Sample records for structural determinants responsible

  1. A structural design decomposition method utilizing substructuring

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1994-01-01

    A new method of design decomposition for structural analysis and optimization is described. For this method, the structure is divided into substructures where each substructure has its structural response described by a structural-response subproblem, and its structural sizing determined from a structural-sizing subproblem. The structural responses of substructures that have rigid body modes when separated from the remainder of the structure are further decomposed into displacements that have no rigid body components, and a set of rigid body modes. The structural-response subproblems are linked together through forces determined within a structural-sizing coordination subproblem which also determines the magnitude of any rigid body displacements. Structural-sizing subproblems having constraints local to the substructures are linked together through penalty terms that are determined by a structural-sizing coordination subproblem. All the substructure structural-response subproblems are totally decoupled from each other, as are all the substructure structural-sizing subproblems, thus there is significant potential for use of parallel solution methods for these subproblems.

  2. Detecting Structural Failures Via Acoustic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Joshi, Sanjay S.

    1995-01-01

    Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.

  3. Mobility power flow analysis of an L-shaped plate structure subjected to distributed loading

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.; Cimmerman, B.

    1990-01-01

    An analytical investigation based in the Mobility Power Flow (MPF) method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to distributed excitation. The principle of the MPF method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the MPF. In the considered coupled plate structure, MPF expressions are derived for distributed mechanical excitation which is independent of the structure response. However using a similar approach with some modifications excitation by an acoustic plane wave can be considered. Some modifications are required to deal with the latter case are necessary because the forces (acoustic pressure) acting on the structure are dependent on the response of the structure due to the presence of the scattered pressure.

  4. Structural-acoustic coupling in aircraft fuselage structures

    NASA Technical Reports Server (NTRS)

    Mathur, Gopal P.; Simpson, Myles A.

    1992-01-01

    Results of analytical and experimental investigations of structural-acoustic coupling phenomenon in an aircraft fuselage are described. The structural and acoustic cavity modes of DC-9 fuselage were determined using a finite element approach to vibration analysis. Predicted structural and acoustic dispersion curves were used to determine possible occurrences of structural-acoustic coupling for the fuselage. An aft section of DC-9 aircraft fuselage, housed in an anechoic chamber, was used for experimental investigations. The test fuselage was excited by a shaker and vibration response and interior sound field were measured using accelerometer and microphone arrays. The wavenumber-frequency structural and cavity response maps were generated from the measured data. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, fuselage response and structural-acoustic coupling.

  5. Simulating the Structural Response of a Preloaded Bolted Joint

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.

  6. Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1989-01-01

    An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.

  7. Integrated smart panel and support structure response

    NASA Astrophysics Data System (ADS)

    DeGiorgi, Virginia G.

    1998-06-01

    The performance of smart structures is a complex interaction between active and passive components. Active components, even when non-activated, can have an impact on structural performance and, conversely, structural characteristics of passive components can have a measurable impact on active component performance. The present work is an evaluation of the structural characteristics of an active panel designed for acoustic quieting. The support structure is included in the panel design as evaluated. Finite element methods are used to determine the active panel-support structure response. Two conditions are considered; a hollow unfilled support structure and the same structure filled with a polymer compound. Finite element models were defined so that stiffness values corresponding to the center of individual pistons could be determined. Superelement techniques were used to define mass and stiffness values representative of the combined active and support structure at the center of each piston. Results of interest obtained from the analysis include mode shapes, natural frequencies, and equivalent spring stuffiness for use in structural response models to represent the support structure. The effects on plate motion on piston performance cannot be obtained from this analysis, however mass and stiffness matrices for use in an integrated system model to determine piston head velocities can be obtained from this work.

  8. Modal identification of structures from the responses and random decrement signatures

    NASA Technical Reports Server (NTRS)

    Brahim, S. R.; Goglia, G. L.

    1977-01-01

    The theory and application of a method which utilizes the free response of a structure to determine its vibration parameters is described. The time-domain free response is digitized and used in a digital computer program to determine the number of modes excited, the natural frequencies, the damping factors, and the modal vectors. The technique is applied to a complex generalized payload model previously tested using sine sweep method and analyzed by NASTRAN. Ten modes of the payload model are identified. In case free decay response is not readily available, an algorithm is developed to obtain the free responses of a structure from its random responses, due to some unknown or known random input or inputs, using the random decrement technique without changing time correlation between signals. The algorithm is tested using random responses from a generalized payload model and from the space shuttle model.

  9. Fluid density and concentration measurement using noninvasive in situ ultrasonic resonance interferometry

    DOEpatents

    Pope, Noah G.; Veirs, Douglas K.; Claytor, Thomas N.

    1994-01-01

    The specific gravity or solute concentration of a process fluid solution located in a selected structure is determined by obtaining a resonance response spectrum of the fluid/structure over a range of frequencies that are outside the response of the structure itself. A fast fourier transform (FFT) of the resonance response spectrum is performed to form a set of FFT values. A peak value for the FFT values is determined, e.g., by curve fitting, to output a process parameter that is functionally related to the specific gravity and solute concentration of the process fluid solution. Calibration curves are required to correlate the peak FFT value over the range of expected specific gravities and solute concentrations in the selected structure.

  10. Fluid density and concentration measurement using noninvasive in situ ultrasonic resonance interferometry

    DOEpatents

    Pope, N.G.; Veirs, D.K.; Claytor, T.N.

    1994-10-25

    The specific gravity or solute concentration of a process fluid solution located in a selected structure is determined by obtaining a resonance response spectrum of the fluid/structure over a range of frequencies that are outside the response of the structure itself. A fast Fourier transform (FFT) of the resonance response spectrum is performed to form a set of FFT values. A peak value for the FFT values is determined, e.g., by curve fitting, to output a process parameter that is functionally related to the specific gravity and solute concentration of the process fluid solution. Calibration curves are required to correlate the peak FFT value over the range of expected specific gravities and solute concentrations in the selected structure. 7 figs.

  11. Vibration-based monitoring to detect mass changes in satellites

    NASA Astrophysics Data System (ADS)

    Maji, Arup; Vernon, Breck

    2012-04-01

    Vibration-based structural health monitoring could be a useful form of determining the health and safety of space structures. A particular concern is the possibility of a foreign object that attaches itself to a satellite in orbit for adverse reasons. A frequency response analysis was used to determine the changes in mass and moment of inertia of the space structure based on a change in the natural frequencies of the structure or components of the structure. Feasibility studies were first conducted on a 7 in x 19 in aluminum plate with various boundary conditions. Effect of environmental conditions on the frequency response was determined. The baseline frequency response for the plate was then used as the basis for detection of the addition, and possibly the location, of added masses on the plate. The test results were compared to both analytical solutions and finite element models created in SAP2000. The testing was subsequently expanded to aluminum alloy satellite panels and a mock satellite with dummy payloads. Statistical analysis was conducted on variations of frequency due to added mass and thermal changes to determine the threshold of added mass that can be detected.

  12. Analysis of space vehicle structures using the transfer-function concept

    NASA Technical Reports Server (NTRS)

    Heer, E.; Trubert, M. R.

    1969-01-01

    Analysis of large complex systems is accomplished by dividing it into suitable subsystems and determining the individual dynamical and vibrational responses. Frequency transfer functions then determine the vibrational response of the whole system.

  13. In search of a consensus model of the resting state of a voltage-sensing domain.

    PubMed

    Vargas, Ernesto; Bezanilla, Francisco; Roux, Benoît

    2011-12-08

    Voltage-sensing domains (VSDs) undergo conformational changes in response to the membrane potential and are the critical structural modules responsible for the activation of voltage-gated channels. Structural information about the key conformational states underlying voltage activation is currently incomplete. Through the use of experimentally determined residue-residue interactions as structural constraints, we determine and refine a model of the Kv channel VSD in the resting conformation. The resulting structural model is in broad agreement with results that originate from various labs using different techniques, indicating the emergence of a consensus for the structural basis of voltage sensing. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Predicting ecosystem vulnerability to biodiversity loss from community composition.

    PubMed

    Heilpern, Sebastian A; Weeks, Brian C; Naeem, Shahid

    2018-05-01

    Ecosystems vary widely in their responses to biodiversity change, with some losing function dramatically while others are highly resilient. However, generalizations about how species- and community-level properties determine these divergent ecosystem responses have been elusive because potential sources of variation (e.g., trophic structure, compensation, functional trait diversity) are rarely evaluated in conjunction. Ecosystem vulnerability, or the likely change in ecosystem function following biodiversity change, is influenced by two types of species traits: response traits that determine species' individual sensitivities to environmental change, and effect traits that determine a species' contribution to ecosystem function. Here we extend the response-effect trait framework to quantify ecosystem vulnerability and show how trophic structure, within-trait variance, and among-trait covariance affect ecosystem vulnerability by linking extinction order and functional compensation. Using in silico trait-based simulations we found that ecosystem vulnerability increased when response and effect traits positively covaried, but this increase was attenuated by decreasing trait variance. Contrary to expectations, in these communities, both functional diversity and trophic structure increased ecosystem vulnerability. In contrast, ecosystem functions were resilient when response and effect traits covaried negatively, and variance had a positive effect on resiliency. Our results suggest that although biodiversity loss is often associated with decreases in ecosystem functions, such effects are conditional on trophic structure, and the variation within and covariation among response and effect traits. Taken together, these three factors can predict when ecosystems are poised to lose or gain function with ongoing biodiversity change. © 2018 by the Ecological Society of America.

  15. Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches†.

    PubMed

    Presas, Alexandre; Valentin, David; Egusquiza, Eduard; Valero, Carme; Egusquiza, Mònica; Bossio, Matias

    2017-03-22

    To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF) for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs), which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force) has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the structure vibrating in air comparing the FRF experimentally obtained with a calibrated exciter (impact Hammer) and the FRF obtained with the described method. Finally, the same methodology has been applied for the structure submerged and close to a rigid wall, where it is extremely important to not modify the boundary conditions for an accurate determination of the FRF. As experimentally shown in this paper, in such cases, the use of PZTs combined with the proposed methodology gives much more accurate estimations of the FRF than other calibrated exciters typically used for the same purpose. Therefore, the validated methodology proposed in this paper can be used to obtain the FRF of a generic submerged and confined structure, without a previous calibration of the PZT.

  16. A numerical comparison with an exact solution for the transient response of a cylinder immersed in a fluid. [computer simulated underwater tests to determine transient response of a submerged cylindrical shell

    NASA Technical Reports Server (NTRS)

    Giltrud, M. E.; Lucas, D. S.

    1979-01-01

    The transient response of an elastic cylindrical shell immersed in an acoustic media that is engulfed by a plane wave is determined numerically. The method applies to the USA-STAGS code which utilizes the finite element method for the structural analysis and the doubly asymptotic approximation for the fluid-structure interaction. The calculations are compared to an exact analysis for two separate loading cases: a plane step wave and an exponentially decaying plane wave.

  17. Modelling and Simulation of the Dynamics of the Antigen-Specific T Cell Response Using Variable Structure Control Theory.

    PubMed

    Anelone, Anet J N; Spurgeon, Sarah K

    2016-01-01

    Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC) law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV) infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design.

  18. Lumped mass model of a 1D metastructure for vibration suppression with no additional mass

    NASA Astrophysics Data System (ADS)

    Reichl, Katherine K.; Inman, Daniel J.

    2017-09-01

    The article examines the effectiveness of metastructures for vibration suppression from a weight standpoint. Metastructures, a metamaterial inspired concept, are structures with distributed vibration absorbers. In automotive and aerospace industries, it is critical to have low levels of vibrations while also using lightweight materials. Previous work has shown that metastructures are effective at mitigating vibrations, but do not consider the effects of mass. This work takes mass into consideration by comparing a structure with vibration absorbers to a structure of equal mass with no absorbers. These structures are modeled as one-dimensional lumped mass models, chosen for simplicity. Results compare both the steady-state and the transient responses. As a quantitative performance measure, the H2 norm, which is related to the area under the frequency response function, is calculated and compared for both the metastructure and the baseline structure. These results show that it is possible to obtain a favorable vibration response without adding additional mass to the structure. Additionally, the performance measure is utilized to optimize the geometry of the structure, determine the optimal ratio of mass in the absorber to mass of the host structure, and determine the frequencies of the absorbers. The dynamic response of this model is verified using a finite element analysis.

  19. Nonlinear random response prediction using MSC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Robinson, J. H.; Chiang, C. K.; Rizzi, S. A.

    1993-01-01

    An equivalent linearization technique was incorporated into MSC/NASTRAN to predict the nonlinear random response of structures by means of Direct Matrix Abstract Programming (DMAP) modifications and inclusion of the nonlinear differential stiffness module inside the iteration loop. An iterative process was used to determine the rms displacements. Numerical results obtained for validation on simple plates and beams are in good agreement with existing solutions in both the linear and linearized regions. The versatility of the implementation will enable the analyst to determine the nonlinear random responses for complex structures under combined loads. The thermo-acoustic response of a hexagonal thermal protection system panel is used to highlight some of the features of the program.

  20. Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.

    2001-01-01

    Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.

  1. Response of basic structural elements and B-52 structural components to simulated nuclear overpressure. Volume II-program data (basic structural elements). Final report, 1 June 1977-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syring, R.P.; Grubb, R.L.

    1979-09-30

    This document reports on the following: (1) experimental determination of the response of 16 basic structural elements and 7 B-52 components to simulated nuclear overpressure environments (utilizing Sandia Corporation's Thunderpipe Shock Tube), (2) analysis of these test specimens utilizing the NOVA-2 computer program, and (3) correlation of test and analysis results.

  2. Inelastic behavior of structural components

    NASA Technical Reports Server (NTRS)

    Hussain, N.; Khozeimeh, K.; Toridis, T. G.

    1980-01-01

    A more accurate procedure was developed for the determination of the inelastic behavior of structural components. The actual stress-strain curve for the mathematical of the structure was utilized to generate the force-deformation relationships for the structural elements, rather than using simplified models such as elastic-plastic, bilinear and trilinear approximations. relationships were generated for beam elements with various types of cross sections. In the generational of these curves, stress or load reversals, kinematic hardening and hysteretic behavior were taken into account. Intersections between loading and unloading branches were determined through an iterative process. Using the inelastic properties obtained, the plastic static response of some simple structural systems composed of beam elements was computed. Results were compared with known solutions, indicating a considerable improvement over response predictions obtained by means of simplified approximations used in previous investigations.

  3. Micelle Morphology and Mechanical Response of Triblock Gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitz, Michelle E.; Burghardt, Wesley R.; Shull, Kenneth R.

    2010-01-12

    The effect of polymer concentration on mechanical response and micelle morphology of ABA and AB copolymers in B-selective solvents has been systematically studied. Micelle morphology was determined using a combination of small-angle X-ray scattering, shear, and birefringence while mechanical response at low and high strains was determined using indentation techniques. Self-consistent field theory calculations were used to determine micelle volume fraction profiles and to construct an equilibrium phase map. The transition from spherical to cylindrical micelles increases the triblock gel modulus and energy dissipation. Combining knowledge of gel relaxation time, which determines the rate at which the gel can equilibratemore » its micelle structure, with the equilibrium phase map allows estimation of the experimental temperatures and time scales over which kinetic trapping will arrest micelle structure evolution. Kinetic trapping enables cylindrical morphologies to be obtained at significantly lower polymer fractions than is possible in equilibrated systems.« less

  4. Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches †

    PubMed Central

    Presas, Alexandre; Valentin, David; Egusquiza, Eduard; Valero, Carme; Egusquiza, Mònica; Bossio, Matias

    2017-01-01

    To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF) for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs), which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force) has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the structure vibrating in air comparing the FRF experimentally obtained with a calibrated exciter (impact Hammer) and the FRF obtained with the described method. Finally, the same methodology has been applied for the structure submerged and close to a rigid wall, where it is extremely important to not modify the boundary conditions for an accurate determination of the FRF. As experimentally shown in this paper, in such cases, the use of PZTs combined with the proposed methodology gives much more accurate estimations of the FRF than other calibrated exciters typically used for the same purpose. Therefore, the validated methodology proposed in this paper can be used to obtain the FRF of a generic submerged and confined structure, without a previous calibration of the PZT. PMID:28327501

  5. On the identification of a harmonic force on a viscoelastic plate from response data

    NASA Technical Reports Server (NTRS)

    D'Cruz, J.; Crisp, J. D. C.; Ryall, T. G.

    1992-01-01

    The problem of determining the force acting on a structure from measurements of the response of the structure to the force is an inverse problem. Presented is a method for determining the location, magnitude, and phase of a harmonic point force acting on a simply-supported classical viscoelastic rectangular plate from a number of displacement readings at discrete points on the plate. Presented also is a demonstration of the robustness of the solution technique to the effects of measurement noise as well as a means by which problems involving more general structural and loading configurations may be solved.

  6. Structure of p73 DNA-binding domain tetramer modulates p73 transactivation

    PubMed Central

    Ethayathulla, Abdul S.; Tse, Pui-Wah; Monti, Paola; Nguyen, Sonha; Inga, Alberto; Fronza, Gilberto; Viadiu, Hector

    2012-01-01

    The transcription factor p73 triggers developmental pathways and overlaps stress-induced p53 transcriptional pathways. How p53-family response elements determine and regulate transcriptional specificity remains an unsolved problem. In this work, we have determined the first crystal structures of p73 DNA-binding domain tetramer bound to response elements with spacers of different length. The structure and function of the adaptable tetramer are determined by the distance between two half-sites. The structures with zero and one base-pair spacers show compact p73 DNA-binding domain tetramers with large tetramerization interfaces; a two base-pair spacer results in DNA unwinding and a smaller tetramerization interface, whereas a four base-pair spacer hinders tetramerization. Functionally, p73 is more sensitive to spacer length than p53, with one base-pair spacer reducing 90% of transactivation activity and longer spacers reducing transactivation to basal levels. Our results establish the quaternary structure of the p73 DNA-binding domain required as a scaffold to promote transactivation. PMID:22474346

  7. Flight and Analytical Methods for Determining the Coupled Vibration Response of Tandem Helicopters

    NASA Technical Reports Server (NTRS)

    Yeates, John E , Jr; Brooks, George W; Houbolt, John C

    1957-01-01

    Chapter one presents a discussion of flight-test and analysis methods for some selected helicopter vibration studies. The use of a mechanical shaker in flight to determine the structural response is reported. A method for the analytical determination of the natural coupled frequencies and mode shapes of vibrations in the vertical plane of tandem helicopters is presented in Chapter two. The coupled mode shapes and frequencies are then used to calculate the response of the helicopter to applied oscillating forces.

  8. Response of basic structural elements and B-52 structural components to simulated nuclear overpressure. Volume I-program description and results (basic structural elements). Final report, 1 June 1977-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syring, R.P.; Grubb, R.L.

    1979-09-30

    This document reports on the following: (1) experimental determination of the response of 16 basic structural elements and 7 B-52 components to simulated nuclear overpressure environments (utilizing Sandia Corporation's Thunderpipe Shock Tube), (2) analysis of these test specimens utilizing the NOVA-2 computer program, and (3) correlation of test and analysis results.

  9. Assessment of Simulated Ground Motions in Earthquake Engineering Practice: A Case Study for Duzce (Turkey)

    NASA Astrophysics Data System (ADS)

    Karimzadeh, Shaghayegh; Askan, Aysegul; Yakut, Ahmet

    2017-09-01

    Simulated ground motions can be used in structural and earthquake engineering practice as an alternative to or to augment the real ground motion data sets. Common engineering applications of simulated motions are linear and nonlinear time history analyses of building structures, where full acceleration records are necessary. Before using simulated ground motions in such applications, it is important to assess those in terms of their frequency and amplitude content as well as their match with the corresponding real records. In this study, a framework is outlined for assessment of simulated ground motions in terms of their use in structural engineering. Misfit criteria are determined for both ground motion parameters and structural response by comparing the simulated values against the corresponding real values. For this purpose, as a case study, the 12 November 1999 Duzce earthquake is simulated using stochastic finite-fault methodology. Simulated records are employed for time history analyses of frame models of typical residential buildings. Next, the relationships between ground motion misfits and structural response misfits are studied. Results show that the seismological misfits around the fundamental period of selected buildings determine the accuracy of the simulated responses in terms of their agreement with the observed responses.

  10. Morphological, structural, and chemical effects in response of novel carbide derived carbon sensor to NH3, N2O, and air.

    PubMed

    Adu, Kofi W; Li, Qixiu; Desai, Sharvil C; Sidorov, Anton N; Sumanasekera, Gamini U; Lueking, Angela D

    2009-01-06

    The response of two carbide derived carbons (CDCs) films to NH(3), N(2)O, and room air is investigated by four probe resistance at room temperature and pressures up to 760 Torr. The two CDC films were synthesized at 600 (CDC-600) and 1000 degrees C (CDC-1000) to vary the carbon morphology from completely amorphous to more ordered, and determine the role of structure, surface area, and porosity on sensor response. Sensor response time followed kinetic diameter and indicated a more ordered carbon structure slowed response due to increased tortuosity caused by the formation of graphitic layers at the particle fringe. Steady state sensor response was greater for the less-ordered material, despite its decreased surface area, decreased micropore volume, and less favorable surface chemistry, suggesting carbon structure is a stronger predictor of sensor response than surface chemistry. The lack of correlation between adsorption of the probe gases and sensor response suggests chemical interaction (charge transfer) drive sensor response within the material; N(2)O response, in particular, did not follow simple adsorption behavior. Based on Raman and FTIR characterization, carbon morphology (disorder) appeared to be the determining factor in overall sensor response, likely due to increased charge transfer between gases and carbon defects of amorphous or disordered regions. The response of the amorphous CDC-600 film to NH(3) was 45% without prior oxidation, showing amorphous CDCs have promise as chemical sensors without additional pretreatment common to other carbon sensors.

  11. Seismic Structural Considerations for the Stern and Base of Retaining Walls Subjected to Earthquake Ground Motions

    DTIC Science & Technology

    2005-05-01

    CONTRACT NUMBER 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Seismic Structural Considerations for the Stem and Base of Retaining Walls...as represented by response spectra are determined. Several modes of vibration are considered. The number of modes included in the analysis is that...response spectrum- modal analysis procedure. Especially important is the number of excursions beyond acceptable displacement. As with the response

  12. Meeting Report: Structural Determination of Environmentally Responsive Proteins

    PubMed Central

    Reinlib, Leslie

    2005-01-01

    The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521

  13. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine: a twin control study.

    PubMed

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H

    2016-03-11

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted.

  14. The Researches on Damage Detection Method for Truss Structures

    NASA Astrophysics Data System (ADS)

    Wang, Meng Hong; Cao, Xiao Nan

    2018-06-01

    This paper presents an effective method to detect damage in truss structures. Numerical simulation and experimental analysis were carried out on a damaged truss structure under instantaneous excitation. The ideal excitation point and appropriate hammering method were determined to extract time domain signals under two working conditions. The frequency response function and principal component analysis were used for data processing, and the angle between the frequency response function vectors was selected as a damage index to ascertain the location of a damaged bar in the truss structure. In the numerical simulation, the time domain signal of all nodes was extracted to determine the location of the damaged bar. In the experimental analysis, the time domain signal of a portion of the nodes was extracted on the basis of an optimal sensor placement method based on the node strain energy coefficient. The results of the numerical simulation and experimental analysis showed that the damage detection method based on the frequency response function and principal component analysis could locate the damaged bar accurately.

  15. Algorithms for Determining Physical Responses of Structures Under Load

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Ko, William L.

    2012-01-01

    Ultra-efficient real-time structural monitoring algorithms have been developed to provide extensive information about the physical response of structures under load. These algorithms are driven by actual strain data to measure accurately local strains at multiple locations on the surface of a structure. Through a single point load calibration test, these structural strains are then used to calculate key physical properties of the structure at each measurement location. Such properties include the structure s flexural rigidity (the product of the structure's modulus of elasticity, and its moment of inertia) and the section modulus (the moment of inertia divided by the structure s half-depth). The resulting structural properties at each location can be used to determine the structure s bending moment, shear, and structural loads in real time while the structure is in service. The amount of structural information can be maximized through the use of highly multiplexed fiber Bragg grating technology using optical time domain reflectometry and optical frequency domain reflectometry, which can provide a local strain measurement every 10 mm on a single hair-sized optical fiber. Since local strain is used as input to the algorithms, this system serves multiple purposes of measuring strains and displacements, as well as determining structural bending moment, shear, and loads for assessing real-time structural health. The first step is to install a series of strain sensors on the structure s surface in such a way as to measure bending strains at desired locations. The next step is to perform a simple ground test calibration. For a beam of length l (see example), discretized into n sections and subjected to a tip load of P that places the beam in bending, the flexural rigidity of the beam can be experimentally determined at each measurement location x. The bending moment at each station can then be determined for any general set of loads applied during operation.

  16. New materials with microgels

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Woong

    2009-03-01

    This talk introduces a flexible and straightforward method for generating responsive microgel materials with new structures by using a microfluidic technique. We demonstrate that this approach enables tight control over the size and monodispersity of droplets as well as the interfacial structures, which is essential for determining release and transport kinetics of encapsulated components. We also show that responsiveness of microgel materials is controllable by tuning their structure, thereby allowing us to overcome the limitation of length scales, since the diffusion of water molecules through the structured gel phase is much faster than through a bulk gel phase of similar dimensions. We have generated a variety of novel gel structures: microgels with complex structures, microgel shells, 3D gel network with a truly fast response, and responsive colloidosomes. The robustness and versatility of this approach are expected to generate more complex systems and create new possibilities to develop novel materials in practical applications, including drug delivery, foods, and cosmetics.

  17. Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2006-01-01

    A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.

  18. Beryllofluoride mimics phosphorylation of NtrC and other bacterial response regulators

    PubMed Central

    Yan, Dalai; Cho, Ho S.; Hastings, Curtis A.; Igo, Michele M.; Lee, Seok-Yong; Pelton, Jeffrey G.; Stewart, Valley; Wemmer, David E.; Kustu, Sydney

    1999-01-01

    Two-component systems, sensor kinase-response regulator pairs, dominate bacterial signal transduction. Regulation is exerted by phosphorylation of an Asp in receiver domains of response regulators. Lability of the acyl phosphate linkage has limited structure determination for the active, phosphorylated forms of receiver domains. As assessed by both functional and structural criteria, beryllofluoride yields an excellent analogue of aspartyl phosphate in response regulator NtrC, a bacterial enhancer-binding protein. Beryllofluoride also appears to activate the chemotaxis, sporulation, osmosensing, and nitrate/nitrite response regulators CheY, Spo0F, OmpR, and NarL, respectively. NMR spectroscopic studies indicate that beryllofluoride will facilitate both biochemical and structural characterization of the active forms of receiver domains. PMID:10611291

  19. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.; Turner, Travis L. (Technical Monitor)

    2001-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibits enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  20. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.

    2000-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibit enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  1. Factors affecting the remotely sensed response of coniferous forest plantations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danson, F.M.; Curran, P.J.

    1993-01-01

    Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response ofmore » a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation.« less

  2. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  3. Translation-coupling systems

    DOEpatents

    Pfleger, Brian; Mendez-Perez, Daniel

    2015-05-19

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  4. Generalized fluid impulse functions for oscillating marine structures

    NASA Astrophysics Data System (ADS)

    Janardhanan, K.; Price, W. G.; Wu, Y.

    1992-03-01

    A selection of generalized impulse response functions is presented for a variety of rigid and flexible marine structures (i.e. mono-hull, SWATH, floating drydock and twin dock, fixed flexible pile). These functions are determined from calculated and experimental frequency-dependent hydrodynamic data, and the characteristics of these data depend on the type of structure considered. This information is reflected in the shape and duration of the generalized impulse response functions which are pre-requisites for a generalized integro-differential mathematical model describing the dynamic behaviour of the structures to seaway excitation.

  5. The influence of condensed tannin structure on rate of microbial mineralization and reactivity to chemical assays.

    PubMed

    Norris, Charlotte E; Preston, Caroline M; Hogg, Karen E; Titus, Brian D

    2011-03-01

    We examined how tannin structure influences reactivity in tannin assays and carbon and nitrogen mineralization. Condensed tannins from the foliage of ten tree and shrub species and from pecan shells (Carya illinoensis) had different proportions of: (a) epicatechin (cis) and catechin (trans) isomers, (b) procyanidin (PC) and prodelphinidin (PD) monomers, and (c) different chain lengths. The response of each tannin to several widely used tannin assays was determined. Although there was some variation in response to proanthocyanidin (butanol/HCl) and Folin Ciocalteu assays, we did not deduce any predictable relationship between tannin structure and response to either assay. There was little variation in protein precipitation among the different tannins. To assess biological activity, six of the tannins were incubated with forest humus for 22 days. We determined that, while PC-based tannins remained at least partly extractable for the duration of the incubation, tannins with a high proportion of PD subunits rapidly became unextractable from soil. There was a positive correlation between net nitrogen mineralization and cis chemical structure. Carbon mineralization was enhanced initially by the addition of tannins to humus, but after 22 days, a negative correlation between the proportion of cis subunits and respiration was determined. Overall, we were not able to demonstrate consistent effects of structure on either microbial mineralization or reactivity to chemical assays; such relationships remain elusive.

  6. Model correlation and damage location for large space truss structures: Secant method development and evaluation

    NASA Technical Reports Server (NTRS)

    Smith, Suzanne Weaver; Beattie, Christopher A.

    1991-01-01

    On-orbit testing of a large space structure will be required to complete the certification of any mathematical model for the structure dynamic response. The process of establishing a mathematical model that matches measured structure response is referred to as model correlation. Most model correlation approaches have an identification technique to determine structural characteristics from the measurements of the structure response. This problem is approached with one particular class of identification techniques - matrix adjustment methods - which use measured data to produce an optimal update of the structure property matrix, often the stiffness matrix. New methods were developed for identification to handle problems of the size and complexity expected for large space structures. Further development and refinement of these secant-method identification algorithms were undertaken. Also, evaluation of these techniques is an approach for model correlation and damage location was initiated.

  7. Development of a Novel Method for Determination of Residual Stresses in a Friction Stir Weld

    NASA Technical Reports Server (NTRS)

    Reynolds, Anthony P.

    2001-01-01

    Material constitutive properties, which describe the mechanical behavior of a material under loading, are vital to the design and implementation of engineering materials. For homogeneous materials, the standard process for determining these properties is the tensile test, which is used to measure the material stress-strain response. However, a majority of the applications for engineering materials involve the use of heterogeneous materials and structures (i.e. alloys, welded components) that exhibit heterogeneity on a global or local level. Regardless of the scale of heterogeneity, the overall response of the material or structure is dependent on the response of each of the constituents. Therefore, in order to produce materials and structures that perform in the best possible manner, the properties of the constituents that make up the heterogeneous material must be thoroughly examined. When materials exhibit heterogeneity on a local level, such as in alloys or particle/matrix composites, they are often treated as statistically homogenous and the resulting 'effective' properties may be determined through homogenization techniques. In the case of globally heterogeneous materials, such as weldments, the standard tensile test provides the global response but no information on what is Occurring locally within the different constituents. This information is necessary to improve the material processing as well as the end product.

  8. On the Performance of a Very Large All-GFRP Strut and Tie Structure

    NASA Astrophysics Data System (ADS)

    Boscato, G.; Mottram, J. T.; Russo, S.

    2014-09-01

    An analysis of the dynamic response of a fiber-reinforced-polymer (FRP) structure serving as a temporary (weather) shelter for the church of S. Maria Paganica in L'Aquila is presented. The church suffered roof collapse during a magnitude 6.3 earthquake in April, 2009. The structure is a rectilinear space frame constructed from built-up members of pultruded profiles and steel bolted FRP gusset plates. It has a maximum height of 32 m, covers an area of 1050 m2, and weighs (only) 120 kN. Foundations are free-standing blocks of reinforced concrete connected, just above the floor of the church, by steel bars 16 mm in diameter. A finite-element analysis (FEA) is used to determine the seismic response of the main section to the FRP structure. The nonlinear FE responses of the structure subjected to design response spectra (in the ultimate limit state) are presented and evaluated.

  9. Organizational Considerations for Implementing Systems Engineering and Integration in the Ares Projects Office

    NASA Technical Reports Server (NTRS)

    Thomas, LeAnn; Doreswamy, Rajiv N.

    2008-01-01

    Systems Engineering and Integration (SE&I) is a critical discipline in developing new space systems. In 2005, NASA performed an internal study of 24 agency and Department of Defense (DoD) programs to evaluate methods of integrating SE&I practices and determine their effectiveness. The goal of the study was to determine the best SE&I implementation strategy for the Ares Projects Office. The study identified six SE&I organizational structures: 1. Lead systems integrator (LSI) with SE&I responsibility and government technical insight. 2a. Integration contractor with government SE&I responsibility (government insight). 2b. Integration contractor with government SE&I responsibility (government oversight). 3a. Prime contractor with SE&I responsibility (government insight). 3b. Prime contractor with SE&I responsibility (government oversight). 3c. Prime contractor with SE&I responsibility (government/industry partnership). 4a.Prime contractor with government SE&I responsibility (government insight). 4b. Prime contractor with government SE&I responsibility (government oversight). 4d.Prime contractors with total system performance responsibility (TSPR). 5. Prime contractor with government SE&I responsibility and integration products through a Federally Funded Research and Development Center (FFRDC). 6. Government/FFRDC in-house development with SE&I responsibility and function. The organizational structure used most often was number 4, using a prime contractor with government SE&I responsibility and government technical insight. However, data analyses did not establish a positive relationship between program development costs and specific SE&I organizational types, nor did it positively determine the relationship between successful programs or projects and their SE&I structure. The SE&I study reached the following conclusions: (1) Large, long-duration, technically complex programs or projects reach their technical goals, but rarely meet schedule or cost goals. NASA's recent successes have been smaller, short-duration development projects using heritage hardware/software, focused technology development, technical oversight and stable external factors. (2) Programs and projects have failed or been terminated due to lack of technical insight, relaxing of SE&I processes, and unstable external factors. (3) The study did not find a single, clear optimum SE&I organization type to fit all projects. However, while any organizational structure can be made to work, the fewer complexities in the program, the better the likelihood of success. (4) The most common successful SE&I organization structure type in the study was type 4b, where the government maintained integration responsibility, with the prime contractor providing SE&I products and the government providing technical oversight. This study was instrumental in helping the APO select organization structure 4, following the same SE&I and oversight process used during humanlund7s last voyages to the Moon.

  10. Response inhibition predicts poor antidepressant treatment response in very old depressed patients.

    PubMed

    Sneed, Joel R; Roose, Steven P; Keilp, John G; Krishnan, K Ranga Rama; Alexopoulos, George S; Sackeim, Harold A

    2007-07-01

    There have been mixed findings regarding the prognostic significance of age of onset, executive dysfunction, and hyperintensity burden on treatment outcome in late-life depression. Growth curve models were fit to data from the only 8-week, double-blind, placebo controlled trial of citalopram (20-40 mg/day) in patients aged 75 years and older with unipolar depression. Baseline assessment included Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) (to determine age at onset), Stroop Color-Word Test (to assess the response inhibition component of execution dysfunction), and structural magnetic resonance imaging (to determine hyperintensity burden). In the citalopram condition, patients with response inhibition (most impaired quartile) scored higher at endpoint than those without response inhibition. There were no effects for age of onset or hyperintensity load on response in the citalopram condition. In the placebo condition, patients with early-onset depression had higher depression scores at endpoint than patients with late-onset depression. Only response inhibition, a fundamental executive function, predicted poor treatment response to antidepressant medication. Although patients with response inhibition also showed deficits in reaction time, adjusting for reaction time in our final response inhibition model did not substantively change the findings.

  11. Design sensitivity analysis of rotorcraft airframe structures for vibration reduction

    NASA Technical Reports Server (NTRS)

    Murthy, T. Sreekanta

    1987-01-01

    Optimization of rotorcraft structures for vibration reduction was studied. The objective of this study is to develop practical computational procedures for structural optimization of airframes subject to steady-state vibration response constraints. One of the key elements of any such computational procedure is design sensitivity analysis. A method for design sensitivity analysis of airframes under vibration response constraints is presented. The mathematical formulation of the method and its implementation as a new solution sequence in MSC/NASTRAN are described. The results of the application of the method to a simple finite element stick model of the AH-1G helicopter airframe are presented and discussed. Selection of design variables that are most likely to bring about changes in the response at specified locations in the airframe is based on consideration of forced response strain energy. Sensitivity coefficients are determined for the selected design variable set. Constraints on the natural frequencies are also included in addition to the constraints on the steady-state response. Sensitivity coefficients for these constraints are determined. Results of the analysis and insights gained in applying the method to the airframe model are discussed. The general nature of future work to be conducted is described.

  12. The specificity of cortical region KO to depth structure.

    PubMed

    Tyler, Christopher W; Likova, Lora T; Kontsevich, Leonid L; Wade, Alex R

    2006-03-01

    Functional MRI studies have identified a cortical region designated as KO between retinotopic areas V3A/B and motion area V5 in human cortex as particularly responsive to motion-defined or kinetic borders. To determine the response of the KO region to more general aspects of structure, we used stereoscopic depth borders and disparate planes with no borders, together with three stimulus types that evoked no depth percept: luminance borders, line contours and illusory phase borders. Responses to these stimuli in the KO region were compared with the responses in retinotopically defined areas that have been variously associated with disparity processing in neurophysiological and fMRI studies. The strongest responses in the KO region were to stimuli evoking perceived depth structure from either disparity or motion cues, but it showed negligible responses either to luminance-based contour stimuli or to edgeless disparity stimuli. We conclude that the region designated as KO is best regarded as a primary center for the generic representation of depth structure rather than any kind of contour specificity.

  13. Linking microbial community structure and microbial processes: An empirical and conceptual overview

    USGS Publications Warehouse

    Bier, R.L.; Bernhardt, Emily S.; Boot, Claudia M.; Graham, Emily B.; Hall, Edward K.; Lennon, Jay T.; Nemergut, Diana R.; Osborne, Brooke B.; Ruiz-Gonzalez, Clara; Schimel, Joshua P.; Waldrop, Mark P.; Wallenstein, Matthew D.

    2015-01-01

    A major goal of microbial ecology is to identify links between microbial community structure and microbial processes. Although this objective seems straightforward, there are conceptual and methodological challenges to designing studies that explicitly evaluate this link. Here, we analyzed literature documenting structure and process responses to manipulations to determine the frequency of structure-process links and whether experimental approaches and techniques influence link detection. We examined nine journals (published 2009–13) and retained 148 experimental studies measuring microbial community structure and processes. Many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant and typically used Spearman or Pearson's correlation analysis (68%). No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure or both structure and process. Together, our findings suggest that few publications report statistically testing structure-process links. However, when links are tested for they often occur but share few commonalities in the processes or structures that were linked and the techniques used for measuring them.

  14. Probabilistic structural analysis of a truss typical for space station

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.

    1990-01-01

    A three-bay, space, cantilever truss is probabilistically evaluated using the computer code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) to identify and quantify the uncertainties and respective sensitivities associated with corresponding uncertainties in the primitive variables (structural, material, and loads parameters) that defines the truss. The distribution of each of these primitive variables is described in terms of one of several available distributions such as the Weibull, exponential, normal, log-normal, etc. The cumulative distribution function (CDF's) for the response functions considered and sensitivities associated with the primitive variables for given response are investigated. These sensitivities help in determining the dominating primitive variables for that response.

  15. Damage identification of beam structures using free response shapes obtained by use of a continuously scanning laser Doppler vibrometer system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Chen, Da-Ming; Zhu, W. D.

    2017-08-01

    Spatially dense operating deflection shapes and mode shapes can be rapidly obtained by use of a continuously scanning laser Doppler vibrometer (CSLDV) system, which sweeps its laser spot over a vibrating structure surface. This paper introduces a new type of vibration shapes called a free response shape (FRS) that can be obtained by use of a CSLDV system, and a new damage identification methodology using FRSs is developed for beam structures. An analytical expression of FRSs of a damped beam structure is derived, and FRSs from the analytical expression compare well with those from a finite element model. In the damage identification methodology, a free-response damage index (FRDI) is proposed, and damage regions can be identified near neighborhoods with consistently high values of FRDIs associated with different modes; an auxiliary FRDI is defined to assist identification of the neighborhoods. A FRDI associated with a mode consists of differences between curvatures of FRSs associated with the mode in a number of half-scan periods of a CSLDV system and those from polynomials that fit the FRSs with properly determined orders. A convergence index is proposed to determine the proper order of a polynomial fit. One advantage of the methodology is that the FRDI does not require any baseline information of an undamaged beam structure, if it is geometrically smooth and made of materials that have no stiffness and mass discontinuities. Another advantage is that FRDIs associated with multiple modes can be obtained using free response of a beam structure measured by a CSLDV system in one scan. The number of half-scan periods for calculation of the FRDI associated with a mode can be determined by use of the short-time Fourier transform. The proposed methodology was numerically and experimentally applied to identify damage in beam structures; effects of the scan frequency of a CSLDV system on qualities of obtained FRSs were experimentally investigated.

  16. Photodiode design study. Final report, May--December 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamorte, M.F.

    1977-12-01

    The purpose of this work was to apply the analytical method developed for single junction and multijunction solar cells, Contract No. F33615-76-C-1283, to photodiodes and avalanche photodiodes. It was anticipated that this analytical method will advance the state-of-the-art because of the following: (1) the analysis considers the total photodetector multilayer structure rather than just the depleted region; (2) a model of the complete band structure is analyzed; (3) application of the integral form of the continuity equation is used; (4) structures that reduce dark current and/or increase the ratio of photocurrent to dark current are obtained; and (5) structures thatmore » increase spectral response in the depleted region and reduce response in other regions of the diode are obtained. The integral form of the continuity equation developed for solar cells is the steady-state or time-independent form. The contract specified that the time-independent equation would only be employed to determine applicability to photodetectors. The GaAsSb photodiode under development at Rockwell International, Thousand Oaks, California was used to determine the applicability to photodetectors. The diode structure is composed of four layers grown on a substrate. The analysis presents calculations of spectral response. This parameter is used in this study to optimize the structure.« less

  17. XEROMORPHY INCREASES IN SHOOTS OF PSEUDOTSUGA MENZIESII (MIRB.) FRANCO SEEDLINGS WITH EXPOSURE TO ELEVATED TEMPERATURE BUT NOT ELEVATED CO2

    EPA Science Inventory

    Seedling structure influences tree structure and function, ultimately determining the potential productivity of trees and their competitiveness for resources. We investigated changes in shoot organ structure, as indicated by biomass allocation, allometry and anatomy in response ...

  18. Crystal structure determination and analysis of 11S coconut allergen: Cocosin.

    PubMed

    Vajravijayan, S; Nandhagopal, N; Gunasekaran, K

    2017-12-01

    Allergy is an abnormal immune response against an innocuous target. Food allergy is an adverse reaction caused by common foods most well-known being those involving peanuts. Apart from mono sensitized food allergy, cross-reactivity with other food allergens is also commonly observed. To understand the phenomenon of cross-reactivity related to immune response, three dimensional structures of the allergens and their antigenic epitopes has to be analysed in detail. The X-ray crystal structure of Cocosin, a common 11S food allergen from coconut, has been determined at 2.2Å resolution using molecular replacement technique. The monomer of 52kDa is composed of two β-jelly roll domains, one with acidic and the other with basic character. The structure shows hexameric association with two trimers facing each other. Though the overall structure of Cocosin is similar to other 11S allergens, the occurrence of experimentally determined epitopes of the peanut allergen Ara h 3 at flexible as well as variable regions could be the reason for the clinically reported result of cross-reactivity that the peanut allergic patients are not sensitized with coconut allergen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation of experimental methods for determining dynamic stiffness and damping of composite materials

    NASA Technical Reports Server (NTRS)

    Bert, C. W.; Clary, R. R.

    1974-01-01

    Various methods potentially usable for determining dynamic stiffness and damping of composite materials are reviewed. Of these, the following most widely used techniques are singled out for more detailed discussion: free vibration, pulse propagation, and forced vibration response. To illustrate the usefulness and validity of dynamic property data, their application in dynamic analyses and comparison with measured structural response are described for the following composite-material structures: free-free sandwich beam with glass-epoxy facings, clamped-edge sandwich plate with similar facings, free-end sandwich conical shell with similar facings, and boron-epoxy free plate with layers arranged at various orientations.

  20. Dynamic analysis of an inflatable dam subjected to a flood

    NASA Astrophysics Data System (ADS)

    Lowery, K.; Liapis, S.

    A dynamic simulation of the response of an inflatable dam subjected to a flood is carried out to determine the survivability envelope of the dam where it can operate without rupture, or overflow. The free-surface flow problem is solved in two dimensions using a fully nonlinear mixed Eulerian-Lagrangian formulation. The dam is modeled as an elastic shell inflated with air and simply supported from two points. The finite element method is employed to determine the dynamic response of the structure using ABAQUS with a shell element. The problem is solved in the time domain which allows the prediction of a number of transient phenomena such as the generation of upstream advancing waves, the dynamic structural response and structural failure. Failure takes place when the dam either ruptures or overflows. Stresses in the dam material were monitored to determine when rupture occurs. An iterative study was performed to find the serviceability envelope of the dam in terms of the internal pressure and the flood Froude number for two flood depths. It was found that existing inflatable dams are quite effective in suppressing floods for a relatively wide range of flood velocities.

  1. The contrasting response of Hadley circulation to different meridional structure of sea surface temperature in CMIP5

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Li, Jianping; Zhu, Jianlei; Li, Yang; Li, Fei

    2018-02-01

    The response of the Hadley circulation (HC) to the sea surface temperature (SST) is determined by the meridional structure of SST and varies according to the changing nature of this meridional structure. The capability of the models from the phase 5 of the Coupled Model Intercomparison Project (CMIP5) is utilized to represent the contrast response of the HC to different meridional SST structures. To evaluate the responses, the variations of HC and SST were linearly decomposed into two components: the equatorially asymmetric (HEA for HC, and SEA for SST) and equatorially symmetric (HES for HC, and SES for SST) components. The result shows that the climatological features of HC and tropical SST (including the spatial structures and amplitude) are reasonably simulated in all the models. However, the response contrast of HC to different SST meridional structures shows uncertainties among models. This may be due to the fact that the long-term temporal variabilities of HEA, HES, and SEA are limited reproduced in the models, although the spatial structures of their long-term variabilities are relatively reasonably simulated. These results indicate that the performance of the CMIP5 models to simulate long-term temporal variability of different meridional SST structures and related HC variations plays a fundamental role in the successful reproduction of the response of HC to different meridional SST structures.

  2. Effect of Discontinuities and Uncertainties on the Response and Failure of Composite Structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Perry, Ferman W.; Poteat, Marcia M. (Technical Monitor)

    2000-01-01

    The overall goal of this research was to assess the effect of discontinuities and uncertainties on the nonlinear response and failure of composite structures subjected to combined mechanical and thermal loads. The four key elements of the study were: (1) development of simple and efficient procedures for the accurate determination of transverse shear and transverse normal stresses in structural sandwiches as well as in unstiffened and stiffened composite panels and shells; (2) study the effects of transverse stresses on the response, damage initiation and propagation in composite and sandwich structures; (3) use of hierarchical sensitivity coefficients to identify the major parameters that affect the response and damage in each of the different levels in the hierarchy (micro-mechanical, layer, panel, subcomponent and component levels); and (4) application of fuzzy set techniques to identify the range and variation of possible responses. The computational models developed were used in conjunction with experiments, to understand the physical phenomena associated with the nonlinear response and failure of composite and sandwich structures. A toolkit was developed for use in conjunction with deterministic analysis programs to help the designer in assessing the effect of uncertainties in the different computational model parameters on the variability of the response quantities.

  3. The effect of crystal structure on the electromechanical properties of piezoelectric Nylon-11 nanowires.

    PubMed

    Choi, Yeon Sik; Kim, Sung Kyun; Williams, Findlay; Calahorra, Yonatan; Elliott, James A; Kar-Narayan, Sohini

    2018-06-19

    Crystal structure is crucial in determining the properties of piezoelectric polymers, particularly at the nanoscale where precise control of the crystalline phase is possible. Here, we investigate the electromechanical properties of three distinct crystalline phases of Nylon-11 nanowires using advanced scanning probe microscopy techniques. Stiff α-phase nanowires exhibited a low piezoelectric response, while relatively soft δ'-phase nanowires displayed an enhanced piezoelectric response.

  4. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.

    2007-01-01

    A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.

  5. Frequency response of electrochemical cells

    NASA Technical Reports Server (NTRS)

    Thomas, Daniel L.

    1989-01-01

    Impedance concepts can be applied to the analysis of battery electrodes, yielding information about the structure of the electrode and the processes occurring in the electrode. Structural parameters such as the specific area (surface area per gram of electrode) can be estimated. Electrode variables such as surface overpotential, ohmic losses, and diffusion limitations may be studied. Nickel and cadmium electrodes were studied by measuring the ac impedance as a function of frequency, and the specific areas that were determined were well within the range of specific areas determined from BET measurements. Impedance spectra were measured for the nickel and cadmium electrodes, and for a 20 A-hr NiCd battery as functions of the state of charge. More work is needed to determine the feasibility of using frequency response as a nondestructive testing technique for batteries.

  6. Three-dimensional structural damage localization system and method using layered two-dimensional array of capacitance sensors

    NASA Technical Reports Server (NTRS)

    Curry, Mark A (Inventor); Senibi, Simon D (Inventor); Banks, David L (Inventor)

    2010-01-01

    A system and method for detecting damage to a structure is provided. The system includes a voltage source and at least one capacitor formed as a layer within the structure and responsive to the voltage source. The system also includes at least one sensor responsive to the capacitor to sense a voltage of the capacitor. A controller responsive to the sensor determines if damage to the structure has occurred based on the variance of the voltage of the capacitor from a known reference value. A method for sensing damage to a structure involves providing a plurality of capacitors and a controller, and coupling the capacitors to at least one surface of the structure. A voltage of the capacitors is sensed using the controller, and the controller calculates a change in the voltage of the capacitors. The method can include signaling a display system if a change in the voltage occurs.

  7. Simple nonlinear modelling of earthquake response in torsionally coupled R/C structures: A preliminary study

    NASA Astrophysics Data System (ADS)

    Saiidi, M.

    1982-07-01

    The equivalent of a single degree of freedom (SDOF) nonlinear model, the Q-model-13, was examined. The study intended to: (1) determine the seismic response of a torsionally coupled building based on the multidegree of freedom (MDOF) and (SDOF) nonlinear models; and (2) develop a simple SDOF nonlinear model to calculate displacement history of structures with eccentric centers of mass and stiffness. It is shown that planar models are able to yield qualitative estimates of the response of the building. The model is used to estimate the response of a hypothetical six-story frame wall reinforced concrete building with torsional coupling, using two different earthquake intensities. It is shown that the Q-Model-13 can lead to a satisfactory estimate of the response of the structure in both cases.

  8. The analysis of dynamic characteristics and wind-induced displacement response of space Beam String Structure

    NASA Astrophysics Data System (ADS)

    Chen, Yong Jian; Feng, Zhen Fa; Qi, Ai; Huang, Ying

    2018-06-01

    The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1)The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2)From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3)The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.

  9. Extension of vibrational power flow techniques to two-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cuschieri, Joseph M.

    1988-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  10. Extension of vibrational power flow techniques to two-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  11. New applications of a model of electromechanical impedance for SHM

    NASA Astrophysics Data System (ADS)

    Pavelko, Vitalijs

    2014-03-01

    The paper focuses on the further development of the model of the electromechanical impedance (EMI) of the piezoceramics transducer (PZT) and its application for aircraft structural health monitoring (SHM). There was obtained an expression of the electromechanical impedance common to any dimension of models (1D, 2D, 3D), and directly independent from imposed constraints. Determination of the dynamic response of the system "host structure - PZT", which is crucial for the practical application supposes the use of modal analysis. This allows to get a general tool to determine EMI regardless of the specific features of a particular application. Earlier there was considered the technology of separate determination of the dynamic response for the PZT and the structural element". Here another version that involves the joint modal analysis of the entire system "host structure - PZT" is presented. As a result, the dynamic response is obtained in the form of modal decomposition of transducer mechanical strains. The use of models for the free and constrained transducer, analysis of the impact of the adhesive layer to the EMI is demonstrated. In all cases there was analyzed the influence of the dimension of the model (2D and 3D). The validity of the model is confirmed by experimental studies. Correlation between the fatigue crack length in a thin-walled Al plate and EMI of embedded PZT was simulated and compared with test result.

