Quaternary sediments in the Eastern Alps.
NASA Astrophysics Data System (ADS)
Hodson, Keith R.; Crider, Juliet G.; Huntington, Katharine W.
2016-10-01
Fluid-driven cementation and diagenesis within fault zones can influence host rock permeability and rheology, affecting subsequent fluid migration and rock strength. However, there are few constraints on the feedbacks between diagenetic conditions and structural deformation. We investigate the cementation history of a fault-intersection zone on the Moab Fault, a well-studied fault system within the exhumed reservoir rocks of the Paradox Basin, Utah, USA. The fault zone hosts brittle structures recording different stages of deformation, including joints and two types of deformation bands. Using stable isotopes of carbon and oxygen, clumped isotope thermometry, and cathodoluminescence, we identify distinct source fluid compositions for the carbonate cements within the fault damage zone. Each source fluid is associated with different carbonate precipitation temperatures, luminescence characteristics, and styles of structural deformation. Luminescent carbonates appear to be derived from meteoric waters mixing with an organic-rich or magmatic carbon source. These cements have warm precipitation temperatures and are closely associated with jointing, capitalizing on increases in permeability associated with fracturing during faulting and subsequent exhumation. Earlier-formed non-luminescent carbonates have source fluid compositions similar to marine waters, low precipitation temperatures, and are closely associated with deformation bands. The deformation bands formed at shallow depths very early in the burial history, preconditioning the rock for fracturing and associated increases in permeability. Carbonate clumped isotope temperatures allow us to associate structural and diagenetic features with burial history, revealing that structural controls on fluid distribution are established early in the evolution of the host rock and fault zone, before the onset of major displacement.
Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Huang, H.; Hartle, M.
1992-01-01
Accomplishments are described for the third years effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) structural analysis capability specialized for graded composite structures including large deformation and deformation position eigenanalysis technologies; (2) a thermal analyzer specialized for graded composite structures; (3) absorption of electromagnetic waves by graded composite structures; and (4) coupled structural thermal/electromagnetic analysis of graded composite structures.
NASA Astrophysics Data System (ADS)
Izosimov, I. N.; Solnyshkin, A. A.; Khushvaktov, J. H.; Vaganov, Yu. A.
2018-05-01
The experimental measurement data on the fine structure of beta-decay strength function S β( E) in spherical, transitional, and deformed nuclei are analyzed. Modern high-resolution nuclear spectroscopy methods made it possible to identify the splitting of peaks in S β( E) for deformed nuclei. By analogy with splitting of the peak of E1 giant dipole resonance (GDR) in deformed nuclei, the peaks in S β( E) are split into two components from the axial nuclear deformation. In this report, the fine structure of S β( E) is discussed. Splitting of the peaks connected with the oscillations of neutrons against protons (E1GDR), of proton holes against neutrons (peaks in S β( E) of β+/ EC-decay), and of protons against neutron holes (peaks in S β( E) of β--decay) is discussed.
NASA Astrophysics Data System (ADS)
Neuwerth, Ralph; Suter, Fiore; Guzman, Carlos A.; Gorin, Georges E.
2006-04-01
The Plio-Pleistocene Zarzal Formation corresponds to fluvio-lacustrine sediments deposited in an intramontane depression within the Colombian Andes, associated with the Cauca-Romeral Fault System. It crops out mainly in the Cauca Valley where numerous field sections have permitted the mapping of the vertical and lateral lithological variations. Lacustrine deposits of sands, silts, clays and diatomites are interbedded with fluvial sand and gravel beds and fluvio-volcanic mass flows derived from the volcanic Central Cordillera. Numerous soft-sediment deformation structures are encountered in this formation, particularly in fine- to medium-grained sands, silts and clays: load structures (load casts, flame structures, pseudonodules), water escape structures (water escape cusps, dish-and-pillar and pocket-and-pillar structures), soft-sediment intrusions (clastic sills and dykes), disturbed laminites, convolute laminations, slumps and synsedimentary faulting. Deformation mechanisms and driving forces are related essentially to gravitational instabilities, dewatering, liquidization and brittle deformations. Field and regional geological data show that most of these deformations are related to seismicity and can be interpreted as seismites. This area has a geological and recent seismic history and outcrops show both syn- and post-depositional faulting related to the transpressional regime of this part of the Colombian Andes, which generates strike-slip faults and associated local normal faults. The drainage pattern within the Zarzal Formation shows the signature of neotectonics. Moreover, the fine to coarse-grained sands of the Zarzal Formation are lithologies prone to liquefaction when affected by seismic waves. The intercalation of the deformed intervals within undisturbed strata confirms the catastrophic nature of the events. Finally, the large areal extent of the deformations and the type of structures are compatible with seismites. Consequently, the existence of seismites in the Zarzal Formation represents corroboration of tectonic activity in this area during the Pleistocene. Earthquakes with a magnitude higher than 5 can be postulated, based upon the proximity of active faults and the types of deformations.