  12. Organizational Perspectives on Rapid Response Team Structure, Function, and Cost: A Qualitative Study.

    PubMed

    Smith, Patricia L; McSweeney, Jean

    Understanding how an organization determines structure and function of a rapid response team (RRT), as well as cost evaluation and implications, can provide foundational knowledge to guide decisions about RRTs. The objectives were to (1) identify influencing factors in organizational development of RRT structure and function and (2) describe evaluation of RRT costs. Using a qualitative, ethnographic design, nurse executives and experts in 15 moderate-size hospitals were interviewed to explore their decision-making processes in determining RRT structure and function. Face-to-face interviews were audio recorded and transcribed verbatim and verified for accurateness. Using content analysis and constant comparison, interview data were analyzed. Demographic data were analyzed using descriptive statistics. The sample included 27 participants from 15 hospitals in 5 south-central states. They described a variety of RRT responders and functions, with the majority of hospitals having a critical care charge nurse attending all RRT calls for assistance. Others described a designated RRT nurse with primary RRT duties as responder to all RRT calls. Themes of RRT development from the data included influencers, decision processes, and thoughts about cost. It is important to understand how hospitals determine optimal structure and function to enhance support of quality nursing care. Determining the impact of an RRT on costs and benefits is vital in balancing patient safety and limited resources. Future research should focus on clarifying differences between team structure and function in outcomes as well as the most effective means to estimate costs and benefits.

  13. Dynamic Structure Factor: An Introduction

    NASA Astrophysics Data System (ADS)

    Sturm, K.

    1993-02-01

    The doubly differential cross-section for weak inelastic scattering of waves or particles by manybody systems is derived in Born approximation and expressed in terms of the dynamic structure factor according to van Hove. The application of this very general scheme to scattering of neutrons, x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space and time Fourier transform of the density-density correlation function, is a property of the many-body system independent of the external probe and carries information on the excitation spectrum of the system. The relation of the electronic structure factor to the density-density response function defined in linear-response theory is shown using the fluctuation-dissipation theorem. This is important for calculations, since the response function can be calculated approximately from the independent-particle response function in self-consistent field approximations, such as the random-phase approximation or the local-density approximation of the density functional theory. Since the density-density response function also determines the dielectric function, the dynamic structure can be expressed by the dielectric function.

  14. Effects of cutouts on the behavior of symmetric composite laminates subjected to bending and twisting loads

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Shuart, M. J.; Bains, N. J.; Rouse, M.

    1993-01-01

    Composite structures are used for a wide variety of aerospace applications. Practical structures contain cutouts and these structures are subjected to in-plane and out-of-plane loading conditions. Structurally efficient designs for composite structures require a thorough understanding of the effects of cutouts on the response of composite plates subjected to inplane or out-of-plane loadings. Most investigations of the behavior of composite plates with cutouts have considered in-plane loadings only. Out-of-plane loadings suchas bending or twisting have received very limited attention. The response of homogeneous plates (e.g., isotropic or orthotropic plates) subjected to bending or twisting moments has been studied analytically. These analyses are for infinite plates and neglect finite-plate effects. Recently, analytical and experimental studies were conducted to determine the effects of cutouts on the response of laminated composite plates subjected to bending moments. No analytical or experimental results are currently available for the effects of cutouts on the response of composite laminates subjected to twisting moments.

  15. Technology Enabled Work: The Role of Self-Efficacy in Determining Telecommuter Adjustment and Structuring Behavior.

    ERIC Educational Resources Information Center

    Raghuram, Sumita; Wiesenfeld, Batia; Garud, Raghu

    2003-01-01

    Responses from 31.5% of 723 telecommuters revealed a positive association between self-efficacy and both adjustment to teleworking and behaviors for structuring work. The more extensive the telecommuting, the stronger these positive relationships. Women were more proactive in structuring work behavior. (Contains 43 references.) (SK)

  16. Dimensions of vegetable parenting practices among preschoolers

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the factor structure of 31 effective and ineffective vegetable parenting practices used by parents of preschool children based on three theoretically proposed factors: responsiveness, control, and structure. The methods employed included both corrected it...

  17. Characterization of Microgravity Environment on Mir

    NASA Technical Reports Server (NTRS)

    Kim, Hyoung; Kaouk, Mohamed

    2000-01-01

    This paper presents the microgravity analysis results using dynamic response data collected during the first phase of the Mir Structural Dynamics Experiment (MiSDE). Although MiSDE was designed and performed to verify structural dynamic models, it also provided information for determining microgravity characteristics of the structure. This study analyzed ambient responses acquired during orbital day-to-night and night-to-day transitions, crew treadmill and ergometer exercises, and intentional crew activities. Acceleration levels for one-third octave bands were calculated to characterize the microgravity environment of the station. Spectrograms were also used to analyze the time transient nature of the responses. Detailed theoretical background and analysis results will also be included in the final draft.

  18. Broadband multiple responses of surface modes in quasicrystalline plasmonic structure

    PubMed Central

    Yuan, Haiming; Jiang, Xiangqian; Huang, Feng; Sun, Xiudong

    2016-01-01

    We numerically study the multiple excitation of surface modes in 2D photonic quasicrystal/metal/substrate structure. An improved rigorous coupled wave analysis method that can handle the quasicrystalline structure is presented. The quasicrystalline lattice, which refers to Penrose tiling in this paper, is generated by the cut-and-project method. The normal incidence spectrum presents a broadband multiple responses property. We find that the phase matching condition determines the excitation frequency for a given incident angle, while the depth of the reflection valley depends on the incident polarization. The modes will split into several sub-modes at oblique incidence, which give rise to the appearance of more responses on the spectrum. PMID:27492782

  19. In situ health monitoring of piezoelectric sensors

    NASA Technical Reports Server (NTRS)

    Drouant, George J. (Inventor); Jensen, Scott L. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  20. Spatial structure in the diet of imperial eagles Aquila heliaca in Kazakhstan

    USGS Publications Warehouse

    Katzner, T.E.; Bragin, E.A.; Knick, S.T.; Smith, A.T.

    2006-01-01

    We evaluated the relationship between spatial variability in prey and food habits of eastern imperial eagles Aquila heliaca at a 90,000 ha national nature reserve in north-central Kazakhstan. Eagle diet varied greatly within the population and the spatial structure of eagle diet within the population varied according to the scale of measurement. Patterns in dietary response were inconsistent with expectations if either ontogenetic imprinting or competition determined diet choice, but they met expectations if functional response determined diet. Eagles nesting near a high-density prey resource used that resource almost exclusively. In contrast, in locations with no single high-density prey species, eagles' diet was more diverse. Our results demonstrate that spatial structuring of diet of vertebrate predators can provide important insight into the mechanisms that drive dietary decisions. ?? OIKOS.

  1. Validation and upgrading of physically based mathematical models

    NASA Technical Reports Server (NTRS)

    Duval, Ronald

    1992-01-01

    The validation of the results of physically-based mathematical models against experimental results was discussed. Systematic techniques are used for: (1) isolating subsets of the simulator mathematical model and comparing the response of each subset to its experimental response for the same input conditions; (2) evaluating the response error to determine whether it is the result of incorrect parameter values, incorrect structure of the model subset, or unmodeled external effects of cross coupling; and (3) modifying and upgrading the model and its parameter values to determine the most physically appropriate combination of changes.

  2. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex.

    PubMed

    Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A; Xing, Yongna

    2017-05-23

    The aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR-ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.

  3. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex

    PubMed Central

    Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A.; Xing, Yongna

    2017-01-01

    The aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands. PMID:28396409

  4. Acoustic-Structure Interaction in Rocket Engines: Validation Testing

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.

    2009-01-01

    While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.

  5. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li

    he aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomainmore » interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.« less

  6. Structure and physics of solar faculae

    NASA Astrophysics Data System (ADS)

    Pecker, J.-C.; Dumont, S.; Mouradian, Z.

    1992-04-01

    The optical depths of layers in the chromosphere-corona transition (CCT) zone, which is responsible for resolved structures in CII, CIII, OIV, and OVI lines, were determined using a new method that takes into account the effect of roughness (or local departures from sphericity) of the emitting layers in the CCT zone. The method allows determination of the angle alpha typical of the roughness (in case of availability of resolved data) and the two optical depths tau-1 and tau-2. It is shown that, even in unresolved cases, the new method gives a more realistic determination of the optical depths than previously determined.

  7. Differentiating responses to contaminants from responses to other environmental factors for benthic biota in freshwater ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, K.E.; Reynoldson, T.B.; Rosenberg, D.M.

    1995-12-31

    Many ecological risk assessments (ERAS) of lakes, rivers and streams compare measurements of benthic community structure in specific areas of contamination to similar measurements in reference or ``clean`` areas as a basis for determining impact. However, despite numerous studies documenting alterations of benthic communities as a result of stress, the success of correctly assessing the ``health`` or degradation of these communities depends on how well responses to contamination can be discriminated from responses to other environmental factors. It is important in the ERA process to adequately describe benthic communities and to determine how natural environmental factors (e.g., substrate particle sizemore » and texture, organic content, water quality, pH, seston, etc.) may be driving benthic community structure. This knowledge is particularly important when reference areas are distant from stressed areas. This presentation will provide an overview of the environmental factors that are important in structuring natural benthic communities in rivers and lakes and discuss approaches that may be useful in differentiating between natural variability and anthropogenic stress in ERA. Several case studies from the Laurentian Great Lakes and the Fraser River watershed in British Columbia will be discussed.« less

  8. Wind turbine design codes: A comparison of the structural response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buhl, M.L. Jr.; Wright, A.D.; Pierce, K.G.

    2000-03-01

    The National Wind Technology Center (NWTC) of the National Renewable Energy Laboratory is continuing a comparison of several computer codes used in the design and analysis of wind turbines. The second part of this comparison determined how well the programs predict the structural response of wind turbines. In this paper, the authors compare the structural response for four programs: ADAMS, BLADED, FAST{_}AD, and YawDyn. ADAMS is a commercial, multibody-dynamics code from Mechanical Dynamics, Inc. BLADED is a commercial, performance and structural-response code from Garrad Hassan and Partners Limited. FAST{_}AD is a structural-response code developed by Oregon State University and themore » University of Utah for the NWTC. YawDyn is a structural-response code developed by the University of Utah for the NWTC. ADAMS, FAST{_}AD, and YawDyn use the University of Utah's AeroDyn subroutine package for calculating aerodynamic forces. Although errors were found in all the codes during this study, once they were fixed, the codes agreed surprisingly well for most of the cases and configurations that were evaluated. One unresolved discrepancy between BLADED and the AeroDyn-based codes was when there was blade and/or teeter motion in addition to a large yaw error.« less

  9. Vibrations and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1985-01-01

    Theoretical models were developed capable of predicting structural response and noise transmission to random point mechanical loads. Fiber reinforced composite and aluminum materials were considered. Cylindrical shells and circular plates were taken as typical representatives of structural components for space station habitability modules. Analytical formulations include double wall and single wall constructions. Pressurized and unpressurized models were considered. Parametric studies were conducted to determine the effect on structural response and noise transmission due to fiber orientation, point load location, damping in the core and the main load carrying structure, pressurization, interior acoustic absorption, etc. These analytical models could serve as preliminary tools for assessing noise related problems, for space station applications.

  10. Impact damage resistance of composite fuselage structure, part 1

    NASA Technical Reports Server (NTRS)

    Dost, E. F.; Avery, W. B.; Ilcewicz, L. B.; Grande, D. H.; Coxon, B. R.

    1992-01-01

    The impact damage resistance of laminated composite transport aircraft fuselage structures was studied experimentally. A statistically based designed experiment was used to examine numerous material, laminate, structural, and extrinsic (e.g., impactor type) variables. The relative importance and quantitative measure of the effect of each variable and variable interactions on responses including impactor dynamic response, visibility, and internal damage state were determined. The study utilized 32 three-stiffener panels, each with a unique combination of material type, material forms, and structural geometry. Two manufacturing techniques, tow placement and tape lamination, were used to build panels representative of potential fuselage crown, keel, and lower side-panel designs. Various combinations of impactor variables representing various foreign-object-impact threats to the aircraft were examined. Impacts performed at different structural locations within each panel (e.g., skin midbay, stiffener attaching flange, etc.) were considered separate parallel experiments. The relationship between input variables, measured damage states, and structural response to this damage are presented including recommendations for materials and impact test methods for fuselage structure.

  11. Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene.

    PubMed

    Ochoa-Martínez, Efraín; Gabás, Mercedes; Barrutia, Laura; Pesquera, Amaia; Centeno, Alba; Palanco, Santiago; Zurutuza, Amaia; Algora, Carlos

    2015-01-28

    The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.

  12. Damage of composite structures: Detection technique, dynamic response and residual strength

    NASA Astrophysics Data System (ADS)

    Lestari, Wahyu

    2001-10-01

    Reliable and accurate health monitoring techniques can prevent catastrophic failures of structures. Conventional damage detection methods are based on visual or localized experimental methods and very often require prior information concerning the vicinity of the damage or defect. The structure must also be readily accessible for inspections. The techniques are also labor intensive. In comparison to these methods, health-monitoring techniques that are based on the structural dynamic response offers unique information on failure of structures. However, systematic relations between the experimental data and the defect are not available and frequently, the number of vibration modes needed for an accurate identification of defects is much higher than the number of modes that can be readily identified in the experiment. These motivated us to develop an experimental data based detection method with systematic relationships between the experimentally identified information and the analytical or mathematical model representing the defective structures. The developed technique use changes in vibrational curvature modes and natural frequencies. To avoid misinterpretation of the identified information, we also need to understand the effects of defects on the structural dynamic response prior to developing health-monitoring techniques. In this thesis work we focus on two type of defects in composite structures, namely delamination and edge notch like defect. Effects of nonlinearity due to the presence of defect and due to the axial stretching are studied for beams with delamination. Once defects are detected in a structure, next concern is determining the effects of the defects on the strength of the structure and its residual stiffness under dynamic loading. In this thesis, energy release rate due to dynamic loading in a delaminated structure is studied, which will be a foundation toward determining the residual strength of the structure.

  13. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  14. Optimization of extraction process by response surface methodology and preliminary structural analysis of polysaccharides from defatted peanut (Arachis hypogaea) cakes.

    PubMed

    Song, Yi; Du, Bingjian; Zhou, Ting; Han, Bing; Yu, Fei; Yang, Rui; Hu, Xiaosong; Ni, Yuanying; Li, Quanhong

    2011-02-01

    In this work, response surface methodology was used to determine optimum conditions for extraction of polysaccharides from defatted peanut cake. A central composite design including independent variables, such as extraction temperature (x(1)), extraction time (x(2)), and ethanol concentration (x(3)) was used. Selected response which evaluates the extraction process was polysaccharide yield, and the second-order model obtained for polysaccharide yield revealed coefficient of determination of 97.81%. The independent variable with the largest effect on response was ethanol concentration (x(3)). The optimum extraction conditions were found to be extraction temperature 48.7°C, extraction time 1.52 h, and ethanol concentration of 61.9% (v/v), respectively. Under these conditions, the extraction efficiency of polysaccharide can increase to 25.89%. The results of structural analysis showed that the main composition of defatted peanut cake polysaccharide was α-galactose. 2010 Elsevier Ltd. All rights reserved.

  15. Vegetation response to stand structure and prescribed fire in an interior ponderosa pine ecosystem

    Treesearch

    Jianwei Zhang; Martin W. Ritchie; William W. Oliver

    2008-01-01

    A large-scale interior ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) study was conducted at the Blacks Mountain Experimental Forest in northeastern California. The primary purpose of the study was to determine the influence of structural diversity on the dynamics of interior pine forests at the landscape scale. High structural...

  16. Measurement and Analysis of Structural Integrity of Reactor Core Support Structure in Pressurized Water Reactor (PWR) Plant

    NASA Astrophysics Data System (ADS)

    Ansari, Saleem A.; Haroon, Muhammad; Rashid, Atif; Kazmi, Zafar

    2017-02-01

    Extensive calculation and measurements of flow-induced vibrations (FIV) of reactor internals were made in a PWR plant to assess the structural integrity of reactor core support structure against coolant flow. The work was done to meet the requirements of the Fukushima Response Action Plan (FRAP) for enhancement of reactor safety, and the regulatory guide RG-1.20. For the core surveillance measurements the Reactor Internals Vibration Monitoring System (IVMS) has been developed based on detailed neutron noise analysis of the flux signals from the four ex-core neutron detectors. The natural frequencies, displacement and mode shapes of the reactor core barrel (CB) motion were determined with the help of IVMS. The random pressure fluctuations in reactor coolant flow due to turbulence force have been identified as the predominant cause of beam-mode deflection of CB. The dynamic FIV calculations were also made to supplement the core surveillance measurements. The calculational package employed the computational fluid dynamics, mode shape analysis, calculation of power spectral densities of flow & pressure fields and the structural response to random flow excitation forces. The dynamic loads and stiffness of the Hold-Down Spring that keeps the core structure in position against upward coolant thrust were also determined by noise measurements. Also, the boron concentration in primary coolant at any time of the core cycle has been determined with the IVMS.

  17. Review of parameters influencing the structural response of a submerged body under cavitation conditions

    NASA Astrophysics Data System (ADS)

    Escaler, X.; De La Torre, O.; Farhat, M.

    2015-12-01

    Submerged structures that operate under extreme flows are prone to suffer large scale cavitation attached to their surfaces. Under such conditions the added mass effects differ from the expected ones in pure liquids. Moreover, the existence of small gaps between the structure and surrounding bodies filled with fluid also influence the dynamic response. A series of experiments and numerical simulations have been carried out with a truncated NACA0009 hydrofoil mounted as a cantilever beam at the LMH-EPFL cavitation tunnel. The three first modes of vibration have been determined and analysed under various hydrodynamic conditions ranging from air and still water to partial cavitation and supercavitation. A remote nonintrusive excitation system with piezoelectric patches has been used for the experiments. The effects of the cavity properties and the lateral gap size on the natural frequencies and mode shapes have been determined. As a result, the significance of several parameters in the design of such structures is discussed.

  18. STS-74/MIR Photogrammetric Appendage Structural Dynamics Experiment Preliminary Data Analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Welch, Sharon S.; Pappa, Richard S.; Demeo, Martha E.

    1997-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment was designed, developed, and flown to demonstrate and prove measurement of the structural vibration response of a Russian Space Station Mir solar array using photogrammetric methods. The experiment flew on the STS-74 Space Shuttle mission to Mir in November 1995 and obtained video imagery of solar array structural response to various excitation events. The video imagery has been digitized and triangulated to obtain response time history data at discrete points on the solar array. This data has been further processed using the Eigensystem Realization Algorithm modal identification technique to determine the natural vibration frequencies, damping, and mode shapes of the solar array. The results demonstrate that photogrammetric measurement of articulating, nonoptically targeted, flexible solar arrays and appendages is a viable, low-cost measurement option for the International Space Station.

  19. Probabilistic Structural Evaluation of Uncertainties in Radiator Sandwich Panel Design

    NASA Technical Reports Server (NTRS)

    Kuguoglu, Latife; Ludwiczak, Damian

    2006-01-01

    The Jupiter Icy Moons Orbiter (JIMO) Space System is part of the NASA's Prometheus Program. As part of the JIMO engineering team at NASA Glenn Research Center, the structural design of the JIMO Heat Rejection Subsystem (HRS) is evaluated. An initial goal of this study was to perform sensitivity analyses to determine the relative importance of the input variables on the structural responses of the radiator panel. The desire was to let the sensitivity analysis information identify the important parameters. The probabilistic analysis methods illustrated here support this objective. The probabilistic structural performance evaluation of a HRS radiator sandwich panel was performed. The radiator panel structural performance was assessed in the presence of uncertainties in the loading, fabrication process variables, and material properties. The stress and displacement contours of the deterministic structural analysis at mean probability was performed and results presented. It is followed by a probabilistic evaluation to determine the effect of the primitive variables on the radiator panel structural performance. Based on uncertainties in material properties, structural geometry and loading, the results of the displacement and stress analysis are used as an input file for the probabilistic analysis of the panel. The sensitivity of the structural responses, such as maximum displacement and maximum tensile and compressive stresses of the facesheet in x and y directions and maximum VonMises stresses of the tube, to the loading and design variables is determined under the boundary condition where all edges of the radiator panel are pinned. Based on this study, design critical material and geometric parameters of the considered sandwich panel are identified.

  20. The use of a digital computer for calculation of acoustic fields of complex vibrating structures by the reciprocity principle

    NASA Technical Reports Server (NTRS)

    Rimskiy-Korsakov, A. V.; Belousov, Y. I.

    1973-01-01

    A program was compiled for calculating acoustical pressure levels, which might be created by vibrations of complex structures (an assembly of shells and rods), under the influence of a given force, for cases when these fields cannot be measured directly. The acoustical field is determined according to transition frequency and pulse characteristics of the structure in the projection mode. Projection characteristics are equal to the reception characteristics, for vibrating systems in which the reciprocity principle holds true. Characteristics in the receiving mode are calculated on the basis of experimental data on a point pulse space velocity source (input signal) and vibration response of the structure (output signal). The space velocity of a pulse source, set at a point in space r, where it is necessary to calculate the sound field of the structure p(r,t), is determined by measurements of acoustic pressure, created by a point source at a distance R. The vibration response is measured at the point where the forces F and f exciting the system should act.

  1. Dynamic Analyses Including Joints Of Truss Structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1991-01-01

    Method for mathematically modeling joints to assess influences of joints on dynamic response of truss structures developed in study. Only structures with low-frequency oscillations considered; only Coulomb friction and viscous damping included in analysis. Focus of effort to obtain finite-element mathematical models of joints exhibiting load-vs.-deflection behavior similar to measured load-vs.-deflection behavior of real joints. Experiments performed to determine stiffness and damping nonlinearities typical of joint hardware. Algorithm for computing coefficients of analytical joint models based on test data developed to enable study of linear and nonlinear effects of joints on global structural response. Besides intended application to large space structures, applications in nonaerospace community include ground-based antennas and earthquake-resistant steel-framed buildings.

  2. Microengineering as a tool to study substratum modulation and cell behaviour.

    PubMed

    Keatch, R P; Armoogum, K; Schor, S L; Pridham, M S; Banks, K; Khor, T Y; Matthew, C

    2002-01-01

    This research is an investigation of the means by which geometrical parameters (e.g. area and shape) and various surface attributes (materials and surface finish) of microengineered structures can modulate cellular response. This is based on biological observations indicating that: (i) the response of tissue cells to injury is determined by the net signal transduction response elicited by soluble regulatory molecules (e.g. cytokines), (ii) common matrix constituents (e.g. collagen) directly affect cell behaviour by the same signal transduction mechanisms mediating cytokine bioactivity, (iii) cellular response to cytokines is modulated by the precise nature of the extracellular matrix to which the target cells are adherent, including its biochemical composition and physical structure.

  3. Pressure And Thermal Modeling Of Rocket Launches

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.; Myruski, Brian L.; Farmer, Richard C.; Freeman, Jon A.

    1995-01-01

    Report presents mathematical model for use in designing rocket-launching stand. Predicts pressure and thermal environment, as well as thermal responses of structures to impinging rocket-exhaust plumes. Enables relatively inexperienced analyst to determine time-varying distributions and absolute levels of pressure and heat loads on structures.

  4. Determination of rheological parameters of pile foundations for bridges for earthquake analysis

    DOT National Transportation Integrated Search

    1997-07-01

    In the seismic design criteria for highway bridges, there is a significant lack of guidance on ways to incorporate the effect of soil-structure interaction in determining seismic response. For this study, a simple analytical model for pile and pile g...

  5. Determination of eddy current response with magnetic measurements.

    PubMed

    Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B

    2017-09-01

    Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.

  6. Temperature-dependent body size effects determine population responses to climate warming.

    PubMed

    Lindmark, Max; Huss, Magnus; Ohlberger, Jan; Gårdmark, Anna

    2018-02-01

    Current understanding of animal population responses to rising temperatures is based on the assumption that biological rates such as metabolism, which governs fundamental ecological processes, scale independently with body size and temperature, despite empirical evidence for interactive effects. Here, we investigate the consequences of interactive temperature- and size scaling of vital rates for the dynamics of populations experiencing warming using a stage-structured consumer-resource model. We show that interactive scaling alters population and stage-specific responses to rising temperatures, such that warming can induce shifts in population regulation and stage-structure, influence community structure and govern population responses to mortality. Analysing experimental data for 20 fish species, we found size-temperature interactions in intraspecific scaling of metabolic rate to be common. Given the evidence for size-temperature interactions and the ubiquity of size structure in animal populations, we argue that accounting for size-specific temperature effects is pivotal for understanding how warming affects animal populations and communities. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  7. Buffet characteristics of the F-8 supercritical wing airplane

    NASA Technical Reports Server (NTRS)

    Deangelis, V. M.; Monaghan, R. C.

    1977-01-01

    The buffet characteristics of the F-8 supercritical wing airplane were investigated. Wing structural response was used to determine the buffet characteristics of the wing and these characteristics are compared with wind tunnel model data and the wing flow characteristics at transonic speeds. The wingtip accelerometer was used to determine the buffet onset boundary and to measure the buffet intensity characteristics of the airplane. The effects of moderate trailing edge flap deflections on the buffet onset boundary are presented. The supercritical wing flow characteristics were determined from wind tunnel and flight static pressure measurements and from a dynamic pressure sensor mounted on the flight test airplane in the vicinity of the shock wave that formed on the upper surface of the wing at transonic speeds. The comparison of the airplane's structural response data to the supercritical flow characteristics includes the effects of a leading edge vortex generator.

  8. Modal analysis and dynamic stresses for acoustically excited shuttle insulation tiles

    NASA Technical Reports Server (NTRS)

    Ojalvo, I. U.; Ogilvie, P. L.

    1975-01-01

    Improvements and extensions to the RESIST computer program developed for determining the normalized modal stress response of shuttle insulation tiles are described. The new version of RESIST can accommodate primary structure panels with closed-cell stringers, in addition to the capability for treating open-cell stringers. In addition, the present version of RESIST numerically solves vibration problems several times faster than its predecessor. A new digital computer program, titled ARREST (Acoustic Response of Reusable Shuttle Tiles) is also described. Starting with modal information contained on output tapes from RESIST computer runs, ARREST determines RMS stresses, deflections and accelerations of shuttle panels with reusable surface insulation tiles. Both programs are applicable to stringer stiffened structural panels with or without reusable surface insulation titles.

  9. Feasibility of using piezoelectric actuators to control launch vehicle acoustics and structural vibrations

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Cudney, Harley H.

    2000-06-01

    Future launch vehicle payload fairings will be manufactured form advanced lightweight composite materials. The loss of distributed mass causes a significant increase in the internal acoustic environment, causing a severe threat to the payload. Using piezoelectric actuators to control the fairing vibration and the internal acoustic environment has been proposed. To help determine the acoustic control authority of piezoelectric actuators mounted on a rocket fairing, the internal acoustic response created by the actuators needs to be determined. In this work, the internal acoustic response of a closed simply-supported (SS) cylinder actuated by piezoelectric (PZT) actuators is determined using a n impedance model for the actuator and boundary element analysis. The experimentally validated model is used to extrapolate results for a SS cylinder that emulates a Minotaur payload fairing. The internal cylinder acoustic levels are investigated for PZT actuation between 35 and 400 Hz. Significant reductions in the structural response due to increased damping do not equate to similar reductions in the acoustic SPLs for the cylinder. The sound levels at the acoustic resonant frequencies are essentially unaffected by the significant increase in structural damping while the acoustic level sat the structural resonant frequencies are mildly reduced. The interior acoustic response of the cylinder is dominated by the acoustic modes and therefore significant reductions in the overall interior acoustic levels will not be achieved if only the structural resonances are controlled. As the actuation frequency is reduced, the number of actuators required to generate acoustic levels commensurate to that found in the fairing increases to impractical values. Below approximately 100 Hz, the current demands reach levels that are extremely difficult to achieve with a practical system. The results of this work imply that PZT actuators do not have the authority to control the payload fairing internal acoustics below approximately 100 Hz.

  10. NASA Office of Aeronautical and Space Technology Summer Workshop. Volume 6: Structures and dynamics panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Structural requirements for future space missions were defined in relation to technology needs and payloads. Specific areas examined include: large area space structures (antennas, solar array structures, and platforms); a long, slender structure or boom used to support large objects from the shuttle or hold two bodies apart in space; and advanced composite structures for cost effective weight reductions. Other topics discussed include: minimum gage concepts, high temperature components, load and response determination and control, and reliability and life prediction.

  11. Learning Responsibility and Balance of Power

    ERIC Educational Resources Information Center

    Çam, Sefika Sümeyye; Ünal Oruç, Eylem

    2014-01-01

    This qualitative study aims to determine teacher perspectives on learning responsibility and balance of power. The research design is case study which was conducted on four primary school teachers. The data were collected with semi-structured interviews and the data obtained were analyzed with categorical analysis, a type of content analysis. The…

  12. Binding of chemical warfare agent simulants as guests in a coordination cage: contributions to binding and a fluorescence-based response.

    PubMed

    Taylor, Christopher G P; Piper, Jerico R; Ward, Michael D

    2016-05-07

    Cubic coordination cages act as competent hosts for several alkyl phosphonates used as chemical warfare agent simulants; a range of cage/guest structures have been determined, contributions to guest binding analysed, and a fluorescent response to guest binding demonstrated.

  13. Plant structure and the searching efficiency of coccinellid larvae.

    PubMed

    Carter, M C; Sutherland, D; Dixon, A F G

    1984-08-01

    | 1. To determine the effect of plant structure on the searching efficiency of Coccinella septempunctata L. larvae, their functional response on pea and bean plants was compared. 2. The attack coefficient a was lower on pea than on bean plants. 3. This was not due to a difference in the coincidence of prey distribution and predator searching effort, but was due to larvae falling off the smooth leaves of pea plants significantly more frequently than off bean plants. 4. It was concluded that plant structure is an important factor in determining the quality of a habitat for coccinellids.

  14. Use of scanning electron microscopy and microanalysis to determine chloride content of concrete and raw materials : [summary].

    DOT National Transportation Integrated Search

    2013-01-01

    The Florida Department of Transportation (FDOT) is responsible for the maintenance of thousands of concrete structures that are exposed to or situated in salt water. Considering the significant cost of each of these structures, FDOT would like a 75-y...

  15. Chapter C. The Loma Prieta, California, Earthquake of October 17, 1989 - Building Structures

    USGS Publications Warehouse

    Çelebi, Mehmet

    1998-01-01

    Several approaches are used to assess the performance of the built environment following an earthquake -- preliminary damage surveys conducted by professionals, detailed studies of individual structures, and statistical analyses of groups of structures. Reports of damage that are issued by many organizations immediately following an earthquake play a key role in directing subsequent detailed investigations. Detailed studies of individual structures and statistical analyses of groups of structures may be motivated by particularly good or bad performance during an earthquake. Beyond this, practicing engineers typically perform stress analyses to assess the performance of a particular structure to vibrational levels experienced during an earthquake. The levels may be determined from recorded or estimated ground motions; actual levels usually differ from design levels. If a structure has seismic instrumentation to record response data, the estimated and recorded response and behavior of the structure can be compared.

  16. Building Quakes: Detection of Weld Fractures in Buildings using High-Frequency Seismic Techniques

    NASA Astrophysics Data System (ADS)

    Heckman, V.; Kohler, M. D.; Heaton, T. H.

    2009-12-01

    Catastrophic fracture of welded beam-column connections in buildings was observed in the Northridge and Kobe earthquakes. Despite the structural importance of such connections, it can be difficult to locate damage in structural members underneath superficial building features. We have developed a novel technique to locate fracturing welds in buildings in real time using high-frequency information from seismograms. Numerical and experimental methods were used to investigate an approach for detecting the brittle fracture of welds of beam-column connections in instrumented steel moment-frame buildings through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalogue of Green’s functions for an instrumented building to detect high-frequency failure events in the building during a later earthquake by screening continuous data for the presence of one or more of the events. This was explored experimentally by comparing structural responses of a small-scale laboratory structure under a variety of loading conditions. Experimentation was conducted on a polyvinyl chloride frame model structure with data recorded at a sample rate of 2000 Hz using piezoelectric accelerometers and a 24-bit digitizer. Green’s functions were obtained by applying impulsive force loads at various locations along the structure with a rubber-tipped force transducer hammer. We performed a blind test using cross-correlation techniques to determine if it was possible to use the catalogue of Green’s functions to pinpoint the absolute times and locations of subsequent, induced failure events in the structure. A finite-element method was used to simulate the response of the model structure to various source mechanisms in order to determine the types of elastic waves that were produced as well as to obtain a general understanding of the structural response to localized loading and fracture.

  17. Why do genotypes of Picea glauca differ in their growth response to elevated CO₂?

    PubMed

    Zhang, Junyan; Mycroft, Erin E; Adams, Greg; Reekie, Ed

    2011-01-01

    Meta-analyses reveal that fast-growing species have a greater growth response to elevated CO(2) than slow-growing species. It is unknown whether this is a direct response or whether inter-specific differences in growth are simply correlated with other physiological or morphological differences among species that affect the growth response to CO(2). Here we use intra-specific variation in Picea glauca to examine the mechanistic basis for this relationship. Relative growth rate (RGR) of 29 genotypes grown at ambient (370 µl l(-1)) or elevated (740 µl 1(-1)) CO(2) was measured. Physiological and morphological traits describing differences in allocation, canopy structure, stomatal function and photosynthesis were determined. Most variation in RGR (74%) was explained by traits associated with canopy structure. Although there was a strong correlation between RGR(740) and RGR(370), we found no evidence that genotypes that grew fast at ambient CO(2) had a greater relative growth response to CO(2). Given that the pattern found at the intra-specific level differed from that reported at the inter-specific level, our results suggest that RGR per se does not affect the growth response to CO(2). Rather, the CO(2) growth response is determined by traits that may or may not be correlated with RGR.

  18. SHARD - a SeisComP3 module for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Weber, B.; Becker, J.; Ellguth, E.; Henneberger, R.; Herrnkind, S.; Roessler, D.

    2016-12-01

    Monitoring building and structure response to strong earthquake ground shaking or human-induced vibrations in real-time forms the backbone of modern structural health monitoring (SHM). The continuous data transmission, processing and analysis reduces drastically the time decision makers need to plan for appropriate response to possible damages of high-priority buildings and structures. SHARD is a web browser based module using the SeisComp3 framework to monitor the structural health of buildings and other structures by calculating standard engineering seismology parameters and checking their exceedance in real-time. Thresholds can be defined, e.g. compliant with national building codes (IBC2000, DIN4149 or EC8), for PGA/PGV/PGD, response spectra and drift ratios. In case thresholds are exceeded automatic or operator driven reports are generated and send to the decision makers. SHARD also determines waveform quality in terms of data delay and variance to report sensor status. SHARD is the perfect tool for civil protection to monitor simultaneously multiple city-wide critical infrastructure as hospitals, schools, governmental buildings and structures as bridges, dams and power substations.

  19. Crystal Structures of the Receiver Domain of the Response Regulator PhoP from Escherichia coli in the Absence and Presence of the Phosphoryl Analog Beryllofluoride▿

    PubMed Central

    Bachhawat, Priti; Stock, Ann M.

    2007-01-01

    The response regulator PhoP is part of the PhoQ/PhoP two-component system involved in responses to depletion of extracellular Mg2+. Here, we report the crystal structures of the receiver domain of Escherichia coli PhoP determined in the absence and presence of the phosphoryl analog beryllofluoride. In the presence of beryllofluoride, the active receiver domain forms a twofold symmetric dimer similar to that seen in structures of other regulatory domains from the OmpR/PhoB family, providing further evidence that members of this family utilize a common mode of dimerization in the active state. In the absence of activating agents, the PhoP receiver domain crystallizes with a similar structure, consistent with the previous observation that high concentrations can promote an active state of PhoP independent of phosphorylation. PMID:17545283

  20. Effects of vegetation canopy structure on remotely sensed canopy temperatures. [inferring plant water stress and yield

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1979-01-01

    The effects of vegetation canopy structure on thermal infrared sensor response must be understood before vegetation surface temperatures of canopies with low percent ground cover can be accurately inferred. The response of a sensor is a function of vegetation geometric structure, the vertical surface temperature distribution of the canopy components, and sensor view angle. Large deviations between the nadir sensor effective radiant temperature (ERT) and vegetation ERT for a soybean canopy were observed throughout the growing season. The nadir sensor ERT of a soybean canopy with 35 percent ground cover deviated from the vegetation ERT by as much as 11 C during the mid-day. These deviations were quantitatively explained as a function of canopy structure and soil temperature. Remote sensing techniques which determine the vegetation canopy temperature(s) from the sensor response need to be studied.

  1. Scaling effects in the impact response of graphite-epoxy composite beams

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    1989-01-01

    In support of crashworthiness studies on composite airframes and substructure, an experimental and analytical study was conducted to characterize size effects in the large deflection response of scale model graphite-epoxy beams subjected to impact. Scale model beams of 1/2, 2/3, 3/4, 5/6, and full scale were constructed of four different laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic. The beam specimens were subjected to eccentric axial impact loads which were scaled to provide homologous beam responses. Comparisons of the load and strain time histories between the scale model beams and the prototype should verify the scale law and demonstrate the use of scale model testing for determining impact behavior of composite structures. The nonlinear structural analysis finite element program DYCAST (DYnamic Crash Analysis of STructures) was used to model the beam response. DYCAST analysis predictions of beam strain response are compared to experimental data and the results are presented.

  2. Polarization-dependent two-photon absorption for the determination of protein secondary structure: A theoretical study

    NASA Astrophysics Data System (ADS)

    Wanapun, Duangporn; Wampler, Ronald D.; Begue, Nathan J.; Simpson, Garth J.

    2008-03-01

    A new method for sensitive determination of protein secondary structure via multi-photon absorption is considered theoretically. Perturbation theory is developed to describe the polarization-dependent two-photon absorption (TPA) of α-helix and β-sheet protein secondary structures. The exciton coupling interactions responsible for relatively weak electronic circular dichroism in one-photon absorption are predicted to give rise to large changes in the TPA cross-section (>200%) for circular versus linear incident polarizations, defined as CLD. The CLD effect in TPA is electric dipole-allowed, which explains the much greater sensitivity. These predictions suggest TPA should be a viable means of sensitively probing protein secondary structure.

  3. Behavior sensitivities for control augmented structures

    NASA Technical Reports Server (NTRS)

    Manning, R. A.; Lust, R. V.; Schmit, L. A.

    1987-01-01

    During the past few years it has been recognized that combining passive structural design methods with active control techniques offers the prospect of being able to find substantially improved designs. These developments have stimulated interest in augmenting structural synthesis by adding active control system design variables to those usually considered in structural optimization. An essential step in extending the approximation concepts approach to control augmented structural synthesis is the development of a behavior sensitivity analysis capability for determining rates of change of dynamic response quantities with respect to changes in structural and control system design variables. Behavior sensitivity information is also useful for man-machine interactive design as well as in the context of system identification studies. Behavior sensitivity formulations for both steady state and transient response are presented and the quality of the resulting derivative information is evaluated.

  4. APPLICATION OF ELASTICITY ANALYSES AND PERTURBATION SIMULATIONS IN DETERMINING STRESSOR IMPACTS ON POPULATION GROWTH RATE AND EXTINCTION RISK

    EPA Science Inventory

    Population structure and life history strategies are determinants of how populations respond to stressor-induced impairments in individual-level responses, but a consistent and holistic analysis has not been reported. Effects on population growth rate were modeled using five theo...

  5. Food-web models predict species abundances in response to habitat change.

    PubMed

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-10-01

    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss.

  6. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    PubMed

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-05

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Motor Flow Instabilities - Part 1

    DTIC Science & Technology

    2004-01-01

    by the flow, the structure motions (as possibly affecting the mean and unsteady flows). Finally, the model should be able: a) to propagate the...combustion responses function determinations, Dedicated models for combustion mechanisms and fluid- structure couplings, Dedicated and documented test...associated with these large motors (recall that f1L ≈ a/2L) rendered such oscillations undesirable since they were able to couple to the structural modes

  8. Coupled multi-disciplinary composites behavior simulation

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.

    1993-01-01

    The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.

  9. Earthquake Response of Reinforced Concrete Building Retrofitted with Geopolymer Concrete and X-shaped Metallic Damper

    NASA Astrophysics Data System (ADS)

    Madheswaran, C. K.; Prakash vel, J.; Sathishkumar, K.; Rao, G. V. Rama

    2017-06-01

    A three-storey half scale reinforced concrete (RC) building is fixed with X-shaped metallic damper at the ground floor level, is designed and fabricated to study its seismic response characteristics. Experimental studies are carried out using the (4 m × 4 m) tri-axial shake-table facility to evaluate the seismic response of a retrofitted RC building with open ground storey (OGS) structure using yielding type X-shaped metallic dampers (also called as Added Damping and Stiffness-ADAS elements) and repairing the damaged ground storey columns using geopolymer concrete composites. This elasto-plastic device is normally incorporated within the frame structure between adjacent floors through chevron bracing, so that they efficiently enhance the overall energy dissipation ability of the seismically deficient frame structure under earthquake loading. Free vibration tests on RC building without and with yielding type X-shaped metallic damper is carried out. The natural frequencies and mode shapes of RC building without and with yielding type X-shaped metallic damper are determined. The retrofitted reinforced concrete building is subjected to earthquake excitations and the response from the structure is recorded. This work discusses the preparation of test specimen, experimental set-up, instrumentation, method of testing of RC building and the response of the structure. The metallic damper reduces the time period of the structure and displacement demands on the OGS columns of the structure. Nonlinear time history analysis is performed using structural analysis package, SAP2000.

  10. Pure Perceptual-Based Sequence Learning: A Role for Visuospatial Attention

    ERIC Educational Resources Information Center

    Remillard, Gilbert

    2009-01-01

    Learning the structure of a sequence of target locations when target location is not the response dimension and the sequence of target locations is uncorrelated with the sequence of responses is called pure perceptual-based sequence learning. The paradigm introduced by G. Remillard (2003) was used to determine whether orienting of visuospatial…

  11. What Do We Do Today, Daddy? (Father's Perception of His Role and Responsibilities).

    ERIC Educational Resources Information Center

    Woolner, Rosestelle B.

    This paper presents brief summaries of two exploratory studies conducted to determine the non-custodial father's perception of his role and responsibilities following divorce. In Study I, eight middle class males who visited their children at least twice a month were interviewed individually. The interview consisted of a structured questionnaire…

  12. Detecting damage in full-scale honeycomb sandwich composite curved fuselage panels through frequency response

    NASA Astrophysics Data System (ADS)

    Leone, Frank A., Jr.; Ozevin, Didem; Mosinyi, Bao; Bakuckas, John G., Jr.; Awerbuch, Jonathan; Lau, Alan; Tan, Tein-Min

    2008-03-01

    Preliminary tests were conducted using frequency response (FR) characteristics to determine damage initiation and growth in a honeycomb sandwich graphite/epoxy curved panel. This investigation was part of a more general study investigating the damage tolerance characteristics of several such panels subjected to quasi-static internal pressurization combined with hoop and axial loading. The panels were tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center in Atlantic City, NJ. The overall program objective was to investigate the damage tolerance characteristics of full-scale composite curved aircraft fuselage panels and the evolution of damage under quasi-static loading up to failure. This paper focuses on one aspect of this comprehensive investigation: the effect of state-of-damage on the characteristics of the frequency response of the subject material. The results presented herein show that recording the frequency response could be used for real-time monitoring of damage growth and in determining damage severity in full-scale composites fuselage aircraft structures.

  13. A Plant's Response to Gravity as a Wave Guide Phenomenon

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    1997-11-01

    Plant experimental data provides a unifying wave theory (W-wave theory) for the growth and development of plants. A plant's response to gravity is an important aspect of this theory. It appears that a plant part is tuned to the angle with which it initially grew with respect to the gravitational field and changes produce correction responses. This is true because the velocity of W-waves (whose standing waves determine plant structure) within plant tissue is found to be different in different directions (angle a) with respect to the gravitational field. I found that there are preferred values of a, namely integral multiples of near 5 degrees for some plants. Conifers apparently are more sensitive to the gravitational field than deciduous trees, in the cases studied, so their structure is determined in more detail by the gravitational field. A plant's response to gravity appears to be a fundamental phenomenon and may provide a new model for gravity that can be experimentally verified in the laboratory. Along these same lines accelerometers placed in plant tissue indicate that plants produce gravity related forces that facilitate sap flow. See the

  14. Structural Genomics of Protein Phosphatases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almo,S.; Bonanno, J.; Sauder, J.

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptionalmore » regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.« less

  15. qPCR for Second Year Undergraduates: A Short, Structured Inquiry to Illustrate Differential Gene Expression

    ERIC Educational Resources Information Center

    McCauslin, Christine Seitz; Gunn, Kathryn Elaine; Pirone, Dana; Staiger, Jennifer

    2015-01-01

    We describe a structured inquiry laboratory exercise that examines transcriptional regulation of the "NOS2" gene under conditions that simulate the inflammatory response in macrophages. Using quantitative PCR and the comparative C[subscript T] method, students are able determine whether transcriptional activation of "NOS2"…

  16. Final project report : rapid non-contact measurement using multiple point laser Doppler vibrometry for health evaluation of rail and road bridges.

    DOT National Transportation Integrated Search

    2015-01-01

    Measurement of dynamic responses to ambient stimuli can be used to evaluate as-built structural characteristics. These parameters can be used to determine the overall health of the structure; that is, the damage level and location can provide r...

  17. Responses of redwood soil microbial community structure and N transformations to climate change

    Treesearch

    Damon C. Bradbury; Mary K. Firestone

    2012-01-01

    Soil microorganisms perform critical ecosystem functions, including decomposition, nitrogen (N) mineralization and nitrification. Soil temperature and water availability can be critical determinants of the rates of these processes as well as microbial community composition and structure. This research examined how changes in climate affect bacterial and fungal...

  18. Review of probabilistic analysis of dynamic response of systems with random parameters

    NASA Technical Reports Server (NTRS)

    Kozin, F.; Klosner, J. M.

    1989-01-01

    The various methods that have been studied in the past to allow probabilistic analysis of dynamic response for systems with random parameters are reviewed. Dynamic response may have been obtained deterministically if the variations about the nominal values were small; however, for space structures which require precise pointing, the variations about the nominal values of the structural details and of the environmental conditions are too large to be considered as negligible. These uncertainties are accounted for in terms of probability distributions about their nominal values. The quantities of concern for describing the response of the structure includes displacements, velocities, and the distributions of natural frequencies. The exact statistical characterization of the response would yield joint probability distributions for the response variables. Since the random quantities will appear as coefficients, determining the exact distributions will be difficult at best. Thus, certain approximations will have to be made. A number of techniques that are available are discussed, even in the nonlinear case. The methods that are described were: (1) Liouville's equation; (2) perturbation methods; (3) mean square approximate systems; and (4) nonlinear systems with approximation by linear systems.

  19. Volterra Series Approach for Nonlinear Aeroelastic Response of 2-D Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of geometric nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  20. Three dimensional (3D) microstructure-based finite element modeling of Al-SiC nanolaminates using focused ion beam (FIB) tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Carl R.

    Al-SiC nanolaminate composites show promise as high performance coating materials due to their combination of strength and toughness. Although a significant amount of modeling effort has been focused on materials with an idealized flat nanostructure, experimentally these materials exhibit complex undulating layer geometries. This work utilizes FIB tomography to characterize this nanostructure in 3D and finite element modeling to determine the effect that this complex structure has on the mechanical behavior of these materials. A sufficiently large volume was characterized such that a 1 × 2 μm micropillar could be generated from the dataset and compared directly to experimental results.more » The mechanical response from this nanostructure was then compared to pillar models using simplified structures with perfectly flat layers, layers with sinusoidal waviness, and layers with arc segment waviness. The arc segment based layer geometry showed the best agreement with the experimentally determined structure, indicating it would be the most appropriate geometry for future modeling efforts. - Highlights: •FIB tomography was used to determine the structure of an Al-SiC nanolaminate in 3D. •FEM was used to compare the deformation of the nanostructure to experimental results. •Idealized structures from literature were compared to the FIB determined structure. •Arc segment based structures approximated the FIB determined structure most closely.« less

  1. Parameter identification of civil engineering structures

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Sun, C. T.

    1980-01-01

    This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.

  2. First-passage problems: A probabilistic dynamic analysis for degraded structures

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1990-01-01

    Structures subjected to random excitations with uncertain system parameters degraded by surrounding environments (a random time history) are studied. Methods are developed to determine the statistics of dynamic responses, such as the time-varying mean, the standard deviation, the autocorrelation functions, and the joint probability density function of any response and its derivative. Moreover, the first-passage problems with deterministic and stationary/evolutionary random barriers are evaluated. The time-varying (joint) mean crossing rate and the probability density function of the first-passage time for various random barriers are derived.

  3. Experimental determinations of the eigenmodes for composite bars made with carbon and Kevlar-carbon fibers

    NASA Astrophysics Data System (ADS)

    Miriţoiu, C. M.; Stănescu, M. M.; Burada, C. O.; Bolcu, D.; Roşca, V.

    2015-11-01

    For modal identification, the single-point excitation method has been widely used in modal tests and it consists in applying a force in a given point and recording the vibratory structure response in all interest points, including the excitation point. There will be presented the experimental recordings for the studied bars (with Kevlar-carbon or carbon fibers), the frequency response function in Cartesian and polar coordinates. By using the frequency response functions we determine the eigenparameters for each bar. We present the final panel of the eigenmodes (with the damping factors, eigenfrequencies and critical damping) for each considered bar. Using the eigenfrequency of the first determined eigenmode, the bars stiffness has been determined. The presented bars can be used in practical engineering for: car or bus body parts, planes body parts, bullet-proof vests, reinforcements for sandwich beams, and so on.

  4. Optimal multi-type sensor placement for response and excitation reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, C. D.; Xu, Y. L.

    2016-01-01

    The need to perform dynamic response reconstruction always arises as the measurement of structural response is often limited to a few locations, especially for a large civil structure. Besides, it is usually very difficult, if not impossible, to measure external excitations under the operation condition of a structure. This study presents an algorithm for optimal placement of multi-type sensors, including strain gauges, displacement transducers and accelerometers, for the best reconstruction of responses of key structural components where there are no sensors installed and the best estimation of external excitations acting on the structure at the same time. The algorithm is developed in the framework of Kalman filter with unknown excitation, in which minimum-variance unbiased estimates of the generalized state of the structure and the external excitations are obtained by virtue of limited sensor measurements. The structural responses of key locations without sensors can then be reconstructed with the estimated generalized state and excitation. The asymptotic stability feature of the filter is utilized for optimal sensor placement. The number and spatial location of the multi-type sensors are determined by adding the optimal sensor which gains the maximal reduction of the estimation error of reconstructed responses. For the given mode number in response reconstruction and the given locations of external excitations, the optimal multi-sensor placement achieved by the proposed method is independent of the type and time evolution of external excitation. A simply-supported overhanging steel beam under multiple types of excitation is numerically studied to demonstrate the feasibility and superiority of the proposed method, and the experimental work is then carried out to testify the effectiveness of the proposed method.

  5. Crystal structure of a complex between the phosphorelay protein YPD1 and the response regulator domain of SLN1 bound to a phosphoryl analog

    PubMed Central

    Zhao, Xiaodong; Copeland, Daniel M.; Soares, Alexei S.; West, Ann H.

    2008-01-01

    Summary The crystal structure of the yeast SLN1 response regulator domain bound to both a phosphoryl analog (BeF3−) and Mg2+ ion in complex with its downstream phosphorelay signaling partner YPD1 has been determined at a resolution of 1.70 Å. Comparisons between the beryllium fluoride-activated complex and the unliganded (or apo) complex determined previously reveal modest but important differences. The SLN1-R1•Mg2+•BeF3− structure from the complex provides evidence for the first time that the mechanism of phosphorylation-induced activation is highly conserved between bacterial response regulator domains and this example from a eukaryotic organism. Residues in and around the active site undergo slight rearrangements in order to form bonds to the essential divalent cation and fluorine atoms of BeF3−. Two conserved switch-like residues (Thr 1173 and Phe 1192) occupy distinctly different positions in the apo- versus BeF3−-bound structures consistent with the “Y-T” coupling mechanism proposed for activation of CheY and other bacterial response regulators. Several loop regions and the α4-β5-α5 surface of the SLN1-R1 domain undergo subtle conformational changes (∼1-3 Å displacements relative to the apo-structure) that lead to significant changes in terms of contacts that are formed with YPD1. Detailed structural comparisons of protein-protein interactions in the apo- and BeF3−-bound complexes suggest at least a two-state equilibrium model for formation of a transient encounter complex, in which phosphorylation of the response regulator promotes the formation of a phosphotransfer-competent complex. In the BeF3−-activated complex, the position of His 64 from YPD1 is within ideal distance and near linear geometry with Asp 1144 from the SLN1-R1 domain for phosphotransfer to occur. The ground state structure presented here suggests that phosphoryl transfer will likely proceed through an associative mechanism involving formation of a pentacoordinate phosphorus intermediate. PMID:18076904

  6. [The genetic determination and function of RR-proteins--the regulators of photoperiodic reaction and circadian rhythms in plants].

    PubMed

    Tots'kyĭ, V M; D'iachenko, L F; Muterko, O F; Balashova, I A; Toptikov, V A

    2012-01-01

    The present review devoted to the analysis of recent literature on genetic determination and the domain organization of the newly discovered two-component signaling systems in pro- and eukaryotes. These structures are involved in the regulation of numerous morphological and physiological processes in plants. RR-proteins, it the key elements of signaling systems, they launch a cascade of phosphotransferase reactions and directly or indirectly regulate the transcription and activity other proteins, including enzymes, in response to hormones or environmental factors. Modern views on the molecular and genetic mechanisms of photoperiodic response, circadian rhythms and anti-stress responses in plants are set out in these positions. The relationship between gene expression and photoreceptor sensitivity of plants to photoperiod traced. We present our own data obtained on the isogenic lines of wheat, where been showed dependence expression of structural genes of enzymes on the allelic composition of individual PRR-loci and the duration action of low temperature.

  7. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru; Kopaev, Yu. V.; Savinov, S. A.

    2013-03-15

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schroedinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In{sub 0.53}Ga{sub 0.47}As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V{sub dc} in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in suchmore » structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.« less

  8. How the Dynamics of a Supramolecular Polymer Determines Its Dynamic Adaptivity and Stimuli-Responsiveness: Structure-Dynamics-Property Relationships From Coarse-Grained Simulations.

    PubMed

    Torchi, Andrea; Bochicchio, Davide; Pavan, Giovanni M

    2018-04-12

    The rational design of supramolecular polymers that can adapt or respond in time to specific stimuli in a controlled way is interesting for many applications, but this requires understanding the molecular factors that make the material faster or slower in responding to the stimulus. To this end, it is necessary to study the dynamic adaptive properties at submolecular resolution, which is difficult at an experimental level. Here we show coarse-grained molecular dynamics simulations (<5 Å resolution) demonstrating how the dynamic adaptivity and stimuli responsiveness of a supramolecular polymer is controlled by the intrinsic dynamics of the assembly, which is in turn determined by the structure of the monomers. As a representative case, we focus on a water-soluble 1,3,5-benzenetricarboxamide (BTA) supramolecular polymer incorporating (charged) receptor monomers, experimentally seen to undergo dynamic clustering following the superselective binding to a multivalent recruiter. Our simulations show that the dynamic reorganization of the supramolecular structure proceeds via monomer diffusion on the dynamic fiber surface (exchange within the fiber). Rationally changing the structure of the monomers to make the fiber surface more or less dynamic allows tuning the rate of response to the stimulus and of supramolecular reconfiguration. Simple in silico experiments draw a structure-dynamics-property relationship revealing the key factors underpinning the dynamic adaptivity and stimuli-responsiveness of these supramolecular polymers. We come out with clear evidence that to master the bioinspired properties of these fibers, it is necessary to control their intrinsic dynamics, while the high-resolution of our molecular models permits us to show how.

  9. Crystal Structure and Theoretical Analysis of Green Gold Au 30 (S- t Bu) 18 Nanomolecules and Their Relation to Au 30 S(S- t Bu) 18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dass, Amala; Jones, Tanya; Rambukwella, Milan

    We report the complete X-ray crystallographic structure as determined through single crystal X-ray diffraction and a thorough theoretical analysis of the green gold Au30(S-tBu)18. While the structure of Au30S(S-tBu)18 with 19 sulfur atoms has been reported, the crystal structure of Au30(S-tBu)18 without the μ3-sulfur has remained elusive until now, though matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS) data unequivocally shows its presence in abundance. The Au30(S-tBu)18 nanomolecule is not only distinct in its crystal structure but has unique temperature dependent optical properties. Structure determination allows a rigorous comparison and an excellent agreement with theoreticalmore » predictions of structure, stability, and optical response.« less

  10. Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements

    NASA Astrophysics Data System (ADS)

    Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.

    2004-05-01

    Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter identification procedure, are demonstrated.

  11. Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance

    NASA Astrophysics Data System (ADS)

    Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo

    2016-05-01

    Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior.Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior. Electronic supplementary information (ESI) available: Raman, SEM, TEM, mapping, XPS and PL images; transient plot; response of 3DOM WO3/Li to NO2 concentration, sensing stability and the corresponding log (Sg - 1) versus log Cg curves. See DOI: 10.1039/c6nr00858e

  12. VEGA Launch Vehicle Vibro-Acoustic Approach for Multi Payload Configuration Qualification

    NASA Astrophysics Data System (ADS)

    Bartoccini, D.; Di Trapani, C.; Fotino, D.; Bonnet, M.

    2014-06-01

    Acoustic loads are one of the principal source of structural vibration and internal noise during a launch vehicle flight but do not generally present a critical design condition for the main load-carrying structure. However, acoustic loads may be critical to the proper functioning of vehicle components and their supporting structures, which are otherwise lightly loaded. Concerning the VEGA program, in order to demonstrate VEGA Launch Vehicle (LV) on-ground qualification, prior to flight, to the acoustic load, the following tests have been performed: small-scale acoustic test intended for the determination of the acoustic loading of the LV and its nature and full-scale acoustic chamber test to determine the vibro-acoustic response of the structures as well as of the acoustic cavities.

  13. Determinants of community structure of zooplankton in heavily polluted river ecosystems

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Li, Jie; Chen, Yiyong; Shan, Baoqing; Wang, Weimin; Zhan, Aibin

    2016-02-01

    River ecosystems are among the most affected habitats globally by human activities, such as the release of chemical pollutants. However, it remains largely unknown how and to what extent many communities such as zooplankton are affected by these environmental stressors in river ecosystems. Here, we aim to determine major factors responsible for shaping community structure of zooplankton in heavily polluted river ecosystems. Specially, we use rotifers in the Haihe River Basin (HRB) in North China as a case study to test the hypothesis that species sorting (i.e. species are “filtered” by environmental factors and occur at environmental suitable sites) plays a key role in determining community structure at the basin level. Based on an analysis of 94 sites across the plain region of HRB, we found evidence that both local and regional factors could affect rotifer community structure. Interestingly, further analyses indicated that local factors played a more important role in determining community structure. Thus, our results support the species sorting hypothesis in highly polluted rivers, suggesting that local environmental constraints, such as environmental pollution caused by human activities, can be stronger than dispersal limitation caused by regional factors to shape local community structure of zooplankton at the basin level.

  14. Composition Influences the Pathway but not the Outcome of the Metabolic Response of Bacterioplankton to Resource Shifts

    PubMed Central

    Comte, Jérôme; del Giorgio, Paul A.

    2011-01-01

    Bacterioplankton community metabolism is central to the functioning of aquatic ecosystems, and strongly reactive to changes in the environment, yet the processes underlying this response remain unclear. Here we explore the role that community composition plays in shaping the bacterial metabolic response to resource gradients that occur along aquatic ecotones in a complex watershed in Québec. Our results show that the response is mediated by complex shifts in community structure, and structural equation analysis confirmed two main pathways, one involving adjustments in the level of activity of existing phylotypes, and the other the replacement of the dominant phylotypes. These contrasting response pathways were not determined by the type or the intensity of the gradients involved, as we had hypothesized, but rather it would appear that some compositional configurations may be intrinsically more plastic than others. Our results suggest that community composition determines this overall level of community plasticity, but that composition itself may be driven by factors independent of the environmental gradients themselves, such that the response of bacterial communities to a given type of gradient may alternate between the adjustment and replacement pathways. We conclude that community composition influences the pathways of response in these bacterial communities, but not the metabolic outcome itself, which is driven by the environment, and which can be attained through multiple alternative configurations. PMID:21980410

  15. Human Response to Aircraft-Noise-Induced Building Vibration

    NASA Technical Reports Server (NTRS)

    Cawthorn, J. M.; Dempsey, T. K.; DeLoach, R.

    1978-01-01

    The effects of noise induced building structure vibration and the rattle of objects on human response to aircraft flyover noise were investigated in a series of studies conducted in both the field and the laboratory. The subjective detection thresholds for vibration and rattle were determined as well as the effect of vibration and rattle upon aircraft noise annoyance.

  16. Plant responses to simulated hurricane impacts in a subtropical wet forest, Puerto Rico

    Treesearch

    Aaron B. Shiels; Jess K. Zimmerman; Diana C. García-Montiel; Inge Jonckheere; Jennifer Holm; David Horton; Nicholas Brokaw

    2010-01-01

    1. We simulated two key components of severe hurricane disturbance, canopy openness and detritus deposition, to determine the independent and interactive effects of these components on woody plant recruitment and forest structure. 2. We increased canopy openness by trimming branches and added or subtracted canopy detritus in a factorial design. Plant responses were...

  17. Time Analysis of Building Dynamic Response Under Seismic Action. Part 1: Theoretical Propositions

    NASA Astrophysics Data System (ADS)

    Ufimtcev, E. M.

    2017-11-01

    The first part of the article presents the main provisions of the analytical approach - the time analysis method (TAM) developed for the calculation of the elastic dynamic response of rod structures as discrete dissipative systems (DDS) and based on the investigation of the characteristic matrix quadratic equation. The assumptions adopted in the construction of the mathematical model of structural oscillations as well as the features of seismic forces’ calculating and recording based on the data of earthquake accelerograms are given. A system to resolve equations is given to determine the nodal (kinematic and force) response parameters as well as the stress-strain state (SSS) parameters of the system’s rods.

  18. Integrated Structural/Acoustic Modeling of Heterogeneous Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett, A.; Aboudi, Jacob; Arnold, Steven, M.; Pennline, James, A.

    2012-01-01

    A model for the dynamic response of heterogeneous media is presented. A given medium is discretized into a number of subvolumes, each of which may contain an elastic anisotropic material, void, or fluid, and time-dependent boundary conditions are applied to simulate impact or incident pressure waves. The full time-dependent displacement and stress response throughout the medium is then determined via an explicit solution procedure. The model is applied to simulate the coupled structural/acoustic response of foam core sandwich panels as well as aluminum panels with foam inserts. Emphasis is placed on the acoustic absorption performance of the panels versus weight and the effects of the arrangement of the materials and incident wave frequency.

  19. Structuring Light to Manipulate Multipolar Resonances for Metamaterial Applications

    NASA Astrophysics Data System (ADS)

    Das, Tanya

    Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. Typically, researchers engineer multipolar light-matter interactions by modifying the size, shape, and composition of the resonators. Here, we instead engineer multipolar interactions by modifying properties of the incident radiation. In this dissertation, we propose a new framework for determining the scattering response of resonators based on properties of the local excitation field. First, we derive an analytical theory to determine the scattering response of spherical nanoparticles under any type of illumination. Using this theory, we demonstrate the ability to drastically manipulate the scattering properties of a spherical nanoparticle by varying the illumination and demonstrate excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. Next, we investigate the response of dielectric dimer structures illuminated by cylindrical vector beams. Using finite-difference time-domain simulations, we demonstrate significant modification of the scattering spectra of dimer antennas and reveal how the illumination condition gives rise to these spectra through manipulation of electric and magnetic mode hybridization. Finally, we present a simple and efficient numerical simulation based on local field principles for extracting the multipolar response of any resonator under illumination by structured light. This dissertation enhances the understanding of fundamental light-matter interactions in metamaterials and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.

  20. Testing the simplex assumption underlying the Sport Motivation Scale: a structural equation modeling analysis.

    PubMed

    Li, F; Harmer, P

    1996-12-01

    Self-determination theory (Deci & Ryan, 1985) suggests that motivational orientation or regulatory styles with respect to various behaviors can be conceptualized along a continuum ranging from low (a motivation) to high (intrinsic motivation) levels of self-determination. This pattern is manifested in the rank order of correlations among these regulatory styles (i.e., adjacent correlations are expected to be higher than those more distant) and is known as a simplex structure. Using responses from the Sport Motivation Scale (Pelletier et al., 1995) obtained from a sample of 857 college students (442 men, 415 women), the present study tested the simplex structure underlying SMS subscales via structural equation modeling. Results confirmed the simplex model structure, indicating that the various motivational constructs are empirically organized from low to high self-determination. The simplex pattern was further found to be invariant across gender. Findings from this study support the construct validity of the SMS and have important implications for studies focusing on the influence of motivational orientation in sport.

  1. Food-Web Models Predict Species Abundances in Response to Habitat Change

    PubMed Central

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-01-01

    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss. PMID:17002518

  2. Analogy for the effect of material and geometrical variables on energy-absorption capability of composite tubes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Jones, Robert M.

    1992-01-01

    Simplified procedures for determining the qualitative effect a variable has on structural response of a composite tube are very useful in both preliminary design as well as in providing insight into the general response. An analysis procedure is presented that can be used to determine the qualitative change in the sustained crushing load due to a change in specimen material properties or geometry. The analysis procedure is similar in form to the equation for the buckling load of a column on an elastic foundation.

  3. Mass spectrometry based structural analysis and systems immunoproteomics strategies for deciphering the host response to endotoxin.

    PubMed

    Khan, Mohd M; Ernst, Orna; Sun, Jing; Fraser, Iain D C; Ernst, Robert K; Goodlett, David R; Nita-Lazar, Aleksandra

    2018-06-24

    One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4 (TLR4)/myeloid differentiation factor-2 (MD2) complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress, and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry (MS)-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, MS-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications (PTMs). Copyright © 2018. Published by Elsevier Ltd.

  4. Hypnotherapy to Reduce Hot Flashes: Examination of Response Expectancies as a Mediator of Outcomes

    PubMed Central

    Sliwinski, Jim R.; Elkins, Gary R.

    2017-01-01

    The mechanism of action responsible for hypnotherapy’s effect in reducing hot flashes is not yet known. The purpose of this study was to examine the role of response expectancies as a potential mediator. Hypnotizability was also tested as an effect moderator. Data were collected from a sample of 172 postmenopausal women, who had been randomized to receive either a 5-week hypnosis intervention or structured attention counseling. Measures of response expectancies were analyzed to determine if the relationship between group assignment and hot flashes frequency was mediated by expectancies for treatment efficacy. A series of simple mediation and conditional process analyses did not support mediation of the relationship between treatment condition and hot flash frequency through response expectancy. The effect of hypnotherapy in reducing hot flashes does not appear to be due to placebo effects as determined by response expectancies. Implications for clinical practice and future research are discussed. PMID:28528570

  5. Research on response spectrum of dam based on scenario earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Zhang, Yushan

    2017-10-01

    Taking a large hydropower station as an example, the response spectrum based on scenario earthquake is determined. Firstly, the potential source of greatest contribution to the site is determined on the basis of the results of probabilistic seismic hazard analysis (PSHA). Secondly, the magnitude and epicentral distance of the scenario earthquake are calculated according to the main faults and historical earthquake of the potential seismic source zone. Finally, the response spectrum of scenario earthquake is calculated using the Next Generation Attenuation (NGA) relations. The response spectrum based on scenario earthquake method is less than the probability-consistent response spectrum obtained by PSHA method. The empirical analysis shows that the response spectrum of scenario earthquake considers the probability level and the structural factors, and combines the advantages of the deterministic and probabilistic seismic hazard analysis methods. It is easy for people to accept and provide basis for seismic engineering of hydraulic engineering.

  6. Management and Operations Auditing: A Business Oriented Management Structure For a Unified School District.

    ERIC Educational Resources Information Center

    Conway, Ernest J.; And Others

    An operations audit was conducted for a school district. The purpose of the audit was to determine the organization of the central office and reorganize its structure and staff as appropriate to clearly define goals and objectives, specify roles and responsibilities, eliminate wasted or duplicated efforts, and functionally define operational work…

  7. Vibration-based structural health monitoring using adaptive statistical method under varying environmental condition

    NASA Astrophysics Data System (ADS)

    Jin, Seung-Seop; Jung, Hyung-Jo

    2014-03-01

    It is well known that the dynamic properties of a structure such as natural frequencies depend not only on damage but also on environmental condition (e.g., temperature). The variation in dynamic characteristics of a structure due to environmental condition may mask damage of the structure. Without taking the change of environmental condition into account, false-positive or false-negative damage diagnosis may occur so that structural health monitoring becomes unreliable. In order to address this problem, an approach to construct a regression model based on structural responses considering environmental factors has been usually used by many researchers. The key to success of this approach is the formulation between the input and output variables of the regression model to take into account the environmental variations. However, it is quite challenging to determine proper environmental variables and measurement locations in advance for fully representing the relationship between the structural responses and the environmental variations. One alternative (i.e., novelty detection) is to remove the variations caused by environmental factors from the structural responses by using multivariate statistical analysis (e.g., principal component analysis (PCA), factor analysis, etc.). The success of this method is deeply depending on the accuracy of the description of normal condition. Generally, there is no prior information on normal condition during data acquisition, so that the normal condition is determined by subjective perspective with human-intervention. The proposed method is a novel adaptive multivariate statistical analysis for monitoring of structural damage detection under environmental change. One advantage of this method is the ability of a generative learning to capture the intrinsic characteristics of the normal condition. The proposed method is tested on numerically simulated data for a range of noise in measurement under environmental variation. A comparative study with conventional methods (i.e., fixed reference scheme) demonstrates the superior performance of the proposed method for structural damage detection.

  8. Biomaterial-host interactions: consequences, determined by implant retrieval analysis.

    PubMed

    Kaplan, S S

    1994-01-01

    Prosthetic biomaterials have had a profound impact on reconstructive surgery but complete biocompatability remains illusive. This review considers the retrieval analysis of four common prosthetic structures: the hip, the knee, heart valves, and blood vessels. We show that despite a fine record of early success, deterioration due to mechanical failure or deleterious host responses to the implant may compromise long term function. The eventual retrieval and detailed analysis of implanted structures provides an invaluable opportunity to determine the characteristics of implant success or failure and to provoke the development of still better materials.

  9. Personal and Social Responsibility among Athletes: the Role of Self-Determination, Achievement Goals and Engagement

    PubMed Central

    Martins, Paulo; Rosado, António; Ferreira, Vítor; Biscaia, Rui

    2017-01-01

    Abstract The purpose of this study was to assess the relationship between motivation, engagement and personal and social responsibility among athletes. Based on the literature, a survey was conducted including measures of motivation, considering task orientation and ego orientation, intrinsic and extrinsic motivation, and amotivation. We also measured the components of engagement (dedication, confidence, vigor and enthusiasm) and the components of personal and social responsibility. A total of 517 athletes from different types of sports participated in the study. The results gathered through a structural equation model revealed that task orientation had the strongest relationship with personal responsibility and social responsibility, followed by engagement. Self-determination levels were not associated with personal and social responsibility. These results suggest that monitoring of task orientation and engagement levels should be performed by coaches as a strategy to develop personal and social responsibility among their athletes. Moreover, findings from this study provide scholars with a tool to aid them in managing athletes’ levels of personal and social responsibility. PMID:28713457

  10. Personal and Social Responsibility among Athletes: the Role of Self-Determination, Achievement Goals and Engagement.

    PubMed

    Martins, Paulo; Rosado, António; Ferreira, Vítor; Biscaia, Rui

    2017-06-01

    The purpose of this study was to assess the relationship between motivation, engagement and personal and social responsibility among athletes. Based on the literature, a survey was conducted including measures of motivation, considering task orientation and ego orientation, intrinsic and extrinsic motivation, and amotivation. We also measured the components of engagement (dedication, confidence, vigor and enthusiasm) and the components of personal and social responsibility. A total of 517 athletes from different types of sports participated in the study. The results gathered through a structural equation model revealed that task orientation had the strongest relationship with personal responsibility and social responsibility, followed by engagement. Self-determination levels were not associated with personal and social responsibility. These results suggest that monitoring of task orientation and engagement levels should be performed by coaches as a strategy to develop personal and social responsibility among their athletes. Moreover, findings from this study provide scholars with a tool to aid them in managing athletes' levels of personal and social responsibility.

  11. Aeroelastic Response of Nonlinear Wing Section By Functional Series Technique

    NASA Technical Reports Server (NTRS)

    Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.

    2000-01-01

    This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  12. Aeroelastic Response of Nonlinear Wing Section by Functional Series Technique

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni

    2001-01-01

    This paper addresses the problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via indicial functions and Volterra series approach. The related aeroelastic governing equations are based upon the inclusion of structural and damping nonlinearities in plunging and pitching, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of the considered nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Univ. of Wisconsin, Madison, WI; Miller, Brandon D.

    Ferritic/Martensitic (F/M) steels with high Cr content posses the high temperature strength and low swelling rates required for advanced nuclear reactor designs. Radiation induced segregation (RIS) occurs in F/M steels due to solute atoms preferentially coupling to point defect fluxes which migrate to defect sinks, such as grain boundaries (GBs). The RIS response of F/M steels and austenitic steels has been shown to be dependent on the local structure of GBs where low energy structures have suppressed RIS responses. This relationship between local GB structure and RIS has been demonstrated primarily in ion-irradiated specimens. A 9 wt.% Cr model alloymore » steel was irradiated to 3 dpa using neutrons at the Advanced Test Reactor (ATR) to determine the effect of a neutron radiation environment on the RIS response at different GB structures. This investigation found the relationship between GB structure and RIS is also active for F/M steels irradiated using neutrons. The data generated from the neutron irradiation is also compared to RIS data generated using proton irradiations on the same heat of model alloy.« less

  14. Operational fitness of box truss antennas in response to dynamic slewing

    NASA Technical Reports Server (NTRS)

    Bachtell, E. E.; Bettadapur, S. S.; Schartel, W. A.; Karanian, L. A.

    1985-01-01

    A parametric study was performed to define slewing capability of large satellites along with associated system changes or subsystem weight and complexity impacts. The satellite configuration and structural arrangement from the Earth Observation Spacecraft (EOS) study was used as the baseline spacecraft. Varying slew rates, settling times, damping, maneuver frequencies, and attitude hold times provided the data required to establish applicability to a wide range of potential missions. The key elements of the study are: (1) determine the dynamic transient response of the antenna system; (2) calculate the system errors produced by the dynamic response; (3) determine if the antenna has exceeded operational requirements at completion of the slew, and if so; (4) determine when the antenna has settled to the operational requirements. The slew event is not considered complete until the antenna is within operational limits.

  15. Periodic Forced Response of Structures Having Three-Dimensional Frictional Constraints

    NASA Astrophysics Data System (ADS)

    CHEN, J. J.; YANG, B. D.; MENQ, C. H.

    2000-01-01

    Many mechanical systems have moving components that are mutually constrained through frictional contacts. When subjected to cyclic excitations, a contact interface may undergo constant changes among sticks, slips and separations, which leads to very complex contact kinematics. In this paper, a 3-D friction contact model is employed to predict the periodic forced response of structures having 3-D frictional constraints. Analytical criteria based on this friction contact model are used to determine the transitions among sticks, slips and separations of the friction contact, and subsequently the constrained force which consists of the induced stick-slip friction force on the contact plane and the contact normal load. The resulting constrained force is often a periodic function and can be considered as a feedback force that influences the response of the constrained structures. By using the Multi-Harmonic Balance Method along with Fast Fourier Transform, the constrained force can be integrated with the receptance of the structures so as to calculate the forced response of the constrained structures. It results in a set of non-linear algebraic equations that can be solved iteratively to yield the relative motion as well as the constrained force at the friction contact. This method is used to predict the periodic response of a frictionally constrained 3-d.o.f. oscillator. The predicted results are compared with those of the direct time integration method so as to validate the proposed method. In addition, the effect of super-harmonic components on the resonant response and jump phenomenon is examined.

  16. An improved wavelet-Galerkin method for dynamic response reconstruction and parameter identification of shear-type frames

    NASA Astrophysics Data System (ADS)

    Bu, Haifeng; Wang, Dansheng; Zhou, Pin; Zhu, Hongping

    2018-04-01

    An improved wavelet-Galerkin (IWG) method based on the Daubechies wavelet is proposed for reconstructing the dynamic responses of shear structures. The proposed method flexibly manages wavelet resolution level according to excitation, thereby avoiding the weakness of the wavelet-Galerkin multiresolution analysis (WGMA) method in terms of resolution and the requirement of external excitation. IWG is implemented by this work in certain case studies, involving single- and n-degree-of-freedom frame structures subjected to a determined discrete excitation. Results demonstrate that IWG performs better than WGMA in terms of accuracy and computation efficiency. Furthermore, a new method for parameter identification based on IWG and an optimization algorithm are also developed for shear frame structures, and a simultaneous identification of structural parameters and excitation is implemented. Numerical results demonstrate that the proposed identification method is effective for shear frame structures.

  17. A Structured Approach to End-of-Life Decision Making Improves Quality of Care for Patients With Terminal Illness in a Teaching Hospital in Ghana.

    PubMed

    Edwin, Ama Kyerewaa; Johnson McGee, Summer; Opare-Lokko, Edwina Addo; Gyakobo, Mawuli Kotope

    2016-03-01

    To determine whether a structured approach to end-of-life decision-making directed by a compassionate interdisciplinary team would improve the quality of care for patients with terminal illness in a teaching hospital in Ghana. A retrospective analysis was done for 20 patients who consented to participate in the structured approach to end-of-life decision-making. Twenty patients whose care did not follow the structured approach were selected as controls. Outcome measures were nociceptive pain control, completing relationships, and emotional response towards dying. These measures were statistically superior in the study group compared to the control group. A structured approach to end-of-life decision-making significantly improves the quality of care for patients with terminal illness in the domains of pain control, completing relationships and emotional responses towards dying. © The Author(s) 2014.

  18. Combined spectrophotometry and tensile measurements of human connective tissues: potentials and limitations.

    PubMed

    Ernstberger, Markus; Sichting, Freddy; Baselt, Tobias; Hartmann, Peter; Aust, Gabriela; Hammer, Niels

    2013-06-01

    Strain-dependent transmission data of nine iliotibial tract specimens are determined using a custom-built optical setup with a halogen light source and an industrial norm material testing machine. Polarized light microscopy and hematoxylin-eosin staining indicated that lateral contraction of collagen structures is responsible for total intensity variations during a 20-cycle preconditioning and a 5-cycle tensile test. Tensile force progress is opposite to total transmission progress. Due to dehydration, wavelength-specific radiation intensity shifting is determined during the test, primarily noticeable in a water absorption band between 1400 and 1500 nm. The results show the capability of integrating spectrophotometry technology into biomechanics for determining structural alterations of human collagen due to applied strain. Being more sensitive to drying, spectrophotometry may likely serve as a quality control in stress-strain testing of biological structures.

  19. A Concept of Thermographic Method for Non-Destructive Testing of Polymeric Composite Structures Using Self-Heating Effect

    PubMed Central

    2017-01-01

    Traditional techniques of active thermography require an external source of energy used for excitation, usually in the form of high power lamps or ultrasonic devices. In this paper, the author presents an alternative approach based on the self-heating effect observable in polymer-based structures during cyclic loading. The presented approach is based on, firstly, determination of bending resonance frequencies of a tested structure, and then, on excitation of a structure with a multi-harmonic signal constructed from the harmonics with frequencies of determined resonances. Following this, heating-up of a tested structure occurs in the location of stress concentration and mechanical energy dissipation due to the viscoelastic response of a structure. By applying multi-harmonic signal, one ensures coverage of the structure by such heated regions. The concept is verified experimentally on artificially damaged composite specimens. The results demonstrate the presented approach and indicate its potential, especially when traditional methods of excitation with an external structure for thermographic inspection cannot be applied. PMID:29283430

  20. A Concept of Thermographic Method for Non-Destructive Testing of Polymeric Composite Structures Using Self-Heating Effect.

    PubMed

    Katunin, Andrzej

    2017-12-28

    Traditional techniques of active thermography require an external source of energy used for excitation, usually in the form of high power lamps or ultrasonic devices. In this paper, the author presents an alternative approach based on the self-heating effect observable in polymer-based structures during cyclic loading. The presented approach is based on, firstly, determination of bending resonance frequencies of a tested structure, and then, on excitation of a structure with a multi-harmonic signal constructed from the harmonics with frequencies of determined resonances. Following this, heating-up of a tested structure occurs in the location of stress concentration and mechanical energy dissipation due to the viscoelastic response of a structure. By applying multi-harmonic signal, one ensures coverage of the structure by such heated regions. The concept is verified experimentally on artificially damaged composite specimens. The results demonstrate the presented approach and indicate its potential, especially when traditional methods of excitation with an external structure for thermographic inspection cannot be applied.

  1. Confirming the Structure of the "Why Do You Smoke?" Questionnaire: A Community Resource for Adolescent Tobacco Cessation

    ERIC Educational Resources Information Center

    Smith, Dennis W.; Lee, Jay T.; Colwell, Brian; Stevens-Manser, Stacey

    2008-01-01

    In response to the problem of adolescent smoking and limited appropriate cessation resources, this study examined the pattern and structure of the American Lung Association, Why Do You Smoke? (WDS) to determine its appropriateness for use in youth smoking cessation programs. The WDS is used to help smokers identify primary motivations for using…

  2. 1983 Home Study Survey. A Report on Current Course Structure and Educational Practices in NHSC Member Institutions.

    ERIC Educational Resources Information Center

    National Home Study Council, Washington, DC.

    A study examined the course structure and educational practices used by National Home Study Council (NHSC) member institutions. To gather data for the study, researchers mailed questionnaires to 60 members of the NHSC. Based on data from the 51 usable responses, the researchers determined that the average age of students enrolled in programs…

  3. Contrasting Patterns in Solitary and Eusocial Bees While Responding to Landscape Features in the Brazilian Cerrado: a Multiscaled Perspective.

    PubMed

    Silva, D P; Nogueira, D S; De Marco, P

    2017-06-01

    Landscape structure is an important determinant of biological fluxes and species composition, but species do not respond equally to landscape features or spatial extents. Evaluating "multi-scale" responses of species to landscape structure is an important framework to be considered, allowing insights about habitat requirements for different groups. We evaluated the response of Brazilian Cerrado's bees (eusocial vs. solitary ones) to both the amount and isolation of remnant vegetation in eight nested multiple-local scales. Response variables included abundance, observed, and estimated species richness, and beta diversity (split into nestedness and turnover resultant dissimilarities). Eusocial species' abundance responded to landscape structure at narrow scales of fragment isolation (250 m of radius from sampling sites), while solitary species' abundance responded to broader scales to fragment area (2000 m). Eusocial species nestedness also responded to landscape features in broader scales (1500 m), especially to increasing fragment isolation. However, all the remaining response variables did not respond to any other landscape variables in any spatial scale considered. Such contrasting responses of the abundances of eusocial vs. solitary species are related to the inherent life-history traits of each group. Important attributes in this context are different requirements on food resources, population features, and flight abilities. Species-specific dispersal abilities may be the main determinants of the nested patterns found for eusocial species at 1500 m. Considering these results, we suggest that different bee groups are considered separately in further landscape analyses, especially in other Brazilian biomes, for a better understanding of landscape effects on these organisms.

  4. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan-Jacob, Sandra W., E-mail: sandra.jacob@novartis.com; Fendrich, Gabriele; Floersheimer, Andreas

    2007-01-01

    A case study showing how the determination of multiple cocrystal structures of the protein tyrosine kinase c-Abl was used to support drug discovery, resulting in a compound effective in the treatment of chronic myelogenous leukaemia. Chronic myelogenous leukaemia (CML) results from the Bcr-Abl oncoprotein, which has a constitutively activated Abl tyrosine kinase domain. Although most chronic phase CML patients treated with imatinib as first-line therapy maintain excellent durable responses, patients who have progressed to advanced-stage CML frequently fail to respond or lose their response to therapy owing to the emergence of drug-resistant mutants of the protein. More than 40 suchmore » point mutations have been observed in imatinib-resistant patients. The crystal structures of wild-type and mutant Abl kinase in complex with imatinib and other small-molecule Abl inhibitors were determined, with the aim of understanding the molecular basis of resistance and to aid in the design and optimization of inhibitors active against the resistance mutants. These results are presented in a way which illustrates the approaches used to generate multiple structures, the type of information that can be gained and the way that this information is used to support drug discovery.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ying-Sui; Yang, Wei-En; Zhang, Lan

    In nasal reconstruction, the response of cells to titanium (Ti) implants is mainly determined by surface features of the implant. In a pilot study, the authors applied electrochemical anodization to Ti surfaces in an alkaline solution to create a network of nanoscale surface structures. This nanonetwork was intended to enhance the responses of primary human nasal epithelial cell (HNEpC) to the Ti surface. In this study, the authors then treated the anodized, nanonetwork-structured Ti surface using nitrogen plasma immersion ion implantation (NPIII) in order to further improve the HNEpC response to the Ti surface. Subsequently, surface characterization was performed tomore » elucidate morphology, roughness, wettability, and chemistry of specimens. Cytotoxicity, blood, and HNEpC responses were also evaluated. Our results demonstrate that NPIII treatment led to the formation of a noncytotoxic TiN-containing thin film (thickness <100 nm) on the electrochemically anodized Ti surface with a nanonetwork-structure. NPIII treatment was shown to improve blood clotting and the adhesion of platelets to the anodized Ti surface as well as the adhesion and proliferation of hNEpC. This research spreads our understanding of the fact that a TiN-containing thin film, produced using NPIII treatment, could be used to improve blood and HNEpC responses to anodized, nanonetwork-structured Ti surfaces in nasal implant applications.« less

  6. Present and future of membrane protein structure determination by electron crystallography.

    PubMed

    Ubarretxena-Belandia, Iban; Stokes, David L

    2010-01-01

    Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This chapter describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Present and future of membrane protein structure determination by electron crystallography

    PubMed Central

    Ubarretxena-Belandia, Iban; Stokes, David L.

    2011-01-01

    Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This review describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins. PMID:21115172

  8. The mind as a process.

    PubMed

    Bruhn, John G; Wolf, Stewart

    2003-01-01

    Essentially all behavior is regulated by the brain in response to information received from within the body or from the environment. The tangible structures of the brain serve as devices for processing thoughts and emotions as well as information. Stored among the interacting neural structures are memories of past experiences and responses to them. These intangibles participate in determining the decisions made and the actions performed by the brain's structures. There are valuable studies of the clinical and neurological effects of environmental stimuli, but we need to learn more about the processes that lead to these effects. More definitive correlations could be made between environmental stimuli and the neurological pathways they create by studying individual's real life experiences rather than laboratory simulations alone.

  9. Nonlinear transient survival level seismic finite element analysis of Magellan ground based telescope

    NASA Astrophysics Data System (ADS)

    Griebel, Matt; Buleri, Christine; Baylor, Andrew; Gunnels, Steve; Hull, Charlie; Palunas, Povilas; Phillips, Mark

    2016-07-01

    The Magellan Telescopes are a set of twin 6.5 meter ground based optical/near-IR telescopes operated by the Carnegie Institution for Science at the Las Campanas Observatory (LCO) in Chile. The primary mirrors are f/1.25 paraboloids made of borosilicate glass and a honeycomb structure. The secondary mirror provides both f/11 and f/5 focal lengths with two Nasmyth, three auxiliary, and a Cassegrain port on the optical support structure (OSS). The telescopes have been in operation since 2000 and have experienced several small earthquakes with no damage. Measurement of in situ response of the telescopes to seismic events showed significant dynamic amplification, however, the response of the telescopes to a survival level earthquake, including component level forces, displacements, accelerations, and stresses were unknown. The telescopes are supported with hydrostatic bearings that can lift up under high seismic loading, thus causing a nonlinear response. For this reason, the typical response spectrum analysis performed to analyze a survival level seismic earthquake is not sufficient in determining the true response of the structure. Therefore, a nonlinear transient finite element analysis (FEA) of the telescope structure was performed to assess high risk areas and develop acceleration responses for future instrument design. Several configurations were considered combining different installed components and altitude pointing directions. A description of the models, methodology, and results are presented.

  10. Dissecting the relationship between protein structure and sequence variation

    NASA Astrophysics Data System (ADS)

    Shahmoradi, Amir; Wilke, Claus; Wilke Lab Team

    2015-03-01

    Over the past decade several independent works have shown that some structural properties of proteins are capable of predicting protein evolution. The strength and significance of these structure-sequence relations, however, appear to vary widely among different proteins, with absolute correlation strengths ranging from 0 . 1 to 0 . 8 . Here we present the results from a comprehensive search for the potential biophysical and structural determinants of protein evolution by studying more than 200 structural and evolutionary properties in a dataset of 209 monomeric enzymes. We discuss the main protein characteristics responsible for the general patterns of protein evolution, and identify sequence divergence as the main determinant of the strengths of virtually all structure-evolution relationships, explaining ~ 10 - 30 % of observed variation in sequence-structure relations. In addition to sequence divergence, we identify several protein structural properties that are moderately but significantly coupled with the strength of sequence-structure relations. In particular, proteins with more homogeneous back-bone hydrogen bond energies, large fractions of helical secondary structures and low fraction of beta sheets tend to have the strongest sequence-structure relation. BEACON-NSF center for the study of evolution in action.

  11. Heparin sodium compliance to USP monograph: structural elucidation of an atypical 2.18 ppm NMR signal.

    PubMed

    Mourier, Pierre A J; Guichard, Olivier Y; Herman, Fréderic; Viskov, Christian

    2012-01-01

    The ¹H nuclear magnetic resonance (NMR) acceptance criteria in the new heparin US Pharmacopeia (USP) monograph do not take into account potential structural modifications responsible for any extra signals observed in ¹H NMR spectra, some purified heparins may be non-compliant under the proposed new USP guidelines and incorrectly classified as unsuitable for pharmaceutical use. Heparins from the "ES" source, containing an extra signal at 2.18 ppm, were depolymerized under controlled conditions using heparinases I, II, and III. The oligosaccharides responsible for the 2.18 ppm signal were enriched using orthogonal chromatographic techniques. After multiple purification steps, we obtained an oligosaccharide mixture containing a highly enriched octasaccharide bearing the structural modification responsible for the extra signal. Following heparinase I depolymerization, a pure tetrasaccharide containing the fingerprint structural modification was isolated for full structural determination. Using 1D and 2D ¹H NMR spectroscopy, the structural moiety responsible for the extra signal at 2.18 ppm was identified as an acetyl group on the heparin backbone, most likely resulting from a very minor manufacturing process side reaction that esterifies the uronic acid at position 3. Such analytical peculiarity has always been present in this heparin source and it was used safety over the years. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Scleral anisotropy and its effects on the mechanical response of the optic nerve head

    PubMed Central

    Coudrillier, Baptiste; Boote, Craig; Quigley, Harry A.

    2012-01-01

    This paper presents a computational modeling study of the effects of the collagen fiber structure on the mechanical response of the sclera and the adjacent optic nerve head (ONH). A specimen-specific inverse finite element method was developed to determine the material properties of two human sclera subjected to full-field inflation experiments. A distributed fiber model was applied to describe the anisotropic elastic behavior of the sclera. The model directly incorporated wide angle x-ray scattering measurements of the anisotropic collagen structure. The converged solution of the inverse method was used in micromechanical studies of the mechanical anisotropy of the sclera at different scales. The effects of the scleral collagen fiber structure on the ONH deformation were evaluated by progressively filtering out local anisotropic features. It was found that the majority of the midposterior sclera could be described as isotropic without significantly affecting the mechanical response of the tissues of the ONH. In contrast, removing local anisotropic features in the peripapillary sclera produced significant changes in scleral canal expansion, and lamina cribrosa deformation. Local variations in the collagen structure of the peripapillary sclera significantly influenced the mechanical response of the ONH. PMID:23188256

  13. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  14. Generalized Processing Tree Models: Jointly Modeling Discrete and Continuous Variables.

    PubMed

    Heck, Daniel W; Erdfelder, Edgar; Kieslich, Pascal J

    2018-05-24

    Multinomial processing tree models assume that discrete cognitive states determine observed response frequencies. Generalized processing tree (GPT) models extend this conceptual framework to continuous variables such as response times, process-tracing measures, or neurophysiological variables. GPT models assume finite-mixture distributions, with weights determined by a processing tree structure, and continuous components modeled by parameterized distributions such as Gaussians with separate or shared parameters across states. We discuss identifiability, parameter estimation, model testing, a modeling syntax, and the improved precision of GPT estimates. Finally, a GPT version of the feature comparison model of semantic categorization is applied to computer-mouse trajectories.

  15. Analysis of Lunar Seismic Signals: Determination of Instrumental Parameters and Seismic Velocity Distributions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Horvath, P.

    1979-01-01

    Inverse filters were designed to correct the effect of instrumental response, coupling of the seismometer to the ground, and near surface structures. The least squares technique was used to determine the instrumental constants and the transfer functions of the long period lunar seismographs. The influence of noise and the results of these calculations are discussed.

  16. State-dependent changes in cortical gain control as measured by auditory evoked responses to varying intensity stimuli.

    PubMed

    Phillips, Derrick J; Schei, Jennifer L; Meighan, Peter C; Rector, David M

    2011-11-01

    Auditory evoked potential (AEP) components correspond to sequential activation of brain structures within the auditory pathway and reveal neural activity during sensory processing. To investigate state-dependent modulation of stimulus intensity response profiles within different brain structures, we assessed AEP components across both stimulus intensity and state. We implanted adult female Sprague-Dawley rats (N = 6) with electrodes to measure EEG, EKG, and EMG. Intermittent auditory stimuli (6-12 s) varying from 50 to 75 dBa were delivered over a 24-h period. Data were parsed into 2-s epochs and scored for wake/sleep state. All AEP components increased in amplitude with increased stimulus intensity during wake. During quiet sleep, however, only the early latency response (ELR) showed this relationship, while the middle latency response (MLR) increased at the highest 75 dBa intensity, and the late latency response (LLR) showed no significant change across the stimulus intensities tested. During rapid eye movement sleep (REM), both ELR and LLR increased, similar to wake, but MLR was severely attenuated. Stimulation intensity and the corresponding AEP response profile were dependent on both brain structure and sleep state. Lower brain structures maintained stimulus intensity and neural response relationships during sleep. This relationship was not observed in the cortex, implying state-dependent modification of stimulus intensity coding. Since AEP amplitude is not modulated by stimulus intensity during sleep, differences between paired 75/50 dBa stimuli could be used to determine state better than individual intensities.

  17. A technique for measurement of material damping in metals. [absorption of structural vibration

    NASA Technical Reports Server (NTRS)

    Heine, J. C.

    1976-01-01

    The paper outlines the theory, design, and application of an apparatus based on the single beam resonant dwell technique to determine the damping capacity of metallic materials by measuring the response of a structural element to excitation at a modal frequency. In this apparatus, a cantilever beam specimen of a test material is clamped to a bar which is connected at one end to an electromagnetic shaker and at the other to a heavy base. The thickness of the bar at the base end is reduced by two saw cuts to provide a pivot around which the remainder of the bar can rotate when excited by the shaker which is connected to the bar by a rod passing through a hole in the base. The response of the supporting system to shaker excitation is measured with an accelerometer mounted on the bar at the root of the specimen. Specimen response is measured optically with a low-power microscope with a reticle. Specimen loss factor is determined in terms of acceleration at the beam root, beam tip displacement, and the beam natural frequency.

  18. Determining the end of a musical turn: Effects of tonal cues.

    PubMed

    Hadley, Lauren V; Sturt, Patrick; Moran, Nikki; Pickering, Martin J

    2018-01-01

    Successful duetting requires that musicians coordinate their performance with their partners. In the case of turn-taking in improvised performance they need to be able to predict their partner's turn-end in order to accurately time their own entries. Here we investigate the cues used for accurate turn-end prediction in musical improvisations, focusing on the role of tonal structure. In a response-time task, participants more accurately determined the endings of (tonal) jazz than (non-tonal) free improvisation turns. Moreover, for the jazz improvisations, removing low frequency information (<2100Hz) - and hence obscuring the pitch relationships conveying tonality - reduced response accuracy, but removing high frequency information (>2100Hz) had no effect. Neither form of filtering affected response accuracy in the free improvisation condition. We therefore argue that tonal cues aided prediction accuracy for the jazz improvisations compared to the free improvisations. We compare our results with those from related speech research (De Ruiter et al., 2006), to draw comparisons between the structural function of tonality and linguistic syntax. Copyright © 2017. Published by Elsevier B.V.

  19. Vibration suppression using a proofmass actuator operating in stroke/force saturation

    NASA Technical Reports Server (NTRS)

    Lindner, D. K.; Celano, T. P.; Ide, E. N.

    1991-01-01

    The design of the control-loop structure for a feedback control system which contains a proofmass actuator for suppressing vibration is discussed. The loop structure is composed of inner control loops, which determine the frequency of the actuator and which are directly related to the actuator and the outer loops which add damping to the structure. When the frequency response of the actuator is matched to the stroke/force saturation curve, the actuator is most effective in the vibration suppression loops, and, since the stroke/force saturation curve is characterized by the stroke length, the mass of the proofmass, and the maximum current delivered by the motor electronics, the size of the actuator can be easily determined. The results of the loop-structure model calculations are verified by examining linear DC motors as proofmass actuators for the Mast in NASA's Control of Flexible Structures program.

  20. Optical phonon characteristics of an orthorhombic-transformed polymorph of CaTa2O6 single crystal fibre

    NASA Astrophysics Data System (ADS)

    Almeida, R. M.; Andreeta, M. R. B.; Hernandes, A. C.; Dias, A.; Moreira, R. L.

    2014-03-01

    Infrared-reflectivity spectroscopy and micro-Raman scattering were used to determine the optical phonon features of orthorhombic calcium tantalite (CaTa2O6) single crystal fibres. The fibres, obtained by the Laser-Heated Pedestal Growth method, grew into an ordered cubic structure \\left( Pm\\bar{3} \\right). Long-time annealing was used to induce a polymorphic transformation to an aeschynite orthorhombic structure (Pnma space group). The phase transformation led to the appearance of structural domains and micro-cracks, responsible for diffuse scattering and depolarization of the scattered light in the visible range, but not in the infrared region. Thus, polarized infrared spectroscopy could be performed within oriented single domains, with an appropriate microscope, allowing us to determine all relevant polar phonons of the orthorhombic CaTa2O6. The obtained phononic dielectric response, {{\\epsilon }_{r}} = 22.4 and = 86 × 103 GHz, shows the appropriateness of the material for microwave applications. Totally symmetric Raman modes could be resolved by polarization, after re-polishing the cracked sample surface.

  1. Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies.

    PubMed

    Zhang, Hong; Wang, Guangwen; Li, Jian; Nie, Yuchun; Shi, Xuanling; Lian, Gewei; Wang, Wei; Yin, Xiaolei; Zhao, Yang; Qu, Xiuxia; Ding, Mingxiao; Deng, Hongkui

    2004-07-01

    Severe acute respiratory syndrome (SARS) is a life-threatening disease caused by a newly identified coronavirus (CoV), SARS-CoV. The spike (S) glycoprotein of CoV is the major structural protein responsible for induction of host immune response and virus neutralization by antibodies. Hence, knowledge of neutralization determinants on the S protein is helpful for designing protective vaccines. To analyze the antigenic structure of the SARS-CoV S2 domain, the carboxyl-terminal half of the S protein, we first used sera from convalescent SARS patients to test the antigenicity of 12 overlapping fragments spanning the entire S2 and identified two antigenic determinants (Leu 803 to Ala 828 and Pro 1061 to Ser 1093). To determine whether neutralizing antibodies can be elicited by these two determinants, we immunized animals and found that both of them could induce the S2-specific antisera. In some animals, however, only one determinant (Leu 803 to Ala 828) was able to induce the antisera with the binding ability to the native S protein and the neutralizing activity to the SARS-CoV pseudovirus. This determinant is highly conserved across different SARS-CoV isolates. Identification of a conserved antigenic determinant on the S2 domain of the SARS-CoV S protein, which has the potential for inducing neutralizing antibodies, has implications in the development of effective vaccines against SARS-CoV.

  2. GRYPHON: Air launched space booster

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon's mission control center. The Structures group was responsible for ensuring the structural integrity of the vehicle. Their designs included the payload shroud, payload support structure, exterior hull and engine support struts. The Gryphon's power requirements were determined by the Power/Thermal/Attitude Control Group. This group then selected suitable batteries and other components to meet these requirements. The group also designed heat shielding and cooling systems to ensure subsystem performance. In addition to these responsibilities this group designed the attitude control methods and RCS components for the vehicle. The Aircraft Integration Group was responsible for all aspects of the booster aircraft connection. This included the design of the connection structure and the drop mechanism. This group also designed the vehicle assembly facility and identified possible ground bases for the plane.

  3. GRYPHON: Air launched space booster

    NASA Astrophysics Data System (ADS)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon's mission control center. The Structures group was responsible for ensuring the structural integrity of the vehicle. Their designs included the payload shroud, payload support structure, exterior hull and engine support struts. The Gryphon's power requirements were determined by the Power/Thermal/Attitude Control Group.

  4. Relationship between Mental Models Related to the Particulate Nature of Matter and the Infinite Nature of Geometrical Figures.

    ERIC Educational Resources Information Center

    Tirosh, Dina; Stavy, Ruth

    A study was conducted in Israel to determine effects of external similarity in problem structure on students' responses. Fifty students from each of the 7th, 8th, 10th, and 12th grade levels were presented with three problems involving successive divisions that were similar in structure. The problems asked separately whether the processes of…

  5. Mechanical response of longleaf pine to variation in microfibril angle, chemistry associated wavelengths, density, and radial position

    Treesearch

    B. K. Via; C. L. So; T. F. Shupe; L. H. Groom; J. Wikaira

    2009-01-01

    The composite structure of the S2 layer in the wood cell wall is defined by the angle of the cellulose microfibrils and concentration of polymers and this structure impacts strength and stiffness. The objective of this study was to use near infrared spectroscopy and X-ray diffraction to determine the effect of lignin and cellulose associated wavelengths,...

  6. Effect of Perinatal secondhand tobacco smoke exposure on in vivo and intrinsic airway structure/function in non-human primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.

    Infants exposed to second hand smoke (SHS) experience more problems with wheezing. This study was designed to determine if perinatal SHS exposure increases intrinsic and/or in vivo airway responsiveness to methacholine and whether potential structural/cellular alterations in the airway might explain the change in responsiveness. Pregnant rhesus monkeys were exposed to filtered air (FA) or SHS (1 mg/m{sup 3} total suspended particulates) for 6 h/day, 5 days/week starting at 50 days gestational age. The mother/infant pairs continued the SHS exposures postnatally. At 3 months of age each infant: 1) had in vivo lung function measurements in response to inhaled methacholine,more » or 2) the right accessory lobe filled with agarose, precision-cut to 600 {mu}m slices, and bathed in increasing concentrations of methacholine. The lumenal area of the central airway was determined using videomicrometry followed by fixation and histology with morphometry. In vivo tests showed that perinatal SHS increases baseline respiratory rate and decreases responsiveness to methacholine. Perinatal SHS did not alter intrinsic airway responsiveness in the bronchi. However in respiratory bronchioles, SHS exposure increased airway responsiveness at lower methacholine concentrations but decreased it at higher concentrations. Perinatal SHS did not change eosinophil profiles, epithelial volume, smooth muscle volume, or mucin volume. However it did increase the number of alveolar attachments in bronchi and respiratory bronchioles. In general, as mucin increased, airway responsiveness decreased. We conclude that perinatal SHS exposure alters in vivo and intrinsic airway responsiveness, and alveolar attachments.« less

  7. Change in the magnetic structure of (Bi,Sm)FeO3 thin films at the morphotropic phase boundary probed by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Maruyama, Shingo; Anbusathaiah, Varatharajan; Fennell, Amy; Enderle, Mechthild; Takeuchi, Ichiro; Ratcliff, William D.