Deformation band clusters on Mars and implications for subsurface fluid flow
Okubo, C.H.; Schultz, R.A.; Chan, M.A.; Komatsu, G.
2009-01-01
High-resolution imagery reveals unprecedented lines of evidence for the presence of deformation band clusters in layered sedimentary deposits in the equatorial region of Mars. Deformation bands are a class of geologic structural discontinuity that is a precursor to faults in clastic rocks and soils. Clusters of deformation bands, consisting of many hundreds of individual subparallel bands, can act as important structural controls on subsurface fluid flow in terrestrial reservoirs, and evidence of diagenetic processes is often preserved along them. Deformation band clusters are identified on Mars based on characteristic meter-scale architectures and geologic context as observed in data from the High-Resolution Imaging Science Experiment (HiRISE) camera. The identification of deformation band clusters on Mars is a key to investigating the migration of fluids between surface and subsurface reservoirs in the planet's vast sedimentary deposits. Similar to terrestrial examples, evidence of diagenesis in the form of light- and dark-toned discoloration and wall-rock induration is recorded along many of the deformation band clusters on Mars. Therefore, these structures are important sites for future exploration and investigations into the geologic history of water and water-related processes on Mars. ?? 2008 Geological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swart, Peter K.; Dixon, Tim
2014-09-30
A series of surface geophysical and geochemical techniques are tested in order to demonstrate and validate low cost approaches for Monitoring, Verification and Accounting (MVA) of the integrity of deep reservoirs for CO 2 storage. These techniques are (i) surface deformation by GPS; ii) surface deformation by InSAR; iii) passive source seismology via broad band seismometers; and iv) soil gas monitoring with a cavity ring down spectrometer for measurement of CO 2 concentration and carbon isotope ratio. The techniques were tested at an active EOR (Enhanced Oil Recovery) site in Texas. Each approach has demonstrated utility. Assuming Carbon Capture, Utilizationmore » and Storage (CCUS) activities become operational in the future, these techniques can be used to augment more expensive down-hole techniques.« less
Monitoring Of Landslide Hazard In Selected Areas Of Uzbekistan
NASA Astrophysics Data System (ADS)
Lazecky, Milan; Balaha, Pavel; Khasankhanova, Gulchekhra; Minchenko, Venscelas
2013-12-01
Republic of Uzbekistan is situated in the heart of Central Asia. Dangerous phenomena such as drought, flooding, mud flows, landslides and others, that are becoming frequent in conditions of climate changes, increase instability of an agricultural production, and threaten rural livelihoods. In connection with weather and climate natural disasters, these phenomena become reasons of declining food production, water contamination, and economical damages. Within the Project granted by NATO: Science for Peace and Security programme, modern advanced remote sensing technologies will be applied to perform large scale monitoring of (early) slope deformations, including Satellite SAR Interferometry (InSAR) techniques, Ground Laser Scanning for in-situ refinement of detected movements or Multibeam Echosounding for monitoring slope deformation advancement into water objects. First results involving InSAR processing of selected sites in Uzbekistan are presented within this contribution.
Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo
2018-01-20
The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dilatancy induced ductile-brittle transition of shear band in metallic glasses.
Zeng, F; Jiang, M Q; Dai, L H
2018-04-01
Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.
Dilatancy induced ductile-brittle transition of shear band in metallic glasses
NASA Astrophysics Data System (ADS)
Zeng, F.; Jiang, M. Q.; Dai, L. H.
2018-04-01
Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.
The Hopf algebra structure of the h-deformed Z3-graded quantum supergroup GLh,j(1|1)
NASA Astrophysics Data System (ADS)
Yasar, Ergün
2016-07-01
In this work, we define a new proper singular g matrix to construct a Z3-graded calculus on the h-deformed quantum superplane. Using the obtained calculus, we construct a new h-deformed Z3-graded quantum supergroup and give some features of it. Finally, we build up the Hopf algebra structure of this supergroup.
Slope stability radar for monitoring mine walls
NASA Astrophysics Data System (ADS)
Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis
2001-11-01
Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.
Deformable image registration for adaptive radiotherapy with guaranteed local rigidity constraints.