    2014-11-01

    We report on the evolution of the magnetic structure of BiFeO3 thin films grown on SrTiO3 substrates as a function of Sm doping. We determined the magnetic structure using neutron diffraction. We found that as Sm increases, the magnetic structure evolves from a cycloid to a G-type antiferromagnet at the morphotropic phase boundary, where there is a large piezoelectric response due to an electric-field induced structural transition. The occurrence of the magnetic structural transition at the morphotropic phase boundary offers another route towards room temperature multiferroic devices.

  8. Biology Notes

    ERIC Educational Resources Information Center

    Holt, S.

    1972-01-01

    Short articles describing a model of protein synthesis, a simple constant temperature incubator, techniques for determining the age structure of populations from qualitative characters, an experimental demonstration of proteolytic enzyme action, and apparatus for demonstrating hydrotrophic response of roots and for measuring photosynthetic rate of…

  9. Comparison of structural response and fatigue endurance of aircraft flap-like box structures subjected to acoustic loading

    NASA Astrophysics Data System (ADS)

    Xiao, Y.; White, R. G.; Aglietti, G. S.

    2005-05-01

    The results of an extensive test program to characterize the behavior of typical aircraft structures under acoustic loading and to establish their fatigue endurance are presented. The structures tested were the three flap-like box-type of structures. Each structure consisted of one flat (bottom) and one curved (top) stiffener stiffened skin panel, front, and rear spars, and ribs that divided the structures into three bays. The three structures, constructed from three different materials (aircraft standard aluminum alloy, Carbon Fibre Reinforced Plastic, and a Glass Fibre Metal Laminate, i.e., GLARE) had the same size and configuration, with only minor differences due to the use of different materials. A first set of acoustic tests with excitations of intensity ranging from 140 to 160 dB were carried out to obtain detailed data on the dynamic response of the three structures. The FE analysis of the structures is also briefly described and the results compared with the experimental data. The fatigue endurance of the structures was then determined using random acoustic excitation with an overall sound pressure level of 161 dB, and details of crack propagation are reported. .

  10. Molecular Determinants of Magnolol Targeting Both RXRα and PPARγ

    PubMed Central

    Chen, Lili; Chen, Jing; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Nuclear receptors retinoic X receptor α (RXRα) and peroxisome proliferator activated receptor γ (PPARγ) function potently in metabolic diseases, and are both important targets for anti-diabetic drugs. Coactivation of RXRα and PPARγ is believed to synergize their effects on glucose and lipid metabolism. Here we identify the natural product magnolol as a dual agonist targeting both RXRα and PPARγ. Magnolol was previously reported to enhance adipocyte differentiation and glucose uptake, ameliorate blood glucose level and prevent development of diabetic nephropathy. Although magnolol can bind and activate both of these two nuclear receptors, the transactivation assays indicate that magnolol exhibits biased agonism on the transcription of PPAR-response element (PPRE) mediated by RXRα:PPARγ heterodimer, instead of RXR-response element (RXRE) mediated by RXRα:RXRα homodimer. To further elucidate the molecular basis for magnolol agonism, we determine both the co-crystal structures of RXRα and PPARγ ligand-binding domains (LBDs) with magnolol. Structural analyses reveal that magnolol adopts its two 5-allyl-2-hydroxyphenyl moieties occupying the acidic and hydrophobic cavities of RXRα L-shaped ligand-binding pocket, respectively. While, two magnolol molecules cooperatively accommodate into PPARγ Y-shaped ligand-binding pocket. Based on these two complex structures, the key interactions for magnolol activating RXRα and PPARγ are determined. As the first report on the dual agonist targeting RXRα and PPARγ with receptor-ligand complex structures, our results are thus expected to help inspect the potential pharmacological mechanism for magnolol functions, and supply useful hits for nuclear receptor multi-target ligand design. PMID:22140563

  11. Pain and the defense response: structural equation modeling reveals a coordinated psychophysiological response to increasing painful stimulation.

    PubMed

    Donaldson, Gary W; Chapman, C Richard; Nakamura, Yoshi; Bradshaw, David H; Jacobson, Robert C; Chapman, Christopher N

    2003-03-01

    The defense response theory implies that individuals should respond to increasing levels of painful stimulation with correlated increases in affectively mediated psychophysiological responses. This paper employs structural equation modeling to infer the latent processes responsible for correlated growth in the pain report, evoked potential amplitudes, pupil dilation, and skin conductance of 92 normal volunteers who experienced 144 trials of three levels of increasingly painful electrical stimulation. The analysis assumed a two-level model of latent growth as a function of stimulus level. The first level of analysis formulated a nonlinear growth model for each response measure, and allowed intercorrelations among the parameters of these models across individuals. The second level of analysis posited latent process factors to account for these intercorrelations. The best-fitting parsimonious model suggests that two latent processes account for the correlations. One of these latent factors, the activation threshold, determines the initial threshold response, while the other, the response gradient, indicates the magnitude of the coherent increase in response with stimulus level. Collectively, these two second-order factors define the defense response, a broad construct comprising both subjective pain evaluation and physiological mechanisms.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Jose A.; Ivanova, Magdalena I.; Sawaya, Michael R.

    We report that the protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates thatmore » this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. Finally, the NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.« less

  13. Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring.

    PubMed

    Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R

    2007-04-01

    It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.

  14. Structural damage detection-oriented multi-type sensor placement with multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong

    2018-05-01

    A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.

  15. The influence of and the identification of nonlinearity in flexible structures

    NASA Technical Reports Server (NTRS)

    Zavodney, Lawrence D.

    1988-01-01

    Several models were built at NASA Langley and used to demonstrate the following nonlinear behavior: internal resonance in a free response, principal parametric resonance and subcritical instability in a cantilever beam-lumped mass structure, combination resonance in a parametrically excited flexible beam, autoparametric interaction in a two-degree-of-freedom system, instability of the linear solution, saturation of the excited mode, subharmonic bifurcation, and chaotic responses. A video tape documenting these phenomena was made. An attempt to identify a simple structure consisting of two light-weight beams and two lumped masses using the Eigensystem Realization Algorithm showed the inherent difficulty of using a linear based theory to identify a particular nonlinearity. Preliminary results show the technique requires novel interpretation, and hence may not be useful for structural modes that are coupled by a guadratic nonlinearity. A literature survey was also completed on recent work in parametrically excited nonlinear system. In summary, nonlinear systems may possess unique behaviors that require nonlinear identification techniques based on an understanding of how nonlinearity affects the dynamic response of structures. In this was, the unique behaviors of nonlinear systems may be properly identified. Moreover, more accutate quantifiable estimates can be made once the qualitative model has been determined.

  16. The structural response of gadolinium phosphate to pressure

    DOE PAGES

    Heffernan, Karina M.; Ross, Nancy L.; Spencer, Elinor C.; ...

    2016-06-16

    In this study, accurate elastic constants for gadolinium phosphate (GdPO 4) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO 4 determined under hydrostatic conditions, 128.1(8) GPa (K'=5.8(2)), is markedly different from that obtained with GdPO 4 under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. Finally, high pressure Raman and diffraction analysis indicate that the PO 4 tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO 4 structure is facilitated by bending/twisting of the Gd–O–P links that result inmore » increased distortion in the GdO 9 polyhedra.« less

  17. Multishaker modal testing

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.

    1983-01-01

    Procedures for improving the modal modeling of structures using test data and to determine appropriate analytical models based on substructure experimental data were explored. Two related research topics were considered in modal modeling: using several independently acquired columns of frequency response data, and modal modeling using simultaneous multi-point excitation. In component mode synthesis modeling, the emphasis is on determining the best way to employ complex modes and residuals.

  18. Obstructions in Vascular Networks: Relation Between Network Morphology and Blood Supply

    PubMed Central

    Torres Rojas, Aimee M.; Meza Romero, Alejandro; Pagonabarraga, Ignacio; Travasso, Rui D. M.; Corvera Poiré, Eugenia

    2015-01-01

    We relate vascular network structure to hemodynamics after vessel obstructions. We consider tree-like networks with a viscoelastic fluid with the rheological characteristics of blood. We analyze the network hemodynamic response, which is a function of the frequencies involved in the driving, and a measurement of the resistance to flow. This response function allows the study of the hemodynamics of the system, without the knowledge of a particular pressure gradient. We find analytical expressions for the network response, which explicitly show the roles played by the network structure, the degree of obstruction, and the geometrical place in which obstructions occur. Notably, we find that the sequence of resistances of the network without occlusions strongly determines the tendencies that the response function has with the anatomical place where obstructions are located. We identify anatomical sites in a network that are critical for its overall capacity to supply blood to a tissue after obstructions. We demonstrate that relatively small obstructions in such critical sites are able to cause a much larger decrease on flow than larger obstructions placed in non-critical sites. Our results indicate that, to a large extent, the response of the network is determined locally. That is, it depends on the structure that the vasculature has around the place where occlusions are found. This result is manifest in a network that follows Murray’s law, which is in reasonable agreement with several mammalian vasculatures. For this one, occlusions in early generation vessels have a radically different effect than occlusions in late generation vessels occluding the same percentage of area available to flow. This locality implies that whenever there is a tissue irrigated by a tree-like in vivo vasculature, our model is able to interpret how important obstructions are for the irrigation of such tissue. PMID:26086774

  19. Reynolds number influence on the formation of vortical structures on a pitching flat plate.

    PubMed

    Widmann, Alexander; Tropea, Cameron

    2017-02-06

    The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex-wall interaction.

  20. Reynolds number influence on the formation of vortical structures on a pitching flat plate

    PubMed Central

    Tropea, Cameron

    2017-01-01

    The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex–wall interaction. PMID:28163871

  1. Programmable assembly of pressure sensors using pattern-forming bacteria.

    PubMed

    Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong

    2017-11-01

    Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to assemble patterned materials. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height, and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration.

  2. On the Response of a Nonlinear Structure to High Kurtosis Non-Gaussian Random Loadings

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam; Turner, Travis L.

    2011-01-01

    This paper is a follow-on to recent work by the authors in which the response and high-cycle fatigue of a nonlinear structure subject to non-Gaussian loadings was found to vary markedly depending on the nature of the loading. There it was found that a non-Gaussian loading having a steady rate of short-duration, high-excursion peaks produced essentially the same response as would have been incurred by a Gaussian loading. In contrast, a non-Gaussian loading having the same kurtosis, but with bursts of high-excursion peaks was found to elicit a much greater response. This work is meant to answer the question of when consideration of a loading probability distribution other than Gaussian is important. The approach entailed nonlinear numerical simulation of a beam structure under Gaussian and non-Gaussian random excitations. Whether the structure responded in a Gaussian or non-Gaussian manner was determined by adherence to, or violations of, the Central Limit Theorem. Over a practical range of damping, it was found that the linear response to a non-Gaussian loading was Gaussian when the period of the system impulse response is much greater than the rate of peaks in the loading. Lower damping reduced the kurtosis, but only when the linear response was non-Gaussian. In the nonlinear regime, the response was found to be non-Gaussian for all loadings. The effect of a spring-hardening type of nonlinearity was found to limit extreme values and thereby lower the kurtosis relative to the linear response regime. In this case, lower damping gave rise to greater nonlinearity, resulting in lower kurtosis than a higher level of damping.

  3. Allergic asthma is distinguished by sensitivity of allergen-specific CD4+ T cells and airway structural cells to type 2 inflammation.

    PubMed

    Cho, Josalyn L; Ling, Morris F; Adams, David C; Faustino, Lucas; Islam, Sabina A; Afshar, Roshi; Griffith, Jason W; Harris, Robert S; Ng, Aylwin; Radicioni, Giorgia; Ford, Amina A; Han, Andre K; Xavier, Ramnik; Kwok, William W; Boucher, Richard; Moon, James J; Hamilos, Daniel L; Kesimer, Mehmet; Suter, Melissa J; Medoff, Benjamin D; Luster, Andrew D

    2016-10-05

    Despite systemic sensitization, not all allergic individuals develop asthma symptoms upon airborne allergen exposure. Determination of the factors that lead to the asthma phenotype in allergic individuals could guide treatment and identify novel therapeutic targets. We used segmental allergen challenge of allergic asthmatics (AA) and allergic nonasthmatic controls (AC) to determine whether there are differences in the airway immune response or airway structural cells that could drive the development of asthma. Both groups developed prominent allergic airway inflammation in response to allergen. However, asthmatic subjects had markedly higher levels of innate type 2 receptors on allergen-specific CD4 + T cells recruited into the airway. There were also increased levels of type 2 cytokines, increased total mucin, and increased mucin MUC5AC in response to allergen in the airways of AA subjects. Furthermore, type 2 cytokine levels correlated with the mucin response in AA but not AC subjects, suggesting differences in the airway epithelial response to inflammation. Finally, AA subjects had increased airway smooth muscle mass at baseline measured in vivo using novel orientation-resolved optical coherence tomography. Our data demonstrate that the development of allergic asthma is dependent on the responsiveness of allergen-specific CD4 + T cells to innate type 2 mediators as well as increased sensitivity of airway epithelial cells and smooth muscle to type 2 inflammation. Copyright © 2016, American Association for the Advancement of Science.

  4. Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajaj, R. Alexandra; Arbing, Mark A.; Shin, Annie

    The structure of Msmeg_6760, a protein of unknown function, has been determined. Biochemical and bioinformatics analyses determined that Msmeg_6760 interacts with a protein encoded in the same operon, Msmeg_6762, and predicted that the operon is a toxin–antitoxin (TA) system. Structural comparison of Msmeg_6760 with proteins of known function suggests that Msmeg_6760 binds a hydrophobic ligand in a buried cavity lined by large hydrophobic residues. Access to this cavity could be controlled by a gate–latch mechanism. The function of the Msmeg_6760 toxin is unknown, but structure-based predictions revealed that Msmeg_6760 and Msmeg_6762 are homologous to Rv2034 and Rv2035, a predicted novelmore » TA system involved inMycobacterium tuberculosislatency during macrophage infection. The Msmeg_6760 toxin fold has not been previously described for bacterial toxins and its unique structural features suggest that toxin activation is likely to be mediated by a novel mechanism.« less

  5. MIMO system identification using frequency response data

    NASA Technical Reports Server (NTRS)

    Medina, Enrique A.; Irwin, R. D.; Mitchell, Jerrel R.; Bukley, Angelia P.

    1992-01-01

    A solution to the problem of obtaining a multi-input, multi-output statespace model of a system from its individual input/output frequency responses is presented. The Residue Identification Algorithm (RID) identifies the system poles from a transfer function model of the determinant of the frequency response data matrix. Next, the residue matrices of the modes are computed guaranteeing that each input/output frequency response is fitted in the least squares sense. Finally, a realization of the system is computed. Results of the application of RID to experimental frequency responses of a large space structure ground test facility are presented and compared to those obtained via the Eigensystem Realization Algorithm.

  6. Response analysis of an automobile shipping container

    NASA Technical Reports Server (NTRS)

    Hua, L.; Lee, S. H.; Johnstone, B.

    1973-01-01

    The design and development of automobile shipping containers to reduce enroute damage are discussed. Vibration tests were conducted to determine the system structural integrity. A dynamic analysis was made using NASTRAN and the results of the test and the analysis are compared.

  7. An advanced technique for the prediction of decelerator system dynamics.

    NASA Technical Reports Server (NTRS)

    Talay, T. A.; Morris, W. D.; Whitlock, C. H.

    1973-01-01

    An advanced two-body six-degree-of-freedom computer model employing an indeterminate structures approach has been developed for the parachute deployment process. The program determines both vehicular and decelerator responses to aerodynamic and physical property inputs. A better insight into the dynamic processes that occur during parachute deployment has been developed. The model is of value in sensitivity studies to isolate important parameters that affect the vehicular response.

  8. Responses of polar organic compounds to different ionic environments in aqueous media are interrelated.

    PubMed

    Ferreira, L A; Chervenak, A; Placko, S; Kestranek, A; Madeira, P P; Zaslavsky, B Y

    2014-11-14

    Solubilities of 17 polar organic compounds in aqueous solutions of Na2SO4, NaCl, NaClO4, and NaSCN at the salt concentrations of up to 1.0-2.0 M were determined and the Setschenow constant, ksalt, values were estimated. It was found that NaClO4 may display both salting-in and salting-out effects depending on the particular compound structure. The Setschenow constant values for all the polar compounds examined in different salt solutions are found to be interrelated. Similar relationships were observed for partition coefficients of nonionic organic compounds in aqueous polyethylene glycol-sodium sulfate two-phase systems in the presence of different salt additives reported previously [Ferreira et al., J. Chromatogr. A, 2011, 1218, 5031], and for the effects of different salts on optical rotation of amino acids reported by Rossi et al. [J. Phys. Chem. B, 2007, 111, 10510]. In order to explain the observed relationships it is suggested that all the effects observed originate as responses of the compounds to the presence of a given ionic environment and its interaction with the compounds by forming direct or solvent-separated ionic pairs. The response is compound-specific and its strength is determined by the compound structure and the type (and concentration) of ions inducing the response.

  9. A Procedure for Modeling Structural Component/Attachment Failure Using Transient Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Jegley, Dawn C. (Technical Monitor)

    2007-01-01

    Structures often comprise smaller substructures that are connected to each other or attached to the ground by a set of finite connections. Under static loading one or more of these connections may exceed allowable limits and be deemed to fail. Of particular interest is the structural response when a connection is severed (failed) while the structure is under static load. A transient failure analysis procedure was developed by which it is possible to examine the dynamic effects that result from introducing a discrete failure while a structure is under static load. The failure is introduced by replacing a connection load history by a time-dependent load set that removes the connection load at the time of failure. The subsequent transient response is examined to determine the importance of the dynamic effects by comparing the structural response with the appropriate allowables. Additionally, this procedure utilizes a standard finite element transient analysis that is readily available in most commercial software, permitting the study of dynamic failures without the need to purchase software specifically for this purpose. The procedure is developed and explained, demonstrated on a simple cantilever box example, and finally demonstrated on a real-world example, the American Airlines Flight 587 (AA587) vertical tail plane (VTP).

  10. Model of lightning strike to a steel reinforce structure using PSpice

    NASA Astrophysics Data System (ADS)

    Koone, Neil; Condren, Brian

    2003-03-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air.

  11. Investigation on the forced response of a radial turbine under aerodynamic excitations

    NASA Astrophysics Data System (ADS)

    Ma, Chaochen; Huang, Zhi; Qi, Mingxu

    2016-04-01

    Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue (HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction (FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics (CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element (FE) model to conduct the computational structural dynamics (CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation (SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.

  12. Evaluation of human response to structural vibrations induced by sonic booms

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Czech, J.

    1992-01-01

    The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material.

  13. Probabilistic SSME blades structural response under random pulse loading

    NASA Technical Reports Server (NTRS)

    Shiao, Michael; Rubinstein, Robert; Nagpal, Vinod K.

    1987-01-01

    The purpose is to develop models of random impacts on a Space Shuttle Main Engine (SSME) turbopump blade and to predict the probabilistic structural response of the blade to these impacts. The random loading is caused by the impact of debris. The probabilistic structural response is characterized by distribution functions for stress and displacements as functions of the loading parameters which determine the random pulse model. These parameters include pulse arrival, amplitude, and location. The analysis can be extended to predict level crossing rates. This requires knowledge of the joint distribution of the response and its derivative. The model of random impacts chosen allows the pulse arrivals, pulse amplitudes, and pulse locations to be random. Specifically, the pulse arrivals are assumed to be governed by a Poisson process, which is characterized by a mean arrival rate. The pulse intensity is modelled as a normally distributed random variable with a zero mean chosen independently at each arrival. The standard deviation of the distribution is a measure of pulse intensity. Several different models were used for the pulse locations. For example, three points near the blade tip were chosen at which pulses were allowed to arrive with equal probability. Again, the locations were chosen independently at each arrival. The structural response was analyzed both by direct Monte Carlo simulation and by a semi-analytical method.

  14. Smart vibration control analysis of seismic response using MR dampers in the elevated highway bridge structures

    NASA Astrophysics Data System (ADS)

    Yan, Shi; Zhang, Hai

    2005-05-01

    The magnetorheological (MR) damper is on of the smart controllers used widely in civil engineering structures. These kinds of dampers are applied in the paper in the elevated highway bridge (EHB) with rubber bearing support piers to mitigate damages of the bridge during the severe earthquake ground motion. The dynamic calculating model and equation of motion for the EHB system are set up theoretically and the LQR semi-active control algorithm of seismic response for the EHB system is developed to reduce effectively the responses of the structure. The non-linear calculation model of the piers that rigid degradation is considered and numerical simulative calculation are carried out by Matlab program. The number and location as well as the maximum control forces of the MR dampers, which are the most important parameters for the controlled system, are determined and the rubber bearing and connection forms of the damper play also important rule in the control efficiency. A real EHB structure that is located in Anshan city, Liaoning province in China is used as an example to be calculated under different earthquake records. The results of the calculation show that it is effective to reduce seismic responses of the EHB system by combining the rubber bearing isolation with semi-active MR control technique under the earthquake ground motion. The locations of MR dampers and structural parameters will influence seriously to the effects of structural vibration control.

  15. Direct Electric Field Visualization in Semiconductor Planar Structures

    DTIC Science & Technology

    2006-12-01

    electrical signal . The spectral response is determined by the detector characteristics and the operating temperature. The sensitivity of the material used ...to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT...words) A new technique for imaging the 2D transport of free charge in semiconductor structures is used to directly map electric field distributions

  16. Acoustoelasticity. [sound-structure interaction

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.

    1977-01-01

    Sound or pressure variations inside bounded enclosures are investigated. Mathematical models are given for determining: (1) the interaction between the sound pressure field and the flexible wall of a Helmholtz resonator; (2) coupled fluid-structural motion of an acoustic cavity with a flexible and/or absorbing wall; (3) acoustic natural modes in multiple connected cavities; and (4) the forced response of a cavity with a flexible and/or absorbing wall. Numerical results are discussed.

  17. Skeletal responses to spaceflight

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Arnaud, Sara B.

    1991-01-01

    The role of gravity in the determination of bone structure is elucidated by observations in adult humans and juvenile animals during spaceflight. The primary response of bone tissue to microgravity is at the interface of the mineral and matrix in the process of biomineralization. This response is manifested by demineralization or retarded growth in some regions of the skeleton and hypermineralization in others. The most pronounced effects are seen in the heelbone and skull, the most distally located bones relative to the heart. Ground based flight simulation models that focus on changes in bone structure at the molecular, organ, and whole body levels are described and compared to flight results. On Earth, the morphologic and compositional changes in the unloaded bones are very similar to changes during flight; however, the ground based changes appear to be more transient. In addition, a redistribution of bone mineral in gravity-dependent bones occurs both in space and during head down positioning on Earth. Longitudinal data provided considerable information on the influence of endocrine and muscular changes on bone structure after unloading.

  18. Research and Applications in Aeroelasticity and Structural Dynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abel, Irving

    1997-01-01

    An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.

  19. Method and system for improved resolution of a compensated calorimeter detector

    DOEpatents

    Dawson, John W.

    1991-01-01

    An improved method and system for a depleted uranium calorimeter detector used in high energy physics experiments. In a depleted uranium calorimeter detector, the energy of a particle entering the calorimeter detector is determined and the output response of the calorimeter detector is compensated so that the ratio of the integrated response of the calorimeter detector from a lepton to the integrated response of the calorimeter detector from a hadron of the same energy as the lepton is approximately equal to 1. In the present invention, the energy of a particle entering the calorimeter detector is determined as a function of time and the hadron content of the response of the calorimeter detector is inferred based upon the time structure of the energy pulse measured by the calorimeter detector. The energy measurement can be corrected based on the inference of the hadron content whereby the resolution of the calorimeter can be improved.

  20. Vapor Responsive One-Dimensional Photonic Crystals from Zeolite Nanoparticles and Metal Oxide Films for Optical Sensing

    PubMed Central

    Lazarova, Katerina; Awala, Hussein; Thomas, Sebastien; Vasileva, Marina; Mintova, Svetlana; Babeva, Tsvetanka

    2014-01-01

    The preparation of responsive multilayered structures with quarter-wave design based on layer-by-layer deposition of sol-gel derived Nb2O5 films and spin-coated MEL type zeolite is demonstrated. The refractive indices (n) and thicknesses (d) of the layers are determined using non-linear curve fitting of the measured reflectance spectra. Besides, the surface and cross-sectional features of the multilayered structures are characterized by scanning electron microscopy (SEM). The quasi-omnidirectional photonic band for the multilayered structures is predicted theoretically, and confirmed experimentally by reflectance measurements at oblique incidence with polarized light. The sensing properties of the multilayered structures toward acetone are studied by measuring transmittance spectra prior and after vapor exposure. Furthermore, the potential of the one-dimensional photonic crystals based on the multilayered structure consisting of Nb2O5 and MEL type zeolite as a chemical sensor with optical read-out is discussed. PMID:25010695

  1. Application of Probabilistic Analysis to Aircraft Impact Dynamics

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Padula, Sharon L.; Stockwell, Alan E.

    2003-01-01

    Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stressstrain behaviors, laminated composites, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the uncertainty in the simulated responses. Several criteria are used to determine that a response surface method is the most appropriate probabilistic approach. The work is extended to compare optimization results with and without probabilistic constraints.

  2. Multi-disciplinary coupling for integrated design of propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.

  3. Structure of the toxic core of α-synuclein from invisible crystals

    DOE PAGES

    Rodriguez, Jose A.; Ivanova, Magdalena I.; Sawaya, Michael R.; ...

    2015-09-09

    We report that the protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates thatmore » this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. Finally, the NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.« less

  4. The failing measurement of attitudes: How semantic determinants of individual survey responses come to replace measures of attitude strength.

    PubMed

    Arnulf, Jan Ketil; Larsen, Kai Rune; Martinsen, Øyvind Lund; Egeland, Thore

    2018-01-12

    The traditional understanding of data from Likert scales is that the quantifications involved result from measures of attitude strength. Applying a recently proposed semantic theory of survey response, we claim that survey responses tap two different sources: a mixture of attitudes plus the semantic structure of the survey. Exploring the degree to which individual responses are influenced by semantics, we hypothesized that in many cases, information about attitude strength is actually filtered out as noise in the commonly used correlation matrix. We developed a procedure to separate the semantic influence from attitude strength in individual response patterns, and compared these results to, respectively, the observed sample correlation matrices and the semantic similarity structures arising from text analysis algorithms. This was done with four datasets, comprising a total of 7,787 subjects and 27,461,502 observed item pair responses. As we argued, attitude strength seemed to account for much information about the individual respondents. However, this information did not seem to carry over into the observed sample correlation matrices, which instead converged around the semantic structures offered by the survey items. This is potentially disturbing for the traditional understanding of what survey data represent. We argue that this approach contributes to a better understanding of the cognitive processes involved in survey responses. In turn, this could help us make better use of the data that such methods provide.

  5. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships.

    PubMed

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J

    2016-06-14

    Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Structural characterization of NRAS isoform 5

    PubMed Central

    Mal, Tapas K.; Yuan, Chunhua; Courtney, Nicholas B.; Patel, Mitra; Stiff, Andrew R.; Blachly, James; Walker, Christopher; Eisfeld, Ann‐Kathrin; de la Chapelle, Albert

    2016-01-01

    Abstract It was recently discovered that the NRAS isoform 5 (20 amino acids) is expressed in melanoma and results in a more aggressive cell phenotype. This novel isoform is responsible for increased phosphorylation of downstream targets such as AKT, MEK, and ERK as well as increased cellular proliferation. This structure report describes the NMR solution structure of NRAS isoform 5 to be used as a starting point to understand its biophysical interactions. The isoform is highly flexible in aqueous solution, but forms a helix‐turn‐coil structure in the presence of trifluoroethanol as determined by NMR and CD spectroscopy. PMID:26947772

  7. Alternate bidding strategies for asphalt and concrete pavement projects utilizing life cycle cost analysis (LCCA).

    DOT National Transportation Integrated Search

    2012-07-01

    Recent changes in pavement materials costs have impacted the competitive environment relative to the : determination of the most cost effective pavement structure for a specific highway project. In response, State : highway agencies have renewed thei...

  8. Short-range structure of barium tellurite glasses and its correlation with stress-optic response

    NASA Astrophysics Data System (ADS)

    Kaur, Amarjot; Khanna, Atul; Fábián, Margit

    2018-06-01

    The atomic parameters of metal ion-oxygen speciation such as bond-lengths and nearest neighbor distances for Ba-O, Te-O and O-O pairs, co-ordination numbers and bond angle distributions for O-Ba-O, O-Te-O and O-O-O linkages are determined by neutron diffraction and Reverse Monte Carlo simulations on the series of xBaO-(100-x)TeO2 glasses containing 10, 15 and 20 mol% BaO. The glass network depolymerizes and the average Te-O co-ordination number decreases from 3.60 ± 0.02 to 3.48 ± 0.02 with increase in BaO concentration. Te-O bond lengths are in the range: 1.97 ± 0.01–1.92 ± 0.01 Å. Ba2+ is mostly in octahedral coordination and the Ba-O bond lengths are in the range: 2.73 ± 0.01 to 2.76 ± 0.03 Å. Te-O co-ordination number is also determined by Raman spectroscopy and it shows good agreement with the neutron data. The short-range structural properties i.e. metal ion coordination number (Nc) and bond lengths (d) were correlated with the stress-optic response. The bonding characteristic, Br values were determined from the structural data of xBaO-(100-x)TeO2 glasses and were used to predict the stress-induced birefringence properties.

  9. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications.

    PubMed

    Bazban-Shotorbani, Salime; Hasani-Sadrabadi, Mohammad Mahdi; Karkhaneh, Akbar; Serpooshan, Vahid; Jacob, Karl I; Moshaverinia, Alireza; Mahmoudi, Morteza

    2017-05-10

    pH-responsive polymers contain ionic functional groups as pendants in their structure. The total number of charged groups on polymer chains determines the overall response of the system to changes in the external pH. This article reviews various pH-responsive polymers classified as polyacids (e.g., carboxylic acid based polymers, sulfonamides, anionic polysaccharides, and anionic polypeptides) and polybases (e.g., polyamines, pyridine and imidazole containing polymers, cationic polysaccharides, and cationic polypeptides). We correlate the pH variations in the body at the organ level (e.g., gastrointestinal tract and vaginal environment), tissue level (e.g., cancerous and inflamed tissues), and cellular level (e.g., sub-cellular organelles), with the intrinsic properties of pH-responsive polymers. This knowledge could help to select more effective ('smart') polymeric systems based on the biological target. Considering the pH differences in the body, various drug delivery systems can be designed by utilizing smart biopolymeric compounds with the required pH-sensitivity. We also review the pharmaceutical application of pH-responsive polymeric carriers including hydrogels, polymer-drug conjugates, micelles, dendrimers, and polymersomes. © 2016.

  10. Microscopic modeling of nitride intersubband absorbance

    NASA Astrophysics Data System (ADS)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  11. Structure of a short-chain dehydrogenase/reductase from Bacillus anthracis

    PubMed Central

    Hou, Jing; Wojciechowska, Kamila; Zheng, Heping; Chruszcz, Maksymilian; Cooper, David R.; Cymborowski, Marcin; Skarina, Tatiana; Gordon, Elena; Luo, Haibin; Savchenko, Alexei; Minor, Wladek

    2012-01-01

    The crystal structure of a short-chain dehydrogenase/reductase from Bacillus anthracis strain ‘Ames Ancestor’ complexed with NADP has been determined and refined to 1.87 Å resolution. The structure of the enzyme consists of a Rossmann fold composed of seven parallel β-strands sandwiched by three α-­helices on each side. An NADP molecule from an endogenous source is bound in the conserved binding pocket in the syn conformation. The loop region responsible for binding another substrate forms two perpendicular short helices connected by a sharp turn. PMID:22684058

  12. Synthesis and characterization of organic-inorganic polymers from new methacrylate monomers and silane derivatives

    NASA Astrophysics Data System (ADS)

    Nicolescu, F. Adriana; Jerca, Victor V.; Albu, Ana M.; Vasilescu, D. Sorin; Vuluga, D. Mircea

    2009-09-01

    We report the synthesis of five new hybrid polymeric structures obtained by free radical copolymerization of some organic azo-based methacrylate monomers and 3-methacryloxypropyl trimethoxysilane (MEMO). The copolymers are soluble in common solvents like methylene chloride, chloroform, dichlorbenzene, dimethylsulfoxide, dimethylformamide. The copolymeric structures might be interesting from the point of view of nonlinear optical response due to a rich content in chromophoric units determined by H-NMR spectroscopy. The structures were also characterized by FT-IR spectroscopy, TGA and SEC analysis.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, A. J.; Voss, L. F.; Beck, P. R.

    We subjected device-grade TlBr to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl 2, Br:MeOH and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.

  14. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    NASA Astrophysics Data System (ADS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J.

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified.

  15. Felder-Soloman's Index of Learning Styles: internal consistency, temporal stability, and factor structure.

    PubMed

    Hosford, Charles C; Siders, William A

    2010-10-01

    Strategies to facilitate learning include using knowledge of students' learning style preferences to inform students and their teachers. Aims of this study were to evaluate the factor structure, internal consistency, and temporal stability of medical student responses to the Index of Learning Styles (ILS) and determine its appropriateness as an instrument for medical education. The ILS assesses preferences on four dimensions: sensing/intuitive information perceiving, visual/verbal information receiving, active/reflective information processing, and sequential/global information understanding. Students entering the 2002-2007 classes completed the ILS; some completed the ILS again after 2 and 4 years. Analyses of responses supported the ILS's intended structure and moderate reliability. Students had moderate preferences for sensing and visual learning. This study provides evidence supporting the appropriateness of the ILS for assessing learning style preferences in medical students.

  16. Programmable assembly of pressure sensors using pattern-forming bacteria

    PubMed Central

    Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D.; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong

    2017-01-01

    Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to mimic such natural processes to assemble patterned materials.. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration. PMID:28991268

  17. A sensitivity analysis of nine diversity and seven similarity indices

    USGS Publications Warehouse

    Boyle, Terrence P.; Smillie, Gary M.; Anderson, Jana C.; Beeson, David R.

    1990-01-01

    Indices summarizing community structure are used to evaluate fundamental community ecology, species interaction, biogeographical factors, and environmental stress. Some of these indices are insensitive to gross community changes induced by contaminants of pollution. Sixteen indices commonly used to assess the status of aquatic communities in water quality studies were evaluated using computer simulation techniques to determine specific index responses. Three communities of different initial structure (19 species, 38 species, and 83 species) were generated using the lognormal equation. Each community was then perturbed in three ways: common species disproportionally reduced, all species proportionally reduced, and rare species disproportionally reduced. The behavior of the indices was analyzed graphically and differential response due to initial community structure and type of community change was documented. Some recommendations of potential sources of error using community levels indices were developed.

  18. Chromatin Configuration Determines Cell Responses to Hormone Stimuli | Center for Cancer Research

    Cancer.gov

    Ever since selective gene expression was established as the central driver of cell behavior, researchers have been working to understand the forces that control gene transcription. Aberrant gene expression can cause or promote many diseases, including cancer, and alterations in gene expression are the goal of many therapeutic agents. Recent work has focused on the potential role of chromatin structure as a contributor to gene regulation. Chromatin can exist in a tightly packed/inaccessible or loose/accessible configuration depending on the interactions between DNA and its associated proteins. Patterns of chromatin structure can differ between cell types and can also change within cells in response to certain signals. Cancer researchers are particularly interested in the role of chromatin in gene regulation because many of the genomic regions found to be associated with cancer risk are in open chromatin structures.

  19. Exact finite element method analysis of viscoelastic tapered structures to transient loads

    NASA Technical Reports Server (NTRS)

    Spyrakos, Constantine Chris

    1987-01-01

    A general method is presented for determining the dynamic torsional/axial response of linear structures composed of either tapered bars or shafts to transient excitations. The method consists of formulating and solving the dynamic problem in the Laplace transform domain by the finite element method and obtaining the response by a numerical inversion of the transformed solution. The derivation of the torsional and axial stiffness matrices is based on the exact solution of the transformed governing equation of motion, and it consequently leads to the exact solution of the problem. The solution permits treatment of the most practical cases of linear tapered bars and shafts, and employs modeling of structures with only one element per member which reduces the number of degrees of freedom involved. The effects of external viscous or internal viscoelastic damping are also taken into account.

  20. Control Law Design in a Computational Aeroelasticity Environment

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.

    2003-01-01

    A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.

  1. Responsibility in the age of Developmental Origins of Health and Disease (DOHaD) and epigenetics.

    PubMed

    Ismaili M'hamdi, H; de Beaufort, I; Jack, B; Steegers, E A P

    2018-02-01

    Insights from the Developmental Origins of Health and Disease paradigm and epigenetics are elucidating the biological pathways through which social and environmental signals affect human health. These insights prompt a serious debate about how the structure of society affects health and what the responsibility of society is to counteract health inequalities. Unfortunately, oversimplified interpretations of insights from Developmental Origins of Health and Disease and epigenetics may be (mis)used to focus on the importance of individual responsibility for health rather than the social responsibility for health. In order to advance the debate on responsibility for health, we present an ethical framework to determine the social responsibility to counteract health inequalities. This is particularly important in a time where individual responsibility often justifies a passive response from policymakers.

  2. Thermal degradation of Lewis acid complexed LDPE films

    NASA Astrophysics Data System (ADS)

    Sreelatha, K.; Predeep, P.

    2017-06-01

    The study highlights the thermal behavior of the semiconducting LDPE films synthesized by SbCl5 doping. The structural peculiarities and the responses of the structure to energetic modifications are studied. TGA and DTG curves are used to determine the thermal stability of the material. Degradation kinetics is elucidated. Activation energy and the entropy of activation for the degradation of the samples are calculated using Coats-Redfern plots and the samples show appreciable thermal stability.

  3. On the Vertical Structure of Seasonal, Interannual and Intraseasonal Flows

    DTIC Science & Technology

    1992-12-01

    regions. Extensive use is made of a primitive equation (PE) model, as a diagnostic tool, to explore the extent to which tropical heating might influence ...vertical modes, while Wiin-Nielsen (1971a and b) studied the time 2 behaviour of long waves for various vertical structures. More recent investigations...nonlinear three-leve PE model, are used to determine the influence of tropical heating on extratropica wave response. In Chapter 4, the interannual changes

  4. Responses of bat social groups to roost loss: More questions than answers

    USGS Publications Warehouse

    Silvis, Alexander; Abaid, Nicole; Ford, W. Mark; Britzke, Eric R.; Ortega, Jorge

    2016-01-01

    Though characterization of, and understanding determinants of, social structure in bats is increasing, little is known about how bat social groups respond to disturbance resulting in roost loss. Given that many species of bats roost in ephemeral or transitory resources such as plants, it is clear that bat social groups can tolerate some level of roost loss. Understanding responses of bat social groups to roost loss can provide insight into social structure that have applied conservation use. Herein, we review the existing literature on the effects of disturbance on bat social groups, and present a parameterizable agent-based model that can be used to explore the relationships among roost dynamics, population dynamics, and social behavior.

  5. 12 CFR 1080.6 - Civil investigative demands.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... recipient's information or records management systems and/or the recipient's organizational structure. (2... with its ESI systems and methods of retrieval participates in the meeting. (3) Petitions. The Bureau... response to those petitions are part of the public records of the Bureau unless the Bureau determines...

  6. 12 CFR 1080.6 - Civil investigative demands.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... recipient's information or records management systems and/or the recipient's organizational structure. (2... with its ESI systems and methods of retrieval participates in the meeting. (3) Petitions. The Bureau... response to those petitions are part of the public records of the Bureau unless the Bureau determines...

  7. Society for College Science Teachers: High Technology.

    ERIC Educational Resources Information Center

    Menefee, Robert

    1983-01-01

    Presents findings of a study group on high technology charged with determining a definition, assessing current educational response, and examining implications for the future. Topics addressed include: super-techs; computer-aided design/computer-aided manufacture (CAD/CAM); structural unemployment; a two-plus-two curriculum; and educational…

  8. Four Theories of the Press.

    ERIC Educational Resources Information Center

    Siebert, Fred S.; And Others

    A systematic understanding of the press requires an understanding of the social and political structures within which the press operates. This book discusses four theories that have determined the kind of press the Western world has had: authoritarian, libertarian, socially responsible, and Soviet communist. Each chapter discusses press…

  9. White Attitudes toward Busing: Segregation and the Life Cycle.

    ERIC Educational Resources Information Center

    Edari, Ronald S.

    1979-01-01

    Factors involved in the determination of White attitudes toward busing are discussed. The term White flight is considered a euphemism for the process in which the responsibility for housing discrimination is shifted from the structure of the capitalist system to White community residents. (RLV)

  10. Optimization of fluorimetric lipid membrane biosensor sensitivity through manipulation of membrane structure and nitrobenzoxadiazole dipalmitoylphosphatidylethanolamine concentration

    NASA Astrophysics Data System (ADS)

    Shrive, Jason D. A.; Krull, Ulrich J.

    1995-01-01

    In the work reported here, surface concentrations of 0.027 and 0.073 molecules nm-2 of the fluorescent membrane probe molecule nitrobenzoxadiazole dipalmitoylphosphatidylethanolamine (NBD-PE) were shown to yield optimum sensitivity for fluorimetric transduction of membrane structural perturbations for lipid membrane-based biosensor development. These optima were obtained through correlation of experimental data with theoretical predictions of optimum surface concentrations based on a model for NBD-PE self quenching previously published by our group. It was also determined that membrane structural heterogeneity improves the sensitivity of NBD-PE labeled membrane transducers. Together with fluorescence microscopy, observations of surface potential change upon compression or expansion of phosphatidylcholine (PC)/phosphatidic acid (PA) monolayers were used to qualitatively indicate the degree of structural heterogeneity in these membranes. It was determined that sub-microscopic domains must exist in microscopically homogeneous egg PC/egg PA membranes in order to facilitate the observed NBD-PE self-quenching responses upon alteration of bulk pH and therefore, membrane surface electrostatics and structure.

  11. Structural response of a rotating bladed disk to rotor whirl

    NASA Technical Reports Server (NTRS)

    Crawley, E. F.

    1985-01-01

    A set of high speed rotating whirl experiments were performed in the vacuum of the MIT Blowdown Compressor Facility on the MIT Aeroelastic Rotor, which is structurally typical of a modern high bypass ratio turbofan stage. These tests identified the natural frequencies of whirl of the rotor system by forcing its response using an electromagnetic shaker whirl excitation system. The excitation was slowly swept in frequency at constant amplitude for several constant rotor speeds in both a forward and backward whirl direction. The natural frequencies of whirl determined by these experiments were compared to those predicted by an analytical 6 DOF model of a flexible blade-rigid disk-flexible shaft rotor. The model is also presented in terms of nondimensional parameters in order to assess the importance of the interation between the bladed disk dynamics and the shaft-disk dynamics. The correlation between the experimental and predicted natural frequencies is reasonable, given the uncertainty involved in determining the stiffness parameters of the system.

  12. A double expansion method for the frequency response of finite-length beams with periodic parameters

    NASA Astrophysics Data System (ADS)

    Ying, Z. G.; Ni, Y. Q.

    2017-03-01

    A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response and remarkable reduction of the maximum frequency response for certain parametric wave number and wave amplitude. The results have the potential application to structural vibration control.

  13. Performance-based plastic design of earthquake resistant reinforced concrete moment frames

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Cheng

    Performance-Based Plastic Design (PBPD) method has been recently developed to achieve enhanced performance of earthquake resistant structures. The design concept uses pre-selected target drift and yield mechanism as performance criteria. The design base shear for selected hazard level is determined by equating the work needed to push the structure monotonically up to the target drift to the corresponding energy demand of an equivalent SDOF oscillator. This study presents development of the PBPD approach as applied to reinforced concrete special moment frame (RC SMF) structures. RC structures present special challenge because of their complex and degrading ("pinched") hysteretic behavior. In order to account for the degrading hysteretic behavior the 1-EMA 440 C2 factor approach was used in the process of determining the design base shear. Four baseline RC SMF (4, 8, 12 and 20-story) as used in the FEMA P695 were selected for this study. Those frames were redesigned by the PBPD approach. The baseline frames and the PBPD frames were subjected to extensive inelastic pushover and time-history analyses. The PBPD frames showed much improved response meeting all desired performance objectives, including the intended yield mechanisms and the target drifts. On the contrary, the baseline frames experienced large story drifts due to flexural yielding of the columns. The work-energy equation to determine design base shear can also be used to estimate seismic demands, called the energy spectrum method. In this approach the skeleton force-displacement (capacity) curve of the structure is converted into energy-displacement plot (Ec) which is superimposed over the corresponding energy demand plot ( Ed) for the specified hazard level to determine the expected peak displacement demands. In summary, this study shows that the PBPD approach can be successfully applied to RC moment frame structures as well, and that the responses of the example moment frames were much improved over those of the corresponding baseline frames. In addition, the drift demands of all study frames as computed by the energy spectrum method were in excellent agreement with those obtained from detailed inelastic dynamic analyses.

  14. High-Pressure Structural Response of an Insensitive Energetic Crystal: Dihydroxylammonium 5,5'-Bistetrazole-1,1'-diolate (TKX-50)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi-Gang

    2017-03-06

    The structural response of a novel, insensitive energetic crystal—dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)—was examined under high pressure. Using synchrotron single-crystal X-ray diffraction measurements, details of molecular, intermolecular, and crystal changes were determined to ~10 GPa to understand its structural stability. The experimental results showed that TKX-50 exhibits highly anisotropic compression and significantly lower volume compressibility than currently known energetic crystals. These results are found to be in general agreement with our previous predictions from the DFT calculations. Additionally, the experimental data revealed anomalous compression—an expansion of the unit cell along the a axis (negative linear compressibility, NLC) upon compression to ~3 GPa.more » The structural analyses demonstrated that this unusual effect, the first such observation in an energetic crystal, is a consequence of the highly anisotropic response of 3D motifs, comprised of two parallel anions [(C 2N 8O 2) 2–] linked with two cations [(NH 3OH) +] through four strong hydrogen bonds. The present results demonstrate that the structural stability of TKX-50 is controlled by the strong and highly anisotropic intermolecular interactions, and these may contribute to its shock insensitivity.« less

  15. High-pressure structural response of an insensitive energetic crystal: Dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang

    The structural response of a novel, insensitive energetic crystal—dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)—was examined under high pressure. Using synchrotron single-crystal X-ray diffraction measurements, details of molecular, intermolecular, and crystal changes were determined to ~10 GPa to understand its structural stability. The experimental results showed that TKX-50 exhibits highly anisotropic compression and significantly lower volume compressibility than currently known energetic crystals. These results are found to be in general agreement with our previous predictions from the DFT calculations. Additionally, the experimental data revealed anomalous compression—an expansion of the unit cell along the a axis (negative linear compressibility, NLC) upon compression to ~3 GPa.more » The structural analyses demonstrated that this unusual effect, the first such observation in an energetic crystal, is a consequence of the highly anisotropic response of 3D motifs, comprised of two parallel anions [(C 2N 8O 2) 2–] linked with two cations [(NH 3OH) +] through four strong hydrogen bonds. Finally, the present results demonstrate that the structural stability of TKX-50 is controlled by the strong and highly anisotropic intermolecular interactions, and these may contribute to its shock insensitivity.« less

  16. High-pressure structural response of an insensitive energetic crystal: Dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)

    DOE PAGES

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang; ...

    2017-02-28

    The structural response of a novel, insensitive energetic crystal—dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50)—was examined under high pressure. Using synchrotron single-crystal X-ray diffraction measurements, details of molecular, intermolecular, and crystal changes were determined to ~10 GPa to understand its structural stability. The experimental results showed that TKX-50 exhibits highly anisotropic compression and significantly lower volume compressibility than currently known energetic crystals. These results are found to be in general agreement with our previous predictions from the DFT calculations. Additionally, the experimental data revealed anomalous compression—an expansion of the unit cell along the a axis (negative linear compressibility, NLC) upon compression to ~3 GPa.more » The structural analyses demonstrated that this unusual effect, the first such observation in an energetic crystal, is a consequence of the highly anisotropic response of 3D motifs, comprised of two parallel anions [(C 2N 8O 2) 2–] linked with two cations [(NH 3OH) +] through four strong hydrogen bonds. Finally, the present results demonstrate that the structural stability of TKX-50 is controlled by the strong and highly anisotropic intermolecular interactions, and these may contribute to its shock insensitivity.« less

  17. Structure of the human factor VIII C2 domain in complex with the 3E6 inhibitory antibody

    DOE PAGES

    Wuerth, Michelle E.; Cragerud, Rebecca K.; Spiegel, P. Clint

    2015-11-24

    Blood coagulation factor VIII is a glycoprotein cofactor that is essential for the intrinsic pathway of the blood coagulation cascade. Inhibitory antibodies arise either spontaneously or in response to therapeutic infusion of functional factor VIII into hemophilia A patients, many of which are specific to the factor VIII C2 domain. The immune response is largely parsed into “classical” and “non-classical” inhibitory antibodies, which bind to opposing faces cooperatively. In this study, the 2.61 Å resolution structure of the C2 domain in complex with the antigen-binding fragment of the 3E6 classical inhibitory antibody is reported. The binding interface is largely conservedmore » when aligned with the previously determined structure of the C2 domain in complex with two antibodies simultaneously. Further inspection of the B factors for the C2 domain in various X-ray crystal structures indicates that 3E6 antibody binding decreases the thermal motion behavior of surface loops in the C2 domain on the opposing face, thereby suggesting that cooperative antibody binding is a dynamic effect. Furthermore, understanding the structural nature of the immune response to factor VIII following hemophilia A treatment will help lead to the development of better therapeutic reagents.« less

  18. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures

    NASA Astrophysics Data System (ADS)

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-01

    Silver-doped LaFeO3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  19. Highly selective and sensitive methanol gas sensor based on molecular imprinted silver-doped LaFeO3 core-shell and cage structures.

    PubMed

    Rong, Qian; Zhang, Yumin; Lv, Tianping; Shen, Kaiyuan; Zi, Baoye; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2018-04-06

    Silver-doped LaFeO 3 molecularly imprinted polymers (SLMIPs) were synthesized by a sol-gel method combined with molecularly imprinted technology as precursors. The precursors were then used to prepare SLMIPs cage (SLM-cage) and SLMIPs core-shell (SLM-core-shell) structures by using a carbon sphere as the template and hydrothermal synthesis, respectively. The structures, morphologies, and surface areas of these materials were determined, as well as their gas-sensing properties and related mechanisms. The SLM-cage and SLM-core-shell samples exhibited good responses to methanol gas, with excellent selectivity. The response and optimum working temperature were 16.98 °C and 215 °C, 33.7 °C and 195 °C, respectively, with corresponding response and recovery times of 45 and 50 s (SLM-cage) and 42 and 57 s (SLM-core-shell) for 5 ppm methanol gas. Notably, the SLM-cage and SLM-core-shell samples exhibited lower responses (≤5 and ≤7, respectively) to other gases, including ethanol, ammonia, benzene, acetone, and toluene. Thus, these materials show potential as practical methanol detectors.

  20. Do intraspecific or interspecific interactions determine responses to predators feeding on a shared size-structured prey community?

    PubMed

    ten Brink, Hanna; Mazumdar, Abul Kalam Azad; Huddart, Joseph; Persson, Lennart; Cameron, Tom C

    2015-03-01

    Coexistence of predators that share the same prey is common. This is still the case in size-structured predator communities where predators consume prey species of different sizes (interspecific prey responses) or consume different size classes of the same species of prey (intraspecific prey responses). A mechanism has recently been proposed to explain coexistence between predators that differ in size but share the same prey species, emergent facilitation, which is dependent on strong intraspecific responses from one or more prey species. Under emergent facilitation, predators can depend on each other for invasion, persistence or success in a size-structured prey community. Experimental evidence for intraspecific size-structured responses in prey populations remains rare, and further questions remain about direct interactions between predators that could prevent or limit any positive effects between predators [e.g. intraguild predation (IGP)]. Here, we provide a community-wide experiment on emergent facilitation including natural predators. We investigate both the direct interactions between two predators that differ in body size (fish vs. invertebrate predator), and the indirect interaction between them via their shared prey community (zooplankton). Our evidence supports the most likely expectation of interactions between differently sized predators that IGP rates are high, and interspecific interactions in the shared prey community dominate the response to predation (i.e. predator-mediated competition). The question of whether emergent facilitation occurs frequently in nature requires more empirical and theoretical attention, specifically to address the likelihood that its pre-conditions may co-occur with high rates of IGP. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  1. Workshop on Measurement Needs for Local-Structure Determination in Inorganic Materials

    PubMed Central

    Levin, Igor; Vanderah, Terrell

    2008-01-01

    The functional responses (e.g., dielectric, magnetic, catalytic, etc.) of many industrially-relevant materials are controlled by their local structure—a term that refers to the atomic arrangements on a scale ranging from atomic (sub-nanometer) to several nanometers. Thus, accurate knowledge of local structure is central to understanding the properties of nanostructured materials, thereby placing the problem of determining atomic positions on the nanoscale—the so-called “nanostructure problem”—at the center of modern materials development. Today, multiple experimental techniques exist for probing local atomic arrangements; nonetheless, finding accurate comprehensive, and robust structural solutions for the nanostructured materials still remains a formidable challenge because any one of these methods yields only a partial view of the local structure. The primary goal of this 2-day NIST-sponsored workshop was to bring together experts in the key experimental and theoretical areas relevant to local-structure determination to devise a strategy for the collaborative effort required to develop a comprehensive measurement solution on the local scale. The participants unanimously agreed that solving the nanostructure problem—an ultimate frontier in materials characterization—necessitates a coordinated interdisciplinary effort that transcends the existing capabilities of any single institution, including national laboratories, centers, and user facilities. The discussions converged on an institute dedicated to local structure determination as the most viable organizational platform for successfully addressing the nanostructure problem. The proposed “institute” would provide an intellectual infrastructure for local structure determination by (1) developing and maintaining relevant computer software integrated in an open-source global optimization framework (Fig. 2), (2) connecting industrial and academic users with experts in measurement techniques, (3) developing and maintaining pertinent databases, and (4) providing necessary education and training. PMID:27096131

  2. Archaeal Genome Guardians Give Insights into Eukaryotic DNA Replication and Damage Response Proteins

    PubMed Central

    Shin, David S.; Pratt, Ashley J.; Tainer, John A.

    2014-01-01

    As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine. PMID:24701133

  3. Analytical determination of space station response to crew motion and design of suspension system for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Liu, F. C.

    1986-01-01

    The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system.

  4. Frequency Tuning of Vibration Absorber Using Topology Optimization

    NASA Astrophysics Data System (ADS)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  5. Overview Of Structural Behavior and Occupant Responses from Crash Test of a Composite Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E.; Carden, Huey D.

    1995-01-01

    As part of NASA's composite structures crash dynamics research, a general aviation aircraft with composite wing, fuselage and empennage (but with metal subfloor structure) was crash tested at the NASA Langley Research Center Impact Research Facility. The test was conducted to determine composite aircraft structural behavior for crash loading conditions and to provide a baseline for a similar aircraft test with a modified subfloor. Structural integrity and cabin volume were maintained. Lumbar loads for dummy occupants in energy absorbing seats wer substantially lower than those in standard aircraft seats; however, loads in the standard seats were much higher that those recorded under similar conditions for an all-metallic aircraft.

  6. Predicting Career Advancement with Structural Equation Modelling

    ERIC Educational Resources Information Center

    Heimler, Ronald; Rosenberg, Stuart; Morote, Elsa-Sofia

    2012-01-01

    Purpose: The purpose of this paper is to use the authors' prior findings concerning basic employability skills in order to determine which skills best predict career advancement potential. Design/methodology/approach: Utilizing survey responses of human resource managers, the employability skills showing the largest relationships to career…

  7. A Systematic Approach for Determining Vertical Pile Depth of Embedment in Cohensionless Soils to Withstand Lateral Barge Train Impact Loads

    DTIC Science & Technology

    2017-01-30

    dynamic structural time- history response analysis of flexible approach walls founded on clustered pile groups using Impact_Deck. In Preparation, ERDC...research (Ebeling et al. 2012) has developed simplified analysis procedures for flexible approach wall systems founded on clustered groups of vertical...history response analysis of flexible approach walls founded on clustered pile groups using Impact_Deck. In Preparation, ERDC/ITL TR-16-X. Vicksburg, MS

  8. Insectivorous bats respond to vegetation complexity in urban green spaces.

    PubMed

    Suarez-Rubio, Marcela; Ille, Christina; Bruckner, Alexander

    2018-03-01

    Structural complexity is known to determine habitat quality for insectivorous bats, but how bats respond to habitat complexity in highly modified areas such as urban green spaces has been little explored. Furthermore, it is uncertain whether a recently developed measure of structural complexity is as effective as field-based surveys when applied to urban environments. We assessed whether image-derived structural complexity (MIG) was as/more effective than field-based descriptors in this environment and evaluated the response of insectivorous bats to structural complexity in urban green spaces. Bat activity and species richness were assessed with ultrasonic devices at 180 locations within green spaces in Vienna, Austria. Vegetation complexity was assessed using 17 field-based descriptors and by calculating the mean information gain (MIG) using digital images. Total bat activity and species richness decreased with increasing structural complexity of canopy cover, suggesting maneuverability and echolocation (sensorial) challenges for bat species using the canopy for flight and foraging. The negative response of functional groups to increased complexity was stronger for open-space foragers than for edge-space foragers. Nyctalus noctula , a species foraging in open space, showed a negative response to structural complexity, whereas Pipistrellus pygmaeus , an edge-space forager, was positively influenced by the number of trees. Our results show that MIG is a useful, time- and cost-effective tool to measure habitat complexity that complemented field-based descriptors. Response of insectivorous bats to structural complexity was group- and species-specific, which highlights the need for manifold management strategies (e.g., increasing or reinstating the extent of ground vegetation cover) to fulfill different species' requirements and to conserve insectivorous bats in urban green spaces.

  9. The structural, functional, and nutritional adaptation of college basketball players over a season.

    PubMed

    Bolonchuk, W W; Lukaski, H C; Siders, W A

    1991-06-01

    The purpose of this study was to determine the structural, functional and nutritional adaptation of college basketball players over a season. Structure was determined by somatotype and body composition, function was determined by peak work capacity and work efficiency, and nutrition was determined by plasma metals analysis. The tests were performed twice on each of the eight subjects, one preseason (PRS) and one postseason (PST). A small structural adaptation was indicated by a mean decrease (less than 1 kg) in fat free weight and an increase in ectomorphy (less than 0.03). Body weight and skinfolds did not change significantly. Functional adaptation was indicated by a one minute decrease in running time for the work capacity test (p less than 0.002), and an increase (p less than 0.02) in VO2 for the work efficiency test. Nutritional adaptation was indicated by a greater mobilization of plasma Zn after exercise during PST than PRS. Plasma Cu apparently was mobilized during exercise in PST but the change during the season (-10 to -6.6%) was not statistically significant because of the large interindividual variability in response. Structural and functional adaptation to basketball training over a collegiate season is small; however, the change in Zn mobility and the tendency for a concomitant change in Cu mobilization offers a unique finding to help explain the nutritional adaptation to training.

  10. Mechanotransduction through Cytoskeleton

    NASA Technical Reports Server (NTRS)

    Ingber, Donald

    2002-01-01

    The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses, such as those due to gravity, through their cell surface adhesion receptors (e.g., integrins) and that they respond as a result of structural arrangements with their internal cytoskeleton (CSK) which are orchestrated through use of tensegrity architecture. In this project, we carried out studies to define the architectural and molecular basis of cellular mechanotransduction. Our major goal was to define the molecular pathway that mediates mechanical force transfer between integrins and the CSK and to determine how mechanical deformation of integrin-CSK linkages is transduced into a biochemical response. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation. The specific aims of this proposal were: 1. To define the molecular basis of mechanical coupling between integrins, vinculin, and the actin CSK; 2. To develop a computer simulation of how mechanical stresses alter CSK structure and test this model in living cells; 3. To determine how mechanical deformation of integrin-CSK linkages is transduced into a biochemical response.

  11. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles.

    PubMed

    Boerneke, Mark A; Dibrov, Sergey M; Hermann, Thomas

    2016-03-14

    RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base-pair interactions. Herein, we report the crystal-structure-guided design of highly stable RNA nanotriangles that self-assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so-far smallest circularly closed nanoobject made entirely of double-stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand-responsive RNA switches, which offer the opportunity to control self-assembly and dissociation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tilapia and human CLIC2 structures are highly conserved.

    PubMed

    Zeng, Jiao; Li, Zhengjun; Lui, Eei Yin; Lam, Siew Hong; Swaminathan, Kunchithapadam

    2018-01-08

    Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Heat-Induced Structural Changes Affect OVA-Antigen Processing and Reduce Allergic Response in Mouse Model of Food Allergy

    PubMed Central

    Wallner, Michael; Kverka, Miloslav; Kozakova, Hana; Srutkova, Dagmar; Klimesova, Klara; Sotkovsky, Petr; Palova-Jelinkova, Lenka; Ferreira, Fatima; Tuckova, Ludmila

    2012-01-01

    Background and Aims The egg protein ovalbumin (OVA) belongs to six most frequent food allergens. We investigated how thermal processing influences its ability to induce allergic symptoms and immune responses in mouse model of food allergy. Methodology/Principal Findings Effect of increased temperature (70°C and 95°C) on OVA secondary structure was characterized by circular dichroism and by the kinetics of pepsin digestion with subsequent HPLC. BALB/c mice were sensitized intraperitoneally and challenged with repeated gavages of OVA or OVA heated to 70°C (h-OVA). Levels of allergen-specific serum antibodies were determined by ELISA (IgA and IgGs) or by β-hexosaminidase release test (IgE). Specific activities of digestive enzymes were determined in brush border membrane vesicles of jejunal enterocytes. Cytokine production and changes in regulatory T cells in mesenteric lymph nodes and spleen were assessed by ELISA and FACS. Heating of OVA to 70°C caused mild irreversible changes in secondary structure compared to boiling to 95°C (b-OVA), but both OVA treatments led to markedly different digestion kinetics and Tregs induction ability in vitro, compared to native OVA. Heating of OVA significantly decreased clinical symptoms (allergic diarrhea) and immune allergic response on the level of IgE, IL-4, IL-5, IL-13. Furthermore, h-OVA induced lower activities of serum mast cell protease-1 and enterocyte brush border membrane alkaline phosphatase as compared to native OVA. On the other hand h-OVA stimulated higher IgG2a in sera and IFN-γ secretion by splenocytes. Conclusions Minor irreversible changes in OVA secondary structure caused by thermal processing changes both its digestion and antigenic epitopes formation, which leads to activation of different T cell subpopulations, induces shift towards Th1 response and ultimately reduces its allergenicity. PMID:22629361

  14. Stimuli responsive magnetic nanogels for biomedical application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craciunescu, I.; Petran, A.; Turcu, R.

    2013-11-13

    We report the synthesis and characterization of magnetic nanogels based on magnetite nanoparticles sterically stabilized by double layer oleic acid in water carrier and chemically cross linked poly (N-isopropylacril amide) (pNIPA) and poly (acrylic acid) (pAAc). In this structure the magnetite nanoparticles are attached to the flexible network chain by adhesive forces, resulting in a direct coupling between magnetic and elastic properties. Stable water suspensions of dual responsive magnetic nanogels based on temperature-responsive N-isopropyl acryl amide, pH responsive acrylic acid were obtained. The FTIR spectra of p(NIPA-AAc) ferrogel samples, showed the absorption region of the specific chemical groups associated withmore » pNIPA, pAAc and the Fe{sub 3}O{sub 4} magnetic nanoparticles. The morphology and the structure of the as prepared materials were confirmed by transmission electron microscopy (TEM) and the size distribution was determined by dynamic light scattering (DLS). The magnetic microgels have high magnetization and superparamagnetic behaviour being suitable materials for biomedical application.« less

  15. PSpice Model of Lightning Strike to a Steel Reinforced Structure

    NASA Astrophysics Data System (ADS)

    Koone, Neil; Condren, Brian

    2003-12-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented.

  16. Morphological and performance measures of polyurethane foams using X-ray CT and mechanical testing.

    PubMed

    Patterson, Brian M; Henderson, Kevin; Gilbertson, Robert D; Tornga, Stephanie; Cordes, Nikolaus L; Chavez, Manuel E; Smith, Zachary

    2014-08-01

    Meso-scale structure in polymeric foams determines the mechanical properties of the material. Density variations, even more than variations in the anisotropic void structure, can greatly vary the compressive and tensile response of the material. With their diverse use as both a structural material and space filler, polyurethane (PU) foams are widely studied. In this manuscript, quantitative measures of the density and anisotropic structure are provided by using micro X-ray computed tomography (microCT) to better understand the results of mechanical testing. MicroCT illustrates the variation in the density, cell morphology, size, shape, and orientation in different regions in blown foam due to the velocity profile near the casting surface. "Interrupted" in situ imaging of the material during compression of these sub-regions indicates the pathways of the structural response to the mechanical load and the changes in cell morphology as a result. It is found that molded PU foam has a 6 mm thick "skin" of higher density and highly eccentric morphological structure that leads to wide variations in mechanical performance depending upon sampling location. This comparison is necessary to understand the mechanical performance of the anisotropic structure.

  17. Crystal Structure of Green Fluorescent Protein Clover and Design of Clover-Based Redox Sensors.

    PubMed

    Campbell, Benjamin C; Petsko, Gregory A; Liu, Ce Feng

    2018-02-06

    We have determined the crystal structure of Clover, one of the brightest fluorescent proteins, and found that its T203H/S65G mutations relative to wild-type GFP lock the critical E222 side chain in a fixed configuration that mimics the major conformer of that in EGFP. The resulting equilibrium shift to the predominantly deprotonated chromophore increases the extinction coefficient (EC), opposes photoactivation, and is responsible for the bathochromic shift. Clover's brightness can further be attributed to a π-π stacking interaction between H203 and the chromophore. Consistent with these observations, the Clover G65S mutant reversed the equilibrium shift, dramatically decreased the EC, and made Clover photoactivatable under conditions that activated photoactivatable GFP. Using the Clover structure, we rationally engineered a non-photoactivatable redox sensor, roClover1, and determined its structure as well as that of its parental template, roClover0.1. These high-resolution structures provide deeper insights into structure-function relationships in GFPs and may aid the development of excitation-improved ratiometric biosensors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [Strategy of molecular design of drugs: the unification of macro-properties and micro-structures of a molecule].

    PubMed

    Guo, Zong-Ru

    2008-03-01

    The interaction of a drug with the organism involves both the disposition of a drug by the organism and the action of a drug on the organism. The disposition of various exogenous substances, including drugs, complies with general rules. The underlying physical and chemical changes to different drugs in view of time and space, i. e. pharmacokinetics, share common characteristics, that is the tout ensemble of a molecule and its macroscopic properties convey direct effect on the pharmacokinetic behavior as the tendency and consequence of biological evolution. The action of a drug on the organism, on the other hand, implicates the physico-chemical binding of a drug molecule to the target protein, which induces pharmacological and toxicological effects. The biological reactions, no matter beneficial or adverse, are all specific and individual manifestation of the drug molecule and determined by the interactive binding between definitive atoms or groups of the drug molecule and the macromolecular target in three-dimension. Such critical atoms, groups, or fragments responsible for the interaction reflect the microscopic structures of drug molecules and are called pharmacophore. In this context, a drug molecule is presumed as an assembly of macroscopic property and microscopic structure, with the macroscopic properties determining the absorption, distribution, metabolism and elimination of drugs and the microscopic structure coining pharmacological action. The knowledge of the internal relationship between macroscopy/microscopy and PK/PD conduces to comprehension of drug action and guides molecular drug design, because this conception facilitates the identification of structural features necessary for biological response, and the determination of factors modulating the physico-chemical and pharmacokinetic properties. The factors determining macro-properties include molecular weight, solubility, charge, lipophilicity (partition), and polar surface area, etc., which are destined by molecular scaffolds and/or side chain(s) apart from pharmacophore. The features of micro-structures contributing to specific activity contain hydrogen bonding donor and acceptor, positive and negative charge centers, hydrophobic centers and centers of aromatic rings. Different combinations and spacial arrangements of these features determine the distinct activity presented. The macro-property and micro-structure are integrated into a single molecule, and are inseparable. The macro-property reflects overall contribution of atoms and groups in the micro-structure. On the other hand, structural changes aimed to adjust macroscopic property usually alter the relative position of the microscopic structure. The goal of molecular drug design is to integrate the macroscopic and microscopic factors in optimized manner. In the early stage of molecular design, both macroscopic property and microscopic structure should be considered to make pharmacodynamics, pharmacokinetics, and physico-chemical properties in optimal match. Therefore, it required the existence of structural overlapping among acceptable pharmacokinetics, visible developing potential and specific pharmacodynamics. The larger the scope of overlapping, the higher the possibility to be a drug.

  19. Regional interoperability: making systems connect in complex disasters.

    PubMed

    Briggs, Susan Miller

    2009-08-01

    Effective use of the Incident Command System (ICS) is the key to regional interoperability. Many different organizations with different command structures and missions respond to a disaster. The ICS allows different kinds of agencies (fire, police, and medical) to work together effectively in response to a disaster. Functional requirements, not titles, determine the organizational hierarchy of the ICS structure. The ICS is a modular/adaptable system for all disasters regardless of etiology and for all organizations regardless of size.

  20. Structural response of 1/20-scale models of the Clinch River Breeder Reactor to a simulated hypothetical core-disruptive accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romander, C M; Cagliostro, D J

    Five experiments were performed to help evaluate the structural integrity of the reactor vessel and head design and to verify code predictions. In the first experiment (SM 1), a detailed model of the head was loaded statically to determine its stiffness. In the remaining four experiments (SM 2 to SM 5), models of the vessel and head were loaded dynamically under a simulated 661 MW-s hypothetical core disruptive accident (HCDA). Models SM 2 to SM 4, each of increasing complexity, systematically showed the effects of upper internals structures, a thermal liner, core support platform, and torospherical bottom on vessel response.more » Model SM 5, identical to SM 4 but more heavily instrumented, demonstrated experimental reproducibility and provided more comprehensive data. The models consisted of a Ni 200 vessel and core barrel, a head with shielding and simulated component masses, and an upper internals structure (UIS).« less

  1. 1.45 Å resolution structure of SRPN18 from the malaria vector Anopheles gambiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meekins, David A.; Zhang, Xin; Battaile, Kevin P.

    Serine protease inhibitors (serpins) in insects function within development, wound healing and immunity. The genome of the African malaria vector,Anopheles gambiae, encodes 23 distinct serpin proteins, several of which are implicated in disease-relevant physiological responses.A. gambiaeserpin 18 (SRPN18) was previously categorized as non-inhibitory based on the sequence of its reactive-center loop (RCL), a region responsible for targeting and initiating protease inhibition. The crystal structure ofA. gambiaeSRPN18 was determined to a resolution of 1.45 Å, including nearly the entire RCL in one of the two molecules in the asymmetric unit. The structure reveals that the SRPN18 RCL is extremely short andmore » constricted, a feature associated with noncanonical inhibitors or non-inhibitory serpin superfamily members. Furthermore, the SRPN18 RCL does not contain a suitable protease target site and contains a large number of prolines. The SRPN18 structure therefore reveals a unique RCL architecture among the highly conserved serpin fold.« less

  2. Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure

    NASA Astrophysics Data System (ADS)

    Fey, Tobias; Eichhorn, Franziska; Han, Guifang; Ebert, Kathrin; Wegener, Moritz; Roosen, Andreas; Kakimoto, Ken-ichi; Greil, Peter

    2016-01-01

    A two-dimensional auxetic lattice structure was fabricated from a PZT piezoceramic. Tape casted and sintered sheets with a thickness of 530 μm were laser cut into inverted honeycomb lattice structure with re-entrant cell geometry (θ = -25°) and poling direction oriented perpendicular to the lattice plane. The in-plane strain response upon applying an uniaxial compression load as well as an electric field perpendicular to the lattice plane were analyzed by a 2D image data detection analysis. The auxetic lattice structure exhibits orthotropic deformation behavior with a negative in-plane Poisson’s ratio of -2.05. Compared to PZT bulk material the piezoelectric auxetic lattice revealed a strain amplification by a factor of 30-70. Effective transversal coupling coefficients {{d}al}31 of the PZT lattice exceeding 4 × 103 pm V-1 were determined which result in an effective hydrostatic coefficient {{d}al}h 66 times larger than that of bulk PZT.

  3. Crash Simulation of a Boeing 737 Fuselage Section Vertical Drop Test

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Jones, Yvonne T.; Frings, Gary; Vu, Tong

    2004-01-01

    A 30-ft/s vertical drop test of a fuselage section of a Boeing 737 aircraft was conducted in October of 1999 at the FAA Technical Center in Atlantic City, NJ. This test was performed to evaluate the structural integrity of a conformable auxiliary fuel tank mounted beneath the floor and to determine its effect on the impact response of the airframe structure and the occupants. The test data were used to compare with a finite element simulation of the fuselage structure and to gain a better understanding of the impact physics through analytical/experimental correlation. To perform this simulation, a full-scale 3-dimensional finite element model of the fuselage section was developed using the explicit, nonlinear transient-dynamic finite element code, MSC.Dytran. The emphasis of the simulation was to predict the structural deformation and floor-level acceleration responses obtained from the drop test of the B737 fuselage section with the auxiliary fuel tank.

  4. 1.45 Å resolution structure of SRPN18 from the malaria vector Anopheles gambiae

    PubMed Central

    Meekins, David A.; Zhang, Xin; Battaile, Kevin P.; Lovell, Scott; Michel, Kristin

    2016-01-01

    Serine protease inhibitors (serpins) in insects function within development, wound healing and immunity. The genome of the African malaria vector, Anopheles gambiae, encodes 23 distinct serpin proteins, several of which are implicated in disease-relevant physiological responses. A. gambiae serpin 18 (SRPN18) was previously categorized as non-inhibitory based on the sequence of its reactive-center loop (RCL), a region responsible for targeting and initiating protease inhibition. The crystal structure of A. gambiae SRPN18 was determined to a resolution of 1.45 Å, including nearly the entire RCL in one of the two molecules in the asymmetric unit. The structure reveals that the SRPN18 RCL is extremely short and constricted, a feature associated with noncanonical inhibitors or non-inhibitory serpin superfamily members. Furthermore, the SRPN18 RCL does not contain a suitable protease target site and contains a large number of prolines. The SRPN18 structure therefore reveals a unique RCL architecture among the highly conserved serpin fold. PMID:27917832

  5. A Rich Man, Poor Man Story of S-Adenosylmethionine and Cobalamin Revisited.

    PubMed

    Bridwell-Rabb, Jennifer; Grell, Tsehai A J; Drennan, Catherine L

    2018-06-20

    S-adenosylmethionine (AdoMet) has been referred to as both "a poor man's adenosylcobalamin (AdoCbl)" and "a rich man's AdoCbl," but today, with the ever-increasing number of functions attributed to each cofactor, both appear equally rich and surprising. The recent characterization of an organometallic species in an AdoMet radical enzyme suggests that the line that differentiates them in nature will be constantly challenged. Here, we compare and contrast AdoMet and cobalamin (Cbl) and consider why Cbl-dependent AdoMet radical enzymes require two cofactors that are so similar in their reactivity. We further carry out structural comparisons employing the recently determined crystal structure of oxetanocin-A biosynthetic enzyme OxsB, the first three-dimensional structural data on a Cbl-dependent AdoMet radical enzyme. We find that the structural motifs responsible for housing the AdoMet radical machinery are largely conserved, whereas the motifs responsible for binding additional cofactors are much more varied.

  6. SRM attrition rate study of the aft motor case segments due to water impact cavity collapse loading

    NASA Technical Reports Server (NTRS)

    Crockett, C. D.

    1976-01-01

    The attrition assessment of the aft segments of Solid Rocket Motor due to water impact requires the establishment of a correlation between loading occurrences and structural capability. Each discrete load case, as identified by the water impact velocities and angle, varies longitudinally and radially in magnitude and distribution of the external pressure. The distributions are further required to be shifted forward or aft one-fourth the vehicle diameter to assure minimization of the effect of test instrumentation location for the load determinations. The asymmetrical load distributions result in large geometric nonlinearities in structural response. The critical structural response is progressive buckling of the case. Discrete stiffeners have been added to these aft segments to aid in gaining maximum structural capability for minimum weight addition for resisting these loads. This report presents the development of the attrition assessment of the aft segments and includes the rationale for eliminating all assessable conservatisms from this assessment.

  7. Low-momentum dynamic structure factor of a strongly interacting Fermi gas at finite temperature: A two-fluid hydrodynamic description

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Zou, Peng; Liu, Xia-Ji

    2018-02-01

    We provide a description of the dynamic structure factor of a homogeneous unitary Fermi gas at low momentum and low frequency, based on the dissipative two-fluid hydrodynamic theory. The viscous relaxation time is estimated and is used to determine the regime where the hydrodynamic theory is applicable and to understand the nature of sound waves in the density response near the superfluid phase transition. By collecting the best knowledge on the shear viscosity and thermal conductivity known so far, we calculate the various diffusion coefficients and obtain the damping width of the (first and second) sounds. We find that the damping width of the first sound is greatly enhanced across the superfluid transition and very close to the transition the second sound might be resolved in the density response for the transferred momentum up to half of Fermi momentum. Our work is motivated by the recent measurement of the local dynamic structure factor at low momentum at Swinburne University of Technology and the ongoing experiment on sound attenuation of a homogeneous unitary Fermi gas at Massachusetts Institute of Technology. We discuss how the measurement of the velocity and damping width of the sound modes in low-momentum dynamic structure factor may lead to an improved determination of the universal superfluid density, shear viscosity, and thermal conductivity of a unitary Fermi gas.

  8. Elastic theory of origami-based metamaterials

    NASA Astrophysics Data System (ADS)

    Brunck, V.; Lechenault, F.; Reid, A.; Adda-Bedia, M.

    2016-03-01

    Origami offers the possibility for new metamaterials whose overall mechanical properties can be programed by acting locally on each crease. Starting from a thin plate and having knowledge about the properties of the material and the folding procedure, one would like to determine the shape taken by the structure at rest and its mechanical response. In this article, we introduce a vector deformation field acting on the imprinted network of creases that allows us to express the geometrical constraints of rigid origami structures in a simple and systematic way. This formalism is then used to write a general covariant expression of the elastic energy of n -creases meeting at a single vertex. Computations of the equilibrium states are then carried out explicitly in two special cases: the generalized waterbomb base and the Miura-Ori. For the waterbomb, we show a generic bistability for any number of creases. For the Miura folding, however, we uncover a phase transition from monostable to bistable states that explains the efficient deployability of this structure for a given range of geometrical and mechanical parameters. Moreover, the analysis shows that geometric frustration induces residual stresses in origami structures that should be taken into account in determining their mechanical response. This formalism can be extended to a general crease network, ordered or otherwise, and so opens new perspectives for the mechanics and the physics of origami-based metamaterials.

  9. Stochastic Simulation Tool for Aerospace Structural Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.; Moore, David F.

    2006-01-01

    Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.

  10. A versatile approach to the study of the transient response of a submerged thin shell

    NASA Astrophysics Data System (ADS)

    Leblond, C.; Sigrist, J.-F.

    2010-01-01

    The transient response of submerged two-dimensional thin shell subjected to weak acoustical or mechanical excitations is addressed in this paper. The proposed approach is first exposed in a detailed manner: it is based on Laplace transform in time, in vacuo eigenvector expansion with time-dependent coefficients for the structural dynamics and boundary-integral formulation for the fluid. The projection of the fluid pressure on the in vacuo eigenvectors leads to a fully coupled system involving the modal time-dependent displacement coefficients, which are the problem unknowns. They are simply determined by matrix inversion in the Laplace domain. Application of the method to the response of a two-dimensional immersed shell to a weak acoustical excitation is then exposed: the proposed test-case corresponds to the design of immersed structures subjected to underwater explosions, which is of paramount importance in naval shipbuilding. Comparison of a numerical calculation based on the proposed approach with an analytical solution is exposed; versatility of the method is also highlighted by referring to "classical" FEM/FEM or FEM/BEM simulations. As a conspicuous feature of the method, calculation of the fluid response functions corresponding to a given geometry has to be performed once, allowing various simulations for different material properties of the structure, as well as for various excitations on the structure. This versatile approach can therefore be efficiently and extensively used for design purposes.

  11. Effect of starch structure on glucose and insulin responses in adults.

    PubMed

    Behall, K M; Scholfield, D J; Canary, J

    1988-03-01

    Twelve women and 13 men were given meals containing cornstarch with 70% of the starch in the form of amylopectin or amylose to determine if differences in glycemic response result from different chemical structure. Blood was drawn before and 30, 60, 120, and 180 min after each meal. The meals consisted of starch crackers fed at the rate of 1 g carbohydrate from starch per kilogram body weight. The amylose meal resulted in a significantly lower glucose peak at 30 min than did the amylopectin meal. Plasma insulin response was significantly lower 30 and 60 min after amylose than after the amylopectin meal. Summed insulin above fasting was significantly lower after amylose while summed glucose was not significantly different between the two meals. The sustained plasma glucose levels after the amylose meal with reduced insulin requirement suggest amylose starch may be of potential benefit to carbohydrate-sensitive or diabetic individuals.

  12. Manipulating neural activity in physiologically classified neurons: triumphs and challenges

    PubMed Central

    Gore, Felicity; Schwartz, Edmund C.; Salzman, C. Daniel

    2015-01-01

    Understanding brain function requires knowing both how neural activity encodes information and how this activity generates appropriate responses. Electrophysiological, imaging and immediate early gene immunostaining studies have been instrumental in identifying and characterizing neurons that respond to different sensory stimuli, events and motor actions. Here we highlight approaches that have manipulated the activity of physiologically classified neurons to determine their role in the generation of behavioural responses. Previous experiments have often exploited the functional architecture observed in many cortical areas, where clusters of neurons share response properties. However, many brain structures do not exhibit such functional architecture. Instead, neurons with different response properties are anatomically intermingled. Emerging genetic approaches have enabled the identification and manipulation of neurons that respond to specific stimuli despite the lack of discernable anatomical organization. These approaches have advanced understanding of the circuits mediating sensory perception, learning and memory, and the generation of behavioural responses by providing causal evidence linking neural response properties to appropriate behavioural output. However, significant challenges remain for understanding cognitive processes that are probably mediated by neurons with more complex physiological response properties. Currently available strategies may prove inadequate for determining how activity in these neurons is causally related to cognitive behaviour. PMID:26240431

  13. Determination Method of Bridge Rotation Angle Response Using MEMS IMU.

    PubMed

    Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi

    2016-11-09

    To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges.

  14. Sex worker-led structural interventions in India: a case study on addressing violence in HIV prevention through the Ashodaya Samithi collective in Mysore

    PubMed Central

    Reza-Paul, Sushena; Lorway, Rob; O’Brien, Nadia; Lazarus, Lisa; Jain, Jinendra; Bhagya, M.; Fathima, Mary P; Venukumar, KT; Raviprakash, K.N.; Baer, James; Steen, Richard

    2012-01-01

    Background & objectives: Structural interventions have the capacity to improve the outcomes of HIV/AIDS interventions by changing the social, economic, political or environmental factors that determine risk and vulnerability. Marginalized groups face disproportionate barriers to health, and sex workers are among those at highest risk of HIV in India. Evidence in India and globally has shown that sex workers face violence in many forms ranging from verbal, psychological and emotional abuse to economic extortion, physical and sexual violence and this is directly linked to lower levels of condom use and higher levels of sexually transmitted infections (STIs), the most critical determinants of HIV risk. We present here a case study of an intervention that mobilized sex workers to lead an HIV prevention response that addresses violence in their daily lives. Methods: This study draws on ethnographic research and project monitoring data from a community-led structural intervention in Mysore, India, implemented by Ashodaya Samithi. Qualitative and quantitative data were used to characterize baseline conditions, community responses and subsequent outcomes related to violence. Results: In 2004, the incidence of reported violence by sex workers was extremely high (> 8 incidents per sex worker, per year) but decreased by 84 per cent over 5 years. Violence by police and anti-social elements, initially most common, decreased substantially after a safe space was established for sex workers to meet and crisis management and advocacy were initiated with different stakeholders. Violence by clients, decreased after working with lodge owners to improve safety. However, initial increases in intimate partner violence were reported, and may be explained by two factors: (i) increased willingness to report such incidents; and (ii) increased violence as a reaction to sex workers’ growing empowerment. Trafficking was addressed through the establishment of a self-regulatory board (SRB). The community's progressive response to violence was enabled by advancing community mobilization, ensuring community ownership of the intervention, and shifting structural vulnerabilities, whereby sex workers increasingly engaged key actors in support of a more enabling environment. Interpretation & conclusions: Ashodaya's community-led response to violence at multiple levels proved highly synergistic and effective in reducing structural violence. PMID:22382190

  15. Measuring Client Experiences in Maternity Care under Change: Development of a Questionnaire Based on the WHO Responsiveness Model

    PubMed Central

    Scheerhagen, Marisja; van Stel, Henk F.; Birnie, Erwin; Franx, Arie; Bonsel, Gouke J.

    2015-01-01

    Background Maternity care is an integrated care process, which consists of different services, involves different professionals and covers different time windows. To measure performance of maternity care based on clients' experiences, we developed and validated a questionnaire. Methods and Findings We used the 8-domain WHO Responsiveness model, and previous materials to develop a self-report questionnaire. A dual study design was used for development and validation. Content validity of the ReproQ-version-0 was determined through structured interviews with 11 pregnant women (≥28 weeks), 10 women who recently had given birth (≤12 weeks), and 19 maternity care professionals. Structured interviews established the domain relevance to the women; all items were separately commented on. All Responsiveness domains were judged relevant, with Dignity and Communication ranking highest. Main missing topic was the assigned expertise of the health professional. After first adaptation, construct validity of the ReproQ-version-1 was determined through a web-based survey. Respondents were approached by maternity care organizations with different levels of integration of services of midwives and obstetricians. We sent questionnaires to 605 third trimester pregnant women (response 65%), and 810 women 6 weeks after delivery (response 55%). Construct validity was based on: response patterns; exploratory factor analysis; association of the overall score with a Visual Analogue Scale (VAS), known group comparisons. Median overall ReproQ score was 3.70 (range 1–4) showing good responsiveness. The exploratory factor analysis supported the assumed domain structure and suggested several adaptations. Correlation of the VAS rating and overall ReproQ score (antepartum, postpartum) supported validity (r = 0.56; 0.59, p<0.001 Spearman's correlation coefficient). Pre-stated group comparisons confirmed the expected difference following a good vs. adverse birth outcome. Fully integrated organizations performed slightly better (median = 3.78) than less integrated organizations (median = 3.63; p<0.001). Participation rate of women with a low educational level and/or a non-western origin was low. Conclusions The ReproQ appears suitable for assessing quality of maternity care from the clients' perspective. Recruitment of disadvantaged groups requires additional non-digital approaches. PMID:25671310

  16. The yield of DNA double strand breaks determined after exclusion of those forming from heat-labile lesions predicts tumor cell radiosensitivity to killing.

    PubMed

    Cheng, Yanlei; Li, Fanghua; Mladenov, Emil; Iliakis, George

    2015-09-01

    The radiosensitivity to killing of tumor cells and in-field normal tissue are key determinants of radiotherapy response. In vitro radiosensitivity of tumor- and normal-tissue-derived cells often predicts radiation response, but high determination cost in time and resources compromise utility as routine response-predictor. Efforts to use induction or repair of DNA double-strand-breaks (DSBs) as surrogate-predictors of cell radiosensitivity to killing have met with limited success. Here, we re-visit this issue encouraged by our recent observations that ionizing radiation (IR) induces not only promptly-forming DSBs (prDSBs), but also DSBs developing after irradiation from the conversion to breaks of thermally-labile sugar-lesions (tlDSBs). We employ pulsed-field gel-electrophoresis and flow-cytometry protocols to measure total DSBs (tDSB=prDSB+tlDSBs) and prDSBs, as well as γH2AX and parameters of chromatin structure. We report a fully unexpected and in many ways unprecedented correlation between yield of prDSBs and radiosensitivity to killing in a battery of ten tumor cell lines that is not matched by yields of tDSBs or γH2AX, and cannot be explained by simple parameters of chromatin structure. We propose the introduction of prDSBs-yield as a novel and powerful surrogate-predictor of cell radiosensitivity to killing with potential for clinical application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Direct Observation of Electron Capture and Reemission by the Divacancy via Charge Transient Positron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Edwardson, C. J.; Coleman, P. G.; Paez, D. J.; Doylend, J. K.; Knights, A. P.

    2013-03-01

    Electron capture during forward bias and reemission at zero bias by divacancies in the depletion region of a silicon diode structure at room temperature have been studied for the first time using monoenergetic positrons. The positron response increases essentially linearly with electron current, as a result of increased positron trapping by negatively charged divacancies. The measurements indicate that ≤1% of the divacancies become negatively charged in the steady state at a forward bias of 1 V. Changes in the mean positron response when applying a square wave bias to the sample (1 V forward bias and 0 V, duty cycle 1∶4, times at 0 V in the range 0.1-100μs), were consistent with a rapid conversion of doubly to singly charged divacancies (in ˜101ns), followed by slower defilling of the singly charged divacancies with a time constant of ˜101μs. These ac measurements allow determination of the relative populations of singly and doubly charged divacancies. The results provide confirmation of consistency between the positron’s response to the silicon divacancy and previously extracted capture and emission kinetics determined through charge transient measurements and assigned to the same defect. The possibility of combining these two, orthogonal techniques suggest a promising new and powerful approach to defect spectroscopy in which the structure and electrical properties of a defect may be determined in a single measurement.

  18. Engineering Property Prediction Tools for Tailored Polymer Composite Structures (49465)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Kunc, Vlastimil

    2009-12-29

    Process and constitutive models as well as characterization tools and testing methods were developed to determine stress-strain responses, damage development, strengths and creep of long-fiber thermoplastics (LFTs). The developed models were implemented in Moldflow and ABAQUS and have been validated against LFT data obtained experimentally.

  19. APPLICATION OF PERTURBATION SIMULATIONS IN POPULATION RISK ASSESSMENT FOR DIFFERENT LIFE HISTORY STRATEGIES AND ELASTICITY PATTERNS

    EPA Science Inventory

    Population structure and life history strategies are determinants of how populations respond to stressor-induced impairments in organism-level responses, but a consistent and holistic analysis has not been reported. Effects on population growth rate were modeled using seven theor...

  20. 75 FR 20627 - Biweekly Notice: Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... designed, on an RAS. Basis for proposed no significant hazards consideration determination: As required by...], Time Response Design Criteria for Safety- Related Operator Actions, 1984 guidance. Although the change... changes to the RAS Allowable Values and RWT minimum required level on the RWT structural design...

  1. Theoretical Foundations for Enhancing Social Connectedness in Online Learning Environments

    ERIC Educational Resources Information Center

    Slagter van Tryon, Patricia J.; Bishop, M. J.

    2009-01-01

    Group social structure provides a comfortable and predictable context for interaction in learning environments. Students in face-to-face learning environments process social information about others in order to assess traits, predict behaviors, and determine qualifications for assuming particular responsibilities within a group. In online learning…

  2. Urban Elementary Students' Views of Environmental Scientists, Environmental Caretakers and Environmentally Responsible Behaviors

    ERIC Educational Resources Information Center

    Horne, Patricia Lynne

    2010-01-01

    The purpose of this research was to determine the nature of the relationship between urban elementary fifth graders, environmental workers, and the environment. The study examined 320 urban fifth grade elementary students' drawings of environmental scientists (DAEST) and environmental caretakers (DAECT). Additionally, semi-structured interviews…

  3. Accelerated testing for studying pavement design and performance (FY 2004) : thin bonded rigid overlay on PCCP and HMA (CISL experiment no. 13).

    DOT National Transportation Integrated Search

    2009-03-01

    The thirteenth full-scale Accelerated Pavement Test (APT) experiment at the Civil Infrastructure Laboratory (CISL) : of Kansas State University aimed to determine the response and the failure mode of thin concrete overlays. Four : pavement structures...

  4. 76 FR 53402 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...: International Trade Administration (ITA). Title: Annual Report from Foreign-Trade Zones. OMB Control Number... officials to determine whether zone activity is consistent with U.S. international trade policy, and whether... per Response: 30 to 190 hours (depending on size and structure of the foreign-trade zone). Needs and...

  5. Use of structured personality survey techniques to indicate operator response to stressful situations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waller, M.A.

    Under given circumstances, a person will tend to operate in one of four dominant orientations: (1) to perform tasks; (2) to achieve consensus; (3) to achieve understanding, or (4) to maintain structure. Historically, personality survey techniques, such as the Myers-Briggs type indicator, have been used to determine these tendencies. While these techniques can accurately reflect a person's orientation under normal social situations, under different sets of conditions, the same person may exhibit other tendencies, displaying a similar or entirely different orientation. While most do not exhibit extreme tendencies or changes of orientation, the shift in personality from normal to stressfulmore » conditions can be rather dramatic, depending on the individual. Structured personality survey techniques have been used to indicate operator response to stressful situations. These techniques have been extended to indicate the balance between orientations that the control room team has through the various levels of cognizance.« less

  6. Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis

    NASA Astrophysics Data System (ADS)

    Szafran, J.; Kamiński, M.

    2017-02-01

    The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.

  7. Geometric mechanics of periodic pleated origami.

    PubMed

    Wei, Z Y; Guo, Z V; Dudte, L; Liang, H Y; Mahadevan, L

    2013-05-24

    Origami structures are mechanical metamaterials with properties that arise almost exclusively from the geometry of the constituent folds and the constraint of piecewise isometric deformations. Here we characterize the geometry and planar and nonplanar effective elastic response of a simple periodically folded Miura-ori structure, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, defined completely by two angles and two lengths. We show that the in-plane and out-of-plane Poisson's ratios are equal in magnitude, but opposite in sign, independent of material properties. Furthermore, we show that effective bending stiffness of the unit cell is singular, allowing us to characterize the two-dimensional deformation of a plate in terms of a one-dimensional theory. Finally, we solve the inverse design problem of determining the geometric parameters for the optimal geometric and mechanical response of these extreme structures.

  8. Structural Acoustic Response of a Shape Memory Alloy Hybrid Composite Panel (Lessons Learned)

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2002-01-01

    This study presents results from an effort to fabricate a shape memory alloy hybrid composite (SMAHC) panel specimen and test the structure for dynamic response and noise transmission characteristics under the action of thermal and random acoustic loads. A method for fabricating a SMAHC laminate with bi-directional SMA reinforcement is described. Glass-epoxy unidirectional prepreg tape and Nitinol ribbon comprise the material system. Thermal activation of the Nitinol actuators was achieved through resistive heating. The experimental hardware required for mechanical support of the panel/actuators and for establishing convenient electrical connectivity to the actuators is presented. Other experimental apparatus necessary for controlling the panel temperature and acquiring structural acoustic data are also described. Deficiency in the thermal control system was discovered in the process of performing the elevated temperature tests. Discussion of the experimental results focuses on determining the causes for the deficiency and establishing means for rectifying the problem.

  9. Structural acoustic response of a shape memory alloy hybrid composite panel (lessons learned)

    NASA Astrophysics Data System (ADS)

    Turner, Travis L.

    2002-07-01

    This study presents results from an effort to fabricate a shape memory alloy hybrid composite (SMAHC) panel specimen and test the structure for dynamic response and noise transmission characteristics under the action of thermal and random acoustic loads. A method for fabricating a SMAHC laminate with bi-directional SMA reinforcement is described. Glass-epoxy unidirectional prepreg tape and Nitinol ribbon comprise the material system. Thermal activation of the Nitinol actuators was achieved through resistive heating. The experimental hardware required for mechanical support of the panel/actuators and for establishing convenient electrical connectivity to the actuators is presented. Other experimental apparatus necessary for controlling the panel temperature and acquiring structural acoustic data are also described. Deficiency in the thermal control system was discovered in the process of performing the elevated temperature tests. Discussion of the experimental results focuses on determining the causes for the deficiency and establishing means for rectifying the problem.

  10. Research concerning the net flux of radiation in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Tomasko, M. G.

    1996-01-01

    The plan of the NFR (Net Flux of Radiation) team is for the data from the two solar channels (B and E) of NFR to be reduced with the goal of determining the solar heating rate. In order to determine the solar heating rate from the NFR measurements, effects due to the instrument's spatial and spectral response functions, to the temperature variation of the instrument (and associated drift of calibration), to the setting sun, and to the rotation of the probe (initially at a rate comparable to the NFR sampling frequency), all must be well modelled. In the past year, a forward modeling routine was created to simulate NFR data return in the B and E channels. The effects of varying parameters describing the atmospheric model (such as cloud location and thickness) and the descent profile (such as rotation rate) were investigated and an inversion routine was developed. For the forward modeling, existing radiative transfer codes were used to determine intensity fields within the Jovian atmosphere. A routine was developed to determine instantaneous instrument response by integrating the intensity field over the instrument response functions. A second routine was developed to determine the actual output of the NFR by integrating along an arbitrary descent trajectory. Near the top of the atmosphere, the upflux data alone are used to constrain the cloud structure of he atmosphere. To accomplish this, models are used to describe the variation in up flux between consecutive measurements in terms of variations of cloud opacity and variations in known parameters such as the solar zenith angle. This allows us to develop a zero-order model of cloud structure. Lower in the atmosphere, at levels where there is little or no azimuthal structure to the net flux measurements, both the up flux and net flux are used to derive layer transmission and reflection functions, which then determine layer opacity and single scattering albedo. A preliminary analysis of the data began in December 1995. In these data we could see the rapid oscillations expected at the beginning of the data due to probe rotation and the sun passing through the edge of the field of view. In addition, the time when this oscillation stopped was clearly visible. This sets the rough optical depth above the probe at this time.

  11. Glycoprotein hormone receptors: determinants in leucine-rich repeats responsible for ligand specificity

    PubMed Central

    Smits, Guillaume; Campillo, Mercedes; Govaerts, Cédric; Janssens, Véronique; Richter, Christine; Vassart, Gilbert; Pardo, Leonardo; Costagliola, Sabine

    2003-01-01

    Glycoprotein hormone receptors [thyrotropin (TSHr), luteinizing hormone/chorionic gonadotropin (LH/CGr), follicle stimulating hormone (FSHr)] are rhodopsin-like G protein-coupled receptors with a large extracellular N-terminal portion responsible for hormone recognition and binding. In structural models, this ectodomain is composed of two cysteine clusters flanking nine leucine-rich repeats (LRRs). The LRRs form a succession of β-strands and α-helices organized into a horseshoe-shaped structure. It has been proposed that glycoprotein hormones interact with residues of the β-strands making the concave surface of the horseshoe. Gain-of-function homology scanning of the β-strands of glycoprotein hormone receptors allowed identification of the critical residues responsible for the specificity towards human chorionic gonadotropin (hCG). Substitution of eight or two residues of the LH/CGr into the TSHr or FSHr, respectively, resulted in constructs displaying almost the same affinity and sensitivity for hCG as wild-type LH/CGr. Molecular dynamics simulations and additional site-directed mutagenesis provided a structural rationale for the evolution of binding specificity in this duplicated gene family. PMID:12773385

  12. Unsteady hydrodynamics of blade forces and acoustic responses of a model scaled submarine excited by propeller's thrust and side-forces

    NASA Astrophysics Data System (ADS)

    Wei, Yingsan; Wang, Yongsheng

    2013-04-01

    This study presents the unsteady hydrodynamics of the excitations from a 5-bladed propeller at two rotating speeds running in the wake of a small-scaled submarine and the behavior of the submarine's structure and acoustic responses under the propeller excitations. Firstly, the propeller flow and submarine flows are independently validated. The propulsion of the hull-propeller is simulated using computational fluid dynamics (CFD), so as to obtain the transient responses of the propeller excitations. Finally, the structure and acoustic responses of the submarine under propeller excitations are predicted using a finite element/boundary element model in the frequency domain. Results show that (1) the propeller excitations are tonal at the propeller harmonics, and the propeller transversal force is bigger than vertical force. (2) The structure and acoustic responses of the submarine hull is tonal mainly at the propeller harmonics and the resonant mode frequencies of the hull, and the breathing mode in axial direction as well as the bending modes in vertical and transversal directions of the hull can generate strong structure vibration and underwater noise. (3) The maximum sound pressure of the field points increases with the increasing propeller rotating speed at structure resonances and propeller harmonics, and the rudders resonant mode also contributes a lot to the sound radiation. Lastly, the critical rotating speeds of the submarine propeller are determined, which should be carefully taken into consideration when match the propeller with prime mover in the propulsion system. This work shows the importance of the propeller's tonal excitation and the breathing mode plus the bending modes in evaluating submarine's noise radiation.

  13. Linear ideal MHD predictions for n = 2 non-axisymmetric magnetic perturbations on DIII-D

    DOE PAGES

    Haskey, Shaun R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2014-02-05

    Here, an extensive examination of the plasma response to dominantly n = 2 non-axisymmetric magnetic perturbations (MPs) on the DIII-D tokamak shows the potential to control 3D field interactions by varying the poloidal spectrum of the radial magnetic field. The plasma response is calculated as a function of the applied magnetic field structure and plasma parameters, using the linear magnetohydrodynamic code MARS-F. The ideal, single fluid plasma response is decomposed into two main components: a local pitch-resonant response occurring at rational magnetic flux surfaces, and a global kink response. The efficiency with which the field couples to the total plasmamore » response is determined by the safety factor and the structure of the applied field. In many cases, control of the applied field has a more significant effect than control of plasma parameters, which is of particular interest since it can be modified at will throughout a shot to achieve a desired effect. The presence of toroidal harmonics, other than the dominant n = 2 component, is examined revealing a significant n = 4 component in the perturbations applied by the DIII-D MP coils; however, modeling shows the plasma responses to n = 4 perturbations are substantially smaller than the dominant n = 2 responses in most situations.« less

  14. Quantifying the determinants of decremental response in critical ventricular tachycardia substrate.

    PubMed

    Beheshti, Mohammadali; Nayyar, Sachin; Magtibay, Karl; Massé, Stéphane; Porta-Sanchez, Andreu; Haldar, Shouvik; Bhaskaran, Abhishek; Vigmond, Edward; Nanthakumar, Kumaraswamy

    2018-05-28

    Decremental response evoked with extrastimulation (DEEP) is a useful tool for determining diastolic return path of ventricular tachycardia (VT). Though a targeted VT ablation is feasible with this approach, determinants of DEEP response have not been studied OBJECTIVES: To elucidate the effects of clinically relevant factors, specifically, the proximity of the stimulation site to the arrhythmogenic scar, stimulation wave direction, number of channels open in the scar, size of the scar and number of extra stimuli on decrement and entropy of DEEP potentials. In a 3-dimensional bi-domain simulation of human ventricular tissue (TNNP cell model), an irregular subendocardial myopathic region was generated. An irregular channel of healthy tissue with five potential entry branches was shaped into the myopathic region. A bipolar electrogram was derived from two electrodes positioned in the centre of the myopathic region. Evoked delays between far-field and local Electrogram (EGM) following an extrastimulus (S1-S2, 500-350 ms) were measured as the stimulation site, channel branches, and inexcitable tissue size were altered. Stimulation adjacent to the inexcitable tissue from the side opposite to the point-of-entry produces longest DEEP delay. The DEEP delay shortens when the stimulation point is farther away from the scar, and it decreases maximally when stimulation is done from a site beside a conduction barrier. Entropy increases with S2 when stimulation site is from farther away. An unprotected channel structure with multiple side-branch openings had shorter DEEP delay compared to a protected channel structure with a paucity of additional side-branch openings and a point-of-entry on the side opposite to the pacing source. Addition of a second shorter extrastimulus did not universally lead to higher DEEP delay CONCLUSIONS: Location and direction of the wavefront in relation to scar entry and size of scar determine the degree of evoked response while the number of extrastimuli has a small additional decremental effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The Anterolateral Capsule of the Knee Behaves Like a Sheet of Fibrous Tissue.