König, Lars; Derksen, Alexander; Papenberg, Nils; Haas, Benjamin
2016-09-20
Deformable image registration (DIR) is a key component in many radiotherapy applications. However, often resulting deformations are not satisfying, since varying deformation properties of different anatomical regions are not considered. To improve the plausibility of DIR in adaptive radiotherapy in the male pelvic area, this work integrates a local rigidity deformation model into a DIR algorithm. A DIR framework is extended by constraints, enforcing locally rigid deformation behavior for arbitrary delineated structures. The approach restricts those structures to rigid deformations, while surrounding tissue is still allowed to deform elastically. The algorithm is tested on ten CT/CBCT male pelvis datasets with active rigidity constraints on bones and prostate and compared to the Varian SmartAdapt deformable registration (VSA) on delineations of bladder, prostate and bones. The approach with no rigid structures (REG0) obtains an average dice similarity coefficient (DSC) of 0.87 ± 0.06 and a Hausdorff-Distance (HD) of 8.74 ± 5.95 mm. The new approach with rigid bones (REG1) yields a DSC of 0.87 ± 0.07, HD 8.91 ± 5.89 mm. Rigid deformation of bones and prostate (REG2) obtains 0.87 ± 0.06, HD 8.73 ± 6.01 mm, while VSA yields a DSC of 0.86 ± 0.07, HD 10.22 ± 6.62 mm. No deformation grid foldings are observed for REG0 and REG1 in 7 of 10 cases; for REG2 in 8 of 10 cases, with no grid foldings in prostate, an average of 0.08 % in bladder (REG2: no foldings) and 0.01 % inside the body contour. VSA exhibits grid foldings in each case, with an average percentage of 1.81 % for prostate, 1.74 % for bladder and 0.12 % for the body contour. While REG1 and REG2 keep bones rigid, elastic bone deformations are observed with REG0 and VSA. An average runtime of 26.2 s was achieved with REG1; 31.1 s with REG2, compared to 10.5 s with REG0 and 10.7 s with VMS. With accuracy in the range of VSA, the new approach with constraints delivers physically more plausible deformations in the pelvic area with guaranteed rigidity of arbitrary structures. Although the algorithm uses an advanced deformation model, clinically feasible runtimes are achieved.
Multilevel model of polycrystalline materials: grain boundary sliding description
NASA Astrophysics Data System (ADS)
Sharifullina, E.; Shveykin, A.; Trusov, P.
2017-12-01
Material behavior description in a wide range of thermomechanical effects is one of the topical areas in mathematical modeling. Inclusion of grain boundary sliding as an important mechanism of polycrystalline material deformation at elevated temperatures and predominant deformation mechanism of metals and alloys in structural superplasticity allows to simulate various deformation regimes and their transitions (including superplasticity regime with switch-on and switch-off regimes). The paper is devoted to description of grain boundary sliding in structure of two-level model, based on crystal plasticity, and relations for determination the contribution of this mechanism to inelastic deformation. Some results are presented concerning computational experiments of polycrystalline representative volume deformation using developed model.
Image-based dynamic deformation monitoring of civil engineering structures from long ranges
NASA Astrophysics Data System (ADS)
Ehrhart, Matthias; Lienhart, Werner
2015-02-01
In this paper, we report on the vibration and displacement monitoring of civil engineering structures using a state of the art image assisted total station (IATS) and passive target markings. By utilizing the telescope camera of the total station, it is possible to capture video streams in real time with 10fps and an angular resolution of approximately 2″/px. Due to the high angular resolution resulting from the 30x optical magnification of the telescope, large distances to the object to be monitored are possible. The laser distance measurement unit integrated in the total station allows to precisely set the camera's focus position and to relate the angular quantities gained from image processing to units of length. To accurately measure the vibrations and displacements of civil engineering structures, we use circular target markings rigidly attached to the object. The computation of the targets' centers is performed by a least squares adjustment of an ellipse according to the Gauß-Helmert model from which the parameters of the ellipse and their standard deviations are derived. In laboratory experiments, we show that movements can be detected with an accuracy of better than 0.2mm for single frames and distances up to 30m. For static applications, where many video frames can be averaged, accuracies of better than 0.05mm are possible. In a field test on a life-size footbridge, we compare the vibrations measured by the IATS to reference values derived from accelerometer measurements.
High-rate RTK and PPP multi-GNSS positioning for small-scale dynamic displacements monitoring
NASA Astrophysics Data System (ADS)
Paziewski, Jacek; Sieradzki, Rafał; Baryła, Radosław; Wielgosz, Pawel
2017-04-01
The monitoring of dynamic displacements and deformations of engineering structures such as buildings, towers and bridges is of great interest due to several practical and theoretical reasons. The most important is to provide information required for safe maintenance of the constructions. High temporal resolution and precision of GNSS observations predestine this technology to be applied to most demanding application in terms of accuracy, availability and reliability. GNSS technique supported by appropriate processing methodology may meet the specific demands and requirements of ground and structures monitoring. Thus, high-rate multi-GNSS signals may be used as reliable source of information on dynamic displacements of ground and engineering structures, also in real time applications. In this study we present initial results of application of precise relative GNSS positioning for detection of small scale (cm level) high temporal resolution dynamic displacements. Methodology and algorithms applied in self-developed software allowing for relative positioning using high-rate dual-frequency phase and pseudorange GPS+Galileo observations are also given. Additionally, an approach was also made to use the Precise Point Positioning technique to such application. In the experiment were used the observations obtained from high-rate (20 Hz) geodetic receivers. The dynamic displacements were simulated using specially constructed device moving GNSS antenna with dedicated amplitude and frequency. The obtained results indicate on possibility of detection of dynamic displacements of the GNSS antenna even at the level of few millimetres using both relative and Precise Point Positioning techniques after suitable signals processing.