    PubMed

    Guenther, Daniel; Rahnemai-Azar, Amir A; Bell, Kevin M; Irarrázaval, Sebastián; Fu, Freddie H; Musahl, Volker; Debski, Richard E

    2017-03-01

    The function of the anterolateral capsule of the knee has not been clearly defined. However, the contribution of this region of the capsule to knee stability in comparison with other anterolateral structures can be determined by the relative force that each structure carries during loading of the knee. Purpose/Hypothesis: The purpose of this study was to determine the forces in the anterolateral structures of the intact and anterior cruciate ligament (ACL)-deficient knee in response to an anterior tibial load and internal tibial torque. It was hypothesized that the anterolateral capsule would not function like a traditional ligament (ie, transmitting forces only along its longitudinal axis). Controlled laboratory study. Loads (134-N anterior tibial load and 7-N·m internal tibial torque) were applied continuously during flexion to 7 fresh-frozen cadaveric knees in the intact and ACL-deficient state using a robotic testing system. The lateral collateral ligament (LCL) and the anterolateral capsule were separated from the surrounding tissue and from each other. This was done by performing 3 vertical incisions: lateral to the LCL, medial to the LCL, and lateral to the Gerdy tubercle. Attachments of the LCL and anterolateral capsule were detached from the underlying tissue (ie, meniscus), leaving the insertions and origins intact. The force distribution in the anterolateral capsule, ACL, and LCL was then determined at 30°, 60°, and 90° of knee flexion using the principle of superposition. In the intact knee, the force in the ACL in response to an anterior tibial load was greater than that in the other structures ( P < .001). However, in response to an internal tibial torque, no significant differences were found between the ACL, LCL, and forces transmitted between each region of the anterolateral capsule after capsule separation. The anterolateral capsule experienced smaller forces (~50% less) compared with the other structures ( P = .048). For the ACL-deficient knee in response to an anterior tibial load, the force transmitted between each region of the anterolateral capsule was 434% greater than was the force in the anterolateral capsule ( P < .001) and 54% greater than the force in the LCL ( P = .036) at 30° of flexion. In response to an internal tibial torque at 30°, 60°, or 90° of knee flexion, no significant differences were found between the force transmitted between each region of the anterolateral capsule and the LCL. The force in the anterolateral capsule was significantly smaller than that in the other structures at all knee flexion angles for both loading conditions ( P = .004 for anterior tibial load and P = .04 for internal tibial torque). The anterolateral capsule carries negligible forces in the longitudinal direction, and the forces transmitted between regions of the capsule were similar to the forces carried by the other structures at the knee, suggesting that it does not function as a traditional ligament. Thus, the anterolateral capsule should be considered a sheet of tissue. Surgical repair techniques for the anterolateral capsule should restore the ability of the tissue to transmit forces between adjacent regions of the capsule rather than along its longitudinal axis.

  16. Thermal control requirements for large space structures

    NASA Technical Reports Server (NTRS)

    Manoff, M.

    1978-01-01

    Performance capabilities and weight requirements of large space structure systems will be significantly influenced by thermal response characteristics. Analyses have been performed to determine temperature levels and gradients for structural configurations and elemental concepts proposed for advanced system applications ranging from relatively small, low-power communication antennas to extremely large, high-power Satellite Power Systems (SPS). Results are presented for selected platform configurations, candidate strut elements, and potential mission environments. The analyses also incorporate material and surface optical property variation. The results illustrate many of the thermal problems which may be encountered in the development of three systems.

  17. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 7: High pressure fuel turbo-pump third stage impeller analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.

  18. UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.

    NASA Astrophysics Data System (ADS)

    Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas

    2018-01-01

    The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.

  19. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    PubMed

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  20. Species-specific defence responses facilitate conspecifics and inhibit heterospecifics in above–belowground herbivore interactions

    PubMed Central

    Huang, Wei; Siemann, Evan; Xiao, Li; Yang, Xuefang; Ding, Jianqing

    2014-01-01

    Conspecific and heterospecific aboveground and belowground herbivores often occur together in nature and their interactions may determine community structure. Here we show how aboveground adults and belowground larvae of the tallow tree specialist beetle Bikasha collaris and multiple heterospecific aboveground species interact to determine herbivore performance. Conspecific aboveground adults facilitate belowground larvae, but other aboveground damage inhibits larvae or has no effect. Belowground larvae increase conspecific adult feeding, but decrease heterospecific aboveground insect feeding and abundance. Chemical analyses and experiments with plant populations varying in phenolics show that all these positive and negative effects on insects are closely related to root and shoot tannin concentrations. Our results show that specific plant herbivore responses allow herbivore facilitation and inhibition to co-occur, likely shaping diverse aboveground and belowground communities. Considering species-specific responses of plants is critical for teasing apart inter- and intraspecific interactions in aboveground and belowground compartments. PMID:25241651

  1. Nanostructured ZnO films for potential use in LPG gas sensors

    NASA Astrophysics Data System (ADS)

    Latyshev, V. M.; Berestok, T. O.; Opanasyuk, A. S.; Kornyushchenko, A. S.; Perekrestov, V. I.

    2017-05-01

    The aim of the work was to obtain ZnO nanostructures with heightened surface area and to study relationship between formation method and gas sensor properties towards propane-butane mixture (LPG). In order to synthesize ZnO nanostructures chemical and physical formation methods have been utilized. The first one was chemical bath deposition technology and the second one magnetron sputtering of Zn followed by oxidation. Optimal method and technological parameters corresponding to formation of material with the highest sensor response have been determined experimentally. Dynamical gas sensor response at different temperature values and dependencies of the sensor sensitivity on the temperature at different LPG concentrations in air have been investigated. It has been found, that sensor response depends on the sample morphology and has the highest value for the structure consisting of thin nanowires. The factors that lead to the decrease in the gas sensor operating temperature have been determined.

  2. Gα12 structural determinants of Hsp90 interaction are necessary for serum response element-mediated transcriptional activation.

    PubMed

    Montgomery, Ellyn R; Temple, Brenda R S; Peters, Kimberly A; Tolbert, Caitlin E; Booker, Brandon K; Martin, Joseph W; Hamilton, Tyler P; Tagliatela, Alicia C; Smolski, William C; Rogers, Stephen L; Jones, Alan M; Meigs, Thomas E

    2014-04-01

    The G12/13 class of heterotrimeric G proteins, comprising the α-subunits Gα12 and Gα13, regulates multiple aspects of cellular behavior, including proliferation and cytoskeletal rearrangements. Although guanine nucleotide exchange factors for the monomeric G protein Rho (RhoGEFs) are well characterized as effectors of this G protein class, a variety of other downstream targets has been reported. To identify Gα12 determinants that mediate specific protein interactions, we used a structural and evolutionary comparison between the G12/13, Gs, Gi, and Gq classes to identify "class-distinctive" residues in Gα12 and Gα13. Mutation of these residues in Gα12 to their deduced ancestral forms revealed a subset necessary for activation of serum response element (SRE)-mediated transcription, a G12/13-stimulated pathway implicated in cell proliferative signaling. Unexpectedly, this subset of Gα12 mutants showed impaired binding to heat-shock protein 90 (Hsp90) while retaining binding to RhoGEFs. Corresponding mutants of Gα13 exhibited robust SRE activation, suggesting a Gα12-specific mechanism, and inhibition of Hsp90 by geldanamycin or small interfering RNA-mediated lowering of Hsp90 levels resulted in greater downregulation of Gα12 than Gα13 signaling in SRE activation experiments. Furthermore, the Drosophila G12/13 homolog Concertina was unable to signal to SRE in mammalian cells, and Gα12:Concertina chimeras revealed Gα12-specific determinants of SRE activation within the switch regions and a C-terminal region. These findings identify Gα12 determinants of SRE activation, implicate Gα12:Hsp90 interaction in this signaling mechanism, and illuminate structural features that arose during evolution of Gα12 and Gα13 to allow bifurcated mechanisms of signaling to a common cell proliferative pathway.

  3. N,N-diethyldithiocarbamate promotes oxidative stress prior to myelin structural changes and increases myelin copper content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viquez, Olga M.; Lai, Barry; Ahn, Jae Hee

    2009-08-15

    Dithiocarbamates are a commercially important class of compounds that can produce peripheral neuropathy in humans and experimental animals. Previous studies have supported a requirement for copper accumulation and enhanced lipid peroxidation in dithiocarbamate-mediated myelinopathy. The study presented here extends previous investigations in two areas. Firstly, although total copper levels have been shown to increase within the nerve it has not been determined whether copper is increased within the myelin compartment, the primary site of lesion development. Therefore, the distribution of copper in sciatic nerve was characterized using synchrotron X-ray fluorescence microscopy to determine whether the neurotoxic dithiocarbamate, N,N-diethyldithiocarbamate, increases coppermore » levels in myelin. Secondly, because lipid peroxidation is an ongoing process in normal nerve and the levels of lipid peroxidation products produced by dithiocarbamate exposure demonstrated an unusual cumulative dose response in previous studies the biological impact of dithiocarbamate-mediated lipid peroxidation was evaluated. Experiments were performed to determine whether dithiocarbamate-mediated lipid peroxidation products elicit an antioxidant response through measuring the protein expression levels of three enzymes, superoxide dismutase 1, heme oxygenase 1, and glutathione transferase {alpha}, that are linked to the antioxidant response element promoter. To establish the potential of oxidative injury to contribute to myelin injury the temporal relationship of the antioxidant response to myelin injury was determined. Myelin structure in peripheral nerve was assessed using multi-exponential transverse relaxation measurements (MET{sub 2}) as a function of exposure duration, and the temporal relationship of protein expression changes relative to the onset of changes in myelin integrity were determined. Initial assessments were also performed to explore the potential contribution of dithiocarbamate-mediated inhibition of proteasome function and inhibition of cuproenzyme activity to neurotoxicity, and also to assess the potential of dithiocarbamates to promote oxidative stress and injury within the central nervous system. These evaluations were performed using an established model for dithiocarbamate-mediated demyelination in the rat utilizing sciatic nerve, spinal cord and brain samples obtained from rats exposed to N,N-diethyldithiocarbamate (DEDC) by intra-abdominal pumps for periods of 2, 4, and 8 weeks and from non exposed controls. The data supported the ability of DEDC to increase copper within myelin and to enhance oxidative stress prior to structural changes detectable by MET{sub 2}. Evidence was also obtained that the excess copper produced by DEDC in the central nervous system is redox active and promotes oxidative injury.« less

  4. Use of Monoclonal Antibodies to Study the Structure and Function of Nicotinic Acetylcholine Receptors on Electric Organ and Muscle and to Determine the Structure of Nicotinic Acetylcholine Receptors on Neurons

    DTIC Science & Technology

    1988-03-16

    receptors in muscle is responsible for the muscular weakness characteristic of myasthenia gravis . Some insecticides can act like chemical warfare...expresses muscle-like acetyi-.holine receptor by observing that autoantibodies from myasthenia gravis patients reacted as well with these receptors as...Antibodies in sera from patients with myasthenia gravis do not bind to acetylcholine receptors from human brain. J Neuroimmunol 16:205-213. 21. Whiting

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com; Pramumijoyo, Subagyo; Wilopo, Wahyu

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  6. Evolution or revolution? New committee to play key role in determining pace of change at CMA

    PubMed Central

    Rafuse, Jill

    1995-01-01

    The CMA's relationship with its provincial and territorial divisions, affiliate societies and Canada's 60 000 physicians is under the microscope as a newly formed Committee on Structure prepares a white paper on organization and governance options. The document, which will soon be circulated for discussion and feedback, will lead to recommendations for a revitalized structure to make the CMA a more efficient organization that is more responsive to members' needs. Imagesp96-a

  7. Active Control of Sound Radiation due to Subsonic Wave Scattering from Discontinuities on Thin Elastic Beams.

    NASA Astrophysics Data System (ADS)

    Guigou, Catherine Renee J.

    1992-01-01

    Much progress has been made in recent years in active control of sound radiation from vibrating structures. Reduction of the far-field acoustic radiation can be obtained by directly modifying the response of the structure by applying structural inputs rather than by adding acoustic sources. Discontinuities, which are present in many structures are often important in terms of sound radiation due to wave scattering behavior at their location. In this thesis, an edge or boundary type discontinuity (clamped edge) and a point discontinuity (blocking mass) are analytically studied in terms of sound radiation. When subsonic vibrational waves impinge on these discontinuities, large scattered sound levels are radiated. Active control is then achieved by applying either control forces, which approximate shakers, or pairs of control moments, which approximate piezoelectric actuators, near the discontinuity. Active control of sound radiation from a simply-supported beam is also examined. For a single frequency, the flexural response of the beam subject to an incident wave or an input force (disturbance) and to control forces or control moments is expressed in terms of waves of both propagating and near-field types. The far-field radiated pressure is then evaluated in terms of the structural response, using Rayleigh's formula or a stationary phase approach, depending upon the application. The control force and control moment magnitudes are determined by optimizing a quadratic cost function, which is directly related to the control performance. On determining the optimal control complex amplitudes, these can be resubstituted in the constitutive equations for the system under study and the minimized radiated fields can be evaluated. High attenuation in radiated sound power and radiated acoustic pressure is found to be possible when one or two active control actuators are located near the discontinuity, as is shown to be mostly associated with local changes in beam response near the discontinuity. The effect of the control actuators on the far-field radiated pressure, the wavenumber spectrum, the flexural displacement and the near-field time averaged intensity and pressure distributions are studied in order to further understand the control mechanisms. The influence of the near-field structural waves is investigated as well. Some experimental results are presented for comparison.

  8. Signalling networks and dynamics of allosteric transitions in bacterial chaperonin GroEL: implications for iterative annealing of misfolded proteins.

    PubMed

    Thirumalai, D; Hyeon, Changbong

    2018-06-19

    Signal transmission at the molecular level in many biological complexes occurs through allosteric transitions. Allostery describes the responses of a complex to binding of ligands at sites that are spatially well separated from the binding region. We describe the structural perturbation method, based on phonon propagation in solids, which can be used to determine the signal-transmitting allostery wiring diagram (AWD) in large but finite-sized biological complexes. Application to the bacterial chaperonin GroEL-GroES complex shows that the AWD determined from structures also drives the allosteric transitions dynamically. From both a structural and dynamical perspective these transitions are largely determined by formation and rupture of salt-bridges. The molecular description of allostery in GroEL provides insights into its function, which is quantitatively described by the iterative annealing mechanism. Remarkably, in this complex molecular machine, a deep connection is established between the structures, reaction cycle during which GroEL undergoes a sequence of allosteric transitions, and function, in a self-consistent manner.This article is part of a discussion meeting issue 'Allostery and molecular machines'. © 2018 The Author(s).

  9. Structure of adeno-associated virus-2 in complex with neutralizing monoclonal antibody A20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCraw, Dustin M.; O'Donnell, Jason K.; Taylor, Kenneth A.

    2012-09-15

    The use of adeno-associated virus (AAV) as a gene therapy vector is limited by the host neutralizing immune response. The cryo-electron microscopy (EM) structure at 8.5 A resolution is determined for a complex of AAV-2 with the Fab' fragment of monoclonal antibody (MAb) A20, the most extensively characterized AAV MAb. The binding footprint is determined through fitting the cryo-EM reconstruction with a homology model following sequencing of the variable domain, and provides a structural basis for integrating diverse prior epitope mappings. The footprint extends from the previously implicated plateau to the side of the spike, and into the conserved canyon,more » covering a larger area than anticipated. Comparison with structures of binding and non-binding serotypes indicates that recognition depends on a combination of subtle serotype-specific features. Separation of the neutralizing epitope from the heparan sulfate cell attachment site encourages attempts to develop immune-resistant vectors that can still bind to target cells.« less

  10. The functional response of bioactive titania-modified three-dimensional Ti-6Al-4V mesh structure toward providing a favorable pathway for intercellular communication and osteoincorporation.

    PubMed

    Nune, K C; Misra, R D K; Li, S J; Hao, Y L; Zhang, W

    2016-10-01

    The objective of the study is to fundamentally elucidate the biological response of 3D printed mesh structures subjected to plasma electrolytic oxidation process through the study of osteoblast functions. The cellular activity of plasma electrolytic-oxidized mesh structure was explored in terms of cell-to-cell communication involving proliferation, synthesis of extracellular and intracellular proteins, and mineralization. Upon plasma electrolytic oxidation of the mesh structure, a thin layer of bioactive titania with pore size 1-3 µm was nucleated on the surface. The combination of microporous bioactive titania and interconnected porous architecture provided the desired pathway for supply of nutrients and oxygen to cells and tissue and a favorable osteogenic microenvironment for tissue on-growth and in-growth, in relation to the unmodified mesh structure. The formation of a confluent layer as envisaged via electron microscopy and quantitative assessment of the expression level of proteins (actin, vinculin, and fibronectin) point toward the determining role of surface-modified mesh structure in modulating osteoblasts functions. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2488-2501, 2016. © 2016 Wiley Periodicals, Inc.

  11. pH-driven colloidal transformations based on the vasoactive drug nicergoline.

    PubMed

    Salentinig, Stefan; Tangso, Kristian J; Hawley, Adrian; Boyd, Ben J

    2014-12-16

    The structure of colloidal self-assembled drug delivery systems can be influenced by intermolecular interactions between drug and amphiphilic molecules, and is important to understand in the context of designing improved delivery systems. Controlling these structures can enable controlled or targeted release systems for poorly water-soluble drugs. Here we present the interaction of the hydrophobic vasoactive drug nicergoline with the internal structure of nanostructured emulsion particles based on the monoglyceride-water system. Addition of this drug leads to modification of the internal bicontinuous cubic structure to generate highly pH-responsive systems. The colloidal structures were characterized with small-angle X-ray scattering and visualized using cryogenic transmission electron microscopy. Reversible transformations to inverse micelles at high pH, vesicles at low pH, and the modification of the spacing of the bicontinuous cubic structure at intermediate pH were observed, and enabled the in situ determination of an apparent pKa for the drug in this system--a difficult task using solution-based approaches. The characterization of this phase behavior is also highly interesting for the design of pH-responsive controlled release systems for poorly water-soluble drug molecules.

  12. Documentation for assessment of modal pushover-based scaling procedure for nonlinear response history analysis of "ordinary standard" bridges

    USGS Publications Warehouse

    Kalkan, Erol; Kwong, Neal S.

    2010-01-01

    The earthquake engineering profession is increasingly utilizing nonlinear response history analyses (RHA) to evaluate seismic performance of existing structures and proposed designs of new structures. One of the main ingredients of nonlinear RHA is a set of ground-motion records representing the expected hazard environment for the structure. When recorded motions do not exist (as is the case for the central United States), or when high-intensity records are needed (as is the case for San Francisco and Los Angeles), ground motions from other tectonically similar regions need to be selected and scaled. The modal-pushover-based scaling (MPS) procedure recently was developed to determine scale factors for a small number of records, such that the scaled records provide accurate and efficient estimates of 'true' median structural responses. The adjective 'accurate' refers to the discrepancy between the benchmark responses and those computed from the MPS procedure. The adjective 'efficient' refers to the record-to-record variability of responses. Herein, the accuracy and efficiency of the MPS procedure are evaluated by applying it to four types of existing 'ordinary standard' bridges typical of reinforced-concrete bridge construction in California. These bridges are the single-bent overpass, multi span bridge, curved-bridge, and skew-bridge. As compared to benchmark analyses of unscaled records using a larger catalog of ground motions, it is demonstrated that the MPS procedure provided an accurate estimate of the engineering demand parameters (EDPs) accompanied by significantly reduced record-to-record variability of the responses. Thus, the MPS procedure is a useful tool for scaling ground motions as input to nonlinear RHAs of 'ordinary standard' bridges.

  13. European corn borer sex pheromone : Inhibition and elicitation of behavioral response by analogs.

    PubMed

    Schwarz, M; Klun, J A; Uebel, E C

    1990-05-01

    The male sexual behavior-stimulating and inhibiting properties of a series of analogs of the European corn borer sex pheromone were determined in a flight tunnel. The structural requirements for inhibition of pheromonal response were far less restrictive than those for elicitation of that response. Analogs that by themselves elicited upwind flight response from males at a low dose were generally less inhibitory to male response than many of the analogs that had no pheromonal activity. These findings suggest that many pheromone analogs bind to pheromone receptors without provoking behavioral response and possibly undergo slower degradation on the antenna than pheromonally active compounds. The disparity of response to analogs by two pheromonal types of the European corn borer indicates that the pheromone receptor and pheromone catabolic systems are biochemically very different in the two types.

  14. The impact of vaccine failure rate on epidemic dynamics in responsive networks.

    PubMed

    Liang, Yu-Hao; Juang, Jonq

    2015-04-01

    An SIS model based on the microscopic Markov-chain approximation is considered in this paper. It is assumed that the individual vaccination behavior depends on the contact awareness, local and global information of an epidemic. To better simulate the real situation, the vaccine failure rate is also taken into consideration. Our main conclusions are given in the following. First, we show that if the vaccine failure rate α is zero, then the epidemic eventually dies out regardless of what the network structure is or how large the effective spreading rate and the immunization response rates of an epidemic are. Second, we show that for any positive α, there exists a positive epidemic threshold depending on an adjusted network structure, which is only determined by the structure of the original network, the positive vaccine failure rate and the immunization response rate for contact awareness. Moreover, the epidemic threshold increases with respect to the strength of the immunization response rate for contact awareness. Finally, if the vaccine failure rate and the immunization response rate for contact awareness are positive, then there exists a critical vaccine failure rate αc > 0 so that the disease free equilibrium (DFE) is stable (resp., unstable) if α < αc (resp., α > αc). Numerical simulations to see the effectiveness of our theoretical results are also provided.

  15. Monitoring the bending and twist of morphing structures

    NASA Astrophysics Data System (ADS)

    Smoker, J.; Baz, A.

    2008-03-01

    This paper presents the development of the theoretical basis for the design of sensor networks for determining the 2-dimensioal shape of morphing structures by monitoring simultaneously the bending and twist deflections. The proposed development is based on the non-linear theory of finite elements to extract the transverse linear and angular deflections of a plate-like structure. The sensors outputs are wirelessly transmitted to the command unit to simultaneously compute maps of the linear and angular deflections and maps of the strain distribution of the entire structure. The deflection and shape information are required to ascertain that the structure is properly deployed and that its surfaces are operating wrinkle-free. The strain map ensures that the structure is not loaded excessively to adversely affect its service life. The developed theoretical model is validated experimentally using a prototype of a variable cambered span morphing structure provided with a network of distributed sensors. The structure/sensor network system is tested under various static conditions to determine the response characteristics of the proposed sensor network as compared to other conventional sensor systems. The presented theoretical and experimental techniques can have a great impact on the safe deployment and effective operation of a wide variety of morphing and inflatable structures such as morphing aircraft, solar sails, inflatable wings, and large antennas.

  16. On the vibration properties of composite materials and structures

    NASA Astrophysics Data System (ADS)

    Lu, Y. P.; Neilson, H. C.; Roscoe, A. J.

    1993-01-01

    In recent years, there has been a widespread assumption that composite materials and structures offer enhanced vibration and acoustic properties. This assumption has to be evaluated or validated. The objective of this article is to address the subject of vibration characteristics and the related force transmissibility properties of composite structures. For a given composite beam made of Hercules AS4/3501-6 graphite/epoxy with a layered structure sequence of (0,0,30,-30)(sub 6S), resonance frequencies, structural damping, responses, impedances, and force transmissibility properties are determined, discussed, and compared with those of a steel beam. This article proposes a procedure to evaluate the vibration properties of individual composites. The criterion defined for performance comparison between composite materials and conventional materials is also discussed.

  17. Anisotropy enhanced X-ray scattering from solvated transition metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biasin, Elisa; van Driel, Tim B.; Levi, Gianluca

    Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray free-electron lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV–Vis pump laser pulse with the sample, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work, a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules is described, and it is demonstrated how its use can enhance the structural sensitivity of the time-resolved X-ray scattering experiment. This method is applied on time-resolvedmore » X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL, and the key parameters involved are explored. Here it is shown that a combined analysis of the anisotropic and isotropic difference scattering signals in this experiment allows a more precise determination of the main photoinduced structural change in the solute,i.e.the change in Pt—Pt bond length, and yields more information on the excitation channels than the analysis of the isotropic scattering only. Finally, it is discussed how the anisotropic transient response of the solvent can enable the determination of key experimental parameters such as the instrument response function.« less

  18. Anisotropy enhanced X-ray scattering from solvated transition metal complexes

    DOE PAGES

    Biasin, Elisa; van Driel, Tim B.; Levi, Gianluca; ...

    2018-02-13

    Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray free-electron lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV–Vis pump laser pulse with the sample, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work, a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules is described, and it is demonstrated how its use can enhance the structural sensitivity of the time-resolved X-ray scattering experiment. This method is applied on time-resolvedmore » X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL, and the key parameters involved are explored. Here it is shown that a combined analysis of the anisotropic and isotropic difference scattering signals in this experiment allows a more precise determination of the main photoinduced structural change in the solute,i.e.the change in Pt—Pt bond length, and yields more information on the excitation channels than the analysis of the isotropic scattering only. Finally, it is discussed how the anisotropic transient response of the solvent can enable the determination of key experimental parameters such as the instrument response function.« less

  19. Structural determinants of the interaction between the Haemophilus influenzae Hap autotransporter and fibronectin.

    PubMed

    Spahich, Nicole A; Kenjale, Roma; McCann, Jessica; Meng, Guoyu; Ohashi, Tomoo; Erickson, Harold P; St Geme, Joseph W

    2014-06-01

    Haemophilus influenzae is a Gram-negative cocco-bacillus that initiates infection by colonizing the upper respiratory tract. Hap is an H. influenzae serine protease autotransporter protein that mediates adherence, invasion and microcolony formation in assays with human epithelial cells and is presumed to facilitate the process of colonization. Additionally, Hap mediates adherence to fibronectin, laminin and collagen IV, extracellular matrix (ECM) proteins that are present in the respiratory tract and are probably important targets for H. influenzae colonization. The region of Hap responsible for adherence to ECM proteins has been localized to the C-terminal 511 aa of the Hap passenger domain (HapS). In this study, we characterized the structural determinants of the interaction between HapS and fibronectin. Using defined fibronectin fragments, we established that Hap interacts with the fibronectin repeat fragment called FNIII(1-2). Using site-directed mutagenesis, we found a series of motifs in the C-terminal region of HapS that contribute to the interaction with fibronectin. Most of these motifs are located on the F1 and F3 faces of the HapS structure, suggesting that the F1 and F3 faces may be responsible for the HapS-fibronectin interaction. © 2014 The Authors.

  20. Structural determinants of the interaction between the Haemophilus influenzae Hap autotransporter and fibronectin

    PubMed Central

    Spahich, Nicole A.; Kenjale, Roma; McCann, Jessica; Meng, Guoyu; Ohashi, Tomoo; Erickson, Harold P.

    2014-01-01

    Haemophilus influenzae is a Gram-negative cocco-bacillus that initiates infection by colonizing the upper respiratory tract. Hap is an H. influenzae serine protease autotransporter protein that mediates adherence, invasion and microcolony formation in assays with human epithelial cells and is presumed to facilitate the process of colonization. Additionally, Hap mediates adherence to fibronectin, laminin and collagen IV, extracellular matrix (ECM) proteins that are present in the respiratory tract and are probably important targets for H. influenzae colonization. The region of Hap responsible for adherence to ECM proteins has been localized to the C-terminal 511 aa of the Hap passenger domain (HapS). In this study, we characterized the structural determinants of the interaction between HapS and fibronectin. Using defined fibronectin fragments, we established that Hap interacts with the fibronectin repeat fragment called FNIII(1–2). Using site-directed mutagenesis, we found a series of motifs in the C-terminal region of HapS that contribute to the interaction with fibronectin. Most of these motifs are located on the F1 and F3 faces of the HapS structure, suggesting that the F1 and F3 faces may be responsible for the HapS–fibronectin interaction. PMID:24687948

  1. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.

    PubMed

    Connizzo, Brianne K; Grodzinsky, Alan J

    2017-03-21

    Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hydrogen bonding intermolecular effect on electro-optical response of doped 6PCH nematic liquid crystal with some azo dyes

    NASA Astrophysics Data System (ADS)

    Kiani, S.; Zakerhamidi, M. S.; Tajalli, H.

    2016-05-01

    Previous studies on the electro-optical responses of dye-doped liquid crystal have shown that dopant material have a considerable effect on their electro-optical responses. Despite the studies carried out on electro-optical properties of dye-doped liquid crystal, no attention has been paid to study of the interaction and structural effects in this procedure. In this paper, linear dyes and with similar structure were selected as dopants. The only difference in used dyes is the functional groups in their tails. So, doping of these dyes into liquid crystals determines the influence of interaction type on electro-optical behaviours of the doped systems. Therefore, in this work, two aminoazobenzene (;A-dye;: hydrogen bond donor) and dimethyl-aminoazobenzene (;B-dye;) dyes with different compositional percentages in liquid crystal host were used. Electro-optical Kerr behaviour, the pre-transition temperature and third order nonlinear susceptibility were investigated. The obtained results effectively revealed that type of interactions between the dye and liquid crystal is determinative of behavioral difference of doped system, compared to pure liquid crystal. Also, pre-transitional behaviour and thereupon Kerr electro-optical responses were affected by formed interactions into doped systems. In other words, it will be shown that addition of any dopants in liquid crystal, regardless of the nature of interactions, cannot cause appropriate electro-optical responses. In fact, type of dye, nature of interactions between dopant and liquid crystalline host as well as concentration of dye are the key factors in selecting the appropriate liquid crystal and dopant dye.

  3. Determinants of career satisfaction among pediatric hospitalists: a qualitative exploration

    PubMed Central

    Leyenaar, JoAnna K.; Capra, Lisa A.; O'Brien, Emily R.; Leslie, Laurel K.; Mackie, Thomas I.

    2014-01-01

    Objectives To characterize determinants of career satisfaction among pediatric hospitalists working in diverse practice settings, and to develop a framework to conceptualize factors influencing career satisfaction. Methods Semi-structured interviews were conducted with community and tertiary care hospitalists, using purposeful sampling to attain maximum response diversity. We employed close- and open-ended questions to assess levels of career satisfaction and its determinants. Interviews were conducted by telephone, recorded, and transcribed verbatim. Emergent themes were identified and analyzed using an inductive approach to qualitative analysis. Results A total of 30 interviews were conducted with community and tertiary care hospitalists, representing 20 hospital medicine programs and 7 Northeastern states. Qualitative analysis yielded 657 excerpts which were coded and categorized into four domains and associated determinants of career satisfaction: (i) professional responsibilities; (ii) hospital medicine program administration; (iii) hospital and healthcare systems; and (iv) career development. While community and tertiary care hospitalists reported similar levels of career satisfaction, they expressed variation in perspectives across these four domains. While the role of hospital medicine program administration was consistently emphasized by all hospitalists, community hospitalists prioritized resource availability, work schedule and clinical responsibilities while tertiary care hospitalists prioritized diversity in non-clinical responsibilities and career development. Conclusions We illustrate how hospitalists in different organizational settings prioritize both consistent and unique determinants of career satisfaction. Given associations between physician satisfaction and healthcare quality, efforts to optimize modifiable factors within this framework, at both community and tertiary care hospitals, may have broad impacts. PMID:24976348

  4. Molecular and genetic ecotoxicologic approaches to aquatic environmental bioreporting.

    PubMed Central

    Beaty, B J; Black, W C; Carlson, J O; Clements, W H; DuTeau, N; Harrahy, E; Nuckols, J; Kenneth, E; Olson, K E; Rayms-Keller, A

    1998-01-01

    Molecular and population genetic ecotoxicologic approaches are being developed for the utilization of arthropods as bioreporters of heavy metal mixtures in the environment. The explosion of knowledge in molecular biology, molecular genetics, and biotechnology provides an unparalleled opportunity to use arthropods as bioreporter organisms. Interspecific differences in aquatic arthropod populations have been previously demonstrated in response to heavy metal insult in the Arkansas River (AR) California Gulch Superfund site (CGSS). Population genetic analyses were conducted on the mayfly Baetis tricaudatus. Genetic polymorphisms were detected in polymerase chain reaction amplified 16S mitochondrial rDNA (a selectively neutral gene) of B tricaudatus using single-strand conformation polymorphism analysis. Genetic differences may have resulted from impediments to gene flow in the population caused by mortality arising from exposure to heavy metal mixture pollution. In laboratory studies a candidate metal-responsive mucinlike gene, which is metal and dose specific, has been identified in Chironomus tentans and other potential AR-CGSS bioreporter species. Population genetic analyses using the mucinlike gene may provide insight into the role of this selectable gene in determining the breeding structure of B. tricaudatus in the AR-CGSS and may provide mechanistic insight into determinants of aquatic arthropod response to heavy metal insult. Metal-responsive (MR) genes and regulatory sequences are being isolated, characterized, and assayed for differential gene expression in response to heavy metal mixture pollution in the AR-CGSS. Identified promoter sequences can then be engineered into previously developed MR constructs to provide sensitive in vitro assays for environmental bioreporting of heavy metal mixtures. The results of the population genetic studies are being entered into an AR geographic information system that contains substantial biological, chemical, and geophysical information. Integrated spatial, structural, and temporal analyses of these parameters will provide invaluable information concerning environmental determinants that restrict or promote gene flow in bioreporter populations. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9860898

  5. Acoustic emission-based sensor analysis and damage classification for structural health monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Uprety, Bibhisha

    Within the aerospace industry the need to detect and locate impact events, even when no visible damage is present, is important both from the maintenance and design perspectives. This research focused on the use of Acoustic Emission (AE) based sensing technologies to identify impact events and characterize damage modes in composite structures for structural health monitoring. Six commercially available piezoelectric AE sensors were evaluated for use with impact location estimation algorithms under development at the University of Utah. Both active and passive testing were performed to estimate the time of arrival and plate wave mode velocities for impact location estimation. Four sensors were recommended for further comparative investigations. Furthermore, instrumented low-velocity impact experiments were conducted on quasi-isotropic carbon/epoxy composite laminates to initiate specific types of damage: matrix cracking, delamination and fiber breakage. AE signal responses were collected during impacting and the test panels were ultrasonically C-scanned after impact to identify the internal damage corresponding to the AE signals. Matrix cracking and delamination damage produced using more compliant test panels and larger diameter impactor were characterized by lower frequency signals while fiber breakage produced higher frequency responses. The results obtained suggest that selected characteristics of sensor response signals can be used both to determine whether damage is produced during impacting and to characterize the types of damage produced in an impacted composite structure.

  6. Determinants of Mammalian Nucleolar Architecture

    PubMed Central

    Farley, Katherine I.; Surovtseva, Yulia; Merkel, Janie; Baserga, Susan J.

    2015-01-01

    The nucleolus is responsible for the production of ribosomes, essential machines which synthesize all proteins needed by the cell. The structure of human nucleoli is highly dynamic and is directly related to its functions in ribosome biogenesis. Despite the importance of this organelle, the intricate relationship between nucleolar structure and function remains largely unexplored. How do cells control nucleolar formation and function? What are the minimal requirements for making a functional nucleolus? Here we review what is currently known regarding mammalian nucleolar formation at nucleolar organizer regions (NORs), which can be studied by observing the dissolution and reformation of the nucleolus during each cell division. Additionally, the nucleolus can be examined by analyzing how alterations in nucleolar function manifest in differences in nucleolar architecture. Furthermore, changes in nucleolar structure and function are correlated with cancer, highlighting the importance of studying the determinants of nucleolar formation. PMID:25670395

  7. Molecular Assembly of Clostridium botulinum progenitor M complex of type E.

    PubMed

    Eswaramoorthy, Subramaniam; Sun, Jingchuan; Li, Huilin; Singh, Bal Ram; Swaminathan, Subramanyam

    2015-12-07

    Clostridium botulinum neurotoxin (BoNT) is released as a progenitor complex, in association with a non-toxic-non-hemagglutinin protein (NTNH) and other associated proteins. We have determined the crystal structure of M type Progenitor complex of botulinum neurotoxin E [PTC-E(M)], a heterodimer of BoNT and NTNH. The crystal structure reveals that the complex exists as a tight, interlocked heterodimer of BoNT and NTNH. The crystal structure explains the mechanism of molecular assembly of the complex and reveals several acidic clusters at the interface responsible for association at low acidic pH and disassociation at basic/neutral pH. The similarity of the general architecture between the PTC-E(M) and the previously determined PTC-A(M) strongly suggests that the progenitor M complexes of all botulinum serotypes may have similar molecular arrangement, although the neurotoxins apparently can take very different conformation when they are released from the M complex.

  8. The high velocity impact loading on symmetrical and woven hybrid composite laminates

    NASA Astrophysics Data System (ADS)

    Jin, Martin; Richardson, Mel; Zhang, Zhong Yi

    2007-07-01

    Space structures use fibre composite materials, due to their lightweight. This paper examines the impact response of symmetrical and hybrid composite laminates. Special attention is given to the stacking sequences used. The experimental study of structures has always provided a major contribution to our understanding. Even with the formidable growth in the use and capacity of computing power the need for experimental measurement is as compelling as ever. The design of hybrid composite structures is complicated by the number of design variables and the interaction of the constituents is the composite system. Since it is desirable to experimentally test the design and it is not practical to test a full scale model, the structural/material similitude concept is used to create a small scale model with a similar structural response. In the current study, experimental investigations were carried out to determine the response of four different combinations of hybrid laminates to low-velocity impact loading using an instrumented impact testing machine. Hybrid laminates were fabricated with twill weave carbon fabric and plain weave S2-glass fabric using vacuum assisted resin molding process with SC-15 epoxy resin system. Response of carbon/epoxy and glass/epoxy laminates was also investigated to compare with that of hybrid samples. Square laminates of size 100 mm and nominal thickness of 3 mm were subjected to low-velocity impact loading at four energy levels of 10, 20, 30 and 40 J. Results of the study indicate that there is considerable improvement in the load carrying capability of hybrid composites as compared to carbon/epoxy laminates with slight reduction in stiffness.

  9. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    NASA Astrophysics Data System (ADS)

    Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.

    2014-02-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.

  10. An evolutionary game approach for determination of the structural conflicts in signed networks

    PubMed Central

    Tan, Shaolin; Lü, Jinhu

    2016-01-01

    Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks. PMID:26915581

  11. The structure of mouse cytomegalovirus m04 protein obtained from sparse NMR data reveals a conserved fold of the m02-m06 viral immune modulator family.

    PubMed

    Sgourakis, Nikolaos G; Natarajan, Kannan; Ying, Jinfa; Vogeli, Beat; Boyd, Lisa F; Margulies, David H; Bax, Ad

    2014-09-02

    Immunoevasins are key proteins used by viruses to subvert host immune responses. Determining their high-resolution structures is key to understanding virus-host interactions toward the design of vaccines and other antiviral therapies. Mouse cytomegalovirus encodes a unique set of immunoevasins, the m02-m06 family, that modulates major histocompatibility complex class I (MHC-I) antigen presentation to CD8+ T cells and natural killer cells. Notwithstanding the large number of genetic and functional studies, the structural biology of immunoevasins remains incompletely understood, largely because of crystallization bottlenecks. Here we implement a technology using sparse nuclear magnetic resonance data and integrative Rosetta modeling to determine the structure of the m04/gp34 immunoevasin extracellular domain. The structure reveals a β fold that is representative of the m02-m06 family of viral proteins, several of which are known to bind MHC-I molecules and interfere with antigen presentation, suggesting its role as a diversified immune regulation module. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A Benchmark Problem for Development of Autonomous Structural Modal Identification

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Woodard, Stanley E.; Juang, Jer-Nan

    1996-01-01

    This paper summarizes modal identification results obtained using an autonomous version of the Eigensystem Realization Algorithm on a dynamically complex, laboratory structure. The benchmark problem uses 48 of 768 free-decay responses measured in a complete modal survey test. The true modal parameters of the structure are well known from two previous, independent investigations. Without user involvement, the autonomous data analysis identified 24 to 33 structural modes with good to excellent accuracy in 62 seconds of CPU time (on a DEC Alpha 4000 computer). The modal identification technique described in the paper is the baseline algorithm for NASA's Autonomous Dynamics Determination (ADD) experiment scheduled to fly on International Space Station assembly flights in 1997-1999.

  13. Evaluation of seismic performance of reinforced concrete (RC) buildings under near-field earthquakes

    NASA Astrophysics Data System (ADS)

    Moniri, Hassan

    2017-03-01

    Near-field ground motions are significantly severely affected on seismic response of structure compared with far-field ground motions, and the reason is that the near-source forward directivity ground motions contain pulse-long periods. Therefore, the cumulative effects of far-fault records are minor. The damage and collapse of engineering structures observed in the last decades' earthquakes show the potential of damage in existing structures under near-field ground motions. One important subject studied by earthquake engineers as part of a performance-based approach is the determination of demand and collapse capacity under near-field earthquake. Different methods for evaluating seismic structural performance have been suggested along with and as part of the development of performance-based earthquake engineering. This study investigated the results of illustrious characteristics of near-fault ground motions on the seismic response of reinforced concrete (RC) structures, by the use of Incremental Nonlinear Dynamic Analysis (IDA) method. Due to the fact that various ground motions result in different intensity-versus-response plots, this analysis is done again under various ground motions in order to achieve significant statistical averages. The OpenSees software was used to conduct nonlinear structural evaluations. Numerical modelling showed that near-source outcomes cause most of the seismic energy from the rupture to arrive in a single coherent long-period pulse of motion and permanent ground displacements. Finally, a vulnerability of RC building can be evaluated against pulse-like near-fault ground motions effects.

  14. Validation of the conceptual research utilization scale: an application of the standards for educational and psychological testing in healthcare.

    PubMed

    Squires, Janet E; Estabrooks, Carole A; Newburn-Cook, Christine V; Gierl, Mark

    2011-05-19

    There is a lack of acceptable, reliable, and valid survey instruments to measure conceptual research utilization (CRU). In this study, we investigated the psychometric properties of a newly developed scale (the CRU Scale). We used the Standards for Educational and Psychological Testing as a validation framework to assess four sources of validity evidence: content, response processes, internal structure, and relations to other variables. A panel of nine international research utilization experts performed a formal content validity assessment. To determine response process validity, we conducted a series of one-on-one scale administration sessions with 10 healthcare aides. Internal structure and relations to other variables validity was examined using CRU Scale response data from a sample of 707 healthcare aides working in 30 urban Canadian nursing homes. Principal components analysis and confirmatory factor analyses were conducted to determine internal structure. Relations to other variables were examined using: (1) bivariate correlations; (2) change in mean values of CRU with increasing levels of other kinds of research utilization; and (3) multivariate linear regression. Content validity index scores for the five items ranged from 0.55 to 1.00. The principal components analysis predicted a 5-item 1-factor model. This was inconsistent with the findings from the confirmatory factor analysis, which showed best fit for a 4-item 1-factor model. Bivariate associations between CRU and other kinds of research utilization were statistically significant (p < 0.01) for the latent CRU scale score and all five CRU items. The CRU scale score was also shown to be significant predictor of overall research utilization in multivariate linear regression. The CRU scale showed acceptable initial psychometric properties with respect to responses from healthcare aides in nursing homes. Based on our validity, reliability, and acceptability analyses, we recommend using a reduced (four-item) version of the CRU scale to yield sound assessments of CRU by healthcare aides. Refinement to the wording of one item is also needed. Planned future research will include: latent scale scoring, identification of variables that predict and are outcomes to conceptual research use, and longitudinal work to determine CRU Scale sensitivity to change.

  15. Reach-scale land use drives the stress responses of a resident stream fish.

    PubMed

    Blevins, Zachary W; Wahl, David H; Suski, Cory D

    2014-01-01

    Abstract To date, relatively few studies have tried to determine the practicality of using physiological information to help answer complex ecological questions and assist in conservation actions aimed at improving conditions for fish populations. In this study, the physiological stress responses of fish were evaluated in-stream between agricultural and forested stream reaches to determine whether differences in these responses can be used as tools to evaluate conservation actions. Creek chub Semotilus atromaculatus sampled directly from forested and agricultural stream segments did not show differences in a suite of physiological indicators. When given a thermal challenge in the laboratory, creek chub sampled from cooler forested stream reaches had higher cortisol levels and higher metabolic stress responses to thermal challenge than creek chub collected from warmer and more thermally variable agricultural reaches within the same stream. Despite fish from agricultural and forested stream segments having different primary and secondary stress responses, fish were able to maintain homeostasis of other physiological indicators to thermal challenge. These results demonstrate that local habitat conditions within discrete stream reaches may impact the stress responses of resident fish and provide insight into changes in community structure and the ability of tolerant fish species to persist in agricultural areas.

  16. Cellular immune response to β2-glycoprotein-I valine/leucine247 phenotypes in Mexican patients with primary antiphospholipid syndrome.

    PubMed

    Núñez-Álvarez, Carlos A; Hernández-Ramírez, Diego F; Martinez-Castillo, Araceli; Pascual Ramos, Virginia; Cabiedes, Javier; Ortega, Alicia; Cabral, Antonio R

    2017-02-01

    Homozygote genotype V 247 of the β 2 -glycoprotein-I (β 2 GP-I) gene has been associated with anti-β 2 GP-I and thrombosis in patients with primary anti-phospholipid syndrome APS (PAPS). However, the cellular immune response to β 2 GP-I 247 has been little studied. To evaluate the immune cellular proliferation in response to native and non-native β 2 GP-I 247 valine/leucine phenotype from Mexican patients with PAPS. We studied 10 patients with PAPS and 10 healthy control subjects (HC). The polymorphism at position 247 of the β 2 GP-I gene was determined by PCR-RFLP and the corresponding β 2 GP-I protein was subsequently purified from normal human plasma by affinity chromatography. PBMC purified from patients and controls were stimulated with β 2 GP-I under native and in non native (reduced) conditions. We also determined the anti-β 2 GP-I production in vitro by B cell clones (EBV) generated in cocultures experiments. Differential Scanning Calorimetry (DSC) was studied to determine the structural differences between the β 2 GP-I 247 valine/leucine isoforms. Cytokine profile (IL-2, IL-4, IL-6, TNFα, INFγ) was evaluated in culture supernatants. PAPS and healthy control PBMCs had a higher proliferative response when stimulated with β 2 GP-I under reduced cultures conditions compared to non-denatured conditions. PBMCs response from PAPS patients was higher. We observed more cell proliferation in response to β 2 GP-I 247 valine/leucine or valine isoforms in non-native conditions. In contrast, this response was not significant against β 2 GP-I 247 leucine. These findings were T CD4 + -dependent. Similar results were obtained with B cell clones derived from PAPS patients, which showed more pronounced proliferation in non native conditions and higher against β 2 GP-I 247 valine. No differences were found in anti-β 2 GP-I production, but high levels of IL-6 in vitro were identified. The structural analysis of both β 2 GP-I 247 isoforms by DSC showed a major conformational change due to a single mutation in the β 2 GP-I variants. PAPS PBMCs had a higher cellular response against β 2 GP-I 247 in non-native culture conditions preferentially to the β 2 GP-I 247 valine phenotype. This effect is T CD4 + dependent and appears to be driven by tertiary structural changes adopted by β 2 GP-I 247 polymorphism. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  17. Evaluation of different inertial control methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew

    To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane.more » The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.« less

  18. Environmental drivers defining linkages among life-history traits: mechanistic insights from a semiterrestrial amphipod subjected to macroscale gradients.

    PubMed

    Gómez, Julio; Barboza, Francisco R; Defeo, Omar

    2013-10-01

    Determining the existence of interconnected responses among life-history traits and identifying underlying environmental drivers are recognized as key goals for understanding the basis of phenotypic variability. We studied potentially interconnected responses among senescence, fecundity, embryos size, weight of brooding females, size at maturity and sex ratio in a semiterrestrial amphipod affected by macroscale gradients in beach morphodynamics and salinity. To this end, multiple modelling processes based on generalized additive mixed models were used to deal with the spatio-temporal structure of the data obtained at 10 beaches during 22 months. Salinity was the only nexus among life-history traits, suggesting that this physiological stressor influences the energy balance of organisms. Different salinity scenarios determined shifts in the weight of brooding females and size at maturity, having consequences in the number and size of embryos which in turn affected sex determination and sex ratio at the population level. Our work highlights the importance of analysing field data to find the variables and potential mechanisms that define concerted responses among traits, therefore defining life-history strategies.

  19. Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements

    PubMed Central

    Zhang, Xinghua; Chen, Hu; Fu, Hongxia; Doyle, Patrick S.; Yan, Jie

    2012-01-01

    Double-stranded DNA is a dynamic molecule whose structure can change depending on conditions. While there is consensus in the literature about many structures DNA can have, the state of highly-stretched DNA is still not clear. Several groups have shown that DNA in the torsion-unconstrained B-form undergoes an “overstretching” transition at a stretching force of around 65 pN, which leads to approximately 1.7-fold elongation of the DNA contour length. Recent experiments have revealed that two distinct structural transitions are involved in the overstretching process: (i) a hysteretic “peeling” off one strand from its complementary strand, and (ii) a nonhysteretic transition that leads to an undetermined DNA structure. We report the first simultaneous determination of the entropy (ΔS) and enthalpy changes (ΔH) pertaining to these respective transitions. For the hysteretic peeling transition, we determined ΔS ∼ 20 cal/(K.mol) and ΔH ∼ 7 kcal/mol. In the case of the nonhysteretic transition, ΔS ∼ -3 cal/(K.mol) and ΔH ∼ 1 kcal/mol. Furthermore, the response of the transition force to salt concentration implies that the two DNA strands are spatially separated after the hysteretic peeling transition. In contrast, the corresponding response after the nonhysteretic transition indicated that the strands remained in close proximity. The selection between the two transitions depends on DNA base-pair stability, and it can be illustrated by a multidimensional phase diagram. Our results provide important insights into the thermodynamics of DNA overstretching and conformational structures of overstretched DNA that may play an important role in vivo. PMID:22532662

  20. Replacement of the Endogenous Starch Debranching Enzymes ISA1 and ISA2 of Arabidopsis with the Rice Orthologs Reveals a Degree of Functional Conservation during Starch Synthesis

    PubMed Central

    Streb, Sebastian; Zeeman, Samuel C.

    2014-01-01

    This study tested the interchangeability of enzymes in starch metabolism between dicotyledonous and monocotyledonous plant species. Amylopectin - a branched glucose polymer - is the major component of starch and is responsible for its semi-crystalline property. Plants synthesize starch with distinct amylopectin structures, varying between species and tissues. The structure determines starch properties, an important characteristic for cooking and nutrition, and for the industrial uses of starch. Amylopectin synthesis involves at least three enzyme classes: starch synthases, branching enzymes and debranching enzymes. For all three classes, several enzyme isoforms have been identified. However, it is not clear which enzyme(s) are responsible for the large diversity of amylopectin structures. Here, we tested whether the specificities of the debranching enzymes (ISA1 and ISA2) are major determinants of species-dependent differences in amylopectin structure by replacing the dicotyledonous Arabidopsis isoamylases (AtISA1 and AtISA2) with the monocotyledonous rice (Oryza sativa) isoforms. We demonstrate that the ISA1 and ISA2 are sufficiently well conserved between these species to form heteromultimeric chimeric Arabidopsis/rice isoamylase enzymes. Furthermore, we were able to reconstitute the endosperm-specific rice OsISA1 homomultimeric complex in Arabidopsis isa1isa2 mutants. This homomultimer was able to facilitate normal rates of starch synthesis. The resulting amylopectin structure had small but significant differences in comparison to wild-type Arabidopsis amylopectin. This suggests that ISA1 and ISA2 have a conserved function between plant species with a major role in facilitating the crystallization of pre-amylopectin synthesized by starch synthases and branching enzymes, but also influencing the final structure of amylopectin. PMID:24642810

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  2. Theoretical model for the discrete flexoelectric effect and a description for the sequence of intermediate smectic phases with increasing periodicity.