NASA Astrophysics Data System (ADS)
Bastianini, Filippo; Matta, Fabio; Galati, Nestore; Nanni, Antonio
2005-05-01
Strain and temperature sensing obtained through frequency shift evaluation of Brillouin scattered light is a technology that seems extremely promising for Structural Health Monitoring (SHM). Due to the intrinsic distributed sensing capability, Brillouin can measure the deformation of any individual segment of huge lengths of inexpensive single-mode fiber. In addition, Brillouin retains other typical advantages of Fiber Optic Sensors (FOS), such as harsh environment durability and interference rejection. Despite these advantages, the diffusion of Brillouin for SHM is constrained by different factors, such as the high equipment cost, the commercial unavailability of specific SHM oriented fiber products and even some prejudices on the required sensitivity performances. In the present work, a complete SHM pilot application was developed, installed and successfully operated during a diagnostic load test on the High Performance Steel (HPS) bridge A6358 located at the Lake of the Ozarks (Miller County, MO, USA). Four out of five girders were extensively instrumented with a "smart" Glass Fiber Reinforced Polymer (GFRP) tape having embedded fibers for strain sensing and thermal compensation. Data collected during a diagnostic load test were elaborated through a specific post-processing software, and the strain profiles retrieved were compared to traditional strain gauges and theoretical results based on the AASHTO LRFD Bridge Design Specifications for structural assessment purposes. The excellent results obtained confirm the effectiveness of Brillouin SHM systems for the monitoring of real applications.
Origin of acoustic emission produced during single point machining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiple, C.R,.; Carpenter, S.H.; Armentrout, D.L.
1991-01-01
Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emissionmore » produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent. 21 refs., 19 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Liu, Ying; Stein, Ori; Campbell, John H.; Jiang, Lijia; Petta, Nicole; Lu, Yongfeng
2017-08-01
Two-photon polymerization (2PP), a 3D nano to microscale additive manufacturing process, is being used for the first time to fabricate small custom experimental packages ("targets") to support laser-driven high-energy-density (HED) physics research. Of particular interest is the use of 2PP to deterministically print low-density, low atomic-number (CHO) polymer matrices ("foams") at millimeter scale with sub-micrometer resolution. Deformation during development and drying of the foam structures remains a challenge when using certain commercial photo-resins; here we compare use of acrylic resins IP-S and IP-Dip. The mechanical strength of polymeric beam and foam structures is examined particularly the degree of deformation that occurs during the development and drying processes. The magnitude of the shrinkage in the two resins in quantified by printing sample structures and by use of FEA to simulate the deformation. Capillary drying forces are shown to be small and likely below the elastic limit of the core foam structure. In contrast the substantial shrinkage in IP-Dip ( 5-10%) cause large shear stresses and associated plastic deformation particularly near constrained boundaries such as the substrate and locations with sharp density variation. The inherent weakness of stitching boundaries is also evident and in certain cases can lead to delamination. Use of IP-S shows marked reduction in deformation with a minor loss of print resolution
Geodetic monitoring of tectonic deformation: Toward a strategy
NASA Technical Reports Server (NTRS)
1981-01-01
Issues of interest and importance to society and science are presented. The problems considered are of national concern; their solutions may contribute to a better understanding of tectonic deformation and earthquake hazards. The need for additional field data, the role of geodetic measurements, the importance of both ground and space techniques, and the need for advanced instrumentation development are discussed.
Monitoring Volcano Deformation in the Northernmost Andes with ALOS InSAR Time-Series
NASA Astrophysics Data System (ADS)
Morales Rivera, A. M.; Amelung, F.
2014-12-01
Satellite-based Interferometric Synthetic Aperture Radar (InSAR) is well known to be used as a volcano monitoring tool, providing the opportunity to conduct local and regional surveys to detect and measure volcanic deformation. The signals detected by InSAR on volcanoes can be related to various phenomena, such as volume changes in magmatic reservoirs, compaction of recent deposits, changes in hydrothermal activity, and flank instability. The InSAR time-series method has well documented examples of these phenomena, including precursory inflation of magma reservoirs months prior to volcanic eruptions, proving its potential for early warning systems. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA), which acquired a global L-band data set of nearly 20 acquisitions during 2007-2011, to make an InSAR time-series analysis using the Small Baseline method (SBAS). Our analysis covers all of the volcanoes in Colombia, Ecuador, and Peru that are cataloged by the Global Volcanism Program. We present results showing time-dependent ground deformation on an near the volcanoes, and present kinematic models to constrain the characteristics of the magmatic sources for the cases in which the deformation is likely related to changes in magma reservoir pressurization.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2010-01-01
The Ko displacement theory is formulated for a cantilever tubular wing spar under bending, torsion, and combined bending and torsion loading. The Ko displacement equations are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. The bending and distortion strain data can then be input to the displacement equations to calculate slopes, deflections, and cross-sectional twist angles of the wing spar at the strain-sensing stations for generating the deformed shapes of flexible aircraft wing spars. The displacement equations have been successfully validated for accuracy by finite-element analysis. The Ko displacement theory that has been formulated could also be applied to calculate the deformed shape of simple and tapered beams, plates, and tapered cantilever wing boxes. The Ko displacement theory and associated strain-sensing system (such as fiber optic sensors) form a powerful tool for in-flight deformation monitoring of flexible wings and tails, such as those often employed on unmanned aerial vehicles. Ultimately, the calculated displacement data can be visually displayed in real time to the ground-based pilot for monitoring the deformed shape of unmanned aerial vehicles during flight.
NASA Astrophysics Data System (ADS)
Kromer, Ryan A.; Abellán, Antonio; Hutchinson, D. Jean; Lato, Matt; Chanut, Marie-Aurelie; Dubois, Laurent; Jaboyedoff, Michel
2017-05-01
We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christien, F., E-mail: frederic.christien@univ-nantes.fr; Le Gall, R.; Telling, M. T. F.
2015-05-15
A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature rampingmore » as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.« less
Super-resolution biomolecular crystallography with low-resolution data.
Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T
2010-04-22
X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools.
SVAS3: Strain Vector Aided Sensorization of Soft Structures
Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya
2014-01-01
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332
Haeussler, Peter J.; Bruhn, Ronald L.; Pratt, Thomas L.
2000-01-01
The Cook Inlet basin is a northeast-trending forearc basin above the Aleutian subduction zone in southern Alaska. Folds in Cook Inlet are complex, discontinuous structures with variable shape and vergence that probably developed by right-transpressional deformation on oblique-slip faults extending downward into Mesozoic basement beneath the Tertiary basin. The most recent episode of deformation may have began as early as late Miocene time, but most of the deformation occurred after deposition of much of the Pliocene Sterling Formation. Deformation continued into Quaternary time, and many structures are probably still active. One structure, the Castle Mountain fault, has Holocene fault scarps, an adjacent anticline with flower structure, and historical seismicity. If other structures in Cook Inlet are active, blind faults coring fault-propagation folds may generate Mw 6–7+ earthquakes. Dextral transpression of Cook Inlet appears to have been driven by coupling between the North American and Pacific plates along the Alaska-Aleutian subduction zone, and by lateral escape of the forearc to the southwest, due to collision and indentation of the Yakutat terrane 300 km to the east of the basin.
Atmospheric Phase Delay Correction of D-Insar Based on SENTINEL-1A
NASA Astrophysics Data System (ADS)
Li, X.; Huang, G.; Kong, Q.
2018-04-01
In this paper, we used the Generic Atmospheric Correction Online Service for InSAR (GACOS) tropospheric delay maps to correct the atmospheric phase delay of the differential interferometric synthetic aperture radar (D-InSAR) monitoring, and we improved the accuracy of subsidence monitoring using D-InSAR technology. Atmospheric phase delay, as one of the most important errors that limit the monitoring accuracy of InSAR, would lead to the masking of true phase in subsidence monitoring. For the problem, this paper used the Sentinel-1A images and the tropospheric delay maps got from GACOS to monitor the subsidence of the Yellow River Delta in Shandong Province. The conventional D-InSAR processing was performed using the GAMMA software. The MATLAB codes were used to correct the atmospheric delay of the D-InSAR results. The results before and after the atmospheric phase delay correction were verified and analyzed in the main subsidence area. The experimental results show that atmospheric phase influences the deformation results to a certain extent. After the correction, the measurement error of vertical deformation is reduced by about 18 mm, which proves that the removal of atmospheric effects can improve the accuracy of the D-InSAR monitoring.
NASA Astrophysics Data System (ADS)
Musabirov, I. I.; Safarov, I. M.; Sharipov, I. Z.; Nagimov, M. I.; Koledov, V. V.; Khovailo, V. V.; Mulyukov, R. R.
2017-08-01
The plastic behavior during deformation by upsetting and its effect on the microstructure in the polycrystalline Ni2.19Fe0.04Mn0.77Ga alloy are studied. The temperatures of martensitic and magnetic phase transformations were determined by the method for analyzing the temperature dependence of the specific magnetization as M F = 320 K, A S = 360 K, and T C = 380 K. Using differential scanning calorimetry, it is shown that the phase transition from the ordered phase L21 to the disordered phase B2 is observed in the alloy during sample heating in the temperature range of 930-1070 K. The melting temperature is 1426 K. An analysis of the load curves constructed for sample deposition at temperatures of 773, 873, and 973 K shows that the behavior of the stress-strain curve at a temperature of 773 K is inherent to cold deformation. The behavior of the dependences for 873 and 973 K is typical of hot deformation. After deforming the alloy, its microstructure is studied using backscattered scanning electron microscopy. Plastic deformation of the alloy at study temperatures results in grain structure fragmentation in the localized deformation region. At all temperatures, a recrystallized grain structure is observed. It is found that the structure is heterogeneously recrystallized after upsetting at 973 K due to the process intensity at such a high temperature. The alloy microstructure after plastic deformation at a temperature of 873 K is most homogeneous in terms of the average grain size.