    PubMed

    Emelyanenko, A V; Osipov, M A

    2003-11-01

    A general phenomenological description and a simple molecular model is proposed for the "discrete" flexoelectric effect in tilted smectic liquid crystal phases. This effect defines a polarization in a smectic layer induced by a difference of director orientations in the two smectic layers adjacent to it. It is shown that the "discrete" flexoelectric effect is determined by electrostatic dipole-quadrupole interaction between positionally correlated molecules located in adjacent smectic layers, while the corresponding dipole-dipole interaction is responsible for a coupling between polarization vectors in neighboring layers. It is shown that a simple phenomenological model of a ferrielectric smectic liquid crystal, which has recently been proposed in the literature, can be used to describe the whole sequence of intermediate chiral smectic C* phases with increasing periods, and to determine the nonplanar structure of each phase without additional assumptions. In this sequence the phases with three- and four-layer periodicities have the same structure, as observed in the experiment. The theory predicts also the structure of intermediate phases with longer periods that have not been studied experimentally so far. The structures of intermediate phases with periodicities of up to nine layers are presented together with the phase diagrams, and a relationship between molecular chirality and the three-dimensional structure of intermediate phases is discussed. It is considered also how the coupling between the spontaneous polarization determined by molecular chirality and the induced polarization determined by the discrete flexoelectric effect stabilizes the nonplanar structure of intermediate phases.

  3. An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure.

    PubMed

    Aggarwal, Ankush; Sacks, Michael S

    2016-08-01

    Determining the biomechanical behavior of heart valve leaflet tissues in a noninvasive manner remains an important clinical goal. While advances in 3D imaging modalities have made in vivo valve geometric data available, optimal methods to exploit such information in order to obtain functional information remain to be established. Herein we present and evaluate a novel leaflet shape-based framework to estimate the biomechanical behavior of heart valves from surface deformations by exploiting tissue structure. We determined accuracy levels using an "ideal" in vitro dataset, in which the leaflet geometry, strains, mechanical behavior, and fibrous structure were known to a high level of precision. By utilizing a simplified structural model for the leaflet mechanical behavior, we were able to limit the number of parameters to be determined per leaflet to only two. This approach allowed us to dramatically reduce the computational time and easily visualize the cost function to guide the minimization process. We determined that the image resolution and the number of available imaging frames were important components in the accuracy of our framework. Furthermore, our results suggest that it is possible to detect differences in fiber structure using our framework, thus allowing an opportunity to diagnose asymptomatic valve diseases and begin treatment at their early stages. Lastly, we observed good agreement of the final resulting stress-strain response when an averaged fiber architecture was used. This suggests that population-averaged fiber structural data may be sufficient for the application of the present framework to in vivo studies, although clearly much work remains to extend the present approach to in vivo problems.

  4. Measurements of Aerodynamic Damping in the MIT Transonic Rotor

    NASA Technical Reports Server (NTRS)

    Crawley, E. F.

    1981-01-01

    A method was developed and demonstrated for the direct measurement of aerodynamic forcing and aerodynamic damping of a transonic compressor. The method is based on the inverse solution of the structural dynamic equations of motion of the blade disk system in order to determine the forces acting on the system. The disturbing and damping forces acting on a given blade are determined if the equations of motion are expressed in individual blade coordinates. If the structural dynamic equations are transformed to multiblade coordinates, the damping can be measured for blade disk modes, and related to a reduced frequency and interblade phase angle. In order to measure the aerodynamic damping in this way, the free response to a known excitation is studied.

  5. Structure-efficiency relationships of cyclodextrin scavengers in the hydrolytic degradation of organophosphorus compounds.

    PubMed

    Letort, Sophie; Bosco, Michaël; Cornelio, Benedetta; Brégier, Frédérique; Daulon, Sébastien; Gouhier, Géraldine; Estour, François

    2017-01-01

    New derivatives of cyclodextrins were prepared in order to determine the relative importance of the structural key elements involved in the degradation of organophosphorus nerve agents. To avoid a competitive inclusion between the organophosphorus substrate and the iodosobenzoate group, responsible for its degradation, the latter group had to be covalently bound to the cyclodextrin scaffold. Although the presence of the α nucleophile iodosobenzoate was a determinant in the hydrolysis process, an imidazole group was added to get a synergistic effect towards the degradation of the agents. The degradation efficiency was found to be dependent on the relative position of the heterocycle towards the reactive group as well as on the nature of the organophosphorus derivative.

  6. Substructure coupling in the frequency domain

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Frequency domain analysis was found to be a suitable method for determining the transient response of systems subjected to a wide variety of loads. However, since a large number of calculations are performed within the discrete frequency loop, the method loses it computational efficiency if the loads must be represented by a large number of discrete frequencies. It was also discovered that substructure coupling in the frequency domain work particularly well for analyzing structural system with a small number of interface and loaded degrees of freedom. It was discovered that substructure coupling in the frequency domain can lead to an efficient method of obtaining natural frequencies of undamped structures. It was also found that the damped natural frequencies of a system may be determined using frequency domain techniques.

  7. Polymer Physics Prize Talk

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica

    Polymer electrolytes have been particularly difficult to describe theoretically given the large number of disparate length scales involved in determining their physical properties. The Debye length, the Bjerrum length, the ion size, the chain length, and the distance between the charges along their backbones determine their structure and their response to external fields. We have developed an approach that uses multi-scale calculations with the capability of demonstrating the phase behavior of polymer electrolytes and of providing a conceptual understanding of how charge dictates nano-scale structure formation. Moreover, our molecular dynamics simulations have provided an understanding of the coupling of their conformation to their dynamics, which is crucial to design self-assembling materials, as well as to explore the dynamics of complex electrolytes for energy storage and conversion applications.

  8. Probabilistic Component Mode Synthesis of Nondeterministic Substructures

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ferri, Aldo A.

    1996-01-01

    Standard methods of structural dynamic analysis assume that the structural characteristics are deterministic. Recognizing that these characteristics are actually statistical in nature researchers have recently developed a variety of methods that use this information to determine probabilities of a desired response characteristic, such as natural frequency, without using expensive Monte Carlo simulations. One of the problems in these methods is correctly identifying the statistical properties of primitive variables such as geometry, stiffness, and mass. We present a method where the measured dynamic properties of substructures are used instead as the random variables. The residual flexibility method of component mode synthesis is combined with the probabilistic methods to determine the cumulative distribution function of the system eigenvalues. A simple cantilever beam test problem is presented that illustrates the theory.

  9. Quantum chemical determination of Young's modulus of lignin. Calculations on a beta-O-4' model compound.

    PubMed

    Elder, Thomas

    2007-11-01

    The calculation of Young's modulus of lignin has been examined by subjecting a dimeric model compound to strain, coupled with the determination of energy and stress. The computational results, derived from quantum chemical calculations, are in agreement with available experimental results. Changes in geometry indicate that modifications in dihedral angles occur in response to linear strain. At larger levels of strain, bond rupture is evidenced by abrupt changes in energy, structure, and charge. Based on the current calculations, the bond scission may be occurring through a homolytic reaction between aliphatic carbon atoms. These results may have implications in the reactivity of lignin especially when subjected to processing methods that place large mechanical forces on the structure.

  10. The chemistry side of AOP: implications for toxicity ...

    EPA Pesticide Factsheets

    An adverse outcome pathway (AOP) is a structured representation of the biological events that lead to adverse impacts following a molecular initiating event caused by chemical interaction with a macromolecule. AOPs have been proposed to facilitate toxicity extrapolation across species through understanding of species similarity in the sequence of molecular, cellular, organ and organismal level responses. However, AOPs are non-specific regarding the identity of the chemical initiators, and the range of structures for which an AOP is considered applicable has generally been poorly defined. Applicability domain has been widely understood in the field of QSAR as the response and chemical structure space in which the model makes predictions with a given reliability, and has been traditionally applied to define the similarity of query molecules within the training set. Three dimensional (3D) receptor modeling offers an approach to better define the applicability domain for selected AOPs through determination of the chemical space of the molecular initiating event. Universal 3D-QSAR models were developed for acetylcholinesterase inhibitors and estrogen receptor agonists and antagonists using a combination of fingerprint, molecular docking and structure-based pharmacophore approaches. The models were based on the critical molecular interactions within each receptor ligand binding domain, and included the key amino acid residues responsible for high binding affinity. T

  11. Relationship of area postrema to three putative measures of motion sickness

    NASA Technical Reports Server (NTRS)

    Sutton, R.; Fox, Robert A.; Daunton, Nancy G.

    1991-01-01

    Although the rat has an incomplete emetic reflex, several species-specific responses to motion were proposed as measures of 'motion sickness' in rats. The purpose was to determine the dependence of these responses on one of several neural structures known to be essential to motion-induced vomiting in species with a complete emetic reflex. The Area Postrema (AP) was shown to play an important role in the production of motion sickness in vomiting species. The effects of thermo-cautery ablations of the AP on three different responses supposedly reflecting motion sickness in the rat were compared: conditioned taste aversion (CTA); drinking suppression; and fecal boli. Efficacy of the ablations was determined by subjecting ablated, sham-operated, and unoperated control animals to a CTA test which is known to require a functional AP. Animals with AP ablations failed to form CTA when 0.15 M LiCl was paired with a 10 percent sucrose solution, while sham-operated control subjects conditioned as well as the unoperated control subjects. The extent of the ablations was evaluated histologically at the end of the experiment. To determine the effects of the ablations on the measures of motion sickness, all animals were subjected to rotation for 30 min or 90 min on a platform displaced 20 deg from earth horizontal. Results indicate that ablation of AP in the rat has no effect on the formation of CTA to a 4 percent solution of cider paired with motion, on the suppression of drinking immediately after exposure to motion, or on the frequency of fecal boli during exposure to motion. This failure of AP ablations to eliminate the effects of motion on any of these responses discourages their use as equivalents of motion-induced vomiting. The appropriateness of other suggested measures, e.g., pica, remains untested but the dependence of such measures on stimulation more severe than commonly used in motion sickness research and the absence of a demonstration of their dependence on neural structures essential to motion sickness in vomiting species, suggest caution in the use of such responses. Further, until more is known about the neural structures underlying these putative measures, the rat will remain a questionable subject in which to study motion sickness.

  12. Factor Structure and Reliability of the 2008 and 2009 SERU/UCUES Questionnaire Core. SERU Project Technical Report

    ERIC Educational Resources Information Center

    Chatman, Steve

    2009-01-01

    This technical report summarizes the third independent factor analysis of the SERU/UCUES questionnaire responses of students with majors. The 2009 solution employed the same quantitative analysis used in the prior solutions--varimax orthogonal rotation to determine principal components followed by promax oblique rotation to identify…

  13. Educational Action Research to Achieve the Essential Competencies of the Future

    ERIC Educational Resources Information Center

    Kapenieks, Janis

    2016-01-01

    This article analyses the conformity of the educational action research (EAR) process for the improvement of selected competencies that will be necessary in the near future for each active and responsible person. The most requested competencies in the near and midterm future are determined in accordance with near future structural requirements of…

  14. The Minimum Wage, Restaurant Prices, and Labor Market Structure

    ERIC Educational Resources Information Center

    Aaronson, Daniel; French, Eric; MacDonald, James

    2008-01-01

    Using store-level and aggregated Consumer Price Index data, we show that restaurant prices rise in response to minimum wage increases under several sources of identifying variation. We introduce a general model of employment determination that implies minimum wage hikes cause prices to rise in competitive labor markets but potentially fall in…

  15. 78 FR 73822 - Tri-State Generation and Transmission Association, Inc.: Notice of Availability of an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... assistance from RUS for the construction of the proposed Project. RUS is considering funding the proposed... effect of the proposed Project on historic properties; i.e., buildings, structures, sites, objects and... responsibilities to take into account effects to historic properties. RUS has determined that the proposed project...

  16. Ice Engineering - study of Related Properties of Floating Sea-Ice Sheets and Summary of Elastic and Viscoelastic Analyses

    DTIC Science & Technology

    1977-12-01

    Ice Plate Example. To demonstrate the capability of the visco- elastic finite-element computer code (5), the structural response of an infinite ... sea -ice plate on a fluid foundation is investigated for a simulated aircraft loading condition and, using relaxation functions, is determined

  17. Exploring Outcome Measures for Exercise Intervention in People with Parkinson's Disease

    PubMed Central

    King, L. A.; Salarian, A.; Mancini, M.; Priest, K. C.; Nutt, J.; Serdar, A.; Wilhelm, J.; Schlimgen, J.; Smith, M.; Horak, F. B.

    2013-01-01

    Background. It is widely believed that exercise improves mobility in people with Parkinson's disease (PD). However, it is difficult to determine whether a specific type of exercise is the most effective. The purpose of this study was to determine which outcome measures were sensitive to exercise intervention and to explore the effects of two different exercise programs for improving mobility in patients with PD. Methods. Participants were randomized into either the Agility Boot Camp (ABC) or treadmill training; 4x/week for 4 weeks. Outcome measures were grouped by the International Classification of Function/Disability (ICF). To determine the responsiveness to exercise, we calculated the standardized response means. t-tests were used to compare the relative benefits of each exercise program. Results. Four of five variables at the structure/function level changed after exercise: turn duration (P = 0.03), stride velocity (P = 0.001), peak arm speed (P = 0.001), and horizontal trunk ROM during gait (P = 0.02). Most measures improved similarly for both interventions. The only variable that detected a difference between groups was postural sway in ABC group (F = 4.95; P = 0.03). Conclusion. Outcome measures at ICF body structure/function level were most effective at detecting change after exercise and revealing differences in improvement between interventions. PMID:23738230

  18. Constitutive modelling of composite biopolymer networks.

    PubMed

    Fallqvist, B; Kroon, M

    2016-04-21

    The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Impact of food processing on rye product properties and their in vitro digestion.

    PubMed

    Johansson, Daniel P; Gutiérrez, José L Vázquez; Landberg, Rikard; Alminger, Marie; Langton, Maud

    2018-06-01

    Rye products have been reported to elicit postprandial insulin and glucose responses which may be beneficial for prevention of type-2 diabetes. However, mechanisms underlying variations in responses related to processing techniques are not fully understood. Five differently processed rye products (sourdough-fermented bread, fermented and unfermented crispbread, extrusion-cooked rye, and porridge) and refined wheat bread were characterised. Two in vitro methods, a dynamic method simulating digestion in the stomach and small intestine and a static method, simulating conditions in the stomach were used to determine viscosity development, structural changes and release of glucose during digestion. Structural and compositional differences induced by processing influenced product digestion. Gastric disintegration and digesta particle size were related to characteristics of the starch/protein matrix, while digesta viscosity was reduced due to fibre degradation during fermentation. More cohesive boluses were associated with slower glucose release. Sourdough fermentation increased amylose leakage and appeared to inhibit starch hydrolysis despite low digesta viscosity and rapid disintegration. The net release of glucose during digestion of foods is determined by several factors which may vary in their importance depending on product specific properties.

  20. Effect of Urea and Thiourea on Generation of Xenogeneic Extracellular Matrix Scaffolds for Tissue Engineering

    PubMed Central

    Wong, Maelene L.; Wong, Janelle L.; Horn, Rebecca M.; Sannajust, Kimberley C.; Rice, Dawn A.

    2016-01-01

    Effective solubilization of proteins by chaotropes in proteomic applications motivates their use in solubilization-based antigen removal/decellularization strategies. A high urea concentration has previously been reported to significantly reduce lipophilic antigen content of bovine pericardium (BP); however, structure and function of the resultant extracellular matrix (ECM) scaffold were compromised. It has been recently demonstrated that in vivo ECM scaffold fate is determined by two primary outcome measures as follows: (1) sufficient reduction in antigen content to avoid graft-specific adaptive immune responses and (2) maintenance of native ECM structural proteins to avoid graft-specific innate responses. In this work, we assessed residual antigenicity, ECM architecture, ECM content, thermal stability, and tensile properties of BP subjected to a gradient of urea concentrations to determine whether an intermediate concentration exists at which both antigenicity and structure–function primary outcome measures for successful in vivo scaffold outcome can simultaneously be achieved. Alteration in tissue structure–function properties at various urea concentrations with decreased effectiveness for antigen removal makes use of urea-mediated antigen removal unlikely to be suitable for functional scaffold generation. PMID:27230226

  1. Protein Binding and Astringent Taste of a Polymeric Procyanidin, 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose, Castalagin and Grandinin

    PubMed Central

    Hofmann, Thomas; Glabasnia, Arne; Schwarz, Bernd; Wisman, Kimberly N.; Gangwer, Kelly A.; Hagerman, Ann E.

    2008-01-01

    The objective of the present investigation was to examine oral astringency and protein binding activity of four structurally well-defined tannins, namely procyanidin (epicatechin16(4→8)catechin), pentagalloyl glucose (1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose), castalagin, and grandinin, representing the three main structural categories of tannins, the proanthocyanidins, the gallotannins, and the ellagitannins. Astringency threshold and dose response were determined by the half-tongue test using a trained human panel. Protein binding stoichiometry and relative affinity were determined using radioiodinated bovine serum albumin in precipitation or competitive binding assays. Procyanidin and pentagalloyl glucose were perceived as highly astringent compounds and had relatively steep dose response curves but castalagin and grandinin had a lower mass threshold for detection. In vitro, procyanidin was the most effective protein precipitating agent, and grandinin the least. Increasing the temperature increased protein precipitation by the hydrolysable tannins, especially grandinin. All four polyphenols had higher relative affinity for proline-rich proteins than for bovine serum albumin. PMID:17147439

  2. Structural characterization of a first-generation articulated-truss joint for space crane application

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey; Riutort, Kevin T.; Laufer, Joseph B.; Phelps, James E.

    1992-01-01

    A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program.

  3. Using Ultrasonic Lamb Waves To Measure Moduli Of Composites

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1995-01-01

    Measurements of broad-band ultrasonic Lamb waves in plate specimens of ceramic-matrix/fiber and metal-matrix/fiber composite materials used to determine moduli of elasticity of materials. In one class of potential applications of concept, Lamb-wave responses of specimens measured and analyzed at various stages of thermal and/or mechanical processing to determine effects of processing, without having to dissect specimens. In another class, structural components having shapes supporting propagation of Lamb waves monitored ultrasonically to identify signs of deterioration and impending failure.

  4. Mapping the role of structural and interpersonal violence in the lives of women: implications for public health interventions and policy.

    PubMed

    Montesanti, Stephanie Rose; Thurston, Wilfreda E

    2015-11-11

    Research on interpersonal violence towards women has commonly focused on individual or proximate-level determinants associated with violent acts ignores the roles of larger structural systems that shape interpersonal violence. Though this research has contributed to an understanding of the prevalence and consequences of violence towards women, it ignores how patterns of violence are connected to social systems and social institutions. In this paper, we discuss the findings from a scoping review that examined: 1) how structural and symbolic violence contributes to interpersonal violence against women; and 2) the relationships between the social determinants of health and interpersonal violence against women. We used concept mapping to identify what was reported on the relationships among individual-level characteristics and population-level influence on gender-based violence against women and the consequences for women's health. Institutional ethics review was not required for this scoping review since there was no involvement or contact with human subjects. The different forms of violence-symbolic, structural and interpersonal-are not mutually exclusive, rather they relate to one another as they manifest in the lives of women. Structural violence is marked by deeply unequal access to the determinants of health (e.g., housing, good quality health care, and unemployment), which then create conditions where interpersonal violence can happen and which shape gendered forms of violence for women in vulnerable social positions. Our web of causation illustrates how structural factors can have negative impacts on the social determinants of health and increases the risk for interpersonal violence among women. Public health policy responses to violence against women should move beyond individual-level approaches to violence, to consider how structural and interpersonal level violence and power relations shape the 'lived experiences' of violence for women.

  5. NMR and computational methods applied to the 3- dimensional structure determination of DNA and ligand-DNA complexes in solution

    NASA Astrophysics Data System (ADS)

    Smith, Jarrod Anson

    2D homonuclear 1H NMR methods and restrained molecular dynamics (rMD) calculations have been applied to determining the three-dimensional structures of DNA and minor groove-binding ligand-DNA complexes in solution. The structure of the DNA decamer sequence d(GCGTTAACGC)2 has been solved both with a distance-based rMD protocol and an NOE relaxation matrix backcalculation-based protocol in order to probe the relative merits of the different refinement methods. In addition, three minor groove binding ligand-DNA complexes have been examined. The solution structure of the oligosaccharide moiety of the antitumor DNA scission agent calicheamicin γ1I has been determined in complex with a decamer duplex containing its high affinity 5'-TCCT- 3' binding sequence. The structure of the complex reinforces the belief that the oligosaccharide moiety is responsible for the sequence selective minor-groove binding activity of the agent, and critical intermolecular contacts are revealed. The solution structures of both the (+) and (-) enantiomers of the minor groove binding DNA alkylating agent duocarmycin SA have been determined in covalent complex with the undecamer DNA duplex d(GACTAATTGTC).d(GAC AATTAGTC). The results support the proposal that the alkylation activity of the duocarmycin antitumor antibiotics is catalyzed by a binding-induced conformational change in the ligand which activates the cyclopropyl group for reaction with the DNA. Comparisons between the structures of the two enantiomers covalently bound to the same DNA sequence at the same 5'-AATTA-3 ' site have provided insight into the binding orientation and site selectivity, as well as the relative rates of reactivity of these two agents.

  6. The role of under-determined approximations in engineering and science application

    NASA Technical Reports Server (NTRS)

    Carpenter, William C.

    1992-01-01

    There is currently a great deal of interest in using response surfaces in the optimization of aircraft performance. The objective function and/or constraint equations involved in these optimization problems may come from numerous disciplines such as structures, aerodynamics, environmental engineering, etc. In each of these disciplines, the mathematical complexity of the governing equations usually dictates that numerical results be obtained from large computer programs such as a finite element method program. Thus, when performing optimization studies, response surfaces are a convenient way of transferring information from the various disciplines to the optimization algorithm as opposed to bringing all the sundry computer programs together in a massive computer code. Response surfaces offer another advantage in the optimization of aircraft structures. A characteristic of these types of optimization problems is that evaluation of the objective function and response equations (referred to as a functional evaluation) can be very expensive in a computational sense. Because of the computational expense in obtaining functional evaluations, the present study was undertaken to investigate under-determinined approximations. An under-determined approximation is one in which there are fewer training pairs (pieces of information about a function) than there are undetermined parameters (coefficients or weights) associated with the approximation. Both polynomial approximations and neural net approximations were examined. Three main example problems were investigated: (1) a function of one design variable was considered; (2) a function of two design variables was considered; and (3) a 35 bar truss with 4 design variables was considered.

  7. Performance and robustness of hybrid model predictive control for controllable dampers in building models

    NASA Astrophysics Data System (ADS)

    Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.

    2016-04-01

    A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.

  8. Ion-binding properties of a K+ channel selectivity filter in different conformations.

    PubMed

    Liu, Shian; Focke, Paul J; Matulef, Kimberly; Bian, Xuelin; Moënne-Loccoz, Pierre; Valiyaveetil, Francis I; Lockless, Steve W

    2015-12-08

    K(+) channels are membrane proteins that selectively conduct K(+) ions across lipid bilayers. Many voltage-gated K(+) (KV) channels contain two gates, one at the bundle crossing on the intracellular side of the membrane and another in the selectivity filter. The gate at the bundle crossing is responsible for channel opening in response to a voltage stimulus, whereas the gate at the selectivity filter is responsible for C-type inactivation. Together, these regions determine when the channel conducts ions. The K(+) channel from Streptomyces lividians (KcsA) undergoes an inactivation process that is functionally similar to KV channels, which has led to its use as a practical system to study inactivation. Crystal structures of KcsA channels with an open intracellular gate revealed a selectivity filter in a constricted conformation similar to the structure observed in closed KcsA containing only Na(+) or low [K(+)]. However, recent work using a semisynthetic channel that is unable to adopt a constricted filter but inactivates like WT channels challenges this idea. In this study, we measured the equilibrium ion-binding properties of channels with conductive, inactivated, and constricted filters using isothermal titration calorimetry (ITC). EPR spectroscopy was used to determine the state of the intracellular gate of the channel, which we found can depend on the presence or absence of a lipid bilayer. Overall, we discovered that K(+) ion binding to channels with an inactivated or conductive selectivity filter is different from K(+) ion binding to channels with a constricted filter, suggesting that the structures of these channels are different.

  9. A study of two unsupervised data driven statistical methodologies for detecting and classifying damages in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Tibaduiza, D.-A.; Torres-Arredondo, M.-A.; Mujica, L. E.; Rodellar, J.; Fritzen, C.-P.

    2013-12-01

    This article is concerned with the practical use of Multiway Principal Component Analysis (MPCA), Discrete Wavelet Transform (DWT), Squared Prediction Error (SPE) measures and Self-Organizing Maps (SOM) to detect and classify damages in mechanical structures. The formalism is based on a distributed piezoelectric active sensor network for the excitation and detection of structural dynamic responses. Statistical models are built using PCA when the structure is known to be healthy either directly from the dynamic responses or from wavelet coefficients at different scales representing Time-frequency information. Different damages on the tested structures are simulated by adding masses at different positions. The data from the structure in different states (damaged or not) are then projected into the different principal component models by each actuator in order to obtain the input feature vectors for a SOM from the scores and the SPE measures. An aircraft fuselage from an Airbus A320 and a multi-layered carbon fiber reinforced plastic (CFRP) plate are used as examples to test the approaches. Results are presented, compared and discussed in order to determine their potential in structural health monitoring. These results showed that all the simulated damages were detectable and the selected features proved capable of separating all damage conditions from the undamaged state for both approaches.

  10. Single Amino Acid Alteration between Valine and Isoleucine Determines the Distinct Pyrabactin Selectivity by PYL1 and PYL2*

    PubMed Central

    Yuan, Xiaoqiu; Yin, Ping; Hao, Qi; Yan, Chuangye; Wang, Jiawei; Yan, Nieng

    2010-01-01

    Abscisic acid (ABA) is one of the most important phytohormones in plant. PYL proteins were identified to be ABA receptors in Arabidopsis thaliana. Despite the remarkably high degree of sequence similarity, PYL1 and PYL2 exhibit distinct responses toward pyrabactin, an ABA agonist. PYL1 inhibits protein phosphatase type 2C upon binding of pyrabactin. In contrast, PYL2 appears relatively insensitive to this compound. The crystal structure of pyrabactin-bound PYL1 revealed that most of the PYL1 residues involved in pyrabactin binding are conserved, hence failing to explain the selectivity of pyrabactin for PYL1 over PYL2. To understand the molecular basis of pyrabactin selectivity, we determined the crystal structure of PYL2 in complex with pyrabactin at 1.64 Å resolution. Structural comparison and biochemical analyses demonstrated that one single amino acid alteration between a corresponding valine and isoleucine determines the distinct pyrabactin selectivity by PYL1 and PYL2. These characterizations provide an important clue to dissecting the redundancy of PYL proteins. PMID:20630864

  11. Hugoniot-based equations of state for two filled EPDM rubbers

    NASA Astrophysics Data System (ADS)

    Pacheco, A. H.; Dattelbaum, D. M.; Orler, E. B.; Bartram, B. D.; Gustavsen, R. L.

    2014-05-01

    Particle-filled elastomers are commonly used as engineering components due to their ability to provide structural support via their elastic mechanical response. Even small amounts of particle fillers are known to increase the mechanical strength of elastomers due to polymer-filler interactions. In this work, the shock response of two filled (SiO2 or silica and KevlarTMfillers) ethylene-propylene-diene (EPDM) rubbers were studied using single and two-stage gas gun-driven plate impact experiments. Hugoniot states were determined using standard plate impact methods. Both filled-EPDM elastomers exhibit high compressibility under shock loading and have a response similar to adiprene rubber.

  12. Large-scale wind turbine structures

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  13. Critical Seismic Vector Random Excitations for Multiply Supported Structures

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Manohar, C. S.

    1998-05-01

    A method for determining critical power spectral density matrix models for earthquake excitations which maximize steady response variance of linear multiply supported extended structures and which also satisfy constraints on input variance, zero crossing rates, frequency content and transmission time lag has been developed. The optimization problem is shown to be non-linear in nature and solutions are obtained by using an iterative technique which is based on linear programming method. A constraint on entropy rate as a measure of uncertainty which can be expected in realistic earthquake ground motions is proposed which makes the critical excitations more realistic. Two special cases are also considered. Firstly, when knowledge of autospectral densities is available, the critical response is shown to be produced by fully coherent excitations which are neither in-phase nor out-of-phase. The critical phase between the excitation components depends on structural parameters, but independent of the auto-spectral densities of the excitations. Secondly, when the knowledge of autospectral densities and phase spectrum of the excitations is available, the critical response is shown to be produced by a system dependent coherence function representing neither fully coherent nor fully incoherent ground motions. The applications of these special cases are discussed in the context of land-based extended structures and secondary systems such as nuclear piping assembly. Illustrative examples on critical inputs and response of sdof and a long-span suspended cable which demonstrated the various features of the approach developed are presented.

  14. The BCCT family of carriers: from physiology to crystal structure.

    PubMed

    Ziegler, Christine; Bremer, Erhard; Krämer, Reinhard

    2010-10-01

    Increases in the environmental osmolarity are key determinants for the growth of microorganisms. To ensure a physiologically acceptable level of cellular hydration and turgor at high osmolarity, many bacteria accumulate compatible solutes. Osmotically controlled uptake systems allow the scavenging of these compounds from scarce environmental sources as effective osmoprotectants. A number of these systems belong to the BCCT family (betaine-choline-carnitine-transporter), sodium- or proton-coupled transporters (e.g. BetP and BetT respectively) that are ubiquitous in microorganisms. The BCCT family also contains CaiT, an L-carnitine/γ-butyrobetaine antiporter that is not involved in osmotic stress responses. The glycine betaine transporter BetP from Corynebacterium glutamicum is a representative for osmoregulated symporters of the BCCT family and functions both as an osmosensor and osmoregulator. The crystal structure of BetP in an occluded conformation in complex with its substrate glycine betaine and two crystal structures of CaiT in an inward-facing open conformation in complex with L-carnitine and γ-butyrobetaine were reported recently. These structures and the wealth of biochemical data on the activity control of BetP in response to osmotic stress enable a correlation between the sensing of osmotic stress by a transporter protein with the ensuing regulation of transport activity. Molecular determinants governing the high-affinity binding of the compatible solutes by BetP and CaiT, the coupling in symporters and antiporters, and the osmoregulatory properties are discussed in detail for BetP and various BCCT carriers. © 2010 Blackwell Publishing Ltd.

  15. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    PubMed

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  16. Uncertainty Analysis of Decomposing Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Hobbs, Michael L.; Romero, Vicente J.

    2000-01-01

    Sensitivity/uncertainty analyses are necessary to determine where to allocate resources for improved predictions in support of our nation's nuclear safety mission. Yet, sensitivity/uncertainty analyses are not commonly performed on complex combustion models because the calculations are time consuming, CPU intensive, nontrivial exercises that can lead to deceptive results. To illustrate these ideas, a variety of sensitivity/uncertainty analyses were used to determine the uncertainty associated with thermal decomposition of polyurethane foam exposed to high radiative flux boundary conditions. The polyurethane used in this study is a rigid closed-cell foam used as an encapsulant. Related polyurethane binders such as Estane are used in many energetic materials of interest to the JANNAF community. The complex, finite element foam decomposition model used in this study has 25 input parameters that include chemistry, polymer structure, and thermophysical properties. The response variable was selected as the steady-state decomposition front velocity calculated as the derivative of the decomposition front location versus time. An analytical mean value sensitivity/uncertainty (MV) analysis was used to determine the standard deviation by taking numerical derivatives of the response variable with respect to each of the 25 input parameters. Since the response variable is also a derivative, the standard deviation was essentially determined from a second derivative that was extremely sensitive to numerical noise. To minimize the numerical noise, 50-micrometer element dimensions and approximately 1-msec time steps were required to obtain stable uncertainty results. As an alternative method to determine the uncertainty and sensitivity in the decomposition front velocity, surrogate response surfaces were generated for use with a constrained Latin Hypercube Sampling (LHS) technique. Two surrogate response surfaces were investigated: 1) a linear surrogate response surface (LIN) and 2) a quadratic response surface (QUAD). The LHS techniques do not require derivatives of the response variable and are subsequently relatively insensitive to numerical noise. To compare the LIN and QUAD methods to the MV method, a direct LHS analysis (DLHS) was performed using the full grid and timestep resolved finite element model. The surrogate response models (LIN and QUAD) are shown to give acceptable values of the mean and standard deviation when compared to the fully converged DLHS model.

  17. Mechanical Response Analysis of Long-life Asphalt Pavement Structure of Yunluo High-speed on the Semi-rigid Base

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Wu, Chuanhai; Xu, Xinquan; Li, Hao; Wang, Zhixiang

    2018-01-01

    In order to grasp the rule of the strain change of the semi-rigid asphalt pavement structure under the FWD load and provide a reliable theoretical and practical basis for the design of the pavement structure, based on the test section of Guangdong Yunluo expressway, taking FWD as the loading tool, by using the finite element analysis software ANSYS, the internal variation rules of each pavement structural layer were obtained. Based on the results of the theoretical analysis, the measured strain sensor was set up in the corresponding layer of the pavement structure, and the strain test plan was determined. Based on the analysis of the strain data obtained from several structural layers and field monitoring, the rationality of the type pavement structure and the strain test scheme were verified, so as to provide useful help for the design and the maintenance of the pavement structure.

  18. Structural analysis of two different stent configurations.

    PubMed

    Simão, M; Ferreira, J M; Mora-Rodriguez, J; Ramos, H M

    2017-06-01

    Two different stent configurations (i.e. the well known Palmaz-Schatz (PS) and a new stent configuration) are mechanically investigated. A finite element model was used to study the two geometries under combining loads and a computational fluid dynamic model based on fluid structure interaction was developed investigating the plaque and the artery wall reactions in a stented arterial segment. These models determine the stress and displacement fields of the two stents under internal pressure conditions. Results suggested that stent designs cause alterations in vascular anatomy that adversely affect arterial stress distributions within the wall, which have impact in the vessel responses such as the restenosis. The hemodynamic analysis shows the use of new stent geometry suggests better biofluid mechanical response such as the deformation and the progressive amount of plaque growth.

  19. Effect of Particle Damping on an Acoustically Excited Curved Vehicle Panel Structure with varied Equipment Assemblies

    NASA Technical Reports Server (NTRS)

    Parsons, David; Smith, Andrew; Knight, Brent; Hunt, Ron; LaVerde, Bruce; Craigmyle, Ben

    2012-01-01

    Particle dampers provide a mechanism for diverting energy away from resonant structural vibrations. This experimental study provides data from trials to determine how effective use of these dampers might be for equipment mounted to a curved orthogrid vehicle panel. Trends for damping are examined for variations in damper fill level, component mass, and excitation energy. A significant response reduction at the component level would suggest that comparatively small, thoughtfully placed, particle dampers might be advantageously used in vehicle design. The results of this test will be compared with baseline acoustic response tests and other follow-on testing involving a range of isolation and damping methods. Instrumentation consisting of accelerometers, microphones, and still photography data will be collected to correlate with the analytical results.

  20. Earthquake ground motion: Chapter 3

    USGS Publications Warehouse

    Luco, Nicolas; Kircher, Charles A.; Crouse, C. B.; Charney, Finley; Haselton, Curt B.; Baker, Jack W.; Zimmerman, Reid; Hooper, John D.; McVitty, William; Taylor, Andy

    2016-01-01

    Most of the effort in seismic design of buildings and other structures is focused on structural design. This chapter addresses another key aspect of the design process—characterization of earthquake ground motion into parameters for use in design. Section 3.1 describes the basis of the earthquake ground motion maps in the Provisions and in ASCE 7 (the Standard). Section 3.2 has examples for the determination of ground motion parameters and spectra for use in design. Section 3.3 describes site-specific ground motion requirements and provides example site-specific design and MCER response spectra and example values of site-specific ground motion parameters. Section 3.4 discusses and provides an example for the selection and scaling of ground motion records for use in various types of response history analysis permitted in the Standard.

  1. Initial stage of physical ageing in network glasses

    NASA Astrophysics Data System (ADS)

    Golovchak, R.; Ingram, A.; Kozdras, A.; Vlcek, M.; Roiland, C.; Bureau, B.; Shpotyuk, O.

    2012-11-01

    An atomistic view on Johari-Goldstein secondary β-relaxation processes responsible for structural relaxation far below the glass transition temperature (Tg ) in network glasses is developed for the archetypal chalcogenide glass, As20Se80, using positron annihilation lifetime, differential scanning calorimetry, Raman scattering and nuclear magnetic resonance techniques. Increased density fluctuations are shown to be responsible for the initial stage of physical ageing in these materials at the temperatures below Tg . They are correlated with changes in thermodynamic parameters of structural relaxation through the glass-to-supercooled liquid transition interval. General shrinkage, occurred during the next stage of physical ageing, is shown to be determined by the ability of system to release these redundant open volumes from the glass bulk through the densification process of glass network.

  2. Antibody responses to avian influenza viruses in wild birds broaden with age

    PubMed Central

    Manvell, Ruth J.; Schulenburg, Bodo; Shell, Wendy; Wikramaratna, Paul S.; Perrins, Christopher; Sheldon, Ben C.; Brown, Ian H.; Pybus, Oliver G.

    2016-01-01

    For viruses such as avian influenza, immunity within a host population can drive the emergence of new strains by selecting for viruses with novel antigens that avoid immune recognition. The accumulation of acquired immunity with age is hypothesized to affect how influenza viruses emerge and spread in species of different lifespans. Despite its importance for understanding the behaviour of avian influenza viruses, little is known about age-related accumulation of immunity in the virus's primary reservoir, wild birds. To address this, we studied the age structure of immune responses to avian influenza virus in a wild swan population (Cygnus olor), before and after the population experienced an outbreak of highly pathogenic H5N1 avian influenza in 2008. We performed haemagglutination inhibition assays on sampled sera for five avian influenza strains and show that breadth of response accumulates with age. The observed age-related distribution of antibody responses to avian influenza strains may explain the age-dependent mortality observed during the highly pathogenic H5N1 outbreak. Age structures and species lifespan are probably important determinants of viral epidemiology and virulence in birds. PMID:28003449

  3. Structural response and gas dynamics of an airship exposed to a nuclear detonation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilstad, D.A.; Weeber, C.G.; Kviljord, A.

    1960-04-25

    Four Model ZSG-3 airships, U. S. Navy Bureau of Aeronautics Nos. 40, 46, 77, and 92, participated during Operation Plumbbob to determine the response characteristics of the Model ZSG-3 airship when subjected to a nuclear detonation in order to establish criteria for safe escape distances for airship delivery of antisubmarine warfare special weapons. Restrained response data for 0.40-psi overpressure input were obtained during Shot Franklin with the ZSG-3 No. 77 moored tail to the blast. Unrestrained response data for 0.75-psi overpressure input were obtained during Shot Stokes with the ZSG-3 No. 40 free ballooned, tail to the blast, 300 feetmore » aboveground. The first airship exposed to overpressure experienced a structural failure of the nose cone when it was rammed into the mooring mast, together with a tear of the forward ballonet which necessitated deflation of the envelope. The second airship broke in half and crashed following a circumferential failure of the envelope originating at the bottom of the envelope, forward of the car.« less

  4. Determination Method of Bridge Rotation Angle Response Using MEMS IMU

    PubMed Central

    Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi

    2016-01-01

    To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges. PMID:27834871

  5. Behavioral responses in structured populations pave the way to group optimality.

    PubMed

    Akçay, Erol; Van Cleve, Jeremy

    2012-02-01

    An unresolved controversy regarding social behaviors is exemplified when natural selection might lead to behaviors that maximize fitness at the social-group level but are costly at the individual level. Except for the special case of groups of clones, we do not have a general understanding of how and when group-optimal behaviors evolve, especially when the behaviors in question are flexible. To address this question, we develop a general model that integrates behavioral plasticity in social interactions with the action of natural selection in structured populations. We find that group-optimal behaviors can evolve, even without clonal groups, if individuals exhibit appropriate behavioral responses to each other's actions. The evolution of such behavioral responses, in turn, is predicated on the nature of the proximate behavioral mechanisms. We model a particular class of proximate mechanisms, prosocial preferences, and find that such preferences evolve to sustain maximum group benefit under certain levels of relatedness and certain ecological conditions. Thus, our model demonstrates the fundamental interplay between behavioral responses and relatedness in determining the course of social evolution. We also highlight the crucial role of proximate mechanisms such as prosocial preferences in the evolution of behavioral responses and in facilitating evolutionary transitions in individuality.

  6. Estimation and Identifiability of Model Parameters in Human Nociceptive Processing Using Yes-No Detection Responses to Electrocutaneous Stimulation.

    PubMed

    Yang, Huan; Meijer, Hil G E; Buitenweg, Jan R; van Gils, Stephan A

    2016-01-01

    Healthy or pathological states of nociceptive subsystems determine different stimulus-response relations measured from quantitative sensory testing. In turn, stimulus-response measurements may be used to assess these states. In a recently developed computational model, six model parameters characterize activation of nerve endings and spinal neurons. However, both model nonlinearity and limited information in yes-no detection responses to electrocutaneous stimuli challenge to estimate model parameters. Here, we address the question whether and how one can overcome these difficulties for reliable parameter estimation. First, we fit the computational model to experimental stimulus-response pairs by maximizing the likelihood. To evaluate the balance between model fit and complexity, i.e., the number of model parameters, we evaluate the Bayesian Information Criterion. We find that the computational model is better than a conventional logistic model regarding the balance. Second, our theoretical analysis suggests to vary the pulse width among applied stimuli as a necessary condition to prevent structural non-identifiability. In addition, the numerically implemented profile likelihood approach reveals structural and practical non-identifiability. Our model-based approach with integration of psychophysical measurements can be useful for a reliable assessment of states of the nociceptive system.

  7. Structural Characterization of the Trimerization of TRAF6 Protein Through Molecular Dynamics Simulations.

    PubMed

    Biswas, Ria; Bagchi, Angshuman

    2017-09-11

    The tumour necrosis factor (TNF) receptor-associated factor (TRAF) family of proteins having E3 ligase activity are the key molecules involved in cellular immune response pathways. TRAF6 is a unique member of the TRAF superfamily differing from other members of the family, owing to its specific interactions with molecules outside the TNF receptor superfamily. The C-terminal domain of TRAF proteins contains the catalytic residues and are known to be involved in self-oligomerization forming a mushroom-shaped trimeric structure, which is the functional form of the protein. However, the monomeric crystal structure of TRAF6 C-terminal domain has been already determined, but the trimeric structure of the same is still not available. We here applied computational structural modelling and molecular dynamics simulations studies to get insights into the molecular interactions involved in determining the trimeric structure of the TRAF6 C-terminal domain. The non-availability of the trimeric structure of the TRAF6 C-terminal domain prevented the elucidation of the molecular mechanism of many different biological processes. Our results suggest that the trimer complex is transient in nature. The amino acid residues Lys340 and Glu345 in the coiled coil domain in the C-terminus of TRAF6 play a critical role in trimer structure formation. This structural modelling study may therefore be utilized to obtain the experimentally validated trimeric structure of this important protein.

  8. X-ray photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    DOE PAGES

    Nelson, A. J.; Voss, L. F.; Beck, P. R.; ...

    2013-01-12

    We subjected device-grade TlBr to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl 2, Br:MeOH and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.

  9. X-ray photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Voss, L. F.; Beck, P. R.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Lee, J.-S.; Kim, H.; Cirignano, L.; Shah, K.

    2013-04-01

    Device-grade TlBr was subjected to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl2, Br:MeOH, and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p, and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.

  10. Bias-induced conformational switching of supramolecular networks of trimesic acid at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Ubink, J.; Enache, M.; Stöhr, M.

    2018-05-01

    Using the tip of a scanning tunneling microscope, an electric field-induced reversible phase transition between two planar porous structures ("chickenwire" and "flower") of trimesic acid was accomplished at the nonanoic acid/highly oriented pyrolytic graphite interface. The chickenwire structure was exclusively observed for negative sample bias, while for positive sample bias only the more densely packed flower structure was found. We suggest that the slightly negatively charged carboxyl groups of the trimesic acid molecule are the determining factor for this observation: their adsorption behavior varies with the sample bias and is thus responsible for the switching behavior.

  11. Structural dynamic model obtained from flight use with piloted simulation and handling qualities analysis

    NASA Technical Reports Server (NTRS)

    Powers, Bruce G.

    1996-01-01

    The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.

  12. Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures

    NASA Astrophysics Data System (ADS)

    Chen, G.; Tien, C. L.; Wu, X.; Smith, J. S.

    1994-05-01

    This work develops a new measurement technique that determines the thermal diffusivity of thin films in both parallel and perpendicular directions, and presents experimental results on the thermal diffusivity of GaAs/AlGaAs-based thin-film structures. In the experiment, a modulated laser source heats up the sample and a fast-response temperature sensor patterned directly on the sample picks up the thermal response. From the phase delay between the heating source and the temperature sensor, the thermal diffusivity in either the parallel or perpendicular direction is obtained depending on the experimental configuration. The experiment is performed on a molecular-beam-epitaxy grown vertical-cavity surface-emitting laser (VCSEL) structure. The substrates of the samples are etched away to eliminate the effects of the interface between the film and the substrate. The results show that the thermal diffusivity of the VCSEL structure is 5-7 times smaller than that of its corresponding bulk media. The experiments also provide evidence on the anisotropy of thermal diffusivity caused solely by the effects of interfaces and boundaries of thin films.

  13. Synthesis of nonlinear frequency responses with experimentally extracted nonlinear modes

    NASA Astrophysics Data System (ADS)

    Peter, Simon; Scheel, Maren; Krack, Malte; Leine, Remco I.

    2018-02-01

    Determining frequency response curves is a common task in the vibration analysis of nonlinear systems. Measuring nonlinear frequency responses is often challenging and time consuming due to, e.g., coexisting stable or unstable vibration responses and structure-exciter-interaction. The aim of the current paper is to develop a method for the synthesis of nonlinear frequency responses near an isolated resonance, based on data that can be easily and automatically obtained experimentally. The proposed purely experimental approach relies on (a) a standard linear modal analysis carried out at low vibration levels and (b) a phase-controlled tracking of the backbone curve of the considered forced resonance. From (b), the natural frequency and vibrational deflection shape are directly obtained as a function of the vibration level. Moreover, a damping measure can be extracted by power considerations or from the linear modal analysis. In accordance with the single nonlinear mode assumption, the near-resonant frequency response can then be synthesized using this data. The method is applied to a benchmark structure consisting of a cantilevered beam attached to a leaf spring undergoing large deflections. The results are compared with direct measurements of the frequency response. The proposed approach is fast, robust and provides a good estimate for the frequency response. It is also found that direct frequency response measurement is less robust due to bifurcations and using a sine sweep excitation with a conventional force controller leads to underestimation of maximum vibration response.

  14. The Space Station as a Construction Base for Large Space Structures

    NASA Technical Reports Server (NTRS)

    Gates, R. M.

    1985-01-01

    The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.

  15. Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe.

    PubMed

    Purahong, Witoon; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L M; Krüger, Dirk

    2014-11-12

    The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function.

  16. Structural response of 1/20-scale models of the Clinch River Breeder Reactor to a simulated hypothetical core disruptive accident. Technical report 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romander, C. M.; Cagliostro, D. J.

    Five experiments were performed to help evaluate the structural integrity of the reactor vessel and head design and to verify code predictions. In the first experiment (SM 1), a detailed model of the head was loaded statically to determine its stiffness. In the remaining four experiments (SM 2 to SM 5), models of the vessel and head were loaded dynamically under a simulated 661 MW-sec hypothetical core disruptive accident (HCDA). Models SM 2 to SM 4, each of increasing complexity, systematically showed the effects of upper internals structures, a thermal liner, core support platform, and torospherical bottom on vessel response.more » Model SM 5, identical to SM 4 but more heavily instrumented, demonstrated experimental reproducibility and provided more comprehensive data. The models consisted of a Ni 200 vessel and core barrel, a head with shielding and simulated component masses, an upper internals structure (UIS), and, in the more complex models SM 4 and SM 5, a Ni 200 thermal liner and core support structure. Water simulated the liquid sodium coolant and a low-density explosive simulated the HCDA loads.« less

  17. Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures

    NASA Technical Reports Server (NTRS)

    Potyondy, David O.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1994-01-01

    A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modeling strategy. The structural response for each cracked configuration is obtained using a geometrically nonlinear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology and its applicability to performing practical analyses of realistic structures is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.

  18. STS-74/Mir photogrammetric appendage structural dynamics experiment

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Gilbert, Michael G.

    1996-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) is an International Space Station (ISS) Phase-1 risk mitigation experiment. Phase-1 experiments are performed during docking missions of the U.S. Space Shuttle to the Russian Space Station Mir. The purpose of the experiment is to demonstrate the use of photogrammetric techniques for determination of structural dynamic mode parameters of solar arrays and other spacecraft appendages. Photogrammetric techniques are a low cost alternative to appendage mounted accelerometers for the ISS program. The objective of the first flight of PASDE, on STS-74 in November 1995, was to obtain video images of Mir Kvant-2 solar array response to various structural dynamic excitation events. More than 113 minutes of high quality structural response video data was collected during the mission. The PASDE experiment hardware consisted of three instruments each containing two video cameras, two video tape recorders, a modified video signal time inserter, and associated avionics boxes. The instruments were designed, fabricated, and tested at the NASA Langley Research Center in eight months. The flight hardware was integrated into standard Hitchhiker canisters at the NASA Goddard Space Flight Center and then installed into the Space Shuttle cargo bay in locations selected to achieve good video coverage and photogrammetric geometry.

  19. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    1992-11-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  20. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1992-01-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  1. Prediction of Frequency for Simulation of Asphalt Mix Fatigue Tests Using MARS and ANN

    PubMed Central

    Fakhri, Mansour

    2014-01-01

    Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000) four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) methods were then employed to predict the effective length (i.e., frequency) of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN) are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation. PMID:24688400

  2. Prediction of frequency for simulation of asphalt mix fatigue tests using MARS and ANN.

    PubMed

    Ghanizadeh, Ali Reza; Fakhri, Mansour

    2014-01-01

    Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000) four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) methods were then employed to predict the effective length (i.e., frequency) of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN) are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation.

  3. Biology of bone and how it orchestrates the form and function of the skeleton

    NASA Technical Reports Server (NTRS)

    Sommerfeldt, D. W.; Rubin, C. T.

    2001-01-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.

  4. Scaling effects in the static and dynamic response of graphite-epoxy beam-columns. Ph.D. Thesis - Virginia Polytechnic Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.

    1990-01-01

    Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show that valuable information can be obtained from testing on scale model composite structures, especially in the linear elastic response region. However, due to scaling effects in the strength behavior of composite laminates, caution must be used in extrapolating data taken from a scale model test when that test involves failure of the structure.

  5. Influence of sociodemographic characteristics on different dimensions of household food insecurity in Montevideo, Uruguay.

    PubMed

    Rossi, Máximo; Ferre, Zuleika; Curutchet, María Rosa; Giménez, Ana; Ares, Gastón

    2017-03-01

    To determine the factor structure of the Latin American & Caribbean Household Food Security Scale (ELCSA) and to study the influence of sociodemographic characteristics on each of the identified dimensions in Montevideo, Uruguay. Cross-sectional survey with a representative sample of urban households. Household food insecurity was measured using the ELCSA. The percentage of respondents who gave affirmative responses for each of the items of the ELCSA was determined. Exploratory factor analysis was carried out to determine the ELCSA's factor structure. A probit model was used to determine the impact of some individual and household sociodemographic characteristics on the identified dimensions of food insecurity. Metropolitan area centred on Montevideo, the capital city of Uruguay, April-September 2014. Adults aged between 18 and 93 years (n 742). The percentage of affirmative responses to the items of the ELCSA ranged from 4·4 to 31·7 %. Two factors were identified in the exploratory factor analysis performed on data from households without children under 18 years old, whereas three factors were identified for households with children. The identified factors were associated with different severity levels of food insecurity. Likelihood of experiencing different levels of food insecurity was affected by individual characteristics of the respondent as well as characteristics of the household. The influence of sociodemographic variables varied among the ELCSA dimensions. Household income had the largest influence on all dimensions, which indicates a strong relationship between income and food insecurity.