NASA Astrophysics Data System (ADS)
Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.
2014-05-01
In this paper, we describe characteristics of distributed strain sensing based on a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme with a long-gauge Fiber Bragg Grating (FBG), which is attractive to dynamic structural deformation monitoring such as a helicopter blade and an airplane wing. The DTR3 interrogator using the longgauge FBG has capability of detecting distributed strain with 50 cm spatial resolution in 100 Hz sampling rate. We evaluated distributed strain sensing characteristics of the long-gauge FBG attached on a 5.5 m helicopter blade model in static tests and free vibration dynamic tests.
Brief communication: Landslide motion from cross correlation of UAV-derived morphological attributes
NASA Astrophysics Data System (ADS)
Peppa, Maria V.; Mills, Jon P.; Moore, Phil; Miller, Pauline E.; Chambers, Jonathan E.
2017-12-01
Unmanned aerial vehicles (UAVs) can provide observations of high spatio-temporal resolution to enable operational landslide monitoring. In this research, the construction of digital elevation models (DEMs) and orthomosaics from UAV imagery is achieved using structure-from-motion (SfM) photogrammetric procedures. The study examines the additional value that the morphological attribute of openness
, amongst others, can provide to surface deformation analysis. Image-cross-correlation functions and DEM subtraction techniques are applied to the SfM outputs. Through the proposed integrated analysis, the automated quantification of a landslide's motion over time is demonstrated, with implications for the wider interpretation of landslide kinematics via UAV surveys.
Universal mechanism of thermo-mechanical deformation in metallic glasses
Dmowski, W.; Tong, Y.; Iwashita, T.; ...
2015-02-11
Here we investigated the atomistic structure of metallic glasses subjected to thermo-mechanical creep deformation using high energy x-ray diffraction and molecular dynamics simulation. The experiments were performed in-situ, at high temperatures as a time dependent deformation in the elastic regime, and ex-situ on samples quenched under stress. We show that all the anisotropic structure functions of the samples undergone thermo-mechanical creep can be scaled into a single curve, regardless of the magnitude of anelastic strain, stress level and the sign of the stress, demonstrating universal behavior and pointing to unique atomistic unit of anelastic deformation. The structural changes due tomore » creep are strongly localized within the second nearest neighbors, involving only a small group of atoms.« less
NASA Astrophysics Data System (ADS)
Bonforte, Alessandro; Hernandez, Douglas Antonio; Gutiérrez, Eduardo; Handal, Louis; Polío, Cecilia; Rapisarda, Salvatore; Scarlato, Piergiorgio
2016-08-01
On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of San Miguel, erupted suddenly with explosive force, forming a column more than 9 km high and projecting ballistic projectiles as far as 3 km away. Pyroclastic density currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force, made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales, was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multiparametric mobile network comprising seismic, geodetic and geochemical sensors (designed to cover all the volcano flanks from the lowest to the highest possible altitudes) and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were colocated into multiparametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.
NASA Astrophysics Data System (ADS)
Bonforte, A.; Hernandez, D.; Gutiérrez, E.; Handal, L.; Polío, C.; Rapisarda, S.; Scarlato, P.
2015-10-01
On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of S. Miguel, erupted suddenly with explosive force, forming a more than 9 km high column and projecting ballistic projectiles as far as 3 km away. Pyroclastic Density Currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multi-parametric mobile network comprising seismic, geodetic and geochemical sensors, designed to cover all the volcano flanks from the lowest to the highest possible altitudes, and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were co-located into multi-parametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.
NASA Technical Reports Server (NTRS)
Clark, T. A.; Thomsen, P.
1988-01-01
A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.
Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project
Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; ...
2014-12-31
A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO 2 and will be used for: (1) tracking the spatial extent of the free phase CO 2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO 2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated formore » a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO 2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO 2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less
Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.
A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO 2 and will be used for: (1) tracking the spatial extent of the free phase CO 2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO 2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated formore » a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO 2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO 2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less
Application of Insar Technology in Geographical Situation Monitoring
NASA Astrophysics Data System (ADS)
Wang, Y.; Tian, Q.
2018-04-01
In this paper, based on the geographical situation monitoring project of the earthquake zone of ludian county, zhaotong city, yunnan province,using the data of the radarsat-2 satellite (time frame is 20140304-20150416), InSAR technology is used to monitor the topography of the earthquake zone(about 420 square kilometers of monitoring area). Through the analysis of topographic deformation results, the scope of the terrain change is obtained, and the application and problems of InSAR technique in topographic geomorphological monitoring are discussed.
NASA Astrophysics Data System (ADS)
García-Pérez, Tiaren; Marquardt, Carlos; Yáñez, Gonzalo; Cembrano, José; Gomila, Rodrigo; Santibañez, Isabel; Maringue, José
2018-06-01
The comprehensive study of intramountain basins located in the Coastal Cordillera of the continental emergent Andean forearc in Northern Chile, enables the better understanding of the nature and evolution of the upper crustal deformation during the Neogene and Quaternary. A case study is the extensive extensional half-graben Alto Hospicio basin. The basin is cut by the Coastal Cliff, which exposes the deformed Neogene basin fill. Also exposed are several structural systems, some of which affect Quaternary surfaces. The results of the integrated geophysical surveys (Electromagnetic Transient and Gravity) allow us to fully constrain the geometry of the Alto Hospicio basin and the lithological relationship between the subsurface geological units. The structural geology analysis assesses the deformation regimes affecting the faults present in the basin and surrounding area. Altogether evidence a change in the deformation regime from an EW extensional deformation during the Miocene-Pliocene to a NS compression in the Quaternary as is presented in this study. We suggest this deformation change is related to a small change in the convergence vector orientation during the Pliocene.
Gauged supergravities from M-theory reductions
NASA Astrophysics Data System (ADS)
Katmadas, Stefanos; Tomasiello, Alessandro
2018-04-01
In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.
Pedrazzoli, D; Dorigato, A; Pegoretti, A
2012-05-01
Various amounts of carbon black (CB) and carbon nanofibres (CNF) were dispersed in an epoxy resin to prepare nanocomposites whose mechanical behaviour, under ramp and creep conditions, was monitored by electrical measurements. The electrical resistivity of the epoxy resin was dramatically reduced by both nanofillers after the percolation threshold (1 wt% for CB and 0.5 wt% for CNF), reaching values in the range of 10(3)-10(4) omega . cm for filler loadings higher than 2 wt%. Due to the synergistic effects between the nanofillers, an epoxy system containing a total nanofiller amount of 2 wt%, with a relative CB/CNF ratio of 90/10 was selected for the specific applications. A direct correlation between the tensile strain and the increase of the electrical resistance was observed over the whole experimental range, and also the final failure of the samples was clearly detected. Creep tests confirmed the possibility to monitor the various deformational stages under constant loads, with a strong dependency from the temperature and the applied stress. The obtained results are encouraging for a possible application of nanomodified epoxy resin as a matrix for the preparation of structural composites with sensing (i.e., damage-monitoring) capabilities.
Monitoring elbow isometric contraction by novel wearable fabric sensing device
NASA Astrophysics Data System (ADS)
Wang, Xi; Tao, Xiaoming; So, Raymond C. H.; Shu, Lin; Yang, Bao; Li, Ying
2016-12-01
Fabric-based wearable technology is highly desirable in sports, as it is light, flexible, soft, and comfortable with little interference to normal sport activities. It can provide accurate information on the in situ deformation of muscles in a continuous and wireless manner. During elbow flexion in isometric contraction, upper arm circumference increases with the contraction of elbow flexors, and it is possible to monitor the muscles’ contraction by limb circumferential strains. This paper presents a new wireless wearable anthropometric monitoring device made from fabric strain sensors for the human upper arm. The materials, structural design and calibration of the device are presented. Using an isokinetic testing system (Biodex3®) and the fabric monitoring device simultaneously, in situ measurements were carried out on elbow flexors in isometric contraction mode with ten subjects for a set of positions. Correlations between the measured values of limb circumferential strain and normalized torque were examined, and a linear relationship was found during isometric contraction. The average correlation coefficient between them is 0.938 ± 0.050. This wearable anthropometric device thus provides a useful index, the limb circumferential strain, for upper arm muscle contraction in isometric mode.
Flexible and wearable electronic silk fabrics for human physiological monitoring
NASA Astrophysics Data System (ADS)
Mao, Cuiping; Zhang, Huihui; Lu, Zhisong
2017-09-01
The development of textile-based devices for human physiological monitoring has attracted tremendous interest in recent years. However, flexible physiological sensing elements based on silk fabrics have not been realized. In this paper, ZnO nanorod arrays are grown in situ on reduced graphene oxide-coated silk fabrics via a facile electro-deposition method for the fabrication of silk-fabric-based mechanical sensing devices. The data show that well-aligned ZnO nanorods with hexagonal wurtzite crystalline structures are synthesized on the conductive silk fabric surface. After magnetron sputtering of gold electrodes, silk-fabric-based devices are produced and applied to detect periodic bending and twisting. Based on the electric signals, the deformation and release processes can be easily differentiated. Human arterial pulse and respiration can also be real-time monitored to calculate the pulse rate and respiration frequency, respectively. Throat vibrations during coughing and singing are detected to demonstrate the voice recognition capability. This work may not only help develop silk-fabric-based mechanical sensing elements for potential applications in clinical diagnosis, daily healthcare monitoring and voice recognition, but also provide a versatile method for fabricating textile-based flexible electronic devices.