  6. Formation of a three-dimensional plasma boundary after decay of the plasma response to resonant magnetic perturbation fields

    NASA Astrophysics Data System (ADS)

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lanctot, M. J.; Lasnier, C. L.; Mordijck, S.; Moyer, R. A.; Reimerdes, H.; the DIII-D Team

    2014-01-01

    First time experimental evidence is presented for a direct link between the decay of a n = 3 plasma response and the formation of a three-dimensional (3D) plasma boundary. We inspect a lower single-null L-mode plasma which first reacts at sufficiently high rotation with an ideal resonant screening response to an external toroidal mode number n = 3 resonant magnetic perturbation field. Decay of this response due to reduced bulk plasma rotation changes the plasma state considerably. Signatures such as density pump out and a spin up of the edge rotation—which are usually connected to formation of a stochastic boundary—are detected. Coincident, striation of the divertor single ionized carbon emission and a 3D emission structure in double ionized carbon at the separatrix is seen. The striated C II pattern follows in this stage the perturbed magnetic footprint modelled without a plasma response (vacuum approach). This provides for the first time substantial experimental evidence, that a 3D plasma boundary with direct impact on the divertor particle flux pattern is formed as soon as the internal plasma response decays. The resulting divertor structure follows the vacuum modelled magnetic field topology. However, the inward extension of the perturbed boundary layer can still not directly be determined from these measurements.

  7. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    NASA Astrophysics Data System (ADS)

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  8. Exploring Health System Responsiveness in Ambulatory Care and Disease Management and its Relation to Other Dimensions of Health System Performance (RAC) – Study Design and Methodology

    PubMed Central

    Röttger, Julia; Blümel, Miriam; Engel, Susanne; Grenz-Farenholtz, Brigitte; Fuchs, Sabine; Linder, Roland; Verheyen, Frank; Busse, Reinhard

    2015-01-01

    Background: The responsiveness of a health system is considered to be an intrinsic goal of health systems and an essential aspect in performance assessment. Numerous studies have analysed health system responsiveness and related concepts, especially across different countries and health systems. However, fewer studies have applied the concept for the evaluation of specific healthcare delivery structures and thoroughly analysed its determinants within one country. The aims of this study are to assess the level of perceived health system responsiveness to patients with chronic diseases in ambulatory care in Germany and to analyse the determinants of health system responsiveness as well as its distribution across different population groups. Methods and Analysis: The target population consists of chronically ill people in Germany, with a focus on patients suffering from type 2 diabetes and/or from coronary heart disease (CHD). Data comes from two different sources: (i) cross-sectional survey data from a postal survey and (ii) claims data from a German sickness fund. Data from both sources will be linked at an individual-level. The postal survey has the purpose of measuring perceived health system responsiveness, health related quality of life, experiences with disease management programmes (DMPs) and (subjective) socioeconomic background. The claims data consists of information on (co)morbidities, service utilization, enrolment within a DMP and sociodemographic characteristics, including the type of residential area. Discussion: RAC is one of the first projects linking survey data on health system responsiveness at individual level with claims data. With this unique database, it will be possible to comprehensively analyse determinants of health system responsiveness and its relation to other aspects of health system performance assessment. The results of the project will allow German health system decision-makers to assess the performance of nonclinical aspects of healthcare delivery and their determinants in two important areas of health policy: in ambulatory and chronic disease care. PMID:26188807

  9. Exploring Health System Responsiveness in Ambulatory Care and Disease Management and its Relation to Other Dimensions of Health System Performance (RAC) - Study Design and Methodology.

    PubMed

    Röttger, Julia; Blümel, Miriam; Engel, Susanne; Grenz-Farenholtz, Brigitte; Fuchs, Sabine; Linder, Roland; Verheyen, Frank; Busse, Reinhard

    2015-05-20

    The responsiveness of a health system is considered to be an intrinsic goal of health systems and an essential aspect in performance assessment. Numerous studies have analysed health system responsiveness and related concepts, especially across different countries and health systems. However, fewer studies have applied the concept for the evaluation of specific healthcare delivery structures and thoroughly analysed its determinants within one country. The aims of this study are to assess the level of perceived health system responsiveness to patients with chronic diseases in ambulatory care in Germany and to analyse the determinants of health system responsiveness as well as its distribution across different population groups. The target population consists of chronically ill people in Germany, with a focus on patients suffering from type 2 diabetes and/or from coronary heart disease (CHD). Data comes from two different sources: (i) cross-sectional survey data from a postal survey and (ii) claims data from a German sickness fund. Data from both sources will be linked at an individual-level. The postal survey has the purpose of measuring perceived health system responsiveness, health related quality of life, experiences with disease management programmes (DMPs) and (subjective) socioeconomic background. The claims data consists of information on (co)morbidities, service utilization, enrolment within a DMP and sociodemographic characteristics, including the type of residential area. RAC is one of the first projects linking survey data on health system responsiveness at individual level with claims data. With this unique database, it will be possible to comprehensively analyse determinants of health system responsiveness and its relation to other aspects of health system performance assessment. The results of the project will allow German health system decision-makers to assess the performance of nonclinical aspects of healthcare delivery and their determinants in two important areas of health policy: in ambulatory and chronic disease care. © 2015 by Kerman University of Medical Sciences.

  10. Influences of Institutional Structure, Policy, and Practice on Faculty Participation in Online Teaching

    ERIC Educational Resources Information Center

    Mazer, Vickie M.

    2015-01-01

    Online education is growing in response to demands of increased access, quality, and affordability. However, implementation and expansion are often challenged by faculty resistance, due in large part to perceived lack of quality and administrative support. This case study sought to determine how the presence or absence of quality elements, as…

  11. Planning for Growth in Online Learning: A Case Study in How to Expand the Campus

    ERIC Educational Resources Information Center

    Donnelly, Eileen

    2014-01-01

    Many higher education institutions have implemented online learning (OL) as a response to students' needing greater access to higher education. Although many universities have determined that meeting this increasing need for OL is important to their future strategies, some universities do not know how to structure their internal operations to…

  12. Accumulation of Chiro-inositol and Other Non-structural Carbohydrates in Limonium Species in Response to Saline Irrigation Waters

    USDA-ARS?s Scientific Manuscript database

    Two statice cultivars, Limonium perezii (Stapf) F. T. Hubb cv. ‘Blue Seas’ and L. sinuatum (L.) Mill ‘American Beauty’, were grown in greenhouse sand tanks to determine the effect of salt stress on carbohydrate accumulation and partitioning. Irrigation waters were prepared to simulate typical saline...

  13. Exploring South African High School Teachers' Conceptions of the Nature of Scientific Inquiry: A Case Study

    ERIC Educational Resources Information Center

    Dudu, Washington T.

    2014-01-01

    The paper explores conceptions of the nature of scientific inquiry (NOSI) held by five teachers who were purposively and conveniently sampled. Teachers' conceptions of the NOSI were determined using a Probes questionnaire. To confirm teachers' responses, a semi-structured interview was conducted with each teacher. The Probes questionnaire was…

  14. College Carrier Current: A Survey of 208 Campus-Limited Radio Stations.

    ERIC Educational Resources Information Center

    Broadcast Inst. of North America, New York, NY.

    The purpose of this survey was to determine the extent to which carrier current radio has become a medium which can link and unify relatively small, well-defined groups in an effective and inexpensive way. The survey focused upon the auspices, structure, affiliation, day-to-day managerial responsibility, and administrative liaison of the stations;…

  15. Determining the Energetics of the Hydrogen Bond through FTIR: A Hands-On Physical Chemistry Lab Experiment

    ERIC Educational Resources Information Center

    Guerin, Abby C.; Riley, Kristi; Rupnik, Kresimir; Kuroda, Daniel G.

    2016-01-01

    Hydrogen bonds are very important chemical structures that are responsible for many unique and important properties of solvents, such as the solvation power of water. These distinctive features are directly related to the stabilization energy conferred by hydrogen bonds to the solvent. Thus, the characterization of hydrogen bond energetics has…

  16. Sediment deposition from Hurricane Rita on Hackberry Beach chenier in southwestern Louisiana: Chapter 6E in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Faulkner, Stephen; Barrow, Wylie; Doyle, Thomas; Baldwin, Michael; Michot, Thomas; Wells, Christopher; Jeske, Clint

    2007-01-01

    Hurricane Rita significantly impacted the chenier forests of southwestern Louisiana, an important habitat for Neotropical migratory birds. Sediment deposition was measured along transects at Hackberry Beach chenier, and Rita's effects on chenier structure and morphology were determined.

  17. Status of Instructional Physical Education Programs in Ohio Senior High Schools.

    ERIC Educational Resources Information Center

    Schraibman, Carl

    High school level instructional physical education programs in the state of Ohio are examined to determine the quality of their organizational structure and curricula offerings. Data collected from a 74.3 percent questionnaire response from 70 Ohio school systems describes the functional arrangement of the school programs based on the sex of the…

  18. Content Validation of the Comprehension of Written Grammar Assessment for Deaf and Hard of Hearing Students

    ERIC Educational Resources Information Center

    Cannon, Joanna E.; Hubley, Anita M.

    2014-01-01

    Content validation is a crucial, but often neglected, component of good test development. In the present study, content validity evidence was collected to determine the degree to which elements (e.g., grammatical structures, items, picture responses, administration, and scoring instructions) of the Comprehension of Written Grammar (CWG) test are…

  19. Seven-year responses of trees to experimental hurricane effects in a tropical rainforest, Puerto Rico

    Treesearch

    Jess K. Zimmerman; James Aaron Hogan; Aaron B. Shiels; John E. Bithorn; Samuel Matta Carmona; Nicholas Brokaw

    2014-01-01

    We experimentally manipulated key components of severe hurricane disturbance, canopy openness and detritus deposition, to determine the independent and interactive effects of these components on tree recruitment, forest structure, and diversity in a wet tropical forest in the Luquillo Experimental Forest, Puerto Rico. Canopy openness was increased by trimming branches...

  20. The Analysis of Elementary Mathematics Preservice Teachers' Spatial Orientation Skills with SOLO Model

    ERIC Educational Resources Information Center

    Özdemir, Ahmet Sükrü; Göktepe Yildiz, Sevda

    2015-01-01

    Problem Statement: The SOLO model places responses provided by students on a certain level instead of placing students there themselves. SOLO taxonomy, including five sub-levels, is used for determining observed structures of learning outcomes in various disciplines and grade levels. On the other hand, the spatial orientation skill is the ability…

  1. 10 CFR 72.102 - Geological and seismological characteristics for applications before October 16, 2003 and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... activity, a standardized design earthquake (DE) described by an appropriate response spectrum anchored at 0... that lie within the range of strong near-field ground motion from historical earthquakes on large... avoided. (f) The design earthquake (DE) for use in the design of structures must be determined as follows...

  2. 10 CFR 72.102 - Geological and seismological characteristics for applications before October 16, 2003 and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... activity, a standardized design earthquake (DE) described by an appropriate response spectrum anchored at 0... that lie within the range of strong near-field ground motion from historical earthquakes on large... avoided. (f) The design earthquake (DE) for use in the design of structures must be determined as follows...

  3. 10 CFR 72.102 - Geological and seismological characteristics for applications before October 16, 2003 and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... activity, a standardized design earthquake (DE) described by an appropriate response spectrum anchored at 0... that lie within the range of strong near-field ground motion from historical earthquakes on large... avoided. (f) The design earthquake (DE) for use in the design of structures must be determined as follows...

  4. 10 CFR 72.102 - Geological and seismological characteristics for applications before October 16, 2003 and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... activity, a standardized design earthquake (DE) described by an appropriate response spectrum anchored at 0... that lie within the range of strong near-field ground motion from historical earthquakes on large... avoided. (f) The design earthquake (DE) for use in the design of structures must be determined as follows...

  5. 10 CFR 72.102 - Geological and seismological characteristics for applications before October 16, 2003 and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... activity, a standardized design earthquake (DE) described by an appropriate response spectrum anchored at 0... that lie within the range of strong near-field ground motion from historical earthquakes on large... avoided. (f) The design earthquake (DE) for use in the design of structures must be determined as follows...

  6. Long discontinuous fiber composite structure: Forming and structural mechanics

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Santare, M. H.; Otoole, B. J.; Beaussart, A. J.; Deheer, D. C.; Okine, R. K.

    1991-01-01

    Cost effective composite structure has motivated the investigation of several new approaches to develop composite structure from innovative material forms. Among the promising new approaches is the conversion of planar sheet to components of complex curvature through sheet forming or stretch forming. In both cases, the potential for material stretch in the fiber direction appears to offer a clear advantage in formability over continuous fiber systems. In the present study, the authors have established a framework which allows the simulation of the anisotropic mechanisms of deformation of long discontinuous fiber laminates wherein the matrix phase is a viscous fluid. The initial study focuses upon the establishment of micromechanics models for prediction of the effective anisotropic viscosities of the oriented fiber assembly in a viscous matrix. Next, the developed constitutive relation is employed through an analogy with incompressible elasticity to exercise the finite element technique for determination of local fiber orientation and laminate thickness after forming. Results are presented for the stretch bending of a curved beam from an arbitrary composite laminate and the bulging of a clamped sheet. Structural analyses are conducted to determine the effect of microstructure on the performance of curved beams manufactured from long discontinuous fiber composites. For the purposes of this study, several curved beams with ideal and non-ideal microstructures are compared for response under pure bending. Material parameters are determined from a separate microstructural analysis.

  7. CD1c presentation of synthetic glycolipid antigens with foreign alkyl branching motifs

    PubMed Central

    de Jong, Annemieke; Arce, Eva Casas; Cheng, Tan-Yun; van Summeren, Ruben P.; Feringa, Ben L.; Dudkin, Vadim; Crich, David; Matsunaga, Isamu; Minnaard, Adriaan J.; Moody, D. Branch

    2009-01-01

    Summary Human CD1c is a protein that activates αβ T cells by presenting self antigens, synthetic mannosyl phosphodolichols and mycobacterial mannosyl phosphopolyketides. To determine which molecular structures of antigens mediate a T cell response, we measured activation by structurally divergent M. tuberculosis mannosyl-β1-phosphomycoketides as well as by synthetic analogs produced by two methods that yield either stereorandom or stereospecific methyl branching patterns. T cell responses required both a phosphate and a β-linked mannose unit, and showed preference for C30–34 lipid units with methyl branches in the S-configuration. Thus, in all cases T cell responses were strongest for synthetic compounds that mimicked the natural branched lipids produced by mycobacterial polyketide synthase 12. Incorporation of methylmalonate to form branched lipids is a common bacterial lipid synthesis pathway that is absent in vertebrates, so the preferential recognition of branched lipids may represent a new type of lipid-based pathogen associated molecular pattern (PAMP). PMID:18022562

  8. Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.

    PubMed

    Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim

    2014-07-08

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.

  9. First-Principles Materials Design of High-Performing Bulk Photovoltaics with the Li Nb O 3 Structure

    DOE PAGES

    Young, Steve M.; Zheng, Fan; Rappe, Andrew M.

    2015-11-18

    Here, the bulk photovoltaic effect is a long-known but poorly understood phenomenon. Recently, however, the multiferroic bismuth ferrite has been observed to produce strong photovoltaic response to visible light, suggesting that the effect has been underexploited as well. Here we present three polar oxides in the LiNbOmore » $$_3$$ structure that we predict to have band gaps in the 1-2 eV range and very high bulk photovoltaic response: PbNiO$$_3$$, Mg$$_{1/2}$$Zn$$_{1/2}$$PbO$$_3$$, and LiBiO$$_3$$. All three have band gaps determined by cations with $$d^{10}s^0$$ electronic configurations, leading to conduction bands composed of cation $s$-orbitals and O $p$-orbitals. This both dramatically lowers the band gap and increases the bulk photovoltaic response by as much as an order of magnitude over previous materials, demonstrating the potential for high-performing bulk photovoltaics.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-basedmore » drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.« less

  11. Variability in the implementation of the No Child Left Behind Act in Wisconsin school districts and science departments

    NASA Astrophysics Data System (ADS)

    Miller, Christopher L.

    In the United States of America, the public education system is comprised of over 14,000 school districts. Each of these unique districts is being affected by the enactment of the No Child Left Behind Act of 2001. In turn, this diverse population of school districts is determining the impact on education of this sweeping federal education policy. This study examines eight of those school districts to determine their actions related to the early phase of the implementation of one portion of NCLB, the accountability provisions prescribing standardized assessment for the determination of Adequate Yearly Progress. Specifically, this study examines what these eight Wisconsin school districts, serving from 1,000 to over 5,000 students, did with the student achievement data resulting from their state assessment, the Wisconsin Knowledge and Concepts Examinations (WKCE). A wide variety of responses were found in how school districts used the WKCE data. The eight school districts were examined to determine what features of their organizations were responsible for how they responded to the enactment of the AYP provisions, specifically how they used the WCKE data. District responses were found to be determined by district size, governance structures, personnel, and dispositions. The interactions of these characteristics were considered in light of organizational studies using conceptualizations borrowed from ecology and the theory of evolution and by studies of school districts.

  12. Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures

    NASA Astrophysics Data System (ADS)

    Panopoulou, A.; Loutas, T.; Roulias, D.; Fransen, S.; Kostopoulos, V.

    2011-09-01

    The main purpose of the current work is to develop a new system for structural health monitoring of composite aerospace structures based on real-time dynamic measurements, in order to identify the structural state condition. Long-gauge Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The algorithm that was developed for structural damage detection utilizes the collected dynamic response data, analyzes them in various ways and through an artificial neural network identifies the damage state and its location. Damage was simulated by slightly varying locally the mass of the structure (by adding a known mass) at different zones of the structure. Lumped masses in different locations upon the structure alter the eigen-frequencies in a way similar to actual damage. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of modal testing on two different composite aerospace structures. Advanced digital signal processing techniques, e.g. the wavelet transform (WT), were used for the analysis of the dynamic response for feature extraction. WT's capability of separating the different frequency components in the time domain without loosing frequency information makes it a versatile tool for demanding signal processing applications. The use of WT is also suggested by the no-stationary nature of dynamic response signals and the opportunity of evaluating the temporal evolution of their frequency contents. Feature extraction is the first step of the procedure. The extracted features are effective indices of damage size and location. The classification step comprises of a feed-forward back propagation network, whose output determines the simulated damage location. Finally, dedicated training and validation activities were carried out by means of numerical simulations and experimental procedures. Experimental validation was performed initially on a flat stiffened panel, representing a section of a typical aeronautical structure, manufactured and tested in the lab and, as a second step, on a scaled up space oriented structure, which is a composite honeycomb plate, used as a deployment base for antenna arrays. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on both structures and different excitation positions and boundary conditions were used. The analysis of operational dynamic responses was employed to identify both the damage and its position. The system that was designed and tested initially on the thin composite panel, was successfully validated on the larger honeycomb structure. Numerical simulation of both structures was used as a support tool at all the steps of the work providing among others the location of the optical sensors used. The proposed work will be the base for the whole system qualification and validation on an antenna reflector in future work.

  13. Improving the seismic torsional behavior of plan-asymmetric, single-storey, concrete moment resisting buildings with fluid viscous dampers

    NASA Astrophysics Data System (ADS)

    Rofooei, Fayaz Rahimzadeh; Mohammadzadeh, Sahar

    2016-03-01

    The optimal distribution of fluid viscous dampers (FVD) in controlling the seismic response of eccentric, single-storey, moment resisting concrete structures is investigated using the previously defined center of damping constant (CDC). For this purpose, a number of structural models with different one-way stiffness and strength eccentricities are considered. Extensive nonlinear time history analyses are carried out for various arrangements of FVDs. It is shown that the arrangement of FVDs for controlling the torsional behavior due to asymmetry in the concrete structures is very dependent on the intensity of the peak ground acceleration (PGA) and the extent of the structural stiffness and strength eccentricities. The results indicate that, in the linear range of structural behavior the stiffness eccentricity es which is the main parameter in determining the location of optimal CDC, is found to be less or smaller than the optimal damping constant eccentricity e*d, i.e., |e*d| > |es|. But, in the nonlinear range of structural behavior where the strength eccentricity er is the dominant factor in determining the location of optimal CDC, |e*d| > |er|. It is also concluded that for the majority of the plan-asymmetric, concrete structures considered in this study with er ≠ 0, the optimal CDC approaches the center of mass as er decreases.

  14. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams.

    PubMed

    Dong, Xiaoyu; Li, Bin; He, Fengzhi; Gu, Yuan; Sun, Meiqin; Zhang, Haomiao; Tan, Lu; Xiao, Wen; Liu, Shuoran; Cai, Qinghua

    2016-04-19

    Stream metacommunities are structured by a combination of local (environmental filtering) and regional (dispersal) processes. The unique characters of high mountain streams could potentially determine metacommunity structuring, which is currently poorly understood. Aiming at understanding how these characters influenced metacommunity structuring, we explored the relative importance of local environmental conditions and various dispersal processes, including through geographical (overland), topographical (across mountain barriers) and network (along flow direction) pathways in shaping benthic diatom communities. From a trait perspective, diatoms were categorized into high-profile, low-profile and motile guild to examine the roles of functional traits. Our results indicated that both environmental filtering and dispersal processes influenced metacommunity structuring, with dispersal contributing more than environmental processes. Among the three pathways, stream corridors were primary pathway. Deconstructive analysis suggested different responses to environmental and spatial factors for each of three ecological guilds. However, regardless of traits, dispersal among streams was limited by mountain barriers, while dispersal along stream was promoted by rushing flow in high mountain stream. Our results highlighted that directional processes had prevailing effects on metacommunity structuring in high mountain streams. Flow directionality, mountain barriers and ecological guilds contributed to a better understanding of the roles that mountains played in structuring metacommunity.

  15. Variability of site response in the Los Angeles urban area

    USGS Publications Warehouse

    Hartzell, S.; Cranswick, E.; Frankel, A.; Carver, D.; Meremonte, M.

    1997-01-01

    This article addresses the variability of site response in the Los Angeles area and possible structural causes for the observations. Aftershock records from 231 sites in the San Fernando and Los Angeles basins and the surrounding mountains are used in this study. Spectral ratios, taken with respect to a low-amplitude reference site, are used to document the variation in site amplification in the frequency range 2 to 6 Hz, both spatially and with backazimuth to the source. At higher frequencies (6 to 10 Hz), spectral ratios are shown to have greater spatial variability. Interstation spectral ratios are used to measure the standard deviation among sources as a function of station separation. An increase in the variation in ground motion is shown to take place at a station separation of 1 km. Relative site-response estimates between nearby stations are used to demonstrate that preferred directions of motion can exist even in areas with no surface topographic effects. Significant variations in site response exist over short baselines (up to a factor of 2 over 200 m) that are not explained by differences in surficial geology or shallow shear-wave velocity. A variety of investigative approaches is used, including spectral ratios, arrival-time variations, 1D and 2D waveform modeling, and comparison with seismic reflection lines, to determine the most likely causes of these observations. A correlation is demonstrated between late arrival times of P and S waves and larger site amplification in Sherman Oaks and Northridge. This observation, in conjunction with waveform modeling and seismic reflection profiles, is used to infer that sedimentary structures in the upper 1 to 2 km and topography on the sediment-basement interface play an important role in determining site amplification. These structures, in the form of folds and buried basins, focus energy in spatially restricted areas at the surface. Comparison of displacement waveforms at nearby stations having disparate site amplifications, complemented by known shallow shear-wave velocities at selected sites, is used to support the argument that these structures, in some cases, can be the dominant factor in the modification of local ground motions.

  16. Cross-linking of sodium caseinate-structured emulsion with transglutaminase alters postprandial metabolic and appetite responses in healthy young individuals.

    PubMed

    Juvonen, Kristiina R; Macierzanka, Adam; Lille, Martina E; Laaksonen, David E; Mykkänen, Hannu M; Niskanen, Leo K; Pihlajamäki, Jussi; Mäkelä, Kari A; Mills, Clare E N; Mackie, Alan R; Malcolm, Paul; Herzig, Karl-Heinz; Poutanen, Kaisa S; Karhunen, Leila J

    2015-08-14

    The physico-chemical and interfacial properties of fat emulsions influence lipid digestion and may affect postprandial responses. The aim of the present study was to determine the effects of the modification of the interfacial layer of a fat emulsion by cross-linking on postprandial metabolic and appetite responses. A total of fifteen healthy individuals (26.5 (sem 6.9) years and BMI 21.9 (sem 2.0) kg/m2) participated in a cross-over design experiment in which they consumed two isoenergetic (1924 kJ (460 kcal)) and isovolumic (250 g) emulsions stabilised with either sodium caseinate (Cas) or transglutaminase-cross-linked sodium caseinate (Cas-TG) in a randomised order. Blood samples were collected from the individuals at baseline and for 6 h postprandially for the determination of serum TAG and plasma NEFA, cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), glucose and insulin responses. Appetite was assessed using visual analogue scales. Postprandial TAG and NEFA responses and gastric emptying (GE) rates were comparable between the emulsions. CCK increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0.05), while GLP-1 responses did not differ between the two test emulsions. Glucose and insulin profiles were lower after consuming Cas-TG than after consuming Cas (P< 0.05). The overall insulin, glucose and CCK responses, expressed as areas above/under the curve, did not differ significantly between the Cas and Cas-TG meal conditions. Satiety ratings were reduced and hunger, desire to eat and thirst ratings increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0.05). The present results suggest that even a subtle structural modification of the interfacial layer of a fat emulsion can alter the early postprandial profiles of glucose, insulin, CCK, appetite and satiety through decreased protein digestion without affecting significantly on GE or overall lipid digestion.

  17. Femtosecond Structural Dynamics Drives the Trans/Cis Isomerization in Photoactive Yellow Protein

    PubMed Central

    Pande, Kanupriya; Hutchison, Christopher D. M.; Groenhof, Gerrit; Aquila, Andy; Robinson, Josef S.; Tenboer, Jason; Basu, Shibom; Boutet, Sébastien; DePonte, Daniel P.; Liang, Mengning; White, Thomas A.; Zatsepin, Nadia A.; Yefanov, Oleksandr; Morozov, Dmitry; Oberthuer, Dominik; Gati, Cornelius; Subramanian, Ganesh; James, Daniel; Zhao, Yun; Koralek, Jake; Brayshaw, Jennifer; Kupitz, Christopher; Conrad, Chelsie; Roy-Chowdhury, Shatabdi; Coe, Jesse D.; Metz, Markus; Xavier, Paulraj Lourdu; Grant, Thomas D.; Koglin, Jason E.; Ketawala, Gihan; Fromme, Raimund; Šrajer, Vukica; Henning, Robert; Spence, John C. H.; Ourmazd, Abbas; Schwander, Peter; Weierstall, Uwe; Frank, Matthias; Fromme, Petra; Barty, Anton; Chapman, Henry N.; Moffat, Keith; van Thor, Jasper J.; Schmidt, Marius

    2017-01-01

    A variety of organisms have evolved mechanisms to detect and respond to light, in which the response is mediated by protein structural changes following photon absorption. The initial step is often the photo-isomerization of a conjugated chromophore. Isomerization occurs on ultrafast timescales, and is substantially influenced by the chromophore environment. Here we identify structural changes associated with the earliest steps in the trans to cis isomerization of the chromophore in photoactive yellow protein. Femtosecond, hard X-ray pulses emitted by the Linac Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on PYP microcrystals over the time range from 100 femtoseconds to 3 picoseconds to determine the structural dynamics of the photoisomerization reaction. PMID:27151871

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffel, J.A.; Mullinix, B.R.; Ranson, W.F.

    An experimental technique to simulate and evaluate the effects of high concentrations of x-rays resulting from a nuclear detonation on missile structures is presented. Data from 34 tests are included to demonstrate the technique. The effects of variations in the foil thickness, capacitor voltage, and plate thickness on the total impulse and maximum strain in the structure were determined. The experimental technique utilizes a high energy capacitor discharge unit to explode an aluminum foil on the surface of the structure. The structural response is evaluated by optical methods using the grid slope deflection method. The fringe patterns were recorded usingmore » a high-speed framing camera. The data were digitized using an optical comparator with an x-y table. The analysis was performed on a CDC 6600 computer.« less

  19. Season-modulated responses of Neotropical bats to forest fragmentation.

    PubMed

    Ferreira, Diogo F; Rocha, Ricardo; López-Baucells, Adrià; Farneda, Fábio Z; Carreiras, João M B; Palmeirim, Jorge M; Meyer, Christoph F J

    2017-06-01

    Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape-scale attributes. Generalized linear mixed-effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment-matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in resource abundance and consequently to local and landscape scale attributes.

  20. Motivation and Social Capital among prospective blood donors in three large blood centers in Brazil

    PubMed Central

    Gonçalez, Thelma T.; Di Lorenzo Oliveira, Claudia; Carneiro-Proietti, Anna Barbara F.; Moreno, Elizabeth C.; Miranda, Carolina; Larsen, Nina; Wright, David; Leão, Silvana; Loureiro, Paula; de Almeida-Neto, Cesar; Lopes, Maria-Inês; Proietti, Fernando A.; Custer, Brian; Sabino, Ester

    2012-01-01

    Background Studies analyzing motivation factors that lead to blood donation have found altruism to be the primary motivation factor; however social capital has not been analyzed in this context. Our study examines the association between motivation factors (altruism, self-interest and response to direct appeal) and social capital (cognitive and structural) across three large blood centers in Brazil. Study Design and Methods We conducted a cross-sectional survey of 7,635 donor candidates from October 15 through November 20, 2009. Participants completed self-administered questionnaires on demographics, previous blood donation, HIV testing and knowledge, social capital and donor motivations. Enrollment was determined prior to the donor screening process. Results Among participants, 43.5% and 41.7% expressed high levels of altruism and response to direct appeal respectively, while only 26.9% expressed high levels of self-interest. More high self-interest was observed at Hemope-Recife (41.7%). Of participants, 37.4% expressed high levels of cognitive social capital while 19.2% expressed high levels of structural social capital. More high cognitive and structural social capital was observed at Hemope-Recife (47.3% and 21.3%, respectively). High cognitive social capital was associated with high levels of altruism, self-interest and response to direct appeal. Philanthropic and high social altruism was associated with high levels of altruism and response to direct appeal. Conclusion Cognitive and structural social capital and social altruism are associated with altruism and response to direct appeal, while only cognitive social capital is associated with self-interest. Designing marketing campaigns with these aspects in mind may help blood banks attract potential blood donors more efficiently. PMID:22998740

  1. Motivation and social capital among prospective blood donors in three large blood centers in Brazil.

    PubMed

    Gonçalez, Thelma T; Di Lorenzo Oliveira, Claudia; Carneiro-Proietti, Anna Barbara F; Moreno, Elizabeth C; Miranda, Carolina; Larsen, Nina; Wright, David; Leão, Silvana; Loureiro, Paula; de Almeida-Neto, Cesar; Lopes, Maria-Inês; Proietti, Fernando A; Custer, Brian; Sabino, Ester

    2013-06-01

    Studies analyzing motivation factors that lead to blood donation have found altruism to be the primary motivation factor; however, social capital has not been analyzed in this context. Our study examines the association between motivation factors (altruism, self-interest, and response to direct appeal) and social capital (cognitive and structural) across three large blood centers in Brazil. We conducted a cross-sectional survey of 7635 donor candidates from October 15 through November 20, 2009. Participants completed self-administered questionnaires on demographics, previous blood donation, human immunodeficiency virus testing and knowledge, social capital, and donor motivations. Enrollment was determined before the donor screening process. Among participants, 43.5 and 41.7% expressed high levels of altruism and response to direct appeal, respectively, while only 26.9% expressed high levels of self-interest. More high self-interest was observed at Hemope-Recife (41.7%). Of participants, 37.4% expressed high levels of cognitive social capital while 19.2% expressed high levels of structural social capital. More high cognitive and structural social capital was observed at Hemope-Recife (47.3 and 21.3%, respectively). High cognitive social capital was associated with high levels of altruism, self-interest, and response to direct appeal. Philanthropic and high social altruism were associated with high levels of altruism and response to direct appeal. Cognitive and structural social capital and social altruism are associated with altruism and response to direct appeal, while only cognitive social capital is associated with self-interest. Designing marketing campaigns with these aspects in mind may help blood banks attract potential blood donors more efficiently. © 2012 American Association of Blood Banks.

  2. Assessment of modal-pushover-based scaling procedure for nonlinear response history analysis of ordinary standard bridges

    USGS Publications Warehouse

    Kalkan, E.; Kwong, N.

    2012-01-01

    The earthquake engineering profession is increasingly utilizing nonlinear response history analyses (RHA) to evaluate seismic performance of existing structures and proposed designs of new structures. One of the main ingredients of nonlinear RHA is a set of ground motion records representing the expected hazard environment for the structure. When recorded motions do not exist (as is the case in the central United States) or when high-intensity records are needed (as is the case in San Francisco and Los Angeles), ground motions from other tectonically similar regions need to be selected and scaled. The modal-pushover-based scaling (MPS) procedure was recently developed to determine scale factors for a small number of records such that the scaled records provide accurate and efficient estimates of “true” median structural responses. The adjective “accurate” refers to the discrepancy between the benchmark responses and those computed from the MPS procedure. The adjective “efficient” refers to the record-to-record variability of responses. In this paper, the accuracy and efficiency of the MPS procedure are evaluated by applying it to four types of existing Ordinary Standard bridges typical of reinforced concrete bridge construction in California. These bridges are the single-bent overpass, multi-span bridge, curved bridge, and skew bridge. As compared with benchmark analyses of unscaled records using a larger catalog of ground motions, it is demonstrated that the MPS procedure provided an accurate estimate of the engineering demand parameters (EDPs) accompanied by significantly reduced record-to-record variability of the EDPs. Thus, it is a useful tool for scaling ground motions as input to nonlinear RHAs of Ordinary Standard bridges.

  3. Multi-type sensor placement and response reconstruction for building structures: Experimental investigations

    NASA Astrophysics Data System (ADS)

    Hu, Rong-Pan; Xu, You-Lin; Zhan, Sheng

    2018-01-01

    Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment.

  4. [Determinants of information-seeking about crime and crime prevention: information-seeking on the Internet].

    PubMed

    Arai, Takashi; Fuji, Kei; Yoshida, Fujio

    2013-06-01

    This study explores determinants of information-seeking about crime and crime prevention on the Internet, including how it was influenced by personal conversations with others. An analysis of a web survey of mothers (N = 1,040) of 3-12 years old children in Japan indicated that many mothers briefly saw basic information about crime on the Internet, while only a few mothers sought further details. Structural equation modeling indicated the following results. Overall, an increased frequency of conversations about children's safety with family and friends made mothers realize their own responsibility for crime prevention. It also encouraged mothers to seek more information about crime prevention by increasing their willingness to cooperate with neighbors. However, when individuals' realization of responsibility for crime prevention strengthened their attitudes toward the responsibility of the police and government for crime problems, then these attitudes decreased mothers' information-seeking. Finally, while a heightened frequency of conversations about news contents directly increased information-seeking about crime, such conversations could indirectly weaken mothers' information-seeking when mothers emphasized the responsibility of the police and government.

  5. Method to Determine the Stress-Strain Response of As-Formed Thin-Walled Tubular Structures Using a Flaring Apparatus

    NASA Astrophysics Data System (ADS)

    Jurendic, S.; Anderson, D.

    2017-09-01

    Finite element simulations are used extensively to refine the forming steps of draw and wall iron (DWI) aluminum bottles; therefore, accurate material data is required Unfortunately, the material properties of the base sheet cannot presently be used for simulation of the later forming stages due to preceding significant deformation (ironing) and thermal treatments. Measuring the stress-strain response using traditional methods (e.g. tensile test) becomes increasingly difficult at later stages of the bottle forming process due to a significant diameter reduction of the bottle neck from successive die-necking stages. Moreover, failure during forming tends to occur in the final deformation stages when the bottle opening is rolled over, creating a brim roll, at which point brim roll splits may occur. Knowledge of the stress-strain response prior to the roll over may lead to improved product design, reduced waste, and an optimized product. Therefore, this work details a flaring apparatus and data analysis method to determine the stress-strain response in the die-necked region of thin-walled aluminum bottles fabricated from AA3104 sheet metal.

  6. Air Vehicle Integration and Technology Research (AVIATR). Task Order 0023: Predictive Capability for Hypersonic Structural Response and Life Prediction: Phase 2 - Detailed Design of Hypersonic Cruise Vehicle Hot-Structure

    DTIC Science & Technology

    2012-02-01

    x Approved for public release; distribution unlimited. I-DEAS/ TMG Thermal analysis software IR Initial Review ITAR International Traffic in Arms...the finite element code I- DEAS/ TMG . A mesh refinement study was conducted on the first panel to determine the mesh density required to accurately...ng neer ng, pera ons ec no ogy oe ng esearc ec no ogy • heat transfer analysis conducted with I-DEAS/ TMG exercises mapping of temperatures to

  7. Determination of Shear Wave Velocity Structure in the Rio Grande Rift Through Receiver Function and Surface Wave Analysis. Appendix B

    DTIC Science & Technology

    1991-08-01

    source and receiver responses for constant ray parameter, Bull. Seism. Soc. Am. 67, 1029-1050, 1977. Langston, C. A., Structure under Mount Rainier ...the 106 petrologic processes taking place within the rift. APPENDIX LIST OF COMPUTER PROGRAMS USED IN THESIS. 107 I 108 PROGRAM: RAY3D AUTHOR: Dr. T.J...Lab. Rep., LA-8676-T, 218 pp., 1981. Baldridge, W. S., Petrology an,3 petrogenesis of Plio- Pleistocene basaltic rocks from the central Rio Grand

  8. Permafrost soil characteristics and microbial community structure across a boreal forest watershed vary over short spatial scales and dictate community responses to thaw.

    NASA Astrophysics Data System (ADS)

    Stegen, J.; Bottos, E. M.; Kennedy, D.; Romero, E. B.; Fansler, S.; Chu, R. K.; Tfaily, M.; Jansson, J.; Bernstein, H. C.; Brown, J. M.; Markillie, L. M.

    2017-12-01

    Understanding drivers of permafrost microbial community structure and function is critical for understanding permafrost microbiology and predicting ecosystem responses to thaw; however, studies describing ecological controls on these communities are lacking. We hypothesize that permafrost communities are uniquely shaped by constraints imposed by prolonged freezing, and decoupled from the selective factors that influence non-permafrost soil communities, but that pre-thaw environmental and community characteristics will be strong determinants of community structure and function post-thaw. We characterized patterns of environmental variation and microbial community composition in sixty permafrost samples spanning landscape gradients in a boreal forest watershed, and monitored community responses to thaw. Consistent with our hypothesis, we found that, proportionally, the strongest process influencing permafrost community composition was dispersal limitation (0.36), exceeding the influence of homogenous selection (0.21) and variable selection (0.16), and that deterministic selection arose primarily from energetic constraints of the permafrost environment. Our data supported a structural equation model in which organic carbon thermodynamics and organic acid content, influenced redox conditions and total selection. Post-thaw community composition was found to be driven primarily by pre-thaw community composition, indicating a strong influence of historical conditions. Together, these results suggest that community responses to thaw may be highly varied over short distances and that changes in community structure and function are likely to be drastic, as changes to system hydrology mobilize organisms and nutrients, thereby relieving the primary constraints on the system. These findings are being integrated with metabolomic and metatranscriptomic analyses to improve understanding of how pre-thaw conditions can be used to predict microbial activity post-thaw.

  9. Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr 0.2Ti 0.8O 3 Thin Films

    DOE PAGES

    Agar, Joshua C.; Cao, Ye; Naul, Brett; ...

    2018-05-28

    Many energy conversion, sensing, and microelectronic applications based on ferroic materials are determined by the domain structure evolution under applied stimuli. New hyperspectral, multidimensional spectroscopic techniques now probe dynamic responses at relevant length and time scales to provide an understanding of how these nanoscale domain structures impact macroscopic properties. Such approaches, however, remain limited in use because of the difficulties that exist in extracting and visualizing scientific insights from these complex datasets. Using multidimensional band-excitation scanning probe spectroscopy and adapting tools from both computer vision and machine learning, an automated workflow is developed to featurize, detect, and classify signatures ofmore » ferroelectric/ferroelastic switching processes in complex ferroelectric domain structures. This approach enables the identification and nanoscale visualization of varied modes of response and a pathway to statistically meaningful quantification of the differences between those modes. Lastly, among other things, the importance of domain geometry is spatially visualized for enhancing nanoscale electromechanical energy conversion.« less

  10. Structural Determinants of Oligomerization of the Aquaporin-4 Channel.

    PubMed

    Kitchen, Philip; Conner, Matthew T; Bill, Roslyn M; Conner, Alex C

    2016-03-25

    The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Aeroelastic effects in multi-rotor vehicles with application to a hybrid heavy lift system. Part 1: Formulation of equations of motion

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedman, P.

    1984-01-01

    This report presents a set of governing coupled differential equations for a model of a hybrid aircraft. The model consists of multiple rotor systems connected by an elastic interconnecting structure, with options to add any combination of or all of the following components; i.e., thrusters, a buoyant hull, and an underslung weight. The dynamic equations are written for the individual blade with hub motions, for the rigid body motions of the whole model, and also for the flexible modes of the interconnecting structure. One of the purposes of this study is to serve as the basis of a numerical study aimed at determining the aeroelastic stability and structural response characteristics of a Hybrid Heavy Lift Airship (HHLA). It is also expected that the formulation may be applicable to analyzing stability and responses of dual rotor helicopters such as a Heavy Lift Helicopter (HLH). Futhermore, the model is capable of representing coupled rotor/body aeromechanical problems of single rotor helicopters.

  12. How to Switch Off a Histidine Kinase: Crystal Structure of Geobacillus Stearothermophilus KinB with the Inhibitor Sda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bick, M.; Lamour, V; Rajashankar, K

    2009-01-01

    Entry to sporulation in bacilli is governed by a histidine kinase phosphorelay, a variation of the predominant signal transduction mechanism in prokaryotes. Sda directly inhibits sporulation histidine kinases in response to DNA damage and replication defects. We determined a 2.0-Angstroms-resolution X-ray crystal structure of the intact cytoplasmic catalytic core [comprising the dimerization and histidine phosphotransfer domain (DHp domain), connected to the ATP binding catalytic domain] of the Geobacillus stearothermophilus sporulation kinase KinB complexed with Sda. Structural and biochemical analyses reveal that Sda binds to the base of the DHp domain and prevents molecular transactions with the DHp domain to whichmore » it is bound by acting as a simple molecular barricade. Sda acts to sterically block communication between the catalytic domain and the DHp domain, which is required for autophosphorylation, as well as to sterically block communication between the response regulator Spo0F and the DHp domain, which is required for phosphotransfer and phosphatase activities.« less

  13. Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr 0.2Ti 0.8O 3 Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agar, Joshua C.; Cao, Ye; Naul, Brett

    Many energy conversion, sensing, and microelectronic applications based on ferroic materials are determined by the domain structure evolution under applied stimuli. New hyperspectral, multidimensional spectroscopic techniques now probe dynamic responses at relevant length and time scales to provide an understanding of how these nanoscale domain structures impact macroscopic properties. Such approaches, however, remain limited in use because of the difficulties that exist in extracting and visualizing scientific insights from these complex datasets. Using multidimensional band-excitation scanning probe spectroscopy and adapting tools from both computer vision and machine learning, an automated workflow is developed to featurize, detect, and classify signatures ofmore » ferroelectric/ferroelastic switching processes in complex ferroelectric domain structures. This approach enables the identification and nanoscale visualization of varied modes of response and a pathway to statistically meaningful quantification of the differences between those modes. Lastly, among other things, the importance of domain geometry is spatially visualized for enhancing nanoscale electromechanical energy conversion.« less

  14. High-Throughput, Data-Rich Cellular RNA Device Engineering

    PubMed Central

    Townshend, Brent; Kennedy, Andrew B.; Xiang, Joy S.; Smolke, Christina D.

    2015-01-01

    Methods for rapidly assessing sequence-structure-function landscapes and developing conditional gene-regulatory devices are critical to our ability to manipulate and interface with biology. We describe a framework for engineering RNA devices from preexisting aptamers that exhibit ligand-responsive ribozyme tertiary interactions. Our methodology utilizes cell sorting, high-throughput sequencing, and statistical data analyses to enable parallel measurements of the activities of hundreds of thousands of sequences from RNA device libraries in the absence and presence of ligands. Our tertiary interaction RNA devices exhibit improved performance in terms of gene silencing, activation ratio, and ligand sensitivity as compared to optimized RNA devices that rely on secondary structure changes. We apply our method to building biosensors for diverse ligands and determine consensus sequences that enable ligand-responsive tertiary interactions. These methods advance our ability to develop broadly applicable genetic tools and to elucidate understanding of the underlying sequence-structure-function relationships that empower rational design of complex biomolecules. PMID:26258292

  15. A randomized trial of the impact of survey design characteristics on response rates among nursing home providers.

    PubMed

    Clark, Melissa; Rogers, Michelle; Foster, Andrew; Dvorchak, Faye; Saadeh, Frances; Weaver, Jessica; Mor, Vincent

    2011-12-01

    An experiment was conducted to maximize participation of both the Director of Nursing (DoN) and the Administrator (ADMIN) in long-term care facilities. Providers in each of the 224 randomly selected facilities were randomly assigned to 1 of 16 conditions based on the combination of data collection mode (web vs. mail), questionnaire length (short vs. long), and incentive structure. Incentive structures were determined by amount compensated if the individual completed and an additional amount per individual if the pair completed (a) $30 individual/$5 pair/$35 total; (b) $10 individual/$25 pair/$35 total; (c) $30 individual/$20 pair/$50 total; and (d) $10 individual/$40 pair/$50 total. Overall, 47.4% of eligible respondents participated; both respondents participated in 29.3% of facilities. In multivariable analyses, there were no differences in the likelihood of both respondents participating by mode, questionnaire length, or incentive structure. Providing incentives contingent on participation by both providers of a facility was an ineffective strategy for significantly increasing response rates.

  16. A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes

    NASA Astrophysics Data System (ADS)

    Ferhatoglu, Erhan; Cigeroglu, Ender; Özgüven, H. Nevzat

    2018-07-01

    In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the nonlinear system is bounded by the confinement of these linear systems. In this study, a modal superposition method utilizing novel hybrid mode shapes which are defined as linear combinations of the modal vectors of the limiting linear systems is proposed to determine periodic response of nonlinear systems. In this method the response of the nonlinear system is written in terms of hybrid modes instead of the modes of the underlying linear system. This provides decrease of the number of modes that should be retained for an accurate solution, which in turn reduces the number of nonlinear equations to be solved. In this way, computational time for response calculation is directly curtailed. In the solution, the equations of motion are converted to a set of nonlinear algebraic equations by using describing function approach, and the numerical solution is obtained by using Newton's method with arc-length continuation. The method developed is applied on two different systems: a lumped parameter model and a finite element model. Several case studies are performed and the accuracy and computational efficiency of the proposed modal superposition method with hybrid mode shapes are compared with those of the classical modal superposition method which utilizes the mode shapes of the underlying linear system.

  17. The crystal structure of human soluble CD14 reveals a bent solenoid with a hydrophobic amino-terminal pocket1

    PubMed Central

    Kelley, Stacy L.; Lukk, Tiit; Nair, Satish K.; Tapping, Richard I.

    2012-01-01

    Human monocyte differentiation antigen CD14 is a pattern recognition receptor that enhances innate immune responses to infection by sensitizing host cells to bacterial lipopolysaccharide (LPS; endotoxin), lipoproteins, lipoteichoic acid and other acylated microbial products. CD14 physically delivers these lipidated microbial products to various Toll-like receptor signaling complexes that subsequently induce intracellular proinflammatory signaling cascades upon ligand binding. The ensuing cellular responses are usually protective to the host, but can also result in host fatality through sepsis. In this work, we have determined the X-ray crystal structure of human CD14. The structure reveals a bent solenoid typical of leucine rich repeat proteins with an amino terminal pocket that presumably binds acylated ligands including LPS. Comparison of human and mouse CD14 structures show great similarity in overall protein fold. However, compared to mouse CD14, human CD14 contains an expanded pocket and alternative rim residues that are likely to be important for LPS binding and cell activation. The X-ray crystal structure of human CD14 presented herein may foster additional ligand bound structural studies, virtual docking studies, and drug design efforts to mitigate LPS induced sepsis and other inflammatory diseases. PMID:23264655

  18. Social Determinants and Health Behaviors: Conceptual Frames and Empirical Advances

    PubMed Central

    Short, Susan E.; Mollborn, Stefanie

    2015-01-01

    Health behaviors shape health and well-being in individuals and populations. Drawing on recent research, we review applications of the widely applied “social determinants” approach to health behaviors. This approach shifts the lens from individual attribution and responsibility to societal organization and the myriad institutions, structures, inequalities, and ideologies undergirding health behaviors. Recent scholarship integrates a social determinants perspective with biosocial approaches to health behavior dynamics. Empirical advances model feedback among social, psychological and biological factors. Health behaviors are increasingly recognized as multidimensional and embedded in health lifestyles, varying over the life course and across place and reflecting dialectic between structure and agency that necessitates situating individuals in context. Advances in measuring and modeling health behaviors promise to enhance representations of this complexity. PMID:26213711

  19. Density functional theory determination of structural and electronic properties of struvite.

    PubMed

    Romanowski, Zbigniew; Kempisty, Paweł; Prywer, Jolanta; Krukowski, Stanisław; Torzewska, Agnieszka

    2010-07-29

    Crystallographic structure, total energy, electronic structure, and the most important elastic properties of struvite, NH(4)MgPO(4).6H(2)O, the main component of infectious urinary stones, are presented. The calculations were performed using ab initio full-electron calculations within the density functional theory-generalized gradient approximation (DFT-GGA) framework. The obtained crystallographic symmetry and the calculated lattice parameters and also the elastic constants are in good agreement with the experimental data. The elastic properties are essential for establishing an optimal response of urinary stones during shock-wave lithotripsy. The calculated electronic charge distribution confirms the layered structure of the struvite crystals. The polar character of the crystal, well-known from crystal growth experiments, was also confirmed by the magnitude of spontaneous polarization which was obtained from direct determination of the electrical dipole density. The calculated value of spontaneous polarization is equal to -8.8 microC cm(-2). This feature may play a key role in struvite crystallization, electrically binding the charged active impurities and other active species, and consequently determining urinary stone formation. We also present the results of our own experiment of the mineralization of struvite induced to growth by Proteus bacteria which are mainly isolated from infectious urinary stones.

  20. Merocyclophanes C and D from the Cultured Freshwater Cyanobacterium Nostoc sp. (UIC 10110).

    PubMed

    May, Daniel S; Chen, Wei-Lun; Lantvit, Daniel D; Zhang, Xiaoli; Krunic, Aleksej; Burdette, Joanna E; Eustaquio, Alessandra; Orjala, Jimmy

    2017-04-28

    Merocyclophanes C and D (1 and 2) were isolated from the cell extract of the cultured cyanobacterium UIC 10110. The structures were determined by one-dimensional nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry and confirmed by 2D NMR techniques. The absolute configurations were determined using electronic circular dichroism spectroscopy. Merocyclophanes C and D represent the first known analogues of the merocyclophane core structure, a recently discovered scaffold of [7,7] paracyclophanes characterized by an α-branched methyl at C-1/C-14; 1 and 2 showed antiproliferative activity against the MDA-MB-435 cell line with IC 50 values of 1.6 and 0.9 μM, respectively. Partial 16S analysis determined UIC 10110 to be a Nostoc sp., and it was found to clade with UIC 10062 Nostoc sp., the only other strain known to produce merocyclophanes. The genome of UIC 10110 was sequenced, and a biosynthetic gene cluster was identified that is proposed to encode type I and type III polyketide synthases that are potentially responsible for production of the merocyclophanes; however, further experiments will be required to verify the true function of the gene cluster. The gene cluster provides a genetic basis for the observed structural differences of the [7,7] paracyclophane core structures.

Top