A Deformable Generic 3D Model of Haptoral Anchor of Monogenean
Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan
2013-01-01
In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903
A deformable generic 3D model of haptoral anchor of Monogenean.
Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan
2013-01-01
In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.
Evaluation Aspects of Building Structures Reconstructed After a Failure or Catastrophe
NASA Astrophysics Data System (ADS)
Krentowski, Janusz R.; Knyziak, Piotr
2017-10-01
The article presents the characteristics of several steel structures, among others modernized industrial dye house, school sports hall, truck repair workshop, that have been rebuilt after a disaster or a catastrophe. The structures were analyzed in detail, and the evaluation and reconstruction processes were described. The emergencies that occurred during exploitation of the buildings were the result of multiple mistakes: incorrectly defined intervals between inspections, errors during periodic inspections, incorrect repair work recommendations. The concepts of reinforcement work implemented by the authors, enabling the long-term future failure-free operation of the objects, were presented. Recommendations for monitoring of the facilities, applied after reinforcement or reconstruction, have been formulated. The methodology for the implementation of specialized investigations, such as geodetic, optical, geological, chemical strength tests, both destructive and non-destructive, has been defined. The need to determine the limit values of deformations, deflections, damage or other faults of structural elements and the entire rebuilt facilities, as well as defining conditions for objects’ withdrawal from operation in subsequent exceptional situations was indicated.
Application of Quaternions for Mesh Deformation
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2002-01-01
A new three-dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.
NASA Astrophysics Data System (ADS)
Meng, Fanchao; Chen, Cheng; Hu, Dianyin; Song, Jun
2017-12-01
Combining atomistic simulations and continuum modeling, a comprehensive study of the out-of-plane compressive deformation behaviors of equilateral three-dimensional (3D) graphene honeycombs was performed. It was demonstrated that under out-of-plane compression, the honeycomb exhibits two critical deformation events, i.e., elastic mechanical instability (including elastic buckling and structural transformation) and inelastic structural collapse. The above events were shown to be strongly dependent on the honeycomb cell size and affected by the local atomic bonding at the cell junction. By treating the 3D graphene honeycomb as a continuum cellular solid, and accounting for the structural heterogeneity and constraint at the junction, a set of analytical models were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events. The present study elucidates key structure-property relationships of 3D graphene honeycombs under out-of-plane compression, and provides a comprehensive theoretical framework to predictively analyze their deformation responses, and more generally, offers critical new knowledge for the rational bottom-up design of 3D networks of two-dimensional nanomaterials.
NASA Astrophysics Data System (ADS)
Wu, Cheng-Da; Tsai, Hsing-Wei
2018-06-01
The effect of temperature on the structural evolution of nanocrystalline (NC) and single-crystalline (SC) Au nanowires (NWs) under torsional deformation is studied using molecular dynamics simulations based on the many-body embedded-atom potential. The effect is investigated using common neighbor analysis and discussed in terms of shear strain distribution and atomic flow field. The simulation results show that deformation for NC NWs is mainly driven by the nucleation and propagation of dislocations and the gliding of grain boundaries (GBs) and that for SC NWs is mainly driven by dislocations and the formation of disordered structures. Dislocations for NC and SC NWs easily nucleate at GBs and free surfaces, respectively. For NC NWs, torsional buckling occurs easily at GBs with large gliding. SC NWs have a more uniform and larger elastic deformation under torsion compared to that for NC NWs due to the former's lack of grains. SC NWs have a long period of elastic deformation transforming into plastic deformation. Increasing temperature facilitates stress transmission throughout NWs.
NASA Astrophysics Data System (ADS)
Tanaka, H.; Shiomi, Y.; Ma, K.-F.
2017-11-01
To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.
Davatzes, N.C.; Aydin, A.
2005-01-01
We examined the distribution of fault rock and damage zone structures in sandstone and shale along the Moab fault, a basin-scale normal fault with nearly 1 km (0.62 mi) of throw, in southeast Utah. We find that fault rock and damage zone structures vary along strike and dip. Variations are related to changes in fault geometry, faulted slip, lithology, and the mechanism of faulting. In sandstone, we differentiated two structural assemblages: (1) deformation bands, zones of deformation bands, and polished slip surfaces and (2) joints, sheared joints, and breccia. These structural assemblages result from the deformation band-based mechanism and the joint-based mechanism, respectively. Along the Moab fault, where both types of structures are present, joint-based deformation is always younger. Where shale is juxtaposed against the fault, a third faulting mechanism, smearing of shale by ductile deformation and associated shale fault rocks, occurs. Based on the knowledge of these three mechanisms, we projected the distribution of their structural products in three dimensions along idealized fault surfaces and evaluated the potential effect on fluid and hydrocarbon flow. We contend that these mechanisms could be used to facilitate predictions of fault and damage zone structures and their permeability from limited data sets. Copyright ?? 2005 by The American Association of Petroleum Geologists.